paperID
stringlengths 36
36
| pwc_id
stringlengths 8
47
| arxiv_id
stringlengths 6
16
⌀ | nips_id
float64 | url_abs
stringlengths 18
329
| url_pdf
stringlengths 18
742
| title
stringlengths 8
325
| abstract
stringlengths 1
7.27k
⌀ | authors
stringlengths 2
7.06k
| published
stringlengths 10
10
⌀ | conference
stringlengths 12
47
⌀ | conference_url_abs
stringlengths 16
198
⌀ | conference_url_pdf
stringlengths 27
199
⌀ | proceeding
stringlengths 6
47
⌀ | taskID
stringlengths 7
1.44k
| areaID
stringclasses 688
values | embedding
stringlengths 9.26k
12.5k
| umap_embedding
stringlengths 29
44
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ee41f843-eac7-4cb1-82bf-79eb60df3c0b | cma-clip-cross-modality-attention-clip-for | 2112.03562 | null | https://arxiv.org/abs/2112.03562v2 | https://arxiv.org/pdf/2112.03562v2.pdf | CMA-CLIP: Cross-Modality Attention CLIP for Image-Text Classification | Modern Web systems such as social media and e-commerce contain rich contents expressed in images and text. Leveraging information from multi-modalities can improve the performance of machine learning tasks such as classification and recommendation. In this paper, we propose the Cross-Modality Attention Contrastive Language-Image Pre-training (CMA-CLIP), a new framework which unifies two types of cross-modality attentions, sequence-wise attention and modality-wise attention, to effectively fuse information from image and text pairs. The sequence-wise attention enables the framework to capture the fine-grained relationship between image patches and text tokens, while the modality-wise attention weighs each modality by its relevance to the downstream tasks. In addition, by adding task specific modality-wise attentions and multilayer perceptrons, our proposed framework is capable of performing multi-task classification with multi-modalities. We conduct experiments on a Major Retail Website Product Attribute (MRWPA) dataset and two public datasets, Food101 and Fashion-Gen. The results show that CMA-CLIP outperforms the pre-trained and fine-tuned CLIP by an average of 11.9% in recall at the same level of precision on the MRWPA dataset for multi-task classification. It also surpasses the state-of-the-art method on Fashion-Gen Dataset by 5.5% in accuracy and achieves competitive performance on Food101 Dataset. Through detailed ablation studies, we further demonstrate the effectiveness of both cross-modality attention modules and our method's robustness against noise in image and text inputs, which is a common challenge in practice. | ['Yi Sun', 'Bryan Wang', 'Chien-Chih Wang', 'Ning Xie', 'Yang Liu', 'Jinmiao Fu', 'Shaoyuan Xu', 'Huidong Liu'] | 2021-12-07 | null | null | null | null | ['multimodal-text-and-image-classification', 'image-text-classification'] | ['methodology', 'miscellaneous'] | [ 4.25802708e-01 -4.85083073e-01 -2.57390022e-01 -4.60600793e-01
-1.13412392e+00 -5.26302636e-01 6.98123097e-01 1.70900881e-01
-5.13890088e-01 2.72551686e-01 3.45399499e-01 -1.52980253e-01
7.14032724e-02 -5.78713894e-01 -1.11138761e+00 -6.27373695e-01
3.09352368e-01 -8.12126882e-03 -9.31295380e-02 -2.12037936e-01
-1.62762687e-01 -1.77087843e-01 -1.48728144e+00 1.02002442e+00
5.81698000e-01 1.41942143e+00 3.98394465e-01 5.51983356e-01
-1.54300049e-01 6.85829580e-01 2.99677346e-02 -7.10933745e-01
1.13139957e-01 -1.24877580e-01 -7.09348977e-01 2.40514144e-01
5.94576180e-01 -2.11182848e-01 -2.38095462e-01 9.16709900e-01
4.42657471e-01 3.07885967e-02 5.14553547e-01 -1.17414689e+00
-1.31519055e+00 6.47218049e-01 -1.10570669e+00 1.27375826e-01
1.47123307e-01 2.47537225e-01 1.12808073e+00 -1.00908363e+00
3.03939700e-01 1.33180523e+00 5.66217721e-01 3.06224108e-01
-1.09880722e+00 -5.72822034e-01 4.97662842e-01 2.85023123e-01
-1.11145818e+00 -2.63715982e-01 6.94464147e-01 -4.57419664e-01
1.03236604e+00 1.44720137e-01 1.13567062e-01 1.26891291e+00
2.50785887e-01 1.27757537e+00 1.16952157e+00 -3.55498880e-01
-3.34068358e-01 1.01726942e-01 1.75846934e-01 5.42538762e-01
-2.14483097e-01 -8.98530930e-02 -5.44952333e-01 2.04711094e-01
5.73936701e-01 3.02259862e-01 7.22526237e-02 -4.82245628e-03
-1.62032402e+00 7.26845622e-01 5.94446480e-01 3.36216450e-01
-6.42921388e-01 7.41073191e-02 6.42695189e-01 2.62892008e-01
4.97054458e-01 9.68408063e-02 -6.70689583e-01 2.71530926e-01
-5.07172108e-01 -6.49252087e-02 3.06806594e-01 8.83731306e-01
3.21128935e-01 -1.67018831e-01 -5.91111660e-01 1.13965750e+00
5.46406031e-01 7.05165207e-01 5.41996837e-01 -3.66923422e-01
6.29387915e-01 6.26549184e-01 -1.60505936e-01 -8.84622574e-01
-3.31103295e-01 -5.62738419e-01 -8.99202466e-01 -1.00137591e-01
2.58536130e-01 1.64835244e-01 -1.22321951e+00 1.83143044e+00
2.38007054e-01 -4.23014686e-02 1.48547024e-01 1.05237699e+00
1.14838564e+00 7.59092271e-01 7.16270685e-01 6.54012486e-02
1.89899039e+00 -1.47840106e+00 -6.56982243e-01 -2.82039493e-01
2.72728145e-01 -9.74827588e-01 1.26437199e+00 1.30075663e-01
-1.01534986e+00 -9.12373841e-01 -1.05222166e+00 -2.99745232e-01
-5.60182273e-01 3.74909610e-01 6.21292174e-01 1.53264523e-01
-6.49884582e-01 4.69981506e-02 -5.25526762e-01 -4.37120020e-01
6.04575038e-01 2.73236126e-01 -4.89406615e-01 -4.39006656e-01
-1.19066048e+00 6.04247987e-01 1.98450029e-01 1.39687419e-01
-8.59836936e-01 -9.31666732e-01 -9.33475792e-01 1.49208978e-01
3.10058534e-01 -8.22676241e-01 1.21051693e+00 -1.25810671e+00
-1.31158721e+00 9.92458642e-01 -1.99338738e-02 -2.93725610e-01
2.78466135e-01 -2.99898356e-01 -7.65591204e-01 1.11450396e-01
1.20496653e-01 8.55275035e-01 9.27319825e-01 -1.21989954e+00
-8.37181509e-01 -4.74624127e-01 2.31008545e-01 2.37656713e-01
-3.64531159e-01 1.03882164e-01 -8.48193228e-01 -7.30947793e-01
-2.36400962e-01 -7.74314463e-01 5.43753728e-02 -3.00593562e-02
-3.43639284e-01 -2.17156127e-01 7.61039793e-01 -6.91831410e-01
8.64420176e-01 -2.48544908e+00 2.03816239e-02 -1.36251718e-01
1.16671557e-02 2.41349995e-01 -7.46723413e-01 2.37904474e-01
-4.44955826e-02 -5.00617884e-02 3.77547927e-02 -4.21463162e-01
1.65727317e-01 3.94246317e-02 -7.04506412e-02 2.33760864e-01
3.62223029e-01 1.33988702e+00 -8.08036864e-01 -3.26982081e-01
3.07418168e-01 7.54321337e-01 -3.68300438e-01 2.78748237e-02
-3.51789385e-01 3.57281655e-01 -3.78597349e-01 9.39911842e-01
5.91344595e-01 -6.59604311e-01 1.30241916e-01 -8.41371596e-01
2.08037585e-01 -9.46749076e-02 -6.56275749e-01 1.94965065e+00
-8.05734515e-01 2.44444564e-01 1.77344486e-01 -8.84117186e-01
5.76361656e-01 2.90517211e-01 5.21142423e-01 -1.19641840e+00
2.33856648e-01 -5.16408868e-02 -1.36377126e-01 -6.66525662e-01
4.82597619e-01 -2.54357047e-02 -4.34831202e-01 3.08406949e-01
4.39463198e-01 6.57700121e-01 1.63158238e-01 5.26832975e-02
7.67115712e-01 2.25653857e-01 1.06585667e-01 -1.49441004e-01
6.76910281e-01 -2.38925472e-01 3.58854532e-01 6.89240694e-01
-1.48709640e-01 4.81378496e-01 1.24776503e-02 -2.71817833e-01
-9.49128330e-01 -9.28670228e-01 -4.01345007e-02 1.75934494e+00
2.72434205e-01 -2.04573929e-01 -2.82307863e-01 -8.13310266e-01
1.70788914e-01 3.57310116e-01 -8.48915935e-01 -1.20595060e-01
-1.71607107e-01 -9.12904501e-01 1.25220448e-01 7.88112044e-01
8.07197988e-01 -1.06869125e+00 -5.89333288e-02 1.62818879e-01
-3.65181118e-01 -1.53892446e+00 -7.99203455e-01 -3.09007857e-02
-4.66071457e-01 -9.36062872e-01 -9.35789168e-01 -1.01488292e+00
5.53123295e-01 5.23895442e-01 1.20223987e+00 -1.85154423e-01
-1.39314055e-01 6.35333955e-01 -5.43290138e-01 -2.93767095e-01
-1.66759253e-01 1.54074773e-01 -3.81200761e-01 5.99584639e-01
6.14117086e-01 -2.94188797e-01 -7.72218287e-01 3.10204595e-01
-1.06862640e+00 3.08632344e-01 1.01989722e+00 1.11628675e+00
8.07659268e-01 -6.85543716e-02 7.26819634e-01 -8.02735150e-01
4.41307604e-01 -8.46007466e-01 -1.95255786e-01 4.98544574e-01
-4.07877415e-01 -1.20574296e-01 5.28488338e-01 -6.17476463e-01
-1.13349068e+00 2.80594438e-01 -2.25800723e-01 -4.75264758e-01
-2.89394915e-01 7.66268313e-01 -2.55466342e-01 1.18060514e-01
1.98619783e-01 2.29016021e-01 -1.60947204e-01 -7.22342491e-01
5.76276839e-01 7.43563831e-01 8.00297081e-01 -4.63857770e-01
3.40109468e-01 3.23158383e-01 -3.66585255e-01 -4.81133044e-01
-1.06604362e+00 -6.76066458e-01 -4.13164318e-01 -1.84990928e-01
1.17354894e+00 -1.26571417e+00 -8.13159883e-01 7.20258415e-01
-8.67428839e-01 -1.28248230e-01 6.96379766e-02 5.26606917e-01
-2.77691841e-01 9.24383923e-02 -9.55726564e-01 -5.00632823e-01
-6.00611150e-01 -1.13586164e+00 1.25937200e+00 2.71238416e-01
3.53092641e-01 -9.35657382e-01 -3.79436195e-01 8.37665319e-01
3.99437487e-01 9.16673169e-02 1.00684834e+00 -6.70905054e-01
-3.39760840e-01 -1.09296709e-01 -6.13929629e-01 2.75457263e-01
5.67225367e-02 -3.08434993e-01 -1.11723650e+00 -2.74402410e-01
-5.65457404e-01 -5.11362731e-01 1.18581641e+00 3.91152650e-01
1.21814930e+00 -1.25264287e-01 -2.33796492e-01 3.58428150e-01
1.61334586e+00 1.55532926e-01 5.05068898e-01 2.96489298e-01
9.57133353e-01 3.64317715e-01 6.06248498e-01 1.61818117e-01
8.12636614e-01 7.48606801e-01 5.38783431e-01 -5.41310191e-01
-3.23156506e-01 -2.94583529e-01 3.46214205e-01 7.80097961e-01
1.98952600e-01 -2.73221552e-01 -4.69185799e-01 7.52221107e-01
-2.10044050e+00 -9.12254035e-01 -1.71646068e-04 1.88366568e+00
7.49991894e-01 -8.50280374e-02 3.03488016e-01 -1.51475891e-01
7.23358452e-01 9.25102457e-02 -6.69488668e-01 -3.72531533e-01
-1.50035083e-01 -1.14544816e-01 4.35876042e-01 1.62966788e-01
-1.62104619e+00 6.54694796e-01 5.76267099e+00 9.23112869e-01
-1.09008813e+00 4.92349237e-01 7.68764019e-01 -1.48339391e-01
-2.78649390e-01 -6.44887924e-01 -6.96917593e-01 6.76254153e-01
8.86750221e-01 2.16321915e-01 3.77976477e-01 6.57341897e-01
-1.44043013e-01 1.43291846e-01 -1.04787600e+00 9.20845151e-01
3.29668045e-01 -1.12167549e+00 5.27930707e-02 -4.07923907e-02
8.26788783e-01 1.00884035e-01 4.27058786e-01 6.77637994e-01
2.21133187e-01 -9.24241662e-01 8.21059108e-01 2.62187004e-01
7.93786943e-01 -5.36606431e-01 8.80471587e-01 -2.15516929e-02
-1.38968408e+00 -2.70099312e-01 9.01365560e-03 2.43823603e-01
2.82626450e-01 5.22643387e-01 -2.41207898e-01 7.97465563e-01
8.74925137e-01 8.83309901e-01 -4.93884504e-01 8.13842416e-01
1.48703620e-01 4.38951492e-01 -1.59303114e-01 2.09234670e-01
4.53159541e-01 1.35207132e-01 8.94759521e-02 1.37474108e+00
9.45130363e-02 -2.18633283e-02 2.87093192e-01 6.32693350e-01
-3.48844141e-01 2.32283980e-01 -1.48729727e-01 -2.33219534e-01
1.01973854e-01 1.59561694e+00 -4.81655061e-01 -3.49809080e-01
-1.08655787e+00 1.08744323e+00 1.66144758e-01 4.46672440e-01
-1.02340186e+00 -2.83301342e-02 5.54197371e-01 -2.60777980e-01
7.36406505e-01 8.06165561e-02 -1.37140751e-01 -1.03488874e+00
3.11692972e-02 -8.50953460e-01 6.80063248e-01 -8.76256347e-01
-1.83986723e+00 7.20347345e-01 -1.52291521e-01 -1.08045137e+00
2.02427879e-01 -7.47779131e-01 -2.83118188e-01 8.24884355e-01
-1.87861502e+00 -2.04317713e+00 -2.25290909e-01 7.63418436e-01
7.80503809e-01 -1.06347434e-01 7.18912303e-01 7.71429598e-01
-7.08279073e-01 9.22050059e-01 1.35583833e-01 1.01592898e-01
7.26476431e-01 -9.40750003e-01 1.46556750e-01 6.14480019e-01
4.41608503e-02 4.06620592e-01 2.70844460e-01 -3.50564599e-01
-1.70525765e+00 -1.26251352e+00 6.84958160e-01 -1.61666662e-01
6.54526591e-01 -3.14917326e-01 -7.58858204e-01 7.00753093e-01
4.38035518e-01 1.82684541e-01 8.04828227e-01 3.06451678e-01
-7.75574386e-01 -2.99700737e-01 -1.05410194e+00 2.13227063e-01
7.98303843e-01 -7.59628713e-01 -3.98458511e-01 4.17354107e-01
8.22046936e-01 -2.45511651e-01 -1.21422505e+00 5.78973353e-01
8.16687703e-01 -5.06265283e-01 1.22216237e+00 -7.33049214e-01
8.42237949e-01 -1.39563441e-01 -4.81375515e-01 -1.17480016e+00
-7.22921491e-01 -4.84469235e-02 -1.11587979e-01 1.56805325e+00
5.93828917e-01 -3.35629374e-01 1.50555193e-01 3.64797801e-01
-1.52833134e-01 -8.59659553e-01 -4.83493865e-01 -4.75672811e-01
2.67179068e-02 -3.51296902e-01 6.43488824e-01 9.78804648e-01
-1.42461255e-01 6.18799210e-01 -6.46840632e-01 1.44378260e-01
4.89108860e-01 4.98917133e-01 3.43374133e-01 -7.02530026e-01
-4.85577136e-01 -3.66820812e-01 -1.46335676e-01 -9.91653562e-01
1.20710224e-01 -1.02552021e+00 -3.69097330e-02 -1.52337515e+00
7.49541163e-01 -1.99184805e-01 -9.35740411e-01 7.85635114e-01
-3.58674437e-01 7.26817906e-01 4.41773146e-01 2.80616600e-02
-1.03891051e+00 4.24784720e-01 1.43333745e+00 -6.11486793e-01
2.67466065e-02 -3.76736075e-01 -9.82609928e-01 3.78117323e-01
5.40851176e-01 -1.10253304e-01 -2.65636623e-01 -6.71777010e-01
6.86532035e-02 -1.53509438e-01 4.40360904e-01 -5.78653455e-01
-4.81077246e-02 -1.48222689e-02 5.39682150e-01 -6.26680195e-01
2.71799862e-01 -9.26718593e-01 5.36641479e-02 1.82144821e-01
-6.51571691e-01 -9.36720520e-02 3.76009941e-01 7.50186384e-01
-2.84953088e-01 2.23350450e-01 6.05327249e-01 -1.00887634e-01
-1.18538022e+00 4.35614675e-01 -9.24059898e-02 -2.97706455e-01
1.00169110e+00 2.01367438e-01 -5.95796227e-01 -1.38473973e-01
-7.53231883e-01 4.66798186e-01 1.05301978e-03 1.02404594e+00
4.05178398e-01 -1.71334600e+00 -7.79906869e-01 3.18508029e-01
5.66176057e-01 -5.48123598e-01 8.22511435e-01 1.06440198e+00
1.53849304e-01 5.17239451e-01 -3.23135316e-01 -7.75153279e-01
-1.31435835e+00 8.66965115e-01 1.01007700e-01 -3.83635819e-01
-4.27823037e-01 7.65170872e-01 6.15577340e-01 -3.34891647e-01
1.74731746e-01 -2.83916652e-01 -2.65703380e-01 -5.54784499e-02
7.87019014e-01 -1.41342431e-01 8.79353434e-02 -9.30620193e-01
-3.66841048e-01 6.83242500e-01 -4.46356624e-01 2.79077291e-01
1.30883682e+00 -4.53567266e-01 2.36800104e-01 3.73226345e-01
1.42778599e+00 -4.16953117e-01 -1.22038758e+00 -5.58220267e-01
-4.48148102e-01 -3.89196694e-01 3.31694633e-01 -1.43010211e+00
-1.40834796e+00 8.24360609e-01 7.86864460e-01 1.10732522e-02
1.47714412e+00 2.62303054e-01 1.10097480e+00 -1.19200960e-01
5.25743961e-02 -8.89545858e-01 1.59140885e-01 2.43616536e-01
8.76524389e-01 -1.68918324e+00 -2.95854717e-01 -3.63280952e-01
-8.69793892e-01 6.36411250e-01 7.00518191e-01 1.76440194e-01
6.14210427e-01 1.29193202e-01 1.81197762e-01 -1.67835698e-01
-7.90929556e-01 -4.08099592e-01 7.71477103e-01 3.98993105e-01
5.34945607e-01 3.55812088e-02 -1.86414197e-01 1.05159342e+00
5.70770979e-01 1.73482612e-01 -3.16365927e-01 8.07273865e-01
-3.81562635e-02 -9.47779477e-01 -2.15463132e-01 5.08562028e-01
-7.44766474e-01 -1.65699542e-01 6.02386259e-02 4.91914988e-01
1.65083811e-01 1.01160884e+00 1.24374926e-01 -5.95553517e-01
2.95529723e-01 1.11794728e-03 5.11131465e-01 -1.94571406e-01
-8.97924006e-01 3.54172319e-01 1.24164395e-01 -5.47869802e-01
-8.07925522e-01 -4.58635956e-01 -8.68770421e-01 -3.02356064e-01
-2.28811190e-01 -3.31527799e-01 7.34986544e-01 1.03186226e+00
7.27910221e-01 7.98912108e-01 5.65820575e-01 -7.99976587e-01
-3.48620415e-01 -9.29592848e-01 -4.68291759e-01 8.78912807e-01
3.00016701e-01 -6.82152987e-01 1.13833807e-01 3.14633906e-01] | [10.686193466186523, 1.4989436864852905] |
d4bb1cd3-0a43-45af-8625-0799a4467eac | facefusion-exploiting-full-spectrum-of | 2305.14601 | null | https://arxiv.org/abs/2305.14601v1 | https://arxiv.org/pdf/2305.14601v1.pdf | FaceFusion: Exploiting Full Spectrum of Multiple Datasets | The size of training dataset is known to be among the most dominating aspects of training high-performance face recognition embedding model. Building a large dataset from scratch could be cumbersome and time-intensive, while combining multiple already-built datasets poses the risk of introducing large amount of label noise. We present a novel training method, named FaceFusion. It creates a fused view of different datasets that is untainted by identity conflicts, while concurrently training an embedding network using the view in an end-to-end fashion. Using the unified view of combined datasets enables the embedding network to be trained against the entire spectrum of the datasets, leading to a noticeable performance boost. Extensive experiments confirm superiority of our method, whose performance in public evaluation datasets surpasses not only that of using a single training dataset, but also that of previously known methods under various training circumstances. | ['Dongjae Lee', 'Chiyoung Song'] | 2023-05-24 | null | null | null | null | ['face-recognition'] | ['computer-vision'] | [ 1.78065330e-01 3.54493968e-02 -4.44437489e-02 -4.36369896e-01
-5.69340646e-01 -6.49979234e-01 6.57484531e-01 -3.17841709e-01
-3.28659981e-01 6.46873057e-01 6.04464747e-02 1.48077104e-02
-1.28329664e-01 -6.99345231e-01 -4.87792522e-01 -7.97134042e-01
1.14487462e-01 4.47925121e-01 -2.07156494e-01 6.80444464e-02
-2.76147008e-01 5.39244056e-01 -1.60538840e+00 2.08446190e-01
6.16260767e-01 1.22445858e+00 -1.52935594e-01 1.42126918e-01
-2.92499885e-02 5.61632335e-01 -5.52211046e-01 -1.01293194e+00
6.18541241e-01 -6.43665940e-02 -6.03709817e-01 1.94205537e-01
8.47312570e-01 -3.30512881e-01 -3.77918452e-01 1.07761431e+00
7.20922172e-01 -2.30341688e-01 2.51849860e-01 -1.44814479e+00
-6.20110333e-01 3.34585786e-01 -4.38776612e-01 9.38913878e-03
1.19187616e-01 -3.83714624e-02 7.17401803e-01 -1.06923556e+00
6.43869519e-01 1.10974765e+00 6.80471599e-01 6.73862517e-01
-1.38946426e+00 -1.02327526e+00 8.74086767e-02 -1.88650172e-02
-1.50500500e+00 -7.18185842e-01 1.04100764e+00 -2.56651998e-01
5.45060933e-01 3.03327680e-01 2.68875659e-01 1.22057796e+00
-3.37155432e-01 5.20828784e-01 1.35929632e+00 -2.26180270e-01
1.08931586e-02 5.20292521e-01 2.55802590e-02 8.08908045e-01
3.86532038e-01 1.27156988e-01 -5.51221728e-01 -3.22180331e-01
2.71046430e-01 2.77675480e-01 -4.22259271e-01 -5.38625896e-01
-9.79526103e-01 7.08558738e-01 3.70534480e-01 2.63235599e-01
-3.00190270e-01 -2.48231560e-01 4.41805601e-01 5.87487698e-01
4.83869314e-01 1.73710391e-01 -4.03341234e-01 1.27003908e-01
-1.03333640e+00 -1.33647978e-01 6.65214658e-01 5.82423925e-01
8.56200457e-01 -9.87586752e-02 3.28538567e-01 6.33522034e-01
2.34400079e-01 2.80150980e-01 3.31568778e-01 -4.01198864e-01
4.65026766e-01 8.19096267e-01 -2.08450049e-01 -9.30095613e-01
-1.94799155e-01 -5.13112009e-01 -1.01917660e+00 3.17839980e-01
5.07991314e-01 -1.86887845e-01 -7.38523006e-01 2.07990360e+00
7.49916494e-01 4.37229693e-01 1.15686461e-01 5.43661118e-01
7.47770369e-01 1.25364825e-01 1.12808617e-02 -2.45277449e-01
1.43806577e+00 -8.60513091e-01 -6.66960418e-01 -9.81654450e-02
5.25883079e-01 -7.56284356e-01 6.26590133e-01 2.83291698e-01
-6.64990544e-01 -6.63332641e-01 -1.17514193e+00 4.71900515e-02
-5.57858348e-01 2.17392281e-01 7.11342037e-01 9.56279695e-01
-1.05624306e+00 4.83739734e-01 -4.85976785e-01 -2.54647821e-01
9.17539775e-01 7.87212670e-01 -1.17417848e+00 -2.86853582e-01
-8.50299060e-01 7.13783026e-01 5.67316949e-01 1.89613670e-01
-7.91450739e-01 -9.69572723e-01 -7.01412439e-01 -7.18428893e-03
7.22304642e-01 -4.23060447e-01 5.22547305e-01 -9.79045749e-01
-1.33966577e+00 8.00865173e-01 -1.17924847e-01 -4.62749526e-02
7.42495239e-01 -3.77129465e-01 -7.69355595e-01 1.11429743e-01
-1.03276305e-01 4.59128141e-01 1.06935322e+00 -1.35037339e+00
-1.68423966e-01 -7.56685257e-01 3.53336297e-02 -7.17246830e-02
-7.81998396e-01 -3.26831033e-03 -4.25595462e-01 -3.99305403e-01
-1.08260147e-01 -8.89819801e-01 1.19184703e-01 7.80565962e-02
-3.83449018e-01 -9.28368196e-02 1.14320064e+00 -6.34763896e-01
1.12193143e+00 -2.28813577e+00 1.20711789e-01 1.71392128e-01
4.53834891e-01 5.47665775e-01 -1.38963893e-01 5.17541111e-01
-5.13592422e-01 1.28949225e-01 -8.85920003e-02 -5.82827508e-01
-1.26898915e-01 1.08371928e-01 -3.34828794e-01 4.19852763e-01
4.35473770e-01 8.30462933e-01 -8.16586375e-01 -4.43626195e-01
1.38450697e-01 7.24504769e-01 -5.17437637e-01 3.84000987e-01
1.39952511e-01 3.69213581e-01 -1.59143403e-01 7.53511965e-01
1.03163981e+00 -3.78417015e-01 3.81022751e-01 -4.19259965e-01
4.29752916e-01 -1.83560520e-01 -1.43760109e+00 1.51439428e+00
-2.99758792e-01 2.21670941e-01 -1.20371215e-01 -8.33903670e-01
6.74592495e-01 5.42222977e-01 3.88452679e-01 -3.44493747e-01
9.22307894e-02 4.73868586e-02 -1.14431269e-01 -4.96468961e-01
-8.02832842e-02 -3.13237190e-01 1.17693551e-01 6.51254058e-01
5.44176042e-01 6.43722951e-01 -4.10548672e-02 1.28038794e-01
9.27727818e-01 -1.95677532e-03 9.54711735e-02 1.98148936e-02
6.55385077e-01 -5.68067670e-01 4.18955654e-01 2.69408077e-01
-2.24588752e-01 2.78726190e-01 5.40490568e-01 -5.47594011e-01
-8.32912028e-01 -1.02581048e+00 -2.64900595e-01 8.79694104e-01
-1.25796482e-01 -5.44529438e-01 -6.33548796e-01 -1.22438502e+00
2.35293180e-01 1.27101153e-01 -1.04642093e+00 -2.45285228e-01
-3.80636007e-01 -9.00612295e-01 6.39400661e-01 3.35420549e-01
5.96352041e-01 -6.06863499e-01 -2.73302287e-01 -1.26845509e-01
4.37131748e-02 -1.31736970e+00 -3.17848474e-01 -4.58470471e-02
-6.86759830e-01 -1.37576878e+00 -4.67516333e-01 -6.31927013e-01
9.23976004e-01 1.82092637e-01 1.08521020e+00 3.25738609e-01
-2.45997116e-01 1.13462068e-01 8.87946971e-03 -2.32317105e-01
-2.44528711e-01 -9.43417400e-02 3.50827605e-01 6.61864579e-01
4.86532271e-01 -7.24179626e-01 -5.21999419e-01 3.11754256e-01
-1.11319602e+00 -1.63516536e-01 6.43879712e-01 1.14810479e+00
1.37107193e-01 2.10684747e-01 9.37709689e-01 -1.10802472e+00
2.84089684e-01 -5.00167668e-01 -4.19379473e-01 5.33352494e-01
-6.27386451e-01 -6.54188469e-02 6.97547674e-01 -6.33094132e-01
-1.04722786e+00 1.22622415e-01 1.04122795e-01 -6.80984139e-01
-1.61382660e-01 2.19573006e-01 -6.41771257e-01 -3.58691990e-01
3.54898691e-01 1.91090286e-01 2.69097954e-01 -6.56060338e-01
4.31526929e-01 6.46805048e-01 4.54234898e-01 -4.72784460e-01
1.08811426e+00 5.73363662e-01 -3.07448041e-02 -4.97262359e-01
-5.52217007e-01 -2.21912563e-01 -9.12152886e-01 -1.46260008e-01
4.21555012e-01 -9.03435886e-01 -6.54962063e-01 4.71863985e-01
-7.70551324e-01 4.20647800e-01 -2.75134388e-02 2.13922039e-01
-5.45406342e-03 4.11668807e-01 -2.72626013e-01 -5.63425541e-01
-2.37416491e-01 -1.06562924e+00 7.91105092e-01 1.36739314e-01
1.02952026e-01 -9.54028249e-01 4.84994687e-02 6.33345664e-01
2.85816222e-01 5.35653710e-01 8.60000968e-01 -9.55648124e-01
-5.97083330e-01 -6.20656967e-01 -3.19774091e-01 5.34762502e-01
3.93193811e-01 -7.42826536e-02 -1.61107755e+00 -5.86366951e-01
1.36423215e-01 -5.08549869e-01 7.56906986e-01 -4.83771831e-01
1.03012431e+00 -2.32774228e-01 -3.58076125e-01 5.15151501e-01
1.81622577e+00 -1.52111650e-01 4.94188726e-01 -4.66355085e-02
8.28953803e-01 6.87753260e-01 2.51237601e-01 2.46120632e-01
2.94072986e-01 6.93641901e-01 4.09018636e-01 -2.37777323e-01
-1.62256360e-02 -3.18253517e-01 1.92468315e-01 5.88782668e-01
1.24813452e-01 1.34327993e-01 -6.26964688e-01 4.41421330e-01
-1.59303021e+00 -1.09791100e+00 4.61285740e-01 2.42795086e+00
7.92291403e-01 2.01513134e-02 2.98021764e-01 2.65857518e-01
5.56816220e-01 1.54100686e-01 -5.07157862e-01 3.98420393e-02
-2.35868879e-02 3.61175865e-01 8.70621204e-02 2.58473396e-01
-1.04695845e+00 7.74698436e-01 6.15737677e+00 5.11605322e-01
-1.35367107e+00 3.82720590e-01 6.50353730e-01 -4.48438019e-01
-1.02695838e-01 -9.83543620e-02 -6.69553638e-01 6.90374732e-01
9.67651904e-01 -1.03262141e-01 4.00675237e-01 8.26323330e-01
-4.48057204e-01 5.43491803e-02 -1.41902208e+00 1.25623369e+00
3.48387897e-01 -1.18363035e+00 4.26403731e-02 3.57598841e-01
6.49012268e-01 -5.07314950e-02 1.81429833e-01 4.01968598e-01
9.43585783e-02 -1.20280492e+00 2.84731060e-01 1.89263359e-01
9.19605494e-01 -9.07490373e-01 8.84331524e-01 1.99141771e-01
-1.11162972e+00 -6.36126176e-02 -2.67017901e-01 2.96313375e-01
-7.61816576e-02 6.91241264e-01 -6.39747024e-01 8.54663193e-01
5.86756587e-01 4.06407714e-01 -7.87024736e-01 8.01011026e-01
1.92488283e-02 2.88940430e-01 -4.93453324e-01 5.60116053e-01
-4.70422395e-02 -4.84379344e-02 1.31389901e-01 7.72064209e-01
7.70784467e-02 -1.43358454e-01 1.93364501e-01 5.50230682e-01
-6.38719320e-01 1.44382834e-01 -9.03470993e-01 -3.79613757e-01
5.62279999e-01 1.55949843e+00 -2.77711153e-01 -4.16087002e-01
-6.63691103e-01 1.08056235e+00 7.02977300e-01 2.07466692e-01
-7.79408097e-01 -1.72055930e-01 7.18227148e-01 -1.58327535e-01
3.13793659e-01 1.52199268e-01 4.43100035e-02 -1.33906937e+00
4.67915952e-01 -9.64888632e-01 4.88875240e-01 -1.75889432e-01
-1.33204782e+00 8.71719003e-01 -1.10575557e-01 -1.24042130e+00
2.62938458e-02 -6.03097022e-01 -4.82064694e-01 9.31468546e-01
-1.80518699e+00 -1.30063677e+00 -3.22153687e-01 6.49287522e-01
3.93995736e-03 -4.22654480e-01 1.10964739e+00 7.86587775e-01
-9.39095140e-01 1.10683203e+00 -1.39598371e-02 4.02830899e-01
7.63453007e-01 -9.26190436e-01 -6.46825582e-02 7.02391028e-01
3.92042458e-01 8.05090189e-01 3.13090652e-01 -3.45259398e-01
-1.47967315e+00 -9.51012790e-01 8.51678431e-01 -7.22465336e-01
4.90127176e-01 -5.49431384e-01 -1.06940198e+00 6.66866422e-01
2.21604541e-01 4.45475966e-01 1.43406451e+00 3.07690620e-01
-8.99828792e-01 -3.65029991e-01 -1.38724887e+00 4.10487205e-01
9.84469175e-01 -8.84324849e-01 -3.70894670e-01 2.22249374e-01
3.89563471e-01 -2.10339248e-01 -1.16234601e+00 4.56116855e-01
7.18162775e-01 -9.61845756e-01 1.01492929e+00 -8.38037074e-01
2.52537280e-01 -3.31095368e-01 -1.91506878e-01 -1.02276063e+00
-9.30554420e-02 -7.02879190e-01 -3.82689565e-01 1.57162225e+00
1.39845103e-01 -8.94451439e-01 8.99735391e-01 7.04566360e-01
5.27530611e-01 -9.14977431e-01 -1.03185594e+00 -8.36112380e-01
-2.37073913e-01 -1.79369986e-01 9.64570820e-01 1.33848023e+00
-1.89346775e-01 4.54366058e-01 -5.64702690e-01 5.15978873e-01
9.12201107e-01 5.24051674e-02 9.62739766e-01 -1.48319459e+00
-2.23132491e-01 -1.22151770e-01 -7.16644824e-01 -2.89751172e-01
2.93469459e-01 -1.05292630e+00 -6.76443934e-01 -9.30013895e-01
3.38595301e-01 -5.19032896e-01 -7.05351472e-01 6.94301367e-01
-3.32126617e-01 7.34580636e-01 3.00270468e-01 2.27576241e-01
-2.97111720e-01 4.90875363e-01 9.17840362e-01 1.22909052e-02
1.86760604e-01 -3.31863254e-01 -9.77591932e-01 5.11939704e-01
5.86704195e-01 -5.91633797e-01 -7.00631201e-01 -3.86591494e-01
-1.15661554e-01 -2.77823865e-01 2.76228935e-01 -1.07027853e+00
6.91422969e-02 1.59452751e-01 6.95734918e-01 -2.47129157e-01
5.22411942e-01 -1.25359130e+00 5.16516089e-01 2.29635328e-01
-1.19760735e-02 -5.57157211e-03 3.29451650e-01 6.17651165e-01
-2.03122035e-01 -9.34046600e-03 9.23477530e-01 6.53116256e-02
-5.42242706e-01 5.61937451e-01 6.72984183e-01 -5.16134501e-02
1.43827307e+00 -3.14101309e-01 -2.88016647e-01 1.18974879e-01
-6.53453231e-01 1.48674343e-02 5.48756361e-01 6.21444225e-01
3.74363601e-01 -1.60758638e+00 -5.81222951e-01 6.22229278e-01
2.49743208e-01 -2.99388349e-01 3.62369359e-01 7.39595354e-01
-6.23794645e-02 1.56271622e-01 -3.35415363e-01 -5.12297511e-01
-1.63187945e+00 8.61388803e-01 2.51205444e-01 -3.76607299e-01
-5.44340968e-01 9.88934934e-01 1.40672401e-01 -5.43693602e-01
2.58373439e-01 3.91442299e-01 -1.38202041e-01 3.65303427e-01
8.55872571e-01 4.29343851e-03 1.47958174e-01 -7.88138211e-01
-5.76735377e-01 5.56173563e-01 -4.80109721e-01 1.79645360e-01
1.42173469e+00 1.01899430e-01 -1.68512493e-01 7.52087086e-02
1.55074251e+00 1.72664061e-01 -1.15783763e+00 -6.07852757e-01
-1.96870387e-01 -8.31186831e-01 -1.77030489e-02 -9.04236734e-01
-1.40465081e+00 9.14826870e-01 7.80524790e-01 -3.69093940e-02
1.12711823e+00 -2.84116715e-01 6.89951062e-01 1.71714768e-01
3.93843740e-01 -9.41448331e-01 2.02934682e-01 -1.07541084e-01
6.82197452e-01 -1.62332082e+00 8.95532072e-02 -4.21112239e-01
-4.85842139e-01 1.00427341e+00 7.09360123e-01 1.75066546e-01
8.11942816e-01 8.96748155e-02 1.87875882e-01 -2.87398666e-01
-8.35792363e-01 1.34364830e-03 2.20494941e-01 4.82719600e-01
9.64267552e-02 -8.87707993e-02 2.46265694e-01 3.53441447e-01
-2.50427276e-02 2.27996260e-01 -3.30568776e-02 8.87254119e-01
2.64729112e-01 -1.49718046e+00 -1.01860024e-01 4.03164446e-01
-5.21965146e-01 5.34860454e-02 -3.59244674e-01 6.39205277e-01
4.61950272e-01 7.63892174e-01 -2.16401130e-01 -5.72472632e-01
2.26308882e-01 6.08627856e-01 4.81730312e-01 -4.46263224e-01
-5.48106790e-01 -3.60848367e-01 1.08415075e-01 -4.53787267e-01
-3.74053389e-01 -4.12613690e-01 -7.62183368e-01 -5.03673673e-01
-4.30620730e-01 -3.46370712e-02 4.22095627e-01 9.47826803e-01
7.42470026e-01 2.53310889e-01 9.55869496e-01 -6.31048441e-01
-8.57918918e-01 -7.89079309e-01 -3.87531370e-01 7.96673834e-01
4.34018016e-01 -9.18156564e-01 -2.82830805e-01 -6.11934699e-02] | [13.139633178710938, 0.699047327041626] |
7c108976-be1f-4e72-9b69-8bc1b1343ad3 | salprop-salient-object-proposals-via | 1706.04472 | null | http://arxiv.org/abs/1706.04472v1 | http://arxiv.org/pdf/1706.04472v1.pdf | SalProp: Salient object proposals via aggregated edge cues | In this paper, we propose a novel object proposal generation scheme by
formulating a graph-based salient edge classification framework that utilizes
the edge context. In the proposed method, we construct a Bayesian probabilistic
edge map to assign a saliency value to the edgelets by exploiting low level
edge features. A Conditional Random Field is then learned to effectively
combine these features for edge classification with object/non-object label. We
propose an objectness score for the generated windows by analyzing the salient
edge density inside the bounding box. Extensive experiments on PASCAL VOC 2007
dataset demonstrate that the proposed method gives competitive performance
against 10 popular generic object detection techniques while using fewer number
of proposals. | ['Brejesh lall', 'Prerana Mukherjee', 'Sarvaswa Tandon'] | 2017-06-14 | null | null | null | null | ['object-proposal-generation'] | ['computer-vision'] | [ 1.10247605e-01 1.20358564e-01 -4.40553427e-01 -4.17337000e-01
-5.15268564e-01 -1.08147949e-01 4.96554732e-01 3.56915593e-01
-3.25017065e-01 5.51495075e-01 1.51152879e-01 -6.40954822e-03
-2.28195731e-02 -8.71452034e-01 -5.79656422e-01 -4.93769586e-01
-9.82603207e-02 -9.71796736e-02 1.09254444e+00 2.29712576e-01
5.56637883e-01 3.63079548e-01 -1.66274941e+00 2.32058391e-01
7.15417504e-01 1.31407773e+00 5.75440645e-01 6.41727328e-01
1.25051048e-02 6.39404953e-01 -2.38256305e-01 -1.69701740e-01
2.48711318e-01 -6.54554814e-02 -4.60769355e-01 2.82393157e-01
5.66875577e-01 -2.33029872e-01 2.14436352e-02 1.18896186e+00
3.69642496e-01 3.61907840e-01 9.13062632e-01 -1.33563340e+00
-4.35430199e-01 2.58790135e-01 -1.02497184e+00 6.78003073e-01
2.67591834e-01 -1.90354764e-01 1.28428435e+00 -1.37223363e+00
7.37399459e-01 1.04518390e+00 6.44087732e-01 9.57771093e-02
-9.33876216e-01 -5.38154662e-01 3.12806040e-01 5.38938165e-01
-1.52378535e+00 -1.78514183e-01 1.23943448e+00 -3.05164725e-01
6.43920004e-01 6.72639459e-02 6.37975216e-01 3.50750983e-01
4.45576906e-01 1.00790954e+00 8.80125880e-01 -4.87463355e-01
3.13144654e-01 1.08271360e-01 2.84906268e-01 1.03346789e+00
4.11684245e-01 1.37270689e-01 -6.21062875e-01 -3.51378828e-01
6.50091887e-01 1.71664029e-01 -1.30333334e-01 -7.70395517e-01
-8.51055086e-01 8.62000942e-01 8.50574374e-01 7.86874220e-02
-5.68104327e-01 1.29044011e-01 2.93803453e-01 -4.77697313e-01
5.31508327e-01 -2.42533952e-01 -8.19802471e-03 4.81142521e-01
-8.59212279e-01 2.96161056e-01 4.38794166e-01 1.11683702e+00
1.01723552e+00 -1.03170641e-01 -6.17320955e-01 5.31792462e-01
8.56564045e-01 1.34173110e-01 1.81659237e-01 -6.63767517e-01
1.90028012e-01 7.35570788e-01 2.75592148e-01 -1.46721172e+00
-1.63661435e-01 -5.27372658e-01 -2.35941693e-01 3.90689939e-01
-1.71809077e-01 2.21787676e-01 -1.06348395e+00 1.24978781e+00
9.74753499e-01 5.86955845e-01 -2.11746812e-01 9.64429379e-01
1.04328835e+00 5.26542902e-01 4.30900812e-01 4.48973179e-02
1.57980788e+00 -1.03017175e+00 -6.96960747e-01 -1.44061223e-01
2.56928176e-01 -8.37466419e-01 5.34321785e-01 -1.59572419e-02
-8.81587207e-01 -5.63676775e-01 -1.17382371e+00 8.27879086e-02
-2.06652448e-01 3.09751511e-01 8.50668371e-01 5.97449303e-01
-8.62640142e-01 2.05609471e-01 -7.96504021e-01 -2.01269194e-01
6.43020988e-01 2.41458803e-01 -1.90124691e-01 6.07797131e-02
-6.71629727e-01 5.78828454e-01 1.03454113e+00 -1.40379235e-01
-8.44860613e-01 -3.94542158e-01 -1.15643144e+00 2.05746979e-01
2.90119678e-01 -6.71138704e-01 8.02527368e-01 -7.17309535e-01
-1.19322181e+00 7.25160599e-01 -3.22404653e-01 -6.50394499e-01
1.85331151e-01 3.53313312e-02 -2.46517554e-01 4.21780646e-01
3.34288359e-01 9.88854885e-01 1.07248855e+00 -1.33023810e+00
-1.28795934e+00 -1.96667269e-01 -1.83638066e-01 2.70825148e-01
-8.67556557e-02 1.81792706e-01 -4.13144618e-01 -7.44431555e-01
4.93257850e-01 -6.38242424e-01 -2.27073044e-01 1.07140675e-01
-3.08443964e-01 -6.99449778e-01 1.41207349e+00 -4.01560992e-01
1.21958363e+00 -2.10942149e+00 -4.03808296e-01 2.24716946e-01
4.78107482e-01 1.77254304e-02 2.29839906e-01 -1.17854796e-01
2.37996861e-01 -2.50575870e-01 -2.53145367e-01 -2.02500522e-01
-1.41773522e-01 -2.81615913e-01 -2.32060030e-01 4.32737201e-01
3.33804131e-01 8.46595109e-01 -1.07494664e+00 -1.06073725e+00
3.76465470e-01 5.46955109e-01 -7.50468552e-01 2.25056097e-01
7.84213543e-02 -7.79944435e-02 -7.88829744e-01 7.27596402e-01
9.01083350e-01 -1.23801582e-01 -2.85245955e-01 -3.40049922e-01
4.72707972e-02 -6.21618256e-02 -1.47384548e+00 1.30606616e+00
4.21852292e-03 5.47167361e-01 -6.70194700e-02 -8.12995374e-01
1.10117471e+00 8.05853307e-02 2.45459914e-01 -1.65955015e-02
3.59485358e-01 -4.73167822e-02 -2.28384212e-01 -3.41989756e-01
8.89027178e-01 4.20848047e-03 1.09362662e-01 1.60346955e-01
2.85389513e-01 6.10177889e-02 5.19862659e-02 3.03370267e-01
9.47615862e-01 3.49000871e-01 6.19451761e-01 -5.00589252e-01
5.74016511e-01 -1.48470908e-01 8.35671723e-01 7.79374778e-01
-6.83560848e-01 6.57423913e-01 -5.37686385e-02 -3.99838597e-01
-6.04169488e-01 -1.25931752e+00 -2.90306538e-01 1.15863216e+00
6.39861166e-01 -4.03290063e-01 -6.29206061e-01 -1.04471302e+00
-9.78283510e-02 6.94513321e-01 -5.82815886e-01 -2.15140268e-01
-3.01955104e-01 -6.43831849e-01 -1.05594322e-01 6.40699387e-01
6.28044009e-01 -9.93650615e-01 -9.34544742e-01 2.26119041e-01
-5.15070446e-02 -1.09691978e+00 -7.55808890e-01 8.45542550e-02
-8.66248906e-01 -8.76033247e-01 -5.08705139e-01 -1.24686992e+00
8.24021101e-01 7.03946233e-01 9.04722691e-01 -2.59684259e-03
-6.17790639e-01 5.38351893e-01 -4.36014056e-01 -5.42471170e-01
8.87266919e-02 -3.00594658e-01 -1.13527186e-01 3.52873206e-01
4.93256301e-01 -7.07874745e-02 -9.62129951e-01 2.73664951e-01
-6.40997291e-01 1.00106388e-01 5.27672470e-01 7.61507332e-01
9.29265440e-01 1.33411229e-01 5.89125216e-01 -5.22632897e-01
2.25664347e-01 -5.49501717e-01 -6.15557253e-01 1.74319908e-01
-3.33229125e-01 1.27837732e-01 -3.30419876e-02 -2.87530541e-01
-1.39188421e+00 3.34252656e-01 3.43099922e-01 -3.13939869e-01
-1.26055121e-01 1.86861992e-01 -1.14406042e-01 -2.91578770e-01
4.41172719e-01 1.38332456e-01 -7.18673229e-01 -2.11390510e-01
5.42086482e-01 6.63202643e-01 6.54060125e-01 -3.86824101e-01
6.99020505e-01 7.39818990e-01 3.08656413e-02 -6.21715128e-01
-8.30305994e-01 -8.46131980e-01 -3.86391670e-01 -5.02600849e-01
1.00279009e+00 -8.14521790e-01 -3.94340277e-01 4.16320376e-02
-1.11018515e+00 2.94775993e-01 -1.02061994e-01 6.70555413e-01
-4.86626238e-01 3.56082708e-01 -3.03411156e-01 -1.08965886e+00
-4.77910966e-01 -1.02153146e+00 1.37810612e+00 6.20665431e-01
1.46999538e-01 -9.73881066e-01 -1.18993618e-01 1.56760380e-01
1.78195640e-01 3.35923880e-01 3.30787271e-01 -4.93732780e-01
-8.34519923e-01 -5.20367563e-01 -6.88862622e-01 -4.63900492e-02
8.53772461e-02 -2.20687594e-02 -8.66916060e-01 -1.05572723e-01
-1.39747905e-02 3.49100940e-02 1.11180997e+00 6.42293811e-01
1.10145116e+00 -1.27061382e-02 -8.35397780e-01 3.44903916e-01
1.56129289e+00 5.29361442e-02 2.85627276e-01 -1.44590572e-01
7.94935763e-01 3.46846908e-01 9.65261102e-01 6.18110001e-01
3.81152451e-01 6.15556300e-01 4.17172015e-01 -1.54004782e-03
-3.12359691e-01 -4.06037480e-01 2.31749803e-01 2.48728067e-01
7.72813410e-02 -1.37350067e-01 -6.47512674e-01 8.27500105e-01
-1.86492741e+00 -8.63251209e-01 -2.29839787e-01 2.01629615e+00
4.57595855e-01 4.77306843e-01 1.50072306e-01 -9.61469933e-02
1.28696120e+00 4.44798507e-02 -1.61730886e-01 -1.50798177e-02
1.19685836e-01 5.07002510e-02 5.75062811e-01 5.20039141e-01
-1.43898249e+00 1.08080089e+00 6.44273233e+00 8.54150295e-01
-8.73807311e-01 1.92311108e-01 5.90980053e-01 3.20173234e-01
-1.89946488e-01 2.28438213e-01 -1.27187014e+00 3.36595058e-01
3.15011442e-01 -2.95232415e-01 -3.96734715e-01 1.31355667e+00
7.29911029e-02 -4.70726907e-01 -6.98915243e-01 8.68713498e-01
3.81948441e-01 -1.30248821e+00 9.73865688e-02 -2.16271222e-01
8.13719928e-01 -4.63949144e-02 -2.78631914e-02 1.10595763e-01
3.71566147e-01 -4.90597427e-01 8.65587950e-01 5.19152403e-01
1.55583337e-01 -6.49816692e-01 4.65247720e-01 1.03739358e-01
-1.78722358e+00 3.53209786e-02 -4.76064593e-01 -2.59705167e-02
1.81420475e-01 6.04222000e-01 -1.29070139e+00 3.83419126e-01
7.75607705e-01 5.76921225e-01 -6.59951806e-01 1.75671709e+00
-2.54345328e-01 5.88605821e-01 -3.89588088e-01 -1.61860704e-01
2.16865316e-01 1.04930438e-01 9.42852616e-01 1.26853144e+00
2.18354195e-01 6.97257519e-02 5.10547817e-01 1.04232371e+00
5.24037629e-02 3.69696677e-01 -6.50536120e-01 5.85099697e-01
4.79377866e-01 1.73739076e+00 -1.58496022e+00 -4.93090421e-01
-4.43164498e-01 9.10851955e-01 4.16811168e-01 1.99073166e-01
-8.81746650e-01 -5.78380525e-01 -9.09781009e-02 -2.19433717e-02
7.55898237e-01 -8.85812100e-03 -1.82968989e-01 -8.91000688e-01
-4.41054301e-03 1.39314801e-01 5.80569506e-01 -8.48877251e-01
-1.11277187e+00 3.43230963e-01 2.20160872e-01 -1.18364048e+00
2.11425364e-01 -5.73493302e-01 -1.06160939e+00 5.62806010e-01
-1.52474976e+00 -1.34241140e+00 -4.34261858e-01 2.41188616e-01
6.54429555e-01 7.12654460e-03 2.26304859e-01 3.65566351e-02
-3.14429373e-01 3.29317302e-01 -4.16440010e-01 5.22841327e-02
4.58841562e-01 -1.34720504e+00 1.54195309e-01 1.03685677e+00
3.62369269e-01 3.96184027e-01 8.11502993e-01 -8.61770391e-01
-8.19018126e-01 -1.30792606e+00 6.44324005e-01 -2.93106467e-01
4.75594640e-01 -2.20628887e-01 -8.38564217e-01 5.69953144e-01
1.66563004e-01 6.26102865e-01 4.70526993e-01 -2.48606294e-01
-5.90222999e-02 1.56242579e-01 -1.25176609e+00 4.95709240e-01
9.76964295e-01 -1.94731981e-01 -8.82773161e-01 1.41103640e-01
6.87348187e-01 -2.51086980e-01 -5.61095417e-01 7.22910106e-01
3.69121462e-01 -8.50212276e-01 9.70753133e-01 -3.06846917e-01
1.22285718e-02 -7.31483400e-01 -1.46408126e-01 -9.05086517e-01
-6.64016366e-01 -3.35149229e-01 -2.77454197e-01 1.22204041e+00
1.48337618e-01 -4.05975163e-01 9.99589264e-01 2.11177230e-01
-2.24356234e-01 -6.95522726e-01 -9.70969319e-01 -6.53068960e-01
-7.20194817e-01 -4.31705087e-01 2.28079289e-01 5.46291053e-01
-1.25837564e-01 3.02902848e-01 2.12677568e-02 3.26957136e-01
9.40449297e-01 2.34634399e-01 5.24676800e-01 -1.33779144e+00
-2.77564615e-01 -3.70570868e-01 -1.06203532e+00 -8.40422571e-01
1.62079543e-01 -1.07331443e+00 2.85088509e-01 -1.47165775e+00
5.74140370e-01 -3.62347990e-01 -7.33998597e-01 2.17974216e-01
-7.66503513e-01 5.17816544e-01 -9.98208299e-03 -1.03449598e-01
-1.12949312e+00 7.01062441e-01 8.48541498e-01 -6.40357733e-02
-2.09504411e-01 -1.61749814e-02 -4.10776258e-01 1.02062213e+00
6.29734516e-01 -6.64999485e-01 -2.42695570e-01 6.36363328e-02
-1.94697961e-01 -2.49385983e-01 6.41729355e-01 -1.30829060e+00
2.43844539e-01 -6.95413575e-02 3.89100313e-01 -9.42105412e-01
1.22593686e-01 -7.34656513e-01 -2.75459826e-01 3.01377684e-01
-1.03157483e-01 -2.99179822e-01 3.86866331e-02 1.10110617e+00
-1.12917989e-01 -4.38990951e-01 8.87568414e-01 1.64527148e-01
-1.16143394e+00 3.33658218e-01 -8.16141069e-02 -6.05690181e-02
1.52136564e+00 -3.15755397e-01 2.22230554e-01 3.35982628e-02
-6.92970574e-01 1.50965005e-01 2.09797800e-01 4.06016499e-01
9.80387151e-01 -1.59731674e+00 -6.71180665e-01 1.88575849e-01
5.41004062e-01 -1.94744706e-01 1.72061116e-01 5.55918813e-01
-2.80899435e-01 1.67970285e-01 -1.77766144e-01 -8.09676528e-01
-1.41882634e+00 6.28307462e-01 1.49791569e-01 -5.34416065e-02
-6.41171217e-01 9.68559086e-01 6.01296842e-01 1.97500661e-01
1.03752837e-01 -2.77813375e-01 -4.27908480e-01 -9.16160196e-02
4.92872834e-01 4.43935126e-01 -2.07996264e-01 -9.16809201e-01
-4.12799656e-01 4.62122500e-01 -1.88817307e-01 -8.59804302e-02
8.88355315e-01 -1.43460125e-01 2.19314560e-01 1.79150000e-01
1.04652786e+00 -7.14152725e-03 -1.45049322e+00 -4.18241948e-01
2.23903775e-01 -6.47887707e-01 6.52048230e-01 -2.25027069e-01
-1.00048316e+00 4.59799230e-01 1.02741265e+00 -1.81152727e-02
1.01110041e+00 2.22490996e-01 6.63450718e-01 3.41263339e-02
4.75595027e-01 -1.10106075e+00 1.25266433e-01 5.89493476e-02
6.87364757e-01 -1.54882419e+00 1.75551131e-01 -8.99388611e-01
-4.97143179e-01 8.48985493e-01 7.02562511e-01 -5.46459258e-01
9.52709377e-01 5.06234318e-02 -4.54238951e-01 -3.12788427e-01
-4.20169234e-01 -5.19488811e-01 6.23964369e-01 5.51382422e-01
1.84191748e-01 2.14611232e-01 -6.45894349e-01 5.93074739e-01
2.64233977e-01 -2.03096848e-02 2.99118161e-01 1.12074363e+00
-1.13276112e+00 -7.05972552e-01 -4.60922301e-01 5.45091569e-01
-5.22043765e-01 -7.37092718e-02 -1.17068842e-01 3.63965124e-01
2.20473722e-01 8.04789603e-01 2.37199679e-01 -2.02956632e-01
2.35926826e-03 -9.03016627e-02 2.98648179e-01 -8.58846486e-01
-2.16509834e-01 1.58140108e-01 -2.36437663e-01 -3.67369920e-01
-4.41260606e-01 -5.62893629e-01 -1.34905660e+00 6.10633969e-01
-8.93104911e-01 1.28213182e-01 4.66318130e-01 7.60805488e-01
4.79694128e-01 3.22855502e-01 5.26805818e-01 -1.15919304e+00
-3.37337852e-02 -8.07616949e-01 -5.73832929e-01 3.77199680e-01
1.08459704e-01 -1.26098216e+00 -2.94843048e-01 1.35523945e-01] | [9.420331954956055, 0.5657960176467896] |
fc7ba5b6-88f7-4183-bb76-c69f1f43db42 | point-to-the-expression-solving-algebraic | null | null | https://aclanthology.org/2020.emnlp-main.308 | https://aclanthology.org/2020.emnlp-main.308.pdf | Point to the Expression: Solving Algebraic Word Problems using the Expression-Pointer Transformer Model | Solving algebraic word problems has recently emerged as an important natural language processing task. To solve algebraic word problems, recent studies suggested neural models that generate solution equations by using {`}Op (operator/operand){'} tokens as a unit of input/output. However, such a neural model suffered two issues: expression fragmentation and operand-context separation. To address each of these two issues, we propose a pure neural model, Expression-Pointer Transformer (EPT), which uses (1) {`}Expression{'} token and (2) operand-context pointers when generating solution equations. The performance of the EPT model is tested on three datasets: ALG514, DRAW-1K, and MAWPS. Compared to the state-of-the-art (SoTA) models, the EPT model achieved a comparable performance accuracy in each of the three datasets; 81.3{\%} on ALG514, 59.5{\%} on DRAW-1K, and 84.5{\%} on MAWPS. The contribution of this paper is two-fold; (1) We propose a pure neural model, EPT, which can address the expression fragmentation and the operand-context separation. (2) The fully automatic EPT model, which does not use hand-crafted features, yields comparable performance to existing models using hand-crafted features, and achieves better performance than existing pure neural models by at most 40{\%}. | ['Gahgene Gweon', 'Donggeon Lee', 'Kyung Seo Ki', 'Bugeun Kim'] | null | null | null | null | emnlp-2020-11 | ['math-word-problem-solving', 'math-word-problem-solving', 'math-word-problem-solving'] | ['knowledge-base', 'reasoning', 'time-series'] | [ 1.44872189e-01 -1.26554072e-01 -1.89350024e-01 -1.78322718e-01
-5.22490799e-01 -5.55572271e-01 4.18281615e-01 1.41663879e-01
-6.76009119e-01 6.50224686e-01 -2.62162000e-01 -7.76214123e-01
-1.42176196e-01 -1.26795244e+00 -5.42003572e-01 -3.05392772e-01
5.88422315e-03 8.84104744e-02 7.81394690e-02 -3.93450677e-01
4.71414447e-01 3.88871104e-01 -1.73922849e+00 5.75147867e-01
9.82302606e-01 1.32290983e+00 6.08682632e-02 4.50773269e-01
-8.88986468e-01 8.61421764e-01 -8.65544796e-01 -6.38884187e-01
3.00511241e-01 -1.57294169e-01 -8.51285279e-01 -6.89269960e-01
2.55672544e-01 -1.87344953e-01 -1.50913060e-01 1.20094097e+00
4.61956561e-01 5.26896343e-02 6.95819855e-01 -1.39665377e+00
-1.04016972e+00 1.08048570e+00 -4.88848984e-01 1.52279124e-01
3.76325339e-01 9.14193541e-02 1.32131660e+00 -1.09543538e+00
4.16539580e-01 1.13852048e+00 7.10846722e-01 4.40967917e-01
-1.05896378e+00 -1.06657588e+00 1.00533202e-01 2.97771752e-01
-1.80867147e+00 -1.76246896e-01 5.69312990e-01 -2.38925785e-01
1.56453240e+00 2.44934857e-01 5.95788240e-01 6.06223941e-01
1.82905316e-01 1.10286510e+00 9.78776813e-01 -6.86608434e-01
2.68719822e-01 -9.36121419e-02 5.18190980e-01 8.58635664e-01
-1.33054564e-02 -3.41883451e-02 -3.55215013e-01 -2.09567323e-01
7.83642709e-01 -4.57771510e-01 -1.87233225e-01 3.62968951e-01
-8.28037798e-01 1.01307440e+00 2.00152338e-01 5.20077467e-01
-2.82756299e-01 2.11511984e-01 3.93040836e-01 3.11248481e-01
1.24165237e-01 7.02325583e-01 -5.52394748e-01 -1.79205671e-01
-9.04677749e-01 6.83191299e-01 8.77448261e-01 1.17584574e+00
6.47947133e-01 5.56150079e-01 -4.03902084e-01 1.01827085e+00
1.22089185e-01 3.11692923e-01 6.20774269e-01 -7.54046440e-01
5.75351357e-01 8.44854772e-01 -2.35618293e-01 -9.88326252e-01
-4.13666248e-01 -3.59778970e-01 -8.37782145e-01 5.95033765e-02
4.36002076e-01 -1.95622236e-01 -9.62862313e-01 2.02061987e+00
-1.16813473e-01 1.23628192e-01 2.94332772e-01 5.70482910e-01
1.27728450e+00 1.09724307e+00 1.96744621e-01 -1.86617211e-01
1.50653565e+00 -9.36505616e-01 -7.89499640e-01 -9.98955816e-02
9.81251121e-01 -7.25465178e-01 1.23508263e+00 6.25370860e-01
-1.33407390e+00 -5.31105340e-01 -1.11026561e+00 -1.28483444e-01
-8.12528193e-01 2.59000570e-01 9.16816235e-01 7.66118467e-01
-9.88414347e-01 5.02957225e-01 -1.39576033e-01 1.03590436e-01
4.92563024e-02 4.45890635e-01 -1.58453330e-01 1.06977038e-02
-1.74738503e+00 7.24111855e-01 6.18732095e-01 9.92835239e-02
-3.43601674e-01 -9.52168941e-01 -1.23778033e+00 3.35803449e-01
5.49506783e-01 -4.77777541e-01 1.37514079e+00 -8.46226871e-01
-1.57567191e+00 5.47230601e-01 -2.21311837e-01 -4.70068604e-01
-9.96683761e-02 -2.22285435e-01 -5.88376105e-01 -1.63645640e-01
-5.75417373e-03 6.68238938e-01 5.99348187e-01 -9.03964162e-01
-5.09580731e-01 -6.35204464e-02 1.26548797e-01 -1.38274163e-01
-3.08256865e-01 3.67813885e-01 -4.87535149e-01 -1.15583360e+00
-1.45095065e-01 -7.06210852e-01 5.40187322e-02 -1.67365998e-01
-2.34152898e-01 -8.74782801e-01 3.47812146e-01 -4.77454752e-01
1.97174549e+00 -1.88507020e+00 1.67963982e-01 2.25237608e-01
8.57501701e-02 9.35898125e-01 -3.08500856e-01 4.54441607e-01
-4.76855189e-01 3.79210949e-01 -2.71405011e-01 -7.44482651e-02
3.07903439e-01 2.74435610e-01 -3.80572408e-01 -3.05168390e-01
4.73398566e-01 1.02835250e+00 -7.40000963e-01 -2.47226894e-01
-1.27198640e-04 1.70755893e-01 -7.19942153e-01 3.50526944e-02
-4.36398983e-01 -6.52123809e-01 -2.94929862e-01 7.30632126e-01
6.91797495e-01 -2.90773325e-02 1.70993418e-01 -1.30684227e-01
-3.30644101e-01 2.34193921e-01 -1.58951247e+00 1.51839292e+00
-4.17082250e-01 4.25084263e-01 -1.01921789e-01 -9.83023107e-01
1.13641536e+00 3.63663524e-01 8.30270350e-02 -8.90583992e-01
3.90373975e-01 3.57915670e-01 1.61746085e-01 -4.23770458e-01
7.81026185e-01 -7.20962584e-02 -3.10861230e-01 3.74136239e-01
1.56863958e-01 -1.46422222e-01 5.30365825e-01 3.01647156e-01
1.17867255e+00 -1.23681966e-04 3.75647545e-01 -3.67425650e-01
8.66956532e-01 -2.47588098e-01 7.31348336e-01 7.01669037e-01
2.83079944e-03 4.32793915e-01 7.78984487e-01 -7.47482419e-01
-6.87527180e-01 -9.43763018e-01 1.36010259e-01 1.16255569e+00
-1.28385872e-01 -1.05702281e+00 -7.22315669e-01 -4.62747842e-01
-6.33023903e-02 1.13245249e+00 -3.73905987e-01 -1.78823441e-01
-7.04577923e-01 -7.36423373e-01 1.22009122e+00 7.82843649e-01
6.47642851e-01 -1.36770368e+00 -3.13289791e-01 3.58200133e-01
-1.68545738e-01 -9.31327820e-01 -1.32358357e-01 3.35465521e-01
-4.39680517e-01 -6.94848657e-01 -5.32668650e-01 -6.83567703e-01
4.23571110e-01 -2.08754599e-01 1.10512424e+00 2.68966168e-01
-3.05227220e-01 -1.58212036e-01 -3.01972479e-01 -6.03513896e-01
-4.41873185e-02 6.37378469e-02 1.90562028e-02 -1.08634688e-01
7.22938895e-01 -4.20391738e-01 -5.97706847e-02 1.28034472e-01
-1.10077238e+00 -9.26605053e-03 6.00273669e-01 8.24005365e-01
5.45791328e-01 1.08022355e-01 6.33413851e-01 -7.78454781e-01
9.71376002e-01 -3.97767365e-01 -6.40763462e-01 3.08510303e-01
-7.07478285e-01 3.08475554e-01 9.53885972e-01 -4.57576364e-01
-7.60541081e-01 -1.36886016e-01 -3.47686380e-01 -4.97104436e-01
-6.99109361e-02 7.93424308e-01 -1.55731604e-01 2.42165178e-01
6.44939005e-01 2.38410398e-01 -1.86467424e-01 -5.01510024e-01
2.42810428e-01 5.31481445e-01 5.75188160e-01 -1.17423797e+00
6.02064848e-01 -2.32301265e-01 -1.57456532e-01 -8.17824662e-01
-4.52106565e-01 2.87505127e-02 -3.06505054e-01 1.19664378e-01
6.41294599e-01 -5.97392201e-01 -7.19423592e-01 7.50537753e-01
-1.47209275e+00 -2.38179684e-01 -2.05149680e-01 2.91397125e-01
-1.85185537e-01 4.28768218e-01 -7.47869790e-01 -8.32696319e-01
-6.64240777e-01 -1.25655699e+00 7.25692153e-01 3.16154122e-01
-6.10510588e-01 -7.04014838e-01 -4.63919014e-01 7.62724355e-02
5.08438408e-01 9.72407125e-03 1.53650284e+00 -6.61974728e-01
-2.23586589e-01 -2.66951978e-01 -5.80388427e-01 5.16910493e-01
-1.80691123e-01 1.52697116e-01 -6.60934627e-01 1.75123528e-01
-1.89303681e-01 -3.43988746e-01 5.77541173e-01 9.20737013e-02
1.54777873e+00 -3.74617875e-01 3.99374170e-03 4.36543405e-01
1.18427896e+00 3.11499357e-01 8.97763729e-01 1.92071259e-01
3.36574346e-01 3.47995609e-01 3.05211186e-01 3.07658404e-01
5.66776872e-01 5.47724247e-01 2.03745812e-01 5.79720028e-02
-5.10092601e-02 -2.36397043e-01 3.81310672e-01 7.72324085e-01
-3.00569862e-01 -2.01493293e-01 -1.08199632e+00 5.79359770e-01
-1.80697632e+00 -7.62877762e-01 -2.60930359e-01 1.89452744e+00
1.11279094e+00 2.37113580e-01 -1.78619564e-01 5.62507987e-01
4.21340436e-01 4.63064238e-02 -1.09785080e-01 -9.73132730e-01
-1.47177249e-01 9.49106216e-01 2.62203187e-01 4.83291119e-01
-7.98813343e-01 1.24685669e+00 5.96068764e+00 1.32312322e+00
-1.28052843e+00 -3.19523126e-01 1.99444920e-01 -2.05393089e-03
-3.24326515e-01 -1.62893176e-01 -1.03242064e+00 3.31958979e-01
8.25803399e-01 -2.30399311e-01 4.39268917e-01 8.38119805e-01
-3.10917288e-01 -7.82936215e-02 -1.21751022e+00 1.04115474e+00
2.04436198e-01 -1.28105581e+00 4.20410395e-01 -1.33096442e-01
4.16184753e-01 -5.54048002e-01 -5.33898585e-02 8.47475648e-01
3.29906106e-01 -1.31246912e+00 8.00167143e-01 2.34704494e-01
7.52847731e-01 -8.82031500e-01 7.26384699e-01 2.78588176e-01
-1.47794926e+00 -1.34671345e-01 -1.41332835e-01 -4.75306422e-01
1.00897133e-01 4.75089043e-01 -3.86695981e-01 8.07208180e-01
7.24459112e-01 2.58892268e-01 -5.00399709e-01 6.02555335e-01
-5.20734906e-01 5.26476860e-01 -4.66790944e-01 -3.16423446e-01
5.14164567e-01 -2.66307354e-04 3.32162410e-01 1.39579511e+00
3.75747472e-01 3.66411835e-01 1.66935232e-02 1.20226932e+00
-6.08748533e-02 3.26006889e-01 -4.35634017e-01 -1.94378957e-01
6.26042545e-01 1.08578026e+00 -5.40503383e-01 -4.93831992e-01
-3.88165683e-01 4.90255326e-01 4.91087288e-01 4.64139014e-01
-1.03233171e+00 -1.00720358e+00 5.95646739e-01 -5.67218624e-02
4.71055120e-01 -2.00548425e-01 -4.66689169e-01 -9.98927355e-01
5.71875311e-02 -1.03120565e+00 6.61768854e-01 -8.08951795e-01
-1.12158465e+00 6.72698200e-01 3.13972324e-01 -6.98780000e-01
-2.59316176e-01 -1.10189712e+00 -5.99097073e-01 1.22811854e+00
-1.41241705e+00 -1.00562298e+00 -3.15209366e-02 4.80337024e-01
4.62198526e-01 -4.68369424e-01 1.16399920e+00 4.43838149e-01
-8.59684408e-01 9.92204964e-01 -5.32963336e-01 4.50105488e-01
2.77066797e-01 -1.08698702e+00 2.83629060e-01 7.60978281e-01
8.28753412e-02 1.10071886e+00 3.38587761e-01 -3.34389746e-01
-1.57484114e+00 -9.20254767e-01 1.33072221e+00 -4.34977412e-02
6.47102177e-01 -2.85257071e-01 -1.08756995e+00 5.15293062e-01
2.98363477e-01 -5.91128133e-02 8.78664315e-01 1.35492563e-01
-7.43294656e-01 -3.65474373e-02 -1.09914660e+00 8.12394440e-01
8.82311165e-01 -3.22991550e-01 -1.03467023e+00 -1.77394271e-01
7.36673832e-01 -4.43857849e-01 -8.90097260e-01 7.27943003e-01
5.75997293e-01 -6.41608775e-01 8.85496438e-01 -6.62380755e-01
7.41054177e-01 -3.46010596e-01 -3.30540806e-01 -1.07048416e+00
-4.47365105e-01 -6.29874945e-01 -4.14714754e-01 1.31802487e+00
6.80877864e-01 -6.69667304e-01 3.50716472e-01 8.05742621e-01
-1.75289944e-01 -1.24256301e+00 -8.17822576e-01 -7.72819936e-01
4.74207699e-01 -9.25813437e-01 9.18149292e-01 1.06406903e+00
-3.85521464e-02 4.42319214e-01 -8.36080760e-02 -1.44983470e-01
6.38774559e-02 3.21422145e-02 5.33483028e-01 -9.59449589e-01
-3.31348360e-01 -8.33023071e-01 -1.25133842e-01 -1.02029634e+00
4.08024549e-01 -1.13861108e+00 -3.74516547e-01 -1.31616592e+00
-4.23420012e-01 -5.59488058e-01 -3.92596811e-01 1.02296484e+00
-8.77367929e-02 1.32777691e-01 1.82999492e-01 -3.18072528e-01
-5.70669807e-02 4.13668245e-01 8.52508426e-01 -1.33239120e-01
-6.52182773e-02 -4.08244908e-01 -9.25241470e-01 8.34832132e-01
7.54504025e-01 -2.60663867e-01 -2.81494945e-01 -8.29626918e-01
5.35493672e-01 -2.70747036e-01 1.09842561e-01 -7.13678241e-01
4.30781782e-01 -2.97423810e-01 1.46708071e-01 -6.10140026e-01
2.97983050e-01 -3.35759491e-01 -6.02654964e-02 4.42602336e-01
-2.64497519e-01 4.21099216e-01 5.68406641e-01 -5.17071486e-02
-1.69620767e-01 -6.21642172e-01 5.03352821e-01 -3.49671960e-01
-9.00648415e-01 -1.91117581e-02 -5.44497967e-01 1.97156623e-01
9.36438799e-01 -5.22478260e-02 -3.74394804e-01 -2.25676200e-03
-2.42565110e-01 2.40989044e-01 -2.64982671e-01 6.57353282e-01
7.13630140e-01 -1.39658046e+00 -6.03965640e-01 3.76368672e-01
3.11853420e-02 2.60075331e-01 -7.44262487e-02 3.73734415e-01
-5.20999193e-01 5.60790420e-01 -3.14380601e-02 -1.66978762e-01
-1.21758080e+00 5.37958741e-01 1.56596243e-01 -4.10056412e-01
-2.99397469e-01 9.61231291e-01 -8.45990479e-02 -5.82107365e-01
4.45795119e-01 -6.19115949e-01 -1.59927696e-01 7.67302811e-02
8.17162454e-01 3.06608230e-01 1.46390170e-01 -3.82686108e-01
-1.68667242e-01 5.69461584e-01 -2.70237058e-01 4.14914526e-02
1.22437346e+00 7.20692575e-01 -4.61976349e-01 1.50761425e-01
9.46826279e-01 -1.45421058e-01 -1.38551623e-01 -5.04960775e-01
-2.78080069e-02 -2.90715069e-01 1.01775918e-02 -8.72720897e-01
-1.12637794e+00 9.02541518e-01 9.95029509e-02 2.51643479e-01
1.15247011e+00 -4.18186635e-01 1.03132319e+00 5.24854898e-01
2.09364310e-01 -1.18290794e+00 -4.65372801e-02 1.05362082e+00
9.13886845e-01 -5.09426832e-01 -1.05305001e-01 -6.46850288e-01
-3.39745522e-01 1.14996612e+00 8.99261653e-01 -9.49744284e-02
5.53059340e-01 5.85000277e-01 -1.32770121e-01 -1.24942333e-01
-7.97654331e-01 -4.47690338e-02 2.43506223e-01 2.42988393e-01
6.22436225e-01 -4.65839058e-02 -7.53248453e-01 1.37047374e+00
-4.09706652e-01 3.13909173e-01 1.85195670e-01 1.22535503e+00
-1.52398542e-01 -1.32948101e+00 -2.76674390e-01 4.07198638e-01
-4.78290319e-01 -6.12437487e-01 -5.88933587e-01 7.22228706e-01
3.25264633e-01 7.05207884e-01 -1.73216481e-02 -4.30952489e-01
5.12618601e-01 5.85413933e-01 4.72058237e-01 -6.03281617e-01
-9.89473343e-01 -3.07850182e-01 1.62105858e-01 -4.52752739e-01
3.47675048e-02 -3.18358570e-01 -1.60617638e+00 -4.59101826e-01
-2.99532115e-01 1.22605264e-01 4.03118223e-01 1.01569104e+00
4.71324682e-01 7.63684154e-01 1.30612358e-01 -4.74444896e-01
-6.92245364e-01 -8.57202709e-01 -3.08564752e-01 2.41109103e-01
-1.99466139e-01 -5.99608958e-01 -1.50947005e-01 -2.21499383e-01] | [9.767332077026367, 7.461395740509033] |
2fafb0e4-f938-4f5d-9f86-9336f62345a4 | aphmm-accelerating-profile-hidden-markov | 2207.09765 | null | https://arxiv.org/abs/2207.09765v1 | https://arxiv.org/pdf/2207.09765v1.pdf | ApHMM: Accelerating Profile Hidden Markov Models for Fast and Energy-Efficient Genome Analysis | Profile hidden Markov models (pHMMs) are widely used in many bioinformatics applications to accurately identify similarities between biological sequences (e.g., DNA or protein sequences). PHMMs use a commonly-adopted and highly-accurate method, called the Baum-Welch algorithm, to calculate these similarities. However, the Baum-Welch algorithm is computationally expensive, and existing works provide either software- or hardware-only solutions for a fixed pHMM design. When we analyze the state-of-the-art works, we find that there is a pressing need for a flexible, high-performant, and energy-efficient hardware-software co-design to efficiently and effectively solve all the major inefficiencies in the Baum-Welch algorithm for pHMMs. We propose ApHMM, the first flexible acceleration framework that can significantly reduce computational and energy overheads of the Baum-Welch algorithm for pHMMs. ApHMM leverages hardware-software co-design to solve the major inefficiencies in the Baum-Welch algorithm by 1) designing a flexible hardware to support different pHMMs designs, 2) exploiting the predictable data dependency pattern in an on-chip memory with memoization techniques, 3) quickly eliminating negligible computations with a hardware-based filter, and 4) minimizing the redundant computations. We implement our 1) hardware-software optimizations on a specialized hardware and 2) software optimizations for GPUs to provide the first flexible Baum-Welch accelerator for pHMMs. ApHMM provides significant speedups of 15.55x-260.03x, 1.83x-5.34x, and 27.97x compared to CPU, GPU, and FPGA implementations of the Baum-Welch algorithm, respectively. ApHMM outperforms the state-of-the-art CPU implementations of three important bioinformatics applications, 1) error correction, 2) protein family search, and 3) multiple sequence alignment, by 1.29x-59.94x, 1.03x-1.75x, and 1.03x-1.95x, respectively. | ['Onur Mutlu', 'Sreenivas Subramoney', 'Juan Gómez Luna', 'Mohammed Alser', 'Joel Lindegger', 'Meryem Banu Cavlak', 'Taha Shahroodi', 'Jeremie Kim', 'Damla Senol Cali', 'Bharathwaj Suresh', 'Gurpreet S. Kalsi', 'Kamlesh Pillai', 'Can Firtina'] | 2022-07-20 | null | null | null | null | ['multiple-sequence-alignment'] | ['medical'] | [ 1.18412092e-01 -6.26095235e-01 -1.22802034e-01 -8.79127234e-02
-8.61328840e-01 -2.59420693e-01 1.46003798e-01 4.22193408e-01
-4.01103228e-01 4.63610888e-01 -7.55342692e-02 -7.94968665e-01
3.43538165e-01 -6.04117990e-01 -6.39635921e-01 -9.41905677e-01
1.13791950e-01 4.25771385e-01 3.94583166e-01 9.23165381e-02
5.07251740e-01 4.41946417e-01 -1.49394441e+00 3.28549087e-01
6.14165187e-01 6.70438111e-01 3.02591741e-01 9.26668048e-01
-3.43262181e-02 3.70383531e-01 -2.20572263e-01 9.53167304e-02
3.47959474e-02 -5.60788035e-01 -7.98129678e-01 -3.30124557e-01
-2.32867435e-01 -2.80468225e-01 4.79372218e-02 6.04214013e-01
6.08689666e-01 -1.14515088e-02 4.82153267e-01 -1.04928946e+00
-2.30705161e-02 1.30728185e-01 -9.84845221e-01 2.03423090e-02
4.40717012e-01 4.58577722e-01 5.13144374e-01 -8.74144852e-01
5.01531184e-01 1.03770649e+00 9.83998358e-01 2.88631558e-01
-1.12845540e+00 -7.17346787e-01 -6.42245173e-01 2.01389670e-01
-1.88546085e+00 -3.48926067e-01 3.70092690e-02 -4.63954777e-01
1.62960207e+00 6.88459158e-01 8.24400783e-01 7.40714729e-01
8.94922912e-01 5.57552576e-01 1.19454408e+00 -5.48336327e-01
4.87534136e-01 -3.81975204e-01 5.36854148e-01 7.64788806e-01
3.90977681e-01 1.11791724e-02 -4.43454534e-01 -1.00512290e+00
4.81991887e-01 3.60818386e-01 1.02513554e-02 8.47761482e-02
-1.18926156e+00 7.86467195e-01 -9.09421742e-02 7.89279118e-03
-4.80836391e-01 5.68383597e-02 6.79098904e-01 -2.02307433e-01
-7.21667632e-02 2.82730430e-01 -5.43730259e-01 -5.50351322e-01
-1.19359601e+00 1.71940282e-01 7.19957173e-01 9.95836020e-01
8.61859679e-01 -1.61373973e-01 7.59524405e-02 4.51307088e-01
3.78384054e-01 3.77372950e-01 6.62960470e-01 -5.19385457e-01
-2.69055158e-01 4.57917839e-01 -2.24169604e-02 -5.91602743e-01
-7.03731596e-01 -9.71133336e-02 -1.04958642e+00 -2.54538924e-01
2.95582898e-02 1.46708444e-01 -9.00735378e-01 1.30426860e+00
8.52488101e-01 4.42504942e-01 5.03534684e-03 6.52216554e-01
6.04864061e-01 1.09854448e+00 1.06210850e-01 -4.95506763e-01
1.72543585e+00 -9.88216639e-01 -4.36767012e-01 1.39137104e-01
9.34913516e-01 -1.17283022e+00 1.12168419e+00 2.70706475e-01
-9.59610462e-01 -3.76464844e-01 -1.11643720e+00 -2.56093293e-01
-2.46707946e-02 -1.23339146e-01 7.00643301e-01 7.34218001e-01
-8.65384102e-01 5.19969285e-01 -1.39482260e+00 -4.54747438e-01
-1.00030206e-01 5.19048274e-01 -2.17445344e-02 7.16527849e-02
-7.27155149e-01 5.88979661e-01 2.92334080e-01 -3.71241957e-01
-5.99703968e-01 -9.87337351e-01 -4.75111067e-01 9.27528739e-02
-5.87442145e-02 -7.79266834e-01 1.13953233e+00 -5.77588379e-01
-1.67184246e+00 8.47213268e-01 -4.69275773e-01 -4.76605743e-01
-5.12785688e-02 1.41323758e-02 -2.23134413e-01 -1.15547001e-01
-2.61374861e-01 3.17477971e-01 1.90205052e-01 -4.18918580e-01
-4.97385710e-01 -1.99598819e-01 -7.59024560e-01 -4.93324958e-02
-1.41946739e-02 3.65103871e-01 -5.72740257e-01 -5.17032266e-01
8.77029821e-02 -1.42748392e+00 -4.81258243e-01 -3.65253657e-01
-4.12013948e-01 1.72162265e-01 6.11396194e-01 -6.72401547e-01
1.37675047e+00 -2.05863094e+00 -2.31610700e-01 2.27527514e-01
-3.68676707e-02 5.81282616e-01 2.75284469e-01 6.38089061e-01
9.03009176e-02 -3.22277039e-01 -1.87391639e-01 5.36901653e-02
-3.49277347e-01 1.65090770e-01 -6.80076927e-02 6.71214104e-01
-2.42057905e-01 6.12172782e-01 -6.92992508e-01 -4.14007366e-01
8.78329203e-02 7.06124067e-01 -8.16892326e-01 3.13377798e-01
1.96930766e-01 2.13662475e-01 -1.00823484e-01 7.96088338e-01
8.21313739e-01 -6.07389927e-01 6.07397497e-01 -2.67446727e-01
-5.74800372e-01 3.44936669e-01 -1.01465821e+00 1.59356403e+00
-1.31364822e-01 3.33646744e-01 -1.35880068e-01 -5.15151262e-01
8.20708454e-01 2.17187449e-01 6.86220825e-01 -2.99957216e-01
1.33964986e-01 4.46946710e-01 3.93682607e-02 -1.05366029e-01
5.29212713e-01 7.10697696e-02 -3.23140472e-02 4.84921932e-01
-2.91098118e-01 2.54727751e-01 5.20852469e-02 -1.48485433e-02
1.41285038e+00 4.76565445e-03 9.26482737e-01 -7.38066494e-01
5.17757595e-01 2.85368621e-01 8.46528113e-01 4.81064141e-01
-2.19244123e-01 3.39763343e-01 -7.84033723e-03 -7.16316521e-01
-1.01057553e+00 -7.04479158e-01 -2.54428148e-01 1.14909422e+00
-4.47391458e-02 -8.05783331e-01 -9.90088582e-01 8.62183273e-02
-8.72147605e-02 3.91464174e-01 5.69985174e-02 -6.13515861e-02
-5.92595220e-01 -1.16688895e+00 6.50016129e-01 2.80965477e-01
3.56839806e-01 -5.75795591e-01 -1.33816540e+00 6.38881922e-01
5.16300872e-02 -6.93220317e-01 -7.33569443e-01 2.79003203e-01
-9.66621637e-01 -7.02058136e-01 -2.16053978e-01 -6.48588061e-01
4.65066224e-01 6.22158110e-01 7.91546345e-01 2.29223788e-01
-7.37772644e-01 -2.92689532e-01 -1.74620345e-01 -3.43918532e-01
-3.46952200e-01 -9.48628504e-03 3.67185563e-01 -3.81548315e-01
7.01183558e-01 -6.67771518e-01 -8.64280581e-01 4.09698844e-01
-6.29224718e-01 5.00383794e-01 7.92768717e-01 1.22305012e+00
1.08159637e+00 -2.82425910e-01 -8.14051554e-02 -7.50001073e-01
1.37764081e-01 -4.46418375e-01 -8.05860221e-01 1.78251445e-01
-1.03089130e+00 2.48860881e-01 6.10846400e-01 -4.80135351e-01
-6.57148242e-01 6.95721805e-01 -6.11224413e-01 -1.34900585e-01
1.64155345e-02 3.10558975e-01 -1.12275369e-02 -2.99333721e-01
5.60586333e-01 4.84600127e-01 4.48183939e-02 -4.68405426e-01
-6.38391823e-02 8.39195728e-01 5.58940589e-01 -5.10838866e-01
6.18679561e-02 4.53039169e-01 2.71047771e-01 -9.25275266e-01
-1.09029554e-01 -9.80543911e-01 -1.82247579e-01 2.39339054e-01
7.56067395e-01 -9.82468903e-01 -1.20702076e+00 5.16655207e-01
-1.11060429e+00 -1.19432658e-02 4.59974498e-01 5.26728928e-01
-5.13259649e-01 7.79984593e-01 -1.02149224e+00 -7.51317024e-01
-1.20857358e+00 -1.61937118e+00 1.12945902e+00 1.17463008e-01
-7.45861053e-01 -2.98144490e-01 3.59958231e-01 2.03523010e-01
3.67493838e-01 3.36442143e-01 9.05774415e-01 -3.95700872e-01
-5.31790257e-01 5.08170389e-02 -1.25177264e-01 -3.81102353e-01
-1.39984593e-01 3.50010544e-01 -7.38742471e-01 -5.79953194e-01
5.82298115e-02 1.35432661e-01 4.37303424e-01 4.02664870e-01
8.32922876e-01 -4.67867970e-01 -6.13769233e-01 1.06268561e+00
1.43359113e+00 5.34460008e-01 7.41611719e-01 2.42521495e-01
5.00698209e-01 2.18783952e-02 7.67876923e-01 8.05917144e-01
3.34433794e-01 9.29645538e-01 -3.70701700e-02 -1.88758433e-01
3.63775998e-01 -7.69646987e-02 5.30538917e-01 1.48394084e+00
7.39883035e-02 1.77330613e-01 -1.21788037e+00 2.88943917e-01
-1.95818937e+00 -6.93635702e-01 -7.31620550e-01 2.33294487e+00
1.15572059e+00 -8.41788352e-02 2.79747933e-01 9.98129547e-02
5.44224560e-01 -4.90385801e-01 -5.37665367e-01 -8.63327384e-01
2.95397609e-01 4.21230465e-01 7.28367627e-01 2.57968962e-01
-8.43222499e-01 7.72943199e-01 5.81407261e+00 9.22699213e-01
-1.24097526e+00 2.05596492e-01 4.73731101e-01 -1.49549380e-01
3.47054750e-01 3.61895233e-01 -1.12870884e+00 7.97598362e-01
1.65993166e+00 -2.98124611e-01 2.16875657e-01 1.21274781e+00
1.96392372e-01 -2.54454851e-01 -9.42668617e-01 1.37157691e+00
-2.92057365e-01 -1.64017737e+00 -2.51197368e-01 3.27106237e-01
4.93110508e-01 1.29478041e-03 -3.10170442e-01 7.57218199e-03
2.24056736e-01 -8.40571404e-01 4.50765133e-01 1.82401195e-01
6.94047809e-01 -9.21637774e-01 7.03797102e-01 3.39636326e-01
-1.25962114e+00 3.88209224e-01 -6.18166566e-01 -1.27855122e-01
2.57542670e-01 9.15995419e-01 -1.04558420e+00 3.09726208e-01
7.61602581e-01 -2.28002630e-02 1.14649041e-02 9.03308094e-01
4.15890306e-01 7.08098054e-01 -3.55699897e-01 -3.26805621e-01
2.54111558e-01 -1.94561169e-01 7.82308429e-02 1.77732968e+00
4.10144866e-01 4.61590976e-01 1.68638304e-01 2.82641739e-01
4.11496460e-01 2.75856882e-01 -6.39048368e-02 4.17125635e-02
6.35990083e-01 1.08180118e+00 -8.05364490e-01 -5.05738080e-01
-3.18905234e-01 9.90019619e-01 1.05187800e-02 -2.18164593e-01
-1.06299651e+00 -5.97270608e-01 1.26952112e+00 8.41601565e-02
9.51137841e-02 -4.67233092e-01 -4.12802786e-01 -7.66040564e-01
-4.29217786e-01 -1.15746725e+00 5.03227651e-01 -5.31631768e-01
-7.16199815e-01 4.25944239e-01 -4.44225103e-01 -8.81810844e-01
-2.51328140e-01 -4.08139259e-01 -2.10586220e-01 1.04466784e+00
-1.09307015e+00 -7.75284946e-01 -1.69436127e-01 4.22042996e-01
4.17224020e-01 1.18909843e-01 1.14882123e+00 2.74359703e-01
-8.18427205e-01 7.52871215e-01 5.40243745e-01 -5.59053302e-01
6.38441741e-01 -6.15463495e-01 9.29938555e-01 8.17822337e-01
-3.09507877e-01 1.31698346e+00 8.13938797e-01 -7.32884884e-01
-2.32391405e+00 -1.02490616e+00 9.45067942e-01 -1.29679695e-01
3.52573097e-01 -5.00502229e-01 -1.09739780e+00 3.48593593e-01
-7.27562653e-03 -1.64774835e-01 1.24618721e+00 -1.27389014e-01
-2.43788809e-01 1.49546549e-01 -1.21148801e+00 7.67316699e-01
8.40772510e-01 -4.57841516e-01 -5.43745495e-02 5.51063120e-01
4.82963562e-01 -7.41422713e-01 -1.04832864e+00 1.12317607e-01
1.00338829e+00 -8.54927480e-01 9.57435131e-01 -4.02938843e-01
-5.86711913e-02 -5.20427287e-01 -2.14394286e-01 -6.95607007e-01
-7.71885276e-01 -1.08529830e+00 -2.66564667e-01 6.91734195e-01
-3.08539607e-02 -5.59951782e-01 7.08414197e-01 4.19970930e-01
-2.62701303e-01 -1.04599977e+00 -9.93978739e-01 -7.29328156e-01
-3.22975576e-01 -2.07255766e-01 8.13881338e-01 1.00263023e+00
3.22978169e-01 3.05121958e-01 -5.96400857e-01 1.90815613e-01
4.96695489e-01 2.43288040e-01 9.46422935e-01 -6.95664465e-01
-7.15805888e-01 -1.56640172e-01 -6.25348568e-01 -1.02668428e+00
-3.92605841e-01 -6.39641285e-01 1.21664539e-01 -1.02500641e+00
7.16966033e-01 -1.43173382e-01 -9.33146179e-02 6.76942229e-01
-2.74560302e-01 4.00074245e-03 -1.80006370e-01 4.38631564e-01
-3.44533116e-01 4.91041876e-02 4.42251682e-01 3.01794887e-01
-2.01202825e-01 -4.05117601e-01 -4.02880549e-01 4.79317069e-01
8.46813440e-01 -6.05646014e-01 -1.40335962e-01 -1.33533806e-01
-3.38216424e-02 1.01525411e-01 -9.10498947e-02 -9.59421813e-01
4.64708507e-01 -4.43875790e-01 3.14330876e-01 -7.62942910e-01
2.59338707e-01 -4.24656302e-01 9.60100293e-01 1.14535022e+00
3.06285918e-01 5.59789360e-01 3.52495670e-01 2.58770734e-01
2.46832266e-01 7.67224878e-02 1.06436455e+00 7.11857453e-02
-5.32074451e-01 4.63190563e-02 -8.03199768e-01 -4.46823835e-01
1.18304169e+00 -2.81912744e-01 -1.03867441e-01 2.38993630e-01
-4.51924801e-02 -1.62560701e-01 8.17354858e-01 -1.42878145e-01
5.02260447e-01 -1.01888299e+00 -4.72826183e-01 4.76913840e-01
-2.13415213e-02 -3.81947219e-01 4.36050802e-01 9.57603753e-01
-1.18599558e+00 8.19515228e-01 -4.45863694e-01 -9.40015972e-01
-1.89549136e+00 8.62776041e-01 -1.46841526e-01 -3.81036788e-01
-5.31033576e-01 7.29900777e-01 9.43642631e-02 -2.10944377e-02
-2.38909230e-01 -2.78667152e-01 7.50889957e-01 -4.53616172e-01
7.95470417e-01 7.02593684e-01 5.35349727e-01 -5.15046060e-01
-7.92827845e-01 5.34407854e-01 -1.99891984e-01 1.01711504e-01
1.07883394e+00 1.79248735e-01 -3.10341626e-01 -1.63254868e-02
1.29753315e+00 -1.77994519e-01 -7.60745347e-01 9.34398025e-02
1.51441574e-01 -3.80974531e-01 5.74182458e-02 -3.74961555e-01
-4.76124108e-01 7.15429366e-01 6.91388965e-01 -5.52030981e-01
1.25183737e+00 -6.08246803e-01 1.30644166e+00 7.19411597e-02
7.08991528e-01 -9.44847345e-01 -5.45506477e-01 6.56803131e-01
2.28552803e-01 -6.29278302e-01 4.80384201e-01 -3.98607373e-01
-4.16517913e-01 1.01080763e+00 3.77336144e-01 3.10303777e-01
4.54544306e-01 7.35796928e-01 -2.12886319e-01 4.41430956e-02
-1.03547299e+00 2.55232155e-01 -8.97173397e-03 3.06628972e-01
8.45699251e-01 3.03381503e-01 -8.50741208e-01 5.67776918e-01
-7.50311390e-02 1.41325548e-01 2.83480793e-01 1.57285464e+00
-4.41475719e-01 -1.24338555e+00 -6.19947493e-01 3.34137619e-01
-3.83784205e-01 -3.57368469e-01 -2.29609758e-01 3.77615094e-01
-2.51500666e-01 8.00886393e-01 -2.83290297e-02 -6.56915486e-01
1.83745809e-02 7.65567645e-02 2.58360893e-01 -3.71608794e-01
-9.68321085e-01 3.87805372e-01 -1.26596093e-01 -7.65763044e-01
8.49434510e-02 -6.43335879e-01 -1.59072411e+00 -9.58174407e-01
-2.68727481e-01 1.96131647e-01 9.19203699e-01 5.30498862e-01
1.15664840e+00 2.75927335e-01 3.66554201e-01 -6.81148946e-01
-5.10205388e-01 -4.22760159e-01 -3.56280208e-01 4.31745686e-03
-9.50196162e-02 -4.17482436e-01 4.76501286e-02 -8.48317593e-02] | [8.354012489318848, 3.254936695098877] |
3be7b102-dc25-4b60-994d-86bf6de79c07 | learning-transferable-features-for-speech | 1912.11547 | null | https://arxiv.org/abs/1912.11547v1 | https://arxiv.org/pdf/1912.11547v1.pdf | Learning Transferable Features for Speech Emotion Recognition | Emotion recognition from speech is one of the key steps towards emotional intelligence in advanced human-machine interaction. Identifying emotions in human speech requires learning features that are robust and discriminative across diverse domains that differ in terms of language, spontaneity of speech, recording conditions, and types of emotions. This corresponds to a learning scenario in which the joint distributions of features and labels may change substantially across domains. In this paper, we propose a deep architecture that jointly exploits a convolutional network for extracting domain-shared features and a long short-term memory network for classifying emotions using domain-specific features. We use transferable features to enable model adaptation from multiple source domains, given the sparseness of speech emotion data and the fact that target domains are short of labeled data. A comprehensive cross-corpora experiment with diverse speech emotion domains reveals that transferable features provide gains ranging from 4.3% to 18.4% in speech emotion recognition. We evaluate several domain adaptation approaches, and we perform an ablation study to understand which source domains add the most to the overall recognition effectiveness for a given target domain. | ['Nívio Ziviani', 'Alison Marczewski', 'Adriano Veloso'] | 2019-12-23 | null | null | null | null | ['emotional-intelligence'] | ['natural-language-processing'] | [ 1.76492602e-01 -8.68400410e-02 -4.75800000e-02 -9.54987824e-01
-8.16575825e-01 -7.83781111e-01 4.90641296e-01 -2.17457250e-01
-3.20488751e-01 6.30348980e-01 3.92390460e-01 1.34308398e-01
1.83728337e-01 -2.05760226e-01 -3.30934405e-01 -2.69868493e-01
-9.94054079e-02 2.83833951e-01 -4.36269492e-01 -4.40827250e-01
-3.24517488e-01 4.93000984e-01 -1.36284447e+00 6.88939929e-01
6.91446483e-01 1.34010243e+00 -1.06027588e-01 8.80063176e-01
-2.86103159e-01 8.06110203e-01 -1.05472624e+00 -3.01764280e-01
-1.29365832e-01 -5.75796723e-01 -9.29567933e-01 1.58321619e-01
6.26898408e-02 -1.84736460e-01 -5.77496350e-01 7.00668216e-01
7.08756208e-01 3.22291046e-01 8.28724027e-01 -1.28226578e+00
-7.57798076e-01 2.70858437e-01 7.00392276e-02 2.03789845e-01
4.21452224e-01 -6.15652911e-02 7.74321258e-01 -7.64461696e-01
5.70772707e-01 1.07192576e+00 5.75256169e-01 1.06832492e+00
-9.09861803e-01 -7.16957211e-01 2.39148632e-01 1.80535287e-01
-1.00258887e+00 -1.01289642e+00 9.59634602e-01 -4.42115426e-01
1.22811520e+00 8.40761885e-02 2.85396397e-01 1.85721922e+00
-1.68377206e-01 7.96918690e-01 8.62487912e-01 -2.76273370e-01
2.96574831e-01 5.78412354e-01 1.12355381e-01 2.97939837e-01
-6.07055902e-01 7.98461121e-03 -1.00849640e+00 -2.43581697e-01
1.17158227e-01 -2.04221994e-01 -2.53492087e-01 -1.38359353e-01
-1.02740026e+00 7.56349623e-01 4.29260805e-02 5.66842735e-01
-2.77865171e-01 -1.87619448e-01 8.86463106e-01 8.10506999e-01
5.36393762e-01 6.17301464e-01 -9.89915311e-01 -7.80185223e-01
-5.97673595e-01 -3.21646303e-01 1.06478047e+00 7.94637561e-01
4.44035202e-01 3.96634579e-01 2.93108076e-02 1.44852340e+00
-2.34982163e-01 6.10207677e-01 9.60272968e-01 -7.87145376e-01
3.83429796e-01 3.38932842e-01 -1.49918437e-01 -8.60211015e-01
-5.58213651e-01 -3.04543734e-01 -7.32229531e-01 -2.02106580e-01
1.24504693e-01 -8.11926603e-01 -7.46209443e-01 2.05875468e+00
-4.16824520e-02 7.12292343e-02 7.42166936e-01 6.53925478e-01
1.09134018e+00 6.96266830e-01 2.28287488e-01 -9.54689234e-02
1.05369401e+00 -8.70968580e-01 -7.58386731e-01 -7.37071037e-01
7.42884517e-01 -5.11181355e-01 1.12511933e+00 3.78106296e-01
-6.61469638e-01 -3.06068361e-01 -9.17103648e-01 2.26612091e-02
-4.92452115e-01 2.80604392e-01 5.75720191e-01 7.36346066e-01
-8.84260595e-01 2.96785891e-01 -4.56255376e-01 -4.20255601e-01
1.89496830e-01 4.22356993e-01 -5.51126063e-01 1.93785936e-01
-1.45910335e+00 9.08346474e-01 1.92797676e-01 -2.40862936e-01
-7.81777561e-01 -5.43613911e-01 -8.76233041e-01 2.02066824e-01
1.61119755e-02 -1.92706391e-01 1.39461529e+00 -1.83405232e+00
-1.88842058e+00 9.11121249e-01 -3.39933842e-01 -2.93038994e-01
-4.35256623e-02 2.65275724e-02 -8.52479279e-01 3.19213927e-01
-2.33738959e-01 4.82803702e-01 9.27951217e-01 -7.83708215e-01
-4.10994560e-01 -2.96712816e-01 -2.65787959e-01 2.63975978e-01
-9.24973667e-01 1.94647476e-01 -1.43526541e-02 -5.92255473e-01
-3.47478688e-01 -1.00348926e+00 2.56324559e-01 -3.21382076e-01
6.46305084e-02 -2.24333942e-01 8.66008520e-01 -7.13857114e-01
8.72335613e-01 -2.49554777e+00 2.22007290e-01 6.75972179e-02
2.93127242e-02 1.39593005e-01 -4.44228053e-01 1.83714315e-01
-2.83734411e-01 6.40097857e-02 -6.46298751e-02 -2.60570258e-01
1.33348972e-01 2.14639053e-01 -2.96438456e-01 6.00453466e-02
5.56439877e-01 7.39703596e-01 -6.50430143e-01 -9.02469922e-03
-4.58463170e-02 5.25251031e-01 -2.91197449e-01 5.05179882e-01
-2.76452880e-02 5.98565698e-01 -4.86898273e-01 4.81412709e-01
2.32411325e-01 -4.00707684e-02 1.57184824e-01 -4.07775901e-02
4.12287205e-01 6.18231237e-01 -6.81113839e-01 1.91558373e+00
-9.74914014e-01 8.37817490e-01 2.89439440e-01 -1.23053706e+00
1.29622996e+00 8.21298778e-01 6.61124408e-01 -7.37173796e-01
1.85205549e-01 1.04378708e-01 -6.21847026e-02 -5.23383021e-01
3.07090908e-01 -4.03327823e-01 -6.48224175e-01 3.83680165e-01
6.27350271e-01 -1.89807579e-01 -3.28315616e-01 1.69273261e-02
1.36381269e+00 -6.29101276e-01 1.96749777e-01 1.20273404e-01
3.05355191e-01 -2.57193863e-01 7.11960793e-01 4.60368365e-01
-6.59533322e-01 4.83491033e-01 5.71173966e-01 -3.34752500e-01
-6.07138276e-01 -7.80521870e-01 5.47202714e-02 1.53518450e+00
-2.81986654e-01 -1.31942466e-01 -3.84337187e-01 -8.86182368e-01
-2.70340979e-01 6.45413339e-01 -5.22949159e-01 -8.54683280e-01
-2.87748482e-02 -2.95749396e-01 8.66199017e-01 5.49900770e-01
2.83769459e-01 -1.28907502e+00 -3.60218227e-01 7.59288743e-02
-3.84688705e-01 -1.50006115e+00 -4.12889749e-01 7.48164177e-01
-3.78689498e-01 -6.23036742e-01 -5.96121430e-01 -8.37749541e-01
2.00792030e-01 -4.20666076e-02 1.31943583e+00 -3.99135977e-01
-3.89142260e-02 7.85447657e-01 -6.13169968e-01 -3.89680535e-01
-5.57806849e-01 2.74037540e-01 1.87482819e-01 9.15959328e-02
6.08871162e-01 -6.13340735e-01 -1.37291774e-01 3.35641541e-02
-4.77409303e-01 -4.03574675e-01 4.22406822e-01 1.02215016e+00
5.98063506e-02 -2.90444132e-05 9.41796064e-01 -5.56080461e-01
8.26747239e-01 -8.19237411e-01 2.24409163e-01 2.34796464e-01
-4.21078615e-02 2.28027049e-02 7.18148768e-01 -7.60165870e-01
-1.19099021e+00 1.55735910e-01 -2.12952927e-01 -4.53488201e-01
-6.06246114e-01 3.81393790e-01 -4.40328896e-01 8.08800533e-02
6.93320751e-01 1.48073405e-01 2.20558010e-02 -1.59198299e-01
3.20683867e-01 1.24175167e+00 4.17966604e-01 -6.79896235e-01
1.77935183e-01 9.44827870e-03 -6.42764449e-01 -9.07274246e-01
-7.81570733e-01 -3.90776008e-01 -4.25378442e-01 -1.47627555e-02
8.26847434e-01 -1.22965848e+00 -3.98205966e-01 4.43671107e-01
-1.16889727e+00 -5.64474225e-01 -2.88318217e-01 4.90500361e-01
-6.40433073e-01 -8.08189735e-02 -5.82599878e-01 -7.52679825e-01
-3.03996086e-01 -1.02155530e+00 1.05338871e+00 1.48050636e-01
-7.41363049e-01 -1.10869634e+00 -5.44798896e-02 2.21913427e-01
4.65496242e-01 -2.30708644e-02 7.12270081e-01 -1.31195903e+00
4.83600020e-01 -3.41706127e-02 6.41537830e-02 7.71510720e-01
4.11679238e-01 -3.34443539e-01 -1.27000427e+00 -1.00998446e-01
1.86230823e-01 -1.02119493e+00 6.23645902e-01 1.05248339e-01
1.07158697e+00 -2.05244154e-01 -9.66264307e-02 5.89969158e-01
6.13250077e-01 5.38945198e-01 2.55729109e-01 1.23695374e-01
4.51642156e-01 7.89511740e-01 4.25058842e-01 5.27904212e-01
3.47403288e-01 6.67212367e-01 -2.02149630e-01 1.04545066e-02
2.28417497e-02 4.39586118e-02 8.45347285e-01 9.61962283e-01
7.24789679e-01 -2.40091130e-01 -9.78177428e-01 7.51228809e-01
-1.40044832e+00 -1.00930643e+00 7.30430067e-01 1.68789053e+00
1.04459488e+00 -5.47539666e-02 1.85557351e-01 -5.29404208e-02
5.76017916e-01 1.82307079e-01 -8.53416920e-01 -9.84685779e-01
-1.62277550e-01 3.22676241e-01 -5.04090711e-02 2.64886618e-01
-1.12961102e+00 9.34557438e-01 6.51765108e+00 5.70363820e-01
-1.57160795e+00 1.48161709e-01 7.61224568e-01 -3.27042490e-01
-1.75356522e-01 -6.07054710e-01 -4.22285616e-01 4.01138574e-01
1.56111443e+00 -3.49031687e-01 5.15725076e-01 1.06601357e+00
-2.16797944e-02 4.75465238e-01 -1.25480986e+00 1.23811972e+00
3.49043399e-01 -7.23701000e-01 -2.65936852e-01 -2.74444431e-01
4.86423463e-01 2.29491219e-01 3.01157564e-01 6.64241493e-01
2.64993817e-01 -1.08789086e+00 4.16089952e-01 2.41681859e-01
9.10812914e-01 -8.80747497e-01 4.91013974e-01 2.11649239e-01
-8.45800281e-01 -1.48464531e-01 -7.42501691e-02 -3.59070338e-02
-1.59466356e-01 3.63248646e-01 -9.36949134e-01 7.31110498e-02
8.44922602e-01 9.19205010e-01 -1.44847736e-01 5.99647239e-02
-8.65833182e-03 7.53405690e-01 -3.27460229e-01 -9.33773071e-02
9.15380474e-03 1.62281096e-01 3.45274478e-01 1.50379241e+00
3.53984803e-01 9.89735648e-02 4.10108790e-02 5.71903765e-01
-4.48327929e-01 8.51275399e-02 -9.07101929e-01 -6.63328946e-01
6.62166238e-01 1.13826692e+00 -4.04009670e-02 -3.18726152e-01
-6.34573281e-01 1.30579901e+00 5.01044095e-01 4.87528175e-01
-6.02698982e-01 -4.99362916e-01 1.28675830e+00 -5.33631742e-01
2.28727847e-01 -2.36098751e-01 -2.87544876e-01 -1.37539732e+00
1.11891791e-01 -1.35151505e+00 3.58513027e-01 -5.59762895e-01
-1.59209061e+00 1.00401962e+00 -4.50333923e-01 -9.86726880e-01
-6.74777091e-01 -5.77420294e-01 -5.33132732e-01 8.31417918e-01
-1.34554076e+00 -8.89432967e-01 -2.56991088e-01 8.76822293e-01
8.63154769e-01 -7.44928062e-01 1.32302082e+00 2.50463784e-01
-4.45435911e-01 9.33555543e-01 1.73513725e-01 3.57568413e-01
1.04720163e+00 -1.10302687e+00 2.64123529e-01 5.26279330e-01
2.68158704e-01 2.75750875e-01 4.22464818e-01 -1.93822026e-01
-1.23969245e+00 -9.63993728e-01 8.48891914e-01 -4.69279498e-01
6.65033460e-01 -5.50623894e-01 -9.92305994e-01 6.89891577e-01
2.76023448e-01 1.21910065e-01 1.23026180e+00 5.48862219e-01
-5.95694244e-01 -2.64078617e-01 -1.09632361e+00 3.03153753e-01
9.67054904e-01 -1.08524382e+00 -4.73534316e-01 7.32151866e-02
7.57589936e-01 -2.12489188e-01 -1.06445324e+00 4.06697154e-01
4.30317730e-01 -7.75487244e-01 7.50093877e-01 -8.14249098e-01
2.75967628e-01 4.44364578e-01 -3.93950999e-01 -1.84304965e+00
-1.40090704e-01 -6.12032771e-01 -7.09022284e-02 1.47852516e+00
5.26800394e-01 -5.82229793e-01 5.91520965e-01 9.29461420e-01
-1.63961098e-01 -4.47547048e-01 -9.34479475e-01 -6.99588895e-01
3.44240248e-01 -5.40666342e-01 5.65624475e-01 1.13026762e+00
4.93049502e-01 7.16400504e-01 -3.63220572e-01 -8.11844394e-02
-1.69179916e-01 -4.24099490e-02 6.22879028e-01 -1.11781287e+00
-2.36111060e-01 -3.36741954e-01 -5.12515962e-01 -9.01432872e-01
1.07385087e+00 -8.69708955e-01 1.64873526e-01 -9.93715763e-01
-3.95233594e-02 -3.95540267e-01 -4.70913261e-01 6.88492537e-01
7.73693435e-04 -2.70152748e-01 5.04222587e-02 -1.71428367e-01
-6.88800275e-01 1.00466669e+00 6.42738104e-01 -3.60126048e-01
-4.16943192e-01 -1.27419904e-01 -8.73824000e-01 6.53794527e-01
1.02572632e+00 -3.43529493e-01 -6.56424403e-01 -5.49056888e-01
-2.03206748e-01 1.42724022e-01 -8.08581989e-03 -1.05728483e+00
9.18205269e-03 -1.16668962e-01 3.89354557e-01 1.33852839e-01
7.81787336e-01 -8.51800621e-01 -3.79855335e-01 -1.01129778e-01
-6.49819493e-01 -2.53948629e-01 6.21926486e-01 4.06326473e-01
-6.67904973e-01 6.93258047e-02 6.44054651e-01 1.00031286e-01
-1.09110999e+00 1.36408910e-01 -6.10796750e-01 4.50588763e-01
8.20730805e-01 5.43249510e-02 -1.66166797e-01 -8.25833082e-01
-1.02171576e+00 -2.34825704e-02 8.98119733e-02 9.29018795e-01
5.69828153e-01 -1.42381203e+00 -5.62728822e-01 2.90414095e-01
3.26201916e-01 -4.81507808e-01 2.72104084e-01 3.80173504e-01
3.27291191e-01 2.73307890e-01 -2.71621943e-01 -4.57007557e-01
-1.44931865e+00 1.71284705e-01 6.39453173e-01 -9.98368412e-02
-1.88654914e-01 9.53226507e-01 1.74974144e-01 -7.82836974e-01
3.72388512e-01 -8.28044787e-02 -1.49496747e-02 1.26842171e-01
4.18026775e-01 -1.43732503e-03 1.95158407e-01 -8.73372018e-01
-6.62100971e-01 2.20061466e-01 -5.55391982e-02 -2.01290235e-01
1.34646297e+00 -2.18033075e-01 3.35479110e-01 7.88725674e-01
1.62210059e+00 -1.55963019e-01 -1.17759049e+00 -4.09577250e-01
-3.58712971e-02 7.38960952e-02 -1.69043690e-02 -1.16781962e+00
-1.05276370e+00 1.01833749e+00 6.48733735e-01 -2.59375796e-02
1.46137464e+00 2.44080529e-01 8.82609963e-01 6.08317494e-01
8.71837214e-02 -1.30021727e+00 3.76144290e-01 9.74715471e-01
1.02045393e+00 -1.49500930e+00 -5.91182113e-01 -6.39535934e-02
-1.33115017e+00 1.08564174e+00 7.28696048e-01 2.59072810e-01
6.83272362e-01 4.27500516e-01 5.31319797e-01 -9.19574499e-02
-1.06495357e+00 -1.10950880e-01 2.39465415e-01 8.74341786e-01
5.97778320e-01 2.20378473e-01 2.32711583e-01 1.25387585e+00
-3.72643143e-01 -1.85574293e-01 1.78118140e-01 6.81649148e-01
-2.26757109e-01 -1.17853665e+00 -9.58421733e-03 2.84011483e-01
-3.88330579e-01 9.68091190e-02 -9.44168210e-01 2.83091813e-01
-9.97998640e-02 1.36493003e+00 1.21330872e-01 -7.10144997e-01
4.89104301e-01 6.55949116e-01 1.27532676e-01 -7.55409718e-01
-5.10522783e-01 -3.43658507e-01 4.29509223e-01 -5.57689726e-01
-2.88648635e-01 -5.94584703e-01 -1.31722271e+00 1.33000255e-01
7.25966021e-02 3.19793373e-01 7.38573670e-01 9.62742805e-01
8.70900691e-01 5.71984589e-01 9.27912831e-01 -6.05810881e-01
-5.00738382e-01 -1.00368631e+00 -5.59836388e-01 6.58246160e-01
5.81891537e-01 -6.42131448e-01 -4.80746686e-01 1.74113587e-01] | [13.58491325378418, 5.847331523895264] |
f4992cd5-e2ba-4932-8976-a7eed423adb8 | diachronic-word-embeddings-and-semantic | 1806.03537 | null | http://arxiv.org/abs/1806.03537v2 | http://arxiv.org/pdf/1806.03537v2.pdf | Diachronic word embeddings and semantic shifts: a survey | Recent years have witnessed a surge of publications aimed at tracing temporal
changes in lexical semantics using distributional methods, particularly
prediction-based word embedding models. However, this vein of research lacks
the cohesion, common terminology and shared practices of more established areas
of natural language processing. In this paper, we survey the current state of
academic research related to diachronic word embeddings and semantic shifts
detection. We start with discussing the notion of semantic shifts, and then
continue with an overview of the existing methods for tracing such time-related
shifts with word embedding models. We propose several axes along which these
methods can be compared, and outline the main challenges before this emerging
subfield of NLP, as well as prospects and possible applications. | ['Lilja Øvrelid', 'Andrey Kutuzov', 'Terrence Szymanski', 'Erik Velldal'] | 2018-06-09 | diachronic-word-embeddings-and-semantic-1 | https://aclanthology.org/C18-1117 | https://aclanthology.org/C18-1117.pdf | coling-2018-8 | ['diachronic-word-embeddings'] | ['natural-language-processing'] | [ 3.19450093e-03 -7.45170265e-02 -6.39882088e-01 -1.71676025e-01
-2.62528956e-01 -7.78421998e-01 9.11194384e-01 8.90890539e-01
-8.66019726e-01 3.62415642e-01 8.24483454e-01 -4.52332616e-01
-3.64744067e-01 -7.89872110e-01 1.18045703e-01 -2.64881015e-01
-2.26648167e-01 3.13045919e-01 1.39482528e-01 -6.22321129e-01
6.87158942e-01 2.40389928e-01 -1.53291202e+00 6.49348795e-02
5.90625584e-01 4.16832596e-01 -1.92951765e-02 3.61290753e-01
-1.00049973e+00 1.81135491e-01 -5.39010823e-01 -5.97219348e-01
-1.27847314e-01 -4.13769484e-02 -9.13250685e-01 -5.64425230e-01
3.78646642e-01 2.63788342e-01 -6.25084102e-01 1.27612758e+00
6.13204002e-01 3.77889574e-01 6.75289512e-01 -1.06121445e+00
-1.53853905e+00 7.73534060e-01 -3.17667216e-01 8.66997182e-01
6.06269419e-01 -2.87574142e-01 1.66292894e+00 -1.26607323e+00
9.46509242e-01 1.25829709e+00 9.57520902e-01 4.83051419e-01
-1.01474631e+00 -3.53730530e-01 4.06451821e-01 6.58570588e-01
-1.29305732e+00 -4.61500622e-02 8.23208392e-01 -6.19488955e-01
1.45445621e+00 -8.60258937e-03 8.09259415e-01 1.33410585e+00
2.62338102e-01 4.99209195e-01 8.53220701e-01 -9.18044925e-01
-2.98632979e-02 2.50409573e-01 1.07636905e+00 3.00120384e-01
4.62527901e-01 2.39732906e-01 -9.37774360e-01 -3.35851073e-01
1.44394293e-01 3.03652715e-02 -1.25378937e-01 -3.38372856e-01
-1.14880669e+00 1.26948011e+00 4.16338332e-02 1.11940980e+00
-3.35948199e-01 1.96319493e-03 7.92004943e-01 3.71438771e-01
9.83675659e-01 6.60547137e-01 -6.75823867e-01 -3.42374682e-01
-8.77148092e-01 3.98598880e-01 5.07109642e-01 5.61489403e-01
5.46276808e-01 5.70747852e-02 3.13133933e-02 1.08506870e+00
5.37374079e-01 1.01339564e-01 1.02789164e+00 -1.92393601e-01
9.36224237e-02 3.59031916e-01 -8.52469727e-02 -1.43765688e+00
-2.90017247e-01 1.66702956e-01 7.21759275e-02 -2.24964142e-01
1.25489920e-01 6.02499694e-02 -5.46948850e-01 1.55044115e+00
2.58288145e-01 1.24408141e-01 -2.62862556e-02 4.02257472e-01
8.33885849e-01 8.41352880e-01 4.75215495e-01 -2.08563909e-01
1.78341484e+00 -6.93548441e-01 -1.12314928e+00 -3.08537424e-01
6.38821185e-01 -9.66612697e-01 1.30904043e+00 -1.60805598e-01
-7.93473661e-01 -3.79269809e-01 -9.85191047e-01 -2.97837734e-01
-1.21529007e+00 -7.14760482e-01 6.41801596e-01 7.06473410e-01
-1.08429480e+00 6.17762506e-01 -6.70755029e-01 -1.10578775e+00
1.79669961e-01 -1.31095961e-01 -9.80226845e-02 2.00172603e-01
-1.87597144e+00 1.32930648e+00 5.05863667e-01 -3.68745267e-01
7.12008774e-02 -1.31250870e+00 -1.15341854e+00 -3.32772017e-01
4.84490916e-02 -4.26986068e-01 1.09876299e+00 -5.59747159e-01
-1.17159796e+00 1.24310029e+00 -3.07034791e-01 -2.87600517e-01
-1.57173485e-01 -5.82834721e-01 -1.07749987e+00 -2.59128124e-01
1.74072549e-01 4.83000547e-01 3.68531227e-01 -9.02715683e-01
-6.60130203e-01 -4.40648973e-01 2.05027126e-02 2.46792614e-01
-1.01466417e+00 5.84097683e-01 1.53739721e-01 -1.08633673e+00
-3.43536735e-01 -4.14119929e-01 -1.56024843e-01 -3.42515782e-02
1.30457565e-01 -8.66788328e-01 5.44703901e-01 -5.50768912e-01
2.00039768e+00 -2.19665170e+00 2.58911084e-02 -1.51067629e-01
2.62416989e-01 2.39789069e-01 -7.65359327e-02 1.29694867e+00
-4.17276859e-01 4.42593217e-01 -1.27202958e-01 -3.47934477e-02
4.08433795e-01 2.68142492e-01 -8.40458035e-01 5.82909048e-01
-1.29653379e-01 1.13486350e+00 -1.41562617e+00 -2.11252958e-01
3.67580354e-01 4.53379482e-01 -2.22505882e-01 -2.89268345e-01
8.47409070e-02 -2.68806517e-01 -2.45081425e-01 5.38161635e-01
3.14428031e-01 3.53550136e-01 4.08203393e-01 -6.02160431e-02
-6.87224090e-01 8.77528191e-01 -8.24882865e-01 1.70428669e+00
-2.43593752e-01 1.05285025e+00 -6.53734207e-01 -1.07222366e+00
6.93884969e-01 2.64625430e-01 5.58412135e-01 -5.49367309e-01
1.48333490e-01 1.87352002e-01 6.71133474e-02 -4.17288244e-01
1.16741967e+00 -5.87358475e-01 -3.74288678e-01 6.86196744e-01
1.82497203e-01 -5.67590855e-02 6.23860508e-02 3.78314555e-02
9.78214502e-01 -2.74828643e-01 9.93442416e-01 -6.59201503e-01
3.17571282e-01 2.82925010e-01 2.16584578e-01 1.93637580e-01
-7.06794918e-01 9.31178629e-02 1.56090796e-01 -6.58220530e-01
-1.10093391e+00 -1.33535230e+00 -5.26899576e-01 1.40147090e+00
2.49163464e-01 -9.19142306e-01 -1.54365748e-01 -5.41941226e-01
3.99752378e-01 1.20843065e+00 -9.60626602e-01 -1.28603101e-01
-6.02473021e-01 -8.28911901e-01 6.09295607e-01 5.83969414e-01
-4.01174903e-01 -1.36686826e+00 -5.36648095e-01 2.65584618e-01
1.56838074e-01 -4.87749219e-01 -3.02309036e-01 -4.06800322e-02
-8.22595716e-01 -9.10924256e-01 -5.06707311e-01 -1.12766290e+00
9.05520096e-02 4.72112775e-01 1.23558950e+00 -2.91457564e-01
-5.10891378e-01 7.03425348e-01 -7.41391063e-01 -5.94675660e-01
-7.03454837e-02 -6.49123080e-03 4.41827923e-01 -5.11532128e-01
1.45476174e+00 -4.91451472e-01 -3.81072193e-01 -4.85101342e-01
-1.18416917e+00 -8.47008944e-01 -3.98652405e-02 8.55756879e-01
4.01827067e-01 -1.82011604e-01 5.82169056e-01 -8.83709610e-01
1.34172642e+00 -9.80648696e-01 2.69047059e-02 2.04050362e-01
-1.25264955e+00 -9.03943479e-02 6.84108138e-02 -3.84592324e-01
-7.32212543e-01 -9.03722525e-01 -2.01724216e-01 7.67127946e-02
8.10628235e-02 8.04049671e-01 4.64463115e-01 3.44617844e-01
7.96039701e-01 1.20074540e-01 -7.27028847e-02 -5.55791974e-01
1.07799959e+00 6.77143753e-01 -8.25358741e-03 -3.90871167e-01
6.60694659e-01 3.89442652e-01 -8.84700537e-01 -1.13080418e+00
-7.32040524e-01 -9.40693974e-01 -8.50503862e-01 -9.58612934e-03
8.85937870e-01 -3.56553435e-01 1.89373150e-01 1.72572717e-01
-1.48636174e+00 7.93340504e-02 -8.11244190e-01 5.07749796e-01
-2.12559640e-01 6.19268537e-01 -5.01165867e-01 -4.05740380e-01
-2.82157570e-01 -5.52066505e-01 6.21869087e-01 1.33961707e-01
-1.17900419e+00 -1.97748566e+00 9.87725675e-01 -1.58904076e-01
5.50511777e-01 -2.49078460e-02 1.24909151e+00 -1.04319870e+00
4.99472082e-01 -2.64854319e-02 1.89660043e-01 1.32990703e-01
4.56096232e-01 3.84319350e-02 -8.08749199e-01 -4.46217209e-02
-6.25830591e-02 -1.83093958e-02 6.97391927e-01 3.91583890e-01
5.63462019e-01 -6.10619634e-02 -6.62480295e-01 1.02902643e-01
1.56249535e+00 2.28792459e-01 2.63416648e-01 8.47247779e-01
3.03411514e-01 8.70613217e-01 5.77066243e-01 3.32848519e-01
3.74602437e-01 4.25473720e-01 -3.38868052e-02 3.95786196e-01
-2.58996069e-01 -3.58156741e-01 5.63605666e-01 1.63297284e+00
2.46011913e-01 -3.11502188e-01 -1.17120421e+00 1.17715538e+00
-1.58758652e+00 -1.01673055e+00 -7.19527379e-02 1.81875968e+00
8.42567325e-01 -2.62002409e-01 -1.02665424e-01 -1.90011058e-02
8.85642052e-01 8.18692684e-01 -3.73249203e-01 -9.73852575e-01
-1.94869146e-01 7.40951061e-01 3.51252556e-01 5.90539038e-01
-8.97726297e-01 1.44657362e+00 7.77591515e+00 6.09450877e-01
-7.31283963e-01 4.01974767e-01 -2.58484006e-01 2.06848875e-01
-9.51726079e-01 3.40564027e-02 -6.12554789e-01 3.37443560e-01
1.06166458e+00 -9.52741623e-01 3.59823811e-03 6.93460226e-01
-1.35546371e-01 4.77687210e-01 -9.36344564e-01 9.51326072e-01
5.28380811e-01 -1.30253804e+00 3.71743262e-01 -1.33661926e-01
5.38310587e-01 3.49864781e-01 2.67356664e-01 3.83307159e-01
3.18041652e-01 -8.92839313e-01 4.85927224e-01 1.14367522e-01
7.37885594e-01 -5.93346655e-01 6.73624158e-01 -3.62194657e-01
-1.22683513e+00 9.48078111e-02 -5.51742435e-01 -4.33288455e-01
6.28256619e-01 6.24548793e-01 -2.71465421e-01 6.16249144e-01
7.69997418e-01 1.23007095e+00 -1.04798108e-01 6.32966399e-01
-4.57596838e-01 5.98441243e-01 1.26003325e-01 -4.30989504e-01
4.46186274e-01 -2.68780649e-01 7.46036768e-01 1.52493513e+00
2.67335802e-01 -3.68682109e-02 -1.95290297e-01 4.91261333e-01
7.06697777e-02 6.61210179e-01 -1.03605735e+00 -5.98193586e-01
8.96141469e-01 8.43517900e-01 -7.66206205e-01 -2.38347560e-01
-9.06262279e-01 9.65661347e-01 4.32892770e-01 1.10464424e-01
-7.76531756e-01 -7.20174253e-01 1.49603510e+00 -4.19745483e-02
9.88323838e-02 -5.38523912e-01 -4.51655269e-01 -1.17904770e+00
-1.67330623e-01 -5.17065883e-01 6.92267418e-01 -2.38045007e-01
-2.03339982e+00 3.40466380e-01 2.38058969e-01 -7.25304544e-01
1.80032551e-01 -8.90854299e-01 -5.78945816e-01 7.16590345e-01
-1.55349457e+00 -5.13126373e-01 3.96732092e-01 5.50675392e-02
9.20398712e-01 -1.02881461e-01 1.17818940e+00 1.61236182e-01
-1.22610517e-01 5.21156609e-01 2.55717158e-01 -1.10531002e-01
9.99354661e-01 -1.25069928e+00 8.05516601e-01 5.25356174e-01
6.95547104e-01 1.08180511e+00 7.28966951e-01 -6.16357625e-01
-1.13086784e+00 -7.69236922e-01 1.82885194e+00 -8.75126004e-01
1.62732553e+00 -2.44515926e-01 -1.03529191e+00 8.21997404e-01
8.63688648e-01 -4.39463615e-01 1.38976300e+00 6.54579461e-01
-5.49999297e-01 2.70259321e-01 -8.86271656e-01 9.52184260e-01
1.22857285e+00 -8.31550837e-01 -1.89032793e+00 3.53999555e-01
1.09659684e+00 2.89745033e-01 -8.84325266e-01 9.47561339e-02
5.46731234e-01 -4.31063771e-01 1.12511647e+00 -1.00459063e+00
5.01897112e-02 8.68143141e-02 -3.20949703e-01 -1.60127497e+00
-6.04148865e-01 -5.08027852e-01 1.15826011e-01 1.24842477e+00
2.66762584e-01 -8.73342633e-01 4.45929408e-01 1.56937838e-01
-2.17843130e-01 -6.71627164e-01 -9.73184049e-01 -7.97842026e-01
8.80803049e-01 -8.62581253e-01 2.34139547e-01 1.58865499e+00
7.25444317e-01 5.62260866e-01 1.87760711e-01 -1.90814480e-01
8.13455656e-02 -1.48742497e-01 -1.99118927e-02 -1.40651274e+00
4.01069015e-01 -8.93961072e-01 -8.43899012e-01 -8.79561961e-01
5.47159255e-01 -1.33479309e+00 -3.56825411e-01 -1.61350465e+00
8.28055218e-02 4.66340967e-03 -7.23016322e-01 1.98854923e-01
-1.65443718e-01 -5.70305325e-02 -1.15822658e-01 3.99481021e-02
-2.08375275e-01 6.68625832e-01 4.73957479e-01 -1.34169787e-01
-2.23400280e-01 -8.86225045e-01 -9.58251834e-01 8.60818505e-01
9.49600220e-01 -5.61418533e-01 -6.58137858e-01 -6.97312593e-01
6.18229985e-01 -1.05865622e+00 -7.63444453e-02 -2.39937142e-01
1.11949377e-01 -2.59608746e-01 -1.52883977e-01 -4.79270458e-01
-7.28173330e-02 -5.56803048e-01 -3.74067515e-01 4.41354722e-01
-3.03128719e-01 1.04523826e+00 5.36240995e-01 7.01624215e-01
-4.53500748e-01 -3.53170335e-01 4.25774157e-01 4.65526767e-02
-1.49571776e+00 1.76386937e-01 -7.41307259e-01 4.95625824e-01
1.30092406e+00 -3.56060296e-01 -2.10873634e-02 2.38764793e-01
-6.55529916e-01 9.32198539e-02 2.40468770e-01 1.25233293e+00
6.96100593e-01 -1.45945764e+00 -5.41520298e-01 -1.31812260e-01
5.33296704e-01 -8.68463337e-01 2.56718099e-01 5.03603935e-01
-3.64322603e-01 6.26516104e-01 -2.37629879e-02 -4.31339964e-02
-1.05952358e+00 1.00636280e+00 -1.54665172e-01 -5.74358292e-02
-7.59806395e-01 8.69879782e-01 -5.34422807e-02 -6.64038360e-01
-5.23733310e-02 -3.78706396e-01 -6.93460345e-01 7.46028244e-01
5.95248401e-01 5.54569244e-01 -1.43834800e-01 -6.86240435e-01
-8.32646787e-01 5.80010116e-01 -1.50922490e-02 -2.76783317e-01
1.40434921e+00 -4.34002548e-01 -5.03916502e-01 1.33719254e+00
1.29830790e+00 9.57708582e-02 -1.76289022e-01 -3.72828931e-01
6.73877835e-01 -3.45017791e-01 -5.02097048e-02 -4.09260482e-01
-4.50418264e-01 8.86285663e-01 5.94752550e-01 3.55755478e-01
4.33225989e-01 3.51059258e-01 1.12467253e+00 -5.65604214e-03
2.67559588e-01 -1.39245152e+00 -1.00005709e-01 9.09474671e-01
7.03221023e-01 -7.31732607e-01 -5.44421747e-02 -1.13447495e-01
-4.15186882e-01 1.33702135e+00 1.43278301e-01 -3.91431808e-01
1.52272034e+00 -1.87877584e-02 2.35612363e-01 -6.56198919e-01
-6.26186132e-01 -2.63532043e-01 1.95417881e-01 6.71214342e-01
8.00978124e-01 4.79042195e-02 -1.13677979e+00 5.62602520e-01
-4.96866912e-01 -4.14233178e-01 1.68059170e-01 9.27290618e-01
-6.55537844e-01 -1.56612599e+00 -5.74487867e-03 2.12153256e-01
-5.27152777e-01 -7.55578101e-01 -5.75396836e-01 1.01967573e+00
1.54782236e-01 7.65219808e-01 3.97070944e-01 -3.14975888e-01
4.38290149e-01 7.35543609e-01 2.56637454e-01 -1.10246873e+00
-3.81795257e-01 -6.07904673e-01 1.84779726e-02 -4.17474747e-01
-6.57512009e-01 -9.89619553e-01 -1.07267797e+00 -5.19821584e-01
-1.35502920e-01 3.20188642e-01 4.97925758e-01 7.08347499e-01
3.71996671e-01 3.85448247e-01 8.51711184e-02 -3.21431577e-01
-4.85376358e-01 -1.07660103e+00 -6.66667998e-01 4.34207976e-01
-7.09961131e-02 -9.13798034e-01 -5.53806007e-01 -1.31964937e-01] | [10.244091033935547, 8.891861915588379] |
e82746cd-e465-4f30-8d1a-d68d3a2cdbff | towards-enriched-controllability-for | 2306.14917 | null | https://arxiv.org/abs/2306.14917v1 | https://arxiv.org/pdf/2306.14917v1.pdf | Towards Enriched Controllability for Educational Question Generation | Question Generation (QG) is a task within Natural Language Processing (NLP) that involves automatically generating questions given an input, typically composed of a text and a target answer. Recent work on QG aims to control the type of generated questions so that they meet educational needs. A remarkable example of controllability in educational QG is the generation of questions underlying certain narrative elements, e.g., causal relationship, outcome resolution, or prediction. This study aims to enrich controllability in QG by introducing a new guidance attribute: question explicitness. We propose to control the generation of explicit and implicit wh-questions from children-friendly stories. We show preliminary evidence of controlling QG via question explicitness alone and simultaneously with another target attribute: the question's narrative element. The code is publicly available at github.com/bernardoleite/question-generation-control. | ['Henrique Lopes Cardoso', 'Bernardo Leite'] | 2023-06-21 | null | null | null | null | ['question-generation'] | ['natural-language-processing'] | [ 2.21885532e-01 9.76444364e-01 1.35227274e-02 -2.78671503e-01
-8.99276733e-01 -8.98885250e-01 9.35316741e-01 6.36882663e-01
-2.22240146e-02 9.45632875e-01 1.14710128e+00 -4.79300320e-01
-4.13011491e-01 -1.27565348e+00 -6.26389086e-01 3.34847271e-02
4.12456185e-01 4.70127225e-01 1.84848577e-01 -4.86924142e-01
5.10918319e-01 8.94614831e-02 -1.56546700e+00 5.15496969e-01
1.43442678e+00 2.86456347e-01 2.80105531e-01 9.92961884e-01
-5.22374213e-01 1.41052639e+00 -7.94886410e-01 -7.45143473e-01
-3.66693228e-01 -1.12212038e+00 -1.14097917e+00 -8.56022313e-02
2.67604500e-01 -7.66129047e-02 -1.33271972e-02 7.53980756e-01
4.48170096e-01 3.93176675e-01 6.10482991e-01 -1.22788835e+00
-8.58308256e-01 9.85856712e-01 4.92843956e-01 1.46909997e-01
1.09143019e+00 3.51970255e-01 1.31164634e+00 -5.94118595e-01
9.73758101e-01 1.29736388e+00 1.92055300e-01 8.73748779e-01
-1.35642362e+00 -5.05001247e-01 8.92759860e-03 2.76118398e-01
-8.80469918e-01 -5.07758439e-01 6.99517250e-01 -7.09776878e-01
7.83312559e-01 6.60454929e-01 1.03497839e+00 9.19179320e-01
3.50126624e-01 6.96715593e-01 1.06929040e+00 -7.12242067e-01
4.21728700e-01 1.86468974e-01 1.83669329e-01 5.92925072e-01
4.43130396e-02 1.52772784e-01 -8.03763211e-01 -9.58226770e-02
6.54089212e-01 -8.04387748e-01 -1.22523502e-01 1.94490775e-01
-1.03315413e+00 1.32121301e+00 -1.14829741e-01 2.36381620e-01
-2.36120850e-01 1.59203708e-01 -1.04677230e-01 2.97474682e-01
1.19249821e-01 1.49274015e+00 -4.47851151e-01 -5.64637482e-01
-5.87754488e-01 1.08501887e+00 1.29443777e+00 1.23485744e+00
3.09429765e-01 -2.48598233e-01 -1.02989984e+00 5.32956898e-01
2.34256595e-01 1.08387247e-01 3.50020736e-01 -1.27313066e+00
4.01964307e-01 7.03220427e-01 3.40119570e-01 -9.19619799e-01
-2.21858993e-01 -6.05300814e-02 9.64201987e-03 -1.11477844e-01
7.69328237e-01 -5.54622769e-01 -4.27525520e-01 2.08580780e+00
6.00008011e-01 -3.21229309e-01 1.05279736e-01 6.34019673e-01
1.58927155e+00 8.07033122e-01 4.92296934e-01 -1.79215431e-01
1.81154752e+00 -7.01414049e-01 -1.25692332e+00 -1.92624405e-01
6.96996748e-01 -8.06917548e-01 1.48387206e+00 2.92995065e-01
-1.48694694e+00 -1.30302951e-01 -5.67352295e-01 -5.03679633e-01
-1.20493084e-01 -9.31583196e-02 4.50829357e-01 4.57707793e-01
-7.23654747e-01 3.07508260e-01 -1.46250516e-01 -2.14590341e-01
1.65300786e-01 3.53655666e-02 -1.01399003e-02 1.75492436e-01
-1.67106473e+00 6.82734013e-01 1.80367783e-01 -5.67949176e-01
-6.54109418e-01 -1.15674496e+00 -8.84452343e-01 1.32519007e-01
6.91475332e-01 -8.79751205e-01 1.80589712e+00 -7.91171610e-01
-1.77799118e+00 7.09299386e-01 -1.17721535e-01 -3.56443003e-02
5.06986856e-01 -4.27403361e-01 -1.38524339e-01 2.66378045e-01
5.19963622e-01 7.36355662e-01 5.35472274e-01 -8.93911600e-01
-3.35612863e-01 5.86413555e-02 5.60554206e-01 3.98572087e-01
1.22373320e-01 2.65365511e-01 1.28332913e-01 -8.63222301e-01
-1.70882970e-01 -4.29570109e-01 -3.86308283e-01 -3.06412250e-01
-5.85600615e-01 -6.94574356e-01 -4.22724299e-02 -7.11191595e-01
1.57330978e+00 -1.57593417e+00 3.30013447e-02 -2.39739984e-01
1.27506450e-01 -1.85742989e-01 -2.22464129e-01 9.78644192e-01
-2.06317708e-01 4.21510756e-01 2.79073771e-02 2.34750018e-01
3.45908880e-01 6.26151711e-02 -3.46224844e-01 -1.86433360e-01
5.67815006e-01 1.18527138e+00 -1.11783564e+00 -7.32791901e-01
-2.39468127e-01 -1.36008793e-02 -1.03612542e+00 7.37342775e-01
-1.03217733e+00 3.44779164e-01 -7.05637038e-01 7.94904307e-02
-2.50489507e-02 -3.47178057e-02 -6.54484853e-02 3.39467764e-01
-4.75124091e-01 1.18275261e+00 -1.30709553e+00 1.33843052e+00
-3.51848781e-01 4.15866077e-01 -2.24368989e-01 -3.02807510e-01
9.44504380e-01 5.49178183e-01 -1.18677974e-01 -4.46666867e-01
-9.15160403e-03 -1.44581288e-01 1.82814375e-01 -1.02562547e+00
8.35551381e-01 -4.37169284e-01 -4.18960154e-01 7.61788189e-01
8.11468065e-02 -1.07507372e+00 6.12969398e-01 5.89986026e-01
1.06671190e+00 1.93709403e-01 5.86098015e-01 -4.68537122e-01
3.37869108e-01 3.44248831e-01 4.11946118e-01 9.00114596e-01
1.15021981e-01 6.96157932e-01 1.22372532e+00 1.72627985e-01
-8.38858783e-01 -1.04748261e+00 -9.95085947e-03 1.18226671e+00
-3.34227413e-01 -8.68079782e-01 -8.64187419e-01 -5.30887902e-01
-2.42725134e-01 1.65569246e+00 -7.58641362e-01 -1.96450111e-02
-6.56509340e-01 -4.93226014e-02 4.06217963e-01 1.65117890e-01
1.02983434e-02 -1.51721358e+00 -6.94133341e-01 4.96398926e-01
-4.70974416e-01 -8.47342908e-01 -6.49527431e-01 -3.07078604e-02
-5.21959603e-01 -1.06822896e+00 -1.34505555e-01 -6.07746243e-01
4.95612979e-01 -4.15674210e-01 1.52226639e+00 1.34797767e-01
1.09860227e-01 6.37011886e-01 -5.63313961e-01 -6.38752699e-01
-6.91541374e-01 1.22987926e-01 -6.15485609e-01 -4.69638795e-01
6.68191090e-02 -5.23228109e-01 -4.41238493e-01 -8.61374661e-02
-1.10124397e+00 5.65422297e-01 -1.11738741e-01 5.45784891e-01
2.33368069e-01 -2.16393024e-01 8.29101205e-01 -1.13684356e+00
1.28137696e+00 -7.28837430e-01 -4.44984466e-01 1.35548770e-01
-3.39024276e-01 2.12522388e-01 4.61003214e-01 -6.02836072e-01
-1.26340604e+00 -4.11517739e-01 -5.12158155e-01 4.32486683e-01
-3.83503348e-01 5.58521390e-01 -4.55258280e-01 6.31730378e-01
8.43969345e-01 -2.40119779e-03 -1.76800475e-01 4.22379412e-02
7.16289401e-01 -1.14209846e-01 2.19658554e-01 -9.71947610e-01
7.50272036e-01 -4.22753513e-01 -1.01431496e-01 -5.32825172e-01
-9.58065152e-01 5.31584024e-02 -1.65308118e-01 -5.21104276e-01
1.12070704e+00 -5.55488706e-01 -7.58422434e-01 -1.43921152e-01
-1.34284461e+00 -7.33778715e-01 -8.88436437e-01 2.83047825e-01
-8.59608829e-01 -4.42335695e-01 -6.41485870e-01 -6.40222847e-01
-2.25195989e-01 -7.72484183e-01 6.72524214e-01 5.78797042e-01
-1.03832412e+00 -1.04334509e+00 1.08739667e-01 6.66892469e-01
1.24948226e-01 3.75773937e-01 1.32242846e+00 -9.40679073e-01
-6.29774332e-01 1.95773214e-01 3.15840691e-01 -3.04801047e-01
2.21161600e-02 2.03394890e-01 -3.84903193e-01 5.77494442e-01
6.86279088e-02 -4.24546808e-01 2.08455667e-01 2.29105234e-01
8.18506241e-01 -1.14889443e+00 1.85527444e-01 -3.09486855e-02
1.15067196e+00 2.31366485e-01 6.20108187e-01 1.67822316e-01
3.07247996e-01 1.25448632e+00 7.66022086e-01 4.23985571e-01
8.19867194e-01 5.43298066e-01 1.93023887e-02 4.85994846e-01
-2.75687665e-01 -8.04782450e-01 2.18209982e-01 7.46286154e-01
3.42259109e-01 -3.06400806e-01 -9.86389399e-01 7.77611852e-01
-1.63327277e+00 -1.19364738e+00 -6.74282253e-01 1.55278695e+00
1.56844842e+00 -4.53340113e-02 -9.40620899e-02 1.58386424e-01
3.60995352e-01 1.02103218e-01 -2.35204957e-02 -7.22755909e-01
9.46248099e-02 5.74315071e-01 -3.97901416e-01 1.00070775e+00
-3.87652576e-01 1.05944300e+00 5.88294935e+00 7.99999654e-01
-4.25916046e-01 5.61803952e-02 4.56927508e-01 -1.13319457e-01
-1.36302245e+00 -2.04622224e-02 -8.35587144e-01 2.00561270e-01
8.15976322e-01 -8.08764875e-01 1.56007826e-01 1.63632050e-01
7.45289505e-01 -3.44667941e-01 -1.19547009e+00 8.37889686e-02
-9.00497139e-02 -1.54485834e+00 2.32630014e-01 -3.14959794e-01
7.02870667e-01 -1.14196539e+00 -1.42664671e-01 1.88938484e-01
6.78337991e-01 -1.16661251e+00 1.20226514e+00 7.17555285e-01
5.87113380e-01 -7.70726323e-01 1.59859762e-01 4.04186875e-01
-8.26867819e-01 -6.56593144e-02 2.34262407e-01 -4.97321874e-01
1.86597452e-01 4.36214805e-01 -9.72439766e-01 1.19572021e-01
3.07950497e-01 1.77321166e-01 -5.44245005e-01 7.09986567e-01
-1.25450432e+00 1.06096101e+00 2.01675057e-01 -5.33467650e-01
1.51172951e-01 -2.63867915e-01 9.21030939e-01 1.02593744e+00
3.35234106e-01 1.15446973e+00 -2.43121788e-01 1.35273743e+00
1.97681278e-01 4.53221202e-01 -5.23894489e-01 -2.31165260e-01
6.59925461e-01 1.12651777e+00 -4.11946595e-01 -1.94089398e-01
6.05963804e-02 3.14684451e-01 1.76449642e-01 2.92125463e-01
-5.02020836e-01 -2.73147345e-01 5.57642817e-01 6.52029812e-01
1.93691589e-02 -3.13447081e-02 -5.99971354e-01 -9.01594281e-01
-2.99946934e-01 -1.05779040e+00 2.91286796e-01 -1.13673878e+00
-1.04480278e+00 -2.48426944e-02 2.08328873e-01 -5.98573387e-01
-5.30252278e-01 -2.39627510e-02 -1.05721068e+00 9.16015267e-01
-9.35701430e-01 -8.94125342e-01 -7.85600469e-02 4.17619288e-01
6.32923126e-01 3.46854746e-01 8.03499341e-01 -2.34896407e-01
-1.69010252e-01 3.36985350e-01 -7.40443468e-01 -5.02918996e-02
5.17736971e-01 -1.66966391e+00 3.06122988e-01 7.84709096e-01
-1.98093757e-01 4.77066725e-01 1.27818584e+00 -9.24271703e-01
-1.24005818e+00 -9.61110890e-01 1.78809202e+00 -7.59850085e-01
7.66698003e-01 -3.97654831e-01 -1.06694770e+00 4.16341722e-01
5.73326349e-01 -6.00531757e-01 1.03184009e+00 -9.68917012e-02
-1.24590867e-03 3.90093476e-01 -1.18062711e+00 9.86730576e-01
9.66406047e-01 -3.77137989e-01 -1.25273037e+00 3.18784416e-01
1.33302557e+00 -5.33118963e-01 -8.63606334e-01 -9.95998085e-02
1.61740631e-01 -7.65723288e-01 5.69468439e-01 -8.61546278e-01
1.29722524e+00 -1.32457927e-01 1.10856779e-01 -1.32551348e+00
-3.59373689e-01 -9.56032932e-01 -1.02946311e-01 1.70400560e+00
5.66151321e-01 -2.97803372e-01 6.86930716e-01 1.15159750e+00
-3.43891978e-01 -7.28775203e-01 -6.61646068e-01 -2.27414206e-01
5.40355086e-01 -5.22475958e-01 7.91772842e-01 9.59301293e-01
2.75945634e-01 6.25431955e-01 1.22800395e-01 -3.42103690e-02
2.75771379e-01 6.93764165e-02 6.09877169e-01 -1.08478796e+00
-2.34796211e-01 -4.43546832e-01 3.51520985e-01 -7.32513785e-01
6.59397691e-02 -8.49256456e-01 2.41100654e-01 -2.02156639e+00
-1.69345543e-01 -2.42060035e-01 7.51196742e-01 2.52169013e-01
-6.02562904e-01 -3.60582381e-01 4.68127340e-01 -4.85518426e-01
-2.99709171e-01 6.66153789e-01 1.89424670e+00 1.63688913e-01
-5.53886235e-01 2.66341083e-02 -1.16986072e+00 4.93002802e-01
9.95284259e-01 -6.00682139e-01 -6.01949453e-01 -7.72589967e-02
8.69927168e-01 7.05998659e-01 2.88981110e-01 -4.33867574e-01
3.73817921e-01 -7.79481649e-01 9.49543938e-02 -1.92403257e-01
-1.06619082e-01 -1.93840221e-01 1.93905577e-01 4.00098771e-01
-1.09027791e+00 1.98976085e-01 2.48763129e-01 -7.82468244e-02
-1.51122734e-01 -6.81578517e-01 4.10456866e-01 -2.32259989e-01
-1.50552645e-01 -1.10870190e-01 -1.05634105e+00 7.94261694e-01
9.63827670e-01 -9.76772830e-02 -4.87374544e-01 -8.66257310e-01
-7.77146637e-01 4.11528736e-01 -1.28967911e-01 5.15804648e-01
8.09427917e-01 -1.39331591e+00 -1.09004283e+00 -1.60927340e-01
3.58270928e-02 8.13343078e-02 5.72156236e-02 3.34429353e-01
-4.31391627e-01 3.50679398e-01 8.58543664e-02 1.51578739e-01
-1.13539648e+00 2.31434464e-01 1.98127493e-01 -4.37645197e-01
-2.85317361e-01 1.00174022e+00 1.34450778e-01 -4.35337961e-01
-9.64564234e-02 -4.18171585e-01 -8.69390488e-01 4.84474808e-01
5.29315770e-01 2.25875765e-01 -3.09748441e-01 -1.70709193e-01
1.08829580e-01 5.89511730e-02 3.87608439e-01 -6.59260452e-01
1.22342944e+00 -1.61350742e-02 -2.42428094e-01 5.00507593e-01
4.97323722e-01 3.42501402e-01 -9.79114950e-01 3.28369439e-02
1.85845390e-01 -3.38189453e-01 -3.30224305e-01 -1.11281979e+00
-3.71068150e-01 4.53756839e-01 -3.15357089e-01 6.78022206e-01
8.46470714e-01 4.59105223e-01 3.51892382e-01 -9.81970429e-02
-1.27004743e-01 -8.16947222e-01 5.18798649e-01 6.72803938e-01
1.55786955e+00 -6.46012545e-01 -1.42250463e-01 -6.20767355e-01
-5.62864184e-01 1.06088793e+00 9.76767242e-01 1.46832451e-01
3.72435272e-01 1.04489259e-01 -3.80496606e-02 -3.65378827e-01
-1.41553509e+00 -9.01252776e-02 3.52411777e-01 5.36438525e-01
8.28925192e-01 2.75218129e-01 -9.28752601e-01 1.13135469e+00
-1.21474278e+00 7.60826245e-02 1.10534966e+00 7.47712195e-01
-3.30726445e-01 -1.23308074e+00 -6.13747597e-01 6.27542078e-01
-5.85458517e-01 -4.31427419e-01 -6.25576138e-01 6.22507691e-01
2.29786471e-01 1.42181122e+00 1.29581764e-01 4.66749221e-02
5.53156316e-01 2.78284382e-02 5.09581268e-01 -1.14586878e+00
-1.32082844e+00 -4.54647094e-01 6.91617489e-01 -3.42499584e-01
-1.16756253e-01 -9.09869730e-01 -1.31470430e+00 -2.77500510e-01
-1.15327932e-01 7.34758556e-01 1.46040633e-01 9.47677851e-01
1.24631576e-01 6.44696593e-01 2.27318302e-01 1.57428421e-02
-2.63487190e-01 -8.56671095e-01 -2.22923994e-01 2.26813421e-01
3.00545633e-01 -3.15135002e-01 -1.92018673e-01 1.31992459e-01] | [11.542010307312012, 8.119457244873047] |
48d01c93-ea8c-45e7-9d06-e65a52ad04ed | bilingual-low-resource-neural-machine | null | null | https://aclanthology.org/R19-1003 | https://aclanthology.org/R19-1003.pdf | Bilingual Low-Resource Neural Machine Translation with Round-Tripping: The Case of Persian-Spanish | The quality of Neural Machine Translation (NMT), as a data-driven approach, massively depends on quantity, quality, and relevance of the training dataset. Such approaches have achieved promising results for bilingually high-resource scenarios but are inadequate for low-resource conditions. This paper describes a round-trip training approach to bilingual low-resource NMT that takes advantage of monolingual datasets to address training data scarcity, thus augmenting translation quality. We conduct detailed experiments on Persian-Spanish as a bilingually low-resource scenario. Experimental results demonstrate that this competitive approach outperforms the baselines. | ['Bonnie Dorr', 'Benyamin Ahmadnia'] | 2019-09-01 | null | null | null | ranlp-2019-9 | ['low-resource-neural-machine-translation'] | ['natural-language-processing'] | [-2.29125172e-01 -2.57032871e-01 -7.44150400e-01 -3.08650821e-01
-1.44732869e+00 -8.17809582e-01 7.83947408e-01 -4.26431477e-01
-8.17957580e-01 1.37511420e+00 5.13209939e-01 -8.60938609e-01
4.23299134e-01 -4.40710902e-01 -9.23587799e-01 -1.48640066e-01
5.44822752e-01 9.39611673e-01 -6.06933713e-01 -7.06400394e-01
-1.03079684e-01 2.78550386e-01 -8.30562651e-01 4.14609998e-01
1.13783193e+00 6.87452331e-02 3.63860995e-01 1.71662569e-01
-6.72218576e-02 2.60452777e-01 -5.02379894e-01 -7.16696560e-01
6.95485353e-01 -6.22776628e-01 -8.11232090e-01 -3.40395749e-01
4.29298341e-01 -2.52535075e-01 -2.60386407e-01 8.89022231e-01
7.85929680e-01 -3.47107232e-01 3.35461646e-01 -8.96896482e-01
-9.55922127e-01 1.04067731e+00 -2.76160538e-01 5.24874330e-01
1.49399891e-01 2.16639578e-01 1.12838840e+00 -1.46928930e+00
9.10513580e-01 1.13254762e+00 6.55355036e-01 6.43313289e-01
-1.10287106e+00 -7.80883968e-01 -1.60355553e-01 -5.55039756e-02
-1.19409728e+00 -8.01035523e-01 2.91576117e-01 -2.02239767e-01
1.39314151e+00 1.77290607e-02 5.68407536e-01 1.41795552e+00
1.48767501e-01 6.29291594e-01 1.43937743e+00 -6.95500553e-01
-2.79973716e-01 2.44878560e-01 -5.22675157e-01 2.97163427e-01
3.59477133e-01 4.65957135e-01 -9.13100898e-01 1.57576039e-01
7.35330224e-01 -4.42091167e-01 -1.21004410e-01 2.65854508e-01
-1.83004665e+00 6.50017202e-01 3.43432993e-01 8.18887591e-01
-5.48651397e-01 -1.90556526e-01 4.25269902e-01 9.92830694e-01
7.03390837e-01 8.94123495e-01 -9.61712003e-01 -3.55279267e-01
-1.27587771e+00 4.28463034e-02 7.85642445e-01 1.27395141e+00
7.11091280e-01 3.89722168e-01 -2.55586654e-01 1.06060123e+00
-7.68099129e-02 1.05493486e+00 6.79773033e-01 -5.63837349e-01
1.24529278e+00 3.00222844e-01 5.65352999e-02 -4.88423258e-01
-1.32908240e-01 -4.86900836e-01 -7.94343770e-01 -4.63348418e-01
4.12454337e-01 -4.31891143e-01 -7.43565559e-01 1.87282705e+00
-5.64675815e-02 -7.46191442e-01 4.03303564e-01 1.00924206e+00
6.58372998e-01 6.90982878e-01 -6.71044439e-02 -2.45886028e-01
9.57016289e-01 -1.33981526e+00 -7.02616215e-01 -5.02835214e-01
7.22753584e-01 -1.22215366e+00 1.53441048e+00 4.22757193e-02
-1.25587511e+00 -4.04525250e-01 -9.67037559e-01 -1.55600622e-01
-3.68428767e-01 5.58004439e-01 6.24124765e-01 6.19809031e-01
-1.39343083e+00 6.41371369e-01 -5.22802591e-01 -5.50789952e-01
1.25052825e-01 3.04443121e-01 -7.85850525e-01 -4.13124859e-01
-1.34923363e+00 1.47510386e+00 4.86335903e-01 2.62559742e-01
-8.93001378e-01 -5.09977698e-01 -6.60019040e-01 -1.91628814e-01
1.74696118e-01 -6.05589092e-01 1.24341524e+00 -1.20185447e+00
-1.42486179e+00 9.94949698e-01 -1.89184006e-02 -2.38776967e-01
6.11511946e-01 -2.96816289e-01 -3.43070596e-01 -3.13213527e-01
4.78656888e-01 7.95560241e-01 2.16296420e-01 -9.21938777e-01
-5.36001980e-01 -2.19165429e-01 -1.68367833e-01 7.22650886e-01
-3.80727053e-01 4.13028657e-01 -4.47930753e-01 -8.33996177e-01
-3.49993855e-02 -1.08887672e+00 -3.02286804e-01 -7.08484113e-01
-1.13407992e-01 1.96127385e-01 1.31417662e-01 -1.11025953e+00
9.44236755e-01 -1.75811994e+00 3.29839408e-01 -1.81337893e-01
-4.22484159e-01 2.51255304e-01 -5.54111063e-01 7.99802423e-01
2.62561888e-01 2.82061487e-01 -1.08115450e-01 -6.24864809e-02
-1.84102356e-01 3.26572180e-01 -9.12348181e-03 2.91181296e-01
4.57915604e-01 1.27386570e+00 -8.27154100e-01 -4.42394555e-01
-2.36577481e-01 2.09441587e-01 -4.68586057e-01 2.02854574e-01
-5.23766540e-02 7.04288423e-01 -2.94896141e-02 9.71656203e-01
4.24364448e-01 1.08213171e-01 5.50270438e-01 3.18479422e-03
-4.00328398e-01 6.57574832e-01 -4.52188373e-01 2.02168965e+00
-8.85443330e-01 7.85362840e-01 -3.11873648e-02 -6.02084935e-01
9.40881968e-01 5.09920120e-01 1.80404842e-01 -1.24983823e+00
-4.05225996e-03 1.13258529e+00 4.03284788e-01 -3.07669044e-01
7.77398169e-01 -2.99008906e-01 -3.40690613e-02 5.31099260e-01
3.37858558e-01 -2.05281600e-01 4.48178232e-01 7.78393820e-02
7.88143456e-01 5.74619830e-01 2.46140212e-01 -7.11840570e-01
1.19684309e-01 5.36130190e-01 7.37494648e-01 3.65230203e-01
-3.94268148e-02 3.95680845e-01 -6.45177439e-02 -4.05757606e-01
-1.66495621e+00 -7.80352175e-01 8.43901262e-02 1.04251182e+00
-3.20768625e-01 -2.64832169e-01 -7.72145152e-01 -6.97241724e-01
-3.37958127e-01 4.94837344e-01 -9.50329602e-02 1.55542418e-01
-1.19054306e+00 -9.41706359e-01 6.94657683e-01 3.25842887e-01
3.61170441e-01 -1.19579387e+00 -1.21572696e-01 3.52360576e-01
-7.96692133e-01 -1.26239789e+00 -6.35153770e-01 2.37866104e-01
-1.01315403e+00 -6.04378581e-01 -9.18217897e-01 -9.56328928e-01
5.78512669e-01 4.07587498e-01 1.70222044e+00 -1.01226926e-01
3.27353328e-01 -2.35813200e-01 -3.12351406e-01 -2.08646700e-01
-7.71327496e-01 5.99858642e-01 4.37736899e-01 -6.76285744e-01
5.26590288e-01 -3.81642789e-01 -2.06402928e-01 3.17620456e-01
-4.56871778e-01 3.04605186e-01 1.15344524e+00 1.13946033e+00
5.56942761e-01 -5.74737489e-01 8.86802554e-01 -7.73086548e-01
7.54542828e-01 -4.88749653e-01 -4.94219303e-01 5.05479217e-01
-8.31138611e-01 7.34020695e-02 7.12424994e-01 -4.66584682e-01
-8.69710386e-01 -2.46529445e-01 -5.79937361e-03 -1.41660467e-01
2.99347430e-01 8.05295110e-01 -3.93133253e-01 7.16312900e-02
9.18090641e-01 1.50787488e-01 -2.89397120e-01 -6.86317086e-01
4.70572293e-01 9.01197612e-01 4.07446623e-01 -9.84059572e-01
7.38169014e-01 -1.64149240e-01 -3.84265512e-01 -4.34654415e-01
-5.37394404e-01 -1.64947316e-01 -9.17485893e-01 1.11434730e-02
2.36758858e-01 -1.49199915e+00 2.58290648e-01 9.30329859e-02
-1.20841157e+00 -5.54083645e-01 -1.77477732e-01 1.04285109e+00
-4.81303662e-01 -2.36814454e-01 -8.15792799e-01 -1.94058657e-01
-6.62779987e-01 -1.35170710e+00 8.32553566e-01 -1.60270363e-01
-7.64099061e-02 -8.11654806e-01 1.78308710e-01 5.49112022e-01
6.80059731e-01 -2.35080972e-01 8.51375580e-01 -6.90580845e-01
-5.30105948e-01 9.18726921e-02 -3.40894014e-01 4.03329670e-01
1.65367365e-01 -3.77546668e-01 -5.81651211e-01 -4.94172007e-01
-1.06335588e-01 -5.42548358e-01 3.27941716e-01 9.95013788e-02
1.49827242e-01 -6.32064939e-01 7.80574456e-02 5.47223389e-01
1.45903754e+00 -9.74932909e-02 2.72639453e-01 6.01209283e-01
6.30892158e-01 5.48364341e-01 8.49427819e-01 -1.15317143e-01
6.12027109e-01 6.82360411e-01 -9.88307893e-02 -4.96210903e-01
-3.52329314e-01 -3.31904143e-01 6.09571338e-01 1.71394801e+00
-1.77275524e-01 -4.33788970e-02 -1.16314542e+00 8.39403391e-01
-1.65008235e+00 -7.95842946e-01 -3.76889370e-02 1.99304438e+00
1.48847342e+00 -2.03159928e-01 7.70701468e-02 -3.59308422e-01
6.35674119e-01 -2.05498114e-01 -2.70156980e-01 -6.69386327e-01
-6.66360259e-01 7.68344104e-02 6.93723738e-01 2.55764693e-01
-5.74516177e-01 1.60700166e+00 7.32396793e+00 6.90438509e-01
-1.06475031e+00 7.04789221e-01 4.56964463e-01 -2.44477302e-01
-4.63688374e-01 4.98800650e-02 -7.75323451e-01 2.63431311e-01
1.30087805e+00 -3.12541693e-01 9.24397469e-01 5.07994235e-01
3.25878084e-01 2.15850741e-01 -1.30025268e+00 7.39026487e-01
-1.34305069e-02 -1.24786294e+00 1.39647529e-01 2.15302572e-01
1.15194130e+00 7.35045552e-01 3.82517837e-02 4.98787761e-01
5.75441420e-01 -9.62169826e-01 8.43390822e-01 -8.19929466e-02
1.31100893e+00 -6.24574602e-01 7.70702302e-01 5.10392487e-01
-7.42703021e-01 1.74228415e-01 -5.05344033e-01 -1.64239220e-02
1.04108065e-01 5.35866261e-01 -7.87250936e-01 6.40339017e-01
7.08141148e-01 5.75591624e-01 -4.07071233e-01 5.48516810e-01
-3.71662974e-01 6.65268958e-01 -1.89644203e-01 1.42512068e-01
5.00720024e-01 -3.27154249e-01 3.03498775e-01 1.39881253e+00
6.02195859e-01 -2.24561736e-01 4.64051738e-02 6.29560769e-01
-6.50756836e-01 7.79911101e-01 -1.03638434e+00 -3.45606953e-01
5.60300410e-01 1.06167006e+00 -1.72501922e-01 -2.41568297e-01
-6.36707246e-01 1.01592255e+00 6.27760291e-01 2.14063868e-01
-5.88211238e-01 1.63990840e-01 3.94410819e-01 -2.27880746e-01
-2.30526656e-01 -4.51062560e-01 -4.08172876e-01 -1.55349231e+00
3.96399975e-01 -1.75216234e+00 1.32446274e-01 -3.86613131e-01
-1.17688763e+00 1.02324402e+00 -2.65798360e-01 -1.40735042e+00
-5.55691957e-01 -4.48027104e-01 1.81394443e-02 1.36452341e+00
-1.56795430e+00 -1.70845473e+00 3.60183179e-01 3.81133646e-01
8.52868021e-01 -7.65633225e-01 9.51167345e-01 7.05069900e-01
-4.29324985e-01 8.02477241e-01 4.66003865e-01 7.14566931e-02
1.11913335e+00 -9.41380382e-01 7.03236520e-01 1.16606867e+00
4.97570038e-01 8.08338106e-01 3.86479616e-01 -8.45789850e-01
-1.51489091e+00 -1.02879596e+00 1.64734733e+00 -4.67738003e-01
5.46135068e-01 -3.75027448e-01 -4.31547701e-01 7.52612770e-01
7.36977398e-01 -4.26155388e-01 7.68848836e-01 3.65032047e-01
-5.01304269e-01 8.62300918e-02 -1.08126295e+00 8.04339290e-01
1.18451476e+00 -7.16111004e-01 -5.10725737e-01 5.90682507e-01
7.21543074e-01 -2.92900085e-01 -9.65201020e-01 4.76043820e-01
4.02299672e-01 -4.31482524e-01 6.42542541e-01 -8.64333212e-01
6.54371202e-01 1.85699593e-02 -4.75697756e-01 -1.93834722e+00
-2.60637373e-01 -6.61714733e-01 3.44845921e-01 1.04207265e+00
1.03762412e+00 -3.28618437e-01 3.66819471e-01 1.30723611e-01
-1.88541785e-01 -5.35955787e-01 -1.02852190e+00 -1.06512403e+00
7.89076447e-01 9.75082368e-02 8.51569653e-01 1.32933366e+00
4.27001342e-02 8.09901118e-01 -5.98074198e-01 -2.75331765e-01
2.60774612e-01 3.71152014e-02 7.71440983e-01 -8.44623744e-01
-2.05904365e-01 -4.37566876e-01 2.84022033e-01 -6.36244118e-01
1.95662677e-01 -1.33548760e+00 1.63745224e-01 -1.55075872e+00
2.80942142e-01 -6.28379047e-01 1.60066728e-02 6.10662401e-01
-3.20950806e-01 6.36376619e-01 2.53797531e-01 7.10740626e-01
-1.23452164e-01 3.72548193e-01 1.29741311e+00 -1.39819100e-01
-1.84972823e-01 -4.14157122e-01 -7.38383532e-01 1.78982601e-01
1.10322011e+00 -5.71031630e-01 -1.39420897e-01 -1.22794735e+00
4.10863668e-01 4.11317684e-02 -4.33494747e-01 -7.34213710e-01
-1.45383641e-01 -4.61721897e-01 1.82443708e-01 -3.77124965e-01
-6.57225447e-03 -7.30090737e-01 1.92872852e-01 2.81686962e-01
-3.77214849e-01 9.63553131e-01 2.44478166e-01 -1.85430825e-01
-3.78073186e-01 5.66935576e-02 5.99404097e-01 -5.73228776e-01
-2.48020738e-01 2.59593397e-01 -2.29474619e-01 4.16988671e-01
4.13335115e-01 2.16765538e-01 -3.86435390e-01 2.13681590e-02
-2.67097652e-01 9.99981910e-02 6.74301028e-01 7.92612791e-01
1.57070592e-01 -1.62728703e+00 -1.38333595e+00 1.69262126e-01
2.18843088e-01 -4.40048903e-01 -3.41498077e-01 9.07404244e-01
-6.18262231e-01 7.34098375e-01 -7.63799846e-01 -1.66571945e-01
-8.47456336e-01 4.37995911e-01 2.08136246e-01 -4.93753850e-01
-3.82531732e-01 4.82115775e-01 -4.45970505e-01 -9.60997283e-01
-1.59185067e-01 2.04168096e-01 1.35214478e-01 -1.41437888e-01
2.34231204e-01 1.89865708e-01 3.34281653e-01 -1.02638221e+00
-1.55846298e-01 1.52617902e-01 -4.94936854e-02 -8.09548736e-01
1.16015220e+00 -2.07074493e-01 -3.11022818e-01 3.51414651e-01
9.12486553e-01 1.95877329e-01 -6.09744251e-01 -5.85590661e-01
2.09825560e-01 -5.12081385e-01 -1.62546128e-01 -1.26607156e+00
-9.53828692e-01 9.18119848e-01 2.51259357e-01 -5.60929477e-01
9.20699060e-01 -3.53437424e-01 7.64070630e-01 4.84153599e-01
8.25998783e-01 -1.46757782e+00 -2.27022931e-01 7.36897707e-01
9.57899213e-01 -1.46310008e+00 -1.47801384e-01 -1.49106476e-02
-7.24304616e-01 9.45755363e-01 7.38763094e-01 3.47614557e-01
1.76176131e-01 3.48799855e-01 6.18192017e-01 2.86384165e-01
-8.05885911e-01 -1.54416785e-01 1.28854737e-01 5.02399862e-01
8.80027533e-01 3.42195928e-01 -9.00793314e-01 4.43281561e-01
-5.53424418e-01 -7.59214014e-02 3.12702924e-01 7.67241836e-01
-1.73263457e-02 -1.55214882e+00 -3.09818655e-01 1.75228894e-01
-8.09147179e-01 -8.95274639e-01 -6.14949822e-01 7.63298273e-01
5.48123308e-02 1.01430237e+00 -3.30624729e-01 -3.67692262e-01
3.26492816e-01 8.53141695e-02 6.88897312e-01 -6.57411337e-01
-1.09418797e+00 1.38623282e-01 5.36739528e-01 -4.74599451e-01
-3.31354707e-01 -6.35526836e-01 -6.40425146e-01 -5.31463742e-01
-2.60134429e-01 3.59549969e-01 1.08224273e+00 8.08726728e-01
4.14309859e-01 2.60528140e-02 6.80465937e-01 -6.63253665e-01
-7.76626050e-01 -1.32602906e+00 1.74237918e-02 2.08977118e-01
-1.03775486e-01 -1.46009654e-01 7.64682665e-02 -1.17965214e-01] | [11.578033447265625, 10.325313568115234] |
cd02087e-042a-4914-933c-2d98d21a6dd8 | styletts-2-towards-human-level-text-to-speech | 2306.07691 | null | https://arxiv.org/abs/2306.07691v1 | https://arxiv.org/pdf/2306.07691v1.pdf | StyleTTS 2: Towards Human-Level Text-to-Speech through Style Diffusion and Adversarial Training with Large Speech Language Models | In this paper, we present StyleTTS 2, a text-to-speech (TTS) model that leverages style diffusion and adversarial training with large speech language models (SLMs) to achieve human-level TTS synthesis. StyleTTS 2 differs from its predecessor by modeling styles as a latent random variable through diffusion models to generate the most suitable style for the text without requiring reference speech, achieving efficient latent diffusion while benefiting from the diverse speech synthesis offered by diffusion models. Furthermore, we employ large pre-trained SLMs, such as WavLM, as discriminators with our novel differentiable duration modeling for end-to-end training, resulting in improved speech naturalness. StyleTTS 2 surpasses human recordings on the single-speaker LJSpeech dataset and matches it on the multispeaker VCTK dataset as judged by native English speakers. Moreover, when trained on the LibriTTS dataset, our model outperforms previous publicly available models for zero-shot speaker adaptation. This work achieves the first human-level TTS on both single and multispeaker datasets, showcasing the potential of style diffusion and adversarial training with large SLMs. The audio demos and source code are available at https://styletts2.github.io/. | ['Nima Mesgarani', 'Gavin Mischler', 'Vinay S. Raghavan', 'Cong Han', 'Yinghao Aaron Li'] | 2023-06-13 | null | null | null | null | ['speech-synthesis'] | ['speech'] | [ 1.27011940e-01 2.49452099e-01 -1.39186904e-01 -3.73860598e-01
-1.28272402e+00 -9.65476751e-01 6.07653916e-01 -6.26089990e-01
-2.81887829e-01 4.07935083e-01 5.85815191e-01 -6.26974702e-01
5.05068004e-01 -1.78608626e-01 -4.69193280e-01 -4.91748810e-01
4.49827433e-01 5.33996522e-01 5.44124562e-03 -3.64232928e-01
-4.19930786e-01 2.58182198e-01 -1.01497960e+00 3.58384162e-01
8.90155554e-01 9.33300495e-01 2.39169836e-01 1.18733370e+00
-1.17755853e-01 7.82582402e-01 -9.64432895e-01 -6.02002442e-01
2.07485944e-01 -7.90793896e-01 -4.61721987e-01 -7.73107708e-02
6.13047123e-01 -4.14813280e-01 -6.84355199e-01 5.88094532e-01
9.90364611e-01 3.42603356e-01 8.05824935e-01 -1.09256148e+00
-1.05048156e+00 9.41452384e-01 6.98693916e-02 3.86598893e-02
2.84126580e-01 5.55254877e-01 1.02911305e+00 -9.34214115e-01
4.62579101e-01 1.67084849e+00 4.83983904e-01 1.07231855e+00
-1.33288670e+00 -7.29759336e-01 1.03581756e-01 -1.10553799e-03
-1.24884033e+00 -1.29936445e+00 7.79750109e-01 -1.50874481e-01
1.10200930e+00 4.45415199e-01 3.71555328e-01 2.07183051e+00
-2.49391228e-01 1.29736578e+00 9.52391446e-01 -5.60004592e-01
4.06098872e-01 3.08063570e-02 -3.55199069e-01 2.62692094e-01
-7.48159528e-01 4.35246170e-01 -7.41393924e-01 3.79246362e-02
5.50225616e-01 -4.73865300e-01 -2.28172451e-01 2.42673039e-01
-1.09447861e+00 6.71265662e-01 -5.81871532e-02 7.88176879e-02
-1.69599012e-01 1.03397734e-01 5.63521504e-01 6.57729566e-01
5.94888926e-01 2.43194297e-01 -4.46194798e-01 -5.88926733e-01
-1.14600706e+00 6.61616623e-02 8.51094306e-01 1.36166799e+00
3.16401161e-02 9.24453914e-01 -6.81373358e-01 1.31803596e+00
1.59974158e-01 1.12998581e+00 7.57531941e-01 -1.19605005e+00
5.54904580e-01 -2.49988660e-01 -8.92448127e-02 -2.18475804e-01
8.98354575e-02 -4.83207494e-01 -7.39652038e-01 2.59557426e-01
3.14203024e-01 -4.23713297e-01 -1.19538891e+00 1.90416825e+00
-7.60800019e-02 1.86992273e-01 3.19763809e-01 5.70265174e-01
7.30881155e-01 9.88697231e-01 7.62459263e-02 -8.35491717e-02
1.01508045e+00 -1.34202325e+00 -8.45087707e-01 -3.42600763e-01
4.07102913e-01 -9.05260444e-01 1.63495016e+00 4.80819374e-01
-1.28096020e+00 -8.10387313e-01 -8.10949564e-01 -2.01285735e-01
-1.35561556e-01 1.32046074e-01 1.02039754e-01 8.54685426e-01
-1.27612042e+00 3.46329778e-01 -7.54158974e-01 -3.50684673e-02
2.03606397e-01 -8.79663005e-02 1.13009036e-01 1.72562569e-01
-1.40770006e+00 6.63852453e-01 -4.01711576e-02 -3.05557668e-01
-1.17958927e+00 -7.79938102e-01 -9.17596519e-01 -4.74309642e-03
3.63543808e-01 -6.18229330e-01 1.89227784e+00 -1.00014496e+00
-2.27717066e+00 4.80968505e-01 -3.48739982e-01 -7.21215963e-01
8.65064502e-01 -2.31546164e-01 -8.98539901e-01 1.26565307e-01
-1.79678634e-01 7.99878836e-01 1.29717743e+00 -9.91698205e-01
-5.35494983e-01 1.95441261e-01 -3.91095936e-01 2.34969705e-01
-4.93533492e-01 -1.13458000e-02 -5.18384039e-01 -1.22207355e+00
-4.89211053e-01 -9.76784647e-01 2.62426306e-02 -2.83156514e-01
-6.69134498e-01 -1.95585638e-01 8.85471880e-01 -9.34737861e-01
1.31907320e+00 -2.39841628e+00 3.89238000e-01 -2.08908334e-01
-7.92347044e-02 5.06056964e-01 -5.04399538e-01 5.35859048e-01
3.81182760e-01 1.11409977e-01 -1.58163473e-01 -1.16417301e+00
3.35804224e-01 1.47429958e-01 -6.56882226e-01 5.79896159e-02
-4.19080677e-03 1.10021412e+00 -8.27149093e-01 -3.31006199e-01
2.65522361e-01 4.64097559e-01 -5.40399075e-01 5.34522951e-01
-3.27411801e-01 6.75077856e-01 -4.80903033e-03 5.05059659e-01
1.83506534e-01 4.42866504e-01 -1.89515650e-01 1.87209964e-01
1.99318118e-02 5.63900352e-01 -7.48421013e-01 1.96344781e+00
-8.76879573e-01 8.06636393e-01 9.91263539e-02 -2.99890846e-01
1.00543392e+00 7.34494209e-01 1.29035920e-01 -5.98576546e-01
-1.06229121e-02 3.51946920e-01 -1.12162866e-01 -1.72811598e-01
5.23587883e-01 -2.00407550e-01 -3.27352762e-01 3.17968339e-01
2.65396982e-01 -6.71763539e-01 -1.22837052e-01 3.53389740e-01
9.91306543e-01 6.64694682e-02 -1.12108164e-01 2.92182751e-02
1.76687568e-01 -4.83166844e-01 4.09321457e-01 9.09984529e-01
-2.22039834e-01 8.03511322e-01 1.09284021e-01 2.17434525e-01
-1.19109929e+00 -1.54851532e+00 2.45716453e-01 1.24936414e+00
-4.84618038e-01 -3.60563427e-01 -9.14195478e-01 -6.08493447e-01
-5.54299867e-03 1.33706737e+00 -3.47201467e-01 -1.85710579e-01
-4.40348625e-01 3.64824742e-01 1.23745620e+00 4.37014371e-01
1.36549145e-01 -1.25501764e+00 1.52861938e-01 4.42410439e-01
-2.03946605e-01 -1.29275370e+00 -1.31801379e+00 1.39149120e-02
-3.45118105e-01 -2.35763147e-01 -1.22663105e+00 -7.22351432e-01
-1.09803908e-01 -1.14266634e-01 1.11435080e+00 -5.46338439e-01
1.38426781e-01 3.65282118e-01 -4.24148053e-01 -4.92274225e-01
-1.28213000e+00 4.56607401e-01 4.47278261e-01 -5.72952405e-02
-1.23960758e-02 -6.34878099e-01 -3.92320096e-01 2.21878961e-01
-6.88752294e-01 1.37459144e-01 3.72324944e-01 8.61101389e-01
3.10870290e-01 -3.28961134e-01 1.02986670e+00 -6.77054822e-01
6.19697332e-01 -2.97052532e-01 -4.27421302e-01 1.83896422e-01
-4.99511153e-01 -6.53433502e-02 9.95116293e-01 -8.73265386e-01
-1.22383189e+00 -3.60082477e-01 -6.23113692e-01 -7.87335873e-01
-3.72705340e-01 1.34773832e-02 -4.06272680e-01 5.57700157e-01
7.23042250e-01 4.44133937e-01 1.76879764e-02 -6.54693723e-01
8.52359176e-01 1.27420795e+00 8.40364873e-01 -5.05652428e-01
7.84550130e-01 -3.94714391e-03 -6.78525388e-01 -9.50657547e-01
-6.34737968e-01 -1.27253145e-01 -3.01101923e-01 3.64852212e-02
6.04885101e-01 -1.05468404e+00 -4.84620422e-01 7.39443719e-01
-1.12349474e+00 -9.65555429e-01 -6.35076702e-01 3.02271485e-01
-8.64817262e-01 2.41581589e-01 -9.24192607e-01 -1.03745174e+00
-6.15670145e-01 -1.12613332e+00 1.12233305e+00 -2.13208064e-01
-5.28784096e-01 -1.08358884e+00 -2.92449817e-03 2.97347933e-01
7.48426557e-01 -1.94036916e-01 6.12564147e-01 -6.93872511e-01
-8.67943987e-02 9.28409994e-02 5.10426164e-01 9.10952926e-01
3.32340032e-01 -7.72465095e-02 -1.24880183e+00 -3.12456191e-01
-1.33957729e-01 -4.31365579e-01 6.65281892e-01 4.40921813e-01
8.24863255e-01 -5.53152323e-01 1.24489576e-01 9.00432289e-01
6.22772813e-01 3.46662939e-01 4.01989758e-01 -1.00926556e-01
8.59208584e-01 4.20125455e-01 2.22178161e-01 2.11171731e-01
2.56228089e-01 7.75862813e-01 -2.37941191e-01 -2.66151100e-01
-8.23936820e-01 -6.56882405e-01 9.08984125e-01 1.47701252e+00
4.58835065e-01 -6.79150641e-01 -6.41579092e-01 5.07473230e-01
-1.43354952e+00 -9.71087158e-01 2.60166049e-01 2.04717207e+00
1.22881043e+00 3.27180237e-01 4.30132926e-01 -6.39430881e-02
5.14988959e-01 4.10901368e-01 -8.84587348e-01 -7.15736270e-01
-3.59560877e-01 2.05744043e-01 3.45620304e-01 8.34016919e-01
-6.94055855e-01 1.52537525e+00 6.16412258e+00 1.36581469e+00
-1.11799169e+00 2.76738107e-01 6.74439549e-01 -6.21327400e-01
-7.31167078e-01 -2.67122865e-01 -9.48625982e-01 6.84288800e-01
1.49205542e+00 -3.05023462e-01 9.82664526e-01 6.66136980e-01
5.43186605e-01 7.07864761e-01 -1.15006888e+00 9.11257267e-01
-1.00987917e-02 -1.03766704e+00 1.58554569e-01 -1.29027054e-01
7.41363704e-01 3.00565332e-01 5.77754200e-01 7.84123719e-01
7.22729027e-01 -1.03583062e+00 1.29187989e+00 1.76643834e-01
1.52574742e+00 -7.07595646e-01 2.89236680e-02 3.12632918e-01
-1.00211763e+00 -1.51449312e-02 -5.07698543e-02 3.10496092e-01
4.81239796e-01 2.32047260e-01 -1.04410863e+00 3.30283970e-01
1.99525774e-01 4.63649601e-01 -3.86235833e-01 3.53640288e-01
-3.71765852e-01 1.33244216e+00 -3.18278253e-01 9.97046381e-02
2.18702093e-01 1.54949382e-01 8.89604926e-01 1.60382950e+00
4.60944653e-01 -2.56544232e-01 1.61438048e-01 8.52086246e-01
-2.74890780e-01 1.21745154e-01 -5.81586719e-01 -3.87342036e-01
1.04080975e+00 7.66561449e-01 2.08051614e-02 -5.87441504e-01
-2.24114522e-01 1.47750568e+00 1.94759250e-01 8.17227423e-01
-7.20384419e-01 -4.46836054e-01 7.99507201e-01 -1.96738541e-01
3.06014299e-01 -3.70665222e-01 -1.98450819e-01 -1.18464196e+00
-3.01990986e-01 -1.36394501e+00 7.90981352e-02 -7.80669332e-01
-1.30615664e+00 1.17516971e+00 -2.03716010e-01 -1.09514284e+00
-8.50918531e-01 -3.38268995e-01 -5.01828432e-01 1.25364423e+00
-1.25594473e+00 -1.52434194e+00 2.70191699e-01 5.93648970e-01
1.31940448e+00 -6.83686316e-01 8.98533702e-01 -2.08263490e-02
-4.20958757e-01 1.27474499e+00 2.94939429e-01 5.33574000e-02
1.04003072e+00 -1.43758214e+00 1.31316078e+00 8.54533970e-01
3.60048234e-01 4.06680197e-01 8.67006123e-01 -5.77446580e-01
-1.15599155e+00 -1.08205032e+00 7.28611231e-01 -5.65268219e-01
6.91933453e-01 -8.04686010e-01 -8.30036879e-01 6.64143145e-01
5.65113246e-01 -3.33994269e-01 6.43101454e-01 1.06991909e-01
-4.70725447e-01 3.60602252e-02 -9.00759280e-01 1.12513041e+00
1.25640237e+00 -8.70667040e-01 -5.99887073e-01 -2.72566825e-02
1.34651041e+00 -4.85062063e-01 -8.17715108e-01 -4.84442003e-02
5.38967311e-01 -6.63278580e-01 8.87978733e-01 -4.39280033e-01
1.29334211e-01 2.12981999e-01 -3.72387707e-01 -1.94116437e+00
-1.78521410e-01 -1.36699700e+00 -3.85042757e-01 1.67681897e+00
6.24097943e-01 -5.83851576e-01 4.00405198e-01 4.07485545e-01
-5.61591506e-01 -3.88082981e-01 -1.02138543e+00 -1.35591877e+00
4.43285167e-01 -7.49191344e-01 7.46968389e-01 6.91448033e-01
-2.77911663e-01 4.89975423e-01 -6.60562873e-01 -3.85466143e-02
6.09034836e-01 -3.38943183e-01 8.54835629e-01 -5.78365207e-01
-9.21996295e-01 -5.55316031e-01 2.36605689e-01 -1.34240925e+00
5.42864680e-01 -9.79024172e-01 2.22910091e-01 -1.18296707e+00
-5.82860291e-01 -3.34825397e-01 -1.92049399e-01 4.50560331e-01
-1.76742569e-01 5.59122413e-02 5.52815914e-01 1.41541764e-01
-2.70569444e-01 9.97377813e-01 1.17034626e+00 -2.38394305e-01
-4.97199416e-01 1.65924489e-01 -6.86326265e-01 5.40096045e-01
8.86332750e-01 -3.46555084e-01 -6.19586527e-01 -5.33836722e-01
-5.76129615e-01 3.33373606e-01 -8.94770026e-02 -9.48483706e-01
1.60470843e-01 -8.24466646e-02 6.82497025e-02 -2.47064158e-01
7.11226642e-01 -3.25744063e-01 -1.09121516e-01 1.60637513e-01
-7.86853552e-01 -2.48346344e-01 3.71190190e-01 3.91717702e-01
-3.09512224e-02 -1.05452100e-02 6.85358763e-01 1.00580670e-01
-4.84447837e-01 3.61939162e-01 -6.43113077e-01 3.55737031e-01
3.40335429e-01 7.86081776e-02 -1.28978744e-01 -9.26408768e-01
-7.93094397e-01 -2.63039134e-02 4.53783602e-01 8.19200277e-01
4.96839136e-01 -1.48051345e+00 -1.01061237e+00 3.02542746e-01
1.20860867e-01 -2.13547707e-01 3.50780964e-01 2.80368567e-01
2.02195182e-01 3.00591201e-01 2.79700637e-01 -4.30933028e-01
-1.15683866e+00 4.47807968e-01 1.64953962e-01 1.39968410e-01
-6.49678171e-01 1.01898170e+00 2.91483164e-01 -4.93433475e-01
4.54171002e-01 -3.08275372e-01 4.24276322e-01 -3.28581393e-01
5.12359977e-01 3.27500403e-01 -2.11405620e-01 -5.33144653e-01
-9.82805938e-02 6.71436712e-02 -1.22639894e-01 -9.91896629e-01
9.29006994e-01 -5.36763966e-01 6.93987012e-01 7.65874386e-01
1.27704227e+00 6.70615613e-01 -1.72173738e+00 -4.59479809e-01
-1.91141650e-01 -1.40028909e-01 8.46199468e-02 -1.13987052e+00
-7.33995497e-01 9.18203473e-01 3.17324609e-01 8.40645209e-02
8.72410476e-01 -2.95427795e-02 1.41185749e+00 2.39191785e-01
1.22587904e-01 -1.13198400e+00 1.64888456e-01 7.48915553e-01
1.20926976e+00 -1.05637050e+00 -8.40573967e-01 3.89188863e-02
-1.30179930e+00 8.16749454e-01 2.98496336e-01 2.08320439e-01
3.25759113e-01 5.74805737e-01 6.67970657e-01 5.53430200e-01
-9.25885677e-01 -5.53976372e-02 4.38946217e-01 8.18411410e-01
3.24999034e-01 4.22003746e-01 3.65564346e-01 7.45193422e-01
-7.68736064e-01 -1.99727491e-01 2.46417359e-01 4.14391696e-01
-2.32011497e-01 -1.27364802e+00 -3.00034761e-01 1.32745504e-01
-3.93615663e-01 -5.58012068e-01 -3.86936307e-01 1.17525414e-01
-4.42707062e-01 1.39413941e+00 -1.45032272e-01 -5.09358883e-01
4.02412325e-01 4.05044615e-01 2.22488254e-01 -6.38659000e-01
-5.15861154e-01 4.29796636e-01 3.34028989e-01 -3.30255061e-01
4.82879758e-01 -6.90750957e-01 -1.04225242e+00 -2.90932208e-01
3.56545746e-02 5.89234047e-02 6.12657428e-01 7.57538676e-01
5.16598344e-01 7.65757799e-01 8.80447268e-01 -8.72517407e-01
-1.06822121e+00 -1.33372617e+00 -5.98517656e-01 4.57304895e-01
6.98001504e-01 -1.27951875e-01 -5.11125922e-01 2.32873753e-01] | [14.938545227050781, 6.54503059387207] |
aeb9b158-b6d0-4ece-8933-8cbb6ebdf4d9 | live-detection-of-face-using-machine-learning | null | null | https://link.springer.com/article/10.1007/s11277-018-5913-0 | https://doi.org/10.1007/s11277-018-5913-0 | Live Detection of Face Using Machine Learning with Multi-feature Method | Facial expression detection (FED) and extraction show the most important role in face recognition. This research proposed a new algorithm for automatic live FED using radial basis function; Haar discrete wavelet transform and Gray-level difference method is used for feature extraction and classification. Detect edges of the facial image by Otsu algorithm. The implementation results worked on Japanese Female Facial Expressions and Cohn–Kanade Extended (CK+) database for facial expression. The other database used for face detection process, namely, CMU, BioID, Long Distance, and FEI. It is usually possible for practical recognition system to record (by a camera or by computer) multiple face images from each subject. Choosing face images with high tone for recognition is a promising strategy for improving the system performance. We propose a learning to rank based (solid basic structure on which bigger things can be built) for evaluating the face image quality. But we improved limitations of this algorithm using contrast enhancement. We solved the problem of long distance and low contrast images. In the initial preprocess stage; perform median filtering for removing noise from an image. This step enhances the feature extraction process. Finding an image from the image components is a typical task in pattern recognition. The detection rate has reached up to 100% for expression recognition. The proposed system estimates the value of precision and recall. This algorithm is compared with the previous algorithm and our proposed proved better than previous algorithms. | ['Jagdish Kumar', 'Sukhwinder Singh', 'Sandeep Kumar'] | 2018-07-27 | null | null | null | null | ['face-image-quality'] | ['computer-vision'] | [ 1.75290376e-01 -4.02721554e-01 -9.03494284e-02 -5.92380524e-01
-4.44995493e-01 -1.18262038e-01 1.18896820e-01 -6.11193299e-01
-7.16806591e-01 8.08350325e-01 1.62592605e-02 2.05690116e-01
-2.22582355e-01 -7.97615290e-01 -1.18233198e-02 -1.03235865e+00
-1.28819361e-01 1.94374904e-01 -1.30553037e-01 -2.80190438e-01
4.34957474e-01 1.23762596e+00 -1.96958935e+00 4.42242980e-01
3.29068929e-01 1.10908020e+00 1.68768570e-01 7.79222250e-01
-1.97550893e-01 1.02714598e+00 -6.25001729e-01 -2.58890301e-01
1.17364600e-01 -7.73381114e-01 -7.39770293e-01 4.71044660e-01
6.14576451e-02 -3.72576803e-01 2.63871878e-01 1.27946770e+00
8.34277511e-01 1.12161376e-02 9.80384529e-01 -1.35506260e+00
-5.59182465e-01 -7.56366104e-02 -1.07982540e+00 5.05628407e-01
3.82325977e-01 -2.20576569e-01 5.58679365e-02 -1.38710451e+00
6.26205623e-01 1.26286733e+00 6.09735191e-01 6.99703276e-01
-6.25407279e-01 -1.06186616e+00 -7.42874086e-01 6.59386635e-01
-1.78215575e+00 -7.29754448e-01 8.21515262e-01 -2.81411558e-01
8.30964625e-01 1.92975640e-01 6.85608745e-01 4.21310902e-01
8.08973387e-02 2.41915658e-01 1.57690847e+00 -7.97375798e-01
-2.12618619e-01 4.11724865e-01 2.09075823e-01 1.23405850e+00
-6.70886412e-02 -7.16402456e-02 -3.92487317e-01 -1.82272986e-01
5.45823991e-01 -8.17097127e-02 -3.12503785e-01 5.83737433e-01
-3.51300389e-01 7.23140895e-01 -4.30625491e-03 9.12499189e-01
-6.99677825e-01 -1.55646294e-01 2.23755687e-01 6.21104717e-01
6.42947257e-02 -2.07306609e-01 -7.50583410e-02 -1.15433976e-01
-1.02296710e+00 -2.58757085e-01 5.77936411e-01 4.46838647e-01
6.35505199e-01 1.61343426e-01 2.06513420e-01 1.04316521e+00
3.60359162e-01 7.55188704e-01 6.96091831e-01 -9.51234162e-01
-4.30784047e-01 4.63877916e-01 -1.23366579e-01 -1.23823166e+00
-2.96106398e-01 2.01869905e-01 -6.51279747e-01 9.74066675e-01
5.39155960e-01 -2.63524115e-01 -7.58685827e-01 1.22832787e+00
3.06896418e-01 1.32827833e-01 1.00355953e-01 8.39590490e-01
9.19236243e-01 1.02139044e+00 -7.47546088e-03 -8.97302628e-01
1.79884732e+00 -5.81962109e-01 -1.16144776e+00 6.11393929e-01
4.61220175e-01 -1.16043842e+00 5.76446652e-01 8.57009649e-01
-8.89712334e-01 -5.96002162e-01 -9.77079093e-01 3.08532238e-01
-3.96991313e-01 6.21345043e-01 5.11786044e-01 9.86610949e-01
-1.00370085e+00 3.12669277e-01 -2.66089797e-01 -6.09916985e-01
3.18790913e-01 7.65763998e-01 -8.37903917e-01 2.54246313e-02
-7.23012984e-01 1.10163116e+00 -4.18029949e-02 2.36411572e-01
-3.89326036e-01 8.32965598e-02 -5.82883000e-01 -2.78390765e-01
-1.42762631e-01 -3.02967913e-02 7.83963740e-01 -1.85496342e+00
-1.51235747e+00 1.35585892e+00 -5.05825639e-01 1.89994231e-01
3.94873433e-02 3.09219480e-01 -7.41274178e-01 5.62454104e-01
-3.42819840e-01 5.06098926e-01 1.02388620e+00 -8.67237270e-01
-5.02222061e-01 -8.81939113e-01 -8.03369641e-01 1.31315008e-01
-4.23923939e-01 8.76243114e-01 -8.12278688e-02 -2.56452233e-01
1.09758481e-01 -5.91389537e-01 4.19789076e-01 2.20333174e-01
5.17896593e-01 -6.22146964e-01 1.31479812e+00 -1.08660650e+00
1.03661680e+00 -2.34461308e+00 -3.57179224e-01 5.80601275e-01
-2.12098628e-01 2.99204051e-01 -2.48829909e-02 -2.04409864e-02
-3.49441946e-01 -6.70341626e-02 1.62690729e-01 1.29295006e-01
-4.40315962e-01 1.44200876e-01 4.24162477e-01 8.38341236e-01
5.27848490e-02 9.68597680e-02 -2.46514648e-01 -1.25154817e+00
-9.75074247e-04 8.47093403e-01 -1.47994965e-01 1.26873240e-01
8.49546432e-01 1.57477930e-01 -2.71256685e-01 9.77736294e-01
1.08962667e+00 4.33397233e-01 -2.16631502e-01 -4.74635214e-01
-1.28513714e-03 -7.84560144e-01 -1.47146857e+00 8.15533161e-01
-1.82584167e-01 6.84668124e-01 4.88983154e-01 -1.29088461e+00
1.45190120e+00 7.90934265e-01 5.95132232e-01 -5.71570754e-01
5.94917536e-01 3.45068902e-01 -6.67675063e-02 -1.34413099e+00
1.00934565e-01 -5.45706570e-01 5.99038184e-01 2.20497057e-01
2.32865766e-01 1.82990506e-01 5.58756404e-02 -4.55365449e-01
3.23651582e-01 -5.53214028e-02 4.81290877e-01 -2.99107462e-01
9.80273306e-01 -2.46576205e-01 5.58876157e-01 -2.36445311e-02
-5.62424839e-01 2.17952132e-01 4.38597798e-01 -3.22754622e-01
-7.65079916e-01 -5.07944942e-01 -4.68884736e-01 8.98898959e-01
-3.83626938e-01 3.30019742e-01 -9.60207403e-01 -1.92644387e-01
-2.04587907e-01 1.05413884e-01 -6.57674313e-01 2.43666485e-01
-4.35310185e-01 -8.36767137e-01 5.94726443e-01 1.37358114e-01
8.29267621e-01 -1.27280891e+00 -3.83258581e-01 -4.26376648e-02
1.76670119e-01 -5.57937860e-01 -4.28826772e-02 -2.19598159e-01
-6.03067756e-01 -1.13332200e+00 -1.01567411e+00 -1.21682417e+00
8.03021491e-01 -7.35662580e-02 5.28018653e-01 3.71821374e-01
-7.14140654e-01 2.53808916e-01 -2.03534439e-01 -4.04459506e-01
-3.36438656e-01 -7.54269361e-01 6.49638996e-02 2.46392831e-01
8.64380121e-01 -4.37788695e-01 -4.29369181e-01 3.67025405e-01
-4.77849185e-01 -6.46307468e-01 6.92164481e-01 8.93160105e-01
3.39130104e-01 3.73244226e-01 4.73108172e-01 -6.12944603e-01
6.76976740e-01 -5.40852286e-02 -5.84462345e-01 2.65177876e-01
-5.05705714e-01 -4.06538248e-01 1.12121306e-01 -8.57366249e-02
-1.20889211e+00 4.56066914e-02 -3.92940760e-01 -1.57257468e-01
-2.18454257e-01 4.71520191e-03 -1.20606549e-01 -6.13078833e-01
5.88016212e-01 2.23739520e-01 7.15147793e-01 -2.52590865e-01
-2.94460297e-01 1.27092361e+00 5.54292262e-01 -2.73298055e-01
1.52322292e-01 2.73295611e-01 3.03897589e-01 -1.24810255e+00
-6.66913092e-02 -5.16157806e-01 -4.10939395e-01 -7.42175162e-01
1.17245436e+00 -6.87993765e-01 -1.06676888e+00 6.71303928e-01
-1.10108972e+00 4.13182974e-01 4.70387846e-01 9.10959721e-01
-1.79822862e-01 2.01530367e-01 -6.85785413e-01 -1.41474259e+00
-5.05263984e-01 -9.29409564e-01 5.56616783e-01 5.30500591e-01
-6.41068146e-02 -6.92001402e-01 -2.08739832e-01 2.57057905e-01
2.97886282e-01 2.87155509e-01 5.97382367e-01 -2.23173827e-01
1.69749573e-01 -1.80243790e-01 -2.36652970e-01 6.65951848e-01
9.75541472e-02 5.46770096e-01 -1.11481225e+00 9.94767770e-02
5.09670973e-01 -3.41771185e-01 7.52015889e-01 3.92811477e-01
1.14825463e+00 -1.99678645e-01 -1.62538290e-01 3.61013979e-01
1.63508153e+00 8.76834452e-01 1.10040641e+00 2.11056799e-01
2.66134329e-02 9.22759295e-01 6.80465937e-01 4.10545558e-01
-3.51014316e-01 4.69171822e-01 -2.00617909e-01 -3.53727430e-01
-1.60776302e-01 3.50927860e-01 5.58018744e-01 7.00065672e-01
-5.43924630e-01 1.29870772e-01 -5.38719654e-01 2.57227957e-01
-1.14900339e+00 -1.46860301e+00 -1.44066289e-01 1.93443465e+00
6.12496078e-01 -3.46099108e-01 2.23891467e-01 7.30675757e-01
8.49617243e-01 -5.56305230e-01 1.16461948e-01 -8.29858840e-01
-4.17967200e-01 6.93050683e-01 1.11152582e-01 6.58417702e-01
-7.13670790e-01 4.88030523e-01 5.83238411e+00 9.47110176e-01
-1.53182149e+00 1.71897843e-01 9.39301491e-01 2.16314688e-01
4.59863842e-01 -5.27034521e-01 -7.95389533e-01 3.09145093e-01
5.63994825e-01 -2.49782149e-02 1.46374881e-01 8.14649761e-01
3.36478561e-01 -6.78295195e-01 -4.21921641e-01 1.60903561e+00
5.14255404e-01 -6.90728903e-01 -1.19207084e-01 -7.70272315e-02
4.11897361e-01 -7.81375229e-01 3.81070822e-02 1.26972469e-02
-5.79691470e-01 -1.28868639e+00 4.76508774e-03 6.21407092e-01
8.19741428e-01 -1.13257444e+00 1.13515031e+00 -8.17590058e-02
-9.91814613e-01 -5.19256480e-02 -5.25231779e-01 -7.21859038e-02
-1.84513599e-01 4.13640290e-01 -7.94568300e-01 8.61394256e-02
7.76460469e-01 3.10042411e-01 -3.63613397e-01 7.59957969e-01
1.78251043e-01 5.34652352e-01 -4.16667402e-01 -3.71421695e-01
5.26704825e-02 -4.23943192e-01 2.11829782e-01 1.25302720e+00
8.62687051e-01 6.26869977e-01 -3.65694523e-01 2.63563871e-01
9.20419246e-02 7.60917187e-01 -7.99009979e-01 1.23618893e-01
2.74709404e-01 1.53900933e+00 -7.44576573e-01 -4.25441891e-01
-4.54257011e-01 9.18082535e-01 -1.80141941e-01 5.33346646e-02
-6.21308029e-01 -7.56851375e-01 1.80957079e-01 1.72270685e-01
5.26145659e-02 2.66550303e-01 3.31716761e-02 -5.14495313e-01
-2.76968986e-01 -9.08544898e-01 6.69802666e-01 -1.02998018e+00
-8.48290980e-01 7.18797028e-01 -4.90547754e-02 -9.15281713e-01
-5.95275015e-02 -9.93275404e-01 -4.54707980e-01 9.90551233e-01
-1.25412631e+00 -9.43119407e-01 -3.83506477e-01 1.07356679e+00
3.60633671e-01 -5.14086187e-01 9.61531162e-01 5.74407935e-01
-4.27921534e-01 4.18206841e-01 -2.81905127e-03 3.50433916e-01
7.67651320e-01 -7.46329367e-01 -1.18084073e+00 5.04801095e-01
-1.23664737e-01 3.29717070e-01 4.89926755e-01 -2.66201913e-01
-1.11047590e+00 -3.39238226e-01 1.15110290e+00 2.39864022e-01
-1.53334793e-02 2.31260180e-01 -6.31738305e-01 2.00728908e-01
4.23408031e-01 -4.62595671e-02 9.02107894e-01 -1.98058411e-01
1.90762669e-01 -5.43384910e-01 -1.71882975e+00 1.57706439e-01
3.97170216e-01 -2.74882048e-01 -4.71880078e-01 1.89853340e-01
-5.62302351e-01 2.64051706e-01 -8.04047644e-01 2.36338764e-01
9.24449563e-01 -1.24230909e+00 4.18814272e-01 -2.89685041e-01
8.21157470e-02 -4.36811328e-01 -1.12855293e-01 -6.22750819e-01
-1.74933583e-01 -4.77258980e-01 7.14576364e-01 1.37831283e+00
3.26884717e-01 -6.21575713e-01 7.33206511e-01 2.58688003e-01
5.17939687e-01 -6.31067336e-01 -7.41652668e-01 -4.26895350e-01
-4.96728122e-01 1.82983324e-01 9.72569510e-02 1.00566292e+00
7.78633878e-02 3.08896840e-01 -3.75179172e-01 -7.80293792e-02
5.86278737e-01 -1.28366724e-01 4.97929603e-01 -1.11837077e+00
-2.70708334e-02 -4.48704839e-01 -9.41321611e-01 -1.65291265e-01
2.26157531e-01 -5.11706889e-01 -4.89469618e-01 -1.12327337e+00
3.83032352e-01 6.34488761e-02 -1.38734564e-01 4.23548192e-01
1.02530554e-01 5.87191522e-01 -9.28095877e-02 -4.56529818e-02
1.14913888e-01 9.13239419e-02 1.23262751e+00 1.98552281e-01
1.30194977e-01 -1.65841505e-01 -2.80642211e-01 8.44915807e-01
7.34131098e-01 -4.33898985e-01 -2.00590730e-01 8.88246149e-02
-1.63565814e-01 3.91994148e-01 -2.19008909e-03 -1.06938565e+00
1.62108049e-01 -5.87609671e-02 9.15015578e-01 -4.47281033e-01
4.53405768e-01 -1.01839757e+00 4.16097254e-01 6.59888864e-01
5.75909689e-02 2.73681730e-01 -7.90072381e-02 -1.40266240e-01
-4.60284621e-01 -7.14595914e-01 1.39229441e+00 -2.00738803e-01
-1.02751493e+00 4.35349271e-02 -6.38445854e-01 -8.56765509e-01
1.28649771e+00 -7.36411691e-01 2.67906394e-03 -5.86601853e-01
-9.36805427e-01 -3.99051428e-01 9.68668908e-02 -3.04076791e-01
8.61258388e-01 -1.33659375e+00 -8.21879983e-01 3.14578116e-01
-1.00084819e-01 -8.60446513e-01 1.53576627e-01 1.17046452e+00
-1.08448792e+00 -3.15444618e-01 -1.01170647e+00 -2.48646587e-01
-2.28267837e+00 2.90032685e-01 5.89257658e-01 1.75985485e-01
-9.09078568e-02 1.04726362e+00 -3.86975020e-01 2.16887876e-01
6.18585609e-02 3.32121521e-01 -9.96830225e-01 2.16217890e-01
9.31781828e-01 5.92546523e-01 6.55842349e-02 -1.10142028e+00
-3.52896720e-01 1.07158446e+00 1.30879626e-01 -3.09578866e-01
1.31054449e+00 4.31539007e-02 -7.53477514e-01 2.35350445e-01
1.68268335e+00 3.14103752e-01 -3.41495574e-01 2.08597675e-01
-1.52760908e-01 -5.49840093e-01 1.31526425e-01 -6.26508176e-01
-1.13655007e+00 8.90264750e-01 1.39259613e+00 -1.69166058e-01
1.70540857e+00 -3.52022439e-01 3.79074693e-01 4.15130943e-01
1.07272506e-01 -1.36032224e+00 3.60925645e-02 -1.08262722e-03
7.99386799e-01 -1.21640110e+00 7.81501308e-02 -5.22695482e-01
-6.10111475e-01 1.67260003e+00 4.41525936e-01 -1.84798390e-01
1.03917217e+00 7.77341545e-01 3.97043109e-01 -4.15134698e-01
-5.02688766e-01 -1.72602341e-01 8.25298775e-04 6.94554567e-01
7.72556484e-01 -2.32566014e-01 -9.88663077e-01 3.20041180e-01
-5.62247038e-02 4.45244879e-01 2.90462852e-01 9.00823176e-01
-9.85023499e-01 -7.70751894e-01 -9.80403066e-01 3.95397425e-01
-1.07059610e+00 4.19327140e-01 -2.56969452e-01 7.40036011e-01
4.67372149e-01 9.78329659e-01 4.34614234e-02 -5.32536320e-02
9.34506431e-02 3.11500043e-01 8.83370757e-01 2.35863373e-01
-3.64992619e-01 2.15699196e-01 2.00463146e-01 -2.40599662e-01
-8.99314106e-01 -6.10915005e-01 -1.29585612e+00 -4.17695999e-01
-3.19251746e-01 6.25109494e-01 1.01732337e+00 4.86247003e-01
-2.38181382e-01 -6.21554404e-02 8.66927803e-01 -4.28097963e-01
-2.68042348e-02 -1.17722034e+00 -1.15565872e+00 4.97243583e-01
5.32169193e-02 -7.59649813e-01 -4.16398913e-01 5.93360484e-01] | [13.25735092163086, 0.9300004243850708] |
33c71481-b7d1-4538-96df-28af52c3f816 | multi-agent-reinforcement-learning-for-14 | 2211.16385 | null | https://arxiv.org/abs/2211.16385v1 | https://arxiv.org/pdf/2211.16385v1.pdf | Multi-Agent Reinforcement Learning for Microprocessor Design Space Exploration | Microprocessor architects are increasingly resorting to domain-specific customization in the quest for high-performance and energy-efficiency. As the systems grow in complexity, fine-tuning architectural parameters across multiple sub-systems (e.g., datapath, memory blocks in different hierarchies, interconnects, compiler optimization, etc.) quickly results in a combinatorial explosion of design space. This makes domain-specific customization an extremely challenging task. Prior work explores using reinforcement learning (RL) and other optimization methods to automatically explore the large design space. However, these methods have traditionally relied on single-agent RL/ML formulations. It is unclear how scalable single-agent formulations are as we increase the complexity of the design space (e.g., full stack System-on-Chip design). Therefore, we propose an alternative formulation that leverages Multi-Agent RL (MARL) to tackle this problem. The key idea behind using MARL is an observation that parameters across different sub-systems are more or less independent, thus allowing a decentralized role assigned to each agent. We test this hypothesis by designing domain-specific DRAM memory controller for several workload traces. Our evaluation shows that the MARL formulation consistently outperforms single-agent RL baselines such as Proximal Policy Optimization and Soft Actor-Critic over different target objectives such as low power and latency. To this end, this work opens the pathway for new and promising research in MARL solutions for hardware architecture search. | ['Aleksandra Faust', 'Vijay Janapa Reddi', 'Izzeddin Gur', 'Dan Zhang', 'Shayegan Omidshafiei', 'Natasha Jaques', 'Srivatsan Krishnan'] | 2022-11-29 | null | null | null | null | ['compiler-optimization'] | ['computer-code'] | [-3.78337204e-01 -2.28761405e-01 -7.04017460e-01 -2.35590152e-02
-8.99758160e-01 -6.23766780e-01 3.21370959e-01 1.64115623e-01
-3.00703675e-01 9.91284728e-01 1.47910163e-01 -5.58296561e-01
-1.23824224e-01 -7.37876892e-01 -6.05584443e-01 -8.51663530e-01
2.26436798e-02 6.34276390e-01 1.73656851e-01 -3.33183944e-01
4.51913446e-01 5.78036010e-01 -1.12325609e+00 -8.01936910e-02
5.10318041e-01 6.70072198e-01 1.87874399e-02 5.18784225e-01
-5.86187001e-04 5.19523621e-01 -6.15566373e-01 1.97030708e-01
2.02238277e-01 -4.33533996e-01 -5.46941996e-01 -9.48005989e-02
-9.92885530e-02 -2.13140115e-01 3.95326316e-02 8.85600209e-01
6.52442575e-01 -2.76430119e-02 3.98054123e-01 -1.16042936e+00
5.14999479e-02 1.06223345e+00 -9.07427132e-01 1.36804089e-01
-1.19304232e-01 5.39175928e-01 9.22862351e-01 -3.12658817e-01
5.07510781e-01 1.27780843e+00 1.72322750e-01 3.36021453e-01
-1.68960953e+00 -7.02390015e-01 4.49554443e-01 1.01371437e-01
-1.49378979e+00 -3.54020178e-01 8.03326309e-01 -2.51426458e-01
1.30816364e+00 2.78618544e-01 4.98452336e-01 1.16450465e+00
8.59275818e-01 6.31560028e-01 1.17297161e+00 -4.96525913e-01
8.84581089e-01 4.36896794e-02 2.79813190e-03 5.28094172e-01
5.46106100e-01 2.96952516e-01 -4.22080100e-01 -4.04896557e-01
7.08422363e-01 -4.65270907e-01 3.13857883e-01 -6.57179117e-01
-1.15705013e+00 9.85053778e-01 2.86669642e-01 2.09568262e-01
-2.26118147e-01 7.01269686e-01 6.31207287e-01 1.53248206e-01
-1.46820217e-01 1.36112452e+00 -4.34176654e-01 -1.92395121e-01
-1.11650407e+00 2.67922044e-01 9.21809673e-01 6.78337932e-01
7.89355397e-01 4.57003713e-01 -2.04119980e-02 4.60970700e-01
4.83540535e-01 3.45950305e-01 5.06855667e-01 -1.18065989e+00
2.81507492e-01 6.87966585e-01 1.07884683e-01 -6.17139697e-01
-7.96643674e-01 -6.70744598e-01 -8.64588261e-01 4.25003678e-01
1.06731445e-01 -5.66652477e-01 -6.38605177e-01 1.70690691e+00
4.02449906e-01 -5.12365587e-02 -7.25461692e-02 9.78077888e-01
-2.48056740e-01 7.67402768e-01 1.06967390e-01 -3.03563476e-01
1.35590494e+00 -1.14538944e+00 -5.96607685e-01 -3.62648010e-01
6.57561898e-01 -6.75217628e-01 8.84594858e-01 4.95472550e-01
-9.81463909e-01 -3.23555142e-01 -1.62012970e+00 4.56402183e-01
-2.02657089e-01 1.42131120e-01 6.69358373e-01 7.74569988e-01
-8.07124257e-01 4.31834102e-01 -1.27407479e+00 -2.69446015e-01
-8.27910006e-03 9.54091787e-01 4.88483459e-01 3.21818441e-01
-7.81843722e-01 7.80934751e-01 3.96171898e-01 -2.11883977e-01
-1.04124391e+00 -7.67795801e-01 -3.80458653e-01 1.76706716e-01
9.13437665e-01 -9.57135022e-01 1.29039562e+00 -9.33878362e-01
-2.11348629e+00 2.22938955e-01 3.45806301e-01 -5.53873360e-01
7.21785650e-02 -1.51190683e-01 -3.43957752e-01 -5.29684484e-01
-2.54062951e-01 3.54496866e-01 9.73851085e-01 -1.29839277e+00
-5.62777579e-01 -3.11073884e-02 1.73110649e-01 -7.15189949e-02
-2.96394259e-01 -2.23562196e-01 -2.27381438e-01 -5.09076774e-01
-4.54926878e-01 -1.29476023e+00 -6.50934815e-01 -6.07097507e-01
-6.08728528e-01 4.54872996e-02 6.08678401e-01 -4.75620776e-02
1.78594911e+00 -1.97075963e+00 4.13104832e-01 3.42782676e-01
1.08833633e-01 1.18131414e-01 2.21838783e-02 5.68216622e-01
3.79858673e-01 1.88088492e-01 2.97487348e-01 4.34958786e-02
2.98076659e-01 2.79853135e-01 -2.04119205e-01 2.99828023e-01
1.44078553e-01 7.53063798e-01 -7.70309806e-01 -5.57452559e-01
2.44981274e-01 4.83581908e-02 -9.03172374e-01 1.09168388e-01
-6.39342010e-01 4.06966895e-01 -1.00684106e+00 7.36830354e-01
2.86091864e-01 -5.41924655e-01 7.35429466e-01 -4.50734973e-01
-3.96569192e-01 4.87066666e-03 -1.33982253e+00 1.42493856e+00
-7.82902956e-01 5.06200850e-01 2.64091313e-01 -8.49353909e-01
7.23014057e-01 -8.49645212e-02 5.49822032e-01 -1.03867733e+00
3.13852221e-01 4.04556185e-01 2.82476157e-01 -1.01498649e-01
7.39305973e-01 1.31613046e-01 -6.61999464e-01 5.37727416e-01
-4.96400058e-01 5.29608829e-03 1.69123337e-01 -2.49250442e-01
1.54897797e+00 1.27939163e-02 5.06019592e-01 -7.29886532e-01
5.16495407e-01 3.52345586e-01 6.81931853e-01 7.32575297e-01
-1.23931013e-01 -1.80312678e-01 6.90768898e-01 -2.72542328e-01
-1.22675371e+00 -9.35743749e-01 1.28588006e-01 1.19290888e+00
1.81597546e-01 -3.93490762e-01 -7.94534385e-01 -3.75615031e-01
8.84393379e-02 8.32619488e-01 -3.64367455e-01 -2.65990078e-01
-1.11372495e+00 -8.68276894e-01 3.11521024e-01 4.46926862e-01
2.30253279e-01 -7.54901290e-01 -1.19592905e+00 6.80701196e-01
6.00118399e-01 -1.01205969e+00 -4.92304951e-01 6.42256379e-01
-9.27039564e-01 -4.16461021e-01 -1.23644046e-01 -2.55533695e-01
5.03464460e-01 -9.16273594e-02 1.43194807e+00 -1.41292110e-01
-4.13073719e-01 2.40791291e-01 -1.82522391e-03 9.68494173e-03
-6.16566777e-01 6.55137062e-01 1.11452170e-01 -1.34708539e-01
-2.30563506e-01 -5.02514839e-01 -9.75176573e-01 5.52748680e-01
-5.67550004e-01 -5.88543713e-02 1.02280772e+00 9.16442037e-01
1.02197719e+00 2.68993706e-01 6.28201902e-01 -8.59850049e-01
7.05786884e-01 -5.25697231e-01 -1.10196733e+00 1.95927456e-01
-8.81715715e-01 7.47757137e-01 1.00829542e+00 -6.59521520e-01
-8.81896257e-01 2.02769354e-01 2.07720906e-01 -4.99893248e-01
3.28346789e-01 3.40993702e-01 -2.63529271e-01 -8.37181658e-02
6.49280071e-01 -1.75306350e-01 -3.43350381e-01 -3.59359011e-02
3.11382622e-01 1.80475026e-01 1.74270764e-01 -1.03923702e+00
6.26517296e-01 9.45021883e-02 3.37098837e-01 -5.28088689e-01
-4.34375942e-01 4.69427891e-02 -1.54347628e-01 -7.35951141e-02
8.13533723e-01 -8.22532475e-01 -9.00459886e-01 -2.85114229e-01
-6.75712228e-01 -8.14149380e-01 -1.44016594e-01 2.34412968e-01
-6.20284259e-01 -2.03009352e-01 -3.34015906e-01 -6.51785493e-01
-3.17175508e-01 -1.71512139e+00 1.06837809e+00 4.04661208e-01
-7.44474530e-01 -8.66354883e-01 3.05981785e-01 1.05475225e-01
7.33159542e-01 2.82318383e-01 1.23330820e+00 -4.11063880e-01
-1.10902095e+00 1.93773136e-01 6.29313439e-02 -1.26962751e-01
-4.33373041e-02 1.48865104e-01 -4.55602169e-01 -7.37027466e-01
-2.32052431e-01 -1.55021206e-01 4.01175559e-01 4.67017233e-01
1.22295785e+00 -3.03851187e-01 -6.29690170e-01 3.94875884e-01
1.78273046e+00 3.82028133e-01 2.38843262e-01 6.56677306e-01
6.47299290e-01 1.29793108e-01 8.50623369e-01 7.72522092e-01
2.69597679e-01 1.20173633e+00 4.98982131e-01 3.48220207e-02
1.12957299e-01 6.98611960e-02 6.80836380e-01 6.74086332e-01
4.16822344e-01 -4.11758900e-01 -9.78969812e-01 2.18765110e-01
-2.14607859e+00 -3.29871863e-01 4.47924733e-01 2.17951775e+00
7.24583507e-01 5.24100542e-01 2.55673736e-01 -2.84386337e-01
3.07376742e-01 -5.82687929e-02 -1.18501592e+00 -9.06544089e-01
1.89647958e-01 1.92847043e-01 9.68966901e-01 3.38553101e-01
-7.82441854e-01 9.96114731e-01 5.46684027e+00 1.14407289e+00
-1.47284555e+00 -3.45199765e-03 6.44827306e-01 -2.85579115e-01
-4.84020337e-02 2.69796073e-01 -1.30899191e+00 5.15425146e-01
1.54862285e+00 -3.84681463e-01 7.19270170e-01 7.46188641e-01
5.00069439e-01 -4.56587762e-01 -1.36918211e+00 8.82960677e-01
-4.91238981e-01 -1.56185460e+00 -3.32463413e-01 4.30990040e-01
8.84432793e-01 -5.09047918e-02 1.59633249e-01 5.14201045e-01
6.59921765e-01 -9.19745982e-01 5.95506430e-01 2.25853041e-01
2.64043391e-01 -9.88709331e-01 5.28270245e-01 5.70375733e-02
-1.03923571e+00 -3.00386727e-01 -2.96412525e-03 1.06391884e-01
1.92396119e-01 3.42105538e-01 -8.65230083e-01 7.82548934e-02
3.24595481e-01 -4.73883152e-02 -4.78907883e-01 7.67651379e-01
1.83663592e-01 5.58751762e-01 -3.91351193e-01 -3.96886945e-01
4.60191667e-01 3.04886363e-02 3.89679462e-01 1.13575590e+00
1.46378055e-01 -1.72160864e-01 5.48879564e-01 9.28740442e-01
-7.40034953e-02 -6.33540154e-02 -1.44477740e-01 -1.25675485e-01
7.80585885e-01 1.49864507e+00 -1.05567837e+00 -3.81085277e-02
-1.79573447e-01 4.69217420e-01 2.11720690e-01 2.13254854e-01
-1.15690088e+00 5.93166016e-02 8.06318283e-01 1.45820364e-01
3.01035792e-01 -6.99986875e-01 -6.58658445e-01 -5.52542865e-01
-3.88590902e-01 -1.21753263e+00 2.44663745e-01 -1.83253929e-01
-9.68018532e-01 3.26743901e-01 2.63049081e-02 -9.55986023e-01
-4.92445201e-01 -4.80906874e-01 -4.88837510e-01 3.09431553e-01
-1.37802255e+00 -6.78492188e-01 8.71179104e-02 1.60968065e-01
8.52213502e-01 -3.19807410e-01 6.07181728e-01 2.34734431e-01
-1.24498749e+00 8.91574979e-01 4.99130905e-01 -5.90418339e-01
7.36084402e-01 -1.08403158e+00 1.83101773e-01 3.44467908e-01
-3.15673351e-01 4.61405069e-01 1.00847447e+00 -5.08662343e-01
-2.31826639e+00 -9.18559670e-01 -2.12334394e-01 -1.74624965e-01
1.10456550e+00 -3.84998888e-01 -6.53725505e-01 2.63262331e-01
4.64204848e-01 -2.44936496e-01 5.12561202e-01 9.20781940e-02
1.49175525e-01 -3.98165911e-01 -7.06707478e-01 9.44362223e-01
4.28048760e-01 -5.54727241e-02 3.16396981e-01 2.62112617e-01
6.57328546e-01 -4.37277526e-01 -1.19330347e+00 2.82314271e-01
3.01769644e-01 -7.28242159e-01 8.80518854e-01 -2.82926351e-01
1.76391363e-01 -4.32732940e-01 -3.79058659e-01 -1.18554425e+00
-3.72257978e-01 -8.64591122e-01 -5.56372941e-01 1.12450862e+00
5.64715028e-01 -3.72814715e-01 9.54437077e-01 5.25487602e-01
-1.99811041e-01 -1.14292324e+00 -8.74643564e-01 -9.43552315e-01
2.15271235e-01 9.45567414e-02 5.64499378e-01 5.98822773e-01
-1.57381520e-01 8.21081340e-01 -2.65743881e-01 2.42798850e-01
6.07727349e-01 2.99001098e-01 7.81209767e-01 -5.81981778e-01
-9.08267021e-01 -8.47869515e-01 1.09422483e-01 -7.44827688e-01
3.18781286e-01 -4.20935184e-01 -1.39145598e-01 -8.02720368e-01
5.17564127e-03 -8.05132031e-01 -3.71835172e-01 3.43701959e-01
1.40382692e-01 -3.91632199e-01 1.27821401e-01 1.83887109e-01
-1.01420784e+00 5.16640365e-01 1.01882267e+00 -1.41351610e-01
-6.93653643e-01 -8.89055431e-02 -6.06720686e-01 5.86682618e-01
1.19396389e+00 -3.42340916e-01 -3.31668913e-01 -3.43329102e-01
4.30472255e-01 3.56035233e-01 -3.73883098e-02 -1.08231699e+00
4.72457737e-01 -5.64716876e-01 7.63453245e-02 -3.34802330e-01
1.81114063e-01 -8.13295484e-01 3.40165526e-01 7.49832571e-01
-1.79010823e-01 3.79695326e-01 6.80259287e-01 5.27137280e-01
1.35284096e-01 1.95061974e-02 9.53166485e-01 7.21359923e-02
-8.78734767e-01 -1.71439618e-01 -6.57440603e-01 1.35012925e-01
1.17377901e+00 -4.09538373e-02 -2.70666867e-01 1.03704728e-01
-4.90718335e-01 5.43875158e-01 5.53272963e-01 4.35123831e-01
5.65793253e-02 -1.14712095e+00 -3.23901206e-01 -1.50840402e-01
-2.07557440e-01 -4.04156297e-01 9.10181999e-02 7.23760545e-01
-4.40312028e-01 5.20225286e-01 -3.46224517e-01 -6.30954027e-01
-1.09966385e+00 6.91804528e-01 4.27837193e-01 -9.64735031e-01
-2.60844260e-01 3.14815342e-01 1.97899118e-01 1.43809050e-01
-8.82748738e-02 -2.24465206e-01 4.33225125e-01 -3.16299088e-02
-1.10484757e-01 5.80525398e-01 -7.08510950e-02 2.15417370e-02
-5.26567757e-01 6.08549714e-01 -3.72231126e-01 -8.91168416e-02
1.13435435e+00 -2.08670855e-01 1.74753182e-02 3.47587049e-01
9.71586823e-01 -5.52283376e-02 -1.23555040e+00 -1.99391488e-02
4.24863070e-01 7.36407237e-03 6.07278347e-01 -7.23608136e-01
-1.05371690e+00 3.58891457e-01 8.37222815e-01 1.03446059e-01
1.14326108e+00 -1.53684929e-01 6.66096568e-01 4.86260980e-01
6.98368073e-01 -1.55166864e+00 4.74360555e-01 3.61843795e-01
5.37802339e-01 -1.07037377e+00 5.67497492e-01 5.23793325e-02
-3.94595385e-01 1.14552593e+00 1.10283983e+00 -2.41639137e-01
4.45480347e-01 8.37856829e-01 -3.41790646e-01 -6.29499778e-02
-1.03508818e+00 1.70314446e-01 -7.76720420e-02 3.94951040e-03
3.39211792e-01 3.94726843e-01 -1.88020527e-01 3.39872867e-01
-5.47081530e-02 -3.60502750e-01 5.33259034e-01 1.18599689e+00
-4.69196349e-01 -1.64726591e+00 -5.30805051e-01 3.52406561e-01
-1.59923941e-01 3.84981394e-01 -1.52039677e-01 9.82354462e-01
-1.77450821e-01 5.59722483e-01 -1.13370962e-01 -3.50617319e-01
2.32658312e-01 -3.68535191e-01 5.43740273e-01 -5.35846949e-01
-7.96431303e-01 3.39311451e-01 1.89511895e-01 -8.63313496e-01
2.03276262e-01 -5.88435709e-01 -1.37758470e+00 -4.04805869e-01
-3.07179451e-01 -1.14728011e-01 8.47276092e-01 5.67295492e-01
7.71161914e-01 1.21594477e+00 7.25907326e-01 -9.49984074e-01
-7.63229728e-01 -1.15383826e-01 -3.08361381e-01 -5.95431268e-01
3.40465903e-01 -7.97901809e-01 1.13475785e-01 -4.39674258e-01] | [5.603866100311279, 3.1329166889190674] |
0038a3be-8928-467b-8b01-181b82bacc0e | deep-flow-guided-video-inpainting | 1905.02884 | null | https://arxiv.org/abs/1905.02884v1 | https://arxiv.org/pdf/1905.02884v1.pdf | Deep Flow-Guided Video Inpainting | Video inpainting, which aims at filling in missing regions of a video, remains challenging due to the difficulty of preserving the precise spatial and temporal coherence of video contents. In this work we propose a novel flow-guided video inpainting approach. Rather than filling in the RGB pixels of each frame directly, we consider video inpainting as a pixel propagation problem. We first synthesize a spatially and temporally coherent optical flow field across video frames using a newly designed Deep Flow Completion network. Then the synthesized flow field is used to guide the propagation of pixels to fill up the missing regions in the video. Specifically, the Deep Flow Completion network follows a coarse-to-fine refinement to complete the flow fields, while their quality is further improved by hard flow example mining. Following the guide of the completed flow, the missing video regions can be filled up precisely. Our method is evaluated on DAVIS and YouTube-VOS datasets qualitatively and quantitatively, achieving the state-of-the-art performance in terms of inpainting quality and speed. | ['Chen Change Loy', 'Rui Xu', 'Xiaoxiao Li', 'Bolei Zhou'] | 2019-05-08 | deep-flow-guided-video-inpainting-1 | http://openaccess.thecvf.com/content_CVPR_2019/html/Xu_Deep_Flow-Guided_Video_Inpainting_CVPR_2019_paper.html | http://openaccess.thecvf.com/content_CVPR_2019/papers/Xu_Deep_Flow-Guided_Video_Inpainting_CVPR_2019_paper.pdf | cvpr-2019-6 | ['one-shot-visual-object-segmentation', 'video-inpainting'] | ['computer-vision', 'computer-vision'] | [ 1.87534511e-01 -1.53869212e-01 -1.48824856e-01 -1.14249490e-01
-4.79590386e-01 -5.10050774e-01 8.69354159e-02 -2.17399895e-01
-2.96282530e-01 1.02623153e+00 3.01204175e-01 2.46271808e-02
2.03840345e-01 -6.97755516e-01 -9.08025563e-01 -4.52222943e-01
4.88014407e-02 -3.02253179e-02 2.32385963e-01 1.33003637e-01
2.59355336e-01 4.78163004e-01 -1.27726924e+00 2.10915193e-01
9.97737288e-01 1.05255210e+00 3.20649207e-01 6.88846886e-01
-2.86398560e-01 1.34275758e+00 -2.50870466e-01 -9.07453075e-02
5.21347761e-01 -6.46664202e-01 -8.17145348e-01 5.24916351e-01
5.74091494e-01 -9.79414284e-01 -8.52996886e-01 1.03144348e+00
-4.18070741e-02 3.45665693e-01 -1.51412506e-02 -1.18072021e+00
-4.39600885e-01 2.39406645e-01 -8.19076180e-01 6.42923117e-02
4.96740937e-01 3.34051222e-01 7.82295942e-01 -7.58474231e-01
1.06645060e+00 1.02729738e+00 3.38600934e-01 5.59692800e-01
-1.09646297e+00 -5.75064361e-01 2.16926679e-01 2.31679663e-01
-1.27428401e+00 -4.48346734e-01 1.00900114e+00 -4.14365232e-01
5.20390391e-01 3.33755389e-02 8.82252514e-01 4.70315337e-01
1.56576470e-01 7.55263686e-01 5.75687051e-01 -2.44170070e-01
2.49585584e-01 -4.61433947e-01 -4.52003926e-01 1.00210094e+00
-1.34033859e-01 1.47153497e-01 -8.77255201e-01 2.70898134e-01
1.38951886e+00 3.64648789e-01 -7.11801410e-01 -1.15244605e-01
-1.11759996e+00 5.29700935e-01 5.14870763e-01 -8.63404479e-04
-7.28010118e-01 3.28145742e-01 2.42972344e-01 1.02688365e-01
5.32324374e-01 2.67177910e-01 -2.45800495e-01 -2.49428943e-01
-1.76436210e+00 3.08879405e-01 5.20652354e-01 9.01143909e-01
1.21908629e+00 8.66978392e-02 -4.24174368e-01 4.63396490e-01
1.89312637e-01 1.06246777e-01 -8.16134661e-02 -1.92410564e+00
5.97022891e-01 4.53896582e-01 5.39583027e-01 -1.08719218e+00
1.21856816e-01 -1.23060860e-01 -8.55951786e-01 4.19403940e-01
4.87804085e-01 -3.05654317e-01 -7.82750010e-01 1.54336369e+00
4.30962622e-01 6.70181274e-01 -2.78269053e-01 1.10115004e+00
4.47044879e-01 1.02602565e+00 -1.37660697e-01 -5.43871939e-01
1.03982460e+00 -1.45577192e+00 -9.60570931e-01 -2.63127059e-01
1.99501380e-01 -5.96095800e-01 6.24788105e-01 3.52193356e-01
-1.64309430e+00 -6.52015746e-01 -8.58691037e-01 -4.34698194e-01
5.66743195e-01 -1.78628907e-01 3.36124748e-01 -2.91219596e-02
-1.00346041e+00 8.88616443e-01 -1.03892064e+00 2.50683963e-01
8.01021457e-01 6.37614280e-02 -4.95812356e-01 -4.62000668e-01
-9.95366991e-01 2.56602228e-01 3.39493006e-01 1.39693186e-01
-9.98103619e-01 -1.19336486e+00 -1.00268567e+00 1.09590285e-01
4.69304621e-01 -8.36755574e-01 9.88584101e-01 -1.06696296e+00
-1.33704054e+00 4.04247165e-01 -5.28187215e-01 -3.81852299e-01
9.09240782e-01 -4.11789834e-01 2.20539961e-02 7.04901874e-01
3.59891266e-01 1.12818325e+00 9.12977576e-01 -1.10781765e+00
-9.49515641e-01 -4.41296548e-02 6.80265799e-02 2.41098851e-01
-3.46462205e-02 -2.63306439e-01 -1.01068962e+00 -8.31705570e-01
2.32159524e-04 -4.70134199e-01 -2.41096467e-01 6.88945949e-01
-3.63592029e-01 3.35137784e-01 1.09137321e+00 -1.17451990e+00
1.43333077e+00 -2.15972996e+00 2.87723392e-01 -9.26187411e-02
5.18021643e-01 1.87776506e-01 -1.39361575e-01 9.79272500e-02
1.59637764e-01 -1.46139115e-01 -5.60122728e-01 -7.13362217e-01
-5.77915728e-01 3.52110147e-01 -2.76162654e-01 4.65439439e-01
3.31774354e-01 9.33647752e-01 -1.27167213e+00 -5.28217733e-01
4.28264797e-01 7.19086945e-01 -8.91498268e-01 4.62359071e-01
-4.19802815e-01 8.77918363e-01 -4.10154969e-01 6.03738070e-01
8.79852414e-01 -1.61392063e-01 -1.25728682e-01 -2.74811476e-01
-3.34835321e-01 -2.01188270e-02 -1.10682070e+00 2.26316309e+00
-3.40672582e-01 8.79288912e-01 4.10543889e-01 -6.14572346e-01
8.11283827e-01 6.26707003e-02 9.40835416e-01 -6.63015604e-01
-3.34076420e-03 2.68353093e-02 -5.22044897e-01 -5.22119164e-01
7.01637208e-01 7.52852187e-02 4.08894926e-01 4.32037085e-01
-7.43200779e-02 3.79217751e-02 5.09657621e-01 2.95570850e-01
1.07538617e+00 4.93122578e-01 -1.80060506e-01 6.76830187e-02
4.85489875e-01 -5.37558831e-02 8.01651418e-01 4.01277006e-01
-2.10836232e-01 1.03985560e+00 5.67775965e-01 -5.95780015e-01
-1.17076349e+00 -9.16751087e-01 3.21103692e-01 5.14024854e-01
3.27226400e-01 -5.66147447e-01 -9.00810301e-01 -5.45426011e-01
-3.06331336e-01 3.26484382e-01 -5.62123716e-01 8.41236934e-02
-8.07461083e-01 4.50988300e-02 2.58018412e-02 3.84583235e-01
9.44503129e-01 -1.28787887e+00 -7.51971602e-01 5.71297109e-01
-6.16364419e-01 -1.38012147e+00 -1.02633393e+00 -3.29180390e-01
-9.27206576e-01 -1.14860857e+00 -9.79766548e-01 -8.76250625e-01
6.66234195e-01 4.60552096e-01 1.00896406e+00 3.32398117e-01
-2.20889166e-01 -1.81963816e-01 -2.55958319e-01 4.57032800e-01
-3.30331445e-01 -3.29071730e-01 -4.39374626e-01 3.27715009e-01
-2.70768702e-01 -6.80858016e-01 -1.03408766e+00 4.28651832e-03
-1.20022106e+00 3.65895331e-01 2.22938105e-01 7.92092919e-01
7.78533816e-01 2.01421142e-01 3.44865359e-02 -6.88137949e-01
2.41325229e-01 -3.03902209e-01 -6.10371053e-01 5.76142827e-03
-1.08319201e-01 -2.45696702e-03 6.54242694e-01 -1.66008085e-01
-9.89962339e-01 3.20472717e-01 -9.16795582e-02 -1.03736997e+00
-9.85679869e-03 1.90013990e-01 9.93307400e-03 -5.64202927e-02
2.24633187e-01 3.56121749e-01 5.87748215e-02 -3.50773752e-01
3.47015917e-01 1.73846856e-01 8.50611687e-01 -3.83679718e-01
5.66032648e-01 8.40607405e-01 -3.54306363e-02 -6.00105643e-01
-8.53671610e-01 -2.83516169e-01 -5.32107353e-01 -4.23605561e-01
1.09525776e+00 -9.04855430e-01 -5.66975594e-01 5.15026689e-01
-1.41303194e+00 -4.74285424e-01 -5.48457325e-01 2.60700196e-01
-6.20482147e-01 7.46509075e-01 -9.96491909e-01 -4.45537448e-01
-3.28589529e-01 -1.29420865e+00 1.08486533e+00 3.26230288e-01
-2.00905614e-02 -9.23221529e-01 1.21755555e-01 1.33006379e-01
1.29882127e-01 3.33088189e-01 5.44227779e-01 6.88820541e-01
-1.00802875e+00 1.32321700e-01 -4.75447595e-01 4.72574651e-01
3.48727018e-01 1.10990286e-01 -6.70700967e-01 -2.03457355e-01
-1.39776953e-02 2.26482213e-03 9.53877330e-01 5.79994142e-01
1.23545301e+00 -4.34121698e-01 -8.73824880e-02 1.15278912e+00
1.47197938e+00 8.26554522e-02 9.61612463e-01 2.45125264e-01
9.13704813e-01 6.53880179e-01 6.29007995e-01 6.46493077e-01
2.37352014e-01 4.62426752e-01 4.99633104e-01 -1.79332435e-01
-4.18625236e-01 -6.23395085e-01 3.11297596e-01 3.55483353e-01
1.03485882e-02 -1.79192826e-01 -4.22526866e-01 5.51075161e-01
-2.00593257e+00 -1.10856211e+00 -2.18845904e-02 2.00635552e+00
9.40793276e-01 -7.52642825e-02 -2.40864931e-03 1.30324841e-01
8.43805730e-01 3.74846816e-01 -4.91607815e-01 5.18869720e-02
4.98211831e-02 2.02231422e-01 2.67857403e-01 1.05918753e+00
-8.55282962e-01 1.05750132e+00 5.47126865e+00 6.20186508e-01
-1.04350555e+00 3.18823270e-02 8.97831559e-01 -2.62708634e-01
-2.71210104e-01 1.50935277e-01 -4.71006930e-01 6.36811078e-01
3.32274050e-01 1.87850595e-01 7.26214468e-01 3.41530651e-01
7.13815868e-01 -4.64865744e-01 -8.51256073e-01 1.20282698e+00
-2.02326417e-01 -1.94925284e+00 5.34863546e-02 -9.93465781e-02
1.09337902e+00 -3.28252733e-01 -2.73897111e-01 -2.31068060e-01
-7.15595558e-02 -6.83387399e-01 8.68107617e-01 5.81494987e-01
1.02526081e+00 -8.26758564e-01 2.17233896e-01 1.80443287e-01
-1.16973102e+00 2.51028258e-02 -1.93270490e-01 -2.04631299e-01
7.15869308e-01 8.65514755e-01 -1.82012036e-01 4.18984175e-01
7.58836567e-01 1.17345572e+00 -5.29193208e-02 1.06347537e+00
-4.12089944e-01 3.78627658e-01 -9.46401358e-02 7.40293086e-01
3.23936909e-01 -5.25015533e-01 3.49363536e-01 9.97033477e-01
3.43489558e-01 1.80055127e-01 2.10029617e-01 1.18326461e+00
-3.83210897e-01 -2.16879964e-01 -3.29745471e-01 1.26714990e-01
3.96046162e-01 1.24307001e+00 -7.53205538e-01 -4.83361512e-01
-4.04402733e-01 1.44883144e+00 2.16293082e-01 6.63992167e-01
-7.98638761e-01 -2.98116297e-01 7.97429621e-01 2.48880416e-01
4.26586330e-01 -2.32467830e-01 -1.73708126e-01 -1.29018295e+00
2.70117879e-01 -4.46873575e-01 -4.50279377e-03 -9.41965759e-01
-8.62235129e-01 6.00356758e-01 -4.21187758e-01 -1.40409195e+00
-2.26729199e-01 -7.89617077e-02 -6.70616686e-01 1.01198101e+00
-1.80846763e+00 -6.81622744e-01 -7.60024786e-01 8.26209366e-01
8.17504764e-01 2.14096487e-01 1.42076015e-01 5.10773659e-01
-3.70462298e-01 1.76060170e-01 -1.50808021e-01 2.81449914e-01
5.96979022e-01 -7.00278878e-01 3.67456019e-01 1.17987263e+00
-1.51495054e-01 2.27596179e-01 4.70636576e-01 -8.61451745e-01
-1.16692948e+00 -1.38827324e+00 7.53557742e-01 2.40859687e-01
3.57477307e-01 -1.29345074e-01 -9.67823207e-01 4.19548899e-01
2.12983191e-01 5.88947237e-01 -7.71681294e-02 -9.00280297e-01
-1.19935550e-01 -1.70021653e-01 -1.17099750e+00 4.33494508e-01
9.93858099e-01 -4.23697203e-01 -9.24062803e-02 1.95499972e-01
8.06816816e-01 -5.36213994e-01 -4.90629882e-01 -9.07749683e-03
4.68294859e-01 -1.14547563e+00 9.11724210e-01 -3.76660168e-01
1.05430961e+00 -6.95952117e-01 8.97256434e-02 -1.18162048e+00
-1.45183891e-01 -1.21146381e+00 -3.66061151e-01 1.15180898e+00
-1.09290920e-01 -1.14237368e-02 1.23655581e+00 5.94051659e-01
-1.91064313e-01 -6.38979971e-01 -6.87803924e-01 -2.27229476e-01
-3.75894338e-01 -4.74389434e-01 3.16540807e-01 7.97494531e-01
-2.92012900e-01 -1.12994075e-01 -6.49816334e-01 -1.24076791e-01
8.29391539e-01 1.00401558e-01 6.34735525e-01 -6.22723043e-01
-4.86681521e-01 -1.86607465e-01 -1.33057803e-01 -1.61611962e+00
9.46750641e-02 -4.07336056e-01 2.30371818e-01 -1.71023381e+00
4.56116796e-02 -3.44437093e-01 1.26646429e-01 3.08934122e-01
-2.86672980e-01 5.57158768e-01 5.08595288e-01 3.30968589e-01
-5.39986253e-01 6.33430541e-01 1.80300164e+00 -9.70749930e-02
-4.70964640e-01 -2.56602943e-01 -4.66678560e-01 4.99755561e-01
5.32399118e-01 -3.79687637e-01 -4.56580758e-01 -5.83196640e-01
-1.62591040e-02 8.68716598e-01 5.01216114e-01 -9.97272313e-01
3.20673466e-01 -2.63394177e-01 5.41553438e-01 -5.81734657e-01
3.82430971e-01 -7.12903857e-01 9.16875750e-02 4.99843240e-01
-1.84866026e-01 1.59102336e-01 6.25254959e-02 5.11301339e-01
-5.25495887e-01 -1.87076464e-01 8.56325448e-01 -2.73867279e-01
-8.12865555e-01 7.43658602e-01 -8.98187533e-02 2.57104993e-01
9.76621807e-01 -3.46407562e-01 -2.22969335e-02 -5.36231220e-01
-7.32197225e-01 2.34677970e-01 6.90323472e-01 3.11319619e-01
9.90518451e-01 -1.16983855e+00 -5.91925144e-01 5.52088439e-01
-3.76948476e-01 4.74864841e-01 6.65131867e-01 7.21042335e-01
-1.24650824e+00 3.14953662e-02 -5.03015637e-01 -5.65309525e-01
-7.77536452e-01 5.53409815e-01 4.05348927e-01 -2.13617012e-01
-8.83958101e-01 7.96875060e-01 4.90258127e-01 4.34616387e-01
3.29605818e-01 -3.27503026e-01 1.87091976e-01 -2.14665145e-01
9.09600854e-01 5.26463628e-01 -2.21169710e-01 -4.09966022e-01
-6.14379533e-02 5.44816613e-01 8.12235400e-02 -3.01778466e-01
1.31295657e+00 -4.48673069e-01 -2.40115464e-01 -1.14758745e-01
1.34115779e+00 5.43692000e-02 -2.30249953e+00 -8.58845636e-02
-5.19233704e-01 -1.00129449e+00 1.44707948e-01 -4.39013660e-01
-1.75640750e+00 8.95991445e-01 8.36782251e-03 -1.74718216e-01
1.36389220e+00 -3.55646223e-01 1.37216759e+00 -3.39718848e-01
1.61246330e-01 -8.12503695e-01 1.37574926e-01 3.14665139e-01
5.98702729e-01 -9.57805932e-01 -8.06349888e-02 -6.14360392e-01
-3.95251513e-01 1.34564495e+00 5.29766381e-01 -3.96267921e-01
4.80267763e-01 4.71816957e-01 -1.45799413e-01 1.78356856e-01
-4.86475915e-01 1.27456918e-01 5.09374812e-02 4.82717395e-01
2.86959350e-01 -3.71424794e-01 -2.07757622e-01 -3.48449498e-02
2.26341173e-01 5.03018677e-01 6.80567980e-01 8.38142037e-01
-4.41794872e-01 -9.60962355e-01 -2.70644844e-01 1.04832269e-01
-2.80700415e-01 -1.60076171e-01 2.07501873e-02 5.01140118e-01
1.36076450e-01 9.11705554e-01 1.81088731e-01 -1.04618169e-01
1.27976224e-01 -3.87572587e-01 5.06511450e-01 -4.00057048e-01
-3.04354310e-01 3.33358258e-01 -2.78585792e-01 -1.08337915e+00
-4.81593966e-01 -5.41465521e-01 -1.52019048e+00 -4.72537935e-01
2.93849409e-01 9.89746302e-02 2.65564173e-01 7.91708827e-01
4.25996661e-01 6.87657833e-01 6.72441185e-01 -1.16729438e+00
1.79388613e-01 -5.31606853e-01 -6.07239008e-01 5.96669495e-01
7.48100281e-01 -2.74381191e-01 -2.37973422e-01 4.04408991e-01] | [10.756552696228027, -1.3934400081634521] |
7f6bea25-9291-4b5e-8012-de213da0407f | rethinking-semi-supervised-learning-with | 2305.13002 | null | https://arxiv.org/abs/2305.13002v1 | https://arxiv.org/pdf/2305.13002v1.pdf | Rethinking Semi-supervised Learning with Language Models | Semi-supervised learning (SSL) is a popular setting aiming to effectively utilize unlabelled data to improve model performance in downstream natural language processing (NLP) tasks. Currently, there are two popular approaches to make use of unlabelled data: Self-training (ST) and Task-adaptive pre-training (TAPT). ST uses a teacher model to assign pseudo-labels to the unlabelled data, while TAPT continues pre-training on the unlabelled data before fine-tuning. To the best of our knowledge, the effectiveness of TAPT in SSL tasks has not been systematically studied, and no previous work has directly compared TAPT and ST in terms of their ability to utilize the pool of unlabelled data. In this paper, we provide an extensive empirical study comparing five state-of-the-art ST approaches and TAPT across various NLP tasks and data sizes, including in- and out-of-domain settings. Surprisingly, we find that TAPT is a strong and more robust SSL learner, even when using just a few hundred unlabelled samples or in the presence of domain shifts, compared to more sophisticated ST approaches, and tends to bring greater improvements in SSL than in fully-supervised settings. Our further analysis demonstrates the risks of using ST approaches when the size of labelled or unlabelled data is small or when domain shifts exist. We offer a fresh perspective for future SSL research, suggesting the use of unsupervised pre-training objectives over dependency on pseudo labels. | ['Yunlong Jiao', 'Gabriella Kazai', 'Emine Yilmaz', 'Nikolaos Aletras', 'Francesco Tonolini', 'Zhengxiang Shi'] | 2023-05-22 | null | null | null | null | ['unsupervised-pre-training', 'pseudo-label', 'semi-supervised-text-classification-1'] | ['methodology', 'miscellaneous', 'natural-language-processing'] | [ 5.53041875e-01 4.83733177e-01 -5.52860081e-01 -5.85773647e-01
-1.06521547e+00 -7.34522104e-01 8.44443083e-01 4.23595935e-01
-8.62436593e-01 8.68115067e-01 2.46248141e-01 -5.35326838e-01
-1.20215967e-01 -3.20753664e-01 -6.28021657e-01 -4.51317936e-01
2.10966885e-01 8.18290114e-01 2.22781733e-01 -7.24161267e-02
7.34096691e-02 3.09473246e-01 -1.36925852e+00 3.19085538e-01
8.05621207e-01 5.65349460e-01 1.20571114e-01 4.28861260e-01
-3.02693903e-01 6.54360533e-01 -4.91719097e-01 -1.99479699e-01
3.99241328e-01 -3.10724914e-01 -9.68393207e-01 9.92899388e-02
1.99147820e-01 1.31705731e-01 8.40874240e-02 5.78461289e-01
6.01671517e-01 3.28317881e-01 6.64990604e-01 -1.05833292e+00
-4.21509504e-01 9.04661298e-01 -3.00773412e-01 4.25379843e-01
1.23590089e-01 4.29997802e-01 7.95413315e-01 -9.41983283e-01
5.85257709e-01 1.36002409e+00 7.88735449e-01 5.13154209e-01
-1.41642475e+00 -7.71705449e-01 1.91608027e-01 -2.93846369e-01
-9.53196883e-01 -9.07477319e-01 4.39551950e-01 -3.46277744e-01
1.09497595e+00 -2.09748432e-01 -3.24044973e-02 1.31231141e+00
-2.90914893e-01 1.08199871e+00 1.41832674e+00 -9.90026057e-01
3.43308032e-01 2.88753241e-01 4.08937603e-01 2.04483911e-01
1.82199061e-01 1.71662211e-01 -7.51134694e-01 -2.83776492e-01
5.40754795e-01 -3.86646986e-01 -9.78761632e-03 -2.92263627e-01
-1.30034816e+00 9.13153589e-01 -2.71235704e-02 5.71284831e-01
-2.17515111e-01 -4.01861638e-01 6.54396236e-01 4.92133796e-01
9.79697585e-01 9.59313631e-01 -1.26405561e+00 -2.80145079e-01
-1.17330396e+00 -5.67270145e-02 8.57120514e-01 9.09120262e-01
8.76744211e-01 -6.48625419e-02 -2.24881023e-01 1.16566372e+00
1.93205532e-02 2.58822113e-01 9.35426593e-01 -9.20680881e-01
8.06746960e-01 6.38088703e-01 -4.57223365e-03 -2.61397094e-01
-3.88049513e-01 -2.68249601e-01 -4.98487681e-01 -2.73339272e-01
8.65411937e-01 -3.91821891e-01 -1.13807857e+00 1.81970179e+00
1.69078067e-01 1.29717320e-01 3.89167875e-01 5.82248330e-01
6.08518779e-01 3.99754673e-01 5.39118886e-01 -4.13151830e-01
1.08911049e+00 -9.86505985e-01 -5.68393469e-01 -8.84703696e-01
1.03766537e+00 -5.98882556e-01 1.36475897e+00 3.29264730e-01
-9.04039085e-01 -6.98702455e-01 -6.15472972e-01 -9.53387320e-02
-5.75687289e-01 2.28590965e-01 5.84062636e-01 5.09178042e-01
-8.14311862e-01 6.78697586e-01 -8.77938747e-01 -6.86952770e-01
4.27181154e-01 2.77075052e-01 -4.20528501e-01 -3.01689506e-01
-1.41340637e+00 9.56878960e-01 6.99796379e-01 -1.04681656e-01
-7.34541953e-01 -8.77184629e-01 -1.00037777e+00 -1.25724435e-01
6.61482096e-01 -2.78534293e-01 1.65718603e+00 -1.14281142e+00
-1.46218669e+00 1.05013454e+00 -3.01475614e-01 -5.21267235e-01
5.19579411e-01 -3.40529799e-01 -2.60458857e-01 -4.52706926e-02
3.57149005e-01 7.18526006e-01 8.33525181e-01 -1.00800765e+00
-6.29654408e-01 -4.40908194e-01 -2.50881135e-01 3.99643838e-01
-3.59997660e-01 7.72163197e-02 -2.41139129e-01 -4.68458891e-01
-5.64902127e-02 -8.89067829e-01 -2.87496477e-01 -4.28425491e-01
-2.01714441e-01 -5.64428449e-01 6.30122960e-01 -2.31746599e-01
1.14913785e+00 -2.22608972e+00 -2.44474411e-01 -9.15350989e-02
4.65822592e-02 9.34262335e-01 -2.33451992e-01 5.81991673e-01
-1.08993530e-01 2.56944001e-01 -4.18098718e-01 -4.57037568e-01
-4.63491604e-02 4.71456289e-01 -2.87905663e-01 6.64783269e-02
3.68723094e-01 1.03221798e+00 -1.25883615e+00 -5.08855760e-01
5.21661378e-02 6.88919574e-02 -5.47670200e-02 3.79546210e-02
-3.39428663e-01 6.46768570e-01 -3.03326041e-01 2.88266540e-01
3.61200541e-01 -3.11993092e-01 2.48502553e-01 2.62853414e-01
-7.19469190e-02 6.20873094e-01 -8.83805037e-01 1.52619064e+00
-4.13449198e-01 6.31833434e-01 -1.16599031e-01 -1.16166782e+00
9.31807458e-01 4.66838032e-01 1.95315391e-01 -6.74961388e-01
-1.41145721e-01 3.30549151e-01 -4.92202975e-02 -4.68999863e-01
1.92129269e-01 -3.89727682e-01 -5.43891303e-02 5.17683446e-01
2.86808074e-01 -1.35853654e-02 4.91235137e-01 1.67805716e-01
1.17657828e+00 1.41506016e-01 5.71178615e-01 -1.80233553e-01
3.13097239e-01 2.03872815e-01 6.17405236e-01 1.06640363e+00
-3.59841913e-01 2.48258233e-01 4.06663984e-01 -1.60028815e-01
-9.55783844e-01 -8.59224141e-01 -3.55821908e-01 1.78229880e+00
-3.55680376e-01 -1.32412791e-01 -5.39692044e-01 -1.14206767e+00
1.78256616e-01 9.37092006e-01 -4.59703654e-01 -1.82467937e-01
-4.05307531e-01 -7.72025287e-01 8.14821064e-01 5.75564623e-01
5.56170285e-01 -1.38563800e+00 -2.68993437e-01 2.45654538e-01
-3.21655758e-02 -1.32689571e+00 -2.02600121e-01 7.83534527e-01
-1.13236034e+00 -9.32857335e-01 -5.94088018e-01 -9.04411912e-01
6.24636292e-01 1.33442298e-01 1.12002599e+00 -4.68386889e-01
2.52955854e-01 1.69214055e-01 -6.23903275e-01 -5.42516589e-01
-7.52844632e-01 5.34307659e-01 1.09048240e-01 -2.03723058e-01
9.29394782e-01 -2.62508959e-01 -7.34919533e-02 2.96748757e-01
-8.25227618e-01 -7.66373565e-03 8.80210459e-01 8.80716026e-01
3.84764284e-01 1.49444088e-01 9.77560937e-01 -1.65449047e+00
8.34087849e-01 -6.08516216e-01 -1.44856587e-01 1.23914756e-01
-7.87987232e-01 2.81631678e-01 6.56457782e-01 -7.75268197e-01
-1.22098863e+00 1.02423891e-01 5.06527796e-02 -3.84175062e-01
-5.84106743e-01 7.51830935e-01 7.16454759e-02 2.25624040e-01
1.06045759e+00 6.76136762e-02 2.58950163e-02 -7.11384535e-01
4.08322930e-01 9.44873393e-01 2.57599920e-01 -6.50147378e-01
4.37184542e-01 1.60473198e-01 -4.39810395e-01 -7.73921192e-01
-1.48783958e+00 -7.76639938e-01 -1.02458096e+00 2.95643419e-01
2.75081038e-01 -9.02243555e-01 1.01435132e-01 3.16083521e-01
-5.86446583e-01 -9.92396295e-01 -5.34346700e-01 5.14065206e-01
-3.62829000e-01 3.06345880e-01 -5.64390361e-01 -7.71672904e-01
-2.07499877e-01 -9.62675214e-01 1.15044940e+00 -6.05784282e-02
-4.65618283e-01 -1.19238138e+00 4.89531122e-02 5.18149197e-01
2.09990129e-01 -1.58312991e-01 7.59209454e-01 -1.32611525e+00
3.08154851e-01 -1.83163941e-01 -1.80627063e-01 5.67377269e-01
2.66542315e-01 -4.22539622e-01 -1.18901289e+00 -3.83145094e-01
-2.32727304e-02 -7.50502229e-01 9.84094322e-01 3.94796252e-01
7.88154781e-01 -2.29394764e-01 -3.97113889e-01 1.33278936e-01
1.00367582e+00 -4.11577225e-02 1.55499831e-01 4.01886642e-01
3.80422831e-01 8.13176334e-01 9.01002586e-01 1.84407726e-01
2.20802903e-01 2.48106480e-01 -2.44887650e-01 -1.04718134e-01
-8.94796625e-02 -4.62578833e-01 3.40284795e-01 4.91533428e-01
4.51537341e-01 -2.66575724e-01 -1.27037144e+00 6.13601744e-01
-1.88365972e+00 -5.72721779e-01 1.23095913e-02 2.14117742e+00
1.28413165e+00 4.75398511e-01 9.96160507e-02 3.58011097e-01
6.75810158e-01 -1.45602599e-01 -7.44166553e-01 -3.87592673e-01
-7.20086843e-02 3.81764859e-01 6.71505868e-01 3.63587648e-01
-1.33598065e+00 1.37915647e+00 6.91771173e+00 8.81956279e-01
-1.07459915e+00 2.10336238e-01 6.21544659e-01 9.42694321e-02
1.23852417e-01 1.57255247e-01 -1.02066660e+00 5.05339861e-01
1.26589322e+00 1.02366426e-03 1.65176541e-01 8.34376812e-01
3.30899805e-01 -2.26724982e-01 -1.22034490e+00 5.64892292e-01
-1.63082957e-01 -8.57690096e-01 -1.45532504e-01 -7.70100281e-02
6.98985934e-01 3.36310625e-01 -1.42487273e-01 8.28737974e-01
6.34891570e-01 -8.21493864e-01 3.87009829e-01 -1.44882500e-02
8.69817555e-01 -4.32694823e-01 7.62858391e-01 9.83601034e-01
-7.12469280e-01 -2.29996532e-01 -2.69575983e-01 -2.89110541e-01
-1.56350024e-02 8.08384717e-01 -1.28316927e+00 3.23132157e-01
5.12412608e-01 8.65342319e-01 -7.12359548e-01 5.90367496e-01
-5.09564877e-01 1.27005291e+00 -3.97368789e-01 2.60397255e-01
3.87203842e-01 2.83596426e-01 2.29637593e-01 1.56593621e+00
-2.82873511e-01 -2.28361450e-02 4.40577567e-01 4.17989343e-01
-4.94089983e-02 2.17702985e-01 -6.75791740e-01 -3.22897822e-01
6.82282567e-01 9.75807369e-01 -6.10228777e-01 -6.05162680e-01
-3.13155204e-01 5.97231686e-01 6.15411282e-01 5.69398463e-01
-1.38769031e-01 -3.83414067e-02 1.47006482e-01 2.30041459e-01
1.00543499e-01 -1.43117145e-01 -4.68293637e-01 -1.07673323e+00
-2.62453586e-01 -9.56878483e-01 6.23208642e-01 -6.20604277e-01
-1.61175776e+00 3.98280084e-01 2.53980845e-01 -8.75990331e-01
-3.92604351e-01 -5.94204128e-01 -1.45940945e-01 7.32622445e-01
-1.61775541e+00 -9.84258175e-01 1.31455973e-01 2.08976626e-01
8.52272451e-01 -2.96524286e-01 7.73599029e-01 -4.48717326e-02
-6.26162767e-01 5.13064384e-01 2.74089575e-01 2.37636462e-01
1.27655101e+00 -1.20388055e+00 4.18716192e-01 7.98227787e-01
1.25836492e-01 8.26761544e-01 5.04524708e-01 -7.89223194e-01
-9.35301542e-01 -1.15868127e+00 1.25293469e+00 -6.43346786e-01
5.23927271e-01 -4.72263485e-01 -1.07456172e+00 9.95929897e-01
-7.67894313e-02 3.64508368e-02 7.73747802e-01 4.91670370e-01
-3.92663300e-01 1.18009903e-01 -1.11028171e+00 2.53416419e-01
9.56402004e-01 -4.95213360e-01 -1.05282748e+00 3.35587144e-01
7.58121610e-01 -2.92231768e-01 -7.61279285e-01 6.38602197e-01
1.91587865e-01 -6.11614227e-01 7.79515147e-01 -5.34851253e-01
2.60573149e-01 5.35571836e-02 2.13884398e-01 -1.50385809e+00
-2.89117575e-01 -5.30147791e-01 1.70442909e-01 1.40390825e+00
6.73141062e-01 -7.40599155e-01 7.75478959e-01 6.62816763e-01
-1.98608354e-01 -5.93464017e-01 -5.89628994e-01 -9.17817652e-01
3.18738341e-01 -5.72658658e-01 2.55287379e-01 1.30931938e+00
5.06003462e-02 7.38555312e-01 6.01688121e-03 -1.32472023e-01
4.73092020e-01 -2.44206309e-01 7.10907280e-01 -1.34836245e+00
-2.46393561e-01 -1.66819930e-01 1.54969320e-01 -9.51831400e-01
6.02660656e-01 -1.07501912e+00 2.73617208e-01 -1.32297230e+00
-5.27239852e-02 -7.97458053e-01 -3.21683109e-01 9.67933059e-01
-3.99648458e-01 8.62254500e-02 5.29988371e-02 3.89036387e-01
-7.04094350e-01 2.41535708e-01 1.16592181e+00 4.20607962e-02
-6.31519914e-01 1.33050308e-01 -9.61392879e-01 7.13977396e-01
9.23854947e-01 -5.37410676e-01 -6.75965369e-01 -4.96380746e-01
-1.93475872e-01 -3.01696867e-01 -1.18768968e-01 -5.95146000e-01
1.63330153e-01 -2.34284177e-01 3.41182113e-01 -2.57208765e-01
7.99321607e-02 -4.90782291e-01 -2.63580710e-01 6.42899722e-02
-8.78214777e-01 -3.25215310e-01 3.78598064e-01 5.08020937e-01
-1.18838675e-01 -3.54310483e-01 8.00533175e-01 -4.22387034e-01
-8.38124275e-01 4.73022535e-02 -4.60971236e-01 6.16365612e-01
7.39903271e-01 -3.21861833e-01 -1.74592644e-01 -8.70683938e-02
-7.41966069e-01 4.75777566e-01 2.57186502e-01 4.23757404e-01
1.84799418e-01 -8.65603209e-01 -7.86868691e-01 4.29846913e-01
3.41615379e-01 3.95142257e-01 -1.95693538e-01 5.76492012e-01
2.97114104e-02 6.21863127e-01 3.01993549e-01 -5.86332738e-01
-9.13701534e-01 6.32162988e-01 -3.33600231e-02 -7.39553630e-01
-4.13183719e-01 6.83896005e-01 2.20550731e-01 -9.62570608e-01
3.25472832e-01 -1.88437283e-01 -1.98657051e-01 2.59606540e-01
3.62342477e-01 2.58980006e-01 2.22795039e-01 -4.61547047e-01
-1.95859298e-01 1.05031572e-01 -2.22481921e-01 -3.60311776e-01
1.19584072e+00 -1.42756835e-01 2.43999228e-01 7.77233601e-01
9.81529534e-01 -2.97401667e-01 -1.26152265e+00 -8.30457330e-01
5.79053104e-01 -2.34614372e-01 2.15085247e-03 -1.06358314e+00
-4.93792295e-01 8.17339361e-01 -1.10578490e-02 -3.51129398e-02
8.85776222e-01 8.32979828e-02 5.29645383e-01 4.31119204e-01
2.99507201e-01 -1.32408047e+00 2.02037469e-01 8.89073133e-01
5.14010847e-01 -1.46187067e+00 -1.51037097e-01 -3.77230853e-01
-1.07180607e+00 7.52710223e-01 6.03635132e-01 1.62344694e-01
6.29967868e-01 2.47436047e-01 2.48327360e-01 1.13056295e-01
-8.74346077e-01 -5.12499630e-01 8.29451233e-02 7.13213861e-01
5.87902248e-01 -1.21363938e-01 -2.86998272e-01 4.75191623e-01
-1.99099302e-01 2.21474349e-01 2.02211700e-02 1.20171559e+00
-4.06684071e-01 -1.39153588e+00 -2.89102405e-01 8.10536802e-01
-4.75366294e-01 -3.29277277e-01 -5.62589943e-01 7.79612720e-01
1.44806206e-01 1.16495228e+00 -1.69206053e-01 1.25395991e-02
3.19106787e-01 7.10584223e-01 2.31476933e-01 -1.29768527e+00
-7.81455159e-01 1.77986279e-01 2.83932030e-01 -2.33435825e-01
-6.12845480e-01 -7.46699572e-01 -1.20178664e+00 1.99934512e-01
-4.24682856e-01 2.64584392e-01 3.65757763e-01 1.31955969e+00
4.01063830e-01 1.50023386e-01 3.19921583e-01 -7.11516321e-01
-6.56520069e-01 -1.32148278e+00 -4.30251032e-01 6.62890732e-01
2.29306877e-01 -6.73048079e-01 -5.80944777e-01 1.32286295e-01] | [10.715947151184082, 8.15636920928955] |
d0e3f2a6-b2d7-4f63-a293-008e351b84c1 | training-frankensteins-creature-to-stack | 1810.11714 | null | http://arxiv.org/abs/1810.11714v2 | http://arxiv.org/pdf/1810.11714v2.pdf | The CoSTAR Block Stacking Dataset: Learning with Workspace Constraints | A robot can now grasp an object more effectively than ever before, but once
it has the object what happens next? We show that a mild relaxation of the task
and workspace constraints implicit in existing object grasping datasets can
cause neural network based grasping algorithms to fail on even a simple block
stacking task when executed under more realistic circumstances.
To address this, we introduce the JHU CoSTAR Block Stacking Dataset (BSD),
where a robot interacts with 5.1 cm colored blocks to complete an
order-fulfillment style block stacking task. It contains dynamic scenes and
real time-series data in a less constrained environment than comparable
datasets. There are nearly 12,000 stacking attempts and over 2 million frames
of real data. We discuss the ways in which this dataset provides a valuable
resource for a broad range of other topics of investigation.
We find that hand-designed neural networks that work on prior datasets do not
generalize to this task. Thus, to establish a baseline for this dataset, we
demonstrate an automated search of neural network based models using a novel
multiple-input HyperTree MetaModel, and find a final model which makes
reasonable 3D pose predictions for grasping and stacking on our dataset.
The CoSTAR BSD, code, and instructions are available at
https://sites.google.com/site/costardataset. | ['Gregory D. Hager', 'Chia-Hung Lin', 'Chris Paxton', 'Andrew Hundt', 'Varun Jain'] | 2018-10-27 | null | null | null | null | ['6d-pose-estimation-using-rgbd', 'industrial-robots', 'robot-task-planning'] | ['computer-vision', 'robots', 'robots'] | [ 2.32461050e-01 -1.32868411e-02 -1.09812669e-01 -3.79776806e-01
-4.70579177e-01 -6.88849628e-01 1.96517855e-01 -3.44173163e-01
-1.47176415e-01 4.88141805e-01 5.79245389e-02 -3.43554050e-01
-4.94319916e-01 -4.19007391e-01 -1.32808971e+00 -6.45636976e-01
-5.24538696e-01 7.45639205e-01 1.76226124e-01 -3.72969478e-01
4.54913408e-01 8.88126850e-01 -1.70033038e+00 7.64754236e-01
2.58116752e-01 8.20712984e-01 9.23796237e-01 5.18747330e-01
3.90650690e-01 5.20752847e-01 -2.58150101e-01 5.86897135e-02
7.67198980e-01 4.93692905e-01 -9.15407360e-01 -1.26263991e-01
4.86576140e-01 -8.94726574e-01 -6.22563720e-01 5.00022590e-01
3.26649696e-01 1.59267727e-02 6.26195192e-01 -1.36698699e+00
-6.98037982e-01 8.30527902e-01 -2.51453608e-01 -2.53768474e-01
1.03588440e-01 5.03811002e-01 8.09139192e-01 -9.18403625e-01
7.75377750e-01 1.49449158e+00 6.74305737e-01 6.51929438e-01
-1.28403652e+00 -4.14602488e-01 4.97909375e-02 5.10208197e-02
-6.72402978e-01 -3.01949829e-01 6.58909261e-01 -4.80917245e-01
1.14832425e+00 1.04521908e-01 7.78319657e-01 1.58038175e+00
3.42770636e-01 9.71238613e-01 8.27468038e-01 -3.24204117e-01
5.07637896e-02 -8.29877675e-01 1.67089880e-01 4.42401201e-01
5.26611209e-01 1.92029893e-01 -3.56947243e-01 -1.29887968e-01
1.04621542e+00 5.55341057e-02 -7.39722103e-02 -9.27549303e-01
-1.52497315e+00 3.71501833e-01 7.39044964e-01 1.52848750e-01
-5.15184820e-01 7.43693173e-01 3.55262160e-01 1.04028009e-01
-1.10086896e-01 8.36516321e-01 -9.95060384e-01 -1.09949835e-01
-1.89756781e-01 7.32852638e-01 9.72717643e-01 1.29314959e+00
5.33559263e-01 -1.47067942e-02 3.58547807e-01 8.47318470e-01
-1.86844077e-02 3.05583894e-01 3.48679870e-02 -1.75109994e+00
5.32303035e-01 2.22134918e-01 4.22543257e-01 -9.07869518e-01
-6.44694924e-01 1.07075401e-01 -3.59084696e-01 4.07432407e-01
6.61776185e-01 1.53740466e-01 -1.21831667e+00 1.58805871e+00
1.07710674e-01 -4.53911364e-01 -2.65874788e-02 9.78798151e-01
6.15938246e-01 4.07042325e-01 -2.05394819e-01 2.70066828e-01
1.01375043e+00 -8.92506897e-01 -2.72472143e-01 -3.89516115e-01
4.63458180e-01 -6.78358555e-01 1.12016976e+00 7.54951835e-01
-1.15282857e+00 -2.96155095e-01 -1.10142052e+00 -1.78705394e-01
-3.79169971e-01 7.95563236e-02 1.05727220e+00 -4.35018986e-02
-9.70799148e-01 1.04693806e+00 -1.17926908e+00 -5.97281456e-01
4.57053632e-01 4.69072044e-01 -5.19026756e-01 -4.09096956e-01
-5.62303364e-01 1.35773778e+00 6.43966258e-01 5.96420288e-01
-1.12132025e+00 -5.49185216e-01 -6.05480075e-01 -1.53506622e-01
5.52282095e-01 -3.47348779e-01 1.66567123e+00 -3.83987010e-01
-1.11801374e+00 6.63194954e-01 2.85616308e-01 -2.35415518e-01
4.51712906e-01 -6.01025641e-01 5.77395797e-01 1.96463928e-01
-6.30204156e-02 1.21333849e+00 5.83149612e-01 -1.85333073e+00
-7.89458379e-02 -3.88251245e-01 2.48804837e-01 9.76399034e-02
2.05030888e-02 -2.55866051e-01 -3.12040985e-01 -5.97423077e-01
5.07765174e-01 -1.24585104e+00 -1.31889209e-01 1.19546480e-01
-3.70954305e-01 -1.37389138e-01 8.67783546e-01 -7.14237750e-01
1.84350550e-01 -1.76630616e+00 4.98555660e-01 -4.08796519e-02
-5.81774395e-04 -3.89618166e-02 -4.98053282e-01 8.18434179e-01
-1.38293132e-01 1.24309510e-01 -2.09258094e-01 7.51721263e-02
9.53778327e-02 5.41373491e-01 -4.23976600e-01 2.63545990e-01
1.38489723e-01 1.00082231e+00 -6.54328585e-01 -2.00097859e-01
1.86603025e-01 1.18307732e-01 -6.71852708e-01 1.09572165e-01
-6.48960292e-01 4.05672848e-01 -3.49632233e-01 1.17892492e+00
5.76269269e-01 -2.85418443e-02 3.64837140e-01 -6.78067684e-01
-1.76392868e-01 -1.07619941e-01 -6.40482366e-01 1.98435807e+00
-3.21718082e-02 6.91950917e-01 4.21486467e-01 -1.05274594e+00
8.03172588e-01 4.48651500e-02 8.39522660e-01 -2.82619178e-01
3.42342496e-01 4.93539989e-01 3.76547366e-01 -9.63558555e-01
4.70357150e-01 1.84049234e-01 8.16728473e-02 2.47356459e-01
3.14420015e-02 -5.58251679e-01 1.55408591e-01 -4.96635288e-02
1.44312370e+00 6.66469276e-01 -2.31224582e-01 -4.52777743e-01
-7.23676920e-01 5.27488589e-01 2.69096226e-01 9.37018037e-01
-1.17070198e-01 7.16017246e-01 3.15453827e-01 -8.99092853e-01
-1.72657466e+00 -1.17378604e+00 -1.64738342e-01 1.03874862e+00
2.40441144e-01 1.56302050e-01 -4.84070897e-01 -4.74869311e-02
6.87419772e-01 4.67947006e-01 -7.01573789e-01 8.67985785e-02
-1.07903337e+00 -6.01602018e-01 3.87114912e-01 8.38573396e-01
2.26175278e-01 -1.46452212e+00 -1.14686573e+00 2.63741404e-01
-2.52008945e-01 -1.00703573e+00 2.68747151e-01 6.36558056e-01
-1.07997370e+00 -1.33063710e+00 -6.46108806e-01 -9.51828420e-01
5.96877217e-01 4.34329480e-01 1.01914525e+00 3.35306287e-01
-6.69179738e-01 4.24360484e-01 -5.97274959e-01 -5.66024959e-01
-3.05328906e-01 1.44255400e-01 2.99699038e-01 -1.09192371e+00
7.70318136e-02 -7.08557248e-01 -4.67218280e-01 3.96982014e-01
-8.53141725e-01 4.58928019e-01 9.43449557e-01 8.96461546e-01
8.31140578e-02 -3.91668588e-01 5.73514581e-01 -6.62950799e-02
5.63128173e-01 -3.40822548e-01 -5.46257138e-01 2.94294119e-01
3.96220610e-02 -3.77440080e-02 3.01881820e-01 -7.15423465e-01
-7.09958851e-01 3.20529848e-01 1.86659217e-01 -7.61788368e-01
-1.83335289e-01 4.32212889e-01 1.40973344e-01 -3.23494561e-02
6.11651719e-01 -1.65530562e-01 1.84814885e-01 -6.70493722e-01
2.48130202e-01 4.87973720e-01 6.63691044e-01 -1.36453295e+00
6.44700170e-01 3.00895661e-01 -1.25073390e-02 -5.99456549e-01
-4.35524255e-01 4.79477309e-02 -1.04855132e+00 -4.21908438e-01
6.86032653e-01 -6.19117081e-01 -1.31623888e+00 6.49526179e-01
-1.47469699e+00 -1.03387892e+00 1.20222628e-01 4.06201810e-01
-1.05989945e+00 8.09782967e-02 -7.62169719e-01 -7.36551821e-01
-3.60824279e-02 -1.28596306e+00 1.15661919e+00 -1.88591063e-01
-2.25826234e-01 -1.13222457e-01 -4.75339293e-01 2.29160473e-01
2.74516106e-01 4.66591835e-01 1.21784592e+00 -3.87809843e-01
-8.96106958e-01 -1.74817834e-02 -3.35227370e-01 2.50730008e-01
1.60792112e-01 1.46815509e-01 -4.91085947e-01 -6.69046283e-01
-1.71920776e-01 -8.13869953e-01 7.86064148e-01 4.70523268e-01
1.48335755e+00 -2.63061374e-01 -4.86262530e-01 2.05324158e-01
1.28374326e+00 5.78784585e-01 5.47287107e-01 5.80053866e-01
6.23252928e-01 8.00736368e-01 6.59313560e-01 2.02847183e-01
1.21982560e-01 5.51977694e-01 9.54377592e-01 2.59279519e-01
1.26630723e-01 -1.31832108e-01 3.50304469e-02 6.51801527e-01
-3.34298313e-01 -1.96701586e-01 -1.50097525e+00 7.33672082e-01
-1.95599437e+00 -7.81791329e-01 2.38899112e-01 1.73176253e+00
6.61672175e-01 1.33273438e-01 -1.72549672e-02 -9.25003365e-02
5.62842667e-01 -5.73488809e-02 -9.14940119e-01 -2.51266718e-01
1.00534298e-01 1.43229850e-02 6.52373016e-01 2.40547612e-01
-9.19709861e-01 9.51525748e-01 6.74732018e+00 3.68406087e-01
-9.76943135e-01 -3.16187650e-01 1.40054584e-01 -3.06328595e-01
5.12661897e-02 2.63319031e-04 -2.80637711e-01 2.02429503e-01
2.87159890e-01 3.26009750e-01 9.10364985e-01 1.08947790e+00
7.97011107e-02 -2.62530774e-01 -1.72119045e+00 7.20041156e-01
-1.66434646e-01 -1.34503400e+00 -9.41470787e-02 2.55210828e-02
2.82986939e-01 3.76838416e-01 -2.22316310e-02 2.93456137e-01
6.57595813e-01 -1.16211629e+00 1.02169192e+00 4.24578458e-01
4.73145455e-01 -1.47738829e-01 2.84410417e-01 4.58410800e-01
-7.62785196e-01 -5.66667974e-01 -4.87513095e-01 -3.16018283e-01
7.33017251e-02 1.17999529e-02 -9.63413656e-01 4.19024557e-01
1.20585525e+00 4.17222410e-01 -2.62190044e-01 9.72245336e-01
2.40764782e-01 3.98450680e-02 -5.06528378e-01 -2.50631154e-01
2.64214605e-01 1.09928682e-01 5.87140501e-01 7.53074706e-01
2.97215968e-01 2.90182471e-01 1.36011779e-01 8.70658815e-01
1.21710068e-02 -6.53939247e-01 -9.92515326e-01 2.09140535e-02
6.32539570e-01 9.29202080e-01 -7.33763993e-01 1.84572600e-02
1.03385590e-01 5.41552603e-01 5.44986665e-01 4.57740068e-01
-5.34960330e-01 -1.90123230e-01 5.08312225e-01 -1.93873152e-01
3.28479737e-01 -8.68032694e-01 -5.58317900e-01 -9.82192576e-01
3.49674851e-01 -1.04948080e+00 -3.05223197e-01 -1.44755316e+00
-1.36889553e+00 1.75134927e-01 5.90431929e-01 -1.09536612e+00
-1.59712687e-01 -1.35264134e+00 -2.92633682e-01 3.41799378e-01
-8.52860510e-01 -1.28766632e+00 -5.16049922e-01 -1.07542023e-01
7.82831550e-01 4.25890163e-02 6.89763725e-01 -6.67628869e-02
-2.76718557e-01 -1.67195633e-01 1.01628087e-01 9.69585478e-02
4.33669180e-01 -8.85919809e-01 4.26555485e-01 3.47795069e-01
-3.56764197e-01 7.63004482e-01 1.01867962e+00 -8.59137118e-01
-2.12434006e+00 -7.33731806e-01 -1.39842719e-01 -8.07493150e-01
5.84869742e-01 -5.55119395e-01 -9.21546400e-01 1.21062326e+00
9.64002907e-02 -2.72289604e-01 -2.24970534e-01 6.48478270e-02
-2.23232090e-01 1.20000444e-01 -1.00343072e+00 8.12754393e-01
1.55624688e+00 -2.61693150e-02 -8.84485781e-01 5.20767033e-01
9.21003163e-01 -7.76808977e-01 -9.20075774e-01 1.07754743e+00
1.23986518e+00 -6.29501164e-01 1.15110588e+00 -9.03255880e-01
1.02689111e+00 4.44692113e-02 -6.83495581e-01 -1.18213868e+00
-2.73302346e-01 -2.90962011e-01 -5.41698746e-02 5.45220077e-01
1.97533742e-01 -4.31854069e-01 9.29576278e-01 8.36235344e-01
-5.61511576e-01 -1.09683132e+00 -8.48545551e-01 -1.07462585e+00
5.05439758e-01 -3.21520805e-01 4.85067546e-01 6.83322191e-01
6.12368137e-02 -3.69878560e-01 -1.98433951e-01 1.98376268e-01
6.74445570e-01 3.14679027e-01 9.06810582e-01 -1.16474640e+00
3.78734134e-02 -2.73602754e-01 3.47863734e-02 -1.08496094e+00
2.65904695e-01 -7.37328470e-01 6.40565693e-01 -1.79050982e+00
2.66618550e-01 -9.19676363e-01 1.26749486e-01 9.99500751e-01
4.31515694e-01 -1.43509686e-01 5.82883596e-01 5.51092207e-01
-6.98484629e-02 4.73166257e-01 1.41383803e+00 -1.68574706e-01
6.08021878e-02 -5.33156037e-01 -2.52712965e-01 7.79338002e-01
1.06039488e+00 -2.16185749e-01 -1.03077710e-01 -1.19371486e+00
-9.37516615e-02 2.63885617e-01 7.56115854e-01 -9.60777164e-01
3.34990248e-02 -5.09609640e-01 6.44996583e-01 -8.43834937e-01
8.45083952e-01 -1.02821243e+00 2.58146644e-01 7.22870409e-01
-4.31120843e-01 2.65179217e-01 5.59880376e-01 2.63089627e-01
4.08417851e-01 -3.78362983e-01 5.06253600e-01 -5.35760999e-01
-7.24866986e-01 1.24116980e-01 -3.74158651e-01 -5.18364966e-01
9.78635848e-01 -3.01239938e-01 -6.37227416e-01 -1.27712935e-01
-7.70474076e-01 3.34142327e-01 6.88818932e-01 8.44596624e-01
6.50442660e-01 -1.26040161e+00 -4.61881608e-01 -1.53173298e-01
-1.43082887e-01 3.72433394e-01 1.60276458e-01 4.15839285e-01
-8.59217942e-01 4.23635066e-01 -7.79820442e-01 -7.91653156e-01
-9.49295402e-01 5.62507689e-01 1.74629852e-01 3.97544652e-01
-7.64591753e-01 5.99771082e-01 2.11066417e-02 -8.00765693e-01
3.74187797e-01 -6.11622393e-01 3.76123786e-01 -4.24744427e-01
-1.80796787e-01 3.11922491e-01 -6.16600588e-02 -2.23390535e-01
-1.79151878e-01 3.56232673e-01 -5.67678399e-02 -2.00184453e-02
1.86392677e+00 4.09767866e-01 -2.61475474e-01 4.03374732e-01
1.06787467e+00 -6.98563397e-01 -1.50822914e+00 3.33821148e-01
-1.64395552e-02 -5.33968389e-01 -6.01995945e-01 -9.54712927e-01
-7.25653768e-01 7.75046110e-01 3.25476557e-01 1.07806072e-01
7.32563078e-01 2.34841764e-01 6.14876032e-01 1.28332818e+00
8.20668757e-01 -9.87179637e-01 4.62971509e-01 8.11801314e-01
1.82040071e+00 -1.16468859e+00 7.75409630e-03 -3.95366907e-01
-2.28529766e-01 1.34079671e+00 1.16486263e+00 -3.89530480e-01
3.35162967e-01 5.35128593e-01 -2.27239490e-01 -3.63242626e-01
-8.80451798e-01 2.92382360e-01 -3.48273337e-01 7.07205236e-01
-1.18391804e-01 1.37962904e-02 1.62362635e-01 2.72336990e-01
-4.33267564e-01 1.16065353e-01 5.79196751e-01 1.59447122e+00
-6.03019238e-01 -8.20004106e-01 -4.83394712e-01 6.58160746e-01
3.00472770e-02 2.61751622e-01 -3.35749805e-01 1.23361063e+00
-1.86196804e-01 5.10146558e-01 1.14118524e-01 -6.17282093e-01
3.88667315e-01 5.36768977e-03 1.07556987e+00 -4.59345907e-01
-1.83254942e-01 -2.20352292e-01 2.02829257e-01 -6.73795640e-01
-4.10185695e-01 -7.62044013e-01 -1.19375181e+00 -2.82812566e-01
-1.92310855e-01 -5.62898219e-01 9.45680678e-01 7.13046968e-01
2.88082391e-01 3.61250430e-01 1.35789648e-01 -1.99487376e+00
-7.74311841e-01 -1.18676007e+00 -1.49561375e-01 2.99737662e-01
2.03483552e-01 -1.07098961e+00 -1.15241401e-01 5.16200140e-02] | [5.686373233795166, -0.7590504288673401] |
8581c516-c998-4ee7-b9d5-8ef41cfb6f8a | sequential-pattern-mining-in-educational-data | 2302.01932 | null | https://arxiv.org/abs/2302.01932v1 | https://arxiv.org/pdf/2302.01932v1.pdf | Sequential pattern mining in educational data: The application context, potential, strengths, and limitations | Increasingly, researchers have suggested the benefits of temporal analysis to improve our understanding of the learning process. Sequential pattern mining (SPM), as a pattern recognition technique, has the potential to reveal the temporal aspects of learning and can be a valuable tool in educational data science. However, its potential is not well understood and exploited. This chapter addresses this gap by reviewing work that utilizes sequential pattern mining in educational contexts. We identify that SPM is suitable for mining learning behaviors, analyzing and enriching educational theories, evaluating the efficacy of instructional interventions, generating features for prediction models, and building educational recommender systems. SPM can contribute to these purposes by discovering similarities and differences in learners' activities and revealing the temporal change in learning behaviors. As a sequential analysis method, SPM can reveal unique insights about learning processes and be powerful for self-regulated learning research. It is more flexible in capturing the relative arrangement of learning events than the other sequential analysis methods. Future research may improve its utility in educational data science by developing tools for counting pattern occurrences as well as identifying and removing unreliable patterns. Future work needs to establish a systematic guideline for data preprocessing, parameter setting, and interpreting sequential patterns. | ['Luc Paquette', 'Yingbin Zhang'] | 2023-02-03 | null | null | null | null | ['sequential-pattern-mining'] | ['natural-language-processing'] | [ 9.54240784e-02 -4.14649397e-01 -8.06128502e-01 -3.14567953e-01
1.07287459e-01 -5.99226415e-01 3.35780144e-01 8.87531817e-01
-3.26143112e-03 2.76985496e-01 5.22322714e-01 -6.49492919e-01
-7.81009793e-01 -8.38140666e-01 -2.89686024e-01 -5.59331894e-01
-1.06280416e-01 -9.30435136e-02 3.54093611e-01 -1.33456783e-02
7.89935768e-01 6.97580159e-01 -2.40140605e+00 5.02094507e-01
1.10955858e+00 3.34584385e-01 4.27851886e-01 3.28611046e-01
-6.56704903e-01 9.60986137e-01 -6.25181556e-01 1.18342731e-02
-3.05418402e-01 -7.40221858e-01 -7.67394245e-01 6.92721009e-02
3.46624553e-01 2.32967865e-02 5.23767844e-02 7.71125078e-01
1.85467765e-01 5.16013384e-01 8.91874060e-02 -9.91521716e-01
-5.50910592e-01 5.56160986e-01 -2.86868304e-01 7.83002734e-01
8.87847126e-01 -1.85481548e-01 5.73027611e-01 -5.14115572e-01
4.32790786e-01 8.62890124e-01 5.10938108e-01 4.30802017e-01
-9.06774938e-01 -9.53138471e-01 2.73342937e-01 9.41090703e-01
-8.30774665e-01 -2.45454267e-01 5.79055309e-01 -7.20192730e-01
6.52805686e-01 5.77986062e-01 1.43722832e+00 7.96915770e-01
1.89826787e-01 1.03677320e+00 1.44864953e+00 -7.45435596e-01
1.57826766e-01 3.30417603e-01 8.32341492e-01 6.47325873e-01
1.09678470e-01 1.16227850e-01 -1.14996397e+00 1.23121060e-01
4.05938536e-01 5.40890932e-01 -2.01146692e-01 1.27050236e-01
-8.56031716e-01 6.71340227e-01 -2.58887380e-01 6.53156877e-01
-3.32862765e-01 -6.45036578e-01 6.78698421e-02 7.47017145e-01
2.59820491e-01 6.50911272e-01 -4.22827452e-01 -9.39478874e-01
-8.89865100e-01 3.14105839e-01 7.79747367e-01 5.71757078e-01
2.46313989e-01 -1.15340412e-01 -2.81834483e-01 7.72169292e-01
2.91260004e-01 -1.72264218e-01 1.05403304e+00 -8.79451215e-01
-1.47785857e-01 1.20250797e+00 -1.59804478e-01 -7.74450421e-01
-4.86685574e-01 -1.35521576e-01 8.82372037e-02 9.58446786e-02
5.78891039e-01 6.03300631e-02 -4.57593739e-01 1.25262642e+00
4.05324191e-01 3.16429228e-01 -2.93623298e-01 3.82849246e-01
9.39104915e-01 3.01568270e-01 2.00619727e-01 -6.56278789e-01
1.57963765e+00 -6.78982854e-01 -9.63892698e-01 2.38359019e-01
8.46139133e-01 -9.28055763e-01 1.16601825e+00 6.43109381e-01
-9.80691016e-01 -5.26977420e-01 -5.98919392e-01 2.72581875e-01
-3.61108214e-01 -2.25938231e-01 9.35107052e-01 9.36500192e-01
-6.99305475e-01 8.49321485e-01 -1.12722659e+00 -5.10532618e-01
4.41054583e-01 2.50578970e-01 -6.69097677e-02 -2.25743046e-03
-7.58601367e-01 8.19778740e-01 2.21395958e-02 -4.92035896e-01
-3.19495678e-01 -1.36577022e+00 -8.88464630e-01 1.89145893e-01
1.71386287e-01 -1.55145794e-01 1.27990377e+00 -8.60231578e-01
-1.63114429e+00 3.24657083e-01 -6.67978287e-01 -2.18879774e-01
-1.07437514e-01 -2.23412246e-01 -5.91174185e-01 -3.11778128e-01
-1.12705296e-02 -1.39826432e-01 7.11103454e-02 -3.46083164e-01
-1.03762960e+00 -5.81302524e-01 -6.14416659e-01 2.87591100e-01
-8.03599715e-01 3.68984461e-01 -1.06149092e-01 -3.55001807e-01
7.52158239e-02 -6.12061262e-01 -1.48097977e-01 -5.01487136e-01
4.77826953e-01 -8.07355821e-01 9.01068151e-01 -5.59419692e-01
1.76119959e+00 -2.04403901e+00 -3.44021142e-01 4.05003756e-01
7.73560852e-02 4.05475855e-01 2.47465640e-01 6.61834478e-01
7.44006932e-02 1.91770159e-02 6.98012471e-01 3.48049313e-01
-3.36051047e-01 2.16287658e-01 -1.14780106e-01 2.80339122e-01
-3.02844465e-01 6.06944323e-01 -1.13605654e+00 -1.66520700e-01
5.69822133e-01 1.85880467e-01 -4.86506164e-01 2.46896535e-01
1.27648383e-01 3.23184907e-01 -3.51691186e-01 5.17416954e-01
-3.36020738e-02 -1.47311687e-01 3.09704840e-01 6.34341657e-01
-9.73938406e-01 7.64388502e-01 -1.22064030e+00 1.05502725e+00
-1.84280187e-01 1.17244613e+00 -6.43758297e-01 -8.48793924e-01
1.04979897e+00 3.23056370e-01 7.53467619e-01 -1.08452678e+00
-2.04218835e-01 -3.48992676e-01 2.74518281e-01 -1.12032104e+00
4.45665509e-01 2.44287550e-01 5.69939852e-01 6.54247701e-01
1.63606536e-02 4.19993103e-01 5.75482726e-01 -3.47995222e-01
1.22394192e+00 -2.81497017e-02 3.72733951e-01 -2.99716443e-01
3.82250696e-01 1.44823104e-01 7.35446811e-01 5.04911840e-01
-5.61706051e-02 -2.40071625e-01 2.84646869e-01 -6.52425110e-01
-4.08459187e-01 -6.94731891e-01 -2.13498950e-01 1.27789617e+00
-1.86774075e-01 -7.79539227e-01 -1.69342399e-01 -3.90899569e-01
1.10593759e-01 7.84341455e-01 -5.01004517e-01 -1.51470810e-01
-2.95891345e-01 -5.74342251e-01 -1.75086018e-02 4.20241535e-01
2.10651264e-01 -1.08036828e+00 -4.91746455e-01 2.38689661e-01
-7.27847219e-02 -4.56578791e-01 -3.40247482e-01 4.89358716e-02
-1.16280675e+00 -1.52325153e+00 3.01423725e-02 -9.15927887e-01
7.53285289e-01 9.84802127e-01 8.59570026e-01 1.91983759e-01
-6.58564717e-02 6.01388037e-01 -4.58686739e-01 -1.10413098e+00
-2.39877731e-01 -2.39285082e-01 2.08248377e-01 -4.73215818e-01
1.14320600e+00 -6.66961491e-01 -5.95569909e-01 3.24800491e-01
-5.63307106e-01 -7.66364485e-02 3.18687916e-01 4.50888366e-01
5.19053757e-01 7.29442537e-01 3.70261580e-01 -1.10794866e+00
9.71101224e-01 -8.98838818e-01 -4.47931260e-01 2.55181909e-01
-1.45204878e+00 -2.02508226e-01 4.51669365e-01 -7.68383622e-01
-1.21920550e+00 -4.32387590e-01 1.29081234e-02 -1.20455205e-01
-5.67728579e-01 7.13796318e-01 2.70702988e-01 -2.61642516e-01
6.26833677e-01 3.65696222e-01 2.25220188e-01 -6.33547664e-01
-3.25578362e-01 4.43624228e-01 -1.71057180e-01 -5.34155786e-01
2.57835299e-01 2.30911449e-02 -3.88258509e-03 -1.17511404e+00
-7.35844493e-01 -1.15414548e+00 -5.14964342e-01 -6.29390359e-01
3.61439645e-01 -6.73465371e-01 -1.05673099e+00 1.30233139e-01
-2.32801482e-01 -3.53652924e-01 -4.55319136e-01 7.61695921e-01
6.01696745e-02 2.10759014e-01 -4.64771450e-01 -6.92984641e-01
4.77276742e-02 -8.26409519e-01 4.60837707e-02 9.08382714e-01
-7.89131880e-01 -1.05451238e+00 5.25784254e-01 7.93363750e-01
2.07640111e-01 -2.08699167e-01 8.29677403e-01 -9.34877396e-01
-1.55899554e-01 1.11558847e-01 6.01085126e-01 -7.59556293e-02
4.20133263e-01 4.27803993e-01 -4.54841286e-01 1.69975087e-01
4.98408563e-02 2.19575688e-01 1.63863838e-01 2.94158131e-01
1.41589272e+00 -5.91640890e-01 -7.16518015e-02 1.57069921e-01
9.23770308e-01 9.48223531e-01 3.33515406e-01 6.38268590e-01
4.44535166e-01 1.06721425e+00 6.39524996e-01 3.00360292e-01
6.77705586e-01 5.08458138e-01 -2.19352290e-01 4.98681039e-01
-2.07736716e-02 -2.47760624e-01 6.22708559e-01 9.91337717e-01
-1.90609291e-01 4.76307958e-01 -1.00549662e+00 6.62554145e-01
-1.69384682e+00 -1.50763059e+00 -5.12928069e-01 2.08061051e+00
9.67153549e-01 -2.24304006e-01 4.50185746e-01 4.81614619e-01
1.10728003e-01 -2.56000161e-01 -1.38145089e-01 -8.63340199e-01
3.68226022e-01 5.36434174e-01 -2.34654918e-02 1.50442034e-01
-4.61068094e-01 5.85803747e-01 6.45826721e+00 3.51548046e-01
-1.03988898e+00 -3.39725554e-01 1.44579917e-01 -2.78308451e-01
-3.56013417e-01 -1.05472863e-01 -9.84670460e-01 5.84520280e-01
1.26551318e+00 -5.80660701e-01 2.53945172e-01 8.75178218e-01
9.31919515e-01 -2.62623876e-01 -9.72093940e-01 5.30873597e-01
-1.59361765e-01 -1.42975199e+00 -6.85123056e-02 1.37494490e-01
7.90830314e-01 -4.28559214e-01 -8.38463474e-03 3.46127003e-01
4.54186499e-01 -7.52350748e-01 1.69662312e-01 7.07661510e-01
-1.49650738e-01 -7.47908771e-01 4.79674488e-01 4.26935852e-01
-9.44621205e-01 -2.20800668e-01 -1.96936615e-02 -8.46674979e-01
-6.43570244e-01 3.68100613e-01 -1.07264745e+00 1.49856180e-01
1.14951813e+00 1.09733605e+00 -5.36904395e-01 1.40550649e+00
-1.56568110e-01 1.23757422e+00 1.60705056e-02 -4.19362366e-01
-1.65954083e-01 -4.83515114e-01 3.56940836e-01 1.04748523e+00
4.49735641e-01 3.03678691e-01 4.76353988e-02 3.39190960e-01
4.70786780e-01 4.62191910e-01 -6.34823382e-01 -2.77247965e-01
8.41176331e-01 9.79897976e-01 -9.01502013e-01 1.24998689e-01
-8.08325648e-01 1.82457894e-01 3.72184776e-02 1.10911489e-01
-6.37121350e-02 4.61034179e-02 1.02325296e+00 5.48581302e-01
9.14725736e-02 -3.27309221e-01 -5.70491850e-01 -7.77881920e-01
-2.33782277e-01 -1.08767581e+00 7.05123305e-01 -2.42674693e-01
-7.97425747e-01 -3.57133836e-01 2.54437905e-02 -1.16587842e+00
-1.49311036e-01 -3.08473855e-01 -1.10567689e+00 5.47713339e-01
-1.26514328e+00 -5.49153507e-01 -3.84556651e-01 7.24437714e-01
7.78242111e-01 -1.36779934e-01 7.64751375e-01 1.25265792e-01
-9.44909751e-01 4.15275872e-01 1.41880646e-01 -2.48525739e-01
5.45858204e-01 -1.24448407e+00 -4.90031511e-01 1.00933564e+00
3.42693478e-01 8.73549938e-01 6.88843429e-01 -5.17645359e-01
-1.56996202e+00 -7.96672165e-01 9.98741448e-01 -4.83356982e-01
7.54259825e-01 3.44568223e-01 -1.18076801e+00 5.80840945e-01
3.77329029e-02 -8.02156329e-01 1.93571138e+00 7.04930425e-01
1.79874986e-01 -1.81632623e-01 -7.92937398e-01 8.70088279e-01
7.79828548e-01 -1.57542780e-01 -7.26206660e-01 8.98724645e-02
2.85382241e-01 -4.61432666e-01 -1.44185293e+00 2.61635929e-02
7.32024491e-01 -1.02423251e+00 6.65169775e-01 -7.20218539e-01
4.58079755e-01 -5.17036242e-04 5.96952319e-01 -1.13212383e+00
-6.18068576e-01 -5.53154826e-01 -5.47092676e-01 1.21284056e+00
1.50423139e-01 -2.76930839e-01 1.19350111e+00 9.16409075e-01
-2.21183345e-01 -9.54869747e-01 -3.90251964e-01 -4.79882061e-01
-2.62043178e-01 -6.41610742e-01 8.21326435e-01 1.29391026e+00
6.54987514e-01 -7.26349726e-02 -1.02914702e-02 8.32522810e-02
3.26514333e-01 3.04585010e-01 6.63041234e-01 -1.45568895e+00
7.49325380e-02 -1.00635719e+00 -3.41867775e-01 -7.25741446e-01
-5.59086306e-03 -6.08150780e-01 -6.12921417e-01 -1.39964366e+00
6.91831671e-03 -1.33079678e-01 -3.12500715e-01 5.35183489e-01
-2.49340922e-01 -4.11768109e-01 -1.54220685e-01 1.64283216e-01
-5.33138752e-01 8.24789628e-02 1.36422670e+00 3.61394346e-01
-9.23900664e-01 6.20999277e-01 -1.06411290e+00 6.70492947e-01
9.46454346e-01 -3.70958924e-01 -7.20258415e-01 2.40329266e-01
2.52840012e-01 -1.58224553e-01 -1.83027521e-01 -8.20732594e-01
6.24432147e-01 -9.71058547e-01 5.44412613e-01 -4.20618504e-01
-5.45770168e-01 -8.79330814e-01 1.68583557e-01 5.08479059e-01
-3.57361108e-01 2.32260317e-01 5.50195277e-01 1.70720339e-01
-3.39361757e-01 -2.86727220e-01 2.34790370e-01 3.18068899e-02
-1.17574096e+00 6.16056174e-02 -1.09390593e+00 -3.60408932e-01
1.44073462e+00 -7.22465813e-01 -1.85840651e-01 -8.10752660e-02
-6.44873083e-01 6.22352958e-01 2.47902632e-01 8.74767601e-01
7.80460477e-01 -1.17801416e+00 -1.22924164e-01 5.28281987e-01
3.69532057e-03 -2.77554363e-01 5.37065208e-01 9.66733098e-01
-2.12820083e-01 4.44493771e-01 -3.86613369e-01 -3.97548616e-01
-2.11477351e+00 4.35450673e-01 -6.57706037e-02 -1.82370335e-01
-7.34568298e-01 4.75660861e-01 -4.64446425e-01 -8.85903984e-02
5.30995131e-01 -2.45957792e-01 -1.21640337e+00 4.61325169e-01
1.08961451e+00 1.06447136e+00 1.02721691e-01 7.79984891e-02
-1.27920747e-01 1.07805327e-01 -2.10390136e-01 3.91480863e-01
1.60968113e+00 -1.04960509e-01 -1.37652054e-01 8.17280352e-01
4.23696041e-01 3.16315144e-01 -8.88033509e-01 -1.96221486e-01
4.50665385e-01 -4.89965141e-01 5.91986030e-02 -6.04308844e-01
-7.14770317e-01 5.09717703e-01 5.15886545e-01 4.27615374e-01
1.29991984e+00 -2.77872235e-01 2.61947185e-01 5.57325333e-02
1.26334637e-01 -1.03950942e+00 1.69440910e-01 4.70553935e-01
3.05893064e-01 -1.14516497e+00 -7.57545326e-03 -1.75195187e-01
-3.88476074e-01 1.40552390e+00 7.84011602e-01 4.19584930e-01
9.93934810e-01 2.50130713e-01 -1.41072974e-01 -4.16818500e-01
-1.04578137e+00 -7.53833875e-02 8.19870472e-01 5.24180174e-01
9.64073360e-01 2.63407230e-01 -7.64191449e-01 6.75009787e-01
-6.29168570e-01 2.00112790e-01 6.36178732e-01 1.23848212e+00
-6.70773268e-01 -1.54208076e+00 -4.32605684e-01 1.02561986e+00
-6.97457790e-01 -1.38270659e-02 -3.83804113e-01 6.72704458e-01
1.34799436e-01 1.21060300e+00 1.12021178e-01 -5.96318483e-01
5.20025849e-01 3.24985474e-01 5.38473606e-01 -9.72623110e-01
-9.31155264e-01 -3.26542616e-01 -5.55516519e-02 -7.75479794e-01
-5.40250540e-01 -1.22311211e+00 -8.74942243e-01 -8.33352387e-01
-6.60883114e-02 6.00896239e-01 4.98475701e-01 1.03807616e+00
4.14665818e-01 7.17668533e-01 5.50584733e-01 8.12140852e-02
1.52107716e-01 -6.84103251e-01 -3.86039138e-01 3.17886949e-01
-9.89984646e-02 -6.47243977e-01 2.40597166e-02 -6.14541247e-02] | [10.113402366638184, 7.194495677947998] |
01fe9311-1298-4831-aab2-4f2c14c8c057 | hierarchical-and-decentralised-federated | 2304.14982 | null | https://arxiv.org/abs/2304.14982v1 | https://arxiv.org/pdf/2304.14982v1.pdf | Hierarchical and Decentralised Federated Learning | Federated learning has shown enormous promise as a way of training ML models in distributed environments while reducing communication costs and protecting data privacy. However, the rise of complex cyber-physical systems, such as the Internet-of-Things, presents new challenges that are not met with traditional FL methods. Hierarchical Federated Learning extends the traditional FL process to enable more efficient model aggregation based on application needs or characteristics of the deployment environment (e.g., resource capabilities and/or network connectivity). It illustrates the benefits of balancing processing across the cloud-edge continuum. Hierarchical Federated Learning is likely to be a key enabler for a wide range of applications, such as smart farming and smart energy management, as it can improve performance and reduce costs, whilst also enabling FL workflows to be deployed in environments that are not well-suited to traditional FL. Model aggregation algorithms, software frameworks, and infrastructures will need to be designed and implemented to make such solutions accessible to researchers and engineers across a growing set of domains. H-FL also introduces a number of new challenges. For instance, there are implicit infrastructural challenges. There is also a trade-off between having generalised models and personalised models. If there exist geographical patterns for data (e.g., soil conditions in a smart farm likely are related to the geography of the region itself), then it is crucial that models used locally can consider their own locality in addition to a globally-learned model. H-FL will be crucial to future FL solutions as it can aggregate and distribute models at multiple levels to optimally serve the trade-off between locality dependence and global anomaly robustness. | ['Aftab Khan', 'Ian Foster', 'Kyle Chard', 'Matt Baughman', 'Nathaniel Hudson', 'Theodoros Spyridopoulos', 'Omer Rana'] | 2023-04-28 | null | null | null | null | ['energy-management'] | ['time-series'] | [-4.92738634e-02 -2.66244709e-01 -1.92547753e-01 -3.84936482e-01
-2.81255633e-01 -9.38958704e-01 3.33132356e-01 5.73076606e-01
-2.73495764e-02 4.66434270e-01 9.45221484e-02 -5.39330542e-01
-7.56398976e-01 -1.07488751e+00 -5.19840479e-01 -6.35527909e-01
-5.12754023e-01 5.11031687e-01 6.83216751e-02 -2.54652146e-02
-8.22094753e-02 9.89031136e-01 -1.65129912e+00 1.53119534e-01
6.91022873e-01 1.08867741e+00 1.81040704e-01 7.35401213e-01
-1.98193923e-01 5.51481307e-01 -4.16497499e-01 -1.11268900e-01
5.62130928e-01 -5.80535084e-02 -5.66358626e-01 -2.73524702e-01
1.10111028e-01 -2.07275152e-01 2.71642625e-01 7.91182756e-01
5.09648442e-01 -3.18836654e-03 5.32977097e-02 -1.48995531e+00
-2.32107401e-01 4.30966467e-01 -3.59196395e-01 -7.08680823e-02
-1.00854315e-01 5.16263902e-01 5.40143490e-01 1.39912009e-01
4.81308132e-01 1.01654756e+00 7.65190780e-01 6.94611073e-02
-1.43365777e+00 -7.71465778e-01 2.34566361e-01 5.79913706e-02
-9.86279130e-01 -4.03640240e-01 3.99042517e-01 -4.05824989e-01
9.07192230e-01 7.51540840e-01 5.61299682e-01 4.52537566e-01
5.40497661e-01 2.36228079e-01 1.03785408e+00 -1.79870889e-01
5.95942140e-01 6.65952712e-02 -4.13050771e-01 2.74347335e-01
4.27001774e-01 -3.25637450e-03 -5.94672084e-01 -4.39315975e-01
2.68750876e-01 2.55357027e-01 -1.07912011e-01 -8.40167820e-01
-1.13458288e+00 5.11439562e-01 3.82340789e-01 3.16411167e-01
-5.61263323e-01 1.83041826e-01 5.43895602e-01 2.35370278e-01
3.45266312e-01 7.86599219e-01 -1.00913823e+00 6.65855184e-02
-1.09669256e+00 7.05491975e-02 1.07998288e+00 7.68112957e-01
1.12472630e+00 -8.49631727e-02 3.75581324e-01 2.58898616e-01
2.09216893e-01 3.80734324e-01 -6.37923274e-03 -1.32126677e+00
7.91898072e-02 8.25857580e-01 1.24438241e-01 -1.01727867e+00
-5.35961986e-01 -4.42130983e-01 -7.45751917e-01 3.33813041e-01
3.00464511e-01 -3.50936294e-01 -5.83567500e-01 1.71598971e+00
7.96929181e-01 1.57193720e-01 -7.87789747e-02 5.88900864e-01
-3.60791683e-02 4.71255541e-01 3.06657821e-01 -1.10406488e-01
1.04841900e+00 -3.23305786e-01 -4.48735952e-01 -2.79789031e-01
7.95384347e-01 -7.44157255e-01 6.84535146e-01 3.44291776e-01
-7.39184737e-01 -9.13666710e-02 -8.83107305e-01 4.07994092e-01
-9.96396780e-01 -7.15991378e-01 8.97706032e-01 6.92858875e-01
-9.47857678e-01 6.16790891e-01 -9.63296235e-01 -8.19994688e-01
4.56911176e-01 5.35714447e-01 -3.22489500e-01 -1.99070543e-01
-1.03435600e+00 1.01290178e+00 1.51345715e-01 1.02373295e-01
-5.77497303e-01 -1.07034743e+00 -5.48707247e-01 2.49011844e-01
1.74840972e-01 -7.51890302e-01 8.12039435e-01 -8.56797814e-01
-8.73290300e-01 3.66761088e-01 4.01549459e-01 -4.53363955e-01
4.76972252e-01 2.34611541e-01 -7.30358183e-01 -1.25433654e-01
1.03870723e-02 3.45458418e-01 4.10250574e-01 -1.18628824e+00
-9.40477729e-01 -5.56384385e-01 1.07675359e-01 1.09245971e-01
-4.58680809e-01 1.96298987e-01 4.16920990e-01 1.48771247e-02
-1.80264324e-01 -6.85327172e-01 -4.88113910e-01 3.19187015e-01
1.52551621e-01 3.23995203e-01 1.47994637e+00 -6.09109163e-01
1.01899874e+00 -2.01637530e+00 -3.99615496e-01 3.58762443e-01
1.23743355e-01 3.27670366e-01 -2.58264132e-02 8.16526473e-01
2.34544009e-01 4.57920492e-01 1.22564018e-01 1.95441917e-01
1.20810002e-01 3.33240330e-01 2.14814749e-02 4.69602406e-01
1.15750812e-01 3.96487445e-01 -8.68285835e-01 -2.82605857e-01
3.89649451e-01 4.67154264e-01 -2.06558987e-01 4.76774275e-02
-6.35012984e-01 4.57120568e-01 -4.05261248e-01 6.38861239e-01
7.34874189e-01 -1.66241512e-01 6.32048011e-01 -3.91039066e-03
-5.71250558e-01 -4.47631404e-02 -1.33237803e+00 1.36655188e+00
-8.10746670e-01 1.22440279e-01 8.46479714e-01 -6.96712971e-01
8.41711700e-01 2.39170924e-01 8.82218540e-01 -5.56357622e-01
-1.06066652e-01 2.77458608e-01 9.74971578e-02 -3.76398504e-01
2.71051615e-01 -3.45865153e-02 4.90092263e-02 7.51459181e-01
-1.69983089e-01 1.15451636e-02 -1.90680996e-01 -5.58914468e-02
1.46378434e+00 3.54181945e-01 1.98123455e-01 -5.61576784e-01
1.20150670e-01 3.22194844e-01 7.52325654e-01 3.46828848e-01
-4.08700824e-01 8.63172635e-02 2.39559516e-01 -8.14731956e-01
-7.48322308e-01 -7.56724298e-01 -1.04799181e-01 1.36311793e+00
2.13502650e-03 -1.27163425e-01 -2.81350076e-01 -5.35322309e-01
5.39425850e-01 5.98077655e-01 -2.34167829e-01 -1.58941269e-01
-2.35660121e-01 -6.53348386e-01 5.07850885e-01 2.07127899e-01
3.89557153e-01 -6.80687547e-01 -1.19891882e+00 5.08300424e-01
1.98543474e-01 -8.83610964e-01 -4.08706665e-02 7.20683813e-01
-6.13303483e-01 -9.84941840e-01 1.37650371e-01 -2.59066403e-01
4.27493811e-01 3.21106851e-01 9.75092649e-01 -1.81012601e-02
-4.36586052e-01 5.35345018e-01 -1.85419202e-01 -7.17164099e-01
-4.34221625e-01 1.87221959e-01 -3.36021706e-02 -4.12915871e-02
3.19364697e-01 -6.72712028e-01 -7.91168094e-01 4.11908925e-01
-1.02268970e+00 -2.88761139e-01 4.78234321e-01 4.94589210e-01
6.23525620e-01 5.09001315e-01 8.77593040e-01 -9.48876083e-01
2.26859003e-01 -9.75786269e-01 -7.54584789e-01 6.12650335e-01
-8.89005423e-01 -2.15630248e-01 9.28609669e-01 -3.32156599e-01
-9.61412132e-01 3.85291934e-01 4.06972408e-01 -2.85524666e-01
-5.02688587e-01 6.34428918e-01 -5.44975877e-01 -3.14728409e-01
6.73992932e-01 -3.55933160e-01 2.53980398e-01 -4.74009007e-01
3.64072025e-01 8.64693880e-01 2.15583459e-01 -5.64661264e-01
6.60000801e-01 4.99073207e-01 2.29773149e-01 -6.63682163e-01
-2.66917884e-01 -4.11611915e-01 -4.06115770e-01 -2.54360199e-01
4.84005600e-01 -7.44887054e-01 -6.30554855e-01 1.47606358e-01
-6.72537863e-01 -5.41075528e-01 -4.13624316e-01 3.35732579e-01
-3.56860995e-01 -1.48975685e-01 -4.02736664e-02 -7.97980130e-01
-4.66044933e-01 -8.58359873e-01 6.36486590e-01 3.00839305e-01
-3.89345706e-01 -1.09053969e+00 -4.73321304e-02 3.55122238e-01
1.22762489e+00 7.27132499e-01 1.06537533e+00 -7.55940735e-01
-7.32459426e-01 -4.09815997e-01 1.94289535e-02 1.78659543e-01
5.48713386e-01 1.68417662e-01 -1.15075696e+00 -6.13547027e-01
-2.54891310e-02 -1.67872563e-01 3.59403417e-02 1.14490986e-01
1.12327576e+00 -5.21394312e-01 -3.14624310e-01 6.97940707e-01
1.60904515e+00 6.44883513e-02 1.95401311e-01 2.95570284e-01
4.56528544e-01 8.95476997e-01 6.11525297e-01 4.12453562e-01
5.29849231e-01 3.39639723e-01 8.04034472e-01 -2.81764001e-01
1.36890352e-01 -4.94265966e-02 -4.80748489e-02 3.45311522e-01
5.44294059e-01 -2.89388318e-02 -1.31551480e+00 5.30892432e-01
-2.02774715e+00 -1.06636512e+00 6.14259131e-02 2.51990676e+00
3.67379874e-01 -2.13145554e-01 1.30223498e-01 -4.56296199e-04
5.47261715e-01 1.95251301e-01 -1.01026726e+00 -8.62733781e-01
1.43720224e-01 1.58544987e-01 9.96740639e-01 6.24063015e-02
-7.88063705e-01 4.41463470e-01 5.67519331e+00 3.20052475e-01
-1.56939805e+00 1.58393279e-01 6.09260082e-01 -1.40232474e-01
-3.29157084e-01 3.14214468e-01 -4.31758553e-01 4.32212442e-01
1.31448495e+00 -4.11054254e-01 8.30526590e-01 8.75193417e-01
3.74377012e-01 -2.24325389e-01 -9.56320345e-01 3.70648235e-01
-4.64241236e-01 -1.46613789e+00 -6.50171041e-01 4.33864415e-01
6.99218690e-01 5.29761434e-01 -3.49637151e-01 -1.62374452e-01
9.11881864e-01 -9.98527765e-01 4.31757450e-01 4.84695613e-01
5.88148296e-01 -8.56928408e-01 5.72402894e-01 6.82141781e-01
-1.41840804e+00 -3.61539096e-01 -4.73020226e-02 -2.86655754e-01
-1.89847872e-01 5.85872650e-01 -5.86210787e-01 8.00422847e-01
1.06082344e+00 2.70603329e-01 -5.29321074e-01 1.27610779e+00
5.41713297e-01 4.52670008e-01 -8.14999104e-01 1.76701128e-01
-3.30514200e-02 -4.45837565e-02 1.68747395e-01 9.58991349e-01
1.42377958e-01 -3.44618201e-01 2.78487593e-01 5.46759725e-01
2.71110594e-01 9.16514918e-03 -9.90453184e-01 -8.62849876e-02
1.01135349e+00 1.63302362e+00 -6.89035058e-01 2.50931352e-01
-3.35468680e-01 2.61160523e-01 -2.34001707e-02 2.41862550e-01
-2.15358630e-01 -2.00425476e-01 1.17688191e+00 3.09763193e-01
1.12657323e-01 -2.07101792e-01 -3.25762242e-01 -6.29613996e-01
-2.43920133e-01 -1.26822674e+00 6.04897559e-01 -3.64431083e-01
-1.45235932e+00 1.00475810e-01 -1.44291013e-01 -1.00931668e+00
-2.02015832e-01 -1.25822723e-01 -5.66192389e-01 8.53737593e-01
-1.49689615e+00 -1.73634076e+00 -2.95831352e-01 3.85687411e-01
-1.87634915e-01 2.22037882e-01 1.28281260e+00 1.58737242e-01
-2.49320775e-01 8.77577215e-02 4.21083570e-01 -5.18269897e-01
7.16989160e-01 -9.83471513e-01 2.04016134e-01 1.06120431e+00
-1.01902343e-01 6.14965677e-01 5.10686636e-01 -5.43959856e-01
-1.91224623e+00 -1.45357072e+00 7.07973480e-01 -3.55848670e-01
7.53558874e-01 -4.15886402e-01 -7.91625440e-01 7.32237220e-01
1.92406233e-02 2.61022359e-01 1.00203753e+00 2.52373308e-01
-2.73215801e-01 -8.14684093e-01 -1.81688643e+00 2.80845702e-01
7.00623214e-01 -4.72093761e-01 3.50728422e-01 4.73343313e-01
5.94834507e-01 -8.34236741e-02 -1.23399317e+00 3.73769790e-01
5.29392958e-01 -8.85453045e-01 6.19781673e-01 -5.41307449e-01
-2.92449445e-01 -5.36694169e-01 -4.84240681e-01 -1.29338455e+00
-4.58191186e-01 -9.33582902e-01 -4.93400060e-02 1.68085909e+00
1.46603435e-01 -1.09359336e+00 6.99046850e-01 1.17673135e+00
2.09710509e-01 -8.39321911e-01 -8.57728541e-01 -8.69659603e-01
1.62071615e-01 -5.13817728e-01 1.50222659e+00 1.19098032e+00
-4.10637595e-02 -2.48393252e-01 -7.19910190e-02 6.30962312e-01
8.16073596e-01 1.41359389e-01 8.60656083e-01 -1.45316863e+00
-1.01034127e-01 -1.55532122e-01 -5.53609431e-01 7.58520812e-02
-1.72286198e-01 -6.71360731e-01 -2.66418397e-01 -1.61448860e+00
-3.64718199e-01 -1.20398021e+00 -3.62949371e-01 9.13518369e-01
3.31808120e-01 -1.49671331e-01 4.10617709e-01 1.12016812e-01
-4.22481954e-01 -1.16389707e-01 6.47993743e-01 6.22478724e-02
-2.20452473e-01 1.28904842e-02 -9.34824646e-01 4.73251015e-01
1.10722947e+00 -4.44992661e-01 -4.57267880e-01 -6.08973980e-01
2.68104464e-01 1.64268371e-02 2.43354246e-01 -1.17269313e+00
5.24379075e-01 -7.11394966e-01 3.35112840e-01 -1.83904201e-01
-4.57880795e-02 -1.54022217e+00 1.14941442e+00 4.61370140e-01
-3.16643454e-02 2.63647810e-02 1.22748516e-01 4.72931385e-01
1.85688093e-01 3.04952383e-01 7.38664925e-01 -2.04567373e-01
-3.86025190e-01 2.75234640e-01 -1.12225957e-01 -1.89338490e-01
1.40789855e+00 -2.38552794e-01 -6.00727856e-01 -1.24455705e-01
-2.70706028e-01 8.52520347e-01 1.16045845e+00 4.50419515e-01
-1.57085881e-01 -8.18416893e-01 -2.79966325e-01 3.61775726e-01
5.58006540e-02 2.28292629e-01 1.77590668e-01 6.00173771e-01
-4.77526367e-01 2.94224750e-02 -3.32122147e-01 -4.09715772e-01
-1.06292808e+00 4.86230999e-01 4.36060429e-01 -2.16262355e-01
-3.43943596e-01 4.40119028e-01 -3.09509933e-01 -9.09162998e-01
2.10559040e-01 -1.14672050e-01 5.52290499e-01 1.69807673e-01
5.10516524e-01 4.62455302e-01 4.35571998e-01 -3.51076990e-01
-5.72022438e-01 1.42316017e-02 2.84149438e-01 4.47342813e-01
1.79111242e+00 -1.80625036e-01 -4.25137699e-01 2.91759640e-01
7.75525749e-01 -5.31565994e-02 -1.39763570e+00 9.14347768e-02
2.29279533e-01 -5.57176471e-01 2.32050791e-01 -1.16338885e+00
-1.25711191e+00 5.80612242e-01 8.43325615e-01 5.23465335e-01
1.23940349e+00 -2.97464162e-01 6.47682905e-01 -4.61000465e-02
9.39445615e-01 -1.21664393e+00 -5.83756447e-01 -9.04874727e-02
2.79760212e-01 -8.96405458e-01 2.54034817e-01 -1.79427192e-02
-3.26212615e-01 9.19197738e-01 4.31808233e-01 2.96520233e-01
8.48055482e-01 8.00243616e-01 3.07899356e-01 -1.23245493e-01
-1.04843903e+00 -1.39549494e-01 -4.78517562e-01 1.03168142e+00
7.98794180e-02 5.39771557e-01 1.20994821e-01 2.98759490e-01
6.24231324e-02 2.81464130e-01 2.27747172e-01 1.25710082e+00
-3.09558600e-01 -1.37744009e+00 -5.45673490e-01 8.75516832e-01
-3.56446594e-01 4.55396533e-01 -2.79824615e-01 4.38149720e-01
5.68230331e-01 1.13942707e+00 -9.65442285e-02 -3.55665058e-01
2.02593699e-01 2.23316833e-01 -1.37224808e-01 -6.31808937e-01
-1.12086058e+00 -1.71998903e-01 6.34741783e-02 -7.22079396e-01
-1.07056268e-01 -7.41236091e-01 -1.10945308e+00 -6.45420730e-01
-4.39884454e-01 -4.06994857e-02 1.22662795e+00 5.99420726e-01
1.00577497e+00 1.82875365e-01 7.96567976e-01 -9.57793891e-01
-7.12907016e-01 -2.36919329e-01 -6.37403667e-01 -3.77859510e-02
2.37497672e-01 -2.78504997e-01 -3.57691795e-01 -2.65719950e-01] | [5.931283473968506, 6.5209808349609375] |
f5416041-ebfb-48fe-9fb0-c7260e28da1c | nystrom-method-for-accurate-and-scalable | 2302.09726 | null | https://arxiv.org/abs/2302.09726v1 | https://arxiv.org/pdf/2302.09726v1.pdf | Nystrom Method for Accurate and Scalable Implicit Differentiation | The essential difficulty of gradient-based bilevel optimization using implicit differentiation is to estimate the inverse Hessian vector product with respect to neural network parameters. This paper proposes to tackle this problem by the Nystrom method and the Woodbury matrix identity, exploiting the low-rankness of the Hessian. Compared to existing methods using iterative approximation, such as conjugate gradient and the Neumann series approximation, the proposed method avoids numerical instability and can be efficiently computed in matrix operations without iterations. As a result, the proposed method works stably in various tasks and is faster than iterative approximations. Throughout experiments including large-scale hyperparameter optimization and meta learning, we demonstrate that the Nystrom method consistently achieves comparable or even superior performance to other approaches. The source code is available from https://github.com/moskomule/hypergrad. | ['Makoto Yamada', 'Ryuichiro Hataya'] | 2023-02-20 | null | null | null | null | ['bilevel-optimization'] | ['methodology'] | [-4.57592934e-01 -2.24021778e-01 -2.89977044e-01 -1.34522811e-01
-7.49257863e-01 -3.70593399e-01 4.01778251e-01 -2.21675619e-01
-8.12257349e-01 9.87055242e-01 -1.60496324e-01 -3.86589140e-01
-3.88228834e-01 -1.59030646e-01 -6.18149698e-01 -9.68430400e-01
-1.35389036e-02 5.08541763e-01 -2.62174457e-01 -3.04204255e-01
5.11208177e-01 3.85187805e-01 -1.11651957e+00 -3.45750034e-01
1.00537872e+00 1.05342448e+00 -1.30319968e-01 6.11569881e-01
-5.87311126e-02 7.52010584e-01 -1.67624980e-01 -3.10887218e-01
6.50490046e-01 -2.06321537e-01 -6.23605132e-01 -1.15682453e-01
6.30535364e-01 -3.72730941e-01 -3.42330992e-01 1.19356334e+00
6.22988880e-01 5.34206986e-01 5.64350545e-01 -1.25419188e+00
-3.68224174e-01 3.84226412e-01 -5.76712489e-01 1.05119489e-01
6.74210605e-05 7.88250193e-02 1.14642239e+00 -1.64205909e+00
3.09376001e-01 1.09565568e+00 1.11094749e+00 1.67926654e-01
-1.25285470e+00 -6.09425247e-01 3.35632712e-02 3.55119675e-01
-1.67564952e+00 -3.63987297e-01 7.06567526e-01 -2.91955948e-01
8.53865206e-01 3.06856245e-01 7.62833655e-01 5.96872211e-01
-8.03131983e-03 9.28374708e-01 1.07984293e+00 -3.82206500e-01
2.18292624e-01 1.73172802e-01 2.41948590e-01 1.17773235e+00
2.00574994e-01 1.17879972e-01 -3.84574831e-01 -6.02207661e-01
8.88134897e-01 -2.80847341e-01 -5.44117570e-01 -6.34726882e-01
-1.31243563e+00 1.14945185e+00 4.16422486e-01 5.01429848e-02
-5.28963268e-01 4.19136792e-01 3.72368455e-01 2.37162262e-01
4.24864531e-01 5.33124447e-01 -4.15362865e-01 -2.87694961e-01
-9.85486031e-01 4.10690218e-01 1.38676906e+00 7.03605592e-01
7.29319870e-01 4.30980355e-01 2.99708486e-01 1.03098762e+00
6.07925117e-01 5.49921155e-01 6.05992019e-01 -1.51403141e+00
3.32788944e-01 1.96190789e-01 2.42566690e-01 -1.10752738e+00
-5.44176936e-01 -6.59555793e-01 -1.01376271e+00 2.66105801e-01
8.08831930e-01 -4.35959399e-01 -5.69230199e-01 1.41611099e+00
7.92792141e-01 4.10482258e-01 3.09797935e-02 1.20501983e+00
6.18948698e-01 6.42809212e-01 -3.81645262e-01 -3.04118603e-01
8.70035946e-01 -1.34809852e+00 -8.32480907e-01 2.65768021e-02
6.30861402e-01 -8.90739202e-01 1.13500810e+00 4.81376588e-01
-1.24020290e+00 -3.58999558e-02 -1.08873832e+00 -9.33697224e-02
-2.06899717e-01 3.36042523e-01 8.00290585e-01 4.76171792e-01
-1.02726793e+00 9.10643041e-01 -8.76795769e-01 1.78776890e-01
-1.68634895e-02 4.19161588e-01 -3.03679425e-02 4.02989089e-01
-1.19314611e+00 7.94067383e-01 4.98771161e-01 6.07416451e-01
-5.00164509e-01 -1.00785434e+00 -6.41370595e-01 -1.09856144e-01
3.75676125e-01 -7.19196200e-01 1.43551028e+00 -7.95798600e-01
-2.05784416e+00 4.00658607e-01 -1.39984936e-01 -3.31617981e-01
8.33386242e-01 -4.38357860e-01 3.82449716e-01 1.10562421e-01
-3.47607106e-01 3.11740905e-01 1.00166929e+00 -9.43626344e-01
-4.26007926e-01 -1.16445579e-01 -1.80551067e-01 5.57181776e-01
-6.30535245e-01 -3.73480052e-01 -4.75323886e-01 -6.26516402e-01
4.46932763e-01 -1.11693537e+00 -3.93645316e-01 2.77780592e-01
-1.62990600e-01 -1.21208690e-01 4.01168376e-01 -7.24951029e-01
1.30317295e+00 -1.83171141e+00 2.90160775e-01 5.74522674e-01
2.65640438e-01 3.76953095e-01 -9.54445451e-02 4.86807168e-01
-3.28341387e-02 -1.78599060e-01 -3.59966844e-01 -2.58356243e-01
1.58436164e-01 2.11511716e-01 -1.06559113e-01 7.49051392e-01
-2.62203753e-01 7.20237732e-01 -9.11340773e-01 -3.79288703e-01
-3.53442319e-02 8.51480722e-01 -5.42046368e-01 -1.07692353e-01
1.95180967e-01 1.72668189e-01 -4.15290922e-01 4.06069398e-01
6.07414842e-01 -5.43573737e-01 1.89750403e-01 -5.73741496e-01
-1.82798281e-01 1.01215251e-01 -1.83815014e+00 1.41336858e+00
-5.51781356e-01 6.47102833e-01 5.18632710e-01 -1.23538721e+00
6.11026764e-01 3.55837971e-01 4.92157251e-01 -3.86995047e-01
1.48872524e-01 5.91663599e-01 -2.49576539e-01 -2.79968441e-01
2.57163107e-01 1.14396363e-01 6.35177732e-01 1.86749831e-01
-4.41799946e-02 -8.16185623e-02 6.13801599e-01 8.75901058e-02
6.32747173e-01 5.45803346e-02 2.39464536e-01 -4.55367416e-01
8.84537935e-01 2.20800027e-01 6.10553861e-01 6.16699100e-01
7.42825940e-02 3.55487525e-01 3.34008455e-01 -5.65535009e-01
-1.13543677e+00 -1.00301433e+00 -2.98053145e-01 8.91426325e-01
-1.43756211e-01 -3.12659591e-01 -8.54518771e-01 -1.83386847e-01
2.85485238e-01 3.47909659e-01 -3.42703551e-01 7.41931349e-02
-7.22886860e-01 -1.02950907e+00 4.71175551e-01 2.33647004e-01
7.79764712e-01 -3.84078890e-01 -1.13882363e-01 2.60948241e-01
-1.76261678e-01 -7.91079938e-01 -6.81625187e-01 -1.11673260e-02
-1.33477163e+00 -1.09188426e+00 -1.05394721e+00 -7.70806968e-01
7.35258162e-01 -8.45799968e-02 9.52929497e-01 1.82385385e-01
-2.75026321e-01 4.46637630e-01 2.16305390e-01 1.09469272e-01
-1.63639188e-01 1.04665436e-01 2.54662842e-01 -4.12478745e-02
2.99461670e-02 -4.92082238e-01 -7.39370942e-01 3.10011923e-01
-5.28776228e-01 -1.47200555e-01 5.35193443e-01 1.37523925e+00
8.09247434e-01 -2.07847863e-01 2.61191100e-01 -8.12328339e-01
1.02975357e+00 -3.49723727e-01 -1.08254957e+00 1.22127853e-01
-1.10379827e+00 2.59755582e-01 6.90282464e-01 -7.13165164e-01
-1.00946593e+00 1.04180090e-01 -1.53371394e-01 -5.52472770e-01
4.56954539e-01 7.50025511e-01 6.39107049e-01 -7.15949059e-01
6.25920713e-01 1.99278980e-01 4.35055703e-01 -5.63880265e-01
3.85944039e-01 3.66703808e-01 2.50436932e-01 -5.50478578e-01
8.77201080e-01 4.08766240e-01 2.30550304e-01 -9.80287910e-01
-8.24787140e-01 -7.21758604e-01 -3.54931414e-01 -7.38328174e-02
3.06297690e-01 -8.60877335e-01 -1.05396163e+00 5.65987289e-01
-8.49210083e-01 -5.06690979e-01 -7.46022090e-02 9.51131582e-01
-7.60008395e-01 5.10794699e-01 -1.03956318e+00 -7.34375298e-01
-6.53251767e-01 -9.26453531e-01 4.17547494e-01 1.54300004e-01
-4.82854545e-02 -1.53307009e+00 1.53226510e-01 2.65653610e-01
5.10326385e-01 -1.29629383e-02 3.86877328e-01 -3.23834270e-01
-3.32528889e-01 -2.28756383e-01 3.89937572e-02 4.76303935e-01
-2.11123958e-01 6.55098483e-02 -4.20388967e-01 -5.29484451e-01
2.69457638e-01 -3.38851780e-01 6.39036596e-01 4.78071570e-01
6.37257159e-01 -7.94000328e-01 9.47482809e-02 1.25328088e+00
1.45799482e+00 -1.27207518e-01 2.42811084e-01 6.92251742e-01
6.37776136e-01 2.80087054e-01 6.52812004e-01 6.09853864e-01
2.91379601e-01 2.89209753e-01 2.97751632e-02 -2.09889576e-01
1.76224858e-01 -2.34579500e-02 2.05920905e-01 1.23235559e+00
-1.66502833e-01 5.06163061e-01 -1.01756406e+00 2.55163401e-01
-2.18419766e+00 -7.90314078e-01 -2.70578772e-01 2.09334183e+00
1.17303503e+00 -2.08532915e-01 5.69627732e-02 6.96885586e-02
4.09282386e-01 -1.82557151e-01 -7.67614484e-01 -5.30813038e-01
4.97252075e-03 -1.35214046e-01 8.30310762e-01 9.31310058e-01
-9.97286558e-01 8.18010688e-01 6.91809464e+00 9.95643497e-01
-1.05161130e+00 2.23756954e-01 3.97709042e-01 -2.54510939e-01
4.81069013e-02 -1.15637794e-01 -9.29755688e-01 2.40677789e-01
6.30793154e-01 -1.98232591e-01 9.64645565e-01 8.70919943e-01
3.00921172e-01 -2.46262345e-02 -7.26420224e-01 1.04505217e+00
-2.78273635e-02 -1.29200256e+00 -3.53289217e-01 -1.43467754e-01
1.01526642e+00 2.79842049e-01 1.88588277e-01 1.16494961e-01
9.45535675e-02 -7.12542892e-01 4.03670490e-01 4.00799543e-01
2.95581609e-01 -7.01057851e-01 5.03995061e-01 3.42317134e-01
-1.06987071e+00 -2.35814303e-01 -4.87590224e-01 -8.04576501e-02
5.00085689e-02 7.70782650e-01 -6.91265285e-01 -1.24520669e-02
6.45005763e-01 4.63379949e-01 -1.97673529e-01 1.36643577e+00
-3.34246010e-01 6.41060948e-01 -7.69942522e-01 -3.35367501e-01
6.03323817e-01 -1.03003967e+00 7.44215429e-01 1.08629715e+00
2.29714289e-01 2.76668277e-02 6.71465695e-02 6.98676765e-01
8.49840790e-02 5.56908548e-01 -1.61951438e-01 -2.89765373e-02
2.68577904e-01 1.43897784e+00 -4.40031081e-01 -3.86961430e-01
-4.11264896e-01 8.28120589e-01 5.37989974e-01 9.49235022e-01
-6.83147609e-01 -6.93850517e-01 7.27039635e-01 -2.90419012e-01
3.40542972e-01 -5.34775317e-01 -1.95841372e-01 -1.17450345e+00
2.21621528e-01 -1.04111362e+00 3.54148805e-01 -4.71317500e-01
-1.08355403e+00 4.36245412e-01 -4.86876890e-02 -8.58881056e-01
-5.10759890e-01 -8.62328231e-01 -3.84041846e-01 7.51216114e-01
-1.58413076e+00 -6.46384299e-01 -8.19377303e-02 5.92672527e-01
1.88238233e-01 -1.33177072e-01 4.78687137e-01 4.01274085e-01
-6.44552648e-01 7.10289061e-01 9.55352128e-01 -5.27189635e-02
5.64841926e-01 -1.30956268e+00 -1.18884922e-03 4.42510903e-01
-9.47203860e-02 8.36618841e-01 7.70563900e-01 -4.16315585e-01
-1.69895375e+00 -5.07606566e-01 6.77732050e-01 2.42249772e-01
1.12273049e+00 8.70489478e-02 -1.04787040e+00 5.36186278e-01
9.44502279e-02 -6.27459139e-02 4.72409129e-01 5.73086590e-02
-1.15102150e-01 -2.22039774e-01 -9.92169857e-01 7.15554655e-01
6.24908149e-01 -2.66634762e-01 -1.02605805e-01 7.79773295e-01
1.70682237e-01 -7.10723341e-01 -1.25979376e+00 2.54340112e-01
6.34103656e-01 -6.51257932e-01 1.22557819e+00 -4.26492304e-01
-3.06067728e-02 -2.37791002e-01 6.60054535e-02 -1.37078011e+00
-2.69621789e-01 -9.95536923e-01 -5.57626426e-01 7.19497025e-01
5.53214729e-01 -1.17160237e+00 8.01569402e-01 7.65471339e-01
1.80704296e-01 -1.24638009e+00 -9.72705960e-01 -8.73302996e-01
2.25522250e-01 4.05243924e-03 7.75030181e-02 1.06899571e+00
5.26011363e-03 3.96516621e-02 -3.81151199e-01 1.05137900e-01
1.12922907e+00 -1.27684539e-02 5.67039490e-01 -9.23006713e-01
-4.15677130e-01 -6.69269204e-01 1.34057803e-02 -1.17634022e+00
3.58202517e-01 -9.95150745e-01 -1.20922931e-01 -1.23501205e+00
-1.82145655e-01 -4.82692599e-01 -1.83423772e-01 3.68329853e-01
-2.12605089e-01 5.49219072e-01 8.58770013e-02 3.68791848e-01
-2.19444543e-01 6.53556585e-01 1.30604064e+00 4.47914004e-02
-4.21065837e-01 -6.36147261e-02 -2.43264273e-01 1.03140569e+00
1.24577546e+00 -2.37626240e-01 -3.18708420e-01 -3.85606408e-01
5.40620625e-01 -3.61744221e-03 1.54057369e-01 -7.27777719e-01
6.04739726e-01 -3.69701944e-02 2.29934052e-01 -1.68244228e-01
5.20927966e-01 -4.08352047e-01 3.37585397e-02 7.02155650e-01
-2.87995249e-01 2.18509302e-01 1.69540703e-01 2.90174961e-01
-2.84777015e-01 -7.29271829e-01 7.47168243e-01 -4.58126701e-02
-4.86912012e-01 3.03266108e-01 -4.17509288e-01 3.29529703e-01
5.02706468e-01 -9.50977728e-02 -6.07298724e-02 -4.62347150e-01
-6.83493316e-01 4.36378419e-01 2.20132068e-01 -1.45243734e-01
8.17517698e-01 -1.44897735e+00 -7.01328516e-01 1.11449555e-01
-6.47250652e-01 -2.41044536e-01 -1.40963212e-01 1.40319133e+00
-8.84100616e-01 2.94021815e-01 2.57354170e-01 -5.60626268e-01
-1.21436000e+00 1.85643002e-01 7.39774108e-01 -2.12265283e-01
-5.37713587e-01 8.66113544e-01 -3.09364557e-01 -7.99498260e-01
5.84706903e-01 2.17335541e-02 2.05043182e-02 -1.09193679e-02
4.55656856e-01 9.05293643e-01 -3.17700543e-02 -4.15021390e-01
-1.11749664e-01 8.59316051e-01 6.31543547e-02 -2.70207226e-01
1.19275928e+00 -8.49573612e-02 -4.46353376e-01 4.03604746e-01
1.72124624e+00 -3.31393749e-01 -1.27015769e+00 -3.66711766e-01
-7.73840323e-02 -4.68551010e-01 5.23482382e-01 -3.74994487e-01
-1.21103382e+00 6.21228993e-01 6.79384410e-01 -1.99970081e-01
8.94832015e-01 -6.39255524e-01 7.87652850e-01 1.24139500e+00
-1.19036190e-01 -1.61144817e+00 2.71312054e-02 7.36327231e-01
9.70276952e-01 -1.34848738e+00 3.74221742e-01 -3.78226072e-01
-4.42334205e-01 1.30683494e+00 4.09358144e-01 -4.24878687e-01
9.20751154e-01 1.76681697e-01 4.42263573e-01 1.20297529e-01
-7.22034752e-01 1.63843945e-01 4.69086528e-01 1.61753535e-01
6.04172587e-01 -3.35379332e-01 -8.84042144e-01 -2.35668346e-01
-2.51821905e-01 -8.01210776e-02 2.88618952e-01 7.12941229e-01
-2.93173462e-01 -9.90356326e-01 -5.29832125e-01 3.59373182e-01
-4.61319327e-01 -3.26029658e-01 -1.60954073e-02 7.59581566e-01
-7.37243950e-01 6.12010956e-01 -1.58419877e-01 1.65789351e-01
1.59832418e-01 7.24510401e-02 5.24168253e-01 2.18717694e-01
-6.68375552e-01 1.31843314e-01 9.95137449e-03 -7.41402447e-01
-2.23458797e-01 -6.33573413e-01 -1.39511228e+00 -4.02974755e-01
-3.74396950e-01 5.31578302e-01 1.05082226e+00 6.26766443e-01
1.03865720e-01 -1.84252895e-02 6.23777151e-01 -9.80872810e-01
-1.48306441e+00 -6.28425598e-01 -5.18942535e-01 2.72498578e-01
3.88576388e-01 -6.46774828e-01 -8.31726432e-01 -2.57956833e-01] | [6.940527439117432, 4.21420955657959] |
efd807d2-c6eb-4d6d-b53e-dae62bad7a94 | self-learning-with-rectification-strategy-for | 2004.08055 | null | https://arxiv.org/abs/2004.08055v1 | https://arxiv.org/pdf/2004.08055v1.pdf | Self-Learning with Rectification Strategy for Human Parsing | In this paper, we solve the sample shortage problem in the human parsing task. We begin with the self-learning strategy, which generates pseudo-labels for unlabeled data to retrain the model. However, directly using noisy pseudo-labels will cause error amplification and accumulation. Considering the topology structure of human body, we propose a trainable graph reasoning method that establishes internal structural connections between graph nodes to correct two typical errors in the pseudo-labels, i.e., the global structural error and the local consistency error. For the global error, we first transform category-wise features into a high-level graph model with coarse-grained structural information, and then decouple the high-level graph to reconstruct the category features. The reconstructed features have a stronger ability to represent the topology structure of the human body. Enlarging the receptive field of features can effectively reducing the local error. We first project feature pixels into a local graph model to capture pixel-wise relations in a hierarchical graph manner, then reverse the relation information back to the pixels. With the global structural and local consistency modules, these errors are rectified and confident pseudo-labels are generated for retraining. Extensive experiments on the LIP and the ATR datasets demonstrate the effectiveness of our global and local rectification modules. Our method outperforms other state-of-the-art methods in supervised human parsing tasks. | ['Zhiyuan Liang', 'Jianbing Shen', 'Jiahao Gong', 'Tao Li', 'Sanyuan Zhao'] | 2020-04-17 | self-learning-with-rectification-strategy-for-1 | http://openaccess.thecvf.com/content_CVPR_2020/html/Li_Self-Learning_With_Rectification_Strategy_for_Human_Parsing_CVPR_2020_paper.html | http://openaccess.thecvf.com/content_CVPR_2020/papers/Li_Self-Learning_With_Rectification_Strategy_for_Human_Parsing_CVPR_2020_paper.pdf | cvpr-2020-6 | ['human-parsing'] | ['computer-vision'] | [ 0.37861693 0.8524986 -0.3140355 -0.74566716 -0.5229971 -0.2433031
-0.24782343 -0.17021653 -0.00898938 0.5671691 0.23714522 0.19766113
0.09009293 -0.9431665 -0.8351458 -0.6391111 0.21616374 0.39422834
0.4028415 -0.03954855 -0.0188586 0.1615017 -1.5149848 0.35294348
1.1315161 0.9659557 0.17588964 0.39052722 -0.45067132 0.89883375
-0.40776893 -0.425372 0.1618843 -0.55226964 -1.0789226 0.5503321
0.57220834 -0.33049732 -0.34196067 1.494535 0.27157912 -0.02200383
0.35293895 -1.0414344 -1.0317702 0.6978749 -0.6915712 -0.25355884
0.37219688 0.04878882 1.0587215 -0.74737704 0.87422335 1.5338758
0.8275381 1.0100124 -1.0333407 -0.67422473 0.4102301 0.09958456
-1.0757078 -0.12012105 1.1243699 -0.17391646 0.63110805 0.05739283
0.7304443 0.8381611 0.20239851 0.80717933 1.1419101 -0.39578965
-0.01033774 -0.38606688 0.35382244 1.5271486 0.2288368 -0.02318998
-0.5510937 0.22942302 1.0094832 -0.0172215 -0.15206318 -0.37042832
-0.9040916 0.7187925 1.0343865 0.15931895 -0.25795615 0.19440055
0.08988513 0.14027901 0.41361699 0.15481825 -0.51224786 0.6844369
-0.5715181 -0.3167886 0.5672189 1.2117796 1.187021 -0.18755548
-0.15217477 1.0178984 0.5164124 0.3437611 0.39771378 -1.119385
0.49494633 1.118299 -0.53162944 -1.2339642 -0.652517 -0.4243158
-1.1353 -0.05053594 0.6423264 0.02756467 -1.501721 1.9887842
0.621985 0.23498806 -0.17050035 0.9296805 1.2269961 0.41058585
0.21386296 -0.20228231 1.4737618 -1.2318228 -0.937534 -0.5760259
0.57087857 -0.3170086 1.0465623 0.12243246 -0.96078634 -0.9192075
-0.9932644 -0.3672927 -0.13606645 0.22600201 0.65654576 0.18798465
-1.086827 0.7048408 -0.729807 -0.1431504 0.62304324 0.47467107
-0.531365 -0.27328935 -1.1684865 0.48769015 0.3128691 0.44124138
-0.3741405 -0.39307958 -1.2291684 -0.11234317 0.59110624 -0.85582894
0.9714693 -0.9353459 -1.4061538 1.173684 -0.12545764 0.16694996
0.27692932 0.14961934 -0.22892429 0.19041759 0.38483843 1.0394756
1.0410074 -1.3643689 -0.609637 -0.5895771 -0.11853322 0.2868617
-0.06721066 -0.5429246 -0.7050226 -0.67576796 1.1919249 -0.93053734
-0.28388706 0.11999731 -0.66763055 -0.4076255 0.3267381 -0.93842953
1.1060189 -2.1379564 0.39510348 0.35431316 0.50854623 -0.15093273
-0.24103028 -0.3732988 0.05466731 0.23016961 -0.5261772 -0.39046124
-0.45182166 0.67058563 0.07829564 0.3498117 0.2884875 1.1193879
-1.1174449 -1.0033162 0.02482061 0.31416416 -0.53552896 0.16145355
-0.08946621 0.6756424 -0.7034378 0.84223276 0.8340996 -0.4672947
0.30267355 -0.55934185 0.46386567 0.28254193 -1.2159793 1.9149144
-0.17941928 -0.03435658 0.24695155 -0.9559137 1.0644667 -0.18884927
0.3337173 -0.6252683 0.11639876 0.04046303 -0.28713703 -0.47848916
0.1163924 -0.12924902 -0.08963037 0.10468538 0.35272416 -0.11353336
-0.20999306 0.19585054 1.0327375 0.3287271 0.1152299 -0.16885869
0.63132036 -0.02523067 1.0128305 0.46312422 -0.33307248 0.7913381
0.41020182 -0.5244998 -0.579126 -1.0864302 0.05811956 1.1522875
0.5165261 -0.38579768 -0.9752124 -1.2922698 -0.01688503 0.10364743
-0.8458021 -0.36110452 -0.8243306 -0.44017783 0.3104552 0.78842926
0.9364565 -1.4145879 -0.12011655 0.2919105 -0.43600637 -0.9620906
-0.68185115 0.17216305 -1.083201 -1.1343926 -0.28101483 -1.4224367
1.3540789 0.0652381 0.9761011 0.69533813 -0.2602924 0.2344736
-0.21408983 0.11451919 -0.48833168 -0.10353047 -0.3288377 -0.09041195
0.01153482 -0.31915227 -0.5588944 0.40668038 -0.54960847 0.20574893
0.5542454 1.1192898 1.142548 0.06749359 0.49498978 -1.3026414
0.26663107 -0.01248637 -0.28899208 0.44209027 -0.66361994 0.4126103
0.444731 -0.527491 -1.2343291 0.5179398 -0.05366619 -0.29929492
-0.06567462 0.32009354 -0.49018 -0.12139805 0.48280123 0.01793094
0.00966175 -0.3835818 0.6430912 0.39913118 0.8779124 -0.54894006
0.6863304 0.3896736 0.17607355 -0.4650058 -1.1967353 -0.37065974
-0.93159467 -0.29240057 1.1327538 -0.77558523 -0.34433788 0.7123496
-1.0600233 -0.3367608 -0.6067219 0.10047112 -0.49246565 0.6059792
-1.0511233 -0.34071594 -0.34032 -0.99556565 1.3520421 0.48391706
0.17657912 -0.93759835 -0.18663031 0.52286845 -0.22464573 0.13256885
0.9491522 -0.2745095 -0.48940852 0.03458258 -0.37400535 0.3875613
0.3024557 -0.3238386 -0.9592194 -0.03101125 0.16101943 -0.40175086
1.0092424 0.5017664 1.3051476 -0.32295883 -0.48016512 0.7104809
1.0241231 -0.29424012 0.56580406 -0.07151215 1.2791188 0.8815649
0.71770155 0.03041032 0.72171825 0.1964432 0.432955 -0.3858987
-0.79594874 -0.8454666 0.04652878 1.0628548 -0.07788658 0.04961447
-0.55809075 0.23615564 -1.8695903 -0.5182827 -0.28766698 1.8886466
0.95552844 0.1741514 -0.28324845 0.04576752 1.1882862 0.06315616
-0.68507737 -0.05681987 -0.10503308 0.10660036 0.44708714 0.5922725
-1.0651911 1.3128402 6.157525 0.53142864 -0.7626594 0.0202517
0.7412651 0.6465467 -0.3250277 0.03090611 -0.7341061 0.13066208
0.23634525 0.5375399 0.59802514 0.924943 -0.473342 0.1667073
-1.0251521 1.0519521 0.16721569 -1.0331877 0.11974499 0.03491123
0.62893087 -0.2852539 -0.2579189 0.38010797 0.3995568 -0.89647114
0.6066116 0.47512606 0.91259646 -0.33813292 0.6427168 0.28959706
-1.5635816 -0.03461931 -0.6676924 0.1815351 -0.03071387 0.6297674
-0.5364689 0.49921447 0.8172995 0.8357468 -0.74152523 0.44904664
-0.9144645 0.49396574 -0.2952553 0.22373194 -0.16999382 -0.26148435
0.23777369 0.96218175 -0.09072001 0.41827297 0.26904938 0.9927456
-0.38974187 0.05004965 -0.3255252 0.35377243 0.3797798 1.4044818
-0.8875063 -0.34123775 -0.34289846 1.1598537 0.8452562 0.31008935
-0.6440107 -0.16955644 -0.02513907 0.08508731 0.08128372 0.0332072
-0.61740935 -1.2042317 0.19323389 -0.6166562 0.75589865 -0.79419106
-1.4645731 0.49829856 -0.20658314 -0.8647586 0.01182692 -0.52535343
-0.41071424 0.6522454 -1.4382803 -1.4267664 -0.6190533 0.73572254
0.574121 0.298319 0.6794834 -0.08757403 -0.5040074 0.68102455
-0.72034055 0.4013289 0.5483465 -1.2937074 0.31871894 0.72389096
0.15742607 0.48634744 0.1612561 -1.140723 -1.2516875 -1.138174
0.86349297 -0.20312977 0.37510976 -0.4639998 -1.2221929 0.73650813
-0.414744 0.58089566 0.22326414 0.1519417 -0.5573087 -0.09248758
-1.4512815 0.32053596 1.8129361 -0.43577892 -0.9109689 0.34846702
0.8739588 -0.6003772 -0.8210225 0.74725145 0.35528272 -0.6893873
0.83993983 -0.54889506 0.20850228 -0.29986262 0.07800775 -1.1519192
-0.82301515 -0.3305415 0.02613051 1.422487 0.53479123 -0.5722564
1.0231609 0.59780705 -0.29836953 -0.7049295 -1.0774769 -0.42138338
-0.08814879 -0.10408361 0.51638407 0.9556634 0.0388468 0.5199057
-0.30475193 0.29572284 0.71689266 0.12614885 0.47812882 -1.3432221
-0.13223913 -0.06394137 -0.48008746 -1.2723898 0.43342486 -1.1268792
0.43506134 -1.8207833 0.20840614 -0.60181427 -0.28455034 1.0119923
-0.493966 0.16146828 -0.12547512 0.35852006 -0.6170722 0.38141918
1.8373295 -0.28427652 -0.33894646 -0.20717376 -0.70204556 0.95222765
0.65984684 -0.6176689 -0.40590778 -0.43908912 0.09224306 0.03936728
0.22680844 -0.8680988 0.24006431 -0.19405407 0.6220921 -0.33587247
0.02524265 -0.7524606 -0.3052562 0.47268954 -0.30508322 -0.34101126
-0.14885567 0.7504329 -0.06568296 -0.09880879 0.8531471 -0.29098743
-0.7341417 0.47518665 0.22072022 0.13020077 0.6677045 -0.3562346
-0.40702388 -0.15704826 -1.1562696 0.42224404 0.33637184 0.38933966
0.9282664 -1.2903981 -0.49729803 0.6108264 0.00979188 0.5130579
0.34622863 0.4876405 -0.3085749 -0.17404233 -0.2632758 -0.8257042
-1.1238648 0.66446877 0.38495153 -0.28881532 -0.8343878 1.0876305
0.43929452 -0.69054806 0.30617654 -0.69559026 -0.23711856 -0.23159833
0.15004356 0.24839725 -0.20634496 -0.73715526 -0.48645252 1.1618317
0.09160009 0.25481853 1.1095527 -0.37120825 -0.27413204 0.15981966
0.9889461 0.04635836 -1.2730821 -0.3008066 -0.18616453 -0.14316127
-0.07472392 -0.8110179 -1.5158323 0.7658784 0.5356189 -0.07011125
1.3161732 0.57728064 0.7521823 0.18941312 0.4003043 -1.169823
0.3012603 0.2427905 0.8205104 -1.2461525 0.0500748 -1.330486
-0.6748766 1.0336661 0.97322077 -0.26766858 0.5661884 0.07184414
0.06497679 -0.36203593 -0.23358326 -0.3075283 0.5367154 0.91498613
0.11192487 0.18503904 -0.36800003 0.8748631 -0.16235104 -0.1220731
0.06424419 0.7642718 -0.61406535 -1.0161614 -0.21233748 0.41354465
-0.05651018 0.05532761 -0.5478397 0.6922224 0.51097554 1.0807987
-0.03155202 -0.7042599 0.50194347 0.0582423 0.6540337 -0.82769984
-0.34563616 0.2298874 0.10107227 -0.81632745 -0.40496418 -0.38942283
-2.0957038 0.15646245 -0.55261445 -0.12793162 0.43132752 0.87123126
0.3239279 0.6362573 0.40795422 -0.35289934 -0.52846855 -0.942662
-0.659412 0.8525859 0.18349016 -0.68749565 -0.51576316 0.16190247] | [9.073946952819824, 0.4223184585571289] |
532bae58-9480-4a2f-9ae3-0070cad54663 | bert-memorisation-and-pitfalls-in-low | 2105.00828 | null | https://arxiv.org/abs/2105.00828v2 | https://arxiv.org/pdf/2105.00828v2.pdf | Memorisation versus Generalisation in Pre-trained Language Models | State-of-the-art pre-trained language models have been shown to memorise facts and perform well with limited amounts of training data. To gain a better understanding of how these models learn, we study their generalisation and memorisation capabilities in noisy and low-resource scenarios. We find that the training of these models is almost unaffected by label noise and that it is possible to reach near-optimal results even on extremely noisy datasets. However, our experiments also show that they mainly learn from high-frequency patterns and largely fail when tested on low-resource tasks such as few-shot learning and rare entity recognition. To mitigate such limitations, we propose an extension based on prototypical networks that improves performance in low-resource named entity recognition tasks. | ['Marek Rei', 'Sebastian Ruder', 'Michael Tänzer'] | 2021-04-16 | null | https://aclanthology.org/2022.acl-long.521 | https://aclanthology.org/2022.acl-long.521.pdf | acl-2022-5 | ['low-resource-named-entity-recognition'] | ['natural-language-processing'] | [ 2.40512509e-02 1.11788370e-01 -1.99837133e-01 -4.06552941e-01
-5.92529416e-01 -2.64560789e-01 8.89017522e-01 3.72953534e-01
-1.03235948e+00 1.03914952e+00 4.97621685e-01 -2.29706511e-01
-9.14768055e-02 -1.04973972e+00 -6.34072304e-01 -2.08440095e-01
-2.01693207e-01 5.13457417e-01 2.98709571e-01 -2.65334249e-01
7.81714618e-02 2.36391559e-01 -1.72280741e+00 4.92519289e-01
6.80819213e-01 5.60323477e-01 1.52611807e-01 5.21501660e-01
-6.05449080e-01 1.21398449e+00 -7.17614949e-01 -5.47322869e-01
1.22317346e-02 -1.81196347e-01 -1.19369137e+00 -3.96170914e-01
3.86293411e-01 -1.03384778e-01 -4.38845366e-01 5.87604403e-01
8.82179797e-01 7.45839715e-01 4.81016278e-01 -6.23045206e-01
-9.79831874e-01 7.13007689e-01 1.12026416e-01 8.24358404e-01
4.40915227e-01 1.95777446e-01 1.08523488e+00 -1.05012167e+00
1.08793187e+00 9.57296908e-01 8.80049348e-01 6.45049393e-01
-1.06709099e+00 -4.59266603e-01 2.73998737e-01 2.89739460e-01
-1.38225794e+00 -8.85710657e-01 8.40356424e-02 4.66624312e-02
1.82106090e+00 -1.25546977e-01 1.74278691e-01 1.37481415e+00
1.42112985e-01 8.57572675e-01 9.62391376e-01 -6.70585036e-01
3.52360755e-01 4.29825997e-03 1.57883942e-01 6.48806214e-01
4.89957422e-01 -7.76129365e-02 -1.01134229e+00 -1.31475568e-01
2.66286105e-01 -5.07924147e-02 -1.79878637e-01 -4.85589094e-02
-1.18173015e+00 7.12029517e-01 4.08896863e-01 9.16498303e-01
-3.80476058e-01 -8.63574892e-02 4.06412005e-01 5.65327585e-01
7.48966098e-01 7.84743667e-01 -7.12025642e-01 -3.46246183e-01
-1.18361092e+00 -1.23629414e-01 1.23209143e+00 9.16248202e-01
7.00766861e-01 2.48934522e-01 -1.76375926e-01 9.82615054e-01
-1.62580863e-01 3.29745799e-01 1.02782500e+00 -4.14062291e-01
5.02860546e-01 1.76320314e-01 1.28294945e-01 -7.44802117e-01
-7.21753776e-01 -5.99392235e-01 -7.34440267e-01 -4.01955009e-01
2.59991080e-01 -1.20609656e-01 -1.34265554e+00 1.90204692e+00
-1.94798633e-01 6.88914478e-01 3.27039182e-01 4.21602637e-01
1.08574796e+00 5.77272654e-01 6.44988358e-01 -1.90612838e-01
1.17961752e+00 -8.16205204e-01 -6.85811758e-01 -8.16811085e-01
9.26459193e-01 -3.94563466e-01 1.01473212e+00 -6.78040087e-02
-1.13080406e+00 -5.28033018e-01 -9.32831705e-01 -9.50787365e-02
-9.63926017e-01 -1.68551922e-01 7.73255289e-01 6.81771994e-01
-9.67417300e-01 8.22932124e-01 -8.56051862e-01 -8.44791591e-01
5.12279153e-01 6.07846677e-03 -5.01030505e-01 -3.66606861e-01
-1.54821241e+00 1.46258545e+00 8.36234868e-01 -2.62928635e-01
-7.58183837e-01 -7.73208499e-01 -1.09745800e+00 3.38062227e-01
5.38675189e-01 -7.82783329e-01 1.24984944e+00 -5.08541524e-01
-1.26935220e+00 1.00747502e+00 -2.89275080e-01 -7.66357243e-01
7.32124150e-02 -3.66535097e-01 -8.33805621e-01 -5.50953746e-02
-4.33371812e-02 4.09317613e-01 4.53542680e-01 -9.24917400e-01
-5.86177528e-01 5.65823279e-02 -9.35761184e-02 -4.58039530e-02
-5.82656741e-01 1.59826800e-02 -1.00392610e-01 -6.43754721e-01
-2.97402918e-01 -4.83912945e-01 -1.30138353e-01 -5.83008587e-01
-1.67951629e-01 2.26388536e-02 3.30080837e-01 -5.11895299e-01
1.27083695e+00 -1.89765596e+00 -3.09754670e-01 1.50256502e-02
-1.87318414e-01 7.86413133e-01 -5.07473707e-01 6.58642828e-01
-1.22414939e-02 3.46617401e-01 -1.91441238e-01 -4.95582521e-01
-1.33056164e-01 5.70919752e-01 -4.51421797e-01 8.21265951e-02
4.05493081e-01 1.18392825e+00 -1.23279047e+00 -3.51070583e-01
5.27938642e-02 2.67616659e-01 -1.96324170e-01 1.60652474e-01
-7.26615712e-02 2.71566585e-02 -1.05569027e-01 5.11368990e-01
2.32446387e-01 -5.78100264e-01 2.31388822e-01 2.38661468e-01
2.02799276e-01 7.16393650e-01 -1.19832778e+00 1.85886991e+00
-8.09213579e-01 5.86514711e-01 -3.55729461e-01 -1.11628807e+00
7.00406969e-01 4.09399390e-01 5.06664105e-02 -8.58721972e-01
-7.59401172e-02 1.22528374e-01 -1.90326013e-02 -6.06227398e-01
6.45215094e-01 -6.04732931e-01 -1.27787441e-01 6.67667568e-01
9.32326794e-01 2.56971955e-01 4.42753226e-01 3.12102377e-01
1.48420930e+00 -2.19330326e-01 8.03609014e-01 -1.49667384e-02
1.30646050e-01 -9.61859971e-02 5.02254367e-01 1.36653543e+00
-1.13623329e-01 4.54093695e-01 -2.51658171e-01 -5.32413781e-01
-8.84178996e-01 -1.05907166e+00 -1.67393923e-01 1.71065927e+00
-1.28944650e-01 -5.89326560e-01 -9.17623937e-02 -5.72011113e-01
-8.79115313e-02 1.21080887e+00 -5.27324855e-01 -3.27486366e-01
-4.32315052e-01 -1.06501806e+00 8.04210424e-01 7.27707028e-01
5.52338541e-01 -1.40682161e+00 -6.95600212e-01 6.07273877e-01
-5.40565662e-02 -1.21345413e+00 2.97657639e-01 5.42780161e-01
-7.32633233e-01 -7.64679372e-01 -5.36694169e-01 -6.25625730e-01
3.26706082e-01 2.14732006e-01 1.82718432e+00 2.97412694e-01
-3.31059515e-01 4.90752071e-01 -5.52855790e-01 -6.10465944e-01
-2.88188368e-01 5.81052661e-01 1.70548931e-01 -4.46136564e-01
5.89125097e-01 -6.80928886e-01 -1.81828022e-01 1.15480293e-02
-1.00667620e+00 -4.60286260e-01 7.79946029e-01 1.23003936e+00
1.34451196e-01 1.48487715e-02 8.71407688e-01 -1.17175567e+00
7.96192288e-01 -8.36342156e-01 1.53143898e-01 5.99379003e-01
-4.89943326e-01 3.58013391e-01 6.72724009e-01 -4.55964118e-01
-1.47941780e+00 -3.96154016e-01 -2.20828190e-01 2.20855959e-02
-4.55988109e-01 8.75397205e-01 3.15485388e-01 2.78842896e-02
1.03021240e+00 3.63736033e-01 -6.97975934e-01 -6.05462968e-01
6.38104737e-01 4.58974987e-01 5.29645920e-01 -6.22476697e-01
5.74510932e-01 5.43105066e-01 -4.46300626e-01 -9.45608795e-01
-1.42645800e+00 -6.27946317e-01 -6.36821151e-01 1.93284869e-01
4.45097744e-01 -1.10374331e+00 -1.36874989e-01 1.57882497e-01
-9.63204801e-01 -5.00298321e-01 -6.24585748e-01 4.76361543e-01
-3.43806744e-01 1.25282764e-01 -8.80364001e-01 -8.41125071e-01
-2.62071341e-01 -3.02168906e-01 7.21174479e-01 2.23711103e-01
-3.84305358e-01 -1.30257726e+00 3.21335465e-01 -1.87664375e-01
8.92774224e-01 -1.81073338e-01 1.00974667e+00 -1.40919447e+00
-2.80463904e-01 -1.00966297e-01 1.08055379e-02 1.13440819e-01
1.61412032e-03 -4.13084328e-01 -1.23637676e+00 -3.13369423e-01
-1.53726563e-01 -8.11963975e-01 1.43939853e+00 -7.71299228e-02
8.32272291e-01 -9.58544314e-02 -3.97907555e-01 3.12103719e-01
1.41370869e+00 -2.05244333e-01 6.17961228e-01 4.29067910e-01
1.99026972e-01 4.62428510e-01 2.63073206e-01 3.80496383e-01
3.45019341e-01 2.71784276e-01 -1.55267671e-01 3.27095240e-01
-1.93151191e-01 -4.02753025e-01 9.24006477e-02 9.68612492e-01
-1.65648416e-01 -4.45640326e-01 -1.22580075e+00 9.58069623e-01
-1.83026600e+00 -1.36096156e+00 4.62954342e-01 2.04444480e+00
1.16350806e+00 4.00092244e-01 -2.24959552e-01 -2.23070487e-01
4.54782814e-01 5.71193516e-01 -3.77557784e-01 -3.16709250e-01
-4.54735845e-01 8.12597632e-01 3.90913218e-01 9.14896056e-02
-1.10381472e+00 1.17837310e+00 7.75783348e+00 1.00846899e+00
-8.50659609e-01 5.19798756e-01 4.58654672e-01 -3.68354261e-01
-1.08330309e-01 -1.69844359e-01 -8.33448410e-01 3.32474142e-01
1.51748037e+00 -2.76148230e-01 1.11829013e-01 8.44381571e-01
-3.10946882e-01 -2.78050929e-01 -9.86522019e-01 7.76176393e-01
2.84591585e-01 -1.57403803e+00 7.59278387e-02 -5.37025511e-01
9.30104256e-01 4.61957633e-01 -1.88473627e-01 1.01331663e+00
7.22867966e-01 -1.27277553e+00 2.95951396e-01 6.45067930e-01
4.67030108e-01 -5.54367781e-01 9.52087522e-01 7.33773053e-01
-9.42250848e-01 -2.13597819e-01 -7.51286983e-01 -3.48128289e-01
4.31717515e-01 6.47564828e-01 -7.90973544e-01 5.52130759e-01
5.47951519e-01 4.49226826e-01 -8.48104239e-01 1.26532137e+00
-4.02949244e-01 6.75775826e-01 -4.40897524e-01 -9.24897641e-02
2.00443774e-01 6.17655873e-01 1.29351676e-01 1.67684484e+00
3.06119382e-01 2.86714584e-01 1.09579198e-01 4.48732018e-01
-5.03502131e-01 1.91683099e-01 -8.30071092e-01 -8.56831223e-02
6.27721906e-01 9.49767888e-01 -6.87519073e-01 -6.88346744e-01
-5.67364872e-01 7.61407316e-01 1.00083292e+00 3.59771729e-01
-2.80884475e-01 -3.85904044e-01 4.81866121e-01 -1.54982418e-01
5.64963520e-01 -3.93185198e-01 -1.97696522e-01 -1.59365129e+00
-1.48607761e-01 -6.25054181e-01 7.03835905e-01 -7.30495572e-01
-1.60019243e+00 5.06482363e-01 -5.16124554e-02 -6.30181313e-01
-4.81128454e-01 -6.37763500e-01 -8.64846408e-01 4.93546188e-01
-1.68434298e+00 -8.34350109e-01 -2.30354778e-02 4.58244324e-01
3.68925661e-01 -2.78016776e-01 1.25596964e+00 2.40256220e-01
-3.32214266e-01 5.11116385e-01 2.49143720e-01 2.90482789e-01
9.35023308e-01 -1.07255304e+00 6.47775471e-01 9.61208940e-01
7.89924800e-01 1.00551438e+00 6.81385159e-01 -7.46766508e-01
-9.22622561e-01 -1.04341578e+00 1.40045977e+00 -6.45287991e-01
6.30089581e-01 -3.49845678e-01 -1.22422504e+00 8.55192125e-01
2.06894249e-01 2.61762261e-01 1.09660435e+00 6.91721022e-01
-6.27605259e-01 3.85228634e-01 -1.09849954e+00 3.62823546e-01
1.45412028e+00 -8.11464190e-01 -1.28203619e+00 4.30262744e-01
5.09131610e-01 -1.96064711e-01 -8.58662426e-01 2.87334234e-01
2.21957430e-01 -8.31932545e-01 1.03323877e+00 -1.29696894e+00
2.59406537e-01 1.89932242e-01 2.74048410e-02 -1.63187122e+00
-2.63799727e-01 -4.01520967e-01 -3.88861924e-01 1.26766348e+00
6.58301950e-01 -4.70722765e-01 5.55274487e-01 6.69520140e-01
1.99684933e-01 -4.49799269e-01 -1.01374006e+00 -1.18922973e+00
-3.68756102e-03 -6.35178924e-01 3.02622288e-01 1.28238440e+00
3.41788560e-01 4.61190909e-01 -5.38962185e-01 -1.79665178e-01
1.98669195e-01 -2.27804258e-02 3.27184141e-01 -1.21885347e+00
-1.88130304e-01 -1.76126380e-02 -4.45979804e-01 -7.39451170e-01
5.99890828e-01 -9.61792409e-01 1.11513160e-01 -1.61409450e+00
2.04554349e-01 -3.79213393e-01 -7.24033117e-01 7.59211838e-01
-4.38301027e-01 1.37404323e-01 1.99244082e-01 1.27203971e-01
-1.08543169e+00 4.61453319e-01 4.91446316e-01 2.28095520e-02
-5.03626727e-02 -2.98318654e-01 -6.04104996e-01 6.00636065e-01
7.65167832e-01 -6.21244729e-01 -2.60669231e-01 -5.93006790e-01
4.49336737e-01 -3.18003774e-01 4.50145826e-03 -1.11125875e+00
5.49680352e-01 -5.21726795e-02 5.96584618e-01 -1.63301110e-01
2.92397618e-01 -3.17347407e-01 -1.62488669e-01 2.46292084e-01
-6.48495436e-01 -7.40264803e-02 1.73112303e-01 6.97175801e-01
-2.74906307e-01 -5.36572754e-01 6.12214327e-01 -6.14632905e-01
-1.23418224e+00 4.49824035e-02 -5.35282791e-01 6.45169199e-01
7.02934742e-01 1.80097237e-01 -6.04505479e-01 -5.37270665e-01
-9.50680017e-01 1.67304967e-02 2.55231827e-01 5.66913903e-01
4.22698587e-01 -1.24943113e+00 -6.70772552e-01 2.58152131e-02
3.64865273e-01 -3.51064175e-01 2.27888793e-01 3.75215054e-01
-1.09715439e-01 6.66074574e-01 -2.24987358e-01 -3.55519019e-02
-7.50933051e-01 6.39667690e-01 1.39199629e-01 -7.13845432e-01
-4.55957144e-01 9.88062024e-01 -4.41778153e-01 -4.80203867e-01
1.04074746e-01 -2.42806584e-01 -2.27267221e-01 3.15581292e-01
9.07518148e-01 2.71642357e-01 4.43977743e-01 -5.65965176e-01
-4.06551033e-01 5.92935458e-02 -2.58057326e-01 9.03929770e-03
1.68290186e+00 1.65234320e-02 3.16799998e-01 5.85792065e-01
1.02419424e+00 -2.03002632e-01 -7.38815129e-01 -8.42814922e-01
4.84187216e-01 -3.45732898e-01 -1.80735916e-01 -8.41253638e-01
-5.76699436e-01 8.28552842e-01 2.60403514e-01 2.66504884e-01
7.14520097e-01 -1.06650680e-01 7.98377931e-01 1.25094509e+00
6.47778988e-01 -1.42655075e+00 3.07399780e-03 1.02650583e+00
2.71813750e-01 -1.35130572e+00 1.81838691e-01 3.23480628e-02
-5.05489767e-01 1.05810630e+00 5.19740164e-01 -9.57703516e-02
6.67016208e-01 3.13824564e-01 -1.42587898e-02 -2.14356810e-01
-1.13991356e+00 -6.94723368e-01 2.04084381e-01 7.39384294e-01
5.01629889e-01 -3.15846473e-01 -1.11449696e-01 6.02522731e-01
-1.08707413e-01 1.23493917e-01 3.84146482e-01 1.41266608e+00
-6.77136183e-01 -8.56564879e-01 8.42658654e-02 6.19304657e-01
-7.31974065e-01 -5.70961058e-01 -1.90057307e-01 7.59067237e-01
-4.05056030e-03 9.87904847e-01 -2.28878716e-03 -3.80203016e-02
4.20393944e-01 1.02737105e+00 3.26445878e-01 -1.15093100e+00
-7.27671027e-01 -7.47859657e-01 5.68592548e-01 -5.89374781e-01
-7.03722656e-01 -2.26622343e-01 -9.45556760e-01 -3.00626308e-01
-2.38768205e-01 6.57756552e-02 2.71492720e-01 1.31291366e+00
6.27419889e-01 4.94066924e-01 -9.65024754e-02 -6.47429049e-01
-7.27525413e-01 -1.15519369e+00 -5.58681250e-01 7.07321584e-01
1.55760460e-02 -6.14537537e-01 -2.85179585e-01 -7.95825571e-02] | [9.717352867126465, 9.319334030151367] |
196703d9-afe3-4b9e-bcd6-8c34faf5f5b0 | clubmark-a-parallel-isolation-framework-for | null | null | https://arxiv.org/abs/1902.00475 | https://arxiv.org/pdf/1902.00475 | Clubmark: a Parallel Isolation Framework for Benchmarking and Profiling Clustering Algorithms on NUMA Architectures | There is a great diversity of clustering and community detection algorithms, which are key components of many data analysis and exploration systems. To the best of our knowledge, however, there does not exist yet any uniform benchmarking framework, which is publicly available and suitable for the parallel benchmarking of diverse clustering algorithms on a wide range of synthetic and real-world datasets. In this paper, we introduce Clubmark, a new extensible framework that aims to fill this gap by providing a parallel isolation benchmarking platform for clustering algorithms and their evaluation on NUMA servers. Clubmark allows for fine-grained control over various execution variables (timeouts, memory consumption, CPU affinity and cache policy) and supports the evaluation of a wide range of clustering algorithms including multi-level, hierarchical and overlapping clustering techniques on both weighted and unweighted input networks with built-in evaluation of several extrinsic and intrinsic measures. Our framework is open-source and provides a consistent and systematic way to execute, evaluate and profile clustering techniques considering a number of aspects that are often missing in state-of-the-art frameworks and benchmarking systems. | ['Philippe Cudré-Mauroux', 'Mourad Khayati', 'Artem Lutov'] | 2018-11-17 | null | null | null | 2018-ieee-international-conference-on-data | ['clustering-algorithms-evaluation'] | ['methodology'] | [-2.33456209e-01 -7.00171828e-01 6.63490966e-02 -2.81195194e-01
-3.27591628e-01 -7.74731100e-01 6.73428297e-01 6.28690541e-01
-4.76280838e-01 5.58529437e-01 -1.27646312e-01 -2.98853964e-01
-7.20179677e-01 -9.75406170e-01 6.70271590e-02 -1.01576638e+00
-5.37274718e-01 1.16262639e+00 7.11503327e-01 -2.36815494e-02
3.36916268e-01 7.87816048e-01 -2.05546117e+00 4.45988566e-01
5.14482319e-01 5.36393285e-01 1.46574840e-01 7.55228758e-01
-1.01802133e-01 1.85037643e-01 -4.45154339e-01 -1.02384932e-01
-2.99287010e-02 -2.95516104e-01 -1.00753367e+00 -1.40605733e-01
-7.96673894e-02 4.55951422e-01 1.06013633e-01 7.72047400e-01
6.86707973e-01 -6.71758726e-02 7.24636495e-01 -1.32454169e+00
3.63314338e-02 8.96934509e-01 -6.37909949e-01 3.14399332e-01
1.66096702e-01 9.65678468e-02 8.67896497e-01 -5.28174520e-01
9.07777190e-01 1.06973946e+00 6.34505033e-01 9.16949362e-02
-1.58397269e+00 -5.58117509e-01 -3.05826396e-01 2.88347632e-01
-1.58036280e+00 -2.10053265e-01 3.31384510e-01 -6.16553426e-01
7.56635189e-01 6.38577461e-01 4.69572246e-01 9.28306460e-01
-3.28975916e-01 2.49292672e-01 1.47174001e+00 -4.18913186e-01
5.32059014e-01 1.23246975e-01 2.96862304e-01 2.80038357e-01
3.99279863e-01 -2.27327898e-01 -3.58822465e-01 -5.23850024e-01
3.42344373e-01 -1.97897300e-01 8.05600286e-02 -8.32779765e-01
-1.48403132e+00 6.64838731e-01 1.35397583e-01 7.68946588e-01
-2.84994125e-01 -1.57624319e-01 8.66443574e-01 1.62228331e-01
2.20977470e-01 3.08828443e-01 -2.74729341e-01 -3.48089665e-01
-1.23276627e+00 1.96547598e-01 1.15438569e+00 4.83530819e-01
8.04837167e-01 -5.15186429e-01 -8.32169726e-02 8.22767317e-01
1.43883273e-01 6.38612658e-02 3.82465512e-01 -1.14777708e+00
-9.55755562e-02 8.20336640e-01 -1.90454841e-01 -1.04857492e+00
-7.37050295e-01 -3.85541737e-01 -1.17759037e+00 4.36586887e-01
5.72862506e-01 -2.32068151e-02 -2.60396063e-01 1.40668309e+00
7.14499295e-01 1.35004044e-01 -2.38206655e-01 7.69451082e-01
5.67984760e-01 2.84432143e-01 -1.53476402e-01 -3.19677800e-01
1.41115916e+00 -7.76428640e-01 -2.37517342e-01 5.58185279e-01
4.66279268e-01 -1.14950466e+00 7.81134009e-01 5.47006011e-01
-1.06447709e+00 -3.53551090e-01 -9.14700687e-01 3.08659643e-01
-8.96595895e-01 -2.97526389e-01 6.99441969e-01 8.85530651e-01
-1.35173237e+00 7.92507768e-01 -1.05291867e+00 -9.20319736e-01
6.70964494e-02 4.34377581e-01 -4.49136347e-01 -2.03696012e-01
-7.45975673e-01 6.81621253e-01 6.70122325e-01 -3.10761124e-01
-4.57890421e-01 -5.11523187e-01 -2.08486483e-01 8.13451689e-03
4.44352299e-01 -6.98952496e-01 5.98445117e-01 -6.55006528e-01
-1.14496064e+00 1.07053137e+00 2.71464199e-01 -3.93586248e-01
5.26713967e-01 5.11747479e-01 -3.33441228e-01 4.71577384e-02
-1.90438088e-02 4.62733865e-01 1.37907833e-01 -1.28386569e+00
-2.80718327e-01 -4.81379747e-01 -4.92600262e-01 4.75695319e-02
-4.40673530e-01 4.23014075e-01 -4.11691278e-01 -3.78991306e-01
-2.00268105e-01 -7.12805867e-01 -3.66738886e-01 -2.57695258e-01
-3.80109519e-01 -1.00946255e-01 8.19574058e-01 -6.35896390e-03
1.34414113e+00 -1.85527217e+00 4.89641100e-01 7.23739028e-01
2.77876377e-01 4.38736349e-01 -3.28077525e-02 1.04206467e+00
2.88654417e-02 2.22615466e-01 -4.07565236e-01 -2.23768860e-01
1.69853628e-01 3.74921501e-01 3.34594160e-01 5.96098900e-01
-3.42593998e-01 2.62193412e-01 -8.74724805e-01 -6.81009471e-01
6.25495970e-01 6.22067690e-01 -1.77179232e-01 6.59920201e-02
-1.30553460e-02 3.18670869e-01 -1.48246169e-01 5.94477236e-01
7.72361040e-01 -3.46705288e-01 5.77171624e-01 3.01173955e-01
-5.91740012e-01 -1.36029884e-01 -1.75040948e+00 1.56321871e+00
3.31947803e-02 3.05682987e-01 5.32050312e-01 -9.85201359e-01
8.89599144e-01 1.87217191e-01 6.80077910e-01 -1.77212626e-01
2.25897282e-01 3.35756391e-01 9.35307592e-02 -1.57918274e-01
3.82893622e-01 3.70902538e-01 2.70924538e-01 9.41907108e-01
3.24729793e-02 3.77385080e-01 9.73892629e-01 1.84261069e-01
1.52806091e+00 -3.38958949e-01 2.31993258e-01 -7.72380710e-01
8.84741366e-01 1.46957815e-01 1.68741629e-01 5.68204820e-01
-1.23335131e-01 6.03141487e-01 7.14651346e-01 -4.26384032e-01
-1.20900071e+00 -9.80843365e-01 -3.02543581e-01 1.44514430e+00
-2.34510764e-01 -6.24112189e-01 -9.93753612e-01 -5.43209016e-02
-7.77655169e-02 1.02420814e-01 -5.40199459e-01 5.66629529e-01
-1.33798912e-01 -1.34877956e+00 5.60258985e-01 7.15653524e-02
2.60330856e-01 -1.15908456e+00 -4.90696937e-01 2.98337966e-01
1.59981549e-01 -8.27119708e-01 1.21262960e-01 1.44581780e-01
-8.63368809e-01 -1.52042067e+00 -2.43181258e-01 -5.33688724e-01
3.17375451e-01 2.61727840e-01 1.57010424e+00 4.73778844e-01
-7.12358534e-01 5.95885329e-02 -3.97825658e-01 7.49779940e-02
-4.39766079e-01 5.05496681e-01 -1.78568542e-01 -6.58113211e-02
4.91947442e-01 -8.45339179e-01 -5.70730090e-01 6.42234504e-01
-9.71451104e-01 -1.73210591e-01 4.07831907e-01 6.36232674e-01
6.41702294e-01 2.21191972e-01 1.78972244e-01 -9.76519823e-01
8.51855338e-01 -7.89384186e-01 -8.39524448e-01 2.82834619e-01
-7.21911192e-01 -1.99982330e-01 6.41455352e-01 -7.81648457e-02
-4.46557343e-01 2.10109577e-02 -2.08140701e-01 -1.99426766e-02
-6.76166356e-01 4.44915831e-01 -1.70741845e-02 7.21931905e-02
6.55959606e-01 2.09036916e-02 1.70416638e-01 -6.67895317e-01
3.71354371e-01 6.70166314e-01 3.87393683e-01 -8.21298480e-01
6.35466158e-01 7.34804630e-01 1.95335731e-01 -7.60231197e-01
-1.99253917e-01 -1.23400152e+00 -1.00331390e+00 -2.30860204e-01
7.62640774e-01 -4.39991921e-01 -9.64951158e-01 4.58812237e-01
-7.88455963e-01 -2.36952975e-01 6.52034208e-02 1.02646202e-01
-3.13727558e-01 3.84089381e-01 -5.25318265e-01 -7.23256350e-01
-5.11019349e-01 -1.20958436e+00 8.22912574e-01 -4.95401919e-02
-2.97563046e-01 -1.06489384e+00 4.99110132e-01 2.16184959e-01
6.63467944e-01 6.51423514e-01 8.18416476e-01 -6.94919229e-01
-3.51887792e-01 -1.86128207e-02 -3.29035699e-01 1.13272155e-02
-2.75250942e-01 8.99921238e-01 -8.80911469e-01 -5.17067313e-01
-6.26269042e-01 -7.52554312e-02 7.12033451e-01 9.76648480e-02
1.13180506e+00 1.52327359e-01 -5.92944086e-01 4.78540391e-01
1.63138783e+00 -2.68544048e-01 5.36527753e-01 4.44783449e-01
3.44054967e-01 7.86752880e-01 3.22173625e-01 5.20624220e-01
2.19595343e-01 6.88970923e-01 6.37949884e-01 -1.05049938e-01
1.35407627e-01 6.08780801e-01 -1.08781710e-01 9.88269269e-01
-4.12716508e-01 -9.43396837e-02 -1.40574241e+00 5.23293316e-01
-1.92018771e+00 -1.21326888e+00 -9.23439980e-01 2.35877299e+00
6.29715323e-01 3.49660031e-02 6.48730516e-01 5.98542392e-01
1.01054168e+00 -1.92261592e-01 -5.96855283e-02 -4.18794900e-01
-5.75962253e-02 2.28355825e-01 2.36984670e-01 2.12258965e-01
-1.08178174e+00 4.12312597e-01 6.76438332e+00 9.51566637e-01
-8.71257782e-01 2.30800748e-01 5.66053629e-01 -3.44582722e-02
1.81160808e-01 -1.08687103e-01 -4.13856149e-01 4.46055770e-01
1.41086149e+00 -1.64887294e-01 6.16246283e-01 8.64100397e-01
1.73736051e-01 -1.47993639e-01 -9.12572682e-01 5.20110369e-01
-2.29611382e-01 -1.55160201e+00 -4.68611151e-01 3.09323013e-01
7.51609266e-01 6.19010925e-01 -2.95513302e-01 -1.59458682e-01
5.46850026e-01 -9.91416037e-01 1.82082623e-01 2.57673770e-01
4.26782578e-01 -1.10651684e+00 9.23795223e-01 1.98724642e-01
-1.12293649e+00 7.51149058e-02 -3.22403222e-01 -4.08749154e-04
-9.73941088e-02 9.46952283e-01 -4.79483992e-01 8.01343739e-01
1.06894004e+00 3.16932529e-01 -7.33263195e-01 1.39450490e+00
4.05049145e-01 4.72213537e-01 -5.05137086e-01 -6.40695840e-02
3.52004826e-01 -3.65704656e-01 2.25974292e-01 1.63548446e+00
8.83292705e-02 -3.96141827e-01 2.34652847e-01 6.12234235e-01
1.32084295e-01 5.71085930e-01 -4.08397108e-01 1.24835283e-01
7.35722899e-01 1.78967702e+00 -1.48152435e+00 -2.24572942e-01
-2.65649140e-01 3.21575731e-01 2.88448423e-01 -1.02883838e-01
-5.18513858e-01 -3.35000813e-01 7.56958544e-01 3.03901941e-01
2.40281850e-01 -4.00945395e-01 -1.93772435e-01 -7.07473040e-01
-4.38400209e-01 -8.21456432e-01 7.85608530e-01 -3.58141184e-01
-1.53499699e+00 7.05143094e-01 2.14561254e-01 -6.64941847e-01
-1.50408655e-01 -6.46459043e-01 -7.51405180e-01 5.70053279e-01
-1.06123710e+00 -8.13451707e-01 -5.29297590e-01 6.80595279e-01
-1.86574072e-01 -1.88507304e-01 1.16850448e+00 4.45489913e-01
-7.10754454e-01 3.45606469e-02 8.01829934e-01 -2.27809884e-02
8.93903255e-01 -1.48836720e+00 1.31001726e-01 5.58129311e-01
-9.95768085e-02 8.56438100e-01 8.01109314e-01 -1.19605549e-01
-1.11625004e+00 -9.21823263e-01 5.20606577e-01 -3.50454271e-01
9.89310503e-01 -5.91114640e-01 -9.55558717e-01 -2.93976367e-02
4.82056290e-01 2.66049206e-02 1.02405012e+00 4.62066740e-01
-3.43962014e-01 -2.33696163e-01 -1.15746891e+00 2.54940897e-01
7.48878479e-01 -8.90848339e-02 -6.85431808e-02 4.69795704e-01
-2.55595986e-03 3.10650039e-02 -1.42594039e+00 2.23348409e-01
4.06960934e-01 -1.79360855e+00 1.06099379e+00 -7.57134184e-02
4.75780368e-02 -5.37566900e-01 3.51209939e-02 -8.38857353e-01
-2.72434920e-01 -6.61108494e-01 -7.92191401e-02 1.51901686e+00
6.62619770e-02 -5.50019860e-01 7.96733797e-01 -5.98436184e-02
1.49594873e-01 -7.25515187e-01 -9.11456347e-01 -6.53776288e-01
7.35528618e-02 -2.51358449e-01 8.24615836e-01 1.03798366e+00
5.38318604e-02 2.06238315e-01 2.19815284e-01 -1.40851095e-01
9.00080681e-01 4.00568813e-01 8.38138938e-01 -1.65943992e+00
-1.76473945e-01 -9.57742751e-01 -5.92720747e-01 2.30936006e-01
-1.71318188e-01 -9.60886538e-01 -4.35919523e-01 -1.45088291e+00
4.47983772e-01 -5.00223100e-01 -2.71213830e-01 2.13092461e-01
2.24435985e-01 5.19893825e-01 -7.65594989e-02 3.84418517e-01
-1.07320857e+00 -2.14154050e-01 7.27052152e-01 3.83606941e-01
1.56326488e-01 -7.88012818e-02 -2.71795273e-01 5.04481554e-01
7.89248228e-01 -5.54753125e-01 -2.06724420e-01 -4.17694263e-02
1.40066817e-01 -3.32953781e-01 2.81008035e-01 -1.35388601e+00
4.99754369e-01 -1.39150858e-01 1.09035753e-01 -8.80806446e-01
-3.10433339e-02 -7.50973463e-01 5.86035848e-01 5.15970290e-01
1.54448664e-02 4.65010315e-01 -1.06092103e-01 3.88966829e-01
-2.24336743e-01 -1.03401706e-01 9.96649683e-01 -3.12844813e-01
-5.71786523e-01 1.84242800e-01 -4.15569037e-01 7.69066066e-02
1.40549314e+00 -2.52461821e-01 -4.46353257e-01 3.12327981e-01
-6.51129961e-01 3.39986295e-01 1.04701459e+00 1.37501225e-01
-5.93629517e-02 -1.03491414e+00 -8.44754100e-01 6.47604540e-02
1.92502633e-01 -1.85482964e-01 1.40907809e-01 8.25114608e-01
-9.64296460e-01 2.55699128e-01 -5.53354084e-01 -8.20028663e-01
-1.63326085e+00 8.80568504e-01 2.36788288e-01 -5.02171099e-01
-2.37897754e-01 3.24236155e-01 -5.91031015e-01 -7.23800063e-01
2.03855500e-01 2.48379856e-01 -9.79038253e-02 2.69449145e-01
6.12531722e-01 9.36379611e-01 3.28656673e-01 -6.69757485e-01
-5.52768171e-01 4.03473377e-01 3.06417495e-01 4.34478410e-02
1.62666249e+00 -1.42139578e-02 -1.02822447e+00 6.31328523e-01
9.27613318e-01 -3.94799054e-01 -6.71651959e-01 2.19082847e-01
5.05541146e-01 -2.89571494e-01 -1.61637634e-01 -7.43738532e-01
-9.35016155e-01 7.47627974e-01 6.60543919e-01 7.10423827e-01
9.84293580e-01 -1.07025824e-01 1.48518577e-01 2.25256905e-01
3.80610317e-01 -1.35158145e+00 -1.62703469e-01 2.24193156e-01
4.14148510e-01 -8.84664357e-01 2.61582017e-01 -4.50076818e-01
-1.86607704e-01 1.15469050e+00 4.08827066e-01 -5.21111488e-03
6.24628246e-01 7.20894277e-01 2.50861254e-02 -3.96741629e-01
-9.43843246e-01 -3.40250283e-01 -9.90755185e-02 8.34597826e-01
6.97228491e-01 1.92890778e-01 -5.49268007e-01 -9.59337875e-02
1.81045046e-03 -2.57418424e-01 4.52953398e-01 8.60018909e-01
-4.48707521e-01 -1.66906404e+00 -7.94651091e-01 3.90108019e-01
-5.26472211e-01 1.83204770e-01 -4.83110875e-01 1.03801823e+00
3.10374320e-01 9.09805000e-01 -3.31556145e-03 -1.65546596e-01
1.53012201e-02 1.19947188e-01 2.10524440e-01 -5.42436242e-01
-1.18424261e+00 -3.27574313e-02 1.41587675e-01 -5.23412883e-01
-7.74666131e-01 -8.42650950e-01 -9.95808840e-01 -1.00119138e+00
-2.10369244e-01 3.81300420e-01 9.77792799e-01 5.06003201e-01
3.86519343e-01 3.92584234e-01 3.24464977e-01 -1.05883241e+00
-1.74103379e-01 -8.27966154e-01 -8.15856218e-01 4.70480353e-01
-3.94305289e-01 -6.11070871e-01 -1.89248174e-01 -3.35122973e-01] | [7.570792198181152, 4.528024673461914] |
d6b50c7d-da8c-4ea1-a437-e0fcd39b8d72 | unveiling-the-political-agenda-of-the | 1505.07302 | null | http://arxiv.org/abs/1505.07302v4 | http://arxiv.org/pdf/1505.07302v4.pdf | Unveiling the Political Agenda of the European Parliament Plenary: A Topical Analysis | This study analyzes political interactions in the European Parliament (EP) by
considering how the political agenda of the plenary sessions has evolved over
time and the manner in which Members of the European Parliament (MEPs) have
reacted to external and internal stimuli when making Parliamentary speeches. It
does so by considering the context in which speeches are made, and the content
of those speeches. To detect latent themes in legislative speeches over time,
speech content is analyzed using a new dynamic topic modeling method, based on
two layers of matrix factorization. This method is applied to a new corpus of
all English language legislative speeches in the EP plenary from the period
1999-2014. Our findings suggest that the political agenda of the EP has evolved
significantly over time, is impacted upon by the committee structure of the
Parliament, and reacts to exogenous events such as EU Treaty referenda and the
emergence of the Euro-crisis have a significant impact on what is being
discussed in Parliament. | ['James P. Cross', 'Derek Greene'] | 2015-05-27 | null | null | null | null | ['dynamic-topic-modeling'] | ['natural-language-processing'] | [-6.21477105e-02 4.85836774e-01 -4.54064049e-02 -3.14430833e-01
-5.65809786e-01 -1.01923120e+00 1.15408576e+00 6.52384758e-01
-8.57746601e-01 5.46308339e-01 1.48328006e+00 -8.51806879e-01
-1.61358178e-01 -8.10942829e-01 -4.76561189e-01 -6.35726869e-01
5.48802555e-01 2.21991062e-01 -2.46422008e-01 -4.36824769e-01
1.05121709e-01 -6.65199980e-02 -8.44061673e-01 6.69073999e-01
3.54488283e-01 3.21492963e-02 -5.06168790e-02 4.70078200e-01
-3.07297170e-01 8.02702487e-01 -9.65995550e-01 -3.33993763e-01
6.74535334e-02 -2.26003319e-01 -9.27939355e-01 2.33441100e-01
3.45840841e-03 2.45155245e-01 -6.85424566e-01 7.57381558e-01
3.44311655e-01 2.29507595e-01 4.48652565e-01 4.53653447e-02
2.49150723e-01 1.05259168e+00 -3.60104889e-01 4.25952613e-01
3.53273958e-01 -1.24750622e-01 9.93421018e-01 -4.49479222e-01
9.79812622e-01 1.60509419e+00 3.37485999e-01 2.17246369e-01
-1.36490703e+00 -4.40735787e-01 6.02636695e-01 -2.11303979e-01
-5.29362977e-01 -5.99487484e-01 4.80268896e-01 -9.67914760e-01
7.35047877e-01 6.30262673e-01 7.76003420e-01 1.14437568e+00
3.67879778e-01 3.46557528e-01 1.00561643e+00 -7.64826000e-01
3.97428304e-01 1.00468040e-01 3.24197561e-01 -5.29115379e-01
-3.99339572e-03 -4.87140536e-01 -3.77003625e-02 -9.26047325e-01
-2.42673934e-01 -3.93233180e-01 -1.51953936e-01 3.63523811e-01
-1.01191092e+00 1.02510345e+00 -3.57921243e-01 9.87533271e-01
-7.20498741e-01 -4.08462495e-01 8.62622678e-01 3.43960345e-01
4.63861048e-01 3.52634132e-01 -4.51647609e-01 -6.83141410e-01
-9.25705135e-01 2.49148414e-01 1.02758944e+00 -3.48948091e-01
1.05236612e-01 -2.75673956e-01 -2.30783403e-01 7.96151817e-01
4.16144222e-01 3.77765745e-01 2.99852520e-01 -8.45579982e-01
9.74118471e-01 5.01189172e-01 2.16019377e-01 -1.19399679e+00
-3.70494038e-01 -3.57859761e-01 -3.22417319e-01 -2.82383114e-01
3.06184351e-01 -6.45620883e-01 -6.33094490e-01 1.74275208e+00
5.69106460e-01 -7.99441338e-01 1.69014186e-01 3.55356157e-01
7.56011665e-01 1.09339654e+00 3.81324857e-01 -8.62312138e-01
1.46075475e+00 -1.42024979e-01 -8.46057296e-01 -1.32346034e-01
4.93960917e-01 -9.36244249e-01 5.39641201e-01 8.82010236e-02
-9.39259708e-01 -3.79972756e-01 -6.74026549e-01 3.98985326e-01
5.66302799e-02 -2.21998677e-01 1.20027810e-01 7.55637765e-01
-3.62101555e-01 3.08279186e-01 -7.58835018e-01 -5.66827059e-01
-1.04300618e-01 -2.11955145e-01 -3.45935792e-01 2.42646053e-01
-1.17383182e+00 5.74291945e-01 3.23928684e-01 2.18186885e-01
-1.91918984e-01 -2.20317528e-01 -7.89189041e-01 9.82689261e-02
2.97321081e-01 -5.81450105e-01 1.36021388e+00 -8.73971820e-01
-1.25661910e+00 7.10395277e-01 -2.13459134e-01 -4.62719649e-01
6.19434834e-01 2.32811958e-01 -5.17781258e-01 -1.31429717e-01
3.72917026e-01 -3.36043775e-01 3.48364860e-01 -8.13571811e-01
-9.24535751e-01 -5.89477003e-01 3.31167728e-01 6.55542985e-02
-2.23502964e-01 7.06105232e-01 -1.69138744e-01 -5.51994860e-01
2.01365262e-01 -1.08280087e+00 -2.84710020e-01 -1.44420910e+00
-1.66449428e-01 -4.01177078e-01 6.49593711e-01 -8.01630199e-01
1.78151011e+00 -2.44329429e+00 1.73780590e-01 2.74270654e-01
1.63496539e-01 -1.01256082e-02 4.98917431e-01 1.20226002e+00
-2.16746032e-01 3.04787636e-01 2.03006536e-01 -7.97701478e-02
1.15312532e-01 5.34546137e-01 -6.84490025e-01 7.19719887e-01
-8.10225368e-01 2.78200865e-01 -7.76474357e-01 -5.70647418e-02
1.25389904e-01 8.49202499e-02 -3.24926674e-01 -2.95105010e-01
-1.15099669e-01 6.48308516e-01 -4.31320876e-01 -6.51114658e-02
3.74173403e-01 2.00471133e-01 8.77269804e-01 3.75955515e-02
-1.11174810e+00 1.09999979e+00 -6.79408848e-01 1.24739528e+00
-2.81101137e-01 9.83002663e-01 5.95663249e-01 -8.37827742e-01
5.73281050e-01 9.14198160e-01 4.67891514e-01 -8.28561664e-01
4.86851633e-01 -1.87551454e-01 5.77586651e-01 -4.61516142e-01
6.27673328e-01 -1.60768956e-01 -5.02167106e-01 5.53817511e-01
-3.60437870e-01 -2.45897844e-01 6.36073232e-01 5.20490110e-01
1.13567567e+00 -6.76860154e-01 3.22995812e-01 -2.84579426e-01
4.11313295e-01 -1.00610562e-01 1.04615593e+00 5.74180245e-01
1.96419489e-02 -7.68411458e-02 7.23376274e-01 -5.94259501e-01
-1.15941679e+00 -3.00235122e-01 -5.02132356e-01 9.51463342e-01
-8.66912901e-01 -1.10280800e+00 -5.28121173e-01 -1.38516441e-01
-1.52388662e-01 1.08917558e+00 -9.00494337e-01 2.08650798e-01
-6.80560708e-01 -7.47512043e-01 9.45201814e-02 -4.86152917e-01
4.67776835e-01 -7.02300549e-01 -6.87522352e-01 7.77029157e-01
-6.29855752e-01 -1.06894720e+00 4.52784002e-02 2.38396078e-02
-6.10672295e-01 -1.02729261e+00 -3.30598384e-01 -5.66973835e-02
2.25278571e-01 -1.54791355e-01 7.81620324e-01 -8.49956632e-01
-6.91526011e-02 7.47185230e-01 -2.72944331e-01 -9.01843965e-01
-1.19061470e+00 1.53685614e-01 -4.19496297e-04 1.09508283e-01
6.83329701e-02 -5.18259346e-01 -1.49951428e-01 1.16004638e-01
-9.34625626e-01 1.38055563e-01 -2.08469734e-01 3.25322300e-01
-2.13306267e-02 4.65177357e-01 2.63002425e-01 -1.14796650e+00
1.03484225e+00 -6.29429221e-01 -3.80270243e-01 5.82442284e-02
-7.36030936e-02 -4.69382614e-01 5.69530353e-02 1.64534986e-01
-1.51263583e+00 -6.82823002e-01 -3.13902199e-02 5.04283607e-01
-2.05610067e-01 1.02281988e+00 1.25762187e-02 7.99762905e-01
7.15791464e-01 -1.52026221e-01 -2.86065817e-01 -4.18218315e-01
1.06926024e-01 8.95762265e-01 5.27083993e-01 -6.90391004e-01
8.76203656e-01 6.00574613e-01 -5.67858636e-01 -1.31394279e+00
-6.83002174e-01 -6.28170967e-01 -5.17781317e-01 -6.64545238e-01
8.86033475e-01 -1.27604353e+00 -6.01834595e-01 1.11242734e-01
-1.15238452e+00 -1.22785479e-01 -3.53832930e-01 8.07457507e-01
5.62908202e-02 4.01657999e-01 -5.89372694e-01 -1.06448436e+00
-1.60840586e-01 -7.84184456e-01 2.65452504e-01 1.30567059e-01
-1.00397503e+00 -9.06346500e-01 6.81406558e-01 7.43889391e-01
2.33010605e-01 6.32489920e-01 1.21484756e+00 -3.44580531e-01
3.59647572e-01 2.10230928e-02 4.71124828e-01 1.37880132e-01
5.68188429e-01 4.69116598e-01 -5.91221869e-01 -3.40054065e-01
6.37259483e-01 2.44149029e-01 5.33909440e-01 4.88886088e-01
6.69852197e-02 -7.81734586e-01 -1.61362320e-01 -5.34698106e-02
9.45819020e-01 4.23018336e-01 3.45373362e-01 1.11972141e+00
-1.67294711e-01 7.81724811e-01 4.87626672e-01 7.79769838e-01
4.92256850e-01 7.72575140e-01 -9.79670286e-02 1.41067490e-01
3.27189893e-01 8.12849551e-02 6.08279109e-01 1.19117808e+00
-2.36198500e-01 1.30105272e-01 -1.18480456e+00 6.88546538e-01
-2.12210155e+00 -1.19828439e+00 -4.00795132e-01 1.80338264e+00
6.79931462e-01 3.09292465e-01 1.45274207e-01 2.30254397e-01
5.17132759e-01 5.86806297e-01 2.54450470e-01 -9.37886238e-01
-2.29695275e-01 -2.46175706e-01 1.36917487e-01 5.59150934e-01
-1.01288557e+00 6.05341434e-01 5.72552872e+00 1.85818002e-01
-8.85919154e-01 4.07251306e-02 4.90434080e-01 -1.32668719e-01
-5.70541978e-01 2.81640857e-01 -3.78914803e-01 5.68886638e-01
1.17316318e+00 -8.62520456e-01 -2.16694921e-01 5.28832078e-01
1.14074016e+00 -3.70381445e-01 -3.27138424e-01 4.23990339e-01
-3.74016881e-01 -1.48901165e+00 -3.72734457e-01 5.80053389e-01
8.35478485e-01 3.44975203e-01 -4.88853082e-02 3.31040353e-01
4.53674078e-01 -3.37715656e-01 1.07987499e+00 4.08647247e-02
3.21340740e-01 -4.58497852e-01 5.39963126e-01 6.00741446e-01
-7.63857782e-01 -4.41394299e-01 -3.08359504e-01 -4.92682010e-01
3.89100432e-01 6.41169608e-01 -1.03230667e+00 5.35218060e-01
5.48133254e-01 7.65704364e-02 -4.87978198e-02 5.04851460e-01
-3.82559627e-01 1.54670620e+00 -1.11555368e-01 4.90021139e-01
8.01705360e-01 -2.56257117e-01 1.26750672e+00 1.17938292e+00
-2.55786598e-01 2.43513778e-01 2.68647503e-02 1.52769774e-01
1.05779774e-01 4.65985626e-01 -3.77692491e-01 -2.52158672e-01
2.89687276e-01 9.08166468e-01 -5.62698126e-01 -3.48767132e-01
-3.60463619e-01 2.00046152e-01 -2.46787220e-01 5.43956816e-01
-5.36884964e-01 3.98455292e-01 5.53146541e-01 4.49377507e-01
4.12476696e-02 -2.96782643e-01 5.81896007e-02 -1.01356339e+00
-1.58983469e-03 -1.32664371e+00 5.19001842e-01 -4.65280712e-02
-4.48592037e-01 2.73900449e-01 1.26718506e-01 -3.99824053e-01
-1.39224991e-01 3.62328857e-01 -8.87649357e-01 7.58955121e-01
-6.18280113e-01 -5.97058535e-01 3.28886122e-01 2.05126405e-01
6.80544913e-01 -1.51577145e-01 9.19231296e-01 1.02484472e-01
-5.64231694e-01 -3.33642155e-01 5.69024265e-01 1.47110045e-01
4.50586021e-01 -9.35671568e-01 5.28104663e-01 7.00370550e-01
1.43102765e-01 8.44770014e-01 1.12534404e+00 -7.68007040e-01
-9.71411109e-01 -5.44666827e-01 1.50816941e+00 -1.71874851e-01
1.10745406e+00 -4.77556258e-01 -4.35585529e-01 6.73179984e-01
5.54449975e-01 -1.13710082e+00 1.17321002e+00 5.85045218e-01
-9.62407440e-02 2.05320865e-01 -4.87321645e-01 5.29343247e-01
3.22128117e-01 -4.71281797e-01 -1.13478398e+00 4.50611383e-01
4.78039622e-01 -2.28119433e-01 -6.22146249e-01 3.14663172e-01
6.12919152e-01 -3.54779392e-01 4.61983800e-01 -9.03824806e-01
1.28880262e-01 -1.01303406e-01 -3.13444912e-01 -1.28488386e+00
-9.40169513e-01 -1.02471709e+00 5.84543526e-01 1.40843046e+00
4.17245567e-01 -6.46347642e-01 4.18098271e-01 1.03961766e+00
6.43237755e-02 -2.45712817e-01 -1.38308203e+00 4.60773706e-02
4.53810468e-02 -2.74844348e-01 2.35116974e-01 1.11567831e+00
2.27457836e-01 4.31660712e-01 1.82613488e-02 -7.35449865e-02
1.48844915e-02 8.81425366e-02 1.39441717e+00 -1.24722493e+00
-2.76666045e-01 -5.04409552e-01 -2.34386399e-01 -4.14964825e-01
-9.24982503e-02 -5.25474310e-01 -7.22005606e-01 -1.73964286e+00
6.67763427e-02 1.77856814e-02 2.31618434e-01 6.52500242e-02
1.57727957e-01 -1.04276252e+00 6.58565938e-01 5.47477126e-01
3.17679644e-02 3.27124923e-01 8.01962733e-01 -4.30894226e-01
-6.36470437e-01 4.52147901e-01 -6.44865036e-01 8.40687752e-01
5.60869634e-01 -4.97000575e-01 2.35116556e-02 -3.42744887e-01
7.65339375e-01 2.64187515e-01 -2.53512621e-01 -7.14876294e-01
3.84315461e-01 -1.06418110e-01 5.37726507e-02 -4.87953275e-01
8.50274600e-03 -8.04904282e-01 6.56429768e-01 4.98543262e-01
-1.40480936e-01 5.65733314e-02 6.29843712e-01 4.66957629e-01
-6.94261312e-01 -7.91300759e-02 4.31805491e-01 -1.45166382e-01
2.25790620e-01 -2.41611734e-01 -1.22558391e+00 -2.19497621e-01
8.02182376e-01 -1.40167415e-01 -7.70673007e-02 -5.95265031e-01
-1.19803488e+00 1.38232321e-01 2.25221500e-01 3.88162106e-01
-3.77825201e-01 -8.80976975e-01 -1.17290294e+00 -3.02539378e-01
-3.95089597e-01 -2.83679724e-01 5.37572920e-01 9.90445197e-01
-6.49246126e-02 7.19906449e-01 3.98095727e-01 -2.94947654e-01
-1.73847663e+00 -1.17721789e-01 8.42561051e-02 -6.93618834e-01
-9.36015904e-01 3.64612311e-01 4.99184459e-01 -2.91595042e-01
2.49576420e-01 -1.86063915e-01 -7.29129970e-01 9.65829849e-01
3.34673911e-01 2.65728921e-01 -1.35017350e-01 -1.04177260e+00
2.23938283e-02 7.90790021e-02 -2.41768345e-01 -3.89818430e-01
1.66200483e+00 -2.45268926e-01 -4.23509628e-01 1.18363464e+00
9.45169747e-01 6.41535163e-01 -3.70488286e-01 -2.85145938e-01
1.57408547e-02 -4.78310794e-01 -8.75719413e-02 -4.49697047e-01
-3.23885441e-01 2.17531025e-01 -2.53443897e-01 6.34224832e-01
3.51818055e-01 1.16759380e-02 4.08581853e-01 4.01581936e-02
-3.98928262e-02 -1.54377151e+00 -5.95029891e-01 6.66423440e-01
1.08578038e+00 -3.68482739e-01 7.99686164e-02 -5.06779552e-02
-3.56341541e-01 1.16095960e+00 -2.36185804e-01 6.11828625e-01
7.00532138e-01 -1.20948896e-01 1.63143367e-01 -4.79527473e-01
-8.69941652e-01 5.27698040e-01 -1.25397593e-01 -3.86114329e-01
6.44397378e-01 4.72676367e-01 -1.22454894e+00 3.85663122e-01
-5.48654258e-01 -5.87019086e-01 7.21131325e-01 8.48360062e-01
-4.09242392e-01 -1.30283892e+00 -7.16896772e-01 2.19773635e-01
-9.27773237e-01 5.37106283e-02 -8.56341362e-01 8.03164244e-01
2.24912167e-01 1.05574572e+00 1.16816089e-01 6.41057566e-02
5.09617746e-01 2.46518910e-01 -1.76106572e-01 -7.87894607e-01
-1.07840025e+00 5.16367137e-01 8.51488054e-01 9.84326005e-03
-5.58689177e-01 -1.32126188e+00 -8.92642617e-01 -3.40253800e-01
-2.65144825e-01 9.37300682e-01 1.02823019e+00 1.00003481e+00
9.08183828e-02 6.25269890e-01 7.67018497e-01 -1.11212425e-01
-3.69761527e-01 -1.22006488e+00 -4.46608335e-01 2.64797062e-01
1.38568711e-02 -8.16228166e-02 -4.80079800e-01 -3.06097984e-01] | [8.943558692932129, 9.848655700683594] |
48bf0fdf-9a0e-40ec-a987-6c4a0f029b51 | t-wavenet-tree-structured-wavelet-neural | 2012.05456 | null | https://arxiv.org/abs/2012.05456v1 | https://arxiv.org/pdf/2012.05456v1.pdf | T-WaveNet: Tree-Structured Wavelet Neural Network for Sensor-Based Time Series Analysis | Sensor-based time series analysis is an essential task for applications such as activity recognition and brain-computer interface. Recently, features extracted with deep neural networks (DNNs) are shown to be more effective than conventional hand-crafted ones. However, most of these solutions rely solely on the network to extract application-specific information carried in the sensor data. Motivated by the fact that usually a small subset of the frequency components carries the primary information for sensor data, we propose a novel tree-structured wavelet neural network for sensor data analysis, namely \emph{T-WaveNet}. To be specific, with T-WaveNet, we first conduct a power spectrum analysis for the sensor data and decompose the input signal into various frequency subbands accordingly. Then, we construct a tree-structured network, and each node on the tree (corresponding to a frequency subband) is built with an invertible neural network (INN) based wavelet transform. By doing so, T-WaveNet provides more effective representation for sensor information than existing DNN-based techniques, and it achieves state-of-the-art performance on various sensor datasets, including UCI-HAR for activity recognition, OPPORTUNITY for gesture recognition, BCICIV2a for intention recognition, and NinaPro DB1 for muscular movement recognition. | ['Qiang Xu', 'Qiuxia Lai', 'Ailing Zeng', 'Minhao Liu'] | 2020-12-10 | null | null | null | null | ['muscular-movement-recognition'] | ['medical'] | [ 5.06456673e-01 -3.09636593e-01 -3.06024998e-01 -2.36497670e-01
-3.55689377e-01 -2.88028326e-02 3.23909186e-02 -1.13929644e-01
-5.65382898e-01 4.85012293e-01 3.48242819e-01 -1.07789606e-01
-3.47175509e-01 -8.54890406e-01 -4.11658227e-01 -1.01105011e+00
-3.54149610e-01 -4.14106727e-01 9.73085389e-02 -2.26941079e-01
-1.55739546e-01 3.43131691e-01 -1.46415663e+00 2.82527864e-01
6.03000462e-01 1.71673214e+00 4.10264917e-02 2.84001023e-01
-6.32868633e-02 5.91704190e-01 -8.27863991e-01 2.95203388e-01
1.33414427e-02 -4.59249467e-01 -3.02824527e-01 -1.45100728e-01
-3.52312386e-01 -2.01277211e-01 -5.23321569e-01 1.04898489e+00
6.22765422e-01 1.06145427e-01 5.06641448e-01 -1.16248524e+00
-1.86026201e-01 6.14856482e-01 -3.87421131e-01 5.03956616e-01
1.85824692e-01 -1.75888091e-01 6.16703510e-01 -7.45376110e-01
2.75006384e-01 7.96330750e-01 9.07756388e-01 3.22143078e-01
-7.85059154e-01 -6.87304854e-01 -1.64271817e-01 4.63086098e-01
-1.30982792e+00 -2.76335895e-01 1.37979937e+00 -9.15554762e-02
8.93133700e-01 1.47960156e-01 1.01970649e+00 1.39258742e+00
3.82878393e-01 8.87858093e-01 8.69675457e-01 -2.73594677e-01
3.24008763e-01 -5.94013810e-01 1.88772455e-01 3.82466972e-01
-4.08641063e-03 1.11014247e-02 -8.25878561e-01 -1.01820810e-03
8.74480605e-01 4.85592067e-01 -7.07140923e-01 1.53410420e-01
-1.27763760e+00 6.78276777e-01 3.45887423e-01 6.83052480e-01
-9.50180292e-01 8.39958191e-02 6.75201774e-01 3.92708868e-01
2.55707383e-01 -1.68376744e-01 -5.45893252e-01 -4.42669153e-01
-7.06904471e-01 -1.23962201e-01 4.78443265e-01 3.20786923e-01
1.91647217e-01 5.20699203e-01 -3.31085138e-02 8.70499909e-01
8.78997445e-02 4.21088308e-01 1.24418151e+00 -6.64729893e-01
3.26417983e-01 5.40921867e-01 -2.93902606e-01 -1.06481338e+00
-7.37976313e-01 -5.06649375e-01 -1.41206193e+00 -7.03367665e-02
3.99744153e-01 -3.74746561e-01 -8.00430536e-01 1.65420055e+00
2.05943614e-01 2.56452143e-01 2.34113932e-01 8.65226388e-01
8.51267815e-01 7.14948058e-01 -9.33236182e-02 -5.56411266e-01
1.48949659e+00 -3.14772755e-01 -9.20253277e-01 -2.40160041e-02
1.02916300e-01 -1.77805200e-01 8.14712167e-01 8.75937402e-01
-5.36972523e-01 -7.51435578e-01 -1.13217652e+00 3.68794411e-01
-2.48149559e-01 9.88545865e-02 5.95459461e-01 4.57981348e-01
-5.88160872e-01 6.67930722e-01 -9.72695529e-01 -9.24479589e-02
4.29424912e-01 2.84585834e-01 -4.29853708e-01 2.75772810e-01
-1.40780938e+00 5.43515444e-01 6.58779979e-01 3.42285335e-01
-4.89618242e-01 -3.87352109e-01 -8.32697153e-01 8.51355214e-03
1.72663346e-01 -9.36680809e-02 8.59982967e-01 -8.12510073e-01
-1.44283009e+00 2.71393776e-01 -1.07941486e-01 -6.88323617e-01
9.29965302e-02 4.74513369e-03 -9.59894359e-01 4.58478868e-01
-3.56452942e-01 2.02770472e-01 1.36610687e+00 -4.20936763e-01
-6.04203224e-01 -5.06732583e-01 -2.80694097e-01 -1.23081595e-01
-1.11020732e+00 -5.55065386e-02 1.06392443e-01 -1.05821431e+00
4.15508777e-01 -3.47984821e-01 8.93069357e-02 -8.23190063e-02
-1.30946472e-01 -5.35267115e-01 1.06807685e+00 -9.43608165e-01
1.54507673e+00 -2.50417924e+00 1.30698651e-01 3.24311286e-01
2.09253997e-01 3.68794233e-01 -1.52046755e-01 3.15163612e-01
-3.10389906e-01 -4.62127000e-01 -9.94558036e-02 3.57208282e-01
-3.06399107e-01 2.89575964e-01 -2.11669713e-01 3.68103027e-01
7.77313486e-02 7.96699464e-01 -6.53593361e-01 -2.72918701e-01
3.11743051e-01 6.86212003e-01 -1.87699229e-01 -4.08256426e-02
1.02145918e-01 4.21670914e-01 -6.76389158e-01 6.71155632e-01
3.00859004e-01 -3.01231686e-02 -1.39525503e-01 -6.00168169e-01
-6.14378005e-02 6.82884548e-03 -1.09907138e+00 1.74322164e+00
-3.32458675e-01 5.90347052e-01 3.75280231e-02 -1.60846519e+00
1.12939227e+00 6.90203965e-01 9.92752314e-01 -7.70465493e-01
4.47654396e-01 1.65772110e-01 1.28146142e-01 -8.76810431e-01
-2.10317925e-01 -1.57211512e-01 -4.15769500e-05 1.40649915e-01
1.07953966e-01 4.76870149e-01 -1.19039686e-02 -5.09606361e-01
1.30521655e+00 -1.03953637e-01 3.92793983e-01 3.88790704e-02
5.78537703e-01 -2.72228897e-01 7.07592070e-01 3.58736366e-01
-3.92322034e-01 3.22680205e-01 1.54138073e-01 -7.74352312e-01
-5.50255239e-01 -9.33066070e-01 -1.60661012e-01 1.04439926e+00
-1.77539378e-01 -3.34500700e-01 -7.87542522e-01 -2.45864555e-01
-1.34455249e-01 3.71692300e-01 -5.51043868e-01 -5.02878249e-01
-7.01980948e-01 -7.54535854e-01 7.69071519e-01 8.26038122e-01
8.93818498e-01 -1.51456177e+00 -1.21462238e+00 7.08056629e-01
-3.89740914e-01 -9.70723212e-01 -3.04460138e-01 5.54554820e-01
-1.11520505e+00 -9.59111750e-01 -7.51101017e-01 -7.79496253e-01
2.72790402e-01 5.11198044e-02 4.38262761e-01 -2.59805202e-01
-2.80914932e-01 9.41855535e-02 -5.66289663e-01 -6.45194411e-01
1.42371446e-01 -1.50287330e-01 2.43863717e-01 3.52494091e-01
6.34871304e-01 -1.21932793e+00 -6.69743061e-01 8.16275254e-02
-9.30846691e-01 -2.69027829e-01 6.36359692e-01 8.76095295e-01
5.88023305e-01 6.20073974e-01 6.96036577e-01 -1.07359201e-01
1.12895226e+00 -1.91879332e-01 -1.56838998e-01 -5.37345521e-02
-6.82834536e-02 -2.85739563e-02 1.09581661e+00 -1.02218032e+00
-5.85759699e-01 8.29796195e-02 -3.88333529e-01 -6.33714139e-01
-6.84441924e-02 9.62342083e-01 -8.71726274e-02 1.39532452e-02
7.16832757e-01 8.53529274e-01 1.03941210e-01 -6.18347526e-01
-1.56140402e-01 9.40204859e-01 8.97196770e-01 -3.37557942e-01
4.96399850e-01 3.44314069e-01 -2.99240882e-03 -1.09249234e+00
-5.96089482e-01 -2.36109555e-01 -4.47281808e-01 -3.15681100e-01
9.98188376e-01 -6.68669581e-01 -9.47700977e-01 7.89390624e-01
-1.04585123e+00 -4.32825796e-02 -3.95992249e-01 9.03702617e-01
-3.65007818e-01 1.99179515e-01 -5.13071835e-01 -8.73240590e-01
-7.03484833e-01 -6.34718478e-01 7.18545139e-01 2.57433146e-01
-2.95213521e-01 -6.33987606e-01 -2.33670324e-01 -6.94272295e-02
5.13768077e-01 6.38042331e-01 9.13389981e-01 -6.23203814e-01
2.21348867e-01 -5.38696170e-01 1.70335814e-01 6.92588329e-01
3.68190467e-01 -5.28940380e-01 -7.86643565e-01 -1.64888009e-01
6.43646717e-01 -2.17630416e-01 7.23252177e-01 6.72422171e-01
1.57182384e+00 -2.87277997e-01 -1.08646750e-01 6.87181771e-01
1.08913195e+00 6.22186661e-01 4.99545008e-01 7.20861778e-02
5.67633212e-01 2.74869353e-01 1.23454168e-01 5.58968425e-01
1.55091211e-02 3.74500096e-01 3.00470740e-01 8.35085213e-02
2.37427890e-01 -1.72795162e-01 4.16788936e-01 1.17306960e+00
-5.09001195e-01 1.21752843e-01 -6.40700161e-01 3.85466367e-01
-1.69003391e+00 -9.48458016e-01 5.76021411e-02 1.94607818e+00
7.12423980e-01 2.62091249e-01 3.06720376e-01 9.42303717e-01
4.83550638e-01 2.63062805e-01 -8.68681431e-01 1.09574683e-01
-3.02691362e-04 5.27583659e-01 1.64225370e-01 -2.17769966e-01
-1.02068949e+00 3.37383360e-01 5.97312164e+00 1.03774464e+00
-1.45428371e+00 2.39461407e-01 1.42539784e-01 -6.09537326e-02
2.45631933e-01 -7.34555244e-01 -2.22022831e-01 7.34537065e-01
9.71790314e-01 -6.57432601e-02 6.24421716e-01 7.87551284e-01
4.27734196e-01 1.55547321e-01 -9.11719680e-01 1.39554811e+00
-2.25463673e-01 -9.76086915e-01 -1.62825122e-01 4.71379906e-02
4.42717522e-02 -1.02613218e-01 -2.04909444e-01 3.48023623e-01
-3.58952999e-01 -1.07134354e+00 5.84584653e-01 4.09469515e-01
7.72054851e-01 -8.38839650e-01 7.82425046e-01 6.33855999e-01
-1.56653404e+00 -4.20569867e-01 -3.46459359e-01 -2.28675812e-01
1.97388735e-02 8.39638829e-01 -1.49484113e-01 4.90459323e-01
8.08436453e-01 8.73350143e-01 1.09158471e-01 7.10183322e-01
-1.82422876e-01 8.74946356e-01 -5.28912902e-01 -2.87474185e-01
5.83526604e-02 -1.14304662e-01 3.77644628e-01 9.18062747e-01
5.53313255e-01 4.52780575e-01 2.83760764e-02 4.35758501e-01
-4.42144182e-03 -1.04365624e-01 -5.12219846e-01 -1.86427459e-01
4.24733698e-01 1.04096222e+00 -6.41716063e-01 -2.95654476e-01
-3.59563142e-01 9.20523345e-01 -1.17517509e-01 4.43598598e-01
-6.89644992e-01 -8.08526576e-01 5.80034375e-01 -3.19071054e-01
4.54540730e-01 -2.80947655e-01 -3.04897875e-02 -1.05181324e+00
4.30740178e-01 -8.89966547e-01 4.93031949e-01 -6.81291878e-01
-1.05978870e+00 6.10340536e-01 1.83525719e-02 -1.69306481e+00
-3.18822354e-01 -7.94786990e-01 -6.53317153e-01 7.67846048e-01
-1.14554346e+00 -6.60630524e-01 -4.34208214e-01 1.09387004e+00
5.11917830e-01 -2.04566881e-01 9.41397786e-01 3.40158582e-01
-4.75250721e-01 3.39634359e-01 4.71355841e-02 5.95417738e-01
1.41080394e-01 -6.68031871e-01 -2.67330976e-03 7.37112820e-01
2.64767203e-02 7.08676755e-01 4.39599544e-01 -3.42086226e-01
-1.70298123e+00 -9.95207369e-01 5.46437204e-01 1.24577262e-01
7.07808435e-01 -1.33292258e-01 -8.48570704e-01 2.88283885e-01
-9.75609943e-02 3.53606075e-01 6.26602829e-01 -3.09290349e-01
-1.62897274e-01 -5.51137090e-01 -1.12052500e+00 3.04133564e-01
1.16942561e+00 -4.79277462e-01 -9.51885819e-01 6.49975017e-02
6.25607252e-01 -3.26365739e-01 -1.12411249e+00 6.29494131e-01
8.27355266e-01 -7.79553473e-01 1.12118042e+00 -4.68326628e-01
3.45934927e-01 -2.38544494e-01 -2.62914389e-01 -1.38721669e+00
-2.43664041e-01 -5.24300635e-01 -4.78444070e-01 6.65726006e-01
-1.41021922e-01 -7.69505799e-01 7.84475565e-01 -7.54257739e-02
-1.23382740e-01 -8.68636250e-01 -1.34199834e+00 -9.29940462e-01
-4.38827008e-01 -7.93276370e-01 5.70120513e-01 7.82193720e-01
2.35488951e-01 2.18986109e-01 -4.05086935e-01 -1.01721548e-01
5.65819025e-01 -1.87699385e-02 1.93787828e-01 -1.51297867e+00
-1.68573529e-01 -4.12048459e-01 -6.00624561e-01 -9.24862504e-01
-1.21980175e-01 -6.34245872e-01 -2.32004803e-02 -1.43223345e+00
-3.67211193e-01 1.68610618e-01 -8.61840248e-01 7.97021031e-01
2.52856076e-01 2.72238255e-01 -6.32022768e-02 8.91915858e-02
-7.81660601e-02 5.81815183e-01 1.18719363e+00 -2.36315653e-01
-4.23274219e-01 1.12818412e-01 -4.81554598e-01 9.62069869e-01
6.91779494e-01 -3.31271678e-01 -5.06331921e-01 -1.10608220e-01
-2.03045204e-01 4.83891964e-01 2.51764208e-01 -1.42368591e+00
2.12917879e-01 -1.54351685e-02 7.63734758e-01 -6.09221458e-01
4.41184342e-01 -1.06676710e+00 1.22421160e-01 8.20027411e-01
-1.32313326e-01 -7.95676038e-02 4.57934327e-02 4.51324254e-01
-4.81226861e-01 -5.44127030e-03 3.05056512e-01 6.40783608e-02
-7.60820329e-01 3.56727123e-01 -6.46554172e-01 -1.22271247e-01
5.22479057e-01 -5.62917590e-01 5.17749153e-02 -2.73382068e-01
-7.21779346e-01 -1.82122871e-01 -4.92621213e-01 3.21898669e-01
8.77007127e-01 -1.67659819e+00 -4.66228336e-01 5.75011253e-01
2.62485314e-02 -3.82060185e-02 1.72422528e-01 9.24103737e-01
-2.59807501e-02 2.11665899e-01 -5.41240335e-01 -5.70189953e-01
-1.11405087e+00 2.75127202e-01 2.42915586e-01 -3.03505547e-02
-1.04743838e+00 6.72621787e-01 -4.20652330e-01 1.55523390e-01
5.59992790e-01 -8.98577094e-01 -5.32816887e-01 3.08209628e-01
7.66849399e-01 2.81904548e-01 1.27561182e-01 -4.37189728e-01
-5.92244089e-01 6.91293657e-01 3.86984736e-01 -5.35464361e-02
1.70403016e+00 4.85816777e-01 -9.69159976e-02 4.86356229e-01
1.33373654e+00 -3.94452423e-01 -1.14172232e+00 -4.38386917e-01
-1.34279951e-01 1.17392763e-01 1.81773394e-01 -5.71153104e-01
-1.29865289e+00 8.74859989e-01 7.30303407e-01 3.86811405e-01
1.82299161e+00 -4.30775315e-01 1.19457161e+00 7.09074080e-01
6.54328227e-01 -1.18054175e+00 1.74844429e-01 3.32494467e-01
9.00523484e-01 -6.90984547e-01 -2.35206127e-01 -1.18799899e-02
-1.25656173e-01 1.48707652e+00 1.60086080e-01 -1.71551600e-01
8.43431413e-01 3.42011303e-01 -1.31364912e-02 -1.09399054e-02
-1.88350558e-01 1.58376771e-03 2.43396059e-01 7.09314287e-01
9.74859744e-02 4.50784154e-02 -3.93250167e-01 1.08222258e+00
-4.46061522e-01 4.11987990e-01 -4.88815503e-03 1.01094472e+00
-6.18914306e-01 -7.50920355e-01 -6.12342536e-01 7.26545155e-01
-4.19416130e-01 2.88219806e-02 7.16040283e-03 6.16728008e-01
1.46800160e-01 9.78243947e-01 2.69238893e-02 -8.26601028e-01
4.28915381e-01 2.94824839e-01 3.79107594e-01 -1.49032414e-01
-3.74391317e-01 3.14550579e-01 -1.20348766e-01 -5.97338915e-01
-5.66729486e-01 -4.26038802e-01 -1.54035461e+00 5.82631081e-02
1.26058251e-01 -1.65910702e-02 5.84893405e-01 1.10313904e+00
9.66905430e-02 9.33855414e-01 5.76236725e-01 -8.39768708e-01
-5.04158258e-01 -1.19832671e+00 -6.99445426e-01 4.23000574e-01
5.39999425e-01 -5.08917511e-01 -2.52826512e-01 1.53847188e-01] | [13.926629066467285, 3.2617621421813965] |
61bc0879-d5f5-47e5-a83a-51fb10026211 | mtp-multi-hypothesis-tracking-and-prediction | 2110.09481 | null | https://arxiv.org/abs/2110.09481v1 | https://arxiv.org/pdf/2110.09481v1.pdf | MTP: Multi-Hypothesis Tracking and Prediction for Reduced Error Propagation | Recently, there has been tremendous progress in developing each individual module of the standard perception-planning robot autonomy pipeline, including detection, tracking, prediction of other agents' trajectories, and ego-agent trajectory planning. Nevertheless, there has been less attention given to the principled integration of these components, particularly in terms of the characterization and mitigation of cascading errors. This paper addresses the problem of cascading errors by focusing on the coupling between the tracking and prediction modules. First, by using state-of-the-art tracking and prediction tools, we conduct a comprehensive experimental evaluation of how severely errors stemming from tracking can impact prediction performance. On the KITTI and nuScenes datasets, we find that predictions consuming tracked trajectories as inputs (the typical case in practice) can experience a significant (even order of magnitude) drop in performance in comparison to the idealized setting where ground truth past trajectories are used as inputs. To address this issue, we propose a multi-hypothesis tracking and prediction framework. Rather than relying on a single set of tracking results for prediction, our framework simultaneously reasons about multiple sets of tracking results, thereby increasing the likelihood of including accurate tracking results as inputs to prediction. We show that this framework improves overall prediction performance over the standard single-hypothesis tracking-prediction pipeline by up to 34.2% on the nuScenes dataset, with even more significant improvements (up to ~70%) when restricting the evaluation to challenging scenarios involving identity switches and fragments -- all with an acceptable computation overhead. | ['Marco Pavone', 'Boris Ivanovic', 'Xinshuo Weng'] | 2021-10-18 | null | null | null | null | ['trajectory-planning'] | ['robots'] | [ 1.26467377e-01 1.70928642e-01 -1.75177157e-01 -6.44384474e-02
-6.77211761e-01 -8.00507307e-01 1.00389254e+00 2.89468646e-01
-4.65863734e-01 5.92356324e-01 1.55793235e-01 -2.68717080e-01
-9.56233442e-02 -7.93489993e-01 -8.99875641e-01 -4.63259578e-01
-4.42859977e-01 7.65683651e-01 8.67675662e-01 -2.97971368e-01
7.79801309e-02 4.63084191e-01 -1.96357703e+00 -2.61153251e-01
6.13146365e-01 7.46263087e-01 1.42143920e-01 7.43326843e-01
4.53229964e-01 7.07751274e-01 -3.25513035e-01 -2.65008032e-01
4.09364998e-01 7.29014352e-03 -5.21903694e-01 -4.05840129e-02
5.12925327e-01 -3.73838127e-01 -3.68948162e-01 9.40126717e-01
2.49982387e-01 2.04887822e-01 2.68593609e-01 -1.56660461e+00
-4.91151735e-02 3.69902611e-01 -1.77773699e-01 1.06442124e-01
6.07344508e-01 5.31256318e-01 9.06092286e-01 -5.63006818e-01
8.85359943e-01 1.06910598e+00 1.17001390e+00 3.51947486e-01
-1.22846305e+00 -5.51145673e-01 2.92175710e-01 1.80770129e-01
-1.33276081e+00 -6.81011796e-01 6.76525012e-02 -7.44037867e-01
1.17156279e+00 1.36902019e-01 6.81201994e-01 9.95625675e-01
2.58686513e-01 6.15492821e-01 5.04622877e-01 -3.22719403e-02
1.41848534e-01 -6.49859458e-02 3.10193524e-02 6.95292592e-01
3.90439570e-01 7.98141420e-01 -3.01256210e-01 -9.12864432e-02
3.82705182e-01 -2.69497633e-01 5.46613894e-02 -5.37036002e-01
-1.48799610e+00 4.84189242e-01 3.30426663e-01 -2.21089453e-01
-3.76772523e-01 3.98164660e-01 3.43376696e-01 2.08116770e-02
1.50954351e-01 2.62454420e-01 -4.42110956e-01 -3.37223500e-01
-7.69598007e-01 8.65936577e-01 7.28449106e-01 1.29838538e+00
6.16632462e-01 -9.96757522e-02 -1.24762051e-01 4.12543304e-02
3.29010010e-01 5.67858040e-01 8.34618881e-02 -1.12531924e+00
4.50615168e-01 5.71839631e-01 8.26807022e-01 -1.00253904e+00
-9.41113174e-01 -4.01890129e-01 -5.80099374e-02 4.87049699e-01
6.86451912e-01 -4.64410394e-01 -8.17115784e-01 1.90232289e+00
7.24325299e-01 3.30285937e-01 2.33474478e-01 9.26180780e-01
3.29207271e-01 4.75704998e-01 9.88456383e-02 -9.50401649e-02
1.19192672e+00 -1.07815516e+00 -4.26477551e-01 -3.99091154e-01
8.18645179e-01 -6.61789775e-01 6.35820925e-01 1.42102137e-01
-7.64677525e-01 -4.72262710e-01 -1.02503657e+00 1.69391528e-01
-3.75226527e-01 -4.80109900e-02 6.06665611e-01 3.14857453e-01
-9.41371620e-01 7.33599842e-01 -1.22763276e+00 -9.05754209e-01
1.05127305e-01 4.09810811e-01 -3.42415422e-01 5.88451885e-02
-8.25516164e-01 1.29917228e+00 5.10552466e-01 -3.48985463e-01
-1.01214445e+00 -8.82915378e-01 -7.71481156e-01 -1.87191978e-01
6.24814689e-01 -4.97284949e-01 1.50151229e+00 -3.86802644e-01
-1.20555007e+00 3.39170188e-01 -2.43275031e-01 -7.38038957e-01
8.82734835e-01 -3.93908918e-01 -4.97097820e-01 -3.94784510e-01
3.25946480e-01 7.92610466e-01 2.45714903e-01 -1.13007927e+00
-1.11928928e+00 -1.09197073e-01 4.40769941e-02 2.75401592e-01
3.57781112e-01 -5.34011163e-02 -6.53031886e-01 -3.05578023e-01
-4.47242819e-02 -1.40395164e+00 -4.10054177e-01 1.15927383e-01
-2.53423810e-01 -1.84547424e-01 6.89720929e-01 -4.25546974e-01
9.61961389e-01 -1.85814750e+00 4.76593757e-03 -1.61502790e-02
-6.87511116e-02 7.25755766e-02 2.92020477e-02 6.72645211e-01
3.75031918e-01 -3.35223645e-01 4.60271304e-03 -5.52078962e-01
2.23627359e-01 3.93502682e-01 -5.14053524e-01 6.29131973e-01
9.49837547e-03 7.58255959e-01 -1.17711937e+00 -1.98305979e-01
3.60602349e-01 2.04750806e-01 -5.39058208e-01 -7.32882321e-02
-5.89005172e-01 6.04951024e-01 -3.10603768e-01 6.97199047e-01
2.81859994e-01 -2.50486225e-01 2.07875744e-01 2.02722088e-01
-5.91409624e-01 4.19842392e-01 -1.13276875e+00 1.63302648e+00
8.55413377e-02 7.56525755e-01 -2.17113808e-01 -3.52072269e-01
5.57789505e-01 1.31460756e-01 7.22081423e-01 -5.11813343e-01
-4.41277549e-02 9.94545370e-02 1.35966465e-01 -2.47523576e-01
8.57351005e-01 7.42926076e-02 -3.16077352e-01 1.58045903e-01
-2.03446731e-01 3.88902396e-01 3.53693664e-01 6.34674206e-02
1.45615709e+00 6.60220504e-01 2.30783284e-01 -6.82037398e-02
1.67057201e-01 1.02852523e+00 7.91743338e-01 8.24988067e-01
-4.41349417e-01 3.59998286e-01 2.10394487e-01 -4.41909403e-01
-1.20090032e+00 -9.57455218e-01 -3.49024646e-02 1.17799306e+00
6.23340666e-01 -6.72394574e-01 -4.23265755e-01 -5.48975885e-01
3.67124557e-01 9.91042614e-01 -5.91541708e-01 -1.82625074e-02
-6.48467541e-01 -7.02144563e-01 7.70441175e-01 5.73070765e-01
1.46876112e-01 -8.02678168e-01 -1.20841146e+00 3.99662226e-01
1.78820025e-02 -1.36411142e+00 -1.43480375e-01 -1.89059833e-03
-5.55345356e-01 -1.12873971e+00 1.40563492e-02 -1.77477017e-01
3.56406152e-01 3.51919681e-01 9.19561446e-01 1.10589586e-01
-6.39576931e-03 5.13452053e-01 -3.95955682e-01 -5.22686541e-01
-5.46347558e-01 1.88363567e-02 4.40077782e-01 -5.43719411e-01
1.98975489e-01 -3.74483198e-01 -3.96936089e-01 5.14895201e-01
-2.22765356e-01 1.58479080e-01 5.02443433e-01 3.81583959e-01
4.53631729e-01 -5.39236851e-02 3.01099539e-01 -4.50659573e-01
2.67148942e-01 -7.57810414e-01 -1.13505113e+00 4.03721742e-02
-9.23139036e-01 1.57107264e-02 4.56369519e-01 -4.25104022e-01
-7.98133850e-01 3.78434449e-01 -4.83127460e-02 -5.00678062e-01
-2.86113590e-01 2.88548440e-01 1.88119084e-01 -2.31148839e-01
6.60105348e-01 1.45165741e-01 1.40423715e-01 -3.21410775e-01
4.18657005e-01 -6.97141699e-03 7.96547115e-01 -3.73761415e-01
9.10591722e-01 6.40222013e-01 2.33337656e-01 -4.74417955e-01
-5.96343160e-01 -4.50696796e-01 -5.58161020e-01 -4.04118836e-01
8.01559448e-01 -1.01953959e+00 -1.03098619e+00 1.60122260e-01
-9.66536403e-01 -5.44257522e-01 -2.71414995e-01 4.49021131e-01
-7.34797716e-01 3.20170581e-01 -2.56345510e-01 -7.58497715e-01
8.33651200e-02 -1.32801080e+00 9.76722419e-01 7.60119855e-02
-2.79782653e-01 -8.12983394e-01 3.96893620e-01 -4.16031368e-02
2.29523107e-01 4.15458709e-01 3.29654038e-01 -9.27472651e-01
-8.66031110e-01 -3.26320350e-01 4.80459109e-02 -5.42234063e-01
-1.92553073e-01 -1.03540726e-01 -7.45202005e-01 -3.83669943e-01
-6.39627993e-01 -4.08527032e-02 6.52477205e-01 9.80058238e-02
2.55814105e-01 -1.37982249e-01 -9.49411273e-01 3.01841527e-01
1.29009318e+00 1.64840162e-01 3.87901336e-01 7.34343410e-01
5.40377378e-01 5.46598315e-01 1.18600249e+00 4.41201240e-01
9.42422211e-01 1.09985042e+00 8.35401893e-01 4.08547521e-01
-1.87575027e-01 -4.66318756e-01 5.33786833e-01 1.46052226e-01
-1.10498853e-02 -3.47740054e-01 -1.23862076e+00 7.23534584e-01
-2.34213161e+00 -1.22623849e+00 -3.10442179e-01 2.40520692e+00
2.21175343e-01 2.27223575e-01 4.28846627e-01 -3.03560138e-01
5.37930846e-01 -6.13759197e-02 -8.21437955e-01 2.50157058e-01
3.05116922e-01 -6.18217885e-01 9.39952195e-01 6.25354886e-01
-1.33371103e+00 1.21635139e+00 7.05421352e+00 4.10183668e-01
-9.26612020e-01 -1.84720159e-02 -2.15832070e-01 -1.68171957e-01
1.15543351e-01 2.43466392e-01 -1.18254089e+00 5.37449479e-01
1.04854965e+00 -1.95535850e-02 4.09739882e-01 9.59291160e-01
1.34718642e-01 -2.50188857e-01 -1.19246447e+00 5.42742252e-01
-3.96202236e-01 -1.39158571e+00 -4.32493806e-01 2.97783047e-01
5.13978362e-01 6.44386888e-01 -8.54428262e-02 4.66093361e-01
9.46599960e-01 -7.87051141e-01 1.23965311e+00 5.52131653e-01
1.79903194e-01 -5.47029495e-01 5.07677376e-01 6.92854643e-01
-1.32593250e+00 -1.85289964e-01 -2.65435338e-01 -3.53344828e-01
4.55843180e-01 8.57171193e-02 -1.18876410e+00 7.76982546e-01
6.89939260e-01 7.11257279e-01 -3.66961151e-01 1.32401264e+00
-3.93286422e-02 4.92092550e-01 -6.97466135e-01 1.04024917e-01
3.51833552e-01 1.28847370e-02 9.81647432e-01 1.10023284e+00
4.13563728e-01 -1.20195225e-02 5.80411315e-01 5.92821538e-01
3.30087423e-01 -5.49792111e-01 -6.50803626e-01 2.91378886e-01
7.86541760e-01 1.03885603e+00 -5.53138137e-01 -3.66835594e-01
-4.64404345e-01 4.87240463e-01 3.85615796e-01 1.64723918e-02
-1.22545576e+00 2.03998834e-01 1.12050903e+00 9.91307870e-02
5.72418511e-01 -4.21579719e-01 -2.54826933e-01 -8.10062170e-01
-1.22659266e-01 -5.43848276e-01 3.33599567e-01 -4.91376996e-01
-8.58380020e-01 2.72609919e-01 1.26673937e-01 -1.43214357e+00
-5.54917634e-01 -3.31720620e-01 -5.61473668e-01 5.52882195e-01
-1.36300004e+00 -1.17450917e+00 -3.61634046e-01 1.51635453e-01
4.22813743e-01 1.01381622e-01 5.23507178e-01 2.41300836e-01
-5.52916884e-01 2.91035473e-01 6.61169272e-03 -2.25362509e-01
5.74528337e-01 -1.05540013e+00 7.95258641e-01 1.22053647e+00
-9.12067741e-02 3.86174381e-01 1.36776602e+00 -1.07408869e+00
-1.62496471e+00 -1.47947776e+00 6.87564850e-01 -1.01275671e+00
9.27482247e-01 -1.60289720e-01 -6.18527472e-01 1.28187561e+00
-3.31008844e-02 -3.71298678e-02 2.18249694e-01 8.11546817e-02
-4.63098064e-02 3.01896006e-01 -9.64226365e-01 7.79217541e-01
1.41654909e+00 4.04108502e-02 -5.59702992e-01 3.57582867e-01
8.19549799e-01 -6.94878936e-01 -9.81568158e-01 6.25681102e-01
7.98241436e-01 -1.08885705e+00 1.09513593e+00 -4.73005950e-01
-5.39904237e-02 -7.52738476e-01 -3.26941311e-01 -1.02866137e+00
-4.49827760e-01 -6.31819427e-01 -2.06988782e-01 1.02068686e+00
3.78138870e-01 -5.31673074e-01 8.54493618e-01 6.10394001e-01
-5.39375842e-01 -5.50771058e-01 -7.54339278e-01 -1.01890147e+00
-2.04592898e-01 -7.24010110e-01 6.70156837e-01 6.93117619e-01
-2.02631894e-02 2.94836927e-02 -4.27848279e-01 7.97949195e-01
7.21340716e-01 1.62418798e-01 1.30979550e+00 -1.17176914e+00
-1.70668676e-01 -3.49371374e-01 -5.39396405e-01 -1.26062417e+00
-7.80018717e-02 -6.30551636e-01 5.47419846e-01 -1.61086380e+00
-1.75491363e-01 -6.67295456e-01 1.21143356e-01 4.83128488e-01
1.50407357e-02 -1.05987219e-02 4.58281070e-01 5.21894038e-01
-1.01625180e+00 4.53844428e-01 8.45322430e-01 2.44316682e-01
-9.15632620e-02 1.14778653e-01 -2.71159798e-01 9.38564599e-01
6.03772163e-01 -5.95590651e-01 -3.24583530e-01 -4.80019301e-01
1.59610242e-01 1.41676456e-01 6.74800098e-01 -1.58043706e+00
7.28427351e-01 -2.59309173e-01 2.47506440e-01 -9.68215406e-01
5.78499854e-01 -8.62212956e-01 5.64093411e-01 6.62222505e-01
-1.19634956e-01 3.70534003e-01 4.57785577e-01 9.06675637e-01
3.21310520e-01 8.77962932e-02 3.80752265e-01 -1.82417184e-02
-1.18344188e+00 1.19265944e-01 -6.83843791e-01 -2.13180110e-01
1.36641991e+00 -3.69456798e-01 -6.48172319e-01 -1.48133174e-01
-6.88506246e-01 6.20240152e-01 1.01030076e+00 5.18413126e-01
1.47833914e-01 -1.09960175e+00 -4.07495856e-01 -1.31259263e-01
2.96211928e-01 1.10685974e-02 -1.34881586e-01 1.13699293e+00
-2.49031648e-01 5.50917208e-01 -1.51946664e-01 -7.96461403e-01
-1.11464858e+00 6.74890161e-01 3.01117152e-01 -2.64612556e-01
-8.54996502e-01 5.63802481e-01 -4.91561815e-02 -6.73455894e-01
3.48307788e-01 -3.39254528e-01 -9.67915431e-02 -2.11543456e-01
2.84737736e-01 8.05442810e-01 -1.32864237e-01 -9.43595529e-01
-6.30017161e-01 4.87527311e-01 1.03287697e-01 -1.28675520e-01
1.02945542e+00 -2.46642634e-01 3.95049661e-01 3.20743412e-01
4.42599326e-01 6.42618388e-02 -1.78942871e+00 1.72584374e-02
3.98436755e-01 -1.93306878e-01 -2.00852036e-01 -9.21887636e-01
-4.42358136e-01 3.60278457e-01 4.90675986e-01 2.50519961e-01
4.85011458e-01 1.13269992e-01 7.35703409e-01 4.28547949e-01
9.38805640e-01 -7.23881781e-01 -3.50019038e-01 7.32547462e-01
5.69964409e-01 -1.27184534e+00 1.27023548e-01 -2.61949182e-01
-6.75634265e-01 7.28097141e-01 7.23997533e-01 -2.17373312e-01
1.58317670e-01 2.27322966e-01 -1.41813010e-01 -2.72229344e-01
-1.09324038e+00 -4.56913978e-01 1.91805154e-01 6.69951618e-01
-1.67034790e-01 1.24326885e-01 1.52416989e-01 2.90787965e-01
-3.26151818e-01 -1.84763417e-01 4.32805836e-01 9.93344367e-01
-7.50824749e-01 -8.43154371e-01 -3.90584439e-01 2.04131976e-01
-2.14520190e-02 2.94878811e-01 -9.45948362e-02 1.19043493e+00
2.48308077e-01 1.06665313e+00 2.90567368e-01 -7.89942503e-01
5.27025640e-01 -1.42942429e-01 2.52586484e-01 -3.65761846e-01
-5.98696887e-01 -1.77936211e-01 5.24337232e-01 -1.02735734e+00
-3.11678082e-01 -1.19018435e+00 -1.57271469e+00 -4.67363715e-01
-2.23320827e-01 -1.57025278e-01 4.46129262e-01 1.11843884e+00
7.06518829e-01 4.90957886e-01 -4.10922803e-02 -1.19069183e+00
-6.62707746e-01 -6.95133507e-01 1.71653703e-01 2.05369875e-01
4.61185932e-01 -1.19180202e+00 -1.37575805e-01 -1.56471372e-01] | [5.77230978012085, 0.8203360438346863] |
01d65e3c-f55d-4715-a7a7-89ad5db6e81b | question-type-driven-question-generation | 1909.00140 | null | https://arxiv.org/abs/1909.00140v1 | https://arxiv.org/pdf/1909.00140v1.pdf | Question-type Driven Question Generation | Question generation is a challenging task which aims to ask a question based on an answer and relevant context. The existing works suffer from the mismatching between question type and answer, i.e. generating a question with type $how$ while the answer is a personal name. We propose to automatically predict the question type based on the input answer and context. Then, the question type is fused into a seq2seq model to guide the question generation, so as to deal with the mismatching problem. We achieve significant improvement on the accuracy of question type prediction and finally obtain state-of-the-art results for question generation on both SQuAD and MARCO datasets. | ['Minghua Zhang', 'Yunfang Wu', 'Wenjie Zhou'] | 2019-08-31 | question-type-driven-question-generation-1 | https://aclanthology.org/D19-1622 | https://aclanthology.org/D19-1622.pdf | ijcnlp-2019-11 | ['type-prediction'] | ['computer-code'] | [ 4.40752208e-01 1.22251272e-01 1.43176332e-01 -5.66486716e-01
-1.04988766e+00 -8.96892667e-01 5.01228333e-01 1.96304917e-01
-3.44513357e-01 6.76550210e-01 3.17011625e-01 -4.16505367e-01
1.78980559e-01 -9.22387064e-01 -5.69505692e-01 9.05906409e-02
8.05054307e-01 3.62155825e-01 3.13724667e-01 -5.54043114e-01
4.31597441e-01 -3.93379241e-01 -1.64900064e+00 5.85369647e-01
1.46031499e+00 1.37222183e+00 3.24852228e-01 1.03385115e+00
-5.98609924e-01 1.06199718e+00 -1.00106502e+00 -6.99064910e-01
-9.18921009e-02 -1.08622026e+00 -1.46323442e+00 -1.56615302e-01
5.94247997e-01 -1.58461612e-02 -1.69119120e-01 8.40868831e-01
5.05304396e-01 2.38763422e-01 6.22899950e-01 -1.00862336e+00
-8.84387612e-01 3.68533224e-01 3.85498077e-01 3.15395147e-01
9.18728828e-01 2.83705264e-01 1.31890917e+00 -6.76963568e-01
4.08514202e-01 1.14643574e+00 2.30692804e-01 8.12523425e-01
-9.03192163e-01 -2.94328809e-01 2.40596116e-01 6.54771566e-01
-8.44547391e-01 -3.41722399e-01 6.22613668e-01 -2.49018356e-01
6.14094973e-01 4.59093392e-01 3.97805661e-01 9.12914753e-01
-4.18945365e-02 7.12655067e-01 1.02053416e+00 -3.18553299e-01
2.06259608e-01 -6.06387332e-02 3.00176084e-01 5.96037745e-01
-3.68303478e-01 -3.77224863e-01 -3.94049793e-01 -1.38710052e-01
1.08510032e-01 -4.65665966e-01 -2.21647516e-01 4.22629744e-01
-1.01170075e+00 8.97134483e-01 5.47585726e-01 1.04257815e-01
-4.29457754e-01 -1.90125108e-01 1.49250850e-01 4.12972629e-01
6.09054975e-02 1.01866746e+00 -6.30495906e-01 -2.36656412e-01
-7.25272655e-01 9.48919773e-01 1.13538396e+00 8.15999150e-01
7.73899674e-01 -3.22124839e-01 -1.10230911e+00 1.03834903e+00
6.84367046e-02 5.01393318e-01 6.42680883e-01 -1.00771976e+00
7.93536067e-01 9.47575748e-01 3.47071320e-01 -7.48893738e-01
-1.50044531e-01 -2.09880516e-01 -5.28533340e-01 -3.53478163e-01
7.72094071e-01 -4.45616663e-01 -8.62262368e-01 1.82305276e+00
4.51288909e-01 -8.01485181e-02 3.24723125e-01 7.23215640e-01
1.42307115e+00 7.44715273e-01 -1.14669621e-01 2.05954820e-01
1.90761173e+00 -1.19228566e+00 -8.26822937e-01 -5.74915648e-01
5.37654519e-01 -8.51657331e-01 1.30374694e+00 3.15889828e-02
-1.11234939e+00 -7.37266243e-01 -5.94146252e-01 -3.57066840e-01
-1.76492080e-01 2.47586086e-01 4.51184288e-02 4.02446896e-01
-6.03698134e-01 1.79076105e-01 1.55016974e-01 -9.66592133e-02
2.00735047e-01 -5.47308549e-02 1.00156449e-01 -2.86295176e-01
-1.59692955e+00 7.79489040e-01 3.10775965e-01 6.79134056e-02
-5.02209783e-01 -8.56442511e-01 -9.12793398e-01 1.29792511e-01
5.56437850e-01 -1.16333055e+00 1.72924769e+00 -8.07116568e-01
-1.56894732e+00 6.63712263e-01 -6.16440713e-01 -5.01738787e-01
1.35410845e-01 -2.75731254e-02 -4.06334072e-01 2.32066095e-01
2.47972131e-01 6.14761889e-01 7.17717111e-01 -8.85510862e-01
-8.77825379e-01 -3.36964458e-01 3.95859033e-01 3.20770234e-01
5.04464507e-02 -6.45989329e-02 -2.79573262e-01 -5.43707252e-01
-5.24017885e-02 -8.07806492e-01 -6.93922639e-02 -4.22455192e-01
-5.23048997e-01 -8.47182691e-01 5.02189219e-01 -1.06885803e+00
1.35789955e+00 -1.67132294e+00 -1.09077498e-01 -3.83235723e-01
-6.33151084e-02 4.75118965e-01 -3.76224250e-01 2.90845752e-01
2.56462932e-01 6.29617497e-02 -2.97802091e-01 1.82210252e-01
1.26829371e-01 3.73276286e-02 -4.28168505e-01 -5.37190735e-01
4.08474833e-01 1.29503810e+00 -9.85938430e-01 -5.48445642e-01
-5.28237760e-01 -6.17048629e-02 -7.60174990e-01 1.07096541e+00
-9.77717757e-01 3.69338751e-01 -4.60277379e-01 2.36409470e-01
3.96901846e-01 -2.70469695e-01 -1.90416589e-01 -6.02610111e-02
2.05232501e-01 1.01499343e+00 -8.46169829e-01 1.53776741e+00
-7.82212198e-01 2.25769833e-01 1.09641992e-01 -6.98344111e-01
1.25158370e+00 3.76703858e-01 -3.46804947e-01 -7.22107470e-01
-6.33619204e-02 2.67106026e-01 2.24158183e-01 -8.92362118e-01
7.23074436e-01 -2.51899362e-01 -3.51511449e-01 3.80366504e-01
6.09440692e-02 -5.02314806e-01 4.12125796e-01 9.75143686e-02
1.10403454e+00 1.77402720e-01 1.04767904e-02 -5.88126183e-02
8.82458866e-01 2.60194670e-02 3.60909194e-01 7.67043769e-01
3.38332057e-02 8.23293746e-01 7.69993365e-01 2.14640200e-02
-4.89111543e-01 -9.18109417e-01 3.13922316e-01 1.07124746e+00
-8.61908868e-02 -2.28269055e-01 -1.17278373e+00 -1.11590290e+00
-1.03887007e-01 1.01998580e+00 -7.34661162e-01 -2.41027430e-01
-7.58201063e-01 -2.66738802e-01 4.68088329e-01 3.34088534e-01
6.12354219e-01 -1.43119073e+00 -2.42857307e-01 3.06223869e-01
-9.38091576e-01 -1.23542297e+00 -9.47245419e-01 -2.69090831e-01
-3.98616731e-01 -1.09239244e+00 -6.84658647e-01 -1.01946044e+00
4.66136962e-01 -4.89879660e-02 1.40890396e+00 2.76236117e-01
2.62684934e-02 1.49106577e-01 -4.87679720e-01 -1.96950331e-01
-4.93561625e-01 5.09381235e-01 -6.66275918e-01 3.44374806e-01
1.29953742e-01 -1.94257230e-01 -9.09020662e-01 2.50137538e-01
-9.71920669e-01 -1.70092523e-01 4.22248662e-01 8.57612371e-01
3.07122111e-01 -3.87669563e-01 1.30341780e+00 -8.15646112e-01
1.06592798e+00 -7.62392640e-01 -3.82930726e-01 5.20448506e-01
-4.34620768e-01 4.16126162e-01 9.53604698e-01 -1.95112631e-01
-1.32811737e+00 -2.87648052e-01 -7.17291832e-01 2.67298788e-01
-1.95971370e-01 4.60889399e-01 -4.41697001e-01 4.64012146e-01
6.23897433e-01 4.55923736e-01 -1.14908285e-01 -6.07742190e-01
3.78333896e-01 7.23756492e-01 6.87320650e-01 -6.37044966e-01
5.98573208e-01 -1.65870339e-01 -3.74493212e-01 -5.45332551e-01
-1.45435584e+00 -2.78808296e-01 -2.94883966e-01 -5.80275096e-02
1.06719148e+00 -5.46454549e-01 -7.26138949e-01 4.64842290e-01
-1.43549335e+00 -2.39930525e-01 -3.08576226e-01 -7.82462806e-02
-4.07977581e-01 3.05039436e-01 -4.16199744e-01 -6.08234942e-01
-6.74946666e-01 -9.04202104e-01 7.55271077e-01 6.09318256e-01
-3.14121515e-01 -7.84885287e-01 9.29637775e-02 1.07502127e+00
4.40665841e-01 -1.50841996e-01 1.40793574e+00 -9.41413224e-01
-5.61954200e-01 -1.27099708e-01 -2.06556708e-01 3.70397389e-01
1.34271130e-01 -4.96738285e-01 -5.73923945e-01 3.19397658e-01
1.18286550e-01 -4.64618713e-01 6.42113805e-01 -2.63443798e-01
1.17078018e+00 -7.90879071e-01 3.59439552e-01 2.19948679e-01
1.02370691e+00 -3.09882825e-03 5.55080950e-01 -8.20793360e-02
6.17982805e-01 1.03405929e+00 7.26820529e-01 1.73331082e-01
1.08104491e+00 7.98059106e-01 3.00370336e-01 6.27775729e-01
-1.81218237e-01 -7.04499543e-01 1.01942599e-01 6.68897510e-01
8.20641041e-01 -3.80734801e-01 -8.17795336e-01 7.92974174e-01
-1.62891138e+00 -8.51382136e-01 -4.85280633e-01 2.10071945e+00
1.37112474e+00 -1.07745714e-01 1.39251292e-01 -6.00141883e-02
7.17592597e-01 1.90521687e-01 -6.32743299e-01 -4.75044012e-01
3.74652594e-02 3.56429070e-01 -2.20985159e-01 5.79645932e-01
-5.03420472e-01 8.56095135e-01 6.18913698e+00 7.12796390e-01
-8.02497566e-01 -1.66260093e-01 6.63520694e-01 6.60691634e-02
-6.47644043e-01 8.87140632e-02 -1.06860030e+00 8.20977688e-01
8.75907958e-01 -3.53238374e-01 4.96529132e-01 3.04452449e-01
2.48656068e-02 -2.19043255e-01 -1.01076484e+00 6.42964244e-01
3.55085909e-01 -1.07798445e+00 2.97746122e-01 -4.47940916e-01
6.04911327e-01 -5.59455991e-01 -7.89788589e-02 7.30289400e-01
2.54205704e-01 -1.04752147e+00 6.05460405e-01 7.58451819e-01
2.76265979e-01 -7.03395545e-01 6.80417120e-01 7.33169734e-01
-9.47970033e-01 -2.05540717e-01 -1.76497817e-01 -1.43738195e-01
2.83287108e-01 4.36838359e-01 -8.90957952e-01 5.63985407e-01
3.75595272e-01 -9.42498446e-03 -9.71790016e-01 9.00960982e-01
-7.34848261e-01 8.37051928e-01 4.40001488e-03 -4.55493152e-01
1.32938802e-01 5.95305208e-03 3.09975535e-01 7.65168607e-01
2.88211137e-01 3.56263965e-01 9.34811458e-02 1.11526668e+00
-4.81353760e-01 3.83717000e-01 2.90772058e-02 1.15895122e-01
5.44100523e-01 1.29261005e+00 1.50232702e-01 -5.31379282e-01
-2.70104468e-01 1.03702724e+00 4.68675047e-01 2.53108203e-01
-5.03328443e-01 -7.62150407e-01 4.68498409e-01 1.17319524e-01
4.89051431e-01 2.36341551e-01 -2.97760457e-01 -1.21610165e+00
5.14702082e-01 -1.23306930e+00 5.87454617e-01 -9.40784812e-01
-1.25636709e+00 6.79392815e-01 -4.13024634e-01 -8.14333856e-01
-6.39486790e-01 -3.21060091e-01 -1.03621876e+00 1.32312965e+00
-1.65792739e+00 -8.59580696e-01 -4.05894250e-01 2.48151824e-01
5.83457887e-01 1.38650939e-01 7.17862785e-01 9.00758877e-02
-5.93195677e-01 8.43855262e-01 -4.71320391e-01 2.28581131e-01
7.05625296e-01 -1.55113077e+00 6.64515376e-01 5.80824196e-01
-1.28052399e-01 4.15747523e-01 5.43058395e-01 -5.10517776e-01
-1.26031339e+00 -1.21301162e+00 1.64217615e+00 -5.96495211e-01
3.80481631e-01 -2.85689533e-01 -1.14512122e+00 1.00898050e-01
5.86691260e-01 -1.91780791e-01 7.46914268e-01 -4.10082862e-02
-4.48646873e-01 -1.28974682e-02 -1.25739944e+00 5.83662033e-01
6.17230117e-01 -5.54613233e-01 -1.02239347e+00 1.73292711e-01
9.88689482e-01 -3.32669973e-01 -8.05764318e-01 1.66765317e-01
1.61967441e-01 -7.50902772e-01 5.42745709e-01 -8.03835392e-01
8.18730056e-01 -2.81905472e-01 5.07516637e-02 -1.38993192e+00
-1.19503699e-01 -6.48219287e-01 -1.41775683e-01 1.55470157e+00
7.78413117e-01 -3.72114301e-01 7.16412246e-01 6.71753466e-01
3.16675045e-02 -1.00255716e+00 -9.18209851e-01 -4.64060754e-01
2.77278095e-01 8.07582438e-02 1.06150103e+00 5.56912124e-01
-5.89674748e-02 1.19997585e+00 -5.68739288e-02 -9.35283676e-02
2.00566217e-01 6.01530373e-01 6.92434907e-01 -8.62840116e-01
-4.17377651e-01 -3.27792287e-01 2.89182335e-01 -1.71166050e+00
2.45293289e-01 -9.41099644e-01 3.82424802e-01 -1.88163972e+00
-1.24222890e-01 -1.15500815e-01 1.51264399e-01 6.47295564e-02
-1.22431374e+00 3.67756672e-02 3.11720610e-01 -3.02942514e-01
-7.26080298e-01 8.11841309e-01 1.39403737e+00 -4.31988901e-03
2.78145298e-02 3.46361399e-01 -1.08162689e+00 3.96603584e-01
9.09633040e-01 -3.21099907e-01 -2.20545173e-01 -4.75201994e-01
4.89725232e-01 6.70689464e-01 4.36051726e-01 -7.65896261e-01
1.87360391e-01 -2.16222525e-01 -9.14400618e-04 -7.14818358e-01
2.13580519e-01 -2.74556309e-01 -7.13889539e-01 3.47786754e-01
-9.23472583e-01 2.42727950e-01 -1.60743579e-01 4.01650071e-01
-3.84859651e-01 -8.80171657e-01 6.73698306e-01 -2.83462316e-01
-2.94986069e-01 2.85396278e-01 -2.98225999e-01 1.07241940e+00
6.09375238e-01 2.78037488e-01 -4.70345229e-01 -6.88892365e-01
-4.49434638e-01 6.81167305e-01 3.59821543e-02 7.59976089e-01
5.31430304e-01 -1.56819057e+00 -1.19227278e+00 -8.64866003e-02
2.41665795e-01 7.07460046e-02 3.93378317e-01 3.03313106e-01
-9.88925174e-02 4.38640207e-01 2.35507652e-01 -8.44073519e-02
-1.19127738e+00 4.20890510e-01 5.05273640e-01 -6.25831485e-01
1.97014317e-01 9.57007945e-01 4.21278849e-02 -9.18861806e-01
2.48552058e-02 -2.65259057e-01 -6.88147426e-01 2.30699241e-01
7.32669652e-01 2.59211689e-01 5.74721862e-03 -3.78927082e-01
-7.49292672e-02 2.90942043e-01 -2.99883331e-03 -2.14289963e-01
7.41851509e-01 -5.46749383e-02 -1.76614597e-01 1.79829612e-01
1.30211508e+00 -4.22888957e-02 -9.07741725e-01 -5.02051473e-01
2.57613827e-02 -2.97427326e-01 -5.26145518e-01 -1.19369328e+00
-6.48046672e-01 8.75875533e-01 2.09646940e-01 4.19163406e-01
9.62475598e-01 1.52538732e-01 1.41871202e+00 5.43008327e-01
-1.20454706e-01 -1.01870847e+00 3.95907253e-01 9.97059226e-01
1.06963527e+00 -1.12520146e+00 -4.61347699e-01 -3.96980792e-01
-7.24848092e-01 7.82206237e-01 9.74407971e-01 3.34339589e-02
1.46827102e-01 -4.60462838e-01 2.46485144e-01 -1.32939490e-02
-1.04270911e+00 -4.11424696e-01 6.25971615e-01 4.89177972e-01
5.44066072e-01 -1.50237694e-01 -4.79904801e-01 1.06270111e+00
-7.31669843e-01 -1.01549670e-01 3.67165834e-01 6.59208834e-01
-5.68382561e-01 -1.34178901e+00 -3.41927052e-01 8.56254935e-01
-6.49044573e-01 -4.01398331e-01 -7.37455308e-01 -1.47382334e-01
3.03521045e-02 1.48738778e+00 -1.70291394e-01 -3.61020178e-01
7.04159975e-01 4.94928926e-01 4.13492322e-01 -9.53258395e-01
-1.32565236e+00 -8.15532267e-01 3.60150665e-01 -1.62844166e-01
2.73535520e-01 -6.36023998e-01 -1.08561778e+00 9.17599872e-02
-2.14885771e-01 6.76966608e-01 3.08828354e-01 1.12962782e+00
6.60222828e-01 4.99246448e-01 8.91148567e-01 1.32246688e-01
-1.05343616e+00 -1.15633309e+00 -2.22415123e-02 6.66723609e-01
4.09294009e-01 3.44353840e-02 -2.37647787e-01 5.87271042e-02] | [11.546599388122559, 8.18320369720459] |
3bd65df9-48ae-4cba-9269-db5c73b71af6 | few-shot-learning-with-retrieval-augmented | 2208.03299 | null | https://arxiv.org/abs/2208.03299v3 | https://arxiv.org/pdf/2208.03299v3.pdf | Atlas: Few-shot Learning with Retrieval Augmented Language Models | Large language models have shown impressive few-shot results on a wide range of tasks. However, when knowledge is key for such results, as is the case for tasks such as question answering and fact checking, massive parameter counts to store knowledge seem to be needed. Retrieval augmented models are known to excel at knowledge intensive tasks without the need for as many parameters, but it is unclear whether they work in few-shot settings. In this work we present Atlas, a carefully designed and pre-trained retrieval augmented language model able to learn knowledge intensive tasks with very few training examples. We perform evaluations on a wide range of tasks, including MMLU, KILT and NaturalQuestions, and study the impact of the content of the document index, showing that it can easily be updated. Notably, Atlas reaches over 42% accuracy on Natural Questions using only 64 examples, outperforming a 540B parameters model by 3% despite having 50x fewer parameters. | ['Jane Dwivedi-Yu', 'Edouard Grave', 'Sebastian Riedel', 'Armand Joulin', 'Timo Schick', 'Fabio Petroni', 'Lucas Hosseini', 'Maria Lomeli', 'Patrick Lewis', 'Gautier Izacard'] | 2022-08-05 | null | null | null | null | ['multi-task-language-understanding', 'natural-questions'] | ['methodology', 'miscellaneous'] | [ 1.04817124e-02 1.39277384e-01 -2.90961742e-01 5.52378111e-02
-1.14699984e+00 -6.75949812e-01 9.03376520e-01 5.30576229e-01
-9.99239683e-01 8.86489570e-01 1.73526600e-01 -5.18676579e-01
-4.48214471e-01 -6.03311241e-01 -7.98022151e-01 -2.78797179e-01
3.02313529e-02 7.16542542e-01 6.27514541e-01 -6.34827733e-01
3.80335927e-01 4.33589779e-02 -1.44962382e+00 2.93740690e-01
5.82012236e-01 6.45554483e-01 5.14860265e-02 9.91593838e-01
-4.28148121e-01 1.10483778e+00 -5.68223834e-01 -6.95082188e-01
-1.24847576e-01 5.83395697e-02 -1.03234076e+00 -3.30959171e-01
7.63098001e-01 -4.64752972e-01 -3.41941059e-01 5.57389975e-01
4.86234814e-01 5.51469207e-01 3.70956033e-01 -7.06745088e-01
-4.91366982e-01 8.76813412e-01 -2.63810039e-01 7.44304955e-01
3.86202991e-01 1.23845048e-01 1.31626165e+00 -9.47549582e-01
6.07925475e-01 1.03046036e+00 3.81548017e-01 2.62203902e-01
-1.05766571e+00 -3.59488964e-01 6.09764792e-02 2.98797727e-01
-1.14351106e+00 -6.64017022e-01 -1.22920386e-02 -8.26725736e-02
1.45862639e+00 3.11944813e-01 1.95114464e-01 8.57616305e-01
-8.67813900e-02 8.66383195e-01 8.80603194e-01 -7.12082863e-01
2.32450664e-01 3.80588502e-01 8.08902800e-01 6.52686000e-01
5.67470193e-01 -3.48005354e-01 -8.45544457e-01 -4.11694705e-01
8.13802928e-02 -1.77340895e-01 -2.68495172e-01 -1.11020058e-01
-1.20198607e+00 7.79604971e-01 3.16349939e-02 5.65196216e-01
-2.11803555e-01 3.55633825e-01 4.42074209e-01 5.81461072e-01
4.04429317e-01 8.59413385e-01 -6.48453176e-01 -5.02822161e-01
-7.94802785e-01 3.36608857e-01 1.01684213e+00 9.22496200e-01
7.25365579e-01 -2.25688815e-01 -3.89959484e-01 9.50917125e-01
-2.26546884e-01 3.57242614e-01 6.67162001e-01 -1.06143844e+00
4.77559447e-01 5.36128819e-01 4.53333795e-01 -5.22583008e-01
-3.25882018e-01 -4.71187383e-01 -4.53172058e-01 -2.70731419e-01
6.00612223e-01 6.48588538e-02 -8.22878718e-01 1.61255825e+00
1.63723931e-01 3.84619273e-02 1.98167622e-01 4.34388965e-01
7.36325145e-01 6.88715160e-01 9.28488299e-02 -1.29157946e-01
1.55673254e+00 -8.25393856e-01 -6.46989822e-01 -5.38999796e-01
1.11652505e+00 -6.96839988e-01 1.45968199e+00 3.51042539e-01
-1.25063872e+00 -1.54186323e-01 -9.64272916e-01 -3.36077034e-01
-7.13595331e-01 -3.44583690e-01 8.25186789e-01 7.04615235e-01
-8.96795034e-01 4.16466117e-01 -5.63343346e-01 -5.17051518e-01
2.67366946e-01 2.23124087e-01 -2.80951977e-01 -3.99310142e-01
-1.40020514e+00 1.20894766e+00 4.33905900e-01 -3.92824829e-01
-4.82536793e-01 -9.94210422e-01 -6.22765481e-01 5.68451345e-01
9.49398100e-01 -7.23529041e-01 1.60534537e+00 -2.60170382e-02
-1.18589962e+00 5.75007856e-01 -1.08283728e-01 -6.93265915e-01
2.67746568e-01 -6.23724759e-01 -2.03562245e-01 2.42495984e-01
-1.82311773e-01 3.80453736e-01 6.44867063e-01 -6.12877786e-01
-4.64814961e-01 -1.19778454e-01 5.23805082e-01 1.39601082e-01
-7.82131732e-01 5.33483289e-02 -6.32231951e-01 -4.28790808e-01
-2.38383919e-01 -7.45972753e-01 -1.24673024e-01 -7.97099322e-02
-1.64642930e-02 -3.52816373e-01 5.05697727e-01 -5.66530883e-01
1.32481647e+00 -1.98464680e+00 -3.32208842e-01 -1.22209057e-01
1.97195321e-01 5.65660417e-01 -2.29765996e-01 5.57421803e-01
3.54321569e-01 2.97703058e-01 -1.75386257e-02 -1.35530591e-01
2.36930951e-01 1.13642104e-01 -4.61944669e-01 -4.81142290e-02
-7.10642263e-02 1.13196039e+00 -8.62667382e-01 -6.46347106e-01
-2.27341149e-02 2.29879156e-01 -6.07256293e-01 -8.72414410e-02
-6.45672858e-01 -5.48130333e-01 -4.57029521e-01 4.55488503e-01
-4.51771393e-02 -8.81949663e-01 -9.48590562e-02 3.07455897e-01
3.77528816e-01 4.42321628e-01 -1.09075058e+00 1.65371335e+00
-5.44640899e-01 5.96295238e-01 -1.19220495e-01 -4.81753260e-01
3.47066224e-01 4.26639766e-01 1.63932413e-01 -7.46123493e-01
3.38058323e-02 6.24226816e-02 -9.88966897e-02 -5.76448441e-01
9.06447947e-01 -2.51450129e-02 -1.20120041e-01 9.91940618e-01
4.73002382e-02 -1.35324776e-01 5.74171066e-01 9.47745740e-01
1.53626323e+00 -5.03460109e-01 1.89780623e-01 -1.39246313e-02
3.52035314e-01 2.96021819e-01 -2.82716483e-01 1.25106728e+00
2.52247542e-01 1.54613271e-01 3.58194321e-01 -2.71905750e-01
-8.89695644e-01 -6.02098405e-01 -9.26741734e-02 1.67293763e+00
-9.77865532e-02 -6.35864437e-01 -3.48222077e-01 -4.43426043e-01
8.44312534e-02 1.21480107e+00 -3.92475009e-01 -4.82161760e-01
-3.24612141e-01 -9.22252059e-01 5.31777978e-01 5.16143799e-01
3.50140691e-01 -9.01411355e-01 -5.18631876e-01 2.31341988e-01
1.82531701e-04 -1.24454999e+00 -4.20983970e-01 1.36699587e-01
-7.80746460e-01 -1.07712996e+00 -6.79833829e-01 -3.89233172e-01
2.15647832e-01 3.70924294e-01 1.28422248e+00 2.78887242e-01
-3.47431451e-01 8.51088047e-01 -5.04099905e-01 -4.27995533e-01
-2.73954570e-01 4.35579956e-01 -1.96357965e-01 -5.26099086e-01
5.06850481e-01 -3.40940922e-01 -3.42893153e-01 -1.06387017e-02
-1.14069974e+00 -3.52330893e-01 7.06691146e-01 9.58146989e-01
1.18805386e-01 -2.91470766e-01 8.25153649e-01 -1.07116985e+00
8.55824053e-01 -4.94512707e-01 -5.45801461e-01 6.97721481e-01
-7.86990106e-01 3.44987661e-01 2.43632510e-01 -6.69277310e-01
-9.65898395e-01 -4.47015584e-01 1.02416493e-01 -2.21868217e-01
2.47906014e-01 7.32367396e-01 4.06861544e-01 -4.00268212e-02
9.72448945e-01 1.54173419e-01 -8.24932382e-02 -6.42642617e-01
6.34663880e-01 4.66374010e-01 3.71702731e-01 -6.73437476e-01
7.06165969e-01 1.53434351e-01 -2.35789046e-01 -8.39959621e-01
-1.28817666e+00 -7.99474537e-01 -2.56896645e-01 2.48618096e-01
3.88479948e-01 -7.73376942e-01 -6.40072882e-01 1.72735136e-02
-8.80060554e-01 -5.45645475e-01 -5.46144545e-01 4.63281542e-01
-4.06078458e-01 4.47066337e-01 -7.92884350e-01 -7.04046011e-01
-5.78469217e-01 -5.68137825e-01 8.04517567e-01 -8.99675265e-02
-2.12256387e-01 -9.63586926e-01 1.78722277e-01 5.91450930e-01
6.61959291e-01 -4.53868330e-01 1.46154785e+00 -1.12605429e+00
-8.69586349e-01 -6.72096789e-01 -9.34454277e-02 1.73769236e-01
-3.38320374e-01 -3.79546791e-01 -9.10262823e-01 -3.32710475e-01
-2.82023728e-01 -8.29462528e-01 1.06781459e+00 -2.08218351e-01
1.03157282e+00 -3.64525795e-01 -9.90726575e-02 1.45164788e-01
1.23006964e+00 -2.44623363e-01 4.97835070e-01 3.50318223e-01
2.45133936e-01 2.58628607e-01 5.87635636e-01 2.50093132e-01
2.65004486e-01 5.21266043e-01 7.62692839e-02 5.01878738e-01
-9.18537304e-02 -2.52902880e-02 9.32151079e-02 6.54498816e-01
1.40511245e-01 -5.07581294e-01 -9.49512899e-01 6.11605823e-01
-1.59056413e+00 -9.24741268e-01 2.09551513e-01 2.36258745e+00
1.04111075e+00 4.89683211e-01 -1.73100919e-01 7.08113834e-02
2.39018083e-01 2.37736225e-01 -6.01033628e-01 -2.83299059e-01
-1.78660706e-01 4.63172436e-01 3.15570056e-01 6.58794224e-01
-5.81253290e-01 1.06940889e+00 6.87027788e+00 8.99284065e-01
-7.20916927e-01 2.69802481e-01 2.87989199e-01 -6.45374119e-01
-2.03813568e-01 6.63651526e-02 -8.57969880e-01 1.73219979e-01
1.23713136e+00 -7.22185552e-01 3.39908212e-01 7.19503284e-01
-4.73747641e-01 -4.36729074e-01 -9.96950984e-01 7.92667985e-01
1.63247988e-01 -1.37123752e+00 2.58533567e-01 -1.05934344e-01
6.73355997e-01 2.19898269e-01 4.29840386e-02 8.86754572e-01
4.13728982e-01 -9.29204941e-01 1.93735108e-01 5.40788174e-01
5.39044499e-01 -4.53221321e-01 6.94899201e-01 7.32921064e-01
-4.74999726e-01 -4.55101319e-02 -4.91745770e-01 -5.07831126e-02
4.61753644e-02 4.50621843e-01 -9.65445995e-01 1.49609074e-01
4.72934335e-01 1.43200327e-02 -9.34090614e-01 1.02599251e+00
1.06181294e-01 7.79724121e-01 -6.37537658e-01 -3.82831365e-01
2.58069038e-01 5.11412501e-01 3.17135543e-01 1.02207220e+00
1.65946737e-01 4.35246974e-01 -1.35248840e-01 3.55982423e-01
-4.02752191e-01 3.06960464e-01 -4.30541754e-01 -4.45214003e-01
5.13149202e-01 1.16062033e+00 -3.37673515e-01 -7.39456117e-01
-5.51806986e-01 5.66148162e-01 4.43270385e-01 4.43266660e-01
-5.13128757e-01 -4.41805422e-01 1.69801012e-01 3.12838316e-01
3.41382802e-01 -3.13987404e-01 6.75609559e-02 -1.14715135e+00
3.80940139e-02 -8.33599865e-01 7.76543379e-01 -9.69578862e-01
-9.98218000e-01 3.77720118e-01 2.81791210e-01 -5.70161760e-01
-5.86175442e-01 -5.47449291e-01 -3.07048529e-01 6.28632307e-01
-1.58810747e+00 -6.28878653e-01 -2.20424935e-01 5.33530533e-01
3.87893677e-01 -5.16218804e-02 8.78628373e-01 2.93637902e-01
-3.30373406e-01 6.64213538e-01 2.94629842e-01 -2.81585008e-02
9.00941789e-01 -1.18926299e+00 3.18160176e-01 4.89374012e-01
4.76479769e-01 8.56940150e-01 7.01014042e-01 -4.32737797e-01
-1.67926168e+00 -6.76149487e-01 1.15456617e+00 -8.99516046e-01
8.47123623e-01 -9.80667248e-02 -1.23078513e+00 7.59720385e-01
2.11034670e-01 -1.28786024e-02 5.54525316e-01 6.06266320e-01
-6.74831271e-01 5.72145171e-02 -7.91505694e-01 5.62492073e-01
7.48226047e-01 -7.33924568e-01 -9.36154664e-01 7.76597202e-01
8.90794635e-01 -2.68264204e-01 -7.81326950e-01 3.17595065e-01
4.19026196e-01 -5.63053906e-01 1.01263571e+00 -9.44567442e-01
1.69485509e-01 1.62995696e-01 -6.52192086e-02 -9.20980275e-01
-2.47259066e-01 -5.00486612e-01 -8.24450672e-01 8.64471972e-01
6.91652954e-01 -6.58412755e-01 8.14893067e-01 9.40442562e-01
1.91684648e-01 -7.83637106e-01 -7.61863708e-01 -9.96027112e-01
8.88427161e-03 -3.85050714e-01 4.21736866e-01 8.56927037e-01
1.29970908e-01 8.32675517e-01 -8.08616169e-03 -2.50102669e-01
2.83432573e-01 -5.56560904e-02 7.82509804e-01 -1.12105858e+00
-3.95437509e-01 -4.19341475e-01 -4.32481356e-02 -9.92025733e-01
-2.42287992e-03 -8.02073121e-01 -2.43232489e-01 -1.47592258e+00
4.29654211e-01 -4.29074705e-01 -3.30804735e-01 6.59502029e-01
-5.52530348e-01 9.98149440e-02 6.74322993e-02 1.20566510e-01
-1.22926581e+00 3.75277221e-01 9.12560701e-01 -1.71146199e-01
-2.78883185e-02 -8.16238597e-02 -8.39784026e-01 4.73986894e-01
6.59774363e-01 -3.38014632e-01 -5.63027740e-01 -5.38161278e-01
6.60691738e-01 -2.14180015e-02 2.61761606e-01 -9.05425370e-01
6.55294299e-01 1.00493602e-01 -7.46470764e-02 -4.85637784e-01
8.51736307e-01 -5.47786295e-01 -3.59869510e-01 2.66867071e-01
-7.65790462e-01 2.12663755e-01 3.19526434e-01 6.35322869e-01
-7.78048486e-02 -4.99968022e-01 4.68801796e-01 -3.49742293e-01
-7.81596839e-01 2.30587706e-01 -1.54982775e-01 6.05965137e-01
7.54885197e-01 4.74330857e-02 -8.00083816e-01 -6.37550652e-01
-6.81245029e-01 2.98424155e-01 2.03508884e-01 4.89514470e-01
3.76670033e-01 -7.36499369e-01 -6.68734610e-01 -2.37438560e-01
3.84723574e-01 -7.97957703e-02 3.93561780e-01 7.35312104e-01
-3.10192168e-01 8.55438530e-01 4.02947515e-01 -2.91083932e-01
-1.19629085e+00 8.73265803e-01 5.03121540e-02 -5.29571295e-01
-5.79719543e-01 8.48013878e-01 -2.43402541e-01 -8.29940513e-02
4.55154210e-01 -1.45018965e-01 -3.88773531e-02 1.92040175e-01
9.34656501e-01 4.00291532e-01 4.04531926e-01 6.53929859e-02
-2.99090035e-02 2.25658149e-01 -6.43458545e-01 -1.97708607e-01
1.18930566e+00 3.50559168e-02 4.18092795e-02 5.78629017e-01
9.77691352e-01 -1.11863777e-01 -7.23170221e-01 -8.13100219e-01
3.16389292e-01 -2.58799732e-01 2.10430190e-01 -1.02099097e+00
-4.09365594e-01 8.15969586e-01 2.68493921e-01 2.35849485e-01
7.30023265e-01 1.02510080e-01 9.48967516e-01 1.31794012e+00
5.16270995e-01 -9.74155605e-01 4.02314305e-01 7.49390304e-01
6.19980514e-01 -1.29082227e+00 3.22054654e-01 4.22424376e-02
-4.13186073e-01 6.26210034e-01 5.36452115e-01 2.24298194e-01
5.39249241e-01 9.33628902e-02 -2.15567425e-01 -4.08646673e-01
-1.50711656e+00 -2.83152252e-01 3.07237417e-01 2.67682988e-02
2.28841394e-01 -4.42529082e-01 -4.77806740e-02 3.36195827e-01
-1.98349521e-01 4.55682352e-02 4.48123038e-01 1.22782838e+00
-8.57155561e-01 -7.64883280e-01 -1.28258735e-01 9.40419078e-01
-6.51261568e-01 -5.20600379e-01 -2.60243595e-01 9.60171342e-01
-6.49171710e-01 8.01718712e-01 -5.57968058e-02 -6.53938875e-02
1.69598892e-01 7.27384865e-01 4.48032707e-01 -9.67979908e-01
-6.74670875e-01 -3.20032269e-01 2.56710380e-01 -3.52082193e-01
-1.21798322e-01 -3.01578254e-01 -8.61018956e-01 -5.38288176e-01
-6.07582748e-01 4.31575805e-01 4.38304305e-01 9.93103027e-01
3.91442150e-01 2.64513433e-01 -7.04047084e-02 -3.33412252e-02
-1.09207571e+00 -1.10672748e+00 -4.27378327e-01 1.43524215e-01
3.34289163e-01 -3.93538982e-01 -5.02929866e-01 -1.97209969e-01] | [11.282938003540039, 7.8761420249938965] |
7d8fca9e-37b8-4c18-8dac-c6a9e28bdcf0 | two-level-classification-for-dialogue-act | null | null | https://aclanthology.org/2020.coling-main.431 | https://aclanthology.org/2020.coling-main.431.pdf | Two-level classification for dialogue act recognition in task-oriented dialogues | Dialogue act classification becomes a complex task when dealing with fine-grain labels. Many applications require such level of labelling, typically automatic dialogue systems. We present in this paper a 2-level classification technique, distinguishing between generic and specific dialogue acts (DA). This approach makes it possible to benefit from the very good accuracy of generic DA classification at the first level and proposes an efficient approach for specific DA, based on high-level linguistic features. Our results show the interest of involving such features into the classifiers, outperforming all other feature sets, in particular those classically used in DA classification. | ['Houda Oufaida', 'Magalie Ochs', "St{\\'e}phane Rauzy", 'Massina Abderrahmane', 'Philippe Blache'] | 2020-12-01 | null | null | null | coling-2020-8 | ['dialogue-act-classification'] | ['natural-language-processing'] | [ 4.14432921e-02 5.42440832e-01 7.33174980e-02 -5.49836755e-01
-4.13785487e-01 -6.57312810e-01 1.38607991e+00 3.27563167e-01
-6.45044446e-01 1.09784949e+00 5.36433280e-01 -2.06047162e-01
-1.89451754e-01 -7.61687219e-01 5.33283949e-01 -7.43624270e-01
1.04248591e-01 8.57235730e-01 3.89316469e-01 -8.36095572e-01
4.68971938e-01 6.20344400e-01 -1.67804694e+00 4.69118237e-01
7.10005820e-01 7.50641823e-01 -5.87865710e-02 8.05674255e-01
-6.46036565e-01 1.10993683e+00 -1.01579440e+00 -5.09218037e-01
-4.59875911e-02 -5.98689914e-01 -1.50578129e+00 1.68085292e-01
-5.84801510e-02 -1.29343331e-01 2.60740787e-01 6.83981836e-01
3.08320910e-01 1.63372949e-01 1.12645376e+00 -1.00946343e+00
2.52886802e-01 6.65858865e-01 9.26829204e-02 7.37638175e-02
1.09926617e+00 8.04859176e-02 1.04659462e+00 -3.15769881e-01
4.83770430e-01 1.50382781e+00 6.69442475e-01 8.24380755e-01
-1.16680396e+00 2.92106848e-02 -1.96262673e-01 -3.55326161e-02
-9.33952570e-01 -4.95555699e-01 8.52832615e-01 -7.35502481e-01
9.78341043e-01 3.84904981e-01 3.13010901e-01 1.00146639e+00
-1.05303317e-01 7.34322131e-01 1.81517363e+00 -8.11553717e-01
2.63507545e-01 5.11863947e-01 7.90578008e-01 6.82086229e-01
-1.50950998e-01 -2.21930817e-01 -5.52520640e-02 -3.42724442e-01
6.36984468e-01 -4.44948643e-01 -4.58862409e-02 8.71563628e-02
-9.47558522e-01 1.14218092e+00 -1.55883312e-01 1.16999257e+00
-3.87598872e-01 -3.73840213e-01 9.52227771e-01 5.62478006e-01
4.40884382e-01 6.71994507e-01 -5.31212091e-01 -6.91853106e-01
-4.85145181e-01 2.97916681e-01 1.43988311e+00 5.85879207e-01
7.18294203e-01 -1.42043769e-01 -4.41083252e-01 1.21809995e+00
9.65160578e-02 -2.12348640e-01 7.17859626e-01 -6.67872727e-01
1.32621944e-01 1.00409102e+00 7.18754083e-02 -6.56023026e-01
-9.54269052e-01 1.34156853e-01 -6.25638306e-01 3.41165870e-01
8.38151634e-01 -2.04021290e-01 -3.62175465e-01 1.51442587e+00
4.22062606e-01 -6.15988016e-01 2.15812221e-01 4.83280957e-01
8.80573630e-01 5.15788794e-01 3.25636238e-01 -5.50966024e-01
1.59431839e+00 -6.83886588e-01 -1.13840652e+00 3.60511780e-01
1.19796205e+00 -6.48747623e-01 1.05880976e+00 6.59791708e-01
-7.76362240e-01 -5.39569676e-01 -7.60431051e-01 2.34786347e-02
-8.82373810e-01 1.41511917e-01 7.63549566e-01 1.15574133e+00
-1.07345533e+00 5.27768493e-01 -1.55529335e-01 -5.73500574e-01
-3.77778322e-01 5.71832776e-01 -5.06852210e-01 5.31777978e-01
-1.40981221e+00 1.50056314e+00 6.32292569e-01 -1.09303266e-01
-2.08800793e-01 1.42860427e-01 -9.51896250e-01 -9.31452140e-02
2.25308552e-01 -3.10422499e-02 1.53199577e+00 -7.57546306e-01
-2.07737708e+00 1.26044595e+00 1.67580858e-01 -4.50255841e-01
6.18183494e-01 1.45182237e-01 -2.98795134e-01 8.41115639e-02
-1.32360548e-01 2.86157787e-01 6.55546427e-01 -1.08910131e+00
-7.58124173e-01 -2.63397872e-01 5.78606188e-01 2.88581401e-01
-1.84688061e-01 3.03317457e-01 2.96224594e-01 -2.58016914e-01
-3.52800399e-01 -5.75217485e-01 -1.55513540e-01 -7.49249339e-01
-2.15611473e-01 -1.12119877e+00 6.32368207e-01 -6.15196228e-01
1.30787528e+00 -1.71566641e+00 2.83079147e-01 6.19896054e-02
3.76192361e-01 5.88232160e-01 4.95019495e-01 8.12512994e-01
9.17039439e-02 -8.83649737e-02 -9.27643925e-02 -2.14798048e-01
4.58997041e-01 5.28396189e-01 2.18363717e-01 2.61579633e-01
1.59708977e-01 4.65232462e-01 -7.42587209e-01 -6.43376708e-01
7.60981619e-01 -1.85601786e-02 -1.39018476e-01 4.70040619e-01
-1.74828812e-01 4.20214623e-01 -6.75578058e-01 8.92023668e-02
2.67044574e-01 2.70797402e-01 3.19053799e-01 3.12290546e-02
-3.16339612e-01 5.63316226e-01 -1.01923144e+00 1.25406432e+00
-7.53945589e-01 3.35344255e-01 1.81876570e-01 -1.16931200e+00
1.31585169e+00 7.14536309e-01 3.79247367e-01 -2.41434097e-01
4.63906139e-01 3.76361221e-01 2.49347955e-01 -3.91123176e-01
5.12901008e-01 -3.50276083e-01 -6.65264666e-01 4.83201444e-01
4.02603537e-01 -3.10444534e-01 4.80262190e-01 -8.13216195e-02
7.56173968e-01 -7.57062733e-02 1.09980941e+00 -5.89389622e-01
1.53918052e+00 -3.49593498e-02 2.68409532e-02 5.31457186e-01
-4.12570745e-01 -5.78574650e-02 9.05380785e-01 -7.45444298e-01
-8.51032555e-01 -1.80140525e-01 -4.03934419e-01 1.34195375e+00
-4.24973816e-01 -4.63178009e-01 -1.06556165e+00 -1.20379722e+00
-3.09930533e-01 5.74442565e-01 -5.91394961e-01 2.46249601e-01
-6.42982483e-01 -6.11342072e-01 7.24750161e-01 -1.57434940e-01
7.04514921e-01 -1.31058335e+00 -4.11547482e-01 3.95294666e-01
1.20983995e-01 -8.47355604e-01 2.50096500e-01 6.30772769e-01
-6.72164679e-01 -9.40579951e-01 -4.36386883e-01 -5.99247217e-01
1.24550588e-01 -2.54670680e-01 1.16274834e+00 3.89696985e-01
-1.02617070e-01 4.03312415e-01 -9.34190989e-01 -2.07024962e-01
-1.15238988e+00 4.35577363e-01 -3.91891086e-03 -3.12637910e-02
6.39318347e-01 -3.30265045e-01 2.30023399e-01 4.26481932e-01
-6.85410559e-01 -2.56149918e-01 2.62072295e-01 8.65707517e-01
-4.60209668e-01 -9.29101706e-02 8.09683859e-01 -1.42397821e+00
1.32392228e+00 -1.86083138e-01 -1.79359242e-01 1.06881544e-01
-4.16666687e-01 2.26874679e-01 9.06582534e-01 6.20871559e-02
-1.21836805e+00 2.73767039e-02 -9.21839654e-01 7.42485166e-01
-1.04228199e+00 1.27390340e-01 -3.29699367e-01 -3.21367145e-01
9.52008426e-01 6.06420860e-02 4.73994017e-02 -6.92003369e-01
1.83107823e-01 1.20010340e+00 6.51138881e-03 -7.16037512e-01
3.28632236e-01 -3.08336437e-01 -3.32951695e-02 -1.14535928e+00
-7.45458841e-01 -8.29961061e-01 -1.15719759e+00 -4.68765080e-01
9.86474872e-01 -2.57924616e-01 -8.45432878e-01 5.98114371e-01
-1.11073637e+00 -1.78252384e-01 -3.69103134e-01 1.41120329e-01
-8.75454724e-01 6.56859994e-01 -7.44115710e-01 -1.22954285e+00
-7.64184520e-02 -9.93463159e-01 8.85307848e-01 5.95353022e-02
-5.86520433e-01 -1.41309083e+00 2.66621679e-01 4.38119501e-01
1.92730725e-01 2.66408086e-01 8.39271128e-01 -1.27138472e+00
4.14118588e-01 -3.09486926e-01 9.05866399e-02 3.91034871e-01
4.17004913e-01 -1.10889234e-01 -1.29790902e+00 1.37845308e-01
4.61251885e-01 -6.42882228e-01 5.55900931e-01 -1.45157427e-01
5.48249424e-01 -2.50489652e-01 1.27485292e-02 -2.91975707e-01
1.04913366e+00 5.42026162e-01 4.48800385e-01 2.94952065e-01
3.53752077e-01 1.05301487e+00 9.70976651e-01 5.00739396e-01
1.75051212e-01 1.13048589e+00 -1.78203452e-02 -1.43975005e-01
2.00598743e-02 2.21033201e-01 2.23361835e-01 7.55158961e-01
-1.78539589e-01 4.20262106e-02 -9.98760879e-01 1.81756780e-01
-2.02319455e+00 -9.16254044e-01 -4.11202937e-01 1.89681041e+00
1.19067991e+00 3.37889254e-01 6.66472435e-01 7.58271992e-01
7.03227222e-01 4.28781152e-01 4.42021191e-01 -1.23288512e+00
8.36440995e-02 2.88982719e-01 9.39110816e-02 9.42497790e-01
-1.42701519e+00 1.00595629e+00 6.60465717e+00 9.74661171e-01
-6.09301388e-01 1.42416388e-01 4.00828212e-01 7.80377984e-01
2.85170734e-01 -4.12915885e-01 -1.03515613e+00 4.20117170e-01
1.17812455e+00 1.02651566e-01 9.78718549e-02 8.08380544e-01
1.17873572e-01 -3.36534321e-01 -1.07814741e+00 6.67237461e-01
4.98431399e-02 -9.45859373e-01 -5.98970316e-02 4.32818718e-02
1.71407029e-01 -7.66914487e-01 -6.78139031e-01 6.28756821e-01
3.00196648e-01 -9.39730048e-01 1.34868637e-01 3.10939461e-01
3.37597847e-01 -6.78134382e-01 1.18945336e+00 6.04739070e-01
-8.57277870e-01 1.67197198e-01 -2.85140485e-01 -5.26201904e-01
1.02945849e-01 2.07428530e-01 -1.07676423e+00 6.15712583e-01
-6.23250492e-02 4.31681126e-01 -3.61020088e-01 7.34490335e-01
-1.67375520e-01 4.05330569e-01 -2.80009449e-01 -5.20020425e-01
6.40433609e-01 -4.33500707e-01 3.46946895e-01 1.76655090e+00
-3.33885282e-01 2.57049263e-01 3.10699195e-01 8.50937366e-02
4.14444655e-01 6.41798377e-01 -8.02727401e-01 1.87210515e-01
1.11639120e-01 1.45187986e+00 -7.64773428e-01 -4.64930534e-01
-3.06541622e-01 8.46437573e-01 2.58204907e-01 -5.14078557e-01
-3.11268359e-01 -3.47947270e-01 4.17722076e-01 -3.35058510e-01
-1.57963917e-01 -2.26625308e-01 -7.96207413e-02 -9.34824705e-01
-3.45349252e-01 -8.91669333e-01 5.08829832e-01 -3.74465995e-02
-1.38992345e+00 8.91185999e-01 2.12835059e-01 -1.04663277e+00
-8.75810981e-01 -1.13259482e+00 -5.60015321e-01 1.02040637e+00
-1.00946927e+00 -1.19507515e+00 -1.24282263e-01 6.90080106e-01
8.38767231e-01 -2.86899835e-01 1.29845726e+00 8.74577612e-02
-2.06906587e-01 2.88228482e-01 -2.04423741e-01 2.33849943e-01
6.81805551e-01 -1.80877352e+00 -1.28604010e-01 8.87697861e-02
-4.03563119e-03 3.00525814e-01 8.85250866e-01 -1.91386193e-01
-5.88764071e-01 -2.32537001e-01 1.32728994e+00 -5.70411980e-01
6.68304622e-01 -4.36856538e-01 -8.21866333e-01 1.97519869e-01
4.71484572e-01 -6.33206129e-01 8.63795877e-01 6.14798665e-01
-3.74496989e-02 2.61249214e-01 -1.51114917e+00 2.25286037e-01
6.20307267e-01 -5.51890135e-01 -1.24866855e+00 5.35295844e-01
2.52944827e-01 -6.06527440e-02 -1.35594535e+00 5.17379083e-02
2.86406726e-01 -1.17240953e+00 6.34671152e-01 -6.20565414e-01
2.63722464e-02 1.42809413e-02 2.53283978e-01 -1.29027581e+00
-1.11264184e-01 -6.35838211e-01 2.61722535e-01 1.42854166e+00
3.05392712e-01 -6.62491083e-01 6.73940718e-01 6.22864902e-01
-3.82238403e-02 -2.54879326e-01 -1.00213313e+00 -5.45169413e-01
2.39554867e-01 -1.13172099e-01 2.65865803e-01 1.14268816e+00
6.57642126e-01 8.22196424e-01 -6.35397613e-01 -6.71819031e-01
7.45535195e-02 -1.38944849e-01 8.00354779e-01 -1.85204184e+00
-1.69145644e-01 -8.02780271e-01 -8.79979312e-01 -8.96835327e-01
3.83172661e-01 -5.37473023e-01 2.10048277e-02 -1.26115608e+00
-4.78907764e-01 -5.16834021e-01 5.61985113e-02 4.48866069e-01
-1.23492986e-01 1.53874010e-01 2.21006617e-01 1.42865762e-01
-5.29268026e-01 4.55648452e-01 9.12301242e-01 1.03462458e-01
-1.91940486e-01 4.70919073e-01 -2.50656724e-01 9.37553644e-01
9.48137522e-01 -1.41037494e-01 -2.22929254e-01 4.34673131e-01
-4.27863181e-01 1.03103139e-01 -2.52323002e-01 -9.16522086e-01
-2.81960759e-02 -2.17783004e-01 -5.59391230e-02 -2.97001213e-01
4.64603931e-01 -9.38909173e-01 -2.23654017e-01 5.85638285e-01
-5.69884479e-01 -4.39782739e-01 -7.44855329e-02 8.27728286e-02
-5.19214213e-01 -1.15226686e+00 9.49765563e-01 -4.79984164e-01
-7.92829931e-01 -3.91719609e-01 -9.16599512e-01 -1.83577508e-01
1.02217889e+00 -3.56020421e-01 -2.17167154e-01 -4.06083107e-01
-1.10120642e+00 -8.88412818e-02 3.45175058e-01 1.19759537e-01
-1.26802340e-01 -9.74800110e-01 -5.30684590e-01 -1.85084477e-01
1.91648304e-01 -5.10734260e-01 4.65117060e-02 7.45859981e-01
-6.22684121e-01 7.85800397e-01 -7.41934419e-01 -4.56208318e-01
-1.47140265e+00 4.57078367e-01 3.00586224e-01 -7.80853510e-01
-3.98778647e-01 4.20669854e-01 -6.20140694e-02 -7.59754717e-01
2.32207075e-01 -9.68525708e-02 -1.21787786e+00 5.53850353e-01
4.17016834e-01 3.66525859e-01 1.58585072e-01 -1.00753653e+00
-1.42482698e-01 3.23456436e-01 -4.72732447e-02 -2.05188528e-01
9.86601472e-01 -9.08870250e-02 -3.26544285e-01 8.72521400e-01
8.90753388e-01 1.44476026e-01 -8.27443004e-01 -1.16051264e-01
7.27378428e-01 -3.04439038e-01 -1.66051328e-01 -8.50065231e-01
-1.43538341e-01 8.81727457e-01 2.75857300e-01 1.40401328e+00
8.16703916e-01 -1.94557145e-01 2.36897767e-01 5.07018805e-01
7.72317648e-01 -1.28327596e+00 -4.00731444e-01 8.80498767e-01
8.30032289e-01 -1.22013581e+00 -1.89405400e-02 -6.94013834e-01
-8.93010259e-01 1.57013524e+00 4.51428354e-01 -1.66482165e-01
4.01609868e-01 1.38412818e-01 1.35853320e-01 -3.39225858e-01
-7.26465523e-01 -5.93259156e-01 1.25321656e-01 6.89370096e-01
8.80519092e-01 2.30939075e-01 -1.35192573e+00 2.85460413e-01
-1.52629107e-01 -3.98580700e-01 6.57103717e-01 1.09845483e+00
-8.14151525e-01 -1.85970247e+00 -3.13361913e-01 6.28921151e-01
-4.71471190e-01 2.29343370e-01 -1.09425688e+00 1.07783926e+00
1.31115302e-01 1.15047610e+00 -3.12835187e-01 -5.08329451e-01
3.33858430e-01 5.88285208e-01 3.77872616e-01 -8.81367862e-01
-1.50787592e+00 -1.62624702e-01 1.10848546e+00 -2.72648484e-01
-9.12344933e-01 -7.88961768e-01 -8.07017386e-01 -3.75183225e-01
-4.13665682e-01 7.37725914e-01 6.15219116e-01 1.18328142e+00
-4.89546269e-01 1.86591834e-01 9.44061100e-01 -9.91487086e-01
-7.19005704e-01 -1.49705172e+00 -8.14194143e-01 5.37174582e-01
2.05898494e-01 -9.35106635e-01 -4.29323494e-01 -1.38291299e-01] | [12.898841857910156, 7.947561740875244] |
a5b9d4a1-0fc9-4a8d-bb09-2fdacaad4ab9 | review-of-data-analysis-in-vision-inspection | 2003.09802 | null | https://arxiv.org/abs/2003.09802v1 | https://arxiv.org/pdf/2003.09802v1.pdf | Review of data analysis in vision inspection of power lines with an in-depth discussion of deep learning technology | The widespread popularity of unmanned aerial vehicles enables an immense amount of power lines inspection data to be collected. How to employ massive inspection data especially the visible images to maintain the reliability, safety, and sustainability of power transmission is a pressing issue. To date, substantial works have been conducted on the analysis of power lines inspection data. With the aim of providing a comprehensive overview for researchers who are interested in developing a deep-learning-based analysis system for power lines inspection data, this paper conducts a thorough review of the current literature and identifies the challenges for future research. Following the typical procedure of inspection data analysis, we categorize current works in this area into component detection and fault diagnosis. For each aspect, the techniques and methodologies adopted in the literature are summarized. Some valuable information is also included such as data description and method performance. Further, an in-depth discussion of existing deep-learning-related analysis methods in power lines inspection is proposed. Finally, we conclude the paper with several research trends for the future of this area, such as data quality problems, small object detection, embedded application, and evaluation baseline. | ['Xiren Miao', 'Hao Jiang', 'Jing Chen', 'Xinyu Liu'] | 2020-03-22 | null | null | null | null | ['small-object-detection'] | ['computer-vision'] | [-2.67754734e-01 -3.55133921e-01 2.05150887e-01 -3.19494575e-01
-3.83486897e-01 -3.34359795e-01 -3.73876035e-01 1.41015038e-01
3.85390699e-01 3.93468052e-01 -5.29343307e-01 -3.08608532e-01
-3.98003370e-01 -8.20240736e-01 -6.68360814e-02 -1.19810832e+00
-4.35892195e-01 -9.32929888e-02 5.17575592e-02 -3.01339954e-01
2.14009225e-01 8.42249513e-01 -1.22826099e+00 2.00457558e-01
1.11211944e+00 1.42641068e+00 1.96917996e-01 4.45684671e-01
6.93524361e-01 1.09443045e+00 -1.35119736e+00 -2.33591497e-01
8.66580158e-02 -1.01206005e-01 -9.24610436e-01 9.18370724e-01
3.69117796e-01 -9.84396875e-01 -6.53863192e-01 1.35733020e+00
5.90386331e-01 2.60085836e-02 4.95762378e-01 -1.74452400e+00
-1.05917954e+00 4.03423637e-01 -8.91444027e-01 6.98929429e-01
1.86293066e-01 1.94895804e-01 1.14385462e+00 -5.98408759e-01
-2.95544505e-01 7.11908042e-01 7.72707343e-01 -2.22557500e-01
-4.34620589e-01 -1.83760360e-01 1.60425156e-01 8.82443309e-01
-1.13576603e+00 8.65175873e-02 9.88480151e-01 -4.62830842e-01
1.23216295e+00 1.20045260e-01 9.60250676e-01 3.49107772e-01
5.58499157e-01 1.33471715e+00 3.70258391e-01 -5.34072578e-01
1.00578070e-01 -2.16976613e-01 4.24202025e-01 7.89259732e-01
2.89729983e-01 -2.93409675e-01 -9.10014510e-02 3.28183085e-01
6.45595491e-01 -1.15296885e-01 -3.53595555e-01 -3.26222032e-01
-5.40363312e-01 8.56008589e-01 5.00868857e-01 6.53924942e-01
-3.55869532e-01 -3.20854098e-01 8.91126752e-01 7.68392026e-01
4.19532537e-01 2.60491371e-01 -5.60015559e-01 1.71756700e-01
-8.35559726e-01 -2.11321004e-03 3.26119781e-01 9.76093590e-01
2.69456625e-01 1.04423416e+00 -6.57274425e-02 9.22761083e-01
3.69225532e-01 4.28194165e-01 -4.14742865e-02 -6.99067116e-01
3.94158840e-01 5.39970756e-01 -7.16187656e-02 -1.17239046e+00
-7.63287961e-01 -4.63977665e-01 -9.22423184e-01 5.67335248e-01
-1.63053617e-01 -6.51673496e-01 -3.19012076e-01 5.62249720e-01
1.31615959e-02 -4.13674563e-01 -1.31411012e-02 9.30469394e-01
1.02377236e+00 7.64223218e-01 -4.05934542e-01 -1.65775046e-01
1.44137537e+00 -1.26471829e+00 -1.25266731e+00 -4.23913822e-03
4.05183375e-01 -6.19382620e-01 6.78989112e-01 7.54933894e-01
-9.51793253e-01 -8.58226478e-01 -1.59435952e+00 7.20390975e-02
-1.64546818e-01 5.53707659e-01 8.85283232e-01 6.35957539e-01
-9.91961479e-01 5.31753719e-01 -1.10949326e+00 -3.33978057e-01
7.73641348e-01 1.55156136e-01 -9.67404544e-02 4.55306880e-02
-1.10134578e+00 9.48749244e-01 6.50003850e-02 7.02370882e-01
-1.27617228e+00 -6.03704512e-01 -1.02087522e+00 1.65374056e-01
1.96019694e-01 2.15451568e-02 1.27932405e+00 -4.76341546e-01
-9.92298424e-01 2.86832511e-01 6.92521274e-01 -2.88727522e-01
-1.28749181e-02 -4.27946240e-01 -7.53211617e-01 5.90928733e-01
4.68058400e-02 -1.17036827e-01 8.49272072e-01 -1.00983906e+00
-1.17290223e+00 -4.88311261e-01 4.23316211e-01 -2.07623482e-01
-7.66196609e-01 2.69588381e-01 -1.22084916e-01 -5.67476332e-01
-1.65085778e-01 -3.89399797e-01 2.70693060e-02 2.13949829e-01
-7.38156199e-01 -5.80741286e-01 1.38859713e+00 -1.00393736e+00
1.07429969e+00 -1.96705306e+00 -1.45807609e-01 -1.08775221e-01
2.50713915e-01 4.77652997e-01 1.43677853e-02 8.67695034e-01
-3.74459356e-01 -5.91336429e-01 -1.26981035e-01 -4.62388918e-02
7.29017556e-02 -5.01602776e-02 -1.84791833e-01 1.15791595e+00
3.12555671e-01 6.40818059e-01 -7.26230323e-01 -3.10204953e-01
8.72307539e-01 3.18100601e-01 8.52451548e-02 3.69435042e-01
5.04765391e-01 2.39304692e-01 -5.43096006e-01 1.11944640e+00
1.02079058e+00 -2.03541830e-01 -1.34249181e-01 -9.67782021e-01
-2.42768690e-01 -1.74248815e-01 -1.00343966e+00 1.20662987e+00
-2.40126625e-01 1.16092825e+00 3.76291364e-01 -1.74932408e+00
9.26747203e-01 6.69871271e-01 1.00483620e+00 -5.51860332e-01
4.78676200e-01 -1.53595194e-01 -2.36628316e-02 -1.02902675e+00
3.05870295e-01 2.80236572e-01 3.08125876e-02 2.89752364e-01
3.65564644e-01 -3.34919870e-01 6.80610418e-01 2.15219297e-02
1.13470995e+00 -2.59640366e-01 1.22019418e-01 -3.30240697e-01
6.26761377e-01 -7.01932982e-03 5.34892201e-01 4.25645322e-01
-4.63668287e-01 2.79343069e-01 3.71439725e-01 -9.62198257e-01
-7.52429962e-01 -8.38280916e-01 -6.22844815e-01 5.14438987e-01
2.45724678e-01 1.01111494e-01 -8.35489690e-01 -8.88922513e-01
5.45834228e-02 2.82634497e-01 -4.25431371e-01 -1.27810657e-01
-1.70161888e-01 -1.22205412e+00 3.02333772e-01 1.01555800e+00
8.81720185e-01 -1.31850350e+00 -6.81799173e-01 1.83801398e-01
-5.41007817e-02 -1.27069199e+00 1.35459155e-01 4.94365431e-02
-8.69108200e-01 -1.46549451e+00 -6.01952076e-01 -1.43533361e+00
7.96096206e-01 5.68564951e-01 1.20835948e+00 6.83171093e-01
-6.81243300e-01 4.06085283e-01 -8.06512713e-01 -4.68459070e-01
8.51041358e-03 -3.08427840e-01 5.37322536e-02 -2.63395190e-01
5.07350564e-01 -2.43725345e-01 -4.59426939e-01 1.77596912e-01
-8.13372254e-01 -6.29734397e-01 4.71217483e-01 9.12010133e-01
-3.54820630e-03 1.09779012e+00 7.70692408e-01 -2.64666677e-01
7.89227486e-01 -2.19635159e-01 -1.01913071e+00 2.65902996e-01
-4.59060401e-01 -8.75506759e-01 8.35868418e-01 1.93420678e-01
-8.53329182e-01 -5.41625679e-01 -6.79911494e-01 -1.71997815e-01
-2.69197464e-01 6.70348108e-01 -2.19389632e-01 -4.52105522e-01
2.17037782e-01 -7.89946318e-03 -1.26529902e-01 -4.94458169e-01
-2.13896796e-01 8.97040963e-01 3.18355739e-01 -1.29020974e-01
8.52955163e-01 5.21892488e-01 -2.43456826e-01 -1.25914645e+00
-9.13822949e-01 -3.17571640e-01 -1.01960921e+00 -4.49892074e-01
8.02000701e-01 -5.92843592e-01 -8.03078651e-01 1.10950840e+00
-1.06627226e+00 -1.09555468e-01 -4.23705310e-01 3.80204797e-01
-2.85575300e-01 9.17292118e-01 -1.47024786e+00 -6.71714485e-01
-7.62533069e-01 -1.52670228e+00 9.33331311e-01 3.17425847e-01
3.26554835e-01 -1.25355268e+00 -1.54085502e-01 5.47092736e-01
2.07801938e-01 1.10135794e-01 8.87426436e-01 -3.30851674e-01
-3.37292701e-01 -6.26675665e-01 -2.89246023e-01 1.04004741e+00
5.45226038e-01 3.41607988e-01 -8.33338082e-01 -8.87038469e-01
2.90212870e-01 -5.39150476e-01 2.98414201e-01 7.92174459e-01
1.25206602e+00 1.55915737e-01 -2.33186305e-01 3.82932454e-01
1.35252309e+00 6.99982941e-01 5.66556692e-01 3.72994363e-01
6.39202595e-01 6.39593065e-01 9.78427768e-01 8.73115420e-01
3.19342792e-01 2.73977399e-01 8.91205132e-01 -7.39757895e-01
2.79363811e-01 5.11436582e-01 1.93111654e-02 1.22446382e+00
5.83822690e-02 -5.93874931e-01 -4.90451664e-01 8.04005980e-01
-1.37680745e+00 -8.38738859e-01 -2.82937884e-01 1.33480239e+00
1.25241019e-02 -5.25525920e-02 -3.72035010e-03 1.07909858e+00
6.71923637e-01 9.55411345e-02 -5.59596777e-01 -7.72089884e-02
-5.62201664e-02 -2.93660641e-01 2.79704481e-02 2.13256747e-01
-1.59212232e+00 3.14876348e-01 6.86475801e+00 6.75989389e-01
-7.63794780e-01 -2.58415550e-01 4.53622818e-01 5.08960545e-01
3.52963626e-01 -4.99183416e-01 -3.61233443e-01 1.87371194e-01
2.52390474e-01 2.68177599e-01 -5.28627075e-02 7.96908855e-01
2.82310784e-01 -1.22655556e-01 -9.80629802e-01 9.04391766e-01
2.52467752e-01 -1.02699351e+00 -3.10439527e-01 -2.55309224e-01
8.09313059e-01 2.37240463e-01 4.85837646e-02 1.55743519e-02
-2.07125721e-03 -4.50091869e-01 4.76281524e-01 -1.58784196e-01
3.76021326e-01 -8.56342494e-01 1.32619417e+00 -1.08081006e-01
-1.41723692e+00 -5.67576945e-01 -6.73424661e-01 -5.05838171e-02
4.31889564e-01 7.55449653e-01 -1.59957975e-01 1.16949570e+00
1.38109660e+00 1.35017312e+00 -4.68873650e-01 1.27596033e+00
-5.48373580e-01 6.13207281e-01 2.15043470e-01 2.13661879e-01
2.44282603e-01 -4.04986531e-01 2.25421116e-01 9.22811925e-01
1.84870481e-01 -3.51820290e-01 5.13286829e-01 6.68964922e-01
3.99207443e-01 -4.11789149e-01 -4.24627423e-01 1.09833352e-01
2.63666123e-01 1.65831089e+00 -7.12972522e-01 -6.95309043e-02
-1.16665900e+00 6.82508707e-01 -1.77173972e-01 3.35669696e-01
-8.67305517e-01 -1.01297879e+00 5.65355480e-01 -3.83840293e-01
3.65327328e-01 -2.01646969e-01 -1.10933386e-01 -9.19332087e-01
1.35315396e-02 -1.00843596e+00 6.63819849e-01 -1.10457706e+00
-1.66092122e+00 9.02067304e-01 -3.77047225e-03 -1.64231288e+00
3.19417983e-01 -9.92589474e-01 -7.71003604e-01 4.15309548e-01
-1.78453946e+00 -1.09251201e+00 -5.30427635e-01 3.58482659e-01
1.14341915e+00 -6.88364327e-01 5.73388636e-01 4.96387780e-01
-1.04554427e+00 3.65500897e-01 2.35204995e-01 8.02216232e-01
-5.08414619e-02 -1.30670655e+00 3.40584368e-01 1.13233769e+00
4.32850607e-02 2.25570542e-03 6.90744817e-01 -2.78702259e-01
-1.55690134e+00 -6.45736694e-01 1.29548386e-01 -1.99671779e-02
9.01412487e-01 2.02262625e-01 -1.00350869e+00 8.25073302e-01
9.61312532e-01 1.13667496e-01 7.02023029e-01 -2.04423785e-01
4.97472495e-01 -6.01988137e-01 -1.39367104e+00 1.96912318e-01
1.20023593e-01 -3.59659672e-01 -4.28152561e-01 5.95937312e-01
1.18610717e-01 -2.06163466e-01 -1.27489078e+00 3.87531251e-01
2.28557270e-02 -8.85436177e-01 7.69886732e-01 -9.57061872e-02
9.11124051e-02 -5.36735892e-01 2.47265756e-01 -1.52771056e+00
-7.34758973e-01 -3.13726008e-01 -5.08686341e-02 1.06365228e+00
-1.05602741e-01 -3.89697313e-01 6.46906912e-01 8.28327388e-02
-8.97546887e-01 -8.43715072e-01 -7.54173219e-01 -5.10684252e-01
-2.24140391e-01 -4.56483215e-01 6.40101135e-01 8.27410996e-01
3.81965339e-01 3.36148739e-01 -2.82801032e-01 9.47105885e-01
8.01851273e-01 3.63370091e-01 2.54806578e-01 -1.06069541e+00
2.57069707e-01 5.17169796e-02 -7.10994422e-01 -1.22284770e+00
9.62068792e-03 -3.51305515e-01 -3.10658682e-02 -2.06850958e+00
-1.28748775e-01 -1.73935425e-02 -3.42006236e-01 4.99137253e-01
1.61947966e-01 2.89648354e-01 -4.93210368e-02 -2.52170384e-01
-6.93577409e-01 6.91199780e-01 1.58212209e+00 -7.91692615e-01
5.30653119e-01 1.52231932e-01 -4.71856207e-01 6.73708498e-01
7.55905807e-01 1.47437617e-01 -4.78559643e-01 -1.00561833e+00
-1.18370406e-01 1.12551317e-01 -2.23621167e-02 -1.19231188e+00
2.97728449e-01 4.88944769e-01 5.75188577e-01 -1.20112264e+00
1.07362300e-01 -1.47628057e+00 -7.16820776e-01 5.68902373e-01
2.09336683e-01 4.97195750e-01 3.72129917e-01 -1.50357848e-02
-6.14376187e-01 -7.09249735e-01 8.79984021e-01 6.51797652e-02
-1.06354785e+00 4.04362172e-01 -1.16271675e+00 -4.57413197e-01
1.19902372e+00 -1.64871052e-01 -2.77510881e-01 -3.21500212e-01
-3.66841525e-01 6.75041556e-01 -1.09124020e-01 6.13091648e-01
9.42929685e-01 -1.17177498e+00 -7.91774929e-01 6.41835213e-01
-8.88788328e-02 -1.59425199e-01 7.92204738e-01 8.89639318e-01
-8.22340965e-01 4.79527980e-01 -5.98253489e-01 -7.23044395e-01
-1.18548012e+00 7.70238638e-01 6.16723537e-01 -9.38197318e-03
-8.03793192e-01 6.14086688e-01 -1.61092177e-01 4.25061882e-02
2.90369719e-01 -4.70662683e-01 -8.52910757e-01 -1.31769786e-02
9.58076775e-01 9.29174542e-01 7.32538462e-01 -4.87381548e-01
-2.76124418e-01 6.58108234e-01 -1.85196754e-02 8.95584822e-01
1.59853899e+00 -4.28925961e-01 -3.25573683e-01 9.87199098e-02
9.21328902e-01 -5.74156225e-01 -1.42097795e+00 2.39059284e-01
-2.48021632e-01 -4.81925786e-01 5.56447446e-01 -5.98714292e-01
-2.16137648e+00 1.29088926e+00 8.16322029e-01 1.08511257e+00
1.51187789e+00 -6.24144115e-02 6.74899936e-01 4.02412921e-01
6.12802029e-01 -1.25093150e+00 3.86853099e-01 2.49080211e-01
9.88452792e-01 -1.39256513e+00 3.83373171e-01 -4.77277309e-01
-5.69909871e-01 1.45279968e+00 8.90456259e-01 -2.57993042e-01
7.58982480e-01 8.90240252e-01 3.16896349e-01 -6.25805259e-01
-2.67524540e-01 1.88624993e-01 3.75467055e-02 1.20861912e+00
3.89167547e-01 -4.23049420e-01 4.84280467e-01 3.31343919e-01
2.56767422e-01 -1.86831266e-01 5.59889913e-01 1.24613416e+00
-4.05249566e-01 -6.70543134e-01 -5.33285320e-01 5.14296591e-01
-6.78104758e-01 2.68248439e-01 3.91007334e-01 7.35570312e-01
-2.03510329e-01 1.69146264e+00 3.91335815e-01 -3.07985604e-01
6.62730932e-01 -1.09246695e+00 4.52097833e-01 -3.42613935e-01
-3.35508168e-01 -5.90510108e-02 -2.02751562e-01 -4.43295091e-02
-3.80379885e-01 -5.01187623e-01 -1.05801165e+00 -2.65895903e-01
-8.34863067e-01 3.75221491e-01 2.32064009e-01 9.60408807e-01
-2.29525596e-01 1.29114068e+00 1.00032592e+00 -8.66554916e-01
-5.24030924e-01 -1.17909646e+00 -1.33758783e+00 3.86791416e-02
7.25789964e-01 -7.34173775e-01 -3.50557625e-01 9.52305179e-03] | [7.475847244262695, 1.7500332593917847] |
5a5f55db-1dfb-464b-89ac-d14f902f7a8c | a-study-of-left-before-treatment-complete | 2212.11879 | null | https://arxiv.org/abs/2212.11879v1 | https://arxiv.org/pdf/2212.11879v1.pdf | A Study of Left Before Treatment Complete Emergency Department Patients: An Optimized Explanatory Machine Learning Framework | The issue of left before treatment complete (LBTC) patients is common in emergency departments (EDs). This issue represents a medico-legal risk and may cause a revenue loss. Thus, understanding the factors that cause patients to leave before treatment is complete is vital to mitigate and potentially eliminate these adverse effects. This paper proposes a framework for studying the factors that affect LBTC outcomes in EDs. The framework integrates machine learning, metaheuristic optimization, and model interpretation techniques. Metaheuristic optimization is used for hyperparameter optimization--one of the main challenges of machine learning model development. Three metaheuristic optimization algorithms are employed for optimizing the parameters of extreme gradient boosting (XGB), which are simulated annealing (SA), adaptive simulated annealing (ASA), and adaptive tabu simulated annealing (ATSA). The optimized XGB models are used to predict the LBTC outcomes for the patients under treatment in ED. The designed algorithms are trained and tested using four data groups resulting from the feature selection phase. The model with the best predictive performance is interpreted using SHaply Additive exPlanations (SHAP) method. The findings show that ATSA-XGB outperformed other mode configurations with an accuracy, area under the curve (AUC), sensitivity, specificity, and F1-score of 86.61%, 87.50%, 85.71%, 87.51%, and 86.60%, respectively. The degree and the direction of effects of each feature were determined and explained using the SHAP method. | ['Salih Tutun', 'Khalid Y. Aram', 'Abdulaziz Ahmed'] | 2022-12-22 | null | null | null | null | ['metaheuristic-optimization'] | ['methodology'] | [-4.98033166e-02 -1.34197459e-01 -2.69415736e-01 -3.89435858e-01
-2.78904736e-01 -1.80736423e-01 1.63389482e-02 6.33857131e-01
-3.22682112e-01 9.62448359e-01 2.26180404e-01 -6.48599923e-01
-9.25432622e-01 -5.85789144e-01 -2.70043075e-01 -9.72435236e-01
-7.06031173e-02 7.07189560e-01 -5.01905918e-01 -2.19738171e-01
6.26633644e-01 6.15287781e-01 -1.64901602e+00 6.15389287e-01
1.25531912e+00 9.00893033e-01 1.99868292e-01 4.78273094e-01
-2.46603742e-01 5.96866369e-01 -4.61675584e-01 -3.03335279e-01
3.00444841e-01 -4.90729868e-01 -6.55424356e-01 -1.43337786e-01
-5.05126953e-01 5.47975749e-02 4.01455551e-01 3.26133341e-01
7.25164592e-01 1.36375755e-01 8.05809796e-01 -1.46562755e+00
-1.11162394e-01 3.15817744e-01 -6.70827210e-01 3.66894066e-01
3.12827826e-01 1.47197261e-01 4.24873620e-01 -4.47484106e-01
3.83234382e-01 1.37473214e+00 5.49937785e-01 4.48933482e-01
-9.20964897e-01 -5.17511785e-01 -1.86009511e-01 4.04839039e-01
-8.33984792e-01 3.24111655e-02 4.01822746e-01 -3.49902838e-01
1.09615135e+00 7.91245341e-01 9.13329661e-01 5.25495827e-01
7.87707865e-01 5.10670960e-01 1.31422496e+00 -7.53661692e-01
2.78672308e-01 3.58258367e-01 3.24129075e-01 5.69768012e-01
5.21662652e-01 3.02365065e-01 -3.69399816e-01 -6.44327402e-01
5.15834615e-02 2.45637655e-01 4.76080552e-02 -1.88414738e-01
-4.84413117e-01 1.07972276e+00 3.15387517e-01 1.05594182e-02
-8.56149733e-01 -3.91040146e-01 4.62072998e-01 -4.73803468e-02
4.30974811e-02 6.16900086e-01 -7.68016756e-01 -1.43661857e-01
-3.49980682e-01 2.07959235e-01 6.09955311e-01 3.01981956e-01
1.30534634e-01 -1.27541900e-01 -2.66239196e-01 7.99132466e-01
4.02778983e-01 4.78701830e-01 7.15916693e-01 -6.29707813e-01
2.58092999e-01 9.30619061e-01 1.84957385e-01 -9.65105116e-01
-6.46695852e-01 -7.67736912e-01 -5.16329288e-01 -4.77416478e-02
3.29228528e-02 -2.98566192e-01 -7.72608519e-01 1.28671610e+00
6.69345617e-01 -2.40703493e-01 1.06274568e-01 6.22938693e-01
5.53842485e-01 6.00566149e-01 5.10193527e-01 -6.06364965e-01
1.42348707e+00 -8.91510308e-01 -6.83116794e-01 -2.39550501e-01
9.04150009e-01 -7.72281229e-01 7.41150618e-01 5.68169534e-01
-1.03693652e+00 -1.66611567e-01 -6.57905161e-01 6.20565474e-01
-2.27916986e-01 -3.61586250e-02 7.11007059e-01 8.55363071e-01
-5.79013407e-01 4.77678746e-01 -6.40748799e-01 -3.82377028e-01
2.71961540e-01 6.13864064e-01 1.21006422e-01 2.40474455e-05
-8.40390265e-01 1.03874516e+00 4.23494339e-01 7.95112699e-02
-2.27540568e-01 -7.00535476e-01 -4.19219166e-01 1.03103258e-01
-6.87082019e-03 -1.12344372e+00 8.32542121e-01 -9.30790722e-01
-1.04788637e+00 6.85606122e-01 -3.31002623e-01 -4.54803467e-01
3.16051900e-01 3.35464962e-02 -2.70919025e-01 -7.92178046e-03
4.04539518e-03 2.35004663e-01 2.56476521e-01 -1.31820524e+00
-9.38520312e-01 -9.86285627e-01 -4.18958157e-01 4.20590669e-01
-9.41776559e-02 2.60086749e-02 3.39278638e-01 -3.10036600e-01
2.69878596e-01 -9.21148956e-01 -5.77121139e-01 -8.08792114e-01
-8.07790458e-02 -6.59808069e-02 6.79039001e-01 -8.29301357e-01
1.49425888e+00 -1.78061187e+00 -1.24940626e-01 6.72957420e-01
-2.41836846e-01 3.25596631e-01 4.84946340e-01 4.99256760e-01
-3.40781093e-01 1.59512222e-01 1.26563624e-01 2.45653227e-01
-3.31972957e-01 2.14941263e-01 2.20742356e-02 7.48315826e-02
-1.75112188e-01 5.48187554e-01 -6.54876232e-01 -4.85287666e-01
5.61058402e-01 2.35628024e-01 -6.77565575e-01 2.56135672e-01
1.95507988e-01 4.43782121e-01 -8.44314098e-01 7.66908050e-01
7.52118945e-01 -2.21983679e-02 3.34404469e-01 -1.01787589e-01
-3.92583869e-02 -1.28718138e-01 -1.10338426e+00 6.15067303e-01
-5.16826689e-01 -1.06177874e-01 -2.48659223e-01 -9.35061276e-01
1.10556901e+00 1.23870224e-01 7.70385265e-01 -8.18264008e-01
5.17463267e-01 4.50839490e-01 1.84980959e-01 -1.04692948e+00
6.71606064e-02 -3.15441310e-01 3.08051139e-01 3.62903476e-01
-5.69908440e-01 2.71225184e-01 2.94269584e-02 -2.20489651e-02
7.83318460e-01 -3.34537774e-01 7.50352621e-01 -2.57825762e-01
5.74683130e-01 3.18980575e-01 6.61750495e-01 7.15548158e-01
-1.63986653e-01 7.62745738e-02 3.81279647e-01 -7.94442594e-01
-6.77394986e-01 -5.68714082e-01 -2.60185272e-01 7.53868699e-01
3.67330329e-04 4.52183522e-02 -5.85740089e-01 -3.56318831e-01
2.04522148e-01 1.36385524e+00 -5.73515832e-01 -5.13910949e-01
-3.72816950e-01 -1.29293394e+00 -6.23467118e-02 2.32359543e-01
3.61289114e-01 -9.36430991e-01 -1.03190625e+00 2.81044573e-01
-2.41215572e-01 -2.43931577e-01 3.20248216e-01 2.66369402e-01
-1.43468451e+00 -1.15897119e+00 -1.37812451e-01 -4.17232484e-01
7.42357373e-01 2.00328603e-02 8.74455094e-01 5.45226753e-01
-5.89342237e-01 2.94150174e-01 -4.66080874e-01 -7.45609820e-01
-3.69848907e-01 -2.33137891e-01 -1.31583884e-01 -9.13361832e-02
4.49286550e-01 -2.09035322e-01 -8.89657319e-01 3.65388900e-01
-5.90912819e-01 -1.29011840e-01 6.19737744e-01 1.02229846e+00
6.22176349e-01 2.75154933e-02 6.22322440e-01 -9.19784367e-01
8.48675609e-01 -7.48723865e-01 -1.53809533e-01 5.20511389e-01
-1.24417019e+00 -4.25089821e-02 4.05355483e-01 -1.95120946e-01
-1.18322873e+00 -1.48005947e-01 1.03202567e-01 -2.93730814e-02
-2.20345572e-01 4.17649060e-01 4.64282222e-02 9.01645645e-02
6.25406563e-01 -9.68210399e-04 1.13774158e-01 -3.56090903e-01
-6.70543849e-01 9.00339901e-01 -2.69763023e-01 -4.52779949e-01
3.66426073e-03 3.46868396e-01 3.17827255e-01 -3.49152535e-01
-6.85753167e-01 -5.97502470e-01 -9.02675837e-03 -3.41311306e-01
6.41354084e-01 -2.38815337e-01 -9.78694916e-01 8.87970626e-02
-5.24496198e-01 1.79501072e-01 2.55068503e-02 7.62361348e-01
-5.05039394e-01 1.15582123e-01 4.46533784e-02 -1.24192739e+00
-8.46186101e-01 -1.35340381e+00 4.48897064e-01 5.12709498e-01
-4.85349953e-01 -9.25041437e-01 -1.46606907e-01 9.23772573e-01
2.63892621e-01 5.42724013e-01 1.52989292e+00 -9.33587551e-01
-3.77368219e-02 -1.09730452e-01 2.26715669e-01 -5.45293950e-02
4.92642038e-02 2.42987886e-01 -5.06952524e-01 -1.68966681e-01
3.03821474e-01 6.39254600e-02 2.34371349e-01 1.13304448e+00
1.16516960e+00 -2.71437228e-01 -6.20551050e-01 6.82006776e-01
1.51410425e+00 1.21135437e+00 6.66037142e-01 9.62403655e-01
-1.28788710e-01 6.44673944e-01 1.19237280e+00 8.76266539e-01
1.57185912e-01 3.48766297e-01 6.70229375e-01 6.04494698e-02
3.42187285e-01 6.71969652e-02 9.04150121e-03 2.35593453e-01
-1.62802905e-01 -3.91030997e-01 -1.28932488e+00 4.20205951e-01
-1.70821953e+00 -7.79106379e-01 -4.78414118e-01 2.10138988e+00
1.89814180e-01 2.34839879e-02 5.88496849e-02 3.39030743e-01
7.87182808e-01 -5.81362665e-01 -3.71160328e-01 -1.42147446e+00
3.88234071e-02 7.03399703e-02 5.22994637e-01 2.36559615e-01
-5.56784213e-01 2.84233868e-01 5.49131155e+00 6.17352068e-01
-8.07707965e-01 -2.37252310e-01 1.19468594e+00 -1.43117443e-01
-1.85210794e-01 2.24992067e-01 -5.66143990e-01 6.75883710e-01
1.05910063e+00 -5.27760535e-02 4.00400132e-01 8.01330090e-01
7.54749537e-01 -5.82512319e-01 -5.30948520e-01 7.39185989e-01
-1.49762750e-01 -1.01474774e+00 1.32367447e-01 1.64774835e-01
7.78144479e-01 -5.07125795e-01 2.49780729e-01 1.83568999e-01
9.99514461e-02 -8.83985996e-01 2.22166374e-01 4.83500451e-01
1.76780328e-01 -1.07348168e+00 1.16668856e+00 4.80325073e-01
-5.11641383e-01 -8.69617701e-01 -1.38553977e-01 1.56441554e-02
1.28116921e-01 4.34703082e-01 -1.25853229e+00 6.42476261e-01
9.56939399e-01 -1.79292157e-01 -3.46937090e-01 1.30746806e+00
1.54472932e-01 6.10391796e-01 -3.39203626e-01 -3.97619218e-01
3.69519472e-01 -4.05540943e-01 4.74237502e-01 7.03434765e-01
4.70807672e-01 5.53435206e-01 -1.67380154e-01 2.11061478e-01
6.80057049e-01 6.72922075e-01 -2.21892715e-01 2.69179434e-01
4.71822679e-01 8.47259641e-01 -7.98188150e-01 -1.04371347e-01
8.76374096e-02 2.83835828e-01 -3.13152894e-02 1.25703346e-02
-8.00776660e-01 -1.40505224e-01 9.93886366e-02 2.29027063e-01
-5.31527549e-02 6.46449804e-01 -8.73011351e-01 -3.26964945e-01
-3.41830909e-01 -1.14465678e+00 1.04147112e+00 -7.62046278e-01
-9.01949942e-01 3.83662045e-01 2.29628697e-01 -9.29020822e-01
-3.29005152e-01 -3.83855075e-01 -5.76610446e-01 8.65596056e-01
-1.08483779e+00 -7.84671068e-01 -4.19888943e-01 2.95797616e-01
5.05838990e-01 -2.64652103e-01 7.81721771e-01 -9.47790891e-02
-6.62288666e-01 4.07489151e-01 5.87575018e-01 -6.97646260e-01
3.07999849e-01 -7.99456894e-01 -7.33385921e-01 1.81859553e-01
-8.34039450e-01 6.25336766e-01 9.13924038e-01 -8.81223977e-01
-1.16226017e+00 -6.15143895e-01 9.69895065e-01 7.59240985e-02
-1.34753836e-02 5.66757739e-01 -4.79254365e-01 2.65182436e-01
-7.15224147e-02 -8.32561374e-01 1.14349306e+00 1.66744068e-01
5.65612614e-01 -1.85466453e-01 -1.67756832e+00 5.73746979e-01
4.41440821e-01 6.01137280e-01 -4.78089720e-01 2.90702045e-01
1.91410892e-02 -3.60634893e-01 -8.75794172e-01 5.33373713e-01
6.57339633e-01 -1.23251355e+00 1.10865605e+00 -1.09653795e+00
3.80278409e-01 3.43892753e-01 -3.68449814e-03 -1.20662367e+00
-3.53549182e-01 -2.39853531e-01 2.21575424e-01 7.11056530e-01
5.43657124e-01 -9.82357264e-01 6.41856730e-01 1.05777466e+00
-1.22341745e-01 -1.45376801e+00 -7.11775661e-01 -3.59896809e-01
-2.82838225e-01 6.52684793e-02 1.01620853e+00 9.58120465e-01
-1.94472030e-01 -1.45905063e-01 -6.98085353e-02 1.98105201e-02
4.37095463e-01 2.85418510e-01 4.71100390e-01 -1.12165594e+00
-1.92132384e-01 -2.73666531e-01 -1.79928407e-01 1.85609341e-01
-3.66621584e-01 -6.42540395e-01 -7.10767210e-01 -1.79660201e+00
3.56561184e-01 -6.59079254e-01 -4.56398576e-01 4.04872239e-01
-3.63751382e-01 -6.34555876e-01 3.83662060e-02 1.64396286e-01
1.66289508e-01 3.45787108e-01 1.12863207e+00 3.85006428e-01
-6.59113467e-01 4.44925576e-01 -7.00783491e-01 7.32058644e-01
1.30967689e+00 -9.02827919e-01 -5.07550955e-01 -2.21756488e-01
9.88302752e-02 5.21956027e-01 9.06997025e-02 -5.00333905e-01
-1.11293428e-01 -8.02147985e-01 5.70936322e-01 -8.09935451e-01
1.49596378e-01 -1.09781790e+00 5.96495271e-01 1.22253573e+00
-2.73131102e-01 4.42708105e-01 2.89318085e-01 3.56229961e-01
9.73126739e-02 -6.50577784e-01 5.99489689e-01 -2.51571313e-02
-2.69151241e-01 -2.62154192e-01 -3.15729350e-01 -2.42726609e-01
1.50678980e+00 -7.10831940e-01 -2.03151256e-01 -2.71645546e-01
-7.82496989e-01 2.76840955e-01 6.12358339e-02 8.42397511e-02
6.36180937e-01 -9.14456606e-01 -4.24832910e-01 1.50409371e-01
-1.72819942e-01 -4.33471888e-01 6.75284564e-01 1.24117899e+00
-8.53670001e-01 4.73730475e-01 -4.60340858e-01 -3.13761115e-01
-1.56385243e+00 4.67636764e-01 4.07513410e-01 -5.63140273e-01
-4.13403511e-02 6.54604614e-01 -1.51034564e-01 -3.25230837e-01
-2.02568118e-02 1.00538194e-01 -4.11745876e-01 -5.31116687e-02
1.09448455e-01 1.12720656e+00 3.16040039e-01 -4.31072712e-01
-5.04873097e-01 4.75114167e-01 -1.58807248e-01 3.84633094e-01
1.46018159e+00 -3.93196344e-02 -2.43472144e-01 -3.72054689e-02
8.57491493e-01 -2.05328226e-01 -2.97324121e-01 4.22943026e-01
-5.49657792e-02 -5.95851362e-01 1.32082865e-01 -1.52043259e+00
-8.13405335e-01 5.56173027e-01 1.02480555e+00 6.18879721e-02
1.48619723e+00 -4.44128275e-01 5.19883454e-01 2.19851866e-01
1.59755740e-02 -1.21247232e+00 -3.86853039e-01 -1.80075280e-02
7.16636181e-01 -1.16402328e+00 1.29867405e-01 -2.13676274e-01
-9.25840855e-01 1.11786413e+00 4.60932046e-01 3.00871283e-01
6.20198250e-01 -6.17331564e-02 -5.00776544e-02 -2.95637488e-01
-9.48739052e-01 3.84610772e-01 1.47146583e-01 3.60868722e-01
1.35285243e-01 2.61537313e-01 -1.02656662e+00 8.88744533e-01
-1.03405923e-01 -9.52493679e-03 1.62097216e-01 1.12964642e+00
-5.27846634e-01 -1.07101774e+00 -8.77712548e-01 9.86379027e-01
-5.92985153e-01 1.60918295e-01 -4.58169550e-01 8.24762285e-01
2.47365937e-01 1.11765480e+00 -2.45613128e-01 -3.44586402e-01
2.92236120e-01 1.64569035e-01 9.99168158e-02 -1.11499336e-02
-1.18264246e+00 1.57809526e-01 1.79281220e-01 -1.68024689e-01
-1.54265180e-01 -7.98260510e-01 -1.47185564e+00 -3.98450822e-01
-5.29658973e-01 6.57104313e-01 1.04667544e+00 7.73281515e-01
6.74673855e-01 5.40929079e-01 8.78796399e-01 -8.22483450e-02
-6.28206432e-01 -5.56920767e-01 -3.98791641e-01 2.80978113e-01
-1.60219297e-01 -9.24477816e-01 -5.49672246e-01 -4.42207903e-01] | [8.495078086853027, 4.87343692779541] |
705a63de-89dc-43b7-a3f8-ea68c390afe6 | multi-label-class-balancing-algorithm-for | 2002.03238 | null | https://arxiv.org/abs/2002.03238v1 | https://arxiv.org/pdf/2002.03238v1.pdf | Multi-Label Class Balancing Algorithm for Action Unit Detection | Isolated facial movements, so-called Action Units, can describe combined emotions or physical states such as pain. As datasets are limited and mostly imbalanced, we present an approach incorporating a multi-label class balancing algorithm. This submission is subject to the Action Unit detection task of the Affective Behavior Analysis in-the-wild (ABAW) challenge at the IEEE Conference on Face and Gesture Recognition 2020. | ['Jaspar Pahl', 'Dominik Seuss', 'Ines Rieger'] | 2020-02-08 | null | null | null | null | ['action-unit-detection'] | ['computer-vision'] | [ 2.85640597e-01 1.59121007e-01 -7.81025648e-01 -9.60848808e-01
-5.19600093e-01 -4.79082912e-01 3.67104024e-01 -4.04529899e-01
-1.95379078e-01 7.34515131e-01 2.39007294e-01 6.01000786e-01
1.20815217e-01 -4.38756756e-02 -1.44305145e-02 -7.33499408e-01
-1.20613329e-01 8.38998333e-02 -6.91251516e-01 8.10590163e-02
-1.36847824e-01 6.80906534e-01 -1.91223466e+00 8.17052245e-01
-2.93850034e-01 1.29491365e+00 -1.37646055e+00 6.18698239e-01
-1.24262571e-02 9.76048529e-01 -5.97895384e-01 -2.69458175e-01
9.14222002e-02 -8.87664080e-01 -9.56989169e-01 2.83839524e-01
6.53426707e-01 -3.16499144e-01 1.57975912e-01 7.85781860e-01
9.79784250e-01 2.79014766e-01 7.32063949e-01 -2.23490310e+00
4.85418402e-02 1.62378594e-01 -9.91607487e-01 8.73327814e-03
8.58567894e-01 -2.37826183e-01 8.13077807e-01 -8.75275195e-01
1.18643427e+00 1.50964320e+00 6.25418782e-01 1.45751977e+00
-1.16666198e+00 -1.06037998e+00 1.91189393e-01 3.45670134e-01
-1.38359213e+00 -9.18395638e-01 7.75559068e-01 -4.24694657e-01
1.11683679e+00 6.28896594e-01 7.82728791e-01 1.43165100e+00
-7.79929534e-02 1.14450860e+00 1.33506072e+00 -2.04301298e-01
3.94387037e-01 -3.27999234e-01 1.23925671e-01 5.16218245e-01
-3.72923851e-01 -1.51022121e-01 -1.11866188e+00 -6.89851820e-01
8.31815526e-02 -2.26787239e-01 9.26157758e-02 -2.17770087e-03
-6.70991123e-01 7.24363148e-01 -1.10816561e-01 2.64611274e-01
-5.90393364e-01 5.62531650e-01 7.50607908e-01 4.96709675e-01
8.51490974e-01 -2.51705553e-02 -3.11216831e-01 -5.77776194e-01
-1.09476793e+00 3.27579498e-01 6.84738696e-01 4.61587310e-01
5.61095357e-01 -2.17109501e-01 -2.72942126e-01 9.75767016e-01
3.42793673e-01 2.04498202e-01 6.34359062e-01 -1.32934976e+00
-4.15602624e-01 5.56492567e-01 -8.46718326e-02 -6.73486114e-01
-9.19672728e-01 8.65823686e-01 -5.93269646e-01 5.65780282e-01
-5.64388186e-02 -4.15256500e-01 -1.09138811e+00 2.13076806e+00
8.21712017e-01 1.48627281e-01 -3.20608556e-01 7.86392868e-01
1.26995492e+00 1.66962191e-01 5.19886553e-01 -8.22628200e-01
1.39223719e+00 -5.85101366e-01 -1.42649102e+00 7.50648528e-02
7.73279309e-01 -6.56014919e-01 4.95789409e-01 5.65172970e-01
-1.04711652e+00 -7.85547569e-02 -8.71280372e-01 2.33914495e-01
-4.86305416e-01 -8.82080793e-02 7.77051508e-01 8.98804545e-01
-1.17840910e+00 4.11448210e-01 -7.36518621e-01 -5.70350528e-01
8.96838129e-01 5.97346127e-01 -7.63226271e-01 3.08850408e-01
-9.35223460e-01 9.58577037e-01 -5.42082898e-02 6.05429672e-02
-4.35288489e-01 -3.74669909e-01 -7.25250363e-01 -6.11726344e-01
1.59712240e-01 1.05272271e-01 1.30677485e+00 -1.76914918e+00
-1.86555338e+00 1.62869227e+00 -2.82308668e-01 2.90565968e-01
2.77463198e-01 -1.44023716e-01 -7.39107668e-01 1.83620989e-01
-4.91162181e-01 1.15247846e+00 9.54616427e-01 -7.79912114e-01
-1.80035189e-01 -7.76179433e-01 -3.23343843e-01 3.21938485e-01
-2.24371791e-01 8.78345966e-01 -2.26313427e-01 -4.96837795e-01
-1.24017820e-01 -1.33594418e+00 1.15513682e-01 1.39731005e-01
-1.81845158e-01 -7.85099149e-01 1.13515127e+00 -3.35765839e-01
1.24241185e+00 -2.09692097e+00 2.77796149e-01 3.90675068e-01
1.86071843e-01 3.53294425e-02 -2.87857056e-01 -1.55141968e-02
-6.58405960e-01 4.00073588e-01 2.75583684e-01 -6.81303561e-01
8.18869546e-02 3.65432590e-01 2.29763746e-01 8.00188959e-01
2.66236942e-02 9.00291622e-01 -6.01712525e-01 -7.61987388e-01
1.34784818e-01 3.58774662e-01 -1.78764969e-01 1.42334938e-01
1.32692680e-01 1.83041215e-01 -2.61145860e-01 1.22417080e+00
6.36020958e-01 3.30176383e-01 1.17779769e-01 -1.72882140e-01
2.44536579e-01 -3.54340494e-01 -1.10183191e+00 1.57047033e+00
6.83301911e-02 7.83073783e-01 2.26615250e-01 -5.90605676e-01
6.69902086e-01 8.22324038e-01 1.23249221e+00 -7.34664023e-01
5.60465574e-01 -2.65372619e-02 -2.33030498e-01 -5.86821675e-01
-1.23498276e-01 -6.10937238e-01 -1.63891330e-01 7.16910422e-01
3.28296274e-01 -6.96289167e-02 2.02458680e-01 -1.19778261e-01
1.21194482e+00 5.77300012e-01 7.87874520e-01 -1.21865869e-01
2.56859422e-01 -4.79256272e-01 7.98336506e-01 7.33965337e-02
-1.06986272e+00 5.39115369e-01 6.38114631e-01 -6.58312559e-01
-2.67633468e-01 -5.22800267e-01 -2.08016932e-01 1.47944105e+00
-3.53251576e-01 -6.51302278e-01 -8.53219748e-01 -6.74789131e-01
6.32197335e-02 1.21237651e-01 -1.22213221e+00 -2.43569076e-01
-2.95798272e-01 -9.62309837e-01 9.96599734e-01 5.64002872e-01
-5.92197776e-02 -1.59483445e+00 -9.31415856e-01 -5.54505549e-02
-1.96442023e-01 -1.02851439e+00 -1.50532633e-01 2.94792205e-01
-4.05642539e-01 -1.27635169e+00 -5.74874043e-01 -3.33580047e-01
3.64445776e-01 -5.68188071e-01 1.13634300e+00 -2.62454543e-02
-9.54297066e-01 7.67310262e-01 -4.95609134e-01 -8.05619657e-01
2.13680267e-02 -5.44262826e-01 3.90607327e-01 5.47611117e-01
1.06398344e+00 -3.34106207e-01 -5.77590823e-01 2.13416263e-01
-6.37326896e-01 -3.35534900e-01 1.33392349e-01 4.37438488e-01
6.70332909e-01 -7.05777824e-01 6.58331037e-01 -7.11930275e-01
7.53631055e-01 -3.63291919e-01 1.58362925e-01 3.43679249e-01
-4.37784433e-01 -5.73015749e-01 -1.82174861e-01 -5.67208946e-01
-8.97971928e-01 5.37489831e-01 4.28544097e-02 -6.82203352e-01
-5.21937013e-01 5.13508841e-02 -1.78309172e-01 -3.16326708e-01
4.30415273e-01 -5.50635278e-01 3.84278297e-02 -1.15511590e-03
3.94969583e-01 8.94226551e-01 1.68442681e-01 -3.12258780e-01
-9.74094570e-02 5.10158360e-01 1.90937251e-01 -6.39181852e-01
-6.02409542e-01 -6.45279884e-01 -6.89783156e-01 -1.01062250e+00
1.07662547e+00 -9.06717062e-01 -1.16741109e+00 7.69708753e-01
-7.78104484e-01 -4.43072915e-01 -3.60071123e-01 2.59987622e-01
-7.70448387e-01 -1.47308528e-01 -7.15208352e-01 -1.27945364e+00
-4.58987534e-01 -6.50099576e-01 1.42333841e+00 3.62147540e-01
-1.24472213e+00 -5.11243165e-01 6.16959453e-01 2.18475550e-01
1.33153006e-01 9.90608871e-01 3.61991733e-01 -6.16108894e-01
5.72667122e-01 -3.59403998e-01 3.27296317e-01 3.22932273e-01
3.24229270e-01 5.23973346e-01 -1.43158257e+00 -6.82854354e-02
-5.32900132e-02 -1.35751319e+00 6.70096755e-01 3.31170142e-01
1.24564493e+00 -3.13200839e-02 -2.84827352e-01 1.70346662e-01
8.98102343e-01 2.89687425e-01 6.92042947e-01 -2.83331245e-01
3.67966115e-01 1.09145653e+00 7.81038404e-01 7.84624815e-01
-8.84507596e-02 8.75680208e-01 3.30036670e-01 -8.12577382e-02
-1.10548906e-01 6.16320193e-01 5.35827458e-01 2.53650099e-01
-4.85427111e-01 -3.12705845e-01 -8.15305173e-01 2.70804077e-01
-1.82706809e+00 -1.21868718e+00 4.81009036e-02 1.46509945e+00
9.89137411e-01 -5.20369828e-01 3.73635232e-01 1.04686774e-01
5.60824752e-01 3.75418425e-01 -6.42590225e-01 -1.18909717e+00
-1.59478053e-01 5.80501020e-01 -1.06749823e-02 4.03797716e-01
-1.38667476e+00 7.55242646e-01 7.35642529e+00 8.43965948e-01
-1.14901388e+00 2.09964663e-01 9.13867235e-01 -8.88571382e-01
2.32146755e-01 -5.53886592e-01 -4.69505906e-01 2.61742651e-01
1.23354411e+00 1.76986039e-01 3.80290985e-01 7.85210967e-01
2.08476812e-01 -5.30866742e-01 -1.22250044e+00 1.42395115e+00
6.54340506e-01 -4.38814104e-01 -4.25967008e-01 1.16852140e-02
6.50036156e-01 2.63359044e-02 -3.64235416e-02 2.20138848e-01
1.12696819e-01 -1.46355033e+00 3.34066868e-01 5.10724306e-01
1.23846674e+00 -8.01511049e-01 4.60356832e-01 -2.55789220e-01
-1.00849688e+00 2.48258293e-01 2.03857422e-01 -6.73158169e-02
-1.49086202e-02 2.62977213e-01 -1.64844200e-01 -2.94991266e-02
9.61258233e-01 6.42055452e-01 -3.72480214e-01 3.90562296e-01
-9.72908437e-02 6.15078926e-01 -5.88888228e-01 -1.12436272e-01
-3.08698788e-02 -2.34263502e-02 1.76556885e-01 1.28610015e+00
-2.62028817e-02 5.49506485e-01 -7.03751370e-02 6.53789639e-02
-4.01880324e-01 2.38782436e-01 -5.26405454e-01 -2.48437092e-01
-6.52667284e-02 1.86789811e+00 -8.30057263e-01 -3.81570756e-01
-3.05737138e-01 1.27235734e+00 -6.30943030e-02 2.37382799e-01
-8.89949441e-01 1.43584669e-01 1.05556858e+00 -5.55667996e-01
-3.23168159e-01 5.90624571e-01 -1.07727282e-01 -1.00664020e+00
-1.01200037e-01 -1.00105226e+00 7.28218615e-01 -7.78738737e-01
-1.18121278e+00 4.31437224e-01 -4.26879600e-02 -1.09916353e+00
-5.64723492e-01 -6.65252388e-01 -3.89208317e-01 3.76824975e-01
-9.30401802e-01 -1.23594105e+00 -5.43709815e-01 8.79931033e-01
1.52090147e-01 1.39236733e-01 1.41549575e+00 4.91347671e-01
-6.74733400e-01 7.90195763e-01 -4.42158669e-01 -1.16705820e-02
1.18225706e+00 -9.63376462e-01 -4.08921540e-01 1.12231977e-01
2.25506246e-01 5.57145141e-02 5.73434711e-01 -3.94634396e-01
-9.85178590e-01 -8.30156028e-01 8.22051644e-01 -4.47938114e-01
1.67932734e-01 -5.13956368e-01 -4.63809699e-01 7.61392295e-01
3.56930375e-01 3.74811113e-01 1.57454550e+00 2.04271019e-01
-3.91633719e-01 1.84471175e-01 -1.49968874e+00 3.24284673e-01
9.39159214e-01 -6.24496520e-01 -2.02179238e-01 3.49851876e-01
-1.80409491e-01 -4.22850728e-01 -9.03388798e-01 6.90058708e-01
1.09162283e+00 -7.78395236e-01 6.51776373e-01 -1.33979821e+00
3.56430620e-01 1.93657756e-01 -1.80573255e-01 -1.18574917e+00
-6.42104773e-03 -6.82479739e-01 -3.79744351e-01 1.31280994e+00
-9.60177183e-02 2.48430129e-02 1.04203594e+00 1.00631988e+00
5.08864164e-01 -9.10331726e-01 -1.42814171e+00 -4.45497930e-01
-1.76583081e-01 -4.28409576e-01 2.96701998e-01 1.29517078e+00
5.38899660e-01 2.23630562e-01 -6.58459842e-01 -8.60037744e-01
3.41776043e-01 2.16741022e-02 4.49721962e-01 -1.16760826e+00
3.14072013e-01 -7.32436478e-01 -9.12680447e-01 2.81575829e-01
5.33833742e-01 -6.86663628e-01 -7.31743872e-02 -9.48736429e-01
3.80553275e-01 4.39627945e-01 -7.14589119e-01 1.30804253e+00
2.79589798e-02 1.04375899e+00 1.44951835e-01 -4.23911549e-02
-1.06177616e+00 4.35981184e-01 5.11180043e-01 6.03020005e-03
6.56795949e-02 -1.71098128e-01 -2.96285897e-01 9.95111763e-01
6.34742379e-01 -4.11130667e-01 -1.53715730e-01 4.75282252e-01
2.80325294e-01 5.88810444e-02 -4.74050753e-02 -6.10959291e-01
-5.52138425e-02 -4.07916963e-01 5.40791869e-01 -4.60859865e-01
7.69323647e-01 -6.99167788e-01 1.49121448e-01 3.41099083e-01
-5.07630885e-01 -1.63122639e-01 3.73390585e-01 6.19122460e-02
-4.02771145e-01 1.81724995e-01 1.02859008e+00 9.61946771e-02
-8.04115593e-01 2.77979165e-01 -7.46535718e-01 1.66594665e-02
1.66324914e+00 -1.56787172e-01 -2.46710360e-01 -5.90435922e-01
-1.22748721e+00 2.95828313e-01 1.52549773e-01 7.71664858e-01
5.31776428e-01 -1.80021071e+00 -7.35843360e-01 -1.02311671e-01
3.86873275e-01 -8.10052752e-01 3.55874449e-01 1.05737805e+00
8.62678699e-03 1.84464715e-02 -6.63306892e-01 -3.02841365e-01
-2.16713595e+00 2.13651985e-01 4.57158715e-01 -8.91520232e-02
2.01668903e-01 1.13874793e+00 -3.11613828e-01 -3.52498204e-01
3.38068932e-01 2.22986177e-01 -3.23550582e-01 1.14595330e+00
8.18644464e-01 5.14990389e-01 1.32694930e-01 -1.09222412e+00
-1.07486784e+00 4.39526707e-01 4.25654620e-01 -1.98377520e-01
1.32334101e+00 -2.31530741e-02 -5.02307594e-01 8.17116916e-01
1.53641236e+00 -3.74727786e-01 -6.76493883e-01 3.08208942e-01
1.40768349e-01 -1.20550595e-01 -3.75881940e-02 -1.01136768e+00
-1.14563513e+00 8.11363876e-01 1.11979866e+00 -8.61588418e-02
1.45297945e+00 5.59436530e-03 4.45690066e-01 2.25890189e-01
7.52528235e-02 -1.80312777e+00 1.83567315e-01 1.00603290e-02
1.01203084e+00 -1.31396151e+00 2.00417146e-01 -1.97204128e-01
-7.77603686e-01 1.20527470e+00 8.40698063e-01 2.37959892e-01
7.99138248e-01 7.89487779e-01 5.82446516e-01 -4.28685993e-01
-1.03953195e+00 -2.91248292e-01 4.17689174e-01 3.71781051e-01
6.80129886e-01 2.80305505e-01 -5.60846210e-01 5.48447669e-01
2.85295963e-01 4.82937694e-01 1.62621155e-01 1.17379069e+00
5.12355603e-02 -1.17751515e+00 -2.61801094e-01 5.41810930e-01
-7.67975569e-01 4.60001349e-01 -1.32213199e+00 5.53219736e-01
3.79400432e-01 9.45949435e-01 1.67016909e-01 -5.88081062e-01
2.82792270e-01 8.45709622e-01 7.34384418e-01 -4.40672398e-01
-7.75358379e-01 1.53770536e-01 3.86114925e-01 -1.59823775e+00
-1.43791890e+00 -9.73528206e-01 -1.37753832e+00 -1.98730424e-01
4.37518861e-03 -5.08049309e-01 5.50827622e-01 8.56292188e-01
2.79036999e-01 2.03161314e-01 5.62792122e-01 -1.06510425e+00
4.57270518e-02 -1.07842875e+00 -9.15437996e-01 1.00981927e+00
1.58119231e-01 -8.17451358e-01 -4.25168633e-01 1.31395578e-01] | [13.594712257385254, 1.9109392166137695] |
9b83ec71-9959-4b44-8013-2c897e9b31ee | question-answering-classification-for-amharic | null | null | https://aclanthology.org/2022.sigul-1.18 | https://aclanthology.org/2022.sigul-1.18.pdf | Question Answering Classification for Amharic Social Media Community Based Questions | In this work, we build a Question Answering (QA) classification dataset from a social media platform, namely the Telegram public channel called @AskAnythingEthiopia. The channel has more than 78k subscribers and has existed since May 31, 2019. The platform allows asking questions that belong to various domains, like politics, economics, health, education, and so on. Since the questions are posed in a mixed-code, we apply different strategies to pre-process the dataset. Questions are posted in Amharic, English, or Amharic but in a Latin script. As part of the pre-processing tools, we build a Latin to Ethiopic Script transliteration tool. We collect 8k Amharic and 24K transliterated questions and develop deep learning-based questions answering classifiers that attain as high as an F-score of 57.29 in 20 different question classes or categories. The datasets and pre-processing scripts are open-sourced to facilitate further research on the Amharic community-based question answering. | ['Chris Biemann', 'Abinew Ayele', 'Seid Muhie Yimam', 'Tadesse Destaw'] | null | null | null | null | sigul-lrec-2022-6 | ['transliteration'] | ['natural-language-processing'] | [-0.41255668 0.13016453 0.15460913 -0.53807133 -1.1137083 -0.9089743
0.46576712 0.42547458 -0.48009124 0.52881604 0.3977735 -0.897504
-0.17606667 -1.0535517 -0.49040014 0.13276875 0.44017655 0.65695727
0.39656153 -0.87754536 0.18063092 -0.01071811 -1.1194259 0.7478117
1.4482065 1.0781021 -0.23737887 1.1042645 -0.8018955 1.1982305
-0.7515933 -1.0492194 -0.09364472 -0.7457901 -1.7431649 -0.48805863
0.5740298 -0.3056336 -0.28187108 0.51082623 0.294219 -0.21358973
0.36461487 -1.1092783 -1.0955416 0.68885016 0.17806219 0.22098997
0.83117795 -0.10723427 1.342719 -0.75771326 0.44111305 1.0503637
0.5572937 0.15506858 -0.5253302 -0.6045342 -0.30488905 0.47214004
-1.0375327 -0.23423615 0.3772921 -0.44679943 0.45763272 0.54011285
0.3295937 0.84308535 0.28912285 0.48916677 1.2931982 -0.40947264
0.12165459 0.23216198 0.21679391 0.79728204 -0.22561324 -0.93668526
-0.52984464 -0.4384376 0.18036808 -0.1094758 0.04659528 0.5844433
-1.0668532 1.2656616 0.54664814 0.35432023 -0.24831027 -0.09072749
0.23018146 1.1307918 0.48426777 0.7822809 -0.88968164 -0.20195287
-0.44662535 0.33746615 1.3581431 0.97689813 0.9295804 -0.6946858
-0.16208003 1.2459342 0.39206213 0.51427513 0.4403706 -1.0644774
0.662017 0.968714 -0.07220143 -1.043369 -0.35680357 -0.04008901
-0.4371957 -0.9192266 0.85784864 -0.65829384 -0.55813897 1.1366521
0.5657391 -0.47483432 -0.12256386 0.68865997 1.6400632 0.8601878
0.09668082 0.4233746 1.9390177 -1.2054204 -0.72641 0.10271865
0.69182426 -1.2700276 1.2390308 0.06520265 -0.8601849 -0.37956566
-0.29185343 -0.416179 -0.82259697 -0.00818141 0.4942999 1.0163672
-0.9481652 -0.04566606 -0.19842316 -0.79700637 0.15870264 -0.08819507
-0.21340658 -0.15081607 -1.6105188 0.7480417 -0.1490002 -0.43918478
-0.4183714 -0.6658663 -0.6795867 -0.08303321 0.14623336 -0.39150596
1.5246224 -0.9661204 -1.6552848 1.0032461 -0.087963 -0.04922487
0.33135396 -0.09923787 -0.7837172 0.5403481 0.40057445 0.30890587
0.5950184 -0.52775013 -0.5693941 -0.25460458 0.77315587 -0.15344717
-0.47023097 0.60238934 -0.36429897 -0.48848745 0.14397255 -0.8763313
0.14158182 -0.13425127 -0.11353368 -0.45755306 0.640168 -1.4533176
1.199686 -1.6326356 -0.6336772 0.11870626 0.1567457 0.0780821
-0.19651121 1.0770491 0.27256712 0.2503058 -0.07417789 0.30670315
0.0754715 0.1822343 -0.29668787 0.0251877 0.34825507 0.9718608
-0.97455543 -0.6147687 -0.46013924 -0.05060306 -0.7967733 0.23992842
-0.4560434 0.43553558 -0.726267 0.81384885 0.6751087 -0.60428256
0.13782632 0.36043003 -0.03597764 0.85609615 -0.6011909 1.4971889
-0.8903919 0.6479871 0.38484344 -0.6991165 0.8240718 0.41639096
0.45556596 -0.6844988 0.30821544 0.48556888 0.07035507 -0.9800579
0.8038073 0.3831362 -0.24774781 0.7897333 0.252479 -0.33247313
0.19283608 0.440259 1.275372 -0.42450944 -0.01103934 -0.37895444
0.7537111 0.2910808 -0.01249557 0.6508961 -0.37998888 0.4982661
0.5526448 -0.04220397 -0.6772095 -0.7732976 -0.43681952 1.8573313
-0.21644196 -0.47595984 -0.77610886 -0.8416552 -0.05879036 0.27318418
-0.42454717 0.26960868 -0.41912252 -0.14818014 0.6973114 -0.01176888
1.1209912 -0.9521934 0.00913006 0.33858326 -0.9290824 -1.172032
-0.5974392 -0.22502275 -0.4266746 -1.1278881 -0.9521628 -1.1541839
0.32914248 -0.05219657 1.3633499 0.2393853 0.12740803 0.78354967
-0.85010815 -0.23343453 -0.42181846 0.7049928 -0.5627774 0.18639284
0.4490568 -0.0436781 -0.6165419 0.45782408 -0.8794236 -0.41766593
0.12664638 0.45070153 -0.18721704 -0.5467072 1.2374172 -1.1204523
0.86114883 -1.1698285 -0.28462192 0.46379313 -0.16944197 -0.42222938
0.743733 -0.16644256 -1.0354341 -0.5245027 -0.9710087 0.61090654
-0.18841718 0.80677646 0.11323819 -0.18632656 0.9091333 -0.13586158
-0.22496727 -0.47136906 0.38643408 1.4348913 -0.01735528 -0.5782863
0.78865016 0.11610735 -0.7422655 -1.1159228 -0.9918738 -0.74538165
-0.08701873 -0.45645347 1.061501 -0.7784062 -1.0567011 0.5766545
-1.0448214 -0.24198233 0.14309897 0.1512565 0.07685998 0.25076643
-0.9969917 -0.5624288 -0.37735027 -0.6913148 0.47769278 0.44123548
-0.42469284 -1.1534401 0.02558163 1.3372264 0.8128378 -0.27687356
1.201307 -1.0563226 -0.35426617 0.00642195 -0.41770503 0.33246383
0.10884497 -0.07581419 -0.7768122 -0.00698905 -0.2049535 -0.6137684
0.39507467 -0.3527731 1.2032582 -0.558433 0.43108368 -0.00693833
0.95778555 0.02384812 0.6305159 0.51372474 0.2910048 0.96229357
0.20943248 0.353346 1.3143566 0.14690085 0.21484424 0.22935915
0.03223533 -0.3765569 0.32035118 1.4378734 0.46027908 -0.05283044
-1.2793448 0.8446533 -1.2634429 -0.6617165 -0.7777704 1.5587612
1.172896 -0.52613026 0.09235945 -0.16462827 0.46739122 -0.06314127
-0.3489183 -0.67235845 0.11156441 0.74725455 0.15738985 0.48180988
-0.8292713 0.80185866 6.180161 0.62111866 -0.8459477 0.43553665
0.6295423 0.65595204 -0.5239782 0.15606956 -0.5530645 0.5827744
1.3046823 -0.04162572 0.3825178 0.753763 -0.19962908 -0.14010961
-0.43949202 0.65299326 0.0624711 -1.3837658 -0.16065586 -0.352695
0.9890388 0.2599431 0.01112788 0.8074521 0.49428988 -0.86129695
0.3504319 0.38100606 0.4813328 -0.47425905 0.8482744 0.46037868
-0.78559583 -0.25604802 -0.0794466 -0.15798272 -0.11074093 0.42699835
-0.6243379 0.69297725 1.1277215 0.09505987 -0.9073035 0.89152604
-0.20526469 1.3187451 -0.3004924 -0.4362009 0.31835896 -0.34660742
-0.08289644 0.95443237 0.2503736 0.32297596 -0.07296465 0.4582347
-0.5968605 0.7829264 0.05624321 -0.30813947 0.3000803 1.3773446
-0.61813384 -0.24354039 -0.7150442 0.9266005 0.13913399 0.3854688
-0.66592944 -1.0171387 0.31861848 0.42788213 0.041949 -0.18021393
-0.11271685 -1.394694 -0.13499051 -1.4101279 0.7390751 -0.6499675
-1.6780297 0.4392137 -0.3632006 -0.60049 0.02824258 -0.6465297
-0.65942097 0.8145712 -1.6998379 -1.1183918 -0.49578863 0.7258146
0.36884984 -0.20241657 0.76660997 0.8925477 -0.25549147 0.66162103
0.21871853 0.6588928 0.9677767 -1.0567223 0.18511097 0.23342559
-0.10820063 0.8271342 0.04118168 -0.3446905 -1.2926683 -1.0132166
1.815144 -0.6594395 1.078276 -0.32523414 -0.9227097 0.5906229
0.7087765 -0.5454377 1.1738687 0.29107895 -0.30391842 -0.17757683
-1.2681057 0.42962915 0.38679725 -1.011287 -0.6596587 0.7859636
0.7327572 -0.1855429 -1.2953548 -0.16307323 0.33800098 -0.74258566
0.5288459 -0.8470633 0.7263477 0.00811994 -0.14449066 -0.9750994
0.12432884 -0.8008744 0.28031653 1.4666427 0.77931404 -1.2916228
0.70034856 0.54308414 0.02486791 -0.58241874 -0.9799451 -0.26529408
0.75243753 -0.39852962 0.8289621 1.3314893 -0.08469652 0.5949744
0.22066885 -0.12358801 -0.09231297 0.23431148 0.71517235 -1.0543207
-0.17113064 -0.12419105 0.23995315 -1.389909 0.06009171 -1.0916872
-0.3409932 -1.8753319 -0.25110576 -0.54259855 0.26864633 0.44891173
-0.0780475 0.15491055 -0.05778826 0.00974148 -0.70782036 0.48141772
1.4479202 -0.07121471 0.22536536 0.13262919 -1.0334699 0.5286929
0.82651126 -0.40898013 -0.04277915 -0.8424274 0.7761194 0.09777423
0.12781811 -0.6356801 0.14719781 -0.19269368 -0.06085368 -0.44084224
-0.01532517 -0.681011 -0.47785386 0.39541712 -0.6612353 0.22304034
-0.29587325 -0.02855147 -0.44871825 -0.4875569 0.66682684 -0.18366762
-0.30550775 0.25546846 -0.95112884 0.8243171 0.6712029 0.3101913
-0.6645064 -1.1722169 -0.50551933 0.6776909 -0.02800899 0.57018775
0.23180082 -1.1895729 -0.97241294 -0.06724216 0.4197547 -0.5375455
0.40482548 0.682784 -1.1800532 0.5344632 -0.01388264 -0.18728073
-0.69768447 -0.31028315 0.26639867 -0.18760617 0.15885794 0.89000016
-0.60711443 -1.599177 -0.23373431 -0.31361854 -0.5101356 0.41265827
0.3253401 0.5223702 0.27834705 -0.47875324 -0.21757706 0.3520957
0.09164466 -0.18196478 1.0054985 -0.15445064 -0.6200208 0.0924416
1.4336919 0.27813974 -0.1748802 -0.26390448 0.10606794 -0.2314484
-0.26724544 -0.9238491 -0.6924907 0.5977901 0.2382777 0.82906383
0.8878868 0.25284678 1.3493047 0.84642303 0.06716902 -1.39266
0.26501882 1.445303 0.9047345 -1.3184115 -0.49484357 -0.25764796
-0.40724406 0.95674247 0.4812789 0.13037331 1.0526167 -0.5269972
0.70148337 -0.17821223 -0.60406566 -0.3854548 0.16104518 0.37553218
0.7857728 -0.11745988 -0.48945194 0.71553165 -0.920226 -0.26715484
0.6893974 0.92272127 -0.41997638 -1.0833201 -0.5050513 0.7513364
-1.0059345 -0.16527751 -0.57704103 0.49560285 0.03399631 1.7503692
-0.02551341 -0.24401416 0.20021875 0.26289946 -0.07560103 -0.6963193
-1.4056135 -0.76557386 0.3756633 -0.02523093 -0.04053527 -0.35821322
-1.0026771 -0.64967054 -0.27190086 0.7259655 0.837595 0.9806493
0.48513964 0.15959437 0.7930401 0.35175347 -0.35007873 -1.1247603
-0.10647435 0.3748829 0.16447347 0.05402577 -0.297786 -0.04805693] | [11.421598434448242, 8.061500549316406] |
6a468f87-c475-4732-ae7f-3856e940a757 | synthetic-point-cloud-generation-for-class | 2205.03738 | null | https://arxiv.org/abs/2205.03738v1 | https://arxiv.org/pdf/2205.03738v1.pdf | Synthetic Point Cloud Generation for Class Segmentation Applications | Maintenance of industrial facilities is a growing hazard due to the cumbersome process needed to identify infrastructure degradation. Digital Twins have the potential to improve maintenance by monitoring the continuous digital representation of infrastructure. However, the time needed to map the existing geometry makes their use prohibitive. We previously developed class segmentation algorithms to automate digital twinning, however a vast amount of annotated point clouds is needed. Currently, synthetic data generation for automated segmentation is non-existent. We used Helios++ to automatically segment point clouds from 3D models. Our research has the potential to pave the ground for efficient industrial class segmentation. | ['Dr. Eva Agapaki', 'Sandeep Kamal Jalui', 'Avi Rajesh Jain', 'Maria Gonzalez Stefanelli'] | 2022-05-07 | null | null | null | null | ['point-cloud-generation'] | ['computer-vision'] | [ 2.74108112e-01 8.94919634e-02 3.26944232e-01 -1.89273074e-01
-5.60730577e-01 -5.76448500e-01 4.73621666e-01 4.59605426e-01
2.11638838e-01 6.35868609e-01 -7.19613314e-01 -6.19690895e-01
-5.41276038e-02 -1.25382936e+00 -4.91856605e-01 -3.86655122e-01
-2.31804345e-02 1.11161625e+00 5.34887731e-01 -1.37778565e-01
5.56746364e-01 1.04211712e+00 -1.65319431e+00 -2.23650977e-01
1.02172589e+00 9.89550352e-01 6.07302010e-01 5.68282843e-01
-5.53035319e-01 1.28275249e-02 -6.91539526e-01 3.77266444e-02
3.94327134e-01 -2.44473726e-01 -7.52665877e-01 5.97769737e-01
1.18492961e-01 1.46123683e-02 1.85749203e-01 7.81742156e-01
9.64125991e-02 -1.16031066e-01 5.00979543e-01 -1.45034838e+00
4.58607078e-01 -2.44923979e-01 -3.73196870e-01 -9.90251228e-02
3.11690699e-02 1.15122698e-01 2.82405794e-01 -5.52097380e-01
7.20552623e-01 8.41817319e-01 7.04065681e-01 -3.60741884e-01
-1.11651897e+00 -5.72122455e-01 -3.23153228e-01 9.00542513e-02
-1.39457917e+00 -6.34446740e-02 9.07472253e-01 -5.87851048e-01
9.90250349e-01 3.92904609e-01 1.22899687e+00 1.11721300e-01
4.55895998e-02 7.46546686e-02 1.06961858e+00 -7.00548828e-01
2.99503624e-01 6.49774671e-02 -1.90791741e-01 6.93423569e-01
2.46841460e-01 -9.42264274e-02 -1.26229569e-01 1.70663465e-02
1.18289995e+00 -1.50334314e-01 -5.92563078e-02 -6.48768425e-01
-1.09528875e+00 4.22082514e-01 2.13056982e-01 3.93623561e-01
-3.78740162e-01 1.77736774e-01 2.44106919e-01 3.04156542e-01
6.18107021e-01 6.80496931e-01 -4.65765446e-01 -6.11478508e-01
-1.17577922e+00 2.79312313e-01 4.35024351e-01 1.16982090e+00
1.18976903e+00 -8.67889822e-02 7.06522644e-01 4.16096866e-01
5.38160019e-02 2.58272529e-01 -2.50168443e-01 -1.47275090e+00
3.43005896e-01 9.10635591e-01 2.50120401e-01 -8.97627771e-01
-1.76035225e-01 -1.01193823e-01 -2.44531229e-01 6.61279142e-01
3.89612466e-01 1.55779526e-01 -1.00198865e+00 3.65809739e-01
4.90987867e-01 -8.58460963e-02 -3.05771500e-01 3.26476216e-01
-1.46692684e-02 5.68522632e-01 -8.06870386e-02 1.68924823e-01
9.47914481e-01 -2.87153810e-01 -5.09142697e-01 -1.09617367e-01
8.05350780e-01 -9.16431248e-01 7.89427042e-01 5.91613293e-01
-1.10549462e+00 -2.87817806e-01 -1.08756995e+00 3.57535511e-01
-5.26182652e-01 -1.35400325e-01 7.49620259e-01 8.46143842e-01
-6.87104464e-01 9.78594124e-01 -1.06403530e+00 -4.99604166e-01
8.11588407e-01 3.56286198e-01 -2.83275068e-01 -1.20919473e-01
-7.40479469e-01 1.17053688e+00 4.39067125e-01 4.22675498e-02
-5.37695467e-01 -7.60446966e-01 -6.51930630e-01 -2.50024348e-01
1.91947594e-01 -3.52819681e-01 1.28448462e+00 -4.52819705e-01
-1.13327694e+00 7.88414359e-01 2.49875963e-01 -2.71650523e-01
6.55641973e-01 1.16390653e-01 -1.76594615e-01 4.06051517e-01
1.76631376e-01 4.34531242e-01 2.16413990e-01 -1.51570117e+00
-7.08331287e-01 -2.90051103e-01 -2.39570931e-01 -1.15307808e-01
3.68012786e-02 -7.56229386e-02 -2.85185069e-01 -2.35341370e-01
4.20106083e-01 -9.98986542e-01 -4.30422962e-01 3.87776718e-02
-2.13306874e-01 1.24807633e-03 1.27794731e+00 -9.81257975e-01
6.33695841e-01 -1.81895995e+00 -3.64082366e-01 4.75257039e-01
-1.66901991e-01 1.29045486e-01 5.85021019e-01 7.16294289e-01
-1.46716693e-02 2.08724678e-01 -5.25631189e-01 -1.10797055e-01
-3.18125710e-02 3.22714061e-01 -7.19329854e-03 5.72664917e-01
1.61411837e-02 3.96676242e-01 -8.54238272e-01 -7.64811933e-01
9.29592907e-01 2.78996378e-01 -9.95410010e-02 -1.45684019e-01
-4.39546198e-01 4.05046582e-01 -5.09262264e-01 8.96006525e-01
7.90584922e-01 9.37168673e-02 1.83765933e-01 -2.31177043e-02
-8.35464478e-01 3.88986498e-01 -1.20625842e+00 1.88171077e+00
-6.42632008e-01 5.71402073e-01 3.75280708e-01 -1.20600259e+00
1.17913079e+00 3.04011673e-01 9.10023510e-01 -5.31478167e-01
1.19685203e-01 3.43137234e-01 -4.97954637e-01 -4.15531516e-01
5.48250318e-01 -6.00684285e-01 -1.83263654e-03 1.37524188e-01
-3.48097920e-01 -1.42561245e+00 1.99927792e-01 6.58128932e-02
8.16910267e-01 5.59305429e-01 -2.02207685e-01 -3.66589248e-01
7.90111125e-02 9.51281488e-01 3.70205224e-01 -2.08100285e-02
2.40417749e-01 6.58062458e-01 2.63186067e-01 -3.65577817e-01
-1.28054464e+00 -9.96755183e-01 -4.27855998e-01 -2.80879922e-02
3.26544881e-01 -2.67171830e-01 -7.09938407e-01 -2.65852004e-01
-2.16538776e-02 1.16912007e+00 1.13411196e-01 1.66158080e-01
-4.07480657e-01 -6.73759222e-01 6.30674809e-02 3.28656763e-01
4.97174233e-01 -6.49681628e-01 -8.27057242e-01 4.46314335e-01
-9.54448283e-02 -9.23714161e-01 3.40390623e-01 1.13010205e-01
-1.29684949e+00 -1.35355353e+00 -3.14377338e-01 -7.15208232e-01
9.09172118e-01 4.40672100e-01 1.08040535e+00 3.13988298e-01
-6.94008470e-01 5.39226115e-01 -3.67964119e-01 -9.76790547e-01
-4.77405071e-01 -1.35755718e-01 -2.87902594e-01 -8.13013852e-01
1.64819628e-01 -7.01939285e-01 -5.02961755e-01 6.22974098e-01
-7.53471494e-01 1.87338665e-01 2.63584554e-01 -9.87683386e-02
6.95230126e-01 8.73982787e-01 2.95947313e-01 -6.45865917e-01
1.04345232e-01 -3.27721477e-01 -9.22526658e-01 -1.62827242e-02
-7.35939741e-01 -4.23903197e-01 6.20147884e-02 1.55877978e-01
-1.13559568e+00 3.82667154e-01 -1.30218342e-01 -2.61545718e-01
-4.89816368e-01 3.81410331e-01 -1.67225465e-01 -3.92067544e-02
1.60663307e-01 -2.75624335e-01 1.81154296e-01 -7.30247974e-01
9.52168405e-02 6.71606421e-01 6.23947620e-01 -7.18626738e-01
1.09793139e+00 7.03485072e-01 2.48575971e-01 -1.24010265e+00
-2.06256911e-01 -5.64809144e-01 -1.16672790e+00 -6.87407911e-01
8.46642017e-01 -4.95766193e-01 -1.27408132e-01 1.32425368e-01
-1.21304762e+00 -3.99201065e-01 -4.67811227e-01 3.21589500e-01
-6.02809191e-01 5.83004296e-01 -3.73862460e-02 -7.72561789e-01
9.47202593e-02 -1.05701268e+00 1.02020550e+00 -2.44535297e-01
-4.46462363e-01 -6.97197974e-01 1.84281275e-01 5.09720325e-01
7.29780942e-02 8.55203807e-01 9.76808667e-01 2.35707015e-01
-1.00430012e+00 -6.72374189e-01 1.16101474e-01 2.49361113e-01
3.64480585e-01 5.49100816e-01 -7.03627586e-01 1.40456632e-01
-5.10423705e-02 1.11527771e-01 1.45682916e-01 1.38445914e-01
1.23641551e+00 3.77589136e-01 -7.39767730e-01 2.61568162e-03
1.42400634e+00 3.77693623e-01 9.27767277e-01 7.06167042e-01
3.85836840e-01 1.02667165e+00 1.13663483e+00 3.28716755e-01
1.17771201e-01 7.60889232e-01 7.40944743e-01 -3.68304402e-01
8.76136199e-02 8.20037872e-02 -4.84666318e-01 6.38268232e-01
-3.92547250e-01 3.06318909e-01 -1.43324041e+00 8.06521118e-01
-1.38797510e+00 -1.03156686e+00 -9.58072484e-01 2.38573217e+00
4.39999163e-01 4.23412025e-01 7.78242424e-02 6.51249290e-01
6.46246016e-01 -4.80130225e-01 1.80138331e-02 -2.17780277e-01
4.15225625e-01 4.44902033e-01 6.39621317e-01 2.78856665e-01
-7.31983960e-01 6.07331216e-01 5.93802977e+00 4.44407821e-01
-5.19605219e-01 -6.69163689e-02 1.18617602e-01 1.54403299e-01
-7.58073181e-02 4.78369057e-01 -2.69857913e-01 3.33427936e-01
9.84369099e-01 -1.77813798e-01 1.75931752e-01 8.70782673e-01
4.87803966e-01 -6.40328109e-01 -5.38351655e-01 6.98433161e-01
-4.09164727e-01 -1.40280390e+00 -5.22081852e-01 4.20487940e-01
6.17513895e-01 2.58497559e-02 -6.66401982e-01 -1.69009641e-01
3.86788934e-01 -4.80008274e-01 7.95054913e-01 5.75298071e-01
9.33713675e-01 -9.65931535e-01 4.08684522e-01 4.43666577e-01
-1.25858533e+00 2.66072184e-01 -1.69841856e-01 -7.77840614e-02
6.32733643e-01 8.92689049e-01 -1.36076009e+00 8.04801464e-01
7.59987831e-01 1.81117892e-01 -4.19796348e-01 1.48716474e+00
1.86271414e-01 3.62122566e-01 -6.65895104e-01 5.61907589e-01
1.02634951e-01 -7.74731100e-01 2.89490223e-01 7.61039436e-01
6.69823349e-01 -2.74054319e-01 2.38275677e-01 7.74008512e-01
3.39870453e-01 -3.26422036e-01 -7.29160726e-01 -1.97226420e-01
4.56338167e-01 1.13237822e+00 -1.38293099e+00 -3.10287595e-01
-3.94238561e-01 7.01404154e-01 -4.07237470e-01 -2.90372521e-01
-6.58700705e-01 -5.24707019e-01 7.33125865e-01 8.11454654e-01
3.71947326e-02 -8.87321234e-01 -6.22901440e-01 -3.45194548e-01
-1.94114015e-01 -3.24969411e-01 -3.01110186e-02 -9.41479146e-01
-6.44141793e-01 1.46953702e-01 4.29524332e-01 -1.30730808e+00
-1.33593798e-01 -3.93099606e-01 -6.82876527e-01 7.06736386e-01
-1.20671999e+00 -1.11061716e+00 -5.86228013e-01 -7.53065920e-04
6.30080700e-01 3.78978550e-01 7.98351467e-01 3.25747788e-01
-2.81434745e-01 -5.03756285e-01 1.47438049e-01 -3.50987673e-01
1.17247060e-01 -1.28234529e+00 5.06440163e-01 5.82006216e-01
-2.51204669e-01 2.89746970e-01 1.03016829e+00 -1.13718188e+00
-1.17668009e+00 -1.14562869e+00 6.42254174e-01 -6.01557374e-01
6.62019968e-01 -2.76663899e-01 -8.60599518e-01 6.86843157e-01
1.56087549e-02 -5.31603634e-01 4.02396739e-01 -1.92608893e-01
5.05150735e-01 3.51755060e-02 -1.27594960e+00 2.52859533e-01
9.00241196e-01 -3.25994283e-01 -5.46517730e-01 7.34730542e-01
4.07114953e-01 -1.90625086e-01 -1.18784308e+00 3.03062916e-01
2.79131323e-01 -8.07018161e-01 1.02510607e+00 1.77146703e-01
2.71026418e-02 -4.63864595e-01 1.83246002e-01 -1.22531629e+00
1.39635772e-01 -6.32853806e-01 5.53068578e-01 1.53608119e+00
2.93255717e-01 -4.65373218e-01 1.13853407e+00 9.43314075e-01
-6.81934655e-01 -2.49106929e-01 -1.05123198e+00 -1.02650404e+00
-2.26334501e-02 -8.35791469e-01 8.90939295e-01 1.06890190e+00
-1.26718387e-01 -2.82690912e-01 5.01007140e-01 3.63003522e-01
7.05683410e-01 2.03007072e-01 8.92213166e-01 -1.96945632e+00
3.54905218e-01 -2.32630864e-01 -5.16270459e-01 -1.75971925e-01
-1.05022125e-01 -7.36092567e-01 -1.24483727e-01 -2.09978867e+00
-5.72083950e-01 -1.10911858e+00 5.58065116e-01 1.90215856e-01
5.92370093e-01 2.76637524e-01 -5.12636974e-02 1.89938635e-01
3.89653780e-02 3.77425849e-01 1.20016646e+00 -7.73254856e-02
-2.29084700e-01 1.43361837e-01 -5.86830154e-02 7.07776010e-01
1.18942094e+00 -4.99105722e-01 -3.47794890e-01 -3.34177464e-01
2.12988421e-01 -9.64732468e-02 4.20079350e-01 -1.44916081e+00
-5.16155288e-02 -2.04837531e-01 3.27523798e-01 -1.15076649e+00
6.58031464e-01 -1.33765173e+00 7.66185403e-01 4.00718927e-01
5.62093556e-01 1.41975194e-01 3.09137821e-01 2.44858235e-01
-7.09921643e-02 -5.87306798e-01 7.30951965e-01 -6.66133106e-01
-5.62694192e-01 1.07293546e-01 -4.40702051e-01 -5.52477062e-01
1.36190820e+00 -7.79783785e-01 6.69540241e-02 9.28514674e-02
-4.60222840e-01 2.19496891e-01 1.31306565e+00 -2.73494795e-02
4.31404471e-01 -1.01314950e+00 -1.21773772e-01 -7.69113004e-02
-8.15945417e-02 5.52092075e-01 4.34364863e-02 4.33679551e-01
-1.29843235e+00 3.52288365e-01 -3.34211975e-01 -5.25790274e-01
-1.18980348e+00 5.71004987e-01 2.75459319e-01 2.89499104e-01
-1.11976910e+00 4.22636181e-01 -5.55823147e-01 -4.49230343e-01
-2.14628667e-01 -3.43451798e-01 2.39415511e-01 8.19836706e-02
6.62631392e-02 9.91078436e-01 6.34474277e-01 -4.82839614e-01
-9.16885361e-02 5.19394755e-01 5.33947349e-01 -1.14762351e-01
1.68444371e+00 -4.29507792e-02 -2.22913980e-01 3.80976170e-01
7.75207520e-01 -3.36962670e-01 -1.21668231e+00 4.84055102e-01
3.33367676e-01 -7.91779339e-01 4.85450387e-01 -4.53980714e-01
-7.18934894e-01 9.81959283e-01 5.91235161e-01 5.28763890e-01
8.55592251e-01 8.98251217e-03 8.72942507e-01 8.09627920e-02
8.53714049e-01 -1.57292080e+00 -3.80437732e-01 -1.58846036e-01
7.80876935e-01 -9.09043431e-01 3.15826416e-01 -1.05066836e+00
-2.17791364e-01 1.16143751e+00 3.82930100e-01 3.06743890e-01
5.87053061e-01 3.55753452e-01 -2.04121456e-01 -8.33970010e-01
-1.36663705e-01 -1.94232821e-01 -5.75008690e-01 9.61005569e-01
1.42692596e-01 2.66555268e-02 5.43301227e-03 -4.52384919e-01
-2.99411029e-01 8.94440860e-02 5.81119359e-01 1.46085536e+00
-7.42994070e-01 -1.38731837e+00 -1.04493260e+00 5.64629793e-01
7.60008618e-02 4.02152717e-01 -3.01385552e-01 1.04268038e+00
2.95803368e-01 1.00342381e+00 3.98784399e-01 -5.37795853e-03
5.42979181e-01 1.98451146e-01 6.93148196e-01 -6.98763013e-01
-1.17380075e-01 3.98534909e-02 5.08813500e-01 -2.33878195e-01
-2.73382396e-01 -1.14807463e+00 -1.40568686e+00 -1.49082422e-01
-4.61892575e-01 2.43969470e-01 1.36761594e+00 6.95861876e-01
1.43365115e-01 4.24643397e-01 5.91726124e-01 -1.32692802e+00
2.25997455e-02 -8.12500000e-01 -8.45795393e-01 4.51089293e-02
-3.80534887e-01 -1.08644700e+00 -1.52303770e-01 3.03456396e-01] | [8.376724243164062, -2.5839271545410156] |
3dcd3a75-ea8f-4210-903b-d97824cc9013 | spin-structure-preserving-inner-offset | 2005.13117 | null | https://arxiv.org/abs/2005.13117v4 | https://arxiv.org/pdf/2005.13117v4.pdf | SPIN: Structure-Preserving Inner Offset Network for Scene Text Recognition | Arbitrary text appearance poses a great challenge in scene text recognition tasks. Existing works mostly handle with the problem in consideration of the shape distortion, including perspective distortions, line curvature or other style variations. Therefore, methods based on spatial transformers are extensively studied. However, chromatic difficulties in complex scenes have not been paid much attention on. In this work, we introduce a new learnable geometric-unrelated module, the Structure-Preserving Inner Offset Network (SPIN), which allows the color manipulation of source data within the network. This differentiable module can be inserted before any recognition architecture to ease the downstream tasks, giving neural networks the ability to actively transform input intensity rather than the existing spatial rectification. It can also serve as a complementary module to known spatial transformations and work in both independent and collaborative ways with them. Extensive experiments show that the use of SPIN results in a significant improvement on multiple text recognition benchmarks compared to the state-of-the-arts. | ['ShiLiang Pu', 'Zhanzhan Cheng', 'Yunlu Xu', 'Yi Niu', 'Fei Wu', 'Futai Zou', 'Chengwei Zhang'] | 2020-05-27 | null | null | null | null | ['color-manipulation'] | ['computer-vision'] | [ 4.46816951e-01 -2.22798377e-01 4.19022422e-03 -4.71484005e-01
-2.11783707e-01 -6.58669949e-01 8.95830989e-01 -2.81007141e-01
-4.74334955e-01 3.24979663e-01 -3.56096216e-02 -1.74281597e-01
1.62993819e-01 -5.20943522e-01 -6.71620667e-01 -9.27891374e-01
6.83181584e-01 2.14450821e-01 2.85210758e-01 -3.02828044e-01
4.59746718e-01 8.27864826e-01 -1.15920341e+00 2.62699336e-01
9.51106131e-01 7.78539181e-01 2.16535642e-03 3.50623935e-01
-5.14517844e-01 8.10499430e-01 -4.84441847e-01 -4.78304535e-01
4.50265706e-01 -3.04210067e-01 -4.79666412e-01 2.12688744e-01
8.21758151e-01 -2.71367639e-01 -5.26359260e-01 9.64801908e-01
5.19564509e-01 1.82629749e-01 5.90204597e-01 -1.08971512e+00
-9.60930645e-01 5.71961761e-01 -8.56061816e-01 -8.43603257e-03
1.59817442e-01 3.16554010e-02 7.94299662e-01 -1.06540692e+00
3.87573093e-01 1.12008083e+00 6.15645945e-01 4.73677754e-01
-1.32262206e+00 -4.49323863e-01 4.55957353e-01 3.24551642e-01
-1.29321158e+00 -4.28521395e-01 1.34376097e+00 -1.71361744e-01
7.35228062e-01 4.41820234e-01 3.95982951e-01 1.03710246e+00
-1.16545416e-01 1.04990304e+00 9.40886796e-01 -5.42281330e-01
1.93357598e-02 7.44288862e-02 1.15916967e-01 6.13596857e-01
8.00081640e-02 -2.73109853e-01 -4.59282964e-01 3.87133628e-01
9.22722280e-01 2.25782692e-01 -5.49335778e-01 -7.60311306e-01
-1.08079076e+00 5.05724430e-01 8.82285833e-01 4.22608227e-01
1.24093972e-01 2.07148716e-01 2.16460481e-01 2.50403672e-01
4.59093988e-01 5.45343518e-01 -3.78588140e-01 -1.39903016e-02
-9.80129838e-01 -1.50473759e-01 5.77785432e-01 8.00516844e-01
5.66060901e-01 4.22337115e-01 -2.54385054e-01 1.00356972e+00
1.59919988e-02 4.08855110e-01 3.39502424e-01 -5.20418704e-01
6.30781412e-01 1.01710033e+00 -2.93451756e-01 -1.14565623e+00
-5.60590565e-01 -3.76677215e-01 -1.15352464e+00 4.12233651e-01
8.10121715e-01 5.96276447e-02 -9.87678289e-01 1.46139812e+00
2.39103541e-01 1.33932620e-01 -2.30596438e-01 1.03740084e+00
7.31774092e-01 4.78111356e-01 -4.59052652e-01 1.79014131e-01
1.06236327e+00 -1.33842456e+00 -5.93222201e-01 -1.46135718e-01
4.15632069e-01 -1.03657281e+00 1.27151334e+00 5.34726620e-01
-1.06327736e+00 -5.34817636e-01 -1.07641542e+00 -5.34038961e-01
-6.35319650e-01 3.53545099e-01 5.77573895e-01 6.16894364e-01
-1.17595017e+00 5.30309558e-01 -7.27784336e-01 -2.93944895e-01
4.46920365e-01 3.02431494e-01 -2.69858539e-01 -1.64551109e-01
-6.92850590e-01 7.23313510e-01 6.28783107e-02 2.53394872e-01
-8.23468193e-02 -7.13853121e-01 -6.61346972e-01 8.90567377e-02
4.55940247e-01 -6.09695733e-01 8.51766586e-01 -1.52164495e+00
-2.00596476e+00 7.87528574e-01 -9.46809873e-02 3.37015353e-02
9.97701228e-01 -2.76994914e-01 -1.31051227e-01 -2.53375210e-02
-4.60298568e-01 6.42260313e-01 1.40343857e+00 -1.22010446e+00
-2.86022156e-01 -4.78003085e-01 1.59486726e-01 4.11074013e-01
-7.04252839e-01 -1.47163868e-01 -9.30933475e-01 -1.11351871e+00
1.95564747e-01 -9.59193826e-01 3.05300765e-02 5.63381433e-01
-5.30081153e-01 -1.29603088e-01 1.21455526e+00 -5.08118391e-01
8.51989448e-01 -2.21585250e+00 3.56552511e-01 6.25414401e-02
5.14098033e-02 3.43643457e-01 -3.23419362e-01 2.34273091e-01
-2.80169457e-01 -2.23371964e-02 -1.72388896e-01 -5.15627921e-01
6.71307221e-02 -2.81461067e-02 -2.69665718e-01 5.39225340e-01
2.45670617e-01 1.08425009e+00 -5.55830896e-01 -9.17788893e-02
4.25280154e-01 7.09561050e-01 -5.43803930e-01 -9.94339213e-02
-2.46602148e-01 3.47857893e-01 -2.03538448e-01 4.20791030e-01
9.95301425e-01 -2.65362829e-01 -5.11022620e-02 -3.77114713e-01
-2.47049809e-01 4.76418138e-02 -1.21521580e+00 1.94785333e+00
-3.31119388e-01 7.63439953e-01 6.13806210e-02 -9.33114290e-01
8.73948276e-01 -2.73022708e-02 2.22390473e-01 -8.14282298e-01
2.21113309e-01 -1.25541121e-01 -2.85429582e-02 -1.69013530e-01
6.02789164e-01 2.99577922e-01 3.18392813e-01 4.58236128e-01
-3.19648266e-01 -6.65949658e-02 -1.19215049e-01 3.21839415e-02
8.58740568e-01 3.86948705e-01 -5.36404178e-03 -2.38207340e-01
6.98014498e-01 -2.49424338e-01 2.14418054e-01 6.54617906e-01
6.41265959e-02 8.78159702e-01 3.40765297e-01 -4.70238864e-01
-1.13051224e+00 -9.30965245e-01 -6.82772845e-02 1.22424161e+00
3.90841603e-01 -1.67093813e-01 -7.25010514e-01 -7.99685836e-01
-8.11774507e-02 4.13828164e-01 -6.55522466e-01 -1.09978989e-01
-7.91078687e-01 -5.48954785e-01 5.39149880e-01 8.47985744e-01
9.09713209e-01 -7.44017363e-01 -1.64746612e-01 -1.87482446e-01
1.56151175e-01 -1.07013381e+00 -9.57770586e-01 2.32660756e-01
-8.25224221e-01 -7.03443170e-01 -9.52876508e-01 -7.55303323e-01
8.98749590e-01 6.79847479e-01 5.56783080e-01 9.24602672e-02
-3.15681905e-01 2.61468232e-01 -3.80352914e-01 -1.72247961e-01
2.56630350e-02 2.63892353e-01 -3.17871302e-01 3.89983684e-01
1.92489788e-01 -5.35331070e-01 -6.37253881e-01 4.53666300e-01
-1.12477171e+00 4.24286604e-01 4.42380279e-01 9.30103898e-01
1.65158376e-01 -1.91078022e-01 1.98275551e-01 -8.44020903e-01
4.15627331e-01 2.70519346e-01 -6.71668768e-01 3.08056027e-01
-4.78049397e-01 3.22394043e-01 1.02307045e+00 -4.79253978e-01
-1.23786891e+00 3.19651365e-01 4.31585461e-02 -5.59332728e-01
-2.15314969e-01 2.66856372e-01 -3.49872112e-01 -4.40006942e-01
4.88095254e-01 3.33981574e-01 -8.26649144e-02 -6.14887178e-01
6.41771674e-01 4.75369036e-01 4.12696451e-01 -3.43223572e-01
1.25569117e+00 7.20710337e-01 8.52827877e-02 -1.10520899e+00
-7.36054778e-01 -3.91447455e-01 -1.03428280e+00 7.05292728e-03
6.65267169e-01 -5.95087647e-01 -5.07195175e-01 7.99572647e-01
-1.21806526e+00 -4.35064286e-01 -2.14544639e-01 9.79556330e-03
-2.22352639e-01 5.60111284e-01 -5.28172135e-01 -4.19628114e-01
-2.55302101e-01 -1.04439354e+00 1.06805503e+00 3.97038996e-01
1.85713500e-01 -1.10357380e+00 -2.55424649e-01 3.22474301e-01
6.28356755e-01 -1.03617638e-01 9.13495898e-01 -4.54477340e-01
-8.91383111e-01 -8.67008045e-02 -6.37161553e-01 2.18744546e-01
4.01926637e-01 1.95653915e-01 -1.24303675e+00 -4.05586958e-01
-8.78520459e-02 -5.48387319e-02 1.11968160e+00 1.61927372e-01
1.36774802e+00 -2.92406917e-01 3.77691463e-02 1.07746065e+00
1.27064526e+00 4.17778455e-02 8.26801717e-01 4.11416560e-01
1.28697348e+00 4.84684944e-01 4.29549366e-02 3.78544748e-01
1.61026031e-01 1.02442729e+00 3.74061257e-01 -6.80664837e-01
-3.21540922e-01 -1.15951911e-01 2.36758620e-01 7.40530312e-01
-6.71571046e-02 -2.81046510e-01 -7.75115252e-01 3.09069138e-02
-1.89934921e+00 -8.60453367e-01 -2.52328128e-01 2.14752221e+00
7.23995030e-01 -2.82180887e-02 -9.28208381e-02 2.51677513e-01
7.44787574e-01 3.79971474e-01 -7.38025069e-01 -4.79149520e-01
-3.87813330e-01 6.69217035e-02 4.87183809e-01 4.14859802e-01
-1.20045006e+00 1.02072895e+00 5.71820593e+00 8.42914701e-01
-1.56249487e+00 -1.85697198e-01 5.94077885e-01 -3.95911979e-03
-2.57590353e-01 -2.08644107e-01 -6.04144990e-01 2.11562142e-01
1.05732657e-01 1.55905649e-01 7.18342721e-01 6.73152745e-01
1.89155057e-01 2.21334070e-01 -1.15056443e+00 1.20735812e+00
5.05815625e-01 -1.16426003e+00 2.54388154e-01 -1.36403769e-01
9.14709806e-01 -1.32908478e-01 3.57668549e-01 -4.68018875e-02
-2.39973888e-02 -8.91000509e-01 7.08624721e-01 6.56655967e-01
9.73428428e-01 -7.55038023e-01 3.96260917e-01 2.49278143e-01
-1.25560939e+00 1.17568828e-01 -4.13922429e-01 -5.70036471e-03
-1.22519225e-01 5.52711546e-01 -5.77330709e-01 5.44850051e-01
4.26706761e-01 1.02708554e+00 -8.85122299e-01 1.02896059e+00
-3.73222440e-01 3.60877275e-01 -4.23837513e-01 -5.98203167e-02
2.49000430e-01 -4.88325894e-01 3.65738869e-01 1.19657195e+00
1.45599591e-02 -2.87470073e-01 -2.60279588e-02 9.03449595e-01
-4.26143646e-01 3.00348431e-01 -6.03238881e-01 1.15986995e-01
1.00844540e-02 1.40030837e+00 -8.36854160e-01 -7.85827413e-02
-5.86683750e-01 1.59407568e+00 3.79652888e-01 5.51644802e-01
-7.86987841e-01 -5.60520828e-01 4.06057745e-01 5.12039056e-03
5.01035154e-01 -2.23282784e-01 -6.49853170e-01 -1.38738823e+00
3.14419925e-01 -8.48248363e-01 6.32417351e-02 -8.36610496e-01
-1.38736928e+00 3.81026685e-01 -5.33672392e-01 -1.21393406e+00
2.69808173e-01 -9.28365827e-01 -8.34495962e-01 7.77778327e-01
-1.72175407e+00 -1.38809204e+00 -5.97477078e-01 7.87559211e-01
6.24212027e-01 -4.57965247e-02 4.21864003e-01 2.24925652e-01
-8.36962640e-01 1.02322793e+00 4.73033637e-01 1.78764999e-01
1.04519451e+00 -1.36479402e+00 3.65013838e-01 9.38193560e-01
2.10571617e-01 4.84983712e-01 2.62482136e-01 -2.66151190e-01
-1.71819973e+00 -1.14409053e+00 5.11455894e-01 -4.65280354e-01
6.54916942e-01 -6.88698232e-01 -1.12988365e+00 4.53557670e-01
4.25210297e-01 4.24185805e-02 2.38714442e-01 -2.66110078e-02
-6.75647140e-01 -3.55616570e-01 -7.66620219e-01 8.39938819e-01
1.07082748e+00 -6.35661244e-01 -2.88422823e-01 9.02082548e-02
4.76485938e-01 -4.60838646e-01 -3.70222151e-01 1.50503099e-01
4.26554143e-01 -9.12643135e-01 9.71755505e-01 -3.87709916e-01
5.28186083e-01 -4.27062213e-01 1.81476027e-01 -1.25022161e+00
-4.05680209e-01 -6.28347874e-01 1.97703570e-01 1.31681657e+00
3.90646935e-01 -6.14814103e-01 8.87215436e-01 6.38749301e-01
-1.69961333e-01 -4.58864748e-01 -8.61097813e-01 -6.37379169e-01
3.36535156e-01 -1.45010069e-01 3.71824682e-01 1.31834996e+00
-1.13508023e-01 4.92017567e-01 -3.90308738e-01 -6.17126971e-02
3.86318177e-01 1.69173107e-01 9.33129728e-01 -1.17435610e+00
-2.70564139e-01 -8.60818326e-01 -3.54582787e-01 -1.58105373e+00
6.92362934e-02 -9.57626641e-01 2.36367472e-02 -1.30827141e+00
1.81672752e-01 -3.61979663e-01 -4.02713716e-02 5.92571914e-01
-2.71508962e-01 3.52426618e-01 4.05787349e-01 2.01243237e-01
-4.43199873e-01 8.84309471e-01 1.47751367e+00 -4.54481840e-01
-1.78830341e-01 -1.52756408e-01 -6.08667493e-01 8.15615535e-01
8.52757275e-01 -9.02804360e-02 -4.19482112e-01 -8.57750237e-01
1.50780231e-01 -4.63682622e-01 2.90181011e-01 -9.48183715e-01
4.51199889e-01 -1.84527189e-01 6.06319726e-01 -5.00646949e-01
2.75135040e-01 -1.05538511e+00 -2.11551085e-01 4.14837152e-02
-3.88726294e-01 1.59950227e-01 2.63342053e-01 4.79169190e-01
-9.43979993e-02 -1.63159832e-01 9.67232525e-01 1.88942805e-01
-4.34859842e-01 2.54517108e-01 -3.99443544e-02 -1.05968960e-01
7.62156129e-01 -5.75805843e-01 -6.11731827e-01 -3.03038418e-01
-2.93415457e-01 -1.06968910e-01 8.28054786e-01 5.65166950e-01
5.96614063e-01 -1.19663596e+00 -4.90507960e-01 4.07320350e-01
1.28262296e-01 1.92262605e-02 8.52172822e-02 9.86067593e-01
-5.27598560e-01 3.96675915e-01 -2.98872739e-02 -6.87174320e-01
-1.15896666e+00 6.29907370e-01 4.23147410e-01 -1.50020048e-01
-7.83361316e-01 6.69962764e-01 5.06227970e-01 -4.52870429e-01
4.87626284e-01 -3.62486660e-01 -1.53874412e-01 -7.96866491e-02
4.78118330e-01 1.96838483e-01 1.82628870e-01 -5.16486585e-01
-1.24853589e-01 9.27489460e-01 -2.92197585e-01 1.60987243e-01
1.28399813e+00 -2.04511568e-01 1.05023813e-02 5.04459023e-01
1.15972292e+00 6.98475912e-02 -1.43716657e+00 -5.05730629e-01
-1.35006860e-01 -6.05173707e-01 1.85557917e-01 -8.81238520e-01
-1.42570555e+00 1.10291290e+00 5.67699730e-01 1.58905268e-01
1.15416539e+00 -3.99051219e-01 4.30295050e-01 6.19676769e-01
5.09898625e-02 -1.14215505e+00 3.96257997e-01 8.13491642e-01
1.04417777e+00 -1.21054494e+00 -1.61463439e-01 -4.54127938e-01
-5.11639714e-01 1.41558206e+00 8.00461769e-01 -9.35937166e-02
5.64380288e-01 4.24057484e-01 2.76565671e-01 1.70933008e-01
-4.66913491e-01 -7.45341331e-02 5.68461061e-01 4.77677763e-01
6.76665843e-01 -3.23201984e-01 -3.37241925e-02 5.37701473e-02
1.11935422e-01 -2.53751904e-01 3.89783829e-01 8.36550593e-01
-1.15530960e-01 -1.21159685e+00 -3.68283480e-01 3.86831433e-01
-1.29789174e-01 -3.17100197e-01 -7.01383412e-01 7.16741562e-01
-1.25288934e-01 5.02615035e-01 1.78144917e-01 -1.99678078e-01
5.61395049e-01 -2.65497100e-02 5.37826121e-01 -3.26474458e-01
-5.91996133e-01 2.50661433e-01 -2.55366445e-01 -5.41498899e-01
-3.67704123e-01 -6.13824129e-01 -1.13208365e+00 -3.85978550e-01
-5.56239486e-01 -4.22974676e-01 7.24088311e-01 8.39338124e-01
2.32620478e-01 6.33427680e-01 8.19714189e-01 -1.02180326e+00
-4.08417702e-01 -8.21660340e-01 -5.02551019e-01 7.39091158e-01
2.65315682e-01 -3.85409176e-01 -3.98242474e-01 1.91760212e-01] | [11.553667068481445, -0.4230239987373352] |
8300dd9d-d4bc-4059-a603-f83aa0eec2be | learning-to-infer-3d-object-models-from | 2006.06130 | null | https://arxiv.org/abs/2006.06130v3 | https://arxiv.org/pdf/2006.06130v3.pdf | ROOTS: Object-Centric Representation and Rendering of 3D Scenes | A crucial ability of human intelligence is to build up models of individual 3D objects from partial scene observations. Recent works achieve object-centric generation but without the ability to infer the representation, or achieve 3D scene representation learning but without object-centric compositionality. Therefore, learning to represent and render 3D scenes with object-centric compositionality remains elusive. In this paper, we propose a probabilistic generative model for learning to build modular and compositional 3D object models from partial observations of a multi-object scene. The proposed model can (i) infer the 3D object representations by learning to search and group object areas and also (ii) render from an arbitrary viewpoint not only individual objects but also the full scene by compositing the objects. The entire learning process is unsupervised and end-to-end. In experiments, in addition to generation quality, we also demonstrate that the learned representation permits object-wise manipulation and novel scene generation, and generalizes to various settings. Results can be found on our project website: https://sites.google.com/view/roots3d | ['Sungjin Ahn', 'Fei Deng', 'Chang Chen'] | 2020-06-11 | null | null | null | null | ['scene-generation'] | ['computer-vision'] | [ 2.82165051e-01 2.50294328e-01 2.15904698e-01 -5.17725766e-01
-5.62444150e-01 -6.42733574e-01 9.01810467e-01 -9.23150778e-02
2.97273159e-01 3.12693983e-01 7.06046373e-02 9.25172865e-02
-1.19691327e-01 -8.22621226e-01 -1.03466594e+00 -4.94811952e-01
9.74394977e-02 1.02803004e+00 2.23022193e-01 1.90593496e-01
2.41049245e-01 8.75167906e-01 -1.77841830e+00 4.36377943e-01
7.54361570e-01 8.73335361e-01 7.63675630e-01 8.03908050e-01
-2.42187425e-01 7.44845808e-01 -4.91482377e-01 -6.64360076e-02
5.26700914e-01 -2.73830444e-01 -6.27854884e-01 9.08811331e-01
8.54968429e-01 -4.64998901e-01 -1.39649212e-01 8.06529224e-01
3.44322711e-01 1.01399466e-01 8.29600513e-01 -1.27812123e+00
-1.10519493e+00 3.82549465e-01 -3.21372122e-01 -4.49582398e-01
5.30424237e-01 3.68179083e-01 8.86961102e-01 -9.93159831e-01
7.17327356e-01 1.65514410e+00 2.00478593e-03 5.72238505e-01
-1.47480714e+00 -3.37852299e-01 4.73610520e-01 1.20000625e-02
-1.28403354e+00 -3.07155311e-01 1.12633359e+00 -6.49206996e-01
7.63533056e-01 2.02957526e-01 7.54900336e-01 9.78751123e-01
-8.32634717e-02 1.03987479e+00 1.14451456e+00 -2.84830809e-01
2.53072232e-01 2.72328615e-01 -2.60634750e-01 7.99475849e-01
2.83803850e-01 -1.08897954e-01 -5.42871237e-01 6.18393049e-02
1.17548239e+00 3.17760259e-01 -7.89954886e-03 -8.62315297e-01
-1.41821647e+00 6.00413740e-01 6.92307591e-01 -4.58512753e-02
-4.93340641e-01 4.36663061e-01 -2.94201404e-01 -8.29718038e-02
4.52738523e-01 6.68807089e-01 -3.69217008e-01 2.27727070e-01
-6.49280488e-01 5.36410213e-01 5.49299240e-01 1.61421621e+00
9.98811841e-01 1.00698426e-01 -1.06642775e-01 4.22718585e-01
3.37326467e-01 5.33040643e-01 1.59397274e-01 -1.05865467e+00
2.12015703e-01 8.56025457e-01 1.47155449e-01 -6.82783365e-01
-1.88567460e-01 -3.64643663e-01 -7.84659743e-01 4.15274441e-01
6.93066865e-02 2.20150962e-01 -1.16130698e+00 1.54016948e+00
7.27596283e-01 1.56391159e-01 -1.67738974e-01 8.36363375e-01
9.88042057e-01 5.38775206e-01 -1.63958564e-01 1.27765402e-01
1.25960827e+00 -9.99192595e-01 -2.44219184e-01 -2.89541990e-01
2.27455348e-01 -7.48078883e-01 1.15970325e+00 2.78074145e-01
-1.40062249e+00 -9.29178536e-01 -8.47426414e-01 -4.21089888e-01
-2.58030117e-01 5.80054745e-02 5.83500326e-01 1.73780471e-01
-9.99434769e-01 3.12224597e-01 -9.21262264e-01 -2.55598277e-01
7.81126082e-01 5.75875007e-02 -3.94550204e-01 -2.44460106e-01
-3.07880312e-01 8.52955520e-01 7.09460497e-01 -1.83056667e-01
-1.41610754e+00 -8.55422854e-01 -9.35762823e-01 -1.36188701e-01
5.26176274e-01 -1.42336667e+00 1.24345148e+00 -5.28127432e-01
-1.36845636e+00 8.78449857e-01 -1.67103589e-01 -9.21084657e-02
4.34703946e-01 -3.62603366e-01 3.02535534e-01 1.25641063e-01
1.60535082e-01 8.56765449e-01 9.63319302e-01 -1.85469937e+00
-6.18843496e-01 -5.51282108e-01 4.19337034e-01 4.16727453e-01
1.73643932e-01 -4.73397374e-01 -2.29401767e-01 -5.11202872e-01
6.10805929e-01 -8.81151021e-01 -3.49176168e-01 4.05556113e-01
-5.15020728e-01 -3.18286031e-01 1.04944611e+00 -2.68678546e-01
2.69496202e-01 -2.04188299e+00 4.40134495e-01 -2.01276571e-01
4.56931621e-01 -2.69915938e-01 -1.73173472e-01 5.23318350e-01
5.99055775e-02 9.16581079e-02 -1.59702271e-01 -8.14064085e-01
3.19497705e-01 1.44381762e-01 -3.65057051e-01 2.70802677e-01
5.24505019e-01 1.12342536e+00 -1.12830448e+00 -4.51362222e-01
6.02998614e-01 4.88076806e-01 -7.86010861e-01 5.08724153e-01
-7.68774211e-01 7.10995138e-01 -6.66233063e-01 7.01317728e-01
7.28238702e-01 -4.84226763e-01 -2.59759910e-02 -3.21684957e-01
1.94501102e-01 2.25024238e-01 -1.33827436e+00 2.16126227e+00
-5.09361327e-01 2.87637323e-01 -2.24987283e-01 -9.38844800e-01
1.18591094e+00 1.80540130e-01 2.77190477e-01 -3.11549366e-01
-1.69220656e-01 2.23133657e-02 -3.55230629e-01 -5.59115291e-01
5.65139771e-01 -3.45718682e-01 -1.70802712e-01 6.89148247e-01
3.61071885e-01 -1.04423535e+00 -1.34716462e-02 3.58577877e-01
7.21242845e-01 6.34883821e-01 4.32296664e-01 -6.10005632e-02
1.23643339e-01 -1.45376995e-01 8.35054070e-02 7.74272025e-01
3.79800141e-01 7.89930940e-01 1.60049811e-01 -4.46347147e-01
-1.15866613e+00 -1.53929746e+00 -4.79005836e-02 7.98379481e-01
5.16174853e-01 -2.31332645e-01 -2.42074877e-01 -6.21546268e-01
8.81841108e-02 1.00666308e+00 -6.16922677e-01 -3.41737829e-02
-4.47465569e-01 -9.45282429e-02 -2.08743270e-02 5.45266867e-01
2.60536671e-01 -1.13941181e+00 -8.99264634e-01 4.63186763e-03
-1.76302850e-01 -1.11432362e+00 -2.54316926e-01 4.25487384e-02
-1.06491327e+00 -8.71923089e-01 -4.78678137e-01 -7.69786000e-01
9.82475221e-01 6.24809623e-01 1.24736702e+00 -6.23777062e-02
-4.68569726e-01 6.79571986e-01 -4.03729230e-01 -5.74248433e-01
-5.25630772e-01 -1.71684951e-01 6.55379370e-02 2.60970416e-03
-4.98324335e-02 -9.95757997e-01 -4.23819989e-01 2.03395829e-01
-1.09915841e+00 6.55756116e-01 7.55370259e-01 4.39825565e-01
8.56938660e-01 6.46975785e-02 3.95776361e-01 -7.28604853e-01
1.74297944e-01 -2.89767236e-01 -6.25812531e-01 1.72622412e-01
-7.90381730e-02 2.07421824e-01 3.32480013e-01 -5.42815864e-01
-1.17288232e+00 3.00388455e-01 3.51809323e-01 -8.36862624e-01
-7.78528690e-01 1.00807764e-01 -5.12631536e-01 4.40088868e-01
7.86697745e-01 4.29013968e-01 -1.94227487e-01 -7.18755066e-01
9.39555764e-01 1.18736207e-01 4.52740610e-01 -8.79779339e-01
1.14167953e+00 6.66693985e-01 9.35100168e-02 -7.45352447e-01
-8.78156722e-01 -2.54997045e-01 -1.08152497e+00 -2.47664899e-01
8.74653637e-01 -1.04991162e+00 -4.22168553e-01 2.41431504e-01
-1.37068868e+00 -4.16075915e-01 -6.09141648e-01 3.72768581e-01
-1.05848074e+00 6.60362020e-02 -7.00046867e-02 -8.53341460e-01
6.21297434e-02 -1.00002968e+00 1.70417953e+00 1.26960307e-01
-1.95527717e-01 -8.03075671e-01 -2.02647194e-01 3.64964098e-01
-1.01274373e-02 5.38873911e-01 9.83684242e-01 -1.69494092e-01
-1.36012101e+00 -1.88159615e-01 -1.95069388e-01 1.39414981e-01
4.43174928e-01 -1.75950438e-01 -1.04464221e+00 -1.52254120e-01
1.23860538e-01 -3.78802240e-01 6.52638674e-01 2.81929702e-01
1.32621181e+00 -3.67913187e-01 -1.81160629e-01 6.08155966e-01
1.43526495e+00 5.68133816e-02 4.00873840e-01 -2.19392687e-01
9.08997238e-01 7.93821275e-01 3.79457235e-01 5.94063520e-01
4.55716014e-01 7.32821763e-01 8.28753114e-01 1.79858774e-01
-5.45019805e-01 -7.21832931e-01 1.67634413e-02 4.98863816e-01
-1.09326161e-01 -2.65036434e-01 -6.39114320e-01 6.01673663e-01
-1.68059754e+00 -9.72471237e-01 2.43514795e-02 1.91940582e+00
6.60798609e-01 -3.43556851e-02 8.71028975e-02 -1.36007398e-01
4.40791935e-01 6.58157542e-02 -7.60613263e-01 2.56467033e-02
-5.35884909e-02 1.09791458e-02 -1.81054428e-01 4.19362128e-01
-8.18786621e-01 1.05253863e+00 5.32862949e+00 5.86135685e-01
-7.83903956e-01 -9.69664231e-02 3.05788666e-01 -4.06049550e-01
-5.56926548e-01 1.77007496e-01 -7.11342156e-01 -6.08380139e-02
2.57407874e-02 -3.14603448e-01 3.51307124e-01 1.02163267e+00
1.95489414e-02 5.24737425e-02 -1.67536533e+00 1.05048501e+00
1.77897111e-01 -1.38255155e+00 5.83096921e-01 2.67496765e-01
9.79990184e-01 -4.09580737e-01 3.22137065e-02 1.79145649e-01
4.49762255e-01 -8.89377177e-01 1.27571821e+00 7.83432961e-01
6.09240472e-01 -4.22142625e-01 6.26959726e-02 8.34016204e-01
-1.11586797e+00 6.67574555e-02 -3.98687184e-01 -1.56357631e-01
4.49946105e-01 5.90825438e-01 -1.19748926e+00 6.90159976e-01
6.67976618e-01 8.08557570e-01 -7.37829387e-01 1.04203558e+00
-4.30034190e-01 1.21321462e-01 -2.32680693e-01 -6.63738772e-02
3.05248871e-02 -8.11630264e-02 8.11341286e-01 7.63008296e-01
5.25216460e-01 1.65077969e-01 4.20831025e-01 1.40762174e+00
-1.42197341e-01 -2.96681911e-01 -7.63284922e-01 6.32824004e-02
3.35724086e-01 1.20269835e+00 -6.54476821e-01 -5.56349158e-01
5.79593629e-02 9.77851927e-01 4.19234991e-01 3.71222377e-01
-7.39200890e-01 -2.14211293e-03 5.54816663e-01 3.25825572e-01
4.96243536e-01 -5.25605798e-01 -4.07726079e-01 -1.17988050e+00
2.19202176e-01 -5.62164307e-01 -1.06745936e-01 -1.27847862e+00
-1.41055119e+00 4.35332149e-01 4.83133018e-01 -1.37788165e+00
-2.76053667e-01 -5.50429285e-01 -3.56166482e-01 7.53037989e-01
-1.08303273e+00 -1.52226472e+00 -6.32354200e-01 4.98792887e-01
8.79781246e-01 4.82539413e-03 7.01171100e-01 -1.54887274e-01
1.36691615e-01 1.72482524e-02 -5.10811746e-01 -3.22330356e-01
4.27917272e-01 -1.42076135e+00 4.13936883e-01 6.17686152e-01
5.50107121e-01 4.96747345e-01 6.20489120e-01 -6.58017159e-01
-1.50761390e+00 -1.37513554e+00 5.77086449e-01 -9.62422132e-01
1.51565656e-01 -7.94427454e-01 -7.65579045e-01 7.99292266e-01
5.47591746e-02 -4.44077179e-02 3.67325604e-01 6.29165024e-02
-4.61938560e-01 1.26385674e-01 -1.08538783e+00 7.85542011e-01
1.54513550e+00 -4.14092869e-01 -6.46568120e-01 6.05121136e-01
1.17514348e+00 -5.78302085e-01 -6.95202649e-01 3.61770719e-01
5.20544231e-01 -9.73557711e-01 1.22466838e+00 -6.61245704e-01
6.94802940e-01 -6.43522680e-01 -4.06510413e-01 -1.10306358e+00
-6.18228912e-01 -3.13054562e-01 -5.43969333e-01 9.49561834e-01
1.80460736e-01 -3.24508160e-01 6.57162488e-01 3.88858885e-01
-4.76033092e-01 -6.53834105e-01 -5.21044493e-01 -8.23866367e-01
-8.65256116e-02 -6.21830404e-01 9.17151749e-01 5.67486048e-01
-6.39900804e-01 5.49391150e-01 -3.49719942e-01 5.74791133e-01
9.90080118e-01 8.03562880e-01 1.44500029e+00 -1.20848346e+00
-5.31918049e-01 -5.19316971e-01 -5.37758410e-01 -1.49612355e+00
-6.93921000e-02 -1.06211412e+00 2.25568682e-01 -1.86814380e+00
2.80134946e-01 -4.93980795e-01 2.28131965e-01 2.31740743e-01
-1.04439050e-01 1.44477293e-01 5.69039881e-01 2.01806262e-01
-7.62944162e-01 8.25544238e-01 1.87109184e+00 -1.78910434e-01
-2.81938940e-01 2.79995576e-02 -8.09331656e-01 7.41206229e-01
6.31376445e-01 -3.23434740e-01 -6.46804214e-01 -7.80861795e-01
-5.44696078e-02 -1.42736286e-01 9.67764974e-01 -9.26270902e-01
-1.71807955e-03 -3.92178804e-01 7.30788350e-01 -1.02669358e+00
7.93370068e-01 -8.35194945e-01 4.21026319e-01 1.98311999e-01
-3.13373923e-01 -3.52312982e-01 2.22825888e-03 6.51200533e-01
1.53702617e-01 -4.01755422e-02 5.30964434e-01 -5.35556555e-01
-6.63478673e-01 6.39681220e-01 1.37564391e-01 -2.85653979e-01
1.04578865e+00 -3.68709624e-01 -1.18826412e-01 -3.65651369e-01
-8.32712650e-01 6.04323670e-02 7.03421831e-01 6.63750350e-01
8.78427565e-01 -1.58504331e+00 -9.72845256e-01 2.50918835e-01
3.79632205e-01 8.08904946e-01 4.41885680e-01 1.70483887e-01
-4.08415377e-01 2.50693113e-01 -7.21810535e-02 -1.05922341e+00
-9.83889580e-01 8.07738602e-01 1.00001097e-01 1.52407348e-01
-7.37119377e-01 8.91396403e-01 8.63385379e-01 -7.08851337e-01
3.70160267e-02 -4.49367493e-01 2.87234664e-01 -2.71289498e-01
4.52390730e-01 1.31068423e-01 -3.76944840e-01 -5.35588503e-01
-7.09695220e-02 6.21049762e-01 1.74581170e-01 -1.14553869e-01
1.39478827e+00 -1.42471477e-01 -2.96733305e-02 6.54744148e-01
1.06777740e+00 -2.76448309e-01 -1.53197038e+00 -4.67714727e-01
-3.39885652e-01 -8.99910688e-01 -3.17096442e-01 -6.04213536e-01
-7.27769911e-01 1.04832327e+00 2.16979787e-01 1.15395598e-01
9.92871284e-01 6.66242063e-01 3.17447394e-01 5.38018942e-01
6.83222413e-01 -4.41624790e-01 7.37302780e-01 1.92775920e-01
1.44358599e+00 -1.02947664e+00 1.92254931e-01 -4.81251359e-01
-4.99105126e-01 9.22285557e-01 8.15512538e-01 -3.79268497e-01
5.69946349e-01 -1.74613874e-02 -3.70210260e-01 -3.43234390e-01
-9.09500718e-01 -3.12590301e-01 5.64417601e-01 9.05977011e-01
9.93434563e-02 2.27728441e-01 5.46945930e-01 3.22074562e-01
-4.06036377e-01 -2.63733506e-01 3.39806736e-01 8.53946030e-01
-5.38216829e-01 -9.14151847e-01 -3.36005092e-01 3.68096948e-01
3.90580803e-01 1.76322967e-01 -4.02177334e-01 5.94499826e-01
3.62494498e-01 6.74153030e-01 1.64506540e-01 -1.32483006e-01
4.74209547e-01 -2.36194599e-02 9.87866640e-01 -1.08290052e+00
9.91801992e-02 1.16271801e-01 -2.94338644e-01 -5.41050851e-01
-5.69591343e-01 -6.51447654e-01 -9.86390948e-01 4.03114744e-02
-2.67548144e-01 -3.39397162e-01 7.02111840e-01 6.96221888e-01
5.07148504e-01 5.97736776e-01 6.64048791e-01 -1.51821375e+00
-2.29936212e-01 -9.70496535e-01 -5.64836800e-01 5.18740475e-01
3.80772680e-01 -8.35133910e-01 -2.11571708e-01 5.86006522e-01] | [8.715457916259766, -3.0560364723205566] |
059e808b-f1c0-41c0-ac77-42887bce87b8 | video-event-restoration-based-on-keyframes | 2304.05112 | null | https://arxiv.org/abs/2304.05112v1 | https://arxiv.org/pdf/2304.05112v1.pdf | Video Event Restoration Based on Keyframes for Video Anomaly Detection | Video anomaly detection (VAD) is a significant computer vision problem. Existing deep neural network (DNN) based VAD methods mostly follow the route of frame reconstruction or frame prediction. However, the lack of mining and learning of higher-level visual features and temporal context relationships in videos limits the further performance of these two approaches. Inspired by video codec theory, we introduce a brand-new VAD paradigm to break through these limitations: First, we propose a new task of video event restoration based on keyframes. Encouraging DNN to infer missing multiple frames based on video keyframes so as to restore a video event, which can more effectively motivate DNN to mine and learn potential higher-level visual features and comprehensive temporal context relationships in the video. To this end, we propose a novel U-shaped Swin Transformer Network with Dual Skip Connections (USTN-DSC) for video event restoration, where a cross-attention and a temporal upsampling residual skip connection are introduced to further assist in restoring complex static and dynamic motion object features in the video. In addition, we propose a simple and effective adjacent frame difference loss to constrain the motion consistency of the video sequence. Extensive experiments on benchmarks demonstrate that USTN-DSC outperforms most existing methods, validating the effectiveness of our method. | ['Xiaotao Liu', 'Peng Wu', 'Zhaoyang Wu', 'Jing Liu', 'Zhiwei Yang'] | 2023-04-11 | null | http://openaccess.thecvf.com//content/CVPR2023/html/Yang_Video_Event_Restoration_Based_on_Keyframes_for_Video_Anomaly_Detection_CVPR_2023_paper.html | http://openaccess.thecvf.com//content/CVPR2023/papers/Yang_Video_Event_Restoration_Based_on_Keyframes_for_Video_Anomaly_Detection_CVPR_2023_paper.pdf | cvpr-2023-1 | ['video-anomaly-detection'] | ['computer-vision'] | [ 1.83677763e-01 -4.43148822e-01 -2.85073698e-01 -1.96233451e-01
-4.02687453e-02 -8.02939609e-02 5.25718212e-01 -1.74410984e-01
-2.60059029e-01 5.32155633e-01 4.33576733e-01 -3.68929118e-01
2.03423332e-02 -4.51311797e-01 -1.02817035e+00 -5.78400612e-01
-1.81568578e-01 -5.00646830e-01 5.24653912e-01 -7.75907785e-02
2.15447605e-01 4.24243987e-01 -1.64214492e+00 4.51522350e-01
7.39366591e-01 1.31259286e+00 4.85499978e-01 4.68478590e-01
-1.86287954e-01 1.57217252e+00 -3.64279658e-01 -9.15877521e-02
3.12862396e-01 -5.19149363e-01 -6.12424254e-01 3.62008929e-01
5.66663682e-01 -9.55562711e-01 -1.14062262e+00 1.05674827e+00
2.42316708e-01 3.87516618e-01 1.73005745e-01 -1.49539149e+00
-6.52554870e-01 4.13232148e-01 -6.11395538e-01 9.16553199e-01
4.61989790e-01 2.38392159e-01 8.45595181e-01 -1.01806104e+00
4.93576527e-01 1.29738164e+00 6.04507625e-01 5.99906087e-01
-7.31949031e-01 -5.38879395e-01 7.33545125e-01 1.14232504e+00
-1.14332390e+00 -3.99103761e-01 9.38875914e-01 -3.35177928e-01
1.02869451e+00 4.94540893e-02 9.14051533e-01 1.27623796e+00
1.88979849e-01 1.16700077e+00 2.94554204e-01 -2.01703385e-01
1.47964939e-01 -6.43859029e-01 -1.46173984e-01 8.17752421e-01
8.79496709e-02 -7.57798320e-03 -7.81162977e-01 1.15211308e-01
8.95631671e-01 5.85997820e-01 -6.31077766e-01 -3.57772350e-01
-1.25465393e+00 5.41776836e-01 3.17526460e-01 1.86760515e-01
-6.25690758e-01 2.25906402e-01 7.91310966e-01 4.36610103e-01
3.42737198e-01 -1.63703695e-01 -2.84306645e-01 -2.14342117e-01
-9.27651286e-01 1.41942888e-01 1.67960927e-01 8.86057258e-01
5.00146151e-01 5.84505022e-01 -4.77793932e-01 5.80761492e-01
2.97425300e-01 1.30242005e-01 6.51986718e-01 -1.23354387e+00
4.12050933e-01 5.30347407e-01 -9.25579742e-02 -1.32836151e+00
-6.43732101e-02 -7.52265379e-02 -1.01361918e+00 2.09368169e-01
1.93748415e-01 2.51080155e-01 -9.68667746e-01 1.61911964e+00
1.70725375e-01 1.16929579e+00 -4.35154513e-02 1.13013554e+00
6.96119130e-01 8.43086064e-01 -1.28966168e-01 -7.12398887e-01
1.02111375e+00 -9.71696973e-01 -9.49687541e-01 -1.03682034e-01
3.44967633e-01 -5.06920397e-01 9.03434515e-01 4.15004134e-01
-1.21320236e+00 -7.91864216e-01 -1.02908456e+00 -2.83527553e-01
2.13766709e-01 -2.93206871e-01 5.06331742e-01 3.44676268e-03
-9.87104714e-01 6.32855594e-01 -1.03944206e+00 -8.16253051e-02
7.54258096e-01 1.74070001e-01 -2.66578674e-01 -4.29330558e-01
-1.10235763e+00 3.74531209e-01 4.24586058e-01 3.43935430e-01
-1.10063016e+00 -7.27576911e-01 -1.13890624e+00 3.41195799e-02
5.59367716e-01 -5.84833324e-01 1.07661104e+00 -1.30822170e+00
-1.17588973e+00 4.03523654e-01 -5.55212080e-01 -8.15929294e-01
4.39545989e-01 -4.71238464e-01 -6.12458646e-01 5.06969273e-01
2.02425476e-02 6.16738081e-01 1.12763906e+00 -9.60085154e-01
-1.12021601e+00 -2.06213072e-02 1.86845437e-01 2.16103449e-01
-5.74036539e-01 -1.02011979e-01 -7.88411915e-01 -1.19639254e+00
1.82910934e-01 -3.92068416e-01 -5.35706840e-02 3.07501674e-01
-1.14966266e-01 -3.91641438e-01 1.33709788e+00 -9.38139081e-01
1.52129138e+00 -2.29534841e+00 2.41664171e-01 -1.51350396e-02
4.47421640e-01 5.29544175e-01 -2.02267215e-01 -1.06211133e-01
-2.02646181e-01 -2.68645376e-01 -1.73356816e-01 -2.45941535e-01
-2.93228447e-01 4.55915183e-01 -6.34071290e-01 2.96626449e-01
3.86961550e-01 6.99667335e-01 -1.07633972e+00 -4.29395020e-01
5.18078327e-01 5.84056556e-01 -7.29631782e-01 2.14514211e-01
-2.61729985e-01 2.94609338e-01 -3.20890874e-01 7.91263521e-01
6.52356863e-01 -1.76210418e-01 -3.94902285e-03 -4.79902625e-01
-3.26935463e-02 2.14585558e-01 -1.05926406e+00 1.80945599e+00
3.61742154e-02 9.87778723e-01 -2.87736386e-01 -1.33402038e+00
6.58241034e-01 3.00085872e-01 8.36523592e-01 -9.97094095e-01
4.20116819e-02 -1.55037725e-02 -1.15831412e-01 -7.27013767e-01
5.67853272e-01 3.23024780e-01 5.34682751e-01 1.13212600e-01
1.08869903e-01 8.09335768e-01 2.35100985e-01 3.96062940e-01
1.23124969e+00 2.36525059e-01 2.11116463e-01 3.59902270e-02
8.78562331e-01 -3.95645320e-01 1.14106011e+00 6.36771560e-01
-5.42766809e-01 5.45929193e-01 4.62245345e-01 -9.34048474e-01
-1.07300341e+00 -9.53838408e-01 1.88746393e-01 9.80910480e-01
4.58683074e-01 -5.79741836e-01 -5.44625163e-01 -8.06491911e-01
-2.25802943e-01 4.10143197e-01 -4.77597445e-01 -3.59421849e-01
-8.89490306e-01 -3.76705498e-01 2.99884617e-01 6.50080681e-01
6.34025276e-01 -1.01475835e+00 -4.07038987e-01 4.06505615e-01
-5.82338691e-01 -1.37642133e+00 -6.92216456e-01 -2.83575088e-01
-9.15439010e-01 -1.15881276e+00 -5.95143080e-01 -1.01690972e+00
5.11895955e-01 6.80922091e-01 9.38430130e-01 3.93193573e-01
-7.47471079e-02 4.35520530e-01 -5.91779292e-01 2.21218299e-02
-2.15768933e-01 -5.02164304e-01 3.40031207e-01 2.74468333e-01
5.04970014e-01 -8.85712624e-01 -7.84731388e-01 1.79313153e-01
-1.13731992e+00 6.36440963e-02 4.16872710e-01 9.17730033e-01
7.74839520e-01 4.14288305e-02 3.93303841e-01 -3.25093657e-01
1.36122748e-01 -6.35012805e-01 -3.84399742e-01 5.85708544e-02
-3.62616092e-01 -1.90931723e-01 7.77277708e-01 -5.39488614e-01
-8.82443368e-01 -7.86462501e-02 -1.35954469e-01 -1.41122615e+00
3.94999683e-02 2.06461191e-01 -3.05386752e-01 1.25486806e-01
1.42254233e-01 6.06866419e-01 -5.75736649e-02 -3.72412831e-01
1.59850810e-02 1.79916739e-01 9.56450164e-01 -2.37023786e-01
6.93741024e-01 6.02526367e-01 -8.18178058e-02 -7.23046243e-01
-7.81476617e-01 -2.34897271e-01 -4.89800364e-01 -3.95464569e-01
8.30711961e-01 -1.20661044e+00 -7.73596823e-01 6.43038571e-01
-1.20194077e+00 -2.48114914e-01 -3.00443947e-01 6.24720156e-01
-4.84179735e-01 9.03222978e-01 -8.35969985e-01 -4.49727595e-01
-1.52620718e-01 -1.17065287e+00 7.50866830e-01 1.52460128e-01
1.22250594e-01 -8.54617476e-01 -4.61060256e-01 7.56326020e-02
8.64626244e-02 1.69290021e-01 7.55392671e-01 -2.69224614e-01
-9.23403442e-01 2.98186123e-01 -3.17389429e-01 5.55663884e-01
1.77067205e-01 -6.32791147e-02 -6.17103338e-01 -4.35092360e-01
1.73456997e-01 2.33200844e-02 1.12820089e+00 6.71646535e-01
1.75326180e+00 -4.38817382e-01 -1.95327431e-01 9.69520807e-01
1.17647266e+00 3.56496274e-01 9.12573397e-01 5.62410712e-01
1.11989701e+00 9.69591141e-02 6.54657960e-01 7.15917289e-01
4.81884956e-01 4.89042759e-01 8.04914415e-01 1.48975775e-01
-2.35187978e-01 -2.89395660e-01 8.40247989e-01 8.65226924e-01
-2.69927323e-01 -3.74738067e-01 -5.27667522e-01 5.81930757e-01
-2.11327600e+00 -1.33263779e+00 -8.31728727e-02 1.91902864e+00
5.21319866e-01 2.42507234e-01 -4.35254872e-02 3.14904422e-01
9.10178959e-01 4.32590157e-01 -7.91844428e-01 -1.53690809e-02
-3.77671629e-01 -1.45815760e-01 1.56930685e-01 2.04579547e-01
-1.18922961e+00 7.54583657e-01 5.43224478e+00 9.76254463e-01
-1.01006603e+00 -8.23538378e-02 6.13645613e-01 -3.11821073e-01
-2.14782625e-01 -1.67690292e-01 -6.10349238e-01 8.07728350e-01
5.00163913e-01 -4.56110351e-02 4.33191061e-01 5.64591527e-01
5.25611818e-01 1.76223516e-01 -1.12684846e+00 1.22385240e+00
2.00481638e-01 -1.63245237e+00 5.34149230e-01 -1.39524683e-01
6.58803701e-01 -1.64008319e-01 -1.19335055e-01 1.81634143e-01
-6.98558986e-02 -6.38926148e-01 8.67200971e-01 6.35037005e-01
5.71255088e-01 -8.86858284e-01 5.50687671e-01 -8.24428722e-02
-1.48115218e+00 -4.46512967e-01 -4.08956409e-01 -1.77237675e-01
3.35592628e-01 5.15218973e-01 -2.43421748e-01 5.31707287e-01
1.18430138e+00 1.55921495e+00 -3.61469179e-01 1.05959713e+00
-3.48912664e-02 7.63995528e-01 -2.19101971e-03 5.57144463e-01
4.10232961e-01 -5.72286695e-02 9.35796857e-01 9.77761805e-01
4.88458753e-01 2.66420871e-01 2.17971161e-01 5.56106985e-01
-2.04141989e-01 -3.26201320e-01 -4.93276387e-01 3.13228309e-01
5.00007093e-01 8.03036392e-01 -4.67372715e-01 -3.67318273e-01
-8.16361487e-01 1.33586121e+00 9.60846692e-02 5.32736301e-01
-1.01397204e+00 -4.63424176e-02 1.18464196e+00 -2.12972239e-02
7.62147188e-01 -2.38746971e-01 3.54372770e-01 -1.43812799e+00
4.60829049e-01 -9.45968926e-01 5.63161016e-01 -6.62383556e-01
-1.25223148e+00 3.95272613e-01 -3.84676129e-01 -1.74027061e+00
-2.11273640e-01 -5.15767694e-01 -6.46613300e-01 2.88730562e-01
-1.77058637e+00 -9.04236317e-01 -4.41299319e-01 1.18442237e+00
1.10928404e+00 -4.13376838e-01 1.29448920e-01 6.75719976e-01
-6.76125526e-01 6.35567963e-01 1.21283121e-01 4.29541320e-01
5.05299807e-01 -8.23151588e-01 3.72938305e-01 1.48350894e+00
2.44424883e-02 2.44956627e-01 5.35424054e-01 -6.97462678e-01
-1.51736319e+00 -1.40446746e+00 3.84014398e-01 3.67798805e-02
5.58175683e-01 -8.79544169e-02 -1.27654374e+00 7.94002950e-01
6.57969937e-02 4.73660976e-01 3.13986301e-01 -4.93378371e-01
-3.30140889e-01 -2.78559834e-01 -7.65839338e-01 6.80508673e-01
1.48079348e+00 -5.90046644e-01 -5.41030526e-01 1.37950704e-01
1.09339690e+00 -4.05736804e-01 -4.47683722e-01 5.54330111e-01
3.25951964e-01 -1.09989381e+00 1.17405415e+00 -6.98720574e-01
7.85675228e-01 -6.28551364e-01 -3.78887892e-01 -8.62017989e-01
-3.36882532e-01 -7.59242475e-01 -9.34981763e-01 1.24495506e+00
-3.66993904e-01 -1.57153472e-01 6.65390670e-01 2.04983950e-01
-5.59903741e-01 -7.21702635e-01 -9.89764214e-01 -7.58928001e-01
-5.58329940e-01 -7.64310300e-01 3.72357428e-01 1.12898111e+00
-2.76645631e-01 -2.85511799e-02 -9.09489810e-01 4.54098105e-01
5.79433382e-01 -1.37714997e-01 3.45423192e-01 -9.27475631e-01
-3.36275175e-02 -3.73077810e-01 -8.36419642e-01 -1.53438079e+00
2.71977842e-01 -6.23099387e-01 -5.57676330e-02 -1.23021984e+00
1.27071068e-01 4.78218682e-02 -6.04458749e-01 3.60275984e-01
-3.03826243e-01 2.59854466e-01 1.64970234e-01 2.95224696e-01
-9.51012909e-01 8.78653288e-01 1.13815200e+00 -1.67073146e-01
-8.30475241e-02 -2.83236921e-01 -3.61989021e-01 8.99287581e-01
3.66845012e-01 -1.88780308e-01 -4.92448449e-01 -6.65775716e-01
-4.34551835e-02 1.35962501e-01 6.70147657e-01 -1.15432477e+00
3.80106211e-01 -1.33958504e-01 6.50063992e-01 -8.00619006e-01
1.29548326e-01 -9.24763620e-01 -2.93610513e-01 3.96529883e-01
-1.07837103e-01 3.39823246e-01 1.61330327e-01 1.02014995e+00
-5.18512428e-01 1.45314902e-01 4.95331585e-01 1.72264092e-02
-1.59893501e+00 7.93644726e-01 -6.88784480e-01 -1.64263546e-02
1.06254244e+00 -5.45754313e-01 -1.56072512e-01 -3.43590736e-01
-5.64976692e-01 3.90951693e-01 2.87267089e-01 8.03253829e-01
1.15574074e+00 -1.71533120e+00 -5.68835020e-01 3.76678705e-01
-8.97800475e-02 6.83752820e-02 6.34773731e-01 8.12603295e-01
-5.36938727e-01 7.07538351e-02 -4.66549665e-01 -7.97103584e-01
-1.21634054e+00 8.32632422e-01 3.26171517e-01 1.66677207e-01
-1.14199817e+00 7.19801426e-01 3.78932029e-01 4.33446914e-01
4.25101936e-01 -3.90262216e-01 -3.79039973e-01 -3.33217494e-02
1.00323772e+00 3.89419079e-01 -1.25781968e-01 -6.56473756e-01
-2.13866487e-01 1.27837434e-01 -3.31243634e-01 4.62655902e-01
1.39884293e+00 -5.92830718e-01 -1.07879594e-01 2.84554332e-01
1.09471953e+00 -3.48770142e-01 -1.83375204e+00 -6.38698518e-01
-1.27190173e-01 -9.07966197e-01 2.12008178e-01 -4.32345197e-02
-1.45143116e+00 7.19832122e-01 7.37988591e-01 -2.95815594e-03
1.63926554e+00 -2.90021718e-01 1.25549209e+00 3.90115678e-01
-6.90905601e-02 -9.76291478e-01 4.93886024e-01 6.15339994e-01
6.49880111e-01 -1.19547892e+00 -1.22573115e-01 -1.99168757e-01
-4.48689699e-01 1.29067326e+00 9.66204345e-01 -8.90723616e-02
4.45871711e-01 7.45255128e-02 -1.91493049e-01 4.23435308e-02
-8.15248609e-01 -1.17113329e-01 2.53489494e-01 5.54969728e-01
9.13051441e-02 -5.89133143e-01 2.02101632e-03 4.65964139e-01
3.98771286e-01 8.09730738e-02 6.85222447e-01 9.01120543e-01
-4.64509696e-01 -7.71935046e-01 -2.13031337e-01 5.04938066e-01
-5.18642604e-01 -2.72775233e-01 2.50704378e-01 4.92588162e-01
2.63540208e-01 7.30516732e-01 5.32295287e-01 -5.61029673e-01
2.07148984e-01 -1.50287583e-01 2.24010915e-01 -3.89075279e-02
1.75242517e-02 5.27386181e-02 -3.98455143e-01 -9.53199744e-01
-6.97799742e-01 -7.81617939e-01 -1.27791309e+00 -5.07074177e-01
8.36477503e-02 -2.14446008e-01 -2.22792812e-02 1.17053962e+00
4.57012802e-01 8.23932767e-01 7.30543137e-01 -9.02546048e-01
7.55470023e-02 -5.26984870e-01 -4.58513945e-01 6.02441370e-01
9.18201566e-01 -6.70367599e-01 -2.43795395e-01 5.17274141e-01] | [8.17750072479248, 1.1925944089889526] |
5378be86-eea7-452b-9f42-6a480e083a78 | learning-to-learn-generative-programs-with | 2007.03132 | null | https://arxiv.org/abs/2007.03132v2 | https://arxiv.org/pdf/2007.03132v2.pdf | Learning to learn generative programs with Memoised Wake-Sleep | We study a class of neuro-symbolic generative models in which neural networks are used both for inference and as priors over symbolic, data-generating programs. As generative models, these programs capture compositional structures in a naturally explainable form. To tackle the challenge of performing program induction as an 'inner-loop' to learning, we propose the Memoised Wake-Sleep (MWS) algorithm, which extends Wake Sleep by explicitly storing and reusing the best programs discovered by the inference network throughout training. We use MWS to learn accurate, explainable models in three challenging domains: stroke-based character modelling, cellular automata, and few-shot learning in a novel dataset of real-world string concepts. | ['Tuan Anh Le', 'Luke B. Hewitt', 'Joshua B. Tenenbaum'] | 2020-07-06 | null | null | null | null | ['program-induction', 'explainable-models'] | ['computer-code', 'computer-vision'] | [ 6.25387311e-01 3.21745634e-01 -3.77013564e-01 -4.74050999e-01
-3.23828578e-01 -4.34757680e-01 7.65585363e-01 -7.74747180e-03
2.11509522e-02 6.67310059e-01 1.79941133e-01 -5.86291671e-01
5.80680557e-02 -1.18704283e+00 -1.33181775e+00 -4.22964334e-01
-4.88058776e-02 9.80950952e-01 3.14432949e-01 -1.26487300e-01
3.29931945e-01 1.34285897e-01 -1.71959686e+00 6.05533838e-01
8.44688296e-01 7.33327642e-02 2.31073022e-01 1.13267982e+00
-3.76867026e-01 1.53165174e+00 -4.20648217e-01 -4.70314085e-01
-4.02511597e-01 -8.71696770e-01 -7.14303076e-01 -5.66917121e-01
-1.86132360e-02 -9.21370909e-02 -5.12209594e-01 1.01279962e+00
5.70450760e-02 4.12765980e-01 6.11317575e-01 -1.39270234e+00
-9.34718549e-01 1.16418207e+00 1.80053577e-01 3.63214873e-02
4.12208021e-01 3.99887890e-01 9.98892188e-01 -5.81342459e-01
9.07949507e-01 1.30044568e+00 7.93365479e-01 1.03974736e+00
-1.96132660e+00 -4.76324350e-01 -3.13613653e-01 1.96611777e-01
-1.03516841e+00 -5.62627435e-01 7.05359519e-01 -6.36309743e-01
1.48187006e+00 2.40755200e-01 8.94728482e-01 1.35569406e+00
9.94021446e-02 1.02273047e+00 6.49995267e-01 -5.93738139e-01
8.14002156e-01 -2.02273443e-01 4.86040354e-01 1.39074600e+00
3.23303938e-02 4.14885402e-01 -6.69434369e-01 -7.41972625e-01
6.76805794e-01 3.02944958e-01 1.29312113e-01 -4.57586229e-01
-7.86763430e-01 1.14415848e+00 1.21069968e-01 -5.43071888e-02
-1.50549620e-01 7.56711066e-01 3.56306970e-01 1.58629715e-01
1.87287569e-01 6.47083223e-01 -1.10962957e-01 -4.21950221e-01
-1.19973433e+00 5.33912778e-01 1.27513564e+00 9.20414209e-01
8.89686525e-01 3.92272323e-01 7.10997556e-04 4.72562075e-01
3.04785758e-01 2.89760947e-01 5.51168680e-01 -8.68951857e-01
-6.45751506e-02 7.31744707e-01 -4.57091659e-01 -5.03465116e-01
1.60140380e-01 -1.26125515e-02 -7.09759295e-01 1.55942112e-01
7.09816962e-02 -7.67606571e-02 -1.20111215e+00 1.85455048e+00
-1.53224036e-01 6.52980864e-01 2.29652040e-02 3.29904348e-01
7.76373923e-01 8.82884622e-01 2.37848669e-01 1.36420950e-01
8.76728952e-01 -1.11437750e+00 -2.51365185e-01 -4.37522799e-01
5.65698445e-01 -5.68523258e-02 1.03069413e+00 2.05383271e-01
-1.17130482e+00 -6.29367948e-01 -9.58664060e-01 9.30234268e-02
-3.85914207e-01 -2.20041618e-01 1.12441659e+00 6.09171033e-01
-1.09747994e+00 1.00432575e+00 -1.21503448e+00 -1.05435466e-02
7.43020236e-01 1.84021428e-01 3.03662810e-02 -2.15211790e-02
-9.37190890e-01 6.71874702e-01 6.05224848e-01 -3.68389755e-01
-1.50529492e+00 -7.06616402e-01 -1.07239413e+00 2.24402741e-01
2.19527483e-01 -9.69038308e-01 1.26197374e+00 -1.05535185e+00
-1.66399646e+00 8.85189056e-01 -5.85439086e-01 -9.06328738e-01
-1.57881066e-01 -2.26880386e-02 -1.40798405e-01 -1.48161188e-01
-5.00568449e-01 4.75884914e-01 8.47547531e-01 -1.02978516e+00
1.22419372e-01 -6.00350872e-02 -5.25992066e-02 -6.16582274e-01
3.19904834e-01 -7.63289481e-02 5.15633561e-02 -5.69203615e-01
-2.67841101e-01 -1.08078563e+00 -4.52760428e-01 -2.97078341e-01
-5.50935566e-01 -3.76962185e-01 5.85641921e-01 -5.77815652e-01
1.22349560e+00 -1.87917531e+00 6.44634545e-01 3.11272413e-01
2.12868750e-01 3.03673387e-01 -1.11151047e-01 4.30195898e-01
6.60528019e-02 2.51643769e-02 -5.06121516e-01 -3.21114719e-01
3.43930960e-01 9.67861593e-01 -9.26612139e-01 -3.44327465e-02
3.82064998e-01 1.47809350e+00 -9.15131569e-01 -5.41251063e-01
-5.19199893e-02 2.38706023e-01 -1.01106310e+00 4.99886185e-01
-1.11480367e+00 1.04849249e-01 -2.20410526e-01 3.76953244e-01
-4.01564641e-03 -4.22749698e-01 3.53073239e-01 4.13938522e-01
3.10414284e-01 2.46345788e-01 -7.15553880e-01 2.01426530e+00
-5.82803786e-01 8.02511692e-01 -6.11877143e-01 -1.08600903e+00
9.77129102e-01 -3.40912528e-02 -2.57413089e-01 -1.60138518e-01
-1.15807829e-02 -3.31108570e-02 -4.34081703e-02 -5.96681714e-01
3.10454190e-01 -2.33970642e-01 -1.14841089e-01 7.76522875e-01
4.40973252e-01 -3.01107407e-01 3.48895669e-01 5.02512693e-01
1.38236904e+00 4.77129430e-01 2.16751799e-01 -1.16140142e-01
6.94664940e-02 1.70232415e-01 3.68697703e-01 1.20681655e+00
3.54400218e-01 3.21704745e-01 7.31210351e-01 -8.36634398e-01
-1.24298871e+00 -1.25843656e+00 5.06242216e-01 1.58443081e+00
-3.85742068e-01 -4.65790540e-01 -8.94053042e-01 -2.80839145e-01
-1.25309065e-01 1.26137877e+00 -7.88266480e-01 -6.36263430e-01
-7.77642012e-01 -4.60718870e-01 8.94735575e-01 8.51568043e-01
2.84543503e-02 -1.44298053e+00 -1.06731212e+00 2.40771472e-01
1.55988142e-01 -4.51796144e-01 -2.76987851e-01 7.03010023e-01
-9.63750660e-01 -9.58316624e-01 -3.34176242e-01 -9.31193531e-01
8.39894652e-01 -7.10978448e-01 1.66216683e+00 4.03154731e-01
-5.08096993e-01 8.93799588e-04 -5.16790263e-02 -3.17989916e-01
-1.14120781e+00 2.79636294e-01 -4.22897369e-01 -4.73012149e-01
3.57482165e-01 -1.04967690e+00 1.16044544e-01 -5.52981317e-01
-9.23641384e-01 4.98336256e-01 4.94522423e-01 1.10149872e+00
5.76186061e-01 -1.53421670e-01 2.83228278e-01 -1.32348585e+00
6.64758325e-01 -5.32076120e-01 -7.29023516e-01 4.49205101e-01
-5.44473588e-01 8.29616964e-01 7.74644494e-01 -6.94114506e-01
-9.75745797e-01 3.05109292e-01 -2.11405709e-01 -5.67950130e-01
-3.35552454e-01 5.16078413e-01 9.91803184e-02 7.69026130e-02
9.20919359e-01 9.30853367e-01 2.20697492e-01 -1.61029071e-01
4.97651964e-01 7.70864114e-02 8.32000494e-01 -1.07438374e+00
8.43702078e-01 6.76156059e-02 1.72011986e-01 -5.77648640e-01
-6.88103914e-01 2.75047570e-01 -5.56647897e-01 2.44719759e-01
7.14072704e-01 -4.88581896e-01 -6.34858966e-01 2.35878974e-01
-1.32173371e+00 -9.54447269e-01 -6.04595482e-01 -1.09053046e-01
-1.08262110e+00 8.59655589e-02 -6.94861948e-01 -9.21705663e-01
-3.97338539e-01 -1.02198148e+00 8.85665655e-01 3.15304041e-01
-8.55630636e-01 -1.09630370e+00 7.57676125e-01 -3.51566106e-01
4.04068887e-01 4.87260878e-01 1.78003538e+00 -8.83673131e-01
-7.11046875e-01 -1.34666234e-01 2.62114465e-01 6.89196959e-02
-4.81758654e-01 3.10478270e-01 -8.53897750e-01 2.91817933e-01
-4.68729943e-01 -4.79787439e-01 9.50908720e-01 3.74378830e-01
1.31361461e+00 -6.08690321e-01 -4.79782701e-01 8.61188531e-01
1.33346236e+00 3.78879845e-01 8.94271374e-01 -5.31153381e-02
4.16548550e-01 1.49621516e-01 -3.91588092e-01 3.18786293e-01
1.18854418e-01 1.91587776e-01 2.36342639e-01 4.18695897e-01
-6.65753335e-02 -9.49096262e-01 3.43210727e-01 5.92808247e-01
-2.95792986e-02 1.11991376e-01 -1.06064403e+00 4.92567807e-01
-1.92090821e+00 -1.54317319e+00 2.19311371e-01 1.67750657e+00
1.26566899e+00 2.62925088e-01 2.12810144e-01 -1.18075393e-01
6.06691182e-01 1.28890038e-01 -6.23788238e-01 -7.90426433e-01
-1.50410375e-02 1.13511503e+00 -7.34581947e-02 4.06039834e-01
-7.86147594e-01 9.24370170e-01 7.10945702e+00 6.75377607e-01
-7.28610456e-01 1.27579138e-01 5.13700306e-01 -1.04004137e-01
-6.63393795e-01 4.73047972e-01 -5.56323647e-01 6.44163787e-01
1.51064813e+00 -3.13680232e-01 1.19222426e+00 1.36286390e+00
-5.62916696e-01 -5.63053191e-02 -1.54285729e+00 5.94757736e-01
6.86177313e-02 -2.07606220e+00 1.42625540e-01 -4.14939761e-01
8.45911086e-01 7.64843971e-02 -3.71703325e-04 7.76212811e-01
1.03552496e+00 -1.33590233e+00 8.79153669e-01 9.03754592e-01
5.51503837e-01 -8.78927708e-01 9.22779366e-02 7.04108834e-01
-8.06577563e-01 -9.79715586e-02 -2.90983886e-01 -1.17182590e-01
5.94127439e-02 5.14730692e-01 -7.61271536e-01 -2.37916157e-01
4.17924114e-02 4.75839138e-01 -5.31186283e-01 7.02130139e-01
-4.50612098e-01 8.07043433e-01 -7.96482805e-03 -5.08143067e-01
-9.67598893e-03 9.75454897e-02 3.73411864e-01 1.33305132e+00
2.26508528e-01 6.37805015e-02 -7.49353096e-02 1.92976427e+00
-1.19230978e-01 -7.06335545e-01 -8.68167460e-01 -5.45060873e-01
4.21280652e-01 7.69219279e-01 -6.24388278e-01 -7.45175242e-01
1.03423081e-01 7.03298569e-01 2.98238397e-01 2.99063057e-01
-9.47506368e-01 -5.78018427e-01 4.13507372e-01 -1.47383019e-01
4.43017453e-01 -2.77072161e-01 -2.89161205e-01 -1.09761739e+00
-6.50629759e-01 -1.07353306e+00 1.82185143e-01 -8.87374103e-01
-7.48294532e-01 5.58273256e-01 1.01604164e-01 -2.77226269e-01
-9.82097387e-01 -4.88669395e-01 -1.19144273e+00 8.21381390e-01
-9.70281422e-01 -9.60240722e-01 -1.10189855e-01 3.20328087e-01
5.88740408e-01 -4.38914418e-01 1.25263238e+00 -2.78109193e-01
-6.03511989e-01 5.57669818e-01 5.40232100e-02 1.84038341e-01
-1.79682776e-01 -1.12077451e+00 8.11431885e-01 8.04889381e-01
5.54471016e-01 1.15941441e+00 9.64129984e-01 -7.28453815e-01
-1.98655653e+00 -1.24797177e+00 5.75606227e-01 -6.40327394e-01
5.52589118e-01 -4.30317372e-01 -1.04881406e+00 8.83919656e-01
1.22695640e-01 -8.62384066e-02 6.92741871e-01 8.30992162e-02
-6.15175784e-01 5.53163171e-01 -8.43425632e-01 4.87137377e-01
1.11211908e+00 -8.52786601e-01 -9.92866874e-01 1.94712654e-02
8.48483980e-01 -4.54356313e-01 -4.62807298e-01 -1.67726457e-01
6.15071356e-01 -6.73380613e-01 9.40132618e-01 -1.27392113e+00
1.13280487e+00 8.91489163e-02 -5.67719042e-02 -1.32120502e+00
-4.35461774e-02 -9.82008934e-01 -1.04180419e+00 8.23813379e-01
3.10672879e-01 -2.86206394e-01 1.06293023e+00 6.16720974e-01
-1.90708935e-01 -7.98716784e-01 -6.35369062e-01 -6.70063555e-01
1.02011502e-01 -3.84838313e-01 8.49444151e-01 5.95772982e-01
9.06141177e-02 3.69593561e-01 -1.83879003e-01 -2.28770301e-01
8.24473023e-01 5.86783051e-01 8.16313744e-01 -1.27068532e+00
-1.10999775e+00 -5.69165647e-01 -1.97706938e-01 -7.32907057e-01
8.79857719e-01 -1.38811994e+00 2.60943502e-01 -1.13256752e+00
5.70933104e-01 -5.55006340e-02 2.45371088e-01 6.23173118e-01
-4.79388721e-02 -2.65578389e-01 -2.31913209e-01 1.22843459e-01
-5.00789940e-01 3.32382143e-01 6.67083979e-01 -3.34929854e-01
-7.99946636e-02 1.50835579e-02 -5.35981536e-01 7.74049878e-01
5.34304023e-01 -7.04240084e-01 -5.42107880e-01 -4.15905356e-01
6.11555696e-01 1.54961973e-01 8.23296845e-01 -8.98599505e-01
5.07940114e-01 -4.01979953e-01 1.69772416e-01 -4.07639802e-01
1.32003725e-01 -1.97677478e-01 5.51383257e-01 8.76011670e-01
-8.77035260e-01 -1.26978174e-01 7.46012107e-02 6.19523168e-01
7.54061639e-02 -7.09856272e-01 8.00966084e-01 -4.72243786e-01
-8.26354802e-01 1.25467166e-01 -5.03282487e-01 3.61991823e-01
6.35275006e-01 -1.23607047e-01 -4.23755825e-01 -2.58431554e-01
-8.62769306e-01 -3.41873765e-01 4.60137963e-01 3.48622315e-02
8.18211675e-01 -1.15893698e+00 -2.43122667e-01 5.07651508e-01
-4.18858230e-02 7.72609413e-02 1.07566252e-01 4.51662719e-01
-5.94820678e-01 3.38166207e-01 -2.87304163e-01 -3.50629896e-01
-1.03348827e+00 6.22173369e-01 1.60847798e-01 -3.13989431e-01
-5.50665021e-01 1.02058601e+00 -3.07330787e-01 -5.16834617e-01
1.72319412e-01 -4.99903113e-01 2.95334876e-01 -5.82569063e-01
5.32329977e-01 2.45283753e-01 -4.12910253e-01 8.05563629e-02
-6.63233316e-03 -1.04880303e-01 2.23292515e-01 -2.91514647e-04
1.81120884e+00 7.28242576e-01 -5.12041509e-01 5.82539916e-01
9.54299629e-01 -6.10938787e-01 -1.12014627e+00 -2.89842069e-01
2.93620974e-01 -7.53190741e-02 -2.91223854e-01 -5.51881254e-01
-5.01926422e-01 1.16907156e+00 1.53216854e-01 6.35407539e-03
6.78801715e-01 2.21950188e-01 8.13406527e-01 8.42865884e-01
3.30605984e-01 -7.72030294e-01 3.20428997e-01 9.05421138e-01
4.79998082e-01 -6.67437494e-01 -3.68488759e-01 2.60986179e-01
-4.12845314e-01 1.21607625e+00 4.28991050e-01 -4.75398242e-01
4.74260777e-01 8.07239234e-01 -9.14585352e-01 -1.94674492e-01
-1.27824140e+00 1.06097892e-01 1.67445421e-01 7.19871223e-01
2.29426831e-01 -6.99853152e-03 5.91140985e-01 9.41628397e-01
-2.86697298e-01 4.56479043e-01 3.58030736e-01 1.28322232e+00
-6.46013796e-01 -9.34368312e-01 5.96053265e-02 6.89403713e-01
5.26715741e-02 -3.19430292e-01 -2.85251260e-01 3.31283033e-01
3.27285305e-02 1.28098249e-01 9.95447710e-02 -4.99044150e-01
-2.41615274e-03 8.07274461e-01 7.89535105e-01 -9.70671356e-01
-2.03443885e-01 -5.56576073e-01 1.67819336e-02 -3.87521654e-01
-1.65858909e-01 -5.01405954e-01 -1.41122079e+00 -5.66660702e-01
-1.68300569e-02 1.27802894e-01 3.78505617e-01 1.00315964e+00
3.79870981e-01 7.80388713e-01 2.13808343e-01 -7.13034809e-01
-6.94311023e-01 -5.87725043e-01 -1.59118012e-01 2.32613787e-01
2.62221664e-01 -3.44518334e-01 -1.99159667e-01 5.62979221e-01] | [8.472187042236328, 7.29198694229126] |
bf6b7fa3-ba61-456d-a68f-0ba8ea3eff78 | towards-social-engaging-peer-learning | 2007.11346 | null | https://arxiv.org/abs/2007.11346v1 | https://arxiv.org/pdf/2007.11346v1.pdf | Towards Social & Engaging Peer Learning: Predicting Backchanneling and Disengagement in Children | Social robots and interactive computer applications have the potential to foster early language development in young children by acting as peer learning companions. However, studies have found that children only trust robots which behave in a natural and interpersonal manner. To help robots come across as engaging and attentive peer learning companions, we develop models to predict whether the listener will lose attention (Listener Disengagement Prediction, LDP) and the extent to which a robot should generate backchanneling responses (Backchanneling Extent Prediction, BEP) in the next few seconds. We pose LDP and BEP as time series classification problems and conduct several experiments to assess the impact of different time series characteristics and feature sets on the predictive performance of our model. Using statistics & machine learning, we also examine which socio-demographic factors influence the amount of time children spend backchanneling and listening to their peers. To lend interpretability to our models, we also analyzed critical features responsible for their predictive performance. Our experiments revealed the utility of multimodal features such as pupil dilation, blink rate, head movements, facial action units which have never been used before. We also found that the dynamics of time series features are rich predictors of listener disengagement and backchanneling. | ['Mononito Goswami', 'Maitree Leekha', 'Minkush Manuja'] | 2020-07-22 | null | null | null | null | ['pupil-dilation'] | ['computer-vision'] | [-1.66391134e-01 7.68565357e-01 1.20089747e-01 -5.09572446e-01
1.29096434e-01 -3.31578761e-01 4.95642394e-01 4.72572535e-01
-4.22264397e-01 4.39343721e-01 3.09264839e-01 6.22328185e-02
-1.55054450e-01 -5.17923653e-01 -6.72317982e-01 -5.24493217e-01
-4.63485897e-01 -3.78783257e-03 -5.88177331e-02 -2.03904465e-01
1.58944577e-01 3.43895614e-01 -2.01230168e+00 -2.64955554e-02
8.47822070e-01 3.89042974e-01 1.91717118e-01 8.63663554e-01
3.63935918e-01 1.41008961e+00 -6.75660014e-01 -2.30655342e-01
-2.95552641e-01 -1.24057829e-01 -6.99539661e-01 -3.42705488e-01
-5.44638969e-02 -6.32679343e-01 -2.18526512e-01 5.97823381e-01
5.61064065e-01 1.90865949e-01 8.84896159e-01 -1.83174920e+00
-5.81725240e-01 1.09006023e+00 -4.72621202e-01 2.02795088e-01
1.05716896e+00 -4.88710329e-02 7.28889465e-01 -3.89019668e-01
4.37571913e-01 1.49129009e+00 6.41398847e-01 6.56030834e-01
-1.31972194e+00 -1.02676976e+00 -1.55047681e-02 3.90970230e-01
-8.61204982e-01 -7.36702561e-01 7.37420440e-01 -6.08637273e-01
9.40632164e-01 -1.15567572e-01 1.10751736e+00 1.31841969e+00
1.07501574e-01 7.60271549e-01 9.76081312e-01 -4.04265672e-01
1.05988197e-01 2.41331071e-01 2.04468742e-01 4.35283035e-01
-1.97547406e-01 6.77089989e-02 -9.47139919e-01 -3.37268971e-02
3.95358264e-01 -4.80389655e-01 -8.50615464e-03 2.36117050e-01
-9.58276510e-01 9.35630739e-01 2.01034755e-01 2.68853337e-01
-3.44039708e-01 2.08588213e-01 1.89376473e-01 9.85705495e-01
5.36642492e-01 5.96642733e-01 -3.10701191e-01 -7.85907447e-01
4.97833602e-02 4.85879518e-02 9.34423983e-01 8.69412541e-01
7.00440943e-01 -5.48243105e-01 3.04451168e-01 1.21150768e+00
3.55795652e-01 2.04296738e-01 6.07571840e-01 -1.21460223e+00
3.88835631e-02 3.71747255e-01 -6.45942837e-02 -9.81696308e-01
-8.21343064e-01 4.81044859e-01 -1.56207338e-01 3.96901853e-02
5.06352723e-01 -5.16247809e-01 -4.52740639e-02 2.05832052e+00
6.02973998e-01 -2.88183447e-02 1.86194241e-01 4.47443604e-01
1.08967531e+00 4.55395967e-01 1.62549809e-01 -5.06486297e-01
8.69410217e-01 -6.44860625e-01 -5.84044814e-01 -2.95272879e-02
8.86174619e-01 -8.31227243e-01 9.49292719e-01 6.86303794e-01
-9.95911896e-01 -1.30286053e-01 -9.06950653e-01 1.51279405e-01
-3.04491129e-02 -3.30010712e-01 1.00587928e+00 6.99423194e-01
-1.13984358e+00 7.99533367e-01 -1.05671692e+00 -7.73259282e-01
1.39159083e-01 5.61357737e-01 -7.30123580e-01 3.37418228e-01
-8.24622154e-01 1.06878924e+00 -2.79475391e-01 -3.04322630e-01
-6.59988880e-01 -5.56817889e-01 -9.04755473e-01 -1.07668243e-01
-4.21375990e-01 2.91376799e-01 1.58438230e+00 -1.15155184e+00
-1.93426454e+00 6.57007813e-01 3.56782079e-01 -2.23677740e-01
1.72569022e-01 -1.72122985e-01 -8.44829679e-02 4.16143209e-01
3.00953358e-01 1.06005299e+00 7.64126122e-01 -6.90384984e-01
-4.51742768e-01 -3.11710656e-01 -1.02073245e-01 4.44779605e-01
-6.76608503e-01 6.04254186e-01 4.78493065e-01 -4.09777761e-01
2.58860379e-01 -1.04405236e+00 1.09131359e-01 -2.77280957e-02
-9.98831168e-03 -9.03483927e-01 5.13400376e-01 -1.31239384e-01
5.03127456e-01 -2.37638688e+00 -7.02361614e-02 -1.09773967e-02
3.43649596e-01 -2.05133304e-01 -3.25427115e-01 6.48315847e-01
-1.45196572e-01 -2.23441169e-01 7.94537365e-01 -1.29223689e-01
2.69659460e-02 1.32623881e-01 1.77092418e-01 8.27203035e-01
2.68292893e-02 5.23567617e-01 -9.38857317e-01 -3.76350880e-01
1.01566069e-01 4.52440888e-01 -6.82610035e-01 7.34558880e-01
2.77992100e-01 4.86942351e-01 -2.00678393e-01 3.85067701e-01
1.36969149e-01 3.97217691e-01 -2.87774265e-01 7.76471376e-01
-3.26063216e-01 5.40616870e-01 -4.27269816e-01 8.08773220e-01
-2.69448966e-01 1.23967946e+00 3.12931061e-01 -7.15640604e-01
9.27587986e-01 5.65466344e-01 4.65931267e-01 -7.14844882e-01
5.57181001e-01 -1.14911506e-02 5.32693386e-01 -9.21491563e-01
7.13570938e-02 1.46951184e-01 1.44464269e-01 8.54809225e-01
-6.73925653e-02 -4.80489194e-01 -1.87798768e-01 -1.62393935e-02
1.32693446e+00 -2.17559516e-01 1.69150278e-01 -1.98314920e-01
-8.99409801e-02 -5.11247993e-01 2.43049383e-01 7.20969617e-01
-4.75788116e-01 1.32432237e-01 8.01983774e-01 -1.36324748e-01
-6.30671561e-01 -6.71958983e-01 8.96205753e-02 1.81065679e+00
-1.16564900e-01 5.51082008e-02 -7.59424925e-01 -1.14456853e-02
-1.11684073e-02 9.08547103e-01 -6.99654222e-01 -6.17895365e-01
-2.35487819e-01 -1.17738314e-01 7.21211135e-01 3.63514006e-01
-3.33348721e-01 -1.49144316e+00 -1.02499902e+00 2.61184245e-01
2.36339048e-01 -8.58197510e-01 -2.52409279e-01 4.18342113e-01
-5.50697565e-01 -8.64884317e-01 -3.34381342e-01 -9.20568824e-01
4.83784884e-01 3.89124840e-01 5.87758780e-01 1.41338915e-01
-1.30243182e-01 1.00001276e+00 -8.49654496e-01 -1.12466455e+00
-6.52637899e-01 -2.44092122e-01 5.00338912e-01 -5.47280788e-01
3.97367209e-01 -1.34889972e+00 -4.77875292e-01 3.00696969e-01
-2.27413148e-01 -6.21912489e-03 2.70099699e-01 4.51542556e-01
-5.23788631e-01 -3.51730168e-01 7.51638949e-01 -3.35851103e-01
7.60359466e-01 -8.50585580e-01 -2.93683380e-01 -1.57110244e-01
-5.03980100e-01 -3.09822530e-01 1.86295658e-01 -1.26231945e+00
-7.88285851e-01 -3.79255675e-02 9.35661346e-02 -1.50762007e-01
-5.60806215e-01 2.79374152e-01 3.35420251e-01 -1.34750158e-01
6.00931644e-01 -3.23768258e-01 3.86471480e-01 -1.91187099e-01
1.02788009e-01 9.40522432e-01 2.72958934e-01 -6.64472282e-01
2.98711538e-01 -1.17113687e-01 -3.61700028e-01 -1.27474368e+00
-4.51012135e-01 -2.00126797e-01 -3.53671789e-01 -8.03328037e-01
8.13344896e-01 -1.07512677e+00 -1.53456450e+00 8.33648324e-01
-1.22174144e+00 -6.82400584e-01 7.45173916e-02 9.48005736e-01
-7.64274359e-01 -2.07796812e-01 -6.43336356e-01 -1.08735430e+00
-1.53434455e-01 -9.25923586e-01 5.12493074e-01 4.94559497e-01
-7.34937012e-01 -5.24403155e-01 2.66172409e-01 4.68754113e-01
-2.94488836e-02 2.05040425e-01 9.75116968e-01 -1.05392504e+00
1.77157268e-01 1.33182257e-01 1.86326861e-01 5.45633361e-02
-1.34137928e-01 2.84928352e-01 -1.16494048e+00 -1.09031469e-01
1.18509084e-01 -9.54827189e-01 -6.31004125e-02 3.38126093e-01
3.42183560e-01 -4.57408816e-01 1.48999719e-02 9.36230421e-02
4.79944885e-01 5.80242813e-01 2.73445010e-01 -2.48809089e-03
4.25278246e-01 1.40154302e+00 7.23999679e-01 4.80647206e-01
9.59960759e-01 3.23560745e-01 3.88141870e-01 5.42215765e-01
2.98672557e-01 -5.15032589e-01 6.30317390e-01 8.41851830e-01
4.92619444e-03 -6.35539293e-02 -9.53207374e-01 8.16467643e-01
-1.63959420e+00 -7.28275716e-01 -2.68272460e-01 1.77546465e+00
8.96599054e-01 -1.06314510e-01 4.10629570e-01 3.99356782e-01
5.03613770e-01 -3.32562208e-01 -2.84606874e-01 -9.00253296e-01
3.93625408e-01 -7.80631304e-02 9.55271050e-02 2.96340764e-01
-5.34721017e-01 8.99225712e-01 6.56933212e+00 2.10579634e-01
-9.88565981e-01 3.77873071e-02 6.51090741e-01 -1.40317857e-01
-4.75614928e-02 -4.07506913e-01 -1.71667770e-01 3.18946838e-01
1.05898201e+00 8.99748206e-02 7.15067089e-01 7.84521461e-01
4.62438434e-01 -6.46505177e-01 -1.74882400e+00 7.69354701e-01
-8.82695690e-02 -1.80091515e-01 -1.10622907e+00 -1.76227421e-01
3.28164369e-01 4.14273627e-02 -7.81351775e-02 3.78888249e-01
5.50581694e-01 -1.19719386e+00 1.11931026e+00 2.14868426e-01
3.53597015e-01 -4.35067564e-01 1.26095369e-01 4.66371447e-01
-6.78129852e-01 -2.64279127e-01 -6.48212284e-02 -9.31282878e-01
-5.82994044e-01 -1.66689098e-01 -1.35366023e+00 -6.64168775e-01
1.04071975e+00 6.11701310e-01 -3.26817036e-01 6.28202736e-01
-4.20376182e-01 7.60886431e-01 -6.09697998e-01 -8.06101620e-01
-1.31396070e-01 1.43197283e-01 5.36829233e-01 5.33699989e-01
1.58366635e-01 6.92963660e-01 -6.37561440e-01 4.88828301e-01
4.44157392e-01 2.94970870e-01 -7.71766186e-01 -2.10400864e-01
8.83344591e-01 9.43585753e-01 -6.88395202e-01 5.17172754e-01
-6.74633205e-01 5.08084953e-01 6.41436994e-01 -2.05608718e-02
-3.69775504e-01 -2.18445241e-01 8.27429056e-01 -1.64727390e-01
-1.13405101e-02 -1.78107526e-03 -2.19361693e-01 -7.39949524e-01
-3.24309140e-01 -7.91739166e-01 -5.21896891e-02 -1.02010000e+00
-1.04950440e+00 -7.02795759e-02 -9.23384260e-03 -9.32960868e-01
-3.86535913e-01 -1.15927242e-01 -1.07349145e+00 1.35707483e-01
-5.86668491e-01 -9.42737997e-01 1.61891766e-02 4.67153162e-01
4.18443143e-01 -1.36766229e-02 6.09328032e-01 -1.13275230e-01
-6.40465677e-01 8.00349534e-01 -5.08045852e-01 -1.69120491e-01
6.13951147e-01 -1.18786931e+00 -2.39250734e-01 1.03502609e-01
-1.16748296e-01 3.58241498e-01 1.12480259e+00 -4.00253505e-01
-1.37875128e+00 -3.07392210e-01 7.74309397e-01 -4.17234629e-01
9.69522715e-01 -3.70128274e-01 -5.57288170e-01 5.85993469e-01
1.34424418e-01 -4.91143316e-01 7.93444693e-01 4.50685471e-01
-1.61487117e-01 -2.27171835e-03 -1.19448686e+00 5.19023359e-01
8.59456599e-01 -4.27917659e-01 -6.63689017e-01 1.41801134e-01
9.55338120e-01 -4.55874689e-02 -1.04022300e+00 1.67543471e-01
1.03007555e+00 -1.19776416e+00 5.25546312e-01 -1.32762775e-01
5.71393013e-01 6.26569271e-01 1.73042297e-01 -1.36632109e+00
-6.06900640e-03 -1.09729648e+00 2.46716425e-01 1.57010329e+00
3.68984044e-01 -7.52684057e-01 7.01948881e-01 1.10251260e+00
-5.09800809e-03 -7.41673589e-01 -9.86661673e-01 -2.52419114e-01
3.27009231e-01 -6.92361236e-01 6.58562958e-01 8.90733778e-01
1.01048124e+00 4.43995804e-01 -5.12517057e-02 1.33658424e-01
1.89855367e-01 -4.90939438e-01 6.43412352e-01 -1.39160252e+00
-1.51891159e-02 -3.77028763e-01 -6.15725458e-01 -2.95270175e-01
4.04458195e-01 -2.57187128e-01 2.91245401e-01 -9.05586839e-01
1.50124570e-02 -4.77058887e-01 1.98843390e-01 6.96795166e-01
9.09104422e-02 -4.90560755e-02 2.08383143e-01 5.03536612e-02
-3.76380384e-01 5.53207159e-01 9.80507493e-01 2.61533111e-01
-7.63276875e-01 4.17505294e-01 -5.65332294e-01 1.16470122e+00
4.89325941e-01 -4.53914195e-01 -7.44531274e-01 -2.62744784e-01
3.31317067e-01 6.62051737e-01 9.30742398e-02 -8.60048056e-01
3.17695975e-01 -2.91350037e-01 1.67935386e-01 -1.53216973e-01
3.01925242e-01 -7.78360724e-01 -8.27461109e-02 2.60093629e-01
-6.20045781e-01 -1.04398288e-01 -6.10151216e-02 7.91507512e-02
2.48025626e-01 -2.80079037e-01 6.06127501e-01 4.86467272e-01
-4.19777557e-02 -2.16481179e-01 -1.31364393e+00 -3.04007888e-01
1.24655318e+00 -1.79421261e-01 -1.32229757e-02 -1.02455270e+00
-6.76635563e-01 5.31461477e-01 4.40397233e-01 7.10871994e-01
5.22473156e-01 -9.26817060e-01 -3.32313716e-01 2.74837315e-01
6.74689841e-03 -1.52201414e-01 -9.78512391e-02 8.81330192e-01
-3.78182918e-01 4.20205705e-02 -1.89746082e-01 -4.61462766e-01
-1.64384067e+00 1.60372734e-01 -4.22268286e-02 7.12055624e-01
-3.46927941e-01 1.36832428e+00 4.93986756e-02 -2.12835893e-01
7.66387463e-01 -3.84624302e-01 -6.88187838e-01 5.58667719e-01
2.57772148e-01 9.92969096e-01 -3.29223275e-01 -7.39639342e-01
-1.33021191e-01 5.52611612e-02 -1.28303826e-01 -2.62364745e-01
1.63184536e+00 -2.37007156e-01 -3.29868346e-01 7.01922297e-01
1.03493404e+00 -1.09669067e-01 -1.24237812e+00 2.48961791e-01
-2.29738846e-01 -1.61201328e-01 -3.71400118e-01 -3.11115891e-01
-6.19945705e-01 6.24835908e-01 3.47137809e-01 7.23805249e-01
9.92628276e-01 5.07590413e-01 3.60435903e-01 4.77263838e-01
3.84705484e-01 -1.03766763e+00 3.29701632e-01 4.61069256e-01
9.20239508e-01 -1.25951493e+00 -6.29267767e-02 -4.70110744e-01
-5.67819417e-01 7.64950991e-01 1.12855875e+00 4.32129651e-02
6.89769924e-01 2.98923314e-01 1.26732290e-01 -1.27604857e-01
-1.37501335e+00 2.17963353e-01 -1.26494169e-01 9.25723314e-01
6.23366535e-01 4.60486293e-01 -2.86741316e-01 8.50851536e-01
-1.04512823e+00 -4.29705232e-01 9.91608143e-01 7.65607297e-01
-5.20735383e-01 -7.00174868e-01 -3.64320576e-01 5.27133286e-01
-2.82244146e-01 3.69210809e-01 -6.38050556e-01 6.63254201e-01
2.06256896e-01 1.62972796e+00 5.15052564e-02 -7.15368509e-01
1.55049920e-01 -1.47110686e-01 5.69102705e-01 -9.58918393e-01
-7.88031578e-01 -2.37532761e-02 3.36943299e-01 -6.02658331e-01
-4.81676668e-01 -1.22803450e+00 -1.20227885e+00 -3.57554883e-01
-5.66338181e-01 4.09405753e-02 5.97833812e-01 9.59293544e-01
-2.95682967e-01 -2.44776979e-01 9.92876470e-01 -1.00377560e+00
-1.02211297e-01 -1.29069686e+00 -5.76974511e-01 -2.28864536e-01
5.67375302e-01 -6.65710211e-01 -4.49547648e-01 -2.30173558e-01] | [10.456947326660156, 8.541485786437988] |
5e360a07-0481-4c89-82c0-8cf0f5ec1962 | efficient-direct-density-ratio-estimation-for | null | null | http://papers.nips.cc/paper/3387-efficient-direct-density-ratio-estimation-for-non-stationarity-adaptation-and-outlier-detection | http://papers.nips.cc/paper/3387-efficient-direct-density-ratio-estimation-for-non-stationarity-adaptation-and-outlier-detection.pdf | Efficient Direct Density Ratio Estimation for Non-stationarity Adaptation and Outlier Detection | We address the problem of estimating the ratio of two probability density functions (a.k.a.~the importance). The importance values can be used for various succeeding tasks such as non-stationarity adaptation or outlier detection. In this paper, we propose a new importance estimation method that has a closed-form solution; the leave-one-out cross-validation score can also be computed analytically. Therefore, the proposed method is computationally very efficient and numerically stable. We also elucidate theoretical properties of the proposed method such as the convergence rate and approximation error bound. Numerical experiments show that the proposed method is comparable to the best existing method in accuracy, while it is computationally more efficient than competing approaches. | ['Masashi Sugiyama', 'Takafumi Kanamori', 'Shohei Hido'] | 2008-12-01 | null | null | null | neurips-2008-12 | ['density-ratio-estimation'] | ['methodology'] | [-3.01569998e-01 -4.09772635e-01 -1.64428741e-01 -3.25720757e-01
-1.24977434e+00 -3.86157602e-01 1.00853130e-01 3.03741872e-01
-5.25068939e-01 1.26953578e+00 -3.72347176e-01 -2.63531148e-01
-3.65591347e-01 -3.20847064e-01 -5.76548576e-01 -9.17729437e-01
-2.19970480e-01 4.26507890e-01 3.01549494e-01 1.76065966e-01
5.17145991e-01 6.83424771e-01 -1.71956229e+00 -6.85478270e-01
1.14629292e+00 1.30715787e+00 -3.03154618e-01 6.83912933e-01
1.70785353e-01 5.17750978e-01 -7.82873511e-01 -2.88045138e-01
1.00582123e-01 -2.82140553e-01 -5.53671539e-01 -1.01945147e-01
1.78856745e-01 -1.36965930e-01 4.14070874e-01 1.24700487e+00
4.49842334e-01 4.66094553e-01 1.06454122e+00 -1.59501386e+00
-2.76984543e-01 6.76316991e-02 -9.32210624e-01 6.74003839e-01
2.56100833e-01 -3.02959740e-01 8.47929001e-01 -1.01933646e+00
9.68649797e-03 1.02120864e+00 9.74560618e-01 1.78536028e-02
-1.10340512e+00 -7.16125786e-01 4.42913771e-02 2.96057463e-01
-1.82692242e+00 -3.23593467e-01 3.80060315e-01 -3.25537354e-01
4.47481602e-01 3.12919676e-01 3.34401548e-01 6.66902602e-01
2.77136505e-01 6.21485651e-01 1.02192152e+00 -4.24790502e-01
6.17837250e-01 2.45357171e-01 6.71293512e-02 6.34475052e-01
8.38128209e-01 -1.77291170e-01 -2.56951660e-01 -7.97511518e-01
8.99081886e-01 -1.75274387e-01 -1.33978993e-01 -2.71901667e-01
-8.99765551e-01 7.73136735e-01 -5.58998249e-02 1.40666723e-01
-3.45939130e-01 2.66643405e-01 1.95489272e-01 3.72742504e-01
7.13711023e-01 1.82615593e-01 -4.11984324e-01 -2.79366702e-01
-8.96765947e-01 3.21217984e-01 7.89481163e-01 1.06384277e+00
3.13673586e-01 1.89751610e-01 -6.36167228e-02 5.71272194e-01
3.64659995e-01 6.38196945e-01 2.71139294e-01 -9.04656589e-01
3.37086111e-01 4.45755422e-02 6.55401170e-01 -6.90391183e-01
-3.46861452e-01 -3.01943809e-01 -1.07926118e+00 4.12588641e-02
6.24882102e-01 -1.70590222e-01 -5.28622210e-01 1.67473114e+00
5.87674737e-01 6.84154153e-01 -2.08772466e-01 5.17513037e-01
2.53542215e-01 5.62884688e-01 7.15487972e-02 -8.50894809e-01
9.82078493e-01 -4.08965051e-01 -9.29686844e-01 3.36281985e-01
2.38192841e-01 -8.79347503e-01 7.54224420e-01 4.45473403e-01
-1.10205889e+00 -3.76301110e-01 -7.27468669e-01 3.85211855e-01
3.57401121e-04 3.79498303e-02 5.73059916e-01 5.70179164e-01
-9.33226049e-01 7.06821084e-01 -7.33916044e-01 -2.98125774e-01
1.46560028e-01 5.14865160e-01 -2.94523239e-01 3.09713066e-01
-9.55144942e-01 6.64557338e-01 4.69095826e-01 2.01245118e-03
-4.11560178e-01 -5.57353973e-01 -7.33746529e-01 7.47086853e-02
6.81574177e-03 -6.82058632e-01 1.43436253e+00 -7.20714033e-01
-1.45822227e+00 2.07882524e-01 -4.35283870e-01 -2.54931390e-01
4.75407958e-01 -3.45790982e-01 -4.78748292e-01 1.20635264e-01
3.18599343e-01 -1.25685468e-01 9.89391387e-01 -9.33955371e-01
-9.16576564e-01 -1.18444920e-01 -5.42922974e-01 6.31718785e-02
-2.31451496e-01 1.73271567e-01 -4.48096365e-01 -9.03901100e-01
5.23921512e-02 -5.56379080e-01 -4.03252810e-01 7.00341016e-02
-1.88604057e-01 -1.95937276e-01 3.88338536e-01 -5.23140371e-01
1.67605782e+00 -2.14696717e+00 -3.21026146e-01 6.57017827e-01
-8.59000981e-02 2.01923341e-01 1.56824380e-01 4.93888170e-01
-8.29198956e-02 -3.74983475e-02 -4.35565352e-01 -1.75498441e-01
-1.47073701e-01 -1.45621806e-01 -7.32910782e-02 9.12042260e-01
1.86520979e-01 3.90388221e-01 -1.06459057e+00 -5.90678930e-01
1.35243341e-01 2.94110507e-01 -3.71772319e-01 3.13559592e-01
5.98787189e-01 5.40910602e-01 -3.33019435e-01 8.28101099e-01
7.23695874e-01 -2.35076234e-01 -7.54352808e-02 1.11165069e-01
-8.68408009e-03 -2.37798065e-01 -1.75356007e+00 7.70038247e-01
-2.40883455e-01 4.63661939e-01 -5.18723205e-02 -1.09119797e+00
9.36858714e-01 3.23642135e-01 5.77091396e-01 -1.60511911e-01
3.48092198e-01 5.01171649e-01 -1.88830450e-01 -3.87422264e-01
4.05892551e-01 -2.32878193e-01 -9.90735367e-02 1.55754805e-01
-9.90769416e-02 2.87971556e-01 1.38072014e-01 -2.18119636e-01
9.51187253e-01 -2.14629576e-01 1.31528020e+00 -5.93946040e-01
6.87043607e-01 -3.68790209e-01 5.44260800e-01 8.91436517e-01
-6.92642450e-01 3.15183461e-01 5.42661011e-01 -8.48523304e-02
-9.48704302e-01 -1.33712471e+00 -4.66998667e-01 6.96426094e-01
2.53464639e-01 -1.26925886e-01 -7.21281052e-01 -5.29252112e-01
3.87431085e-01 7.05886543e-01 -5.83938777e-01 -2.64967978e-01
-3.72948706e-01 -8.46595466e-01 4.21593666e-01 6.59527540e-01
3.46494555e-01 -5.71418166e-01 -2.23811626e-01 2.42975011e-01
-1.53770640e-01 -8.46651733e-01 -3.34445119e-01 -2.01177672e-02
-1.19675112e+00 -1.03375161e+00 -8.06925416e-01 -6.36810601e-01
7.16809988e-01 1.82801947e-01 1.10796559e+00 -5.63815385e-02
1.06516324e-01 3.49757880e-01 -2.54392356e-01 -4.65279520e-01
-1.36272743e-01 -2.32470036e-02 5.33862114e-01 9.72362831e-02
3.91746134e-01 -6.61337554e-01 -6.64086699e-01 4.68851149e-01
-7.47679472e-01 -8.30124199e-01 6.74023509e-01 8.26130152e-01
8.95483792e-01 3.53003293e-01 1.07719111e+00 -8.66995335e-01
1.01593697e+00 -7.87220418e-01 -9.65381444e-01 2.44713143e-01
-6.59088790e-01 2.72801399e-01 7.28998244e-01 -3.53263170e-01
-9.28887010e-01 -1.74743626e-02 -2.78790563e-01 -4.04247940e-01
-1.12135559e-01 3.71632576e-01 7.88236186e-02 -1.50577918e-01
2.30448082e-01 8.26275349e-02 -1.43888801e-01 -6.47416651e-01
7.68239647e-02 6.98964775e-01 7.78428614e-01 -5.34202754e-01
8.77294779e-01 2.29378045e-01 2.58277357e-01 -9.71926391e-01
-8.33066583e-01 -1.07812846e+00 -4.55599219e-01 6.02410473e-02
2.10326359e-01 -7.57440746e-01 -8.81995201e-01 3.41105193e-01
-8.91099274e-01 2.81484812e-01 -2.83051074e-01 7.90634990e-01
-6.07517481e-01 6.79933369e-01 -3.91686350e-01 -1.47856295e+00
-3.97060007e-01 -7.95364857e-01 1.12214506e+00 1.13730371e-01
-1.70336053e-01 -1.21120954e+00 3.00575435e-01 -3.02017838e-01
1.26913592e-01 4.29620326e-01 6.14970624e-01 -7.44920909e-01
-1.35061145e-01 -5.64425826e-01 -3.34618509e-01 2.99669653e-01
5.47003262e-02 2.63682753e-01 -7.38770485e-01 -5.05806386e-01
5.16973287e-02 2.56330132e-01 6.34175777e-01 7.57333755e-01
1.30045438e+00 -2.80047268e-01 -1.48751855e-01 4.74446803e-01
1.42352760e+00 1.14346547e-02 6.68463111e-01 2.27370575e-01
3.11869889e-01 2.16212392e-01 1.21549642e+00 9.26874995e-01
1.81014702e-01 4.99321669e-01 1.39282197e-01 1.87904611e-01
5.09656787e-01 1.23097010e-01 4.02255386e-01 1.12071216e+00
-1.52007386e-01 -7.81959891e-02 -7.70802379e-01 6.03087664e-01
-2.24621582e+00 -1.17303550e+00 -4.06335950e-01 2.85795450e+00
7.01861918e-01 1.03882901e-01 3.65262240e-01 2.59398341e-01
8.78759146e-01 -4.44043070e-01 -5.05520940e-01 -3.98314744e-01
2.70519972e-01 3.64619821e-01 6.80253386e-01 5.90323150e-01
-1.24479377e+00 4.28879559e-01 7.68231153e+00 1.17534947e+00
-4.32265759e-01 9.82270241e-02 5.26832819e-01 2.90932298e-01
-2.53526401e-02 -1.09620906e-01 -9.19525564e-01 7.13433444e-01
1.18485057e+00 -3.38782310e-01 -8.08429569e-02 9.70992088e-01
2.05907717e-01 -5.24792075e-01 -7.99079716e-01 1.21437073e+00
-9.86384675e-02 -8.08159053e-01 -1.11281283e-01 -1.23230569e-01
6.72843874e-01 -4.39147562e-01 -1.65547460e-01 2.75714040e-01
-8.07194933e-02 -7.22858548e-01 4.26120013e-01 6.88547730e-01
9.38704669e-01 -1.28113306e+00 1.31071150e+00 3.63175660e-01
-1.47841382e+00 8.06915108e-03 -4.18635875e-01 -2.18496382e-01
1.33018315e-01 1.02855265e+00 -6.66253388e-01 4.81395066e-01
7.86769927e-01 3.10151398e-01 -4.14272934e-01 1.80918229e+00
-1.13322735e-01 5.65783858e-01 -5.53810120e-01 -2.31813014e-01
-4.33370173e-02 -3.13451886e-01 5.28864264e-01 9.73904908e-01
7.33000278e-01 -3.74988280e-02 6.92135468e-03 3.82780850e-01
1.05285153e-01 2.50605345e-01 -6.05041385e-01 2.90251344e-01
7.43885040e-01 8.65044236e-01 -9.00805414e-01 -3.25452030e-01
-3.75793993e-01 9.44435477e-01 4.47901905e-01 3.01884085e-01
-1.11203063e+00 -7.76363552e-01 7.26234496e-01 -1.04224704e-01
4.54604506e-01 2.06020754e-02 -9.42705274e-02 -1.24011421e+00
1.53943315e-01 -5.15381098e-01 4.96431321e-01 -1.93486914e-01
-1.67623508e+00 4.14297581e-01 4.10851389e-01 -1.56898558e+00
-3.60259593e-01 -5.95349848e-01 -5.79295278e-01 7.23103285e-01
-1.45712745e+00 -3.35674733e-01 -5.93180209e-02 6.64999425e-01
3.17428738e-01 -1.43017560e-01 7.16830432e-01 4.32215393e-01
-8.72891784e-01 9.94314849e-01 8.24651241e-01 -2.85351247e-01
7.55107880e-01 -1.49407589e+00 3.86383951e-01 1.15511215e+00
-2.27633923e-01 7.60440826e-01 9.64111567e-01 -6.01946235e-01
-7.33612716e-01 -9.38716948e-01 8.23242486e-01 -3.80559713e-01
7.18308032e-01 2.78275385e-02 -7.75850654e-01 4.24124330e-01
-3.64432007e-01 1.42444447e-01 1.02762246e+00 2.07573131e-01
4.77432050e-02 -2.27623791e-01 -1.44559896e+00 3.50951314e-01
5.51411569e-01 -1.30858451e-01 -5.23961961e-01 1.89480096e-01
2.92276889e-01 -9.61863622e-02 -9.77859080e-01 4.42476898e-01
6.91760898e-01 -9.51305270e-01 9.83389258e-01 -4.52652097e-01
-3.51697922e-01 -4.66786534e-01 -1.53566182e-01 -1.11083031e+00
-3.94549668e-01 -8.11921656e-01 -6.36206269e-01 1.16126394e+00
1.83661968e-01 -1.11796701e+00 3.58205318e-01 4.24653232e-01
2.61537105e-01 -7.08364069e-01 -1.27691412e+00 -1.21584630e+00
-1.73299909e-01 -5.76461494e-01 4.51356739e-01 7.99447238e-01
-1.83975384e-01 3.47765744e-01 -4.51760232e-01 4.74128783e-01
9.80401099e-01 -5.69065996e-02 6.73096657e-01 -1.66569495e+00
-2.67007560e-01 -2.36047223e-01 -5.06152987e-01 -7.84155786e-01
-1.88737623e-02 -2.66630054e-01 7.70122837e-03 -1.13890731e+00
1.53431505e-01 -3.55454654e-01 -7.48621643e-01 1.41645849e-01
-7.52506375e-01 2.43167683e-01 -4.06215429e-01 3.52820247e-01
-7.70159900e-01 5.84665358e-01 6.54597878e-01 5.85550368e-01
-2.40229741e-01 5.83900690e-01 -6.26368821e-01 1.14365947e+00
1.06012869e+00 -7.56268084e-01 -4.43985492e-01 3.12698990e-01
1.46281078e-01 2.52489541e-02 8.04160610e-02 -1.10971570e+00
-6.06702343e-02 -2.28235692e-01 3.84091079e-01 -7.63739288e-01
-1.19959388e-03 -9.75520432e-01 1.70412716e-02 3.21729809e-01
1.62254408e-01 4.32694495e-01 1.31225139e-01 9.69606817e-01
-3.60443920e-01 -6.35407865e-01 9.50328708e-01 2.62824208e-01
-5.39018631e-01 2.44567975e-01 -3.35185081e-01 1.24174774e-01
1.12196803e+00 -2.39207879e-01 1.08101711e-01 -6.14969552e-01
-3.77098471e-01 1.11413769e-01 1.52764410e-01 -1.79750875e-01
7.18131244e-01 -1.58108270e+00 -5.51248491e-01 1.47563413e-01
2.97731578e-01 -3.36828589e-01 -1.22733831e-01 1.32195771e+00
-7.32409954e-01 1.52220026e-01 -2.32815482e-02 -5.75168014e-01
-1.00112784e+00 4.72628295e-01 -1.42700464e-01 -4.15993363e-01
-1.72579408e-01 7.43010402e-01 7.39715174e-02 -1.98857486e-01
4.15494323e-01 -3.63688141e-01 -1.25201747e-01 -6.99795410e-02
8.38778734e-01 8.86575878e-01 -1.80806994e-01 -5.37585497e-01
-6.22116745e-01 6.70140982e-01 1.44741923e-01 -1.07819051e-01
1.12007999e+00 -3.76402050e-01 -2.56475657e-01 7.55455375e-01
1.16138864e+00 2.02480510e-01 -9.34457004e-01 -4.65995297e-02
1.12873934e-01 -6.69706285e-01 -1.60238847e-01 -2.29327440e-01
-7.02253520e-01 4.83784080e-01 7.28223264e-01 3.18629056e-01
1.40393889e+00 -2.78876156e-01 5.18398464e-01 5.31737447e-01
4.32225496e-01 -1.16234756e+00 -1.26864746e-01 2.89049745e-01
5.89392304e-01 -1.47215068e+00 4.00587767e-01 -5.21198809e-01
-4.96557117e-01 1.02486455e+00 4.22008663e-01 -2.85653383e-01
8.41017067e-01 1.31620422e-01 -2.81890720e-01 1.63278192e-01
-4.59340543e-01 -4.96863633e-01 4.98241544e-01 7.35488534e-01
3.41219932e-01 2.58579664e-02 -5.93564332e-01 6.54475629e-01
5.83963059e-02 -3.87377962e-02 3.98693889e-01 7.97571599e-01
-5.25358200e-01 -8.86496067e-01 -5.24349928e-01 6.31500065e-01
-6.23753786e-01 -1.21475503e-01 -7.08600581e-02 9.58999515e-01
-1.88342229e-01 9.55044627e-01 9.12858546e-03 -6.78180903e-03
3.97648633e-01 -8.86211544e-02 2.60499954e-01 -3.10299218e-01
-1.56433031e-01 1.99834779e-01 1.04358315e-01 -4.79243398e-01
-5.72900832e-01 -7.60031104e-01 -8.64232421e-01 -5.70138335e-01
-7.29583204e-01 6.02619290e-01 1.74061492e-01 7.77801633e-01
2.73240119e-01 2.68988580e-01 8.62504423e-01 -6.03335500e-01
-7.16689885e-01 -7.97628641e-01 -9.40652728e-01 2.94609964e-01
4.27862018e-01 -9.89864945e-01 -6.70325816e-01 -3.00045818e-01] | [7.323700904846191, 4.062187194824219] |
c7e0ede6-0fe9-47f9-8da6-dcad7ea082a3 | low-light-video-enhancement-by-learning-on | 2210.04290 | null | https://arxiv.org/abs/2210.04290v1 | https://arxiv.org/pdf/2210.04290v1.pdf | Low Light Video Enhancement by Learning on Static Videos with Cross-Frame Attention | The design of deep learning methods for low light video enhancement remains a challenging problem owing to the difficulty in capturing low light and ground truth video pairs. This is particularly hard in the context of dynamic scenes or moving cameras where a long exposure ground truth cannot be captured. We approach this problem by training a model on static videos such that the model can generalize to dynamic videos. Existing methods adopting this approach operate frame by frame and do not exploit the relationships among neighbouring frames. We overcome this limitation through a selfcross dilated attention module that can effectively learn to use information from neighbouring frames even when dynamics between the frames are different during training and test times. We validate our approach through experiments on multiple datasets and show that our method outperforms other state-of-the-art video enhancement algorithms when trained only on static videos. | ['Rajiv Soundararajan', 'Sameer Malik', 'Shivam Chhirolya'] | 2022-10-09 | null | null | null | null | ['video-enhancement'] | ['computer-vision'] | [ 3.91114444e-01 -4.12646621e-01 1.62728131e-01 -2.20384926e-01
-5.34411907e-01 -4.52305466e-01 4.12321866e-01 -3.83588552e-01
-6.93015218e-01 8.10798347e-01 1.41642436e-01 1.02710925e-01
-7.32122585e-02 -6.39432788e-01 -1.06524813e+00 -7.76667535e-01
-1.06580667e-01 -2.40370214e-01 4.77385491e-01 -1.97769299e-01
3.65414508e-02 2.45781228e-01 -1.60277212e+00 4.61721241e-01
4.06734049e-01 6.95576191e-01 4.81706113e-01 9.41999257e-01
3.10094386e-01 9.92341876e-01 -4.04501975e-01 -3.88855696e-01
6.68752134e-01 -4.52274472e-01 -6.04789734e-01 4.42375243e-01
8.68760645e-01 -8.74496758e-01 -7.38722742e-01 9.81981456e-01
6.04490221e-01 4.09159541e-01 8.07898343e-02 -1.16295087e+00
-4.54764098e-01 8.45442712e-02 -6.55971885e-01 6.56194448e-01
3.30810040e-01 2.19073892e-01 5.33839762e-01 -7.25782216e-01
7.09709585e-01 9.03748214e-01 8.78956378e-01 6.95462704e-01
-1.09873867e+00 -5.18876910e-01 2.63084412e-01 4.76047665e-01
-9.06127274e-01 -7.56978512e-01 7.34678149e-01 -2.76004970e-01
9.27391171e-01 -1.71192765e-01 5.79433084e-01 1.13482368e+00
2.32548401e-01 6.86629057e-01 1.03555262e+00 -3.73861462e-01
1.22739272e-02 -1.23448163e-01 -2.48480648e-01 5.87534845e-01
3.06729395e-02 3.80001128e-01 -7.65302896e-01 2.75002182e-01
9.33206737e-01 1.17489640e-02 -6.99351549e-01 -2.76336819e-01
-1.23936391e+00 5.37890315e-01 3.00662518e-01 3.82272542e-01
-4.61823642e-01 3.45876962e-01 3.11672628e-01 4.90000486e-01
3.90337437e-01 2.99285471e-01 -5.13548374e-01 -1.79922342e-01
-1.23362982e+00 7.65866265e-02 4.50105160e-01 7.32411206e-01
7.85961032e-01 2.50705481e-01 -9.67928767e-02 5.51396430e-01
1.39571857e-02 1.93679735e-01 2.47688293e-01 -1.31765270e+00
2.61019915e-01 -1.46748021e-01 2.71824360e-01 -9.78258133e-01
-1.51393667e-01 -3.88329744e-01 -6.53049052e-01 4.27516133e-01
4.73515630e-01 -3.39976549e-01 -7.90104449e-01 1.78860629e+00
2.07055598e-01 7.00393736e-01 1.33895218e-01 9.83941734e-01
7.87175536e-01 6.29946232e-01 5.18803783e-02 -5.14764965e-01
8.06655586e-01 -1.08547580e+00 -8.60771298e-01 -2.48179451e-01
1.68241948e-01 -8.07966650e-01 7.80143797e-01 4.45858151e-01
-1.43522298e+00 -8.08796942e-01 -9.00245368e-01 -9.91372019e-02
-1.45540595e-01 -1.41231909e-01 4.81316566e-01 5.22683203e-01
-1.31276631e+00 6.60696149e-01 -8.15797687e-01 -2.44657680e-01
4.79735047e-01 4.78747249e-01 -5.57275355e-01 -3.68583500e-01
-1.18350506e+00 6.75085723e-01 3.69373381e-01 3.60094696e-01
-1.04700112e+00 -8.21951389e-01 -8.70509565e-01 3.67058069e-02
4.42187309e-01 -8.14664662e-01 1.16592121e+00 -1.59735298e+00
-1.58788764e+00 6.58849359e-01 -1.73833430e-01 -4.03336197e-01
6.33822620e-01 -3.67651612e-01 -2.74752855e-01 4.19458091e-01
-2.94601768e-01 6.48258328e-01 1.07769454e+00 -1.32631934e+00
-6.99297965e-01 1.96947008e-02 6.05554640e-01 2.44578749e-01
-4.15407240e-01 1.38708428e-01 -6.30984962e-01 -5.78227639e-01
-3.99563253e-01 -8.19017410e-01 -1.18782654e-01 9.28085968e-02
1.05699845e-01 2.83856750e-01 1.34576440e+00 -7.33249605e-01
9.04031992e-01 -1.94142044e+00 1.77319184e-01 -2.00230166e-01
1.14449233e-01 5.43284595e-01 -1.99151903e-01 6.50003329e-02
4.10008915e-02 -2.42725685e-01 -2.74907891e-02 -3.05052429e-01
-3.52406591e-01 2.88827628e-01 -1.35476310e-02 4.69432682e-01
2.08673060e-01 7.22122967e-01 -1.26149309e+00 -4.69595462e-01
5.10262191e-01 8.63792598e-01 -6.96745038e-01 4.20668900e-01
-1.28708914e-01 6.75984859e-01 2.21957546e-02 4.71394658e-01
7.12124348e-01 -2.87291884e-01 1.44736081e-01 -4.67810631e-01
-1.07689328e-01 -1.89361930e-01 -1.31585765e+00 1.69464600e+00
-5.73502839e-01 1.23732209e+00 1.54922396e-01 -1.03358078e+00
3.60924184e-01 4.29336280e-01 6.79110467e-01 -6.07617080e-01
1.82217509e-01 -6.45370483e-02 -1.73283722e-02 -9.25719917e-01
4.53224182e-01 -3.23964149e-01 5.83497345e-01 3.09980005e-01
2.17050806e-01 1.64569050e-01 4.65442598e-01 2.35237908e-02
1.13836777e+00 3.64995539e-01 -7.51123503e-02 1.13174014e-01
4.53224659e-01 -5.42740345e-01 6.99972510e-01 7.57066429e-01
-3.48035127e-01 7.49904215e-01 7.38684833e-02 -5.41378796e-01
-1.13423121e+00 -1.00151801e+00 -1.03120565e-01 9.37797070e-01
2.58539915e-01 -3.44195753e-01 -6.64280236e-01 -7.17689157e-01
-4.80210304e-01 2.43497357e-01 -6.62963986e-01 -2.44716927e-02
-7.10975528e-01 -7.29874671e-01 -8.12727064e-02 5.30674219e-01
9.02576983e-01 -8.85864258e-01 -9.40784872e-01 2.97417402e-01
-3.28424007e-01 -1.63243234e+00 -3.50173146e-01 -8.93210992e-02
-6.41742885e-01 -1.15580893e+00 -7.53677249e-01 -7.14293897e-01
4.17747229e-01 5.77207804e-01 1.31137967e+00 1.36691228e-01
-8.15770328e-02 7.15980947e-01 -2.18482360e-01 -1.78079829e-01
-3.50019723e-01 -3.44896704e-01 -1.01864427e-01 2.48112649e-01
1.55482829e-01 -4.88823324e-01 -8.81340027e-01 3.01276982e-01
-1.29947281e+00 1.99188426e-01 3.32330912e-01 1.04777169e+00
5.01290321e-01 4.84553218e-01 3.56517404e-01 -6.56985521e-01
1.79048762e-01 -3.84423822e-01 -5.84299564e-01 3.19433689e-01
-4.38775457e-02 -2.25065157e-01 5.36505878e-01 -5.18486857e-01
-1.32002735e+00 1.54129088e-01 -1.31304590e-02 -7.51182377e-01
-1.05013296e-01 1.81071460e-01 -2.25755945e-01 -4.33702350e-01
3.36761445e-01 3.21564847e-03 -1.54508427e-01 -1.40860587e-01
-6.72785938e-03 3.57364833e-01 7.08848953e-01 -2.32263878e-01
6.86050892e-01 7.46062398e-01 2.01213226e-01 -9.43692446e-01
-8.95031750e-01 -4.29377049e-01 -6.61493540e-01 -7.04768300e-01
1.01042891e+00 -9.56131339e-01 -5.86527348e-01 5.36583304e-01
-1.06656349e+00 -6.77620232e-01 -1.95254520e-01 5.75303555e-01
-6.90679252e-01 5.75772166e-01 -6.77369773e-01 -5.68728328e-01
-7.39791915e-02 -1.18758702e+00 1.09219635e+00 4.65624690e-01
2.73973197e-01 -1.40119338e+00 3.96190062e-02 2.14112312e-01
5.83951056e-01 4.42432791e-01 3.75798076e-01 2.74767637e-01
-8.96944106e-01 3.62850428e-02 -1.81628659e-01 6.22416675e-01
2.20066145e-01 5.49048334e-02 -1.10194063e+00 -5.50273359e-01
1.26175821e-01 -3.24439049e-01 9.41901326e-01 7.24371731e-01
1.21034503e+00 -1.02408506e-01 -6.99450895e-02 8.54439795e-01
1.65662432e+00 -1.03342436e-01 8.60292137e-01 4.83316153e-01
6.68312192e-01 4.92771387e-01 5.46876907e-01 1.91515774e-01
1.12845384e-01 8.58714342e-01 5.86153030e-01 -3.95532101e-01
-3.31800073e-01 9.85509977e-02 4.82703090e-01 2.77495831e-01
-4.20491487e-01 -4.43557560e-01 -5.79641223e-01 6.63772345e-01
-1.78288555e+00 -1.43871319e+00 5.17452136e-02 2.17520094e+00
7.21650362e-01 1.62846744e-02 9.35722608e-03 2.11744472e-01
6.54459357e-01 1.68019146e-01 -3.69979113e-01 -4.02550995e-02
-3.78063589e-01 1.44148454e-01 3.91764790e-01 5.01678467e-01
-1.23099875e+00 7.74869859e-01 6.50963306e+00 3.50633591e-01
-1.27735019e+00 2.89632559e-01 6.40616357e-01 -5.00291824e-01
9.76388156e-02 -6.18166402e-02 -4.90425110e-01 5.27181566e-01
8.12235534e-01 1.96509138e-01 5.25192916e-01 3.38788629e-01
4.16106045e-01 -2.49777704e-01 -1.08354056e+00 1.15140927e+00
2.63490200e-01 -1.28504944e+00 -3.32741141e-01 -1.79721743e-01
1.23525310e+00 4.04868871e-02 1.39794245e-01 6.17875010e-02
7.83657730e-02 -7.77004182e-01 4.11753416e-01 6.24574006e-01
6.60886884e-01 -4.97504443e-01 7.01186299e-01 -5.04919440e-02
-9.93840337e-01 -2.48389825e-01 -3.67316633e-01 -3.20857204e-02
4.52010274e-01 4.98603761e-01 -4.04877275e-01 4.55555588e-01
1.01450014e+00 1.07129431e+00 -4.19093758e-01 1.22772157e+00
-8.94353390e-02 4.54390854e-01 -2.28044108e-01 6.78548276e-01
2.09278554e-01 -3.28730419e-02 6.44038022e-01 1.23108637e+00
3.14057350e-01 4.60142754e-02 4.37025465e-02 4.38365608e-01
-9.91602316e-02 -3.27296793e-01 -6.69303536e-01 2.87201732e-01
-1.52620018e-01 1.18655646e+00 -5.67917526e-01 -2.73645520e-01
-9.20127571e-01 1.21067369e+00 1.22608677e-01 7.61217177e-01
-8.55009079e-01 -2.27794852e-02 5.32496214e-01 2.82594144e-01
5.37016630e-01 -4.04355168e-01 4.35129136e-01 -1.47377956e+00
3.11234165e-02 -9.09814358e-01 4.49064553e-01 -1.19061077e+00
-1.20736754e+00 7.38011301e-01 7.99635872e-02 -1.22392511e+00
-3.85223806e-01 -6.15490913e-01 -5.32083809e-01 4.22562867e-01
-1.92249537e+00 -1.19934011e+00 -6.89164519e-01 9.76912916e-01
7.54689813e-01 -1.20791979e-02 3.56006354e-01 5.14694929e-01
-3.58228981e-01 4.72205132e-01 2.13137820e-01 7.73647130e-02
8.20114911e-01 -1.04093993e+00 -8.29074904e-02 1.28172493e+00
2.43131563e-01 3.10178220e-01 8.45976830e-01 -3.68288785e-01
-1.24328768e+00 -1.04498267e+00 5.72443187e-01 -3.17128807e-01
4.32335705e-01 -2.60057300e-01 -9.56762791e-01 6.55981719e-01
6.01687610e-01 4.81966376e-01 5.81261337e-01 -1.52662396e-01
-4.03810553e-02 -1.94766134e-01 -9.47051227e-01 4.02899176e-01
1.10043299e+00 -5.42585492e-01 -2.48039320e-01 3.96155506e-01
4.20587003e-01 -5.30563891e-01 -7.44662225e-01 4.99178320e-01
6.40166998e-01 -1.32896686e+00 1.02770591e+00 -5.54799139e-01
5.75866163e-01 -4.18700188e-01 -1.56221971e-01 -1.20139015e+00
-4.92405966e-02 -8.67505491e-01 -3.87957364e-01 1.06920063e+00
-6.57389015e-02 -2.08298907e-01 7.12381124e-01 5.69912016e-01
3.04433033e-02 -4.61396903e-01 -6.80946469e-01 -7.63224483e-01
-2.61237711e-01 -3.98710191e-01 2.50291288e-01 9.42102313e-01
-4.58843142e-01 2.29982492e-02 -7.78626442e-01 2.36165360e-01
6.77970171e-01 1.78439524e-02 7.81977594e-01 -8.15094352e-01
-6.92046106e-01 -1.00473706e-02 -6.11423135e-01 -8.27128828e-01
3.92770052e-01 -2.36293659e-01 1.58099562e-01 -1.33258152e+00
3.99223328e-01 -2.36176495e-02 -2.36501202e-01 3.24225634e-01
-3.34555030e-01 6.85224771e-01 3.27031076e-01 -4.27438878e-02
-8.52150977e-01 4.41828460e-01 1.23098695e+00 5.76266348e-02
-1.11706577e-01 -1.12849668e-01 -2.54228860e-01 7.28286386e-01
5.92069805e-01 -2.17409909e-01 -5.19366503e-01 -8.25593054e-01
1.73445672e-01 -1.20437518e-02 6.69746041e-01 -1.23936856e+00
2.32851505e-01 -1.52557433e-01 6.38767838e-01 -2.06442893e-01
4.64658439e-01 -1.08042431e+00 2.48966351e-01 2.21408680e-01
-2.36334383e-01 1.57301381e-01 3.72585148e-01 7.50173330e-01
-2.53952146e-01 -1.33637249e-01 1.00761449e+00 -1.44876167e-01
-1.01681161e+00 5.04938841e-01 -2.25465581e-01 -8.76033213e-03
1.05270326e+00 -3.56293380e-01 -2.67334729e-01 -7.04049468e-01
-7.22528994e-01 -1.20422896e-02 6.46083951e-01 3.92386258e-01
7.36622989e-01 -1.18274748e+00 -6.62156641e-01 3.38528305e-01
-2.37856269e-01 -2.37453461e-01 5.64625800e-01 8.45213175e-01
-4.31301445e-01 3.65693234e-02 -5.29409885e-01 -6.61823213e-01
-1.49379885e+00 7.16668725e-01 7.95716643e-01 -9.42570120e-02
-6.42694354e-01 6.10615671e-01 3.48235279e-01 3.65449846e-01
1.67084455e-01 -1.07722998e-01 -1.01203680e-01 -3.37069839e-01
7.65194952e-01 2.49843404e-01 9.08461064e-02 -8.78931940e-01
3.79519127e-02 6.76529467e-01 -9.24454331e-02 -5.12259081e-02
1.53330159e+00 -4.71137345e-01 1.95653796e-01 2.17563555e-01
1.27404022e+00 -5.43771423e-02 -1.98002231e+00 -3.17882121e-01
-5.30805409e-01 -1.10379434e+00 5.12024879e-01 -4.91105169e-01
-1.46617043e+00 8.44832063e-01 9.47113514e-01 4.27202880e-02
1.57301784e+00 -3.28272492e-01 8.64444792e-01 2.24266857e-01
1.21572882e-01 -1.10351110e+00 4.38343287e-01 3.50568444e-01
6.50695145e-01 -1.62276828e+00 -8.32391828e-02 -1.24070413e-01
-3.34647506e-01 1.26699090e+00 5.85376978e-01 -6.97394386e-02
6.22087777e-01 3.36240530e-01 3.74437333e-03 1.50546702e-02
-7.88791120e-01 -3.50323647e-01 2.65140742e-01 8.55185926e-01
5.23664415e-01 -6.52118802e-01 2.59323465e-03 -5.77886738e-02
2.82197595e-01 3.41319978e-01 7.82983780e-01 1.03812337e+00
-7.52533078e-02 -1.08251274e+00 -2.29708254e-01 1.39839202e-01
-8.51796567e-01 -1.33397624e-01 8.70804340e-02 8.89072359e-01
2.97817618e-01 1.03620446e+00 7.68192559e-02 -1.92677885e-01
8.71580243e-02 -2.54310668e-01 9.22784805e-01 -3.15058708e-01
-4.73372668e-01 2.53881574e-01 -1.30465686e-01 -7.00121582e-01
-1.20223475e+00 -8.11494350e-01 -7.81997681e-01 -3.01957637e-01
-2.27515370e-01 -2.98898339e-01 4.43263382e-01 9.19908702e-01
1.55247793e-01 7.05249369e-01 6.38581753e-01 -1.26206279e+00
-5.82663640e-02 -5.50855637e-01 -4.24785465e-01 6.91604853e-01
8.46476614e-01 -7.28751779e-01 -3.01070333e-01 6.10485733e-01] | [10.79822063446045, -1.57267427444458] |
c3e01462-903f-4522-b886-a0bdac2ff5d7 | a-multi-head-relevance-weighting-framework | 2107.14793 | null | https://arxiv.org/abs/2107.14793v1 | https://arxiv.org/pdf/2107.14793v1.pdf | A Multi-Head Relevance Weighting Framework For Learning Raw Waveform Audio Representations | In this work, we propose a multi-head relevance weighting framework to learn audio representations from raw waveforms. The audio waveform, split into windows of short duration, are processed with a 1-D convolutional layer of cosine modulated Gaussian filters acting as a learnable filterbank. The key novelty of the proposed framework is the introduction of multi-head relevance on the learnt filterbank representations. Each head of the relevance network is modelled as a separate sub-network. These heads perform representation enhancement by generating weight masks for different parts of the time-frequency representation learnt by the parametric acoustic filterbank layer. The relevance weighted representations are fed to a neural classifier and the whole system is trained jointly for the audio classification objective. Experiments are performed on the DCASE2020 Task 1A challenge as well as the Urban Sound Classification (USC) tasks. In these experiments, the proposed approach yields relative improvements of 10% and 23% respectively for the DCASE2020 and USC datasets over the mel-spectrogram baseline. Also, the analysis of multi-head relevance weights provides insights on the learned representations. | ['Sriram Ganapathy', 'Purvi Agrawal', 'Debottam Dutta'] | 2021-07-30 | null | null | null | null | ['sound-classification'] | ['audio'] | [ 5.08327067e-01 1.72218665e-01 3.08751941e-01 -3.52398932e-01
-1.39449298e+00 -2.99774319e-01 4.36992437e-01 2.17464358e-01
-3.55395526e-01 3.81815970e-01 5.57924628e-01 8.63306373e-02
-2.18282327e-01 -3.76214653e-01 -4.99969691e-01 -6.13465250e-01
-6.16946518e-01 -2.85698563e-01 2.03546733e-01 -2.01783657e-01
1.15690148e-02 4.21269506e-01 -1.91173148e+00 5.79180717e-01
4.13483858e-01 1.56069791e+00 2.88369864e-01 1.26324022e+00
5.35363555e-01 5.53130090e-01 -9.38906550e-01 3.35725993e-02
-3.09678372e-02 -4.02410105e-02 -6.61212504e-01 -2.23134726e-01
6.01370037e-01 1.04679577e-01 -6.11614361e-02 8.09150279e-01
8.36363196e-01 6.51977599e-01 6.11648619e-01 -9.64511693e-01
-3.46787840e-01 1.03397512e+00 7.72906514e-03 5.55704296e-01
3.33307236e-01 -1.70365468e-01 1.47281075e+00 -1.20121264e+00
-3.43971304e-03 1.31099880e+00 7.09975004e-01 3.27896386e-01
-9.14006412e-01 -6.85943127e-01 2.35265777e-01 6.59623742e-01
-1.18392599e+00 -7.66910553e-01 9.87362683e-01 -4.60913062e-01
1.15347445e+00 3.31026793e-01 3.77179950e-01 8.21608186e-01
-8.74962807e-02 6.03858173e-01 4.95238423e-01 -7.68472850e-01
4.17862386e-01 -1.55322671e-01 2.04189003e-01 1.89422190e-01
-2.99008012e-01 1.07746042e-01 -8.33736479e-01 -2.99406081e-01
1.95581347e-01 -6.44968867e-01 -3.63537371e-01 3.62768471e-01
-6.86680019e-01 7.57436693e-01 2.75236011e-01 4.36516315e-01
-6.29431248e-01 4.82118219e-01 5.79292178e-01 3.24701756e-01
7.79612720e-01 2.54435688e-01 -4.11148161e-01 -9.71993282e-02
-1.02520096e+00 2.66754746e-01 4.64290202e-01 6.74052656e-01
2.21662030e-01 7.51301289e-01 -4.09416646e-01 9.79312241e-01
5.57318449e-01 3.20219249e-01 6.99507654e-01 -7.42362320e-01
5.34206152e-01 -2.11410597e-01 1.19242519e-01 -8.31788659e-01
-3.38031352e-01 -7.32275605e-01 -5.51145792e-01 2.10621819e-01
-9.02258679e-02 -3.33497465e-01 -7.76171684e-01 1.82199264e+00
2.35353842e-01 8.36232543e-01 9.90822539e-02 7.73159564e-01
8.53242457e-01 9.66424644e-01 2.46452197e-01 2.06274390e-02
1.51446688e+00 -9.36060667e-01 -9.52343881e-01 -1.09016813e-01
-4.69904989e-02 -1.17852795e+00 7.95014799e-01 6.22903705e-01
-1.46757030e+00 -1.27473378e+00 -1.29300511e+00 4.59675528e-02
-3.84683460e-01 4.97538984e-01 8.00724886e-03 6.32584572e-01
-1.01227164e+00 7.48475909e-01 -3.81168514e-01 1.98835909e-01
1.63591668e-01 2.28518367e-01 2.13631988e-02 3.88255954e-01
-1.60968053e+00 6.41969681e-01 4.92018461e-01 7.73917418e-03
-1.21695614e+00 -1.05796313e+00 -9.73880947e-01 3.85545164e-01
-1.73168406e-01 -5.48232794e-02 1.40860999e+00 -7.47972012e-01
-1.48590553e+00 3.82671207e-01 8.34517647e-03 -8.56663167e-01
-8.80192146e-02 -7.03477263e-01 -9.08910990e-01 3.71059537e-01
-3.17192703e-01 4.12259907e-01 1.53560579e+00 -8.21091592e-01
-1.17267060e+00 1.30434111e-01 -5.48146963e-02 5.68052242e-03
-4.00564909e-01 3.14522535e-01 -9.61886868e-02 -1.25131571e+00
-3.00453365e-01 -6.36628747e-01 -1.20183960e-01 -3.73043597e-01
4.73246388e-02 -4.64960337e-01 8.65106225e-01 -1.05264652e+00
1.55980706e+00 -2.46369457e+00 1.39043182e-01 1.91979006e-01
-3.11980754e-01 4.65703934e-01 -5.54195642e-01 1.65750474e-01
-5.84995270e-01 -2.87794620e-01 -1.05415098e-01 -7.62145221e-01
3.25747848e-01 -2.13448152e-01 -6.17001295e-01 3.01493943e-01
5.37117898e-01 3.43528330e-01 -7.34037042e-01 -2.36761607e-02
2.37465248e-01 1.07756281e+00 -5.20543993e-01 5.19111097e-01
9.86638591e-02 -1.61144752e-02 1.38336346e-01 2.42465049e-01
5.21010816e-01 5.44894516e-01 -1.58153087e-01 -3.99926007e-01
-1.11638494e-01 7.41039991e-01 -1.38880634e+00 1.80394006e+00
-7.83538282e-01 7.71207988e-01 5.24588168e-01 -1.05054820e+00
1.10953379e+00 9.68833089e-01 7.16160014e-02 -2.25273445e-01
1.11988626e-01 2.33617872e-01 4.18803655e-02 -3.75666738e-01
6.88710988e-01 -2.66083658e-01 -1.51446223e-01 3.01352322e-01
6.07298970e-01 -2.86920577e-01 -4.03284132e-02 -2.86672980e-01
7.87191033e-01 -3.84375080e-02 2.44485185e-01 -3.10480267e-01
9.26665187e-01 -8.07938159e-01 3.64828616e-01 3.82212967e-01
-3.43249202e-01 7.83511400e-01 -2.52619945e-02 -6.24566302e-02
-5.94163835e-01 -9.78635490e-01 -1.10487811e-01 1.68029702e+00
-5.41129470e-01 -5.62862635e-01 -6.85014307e-01 -4.08408612e-01
-9.92816687e-02 8.78066957e-01 -5.94536960e-01 -5.39081633e-01
-7.86951303e-01 -3.38429600e-01 8.36677432e-01 7.76077390e-01
-1.79985419e-01 -1.15866303e+00 -7.42890894e-01 5.90884209e-01
-1.42110348e-01 -1.03334177e+00 -5.20618737e-01 5.24628639e-01
-5.83276451e-01 -6.55610383e-01 -7.00238705e-01 -8.49863410e-01
-8.95471945e-02 -1.05132923e-01 8.93864453e-01 -4.97943431e-01
-3.63525122e-01 6.06417120e-01 -5.89655161e-01 -7.11883128e-01
-2.71631867e-01 2.00919077e-01 1.16193064e-01 4.23389703e-01
5.95531054e-02 -8.15614045e-01 -4.36231285e-01 -1.69047296e-01
-7.60355055e-01 -6.56308711e-01 3.33325237e-01 6.87215567e-01
3.80276144e-01 6.74115792e-02 1.16779029e+00 -1.18261032e-01
9.81470883e-01 -4.59002703e-01 -4.19928789e-01 -4.81324978e-02
-1.49418697e-01 -1.40275717e-01 5.69558442e-01 -6.16107821e-01
-1.24109411e+00 5.20208478e-02 -5.67508161e-01 -3.72026533e-01
-3.23452175e-01 3.73237193e-01 -1.19466223e-01 4.37180251e-01
6.66882455e-01 -1.35175556e-01 -4.57794785e-01 -9.07627106e-01
4.25671071e-01 8.36711228e-01 7.70668566e-01 -6.41999185e-01
8.00953865e-01 -2.19392013e-02 -2.84412950e-01 -1.09311056e+00
-8.02206397e-01 -6.95250809e-01 -6.16008341e-01 -3.57916385e-01
7.22535610e-01 -1.04290485e+00 -2.60465264e-01 3.08264345e-01
-1.23963499e+00 -4.24359404e-02 -7.08296895e-01 7.70256937e-01
-5.75241864e-01 1.32696658e-01 -5.71359694e-01 -1.25136673e+00
-8.09463978e-01 -1.00563908e+00 1.20371890e+00 1.96243763e-01
-4.45285648e-01 -1.06256688e+00 1.83283851e-01 -8.76585618e-02
7.79393435e-01 -5.67926057e-02 9.11940277e-01 -7.43672192e-01
5.73689826e-02 -3.96081835e-01 3.12569678e-01 9.61099803e-01
1.09653853e-01 -9.93870646e-02 -1.97241640e+00 -3.18401396e-01
1.06052216e-03 -3.16078842e-01 1.03525519e+00 4.07303691e-01
1.19592369e+00 -1.49953052e-01 3.46759081e-01 2.79920787e-01
9.95551884e-01 2.27408126e-01 3.47412169e-01 -2.40285382e-01
8.28411058e-02 6.17850244e-01 7.86240518e-01 6.86473489e-01
-2.51598246e-02 7.31917679e-01 6.03969693e-01 2.72861943e-02
-4.49761361e-01 9.06681046e-02 6.06844366e-01 1.22305334e+00
-1.97508365e-01 1.20337158e-01 -5.33112824e-01 8.67290974e-01
-1.54232109e+00 -9.18247223e-01 8.23073983e-02 2.31112647e+00
1.07081997e+00 1.54982358e-01 1.25268742e-01 9.03460562e-01
7.54589677e-01 3.63294005e-01 5.24389790e-03 -5.96326053e-01
1.75097749e-01 1.01788545e+00 -2.06973732e-01 7.39446282e-01
-1.46501291e+00 4.59078431e-01 5.77497911e+00 1.18314350e+00
-1.31010377e+00 3.64196450e-01 1.46507263e-01 -1.58185303e-01
1.34505033e-01 -3.96673411e-01 -7.17402577e-01 2.15241268e-01
1.43260705e+00 -5.13933450e-02 1.18855871e-01 9.44621801e-01
2.55976140e-01 3.76951605e-01 -1.09228778e+00 9.58193660e-01
1.04584530e-01 -9.95029986e-01 -2.42671743e-01 -3.80107999e-01
4.81919229e-01 -1.23529084e-01 3.95867944e-01 6.09013438e-01
-1.83138490e-01 -1.03104615e+00 1.20201766e+00 6.67821109e-01
7.96684623e-01 -1.18750274e+00 7.31932521e-01 -9.11817178e-02
-1.81094980e+00 -2.83907324e-01 -5.76046407e-01 -4.27981839e-02
2.52144128e-01 7.02032983e-01 -9.68340874e-01 5.64030707e-01
6.79941773e-01 4.19083029e-01 -3.17671031e-01 1.10277557e+00
-3.39470595e-01 1.14703155e+00 -2.59508371e-01 4.49464977e-01
8.87978747e-02 4.37430799e-01 7.47812986e-01 1.80574298e+00
4.57649231e-01 -3.12671304e-01 -9.57312584e-02 5.64099014e-01
-8.00504014e-02 7.81617165e-02 -1.37355551e-01 7.90631101e-02
5.69975615e-01 1.46503067e+00 -4.49506864e-02 -3.50480109e-01
-1.41702667e-01 4.27984715e-01 4.98053618e-03 2.28142679e-01
-8.64026189e-01 -1.00328565e+00 8.74541700e-01 -2.68347323e-01
7.12591350e-01 1.54108524e-01 1.72353387e-01 -6.12714410e-01
-1.00196443e-01 -6.92354918e-01 4.31149870e-01 -6.09007001e-01
-1.16690505e+00 8.57692420e-01 5.98022901e-02 -1.23423839e+00
-5.93223155e-01 -5.76296270e-01 -9.89305019e-01 1.45374393e+00
-1.98198569e+00 -1.06035912e+00 -1.69209689e-02 4.52698439e-01
8.10509145e-01 -3.92126918e-01 1.21610069e+00 5.61599314e-01
-2.52497762e-01 8.32933843e-01 -2.63738126e-01 -1.84739977e-01
6.57896996e-01 -1.27030885e+00 6.07756197e-01 7.66429126e-01
7.08955005e-02 4.77928758e-01 6.27755404e-01 -1.81784734e-01
-6.79173827e-01 -1.48494256e+00 1.18542516e+00 -6.82429895e-02
6.08253777e-01 -2.67937839e-01 -9.52931523e-01 2.99385697e-01
4.24590677e-01 1.81413323e-01 9.59663153e-01 -2.31642388e-02
-4.21354413e-01 -3.15686136e-01 -8.77713859e-01 3.66551019e-02
3.93979073e-01 -9.15457964e-01 -1.12815905e+00 -9.53188613e-02
8.97303998e-01 5.39335422e-03 -1.03485417e+00 3.74521345e-01
6.19216084e-01 -4.88700002e-01 1.34226704e+00 -6.77487791e-01
1.98331729e-01 -2.80330777e-01 -6.55543447e-01 -1.59950697e+00
-2.02078164e-01 -7.83399224e-01 -4.94871110e-01 1.48305571e+00
3.99657011e-01 -8.46629366e-02 2.15131953e-01 -6.95761526e-04
-5.87022185e-01 -4.41444099e-01 -1.23481154e+00 -7.91406035e-01
-5.48764803e-02 -1.19374514e+00 6.27403796e-01 4.95852143e-01
5.82817197e-02 4.45460975e-01 -4.83883321e-01 3.07844311e-01
5.83004892e-01 -4.02185798e-01 3.26326638e-01 -1.33482587e+00
-5.56774080e-01 -3.76341790e-01 -3.05107206e-01 -7.25234330e-01
4.42669801e-02 -7.92978048e-01 3.40290159e-01 -1.02576733e+00
-7.42285788e-01 4.73615387e-03 -7.90789485e-01 2.49917552e-01
-3.15899342e-01 3.21059734e-01 4.50407684e-01 -3.43361616e-01
-2.99281478e-01 6.39698684e-01 5.58625996e-01 -2.33133763e-01
-9.38550308e-02 5.04959166e-01 -3.31527561e-01 9.39552069e-01
1.03467631e+00 -4.03192133e-01 -5.67784131e-01 -2.05254212e-01
-1.48413017e-01 -8.57348964e-02 2.22957537e-01 -1.40141094e+00
1.35859787e-01 3.27014327e-01 2.51959622e-01 -7.25645781e-01
9.67527390e-01 -7.92205811e-01 -1.76978052e-01 2.85508215e-01
-8.27723384e-01 -3.49798352e-01 4.25864428e-01 4.51039255e-01
-5.00038922e-01 -6.64125323e-01 9.80555177e-01 2.33375236e-01
-4.42620993e-01 -2.26969600e-01 -5.91539979e-01 5.13475910e-02
5.26964128e-01 1.93785802e-01 2.12569505e-01 -4.14005488e-01
-1.07491457e+00 -3.48978877e-01 -6.86726928e-01 4.97162610e-01
8.11391056e-01 -1.56931841e+00 -1.01044178e+00 4.00105178e-01
8.51189625e-03 -2.10844681e-01 5.00580311e-01 4.80814517e-01
2.47740567e-01 6.13452613e-01 -9.18389186e-02 -3.35325569e-01
-1.45176339e+00 9.71146449e-02 2.91348040e-01 -2.81496495e-01
-1.65136069e-01 1.28314114e+00 1.22025065e-01 -1.53147027e-01
9.48170602e-01 -8.78715813e-01 -8.11190367e-01 6.30749464e-01
1.14874387e+00 6.17213011e-01 4.56919789e-01 -8.60164464e-01
-2.78719127e-01 4.73302692e-01 2.11457372e-01 -3.81304055e-01
1.56217813e+00 -1.66930947e-02 3.63098204e-01 5.04971564e-01
1.23923862e+00 1.86358601e-01 -1.06194508e+00 -3.93460035e-01
4.52151485e-02 2.69551538e-02 1.76590726e-01 -7.04926789e-01
-1.03336310e+00 1.43835616e+00 8.81884038e-01 2.56158710e-01
1.37263906e+00 -2.85888106e-01 5.99057734e-01 1.88386545e-01
-1.17520511e-01 -1.25678134e+00 5.82575351e-02 7.22916961e-01
1.51446772e+00 -6.24098003e-01 -2.88997352e-01 1.02938041e-02
-3.95166874e-01 1.35294747e+00 6.03693165e-02 -3.74354005e-01
9.79253232e-01 3.39098603e-01 9.23896860e-03 1.02378301e-01
-1.00105262e+00 -4.63483244e-01 8.52375984e-01 9.73962843e-01
5.89886248e-01 6.18036203e-02 1.01050988e-01 1.30732405e+00
-3.87880653e-01 -2.31980830e-01 2.69328237e-01 7.53386021e-01
-7.30735242e-01 -9.01112914e-01 -7.77189255e-01 -7.16565326e-02
-6.99357927e-01 -1.79235727e-01 -3.53781432e-02 2.79414028e-01
1.51832923e-01 1.36555374e+00 -5.01245260e-02 -3.85147125e-01
6.98174298e-01 6.88943267e-01 7.04647228e-02 -7.98918307e-01
-1.08954716e+00 4.83890414e-01 1.94436088e-01 -1.67049393e-01
-2.99838930e-01 -5.10382771e-01 -1.17057765e+00 5.90733707e-01
-3.23195308e-01 4.41437632e-01 7.20854163e-01 6.70983016e-01
2.16592655e-01 1.26261723e+00 7.61370182e-01 -1.28326404e+00
-9.04111087e-01 -1.39834654e+00 -6.04847789e-01 3.36481124e-01
7.64191151e-01 -4.31205034e-01 -5.36889732e-01 4.36361283e-01] | [15.193710327148438, 5.345523357391357] |
b06993d8-71ec-46f7-8407-a21212de9922 | predicting-foreign-language-usage-from | null | null | https://aclanthology.org/N18-2096 | https://aclanthology.org/N18-2096.pdf | Predicting Foreign Language Usage from English-Only Social Media Posts | Social media is known for its multi-cultural and multilingual interactions, a natural product of which is code-mixing. Multilingual speakers mix languages they tweet to address a different audience, express certain feelings, or attract attention. This paper presents a large-scale analysis of 6 million tweets produced by 27 thousand multilingual users speaking 12 other languages besides English. We rely on this corpus to build predictive models to infer non-English languages that users speak exclusively from their English tweets. Unlike native language identification task, we rely on large amounts of informal social media communications rather than ESL essays. We contrast the predictive power of the state-of-the-art machine learning models trained on lexical, syntactic, and stylistic signals with neural network models learned from word, character and byte representations extracted from English only tweets. We report that content, style and syntax are the most predictive of non-English languages that users speak on Twitter. Neural network models learned from byte representations of user content combined with transfer learning yield the best performance. Finally, by analyzing cross-lingual transfer {--} the influence of non-English languages on various levels of linguistic performance in English, we present novel findings on stylistic and syntactic variations across speakers of 12 languages in social media. | ['Lawrence Phillips', 'Svitlana Volkova', 'Stephen Ranshous'] | 2018-06-01 | null | null | null | naacl-2018-6 | ['native-language-identification'] | ['natural-language-processing'] | [-4.98361528e-01 -2.27372900e-01 -6.98650360e-01 -4.04163480e-01
-1.02481401e+00 -7.29907632e-01 8.64024818e-01 2.55690724e-01
-7.96167195e-01 6.51035190e-01 7.16094196e-01 -7.12501466e-01
4.36855316e-01 -5.58411360e-01 -5.95055997e-01 -1.32521885e-02
1.69685587e-01 4.51409161e-01 -3.46666634e-01 -6.25799179e-01
2.25582063e-01 5.76881468e-02 -1.07856381e+00 6.05132759e-01
1.03744245e+00 5.09173274e-01 2.49651372e-01 5.09284973e-01
-7.25983500e-01 1.03130829e+00 -3.93887222e-01 -5.48606098e-01
-1.99499667e-01 -2.95213193e-01 -7.94456124e-01 -4.85530980e-02
5.27043104e-01 -2.22467296e-02 -1.77444130e-01 9.87362683e-01
3.29288989e-01 -3.67061943e-01 9.78709340e-01 -6.68082237e-01
-1.06857181e+00 1.21843505e+00 -6.40838265e-01 4.97255981e-01
5.83455265e-01 2.42679287e-03 1.04477346e+00 -9.76227582e-01
7.79357910e-01 1.40935040e+00 8.23507190e-01 3.04273874e-01
-1.21389842e+00 -9.55175638e-01 1.80508737e-02 -3.27171832e-01
-1.45238185e+00 -7.77043164e-01 6.00521088e-01 -9.29126740e-01
9.63321209e-01 -1.08214812e-02 4.08417106e-01 1.48907745e+00
2.68331856e-01 6.47747755e-01 1.54691243e+00 -6.78258359e-01
-5.32126904e-01 1.04171205e+00 1.82253107e-01 8.84813786e-01
-1.37988359e-01 -3.58797908e-01 -6.63205922e-01 -1.64759949e-01
1.03164658e-01 -3.57911915e-01 1.32041246e-01 5.92613101e-01
-1.16981888e+00 1.25713563e+00 5.22543639e-02 7.22622991e-01
-1.96383446e-01 -2.46891662e-01 5.65593600e-01 5.96529722e-01
1.24348629e+00 3.98248941e-01 -6.75750494e-01 -3.42101991e-01
-8.92514408e-01 -1.11281231e-01 1.10092497e+00 7.56998062e-01
1.05729377e+00 2.01673824e-02 3.50761473e-01 1.47986197e+00
3.23626906e-01 9.32513773e-01 1.09578025e+00 -1.95467949e-01
6.52047157e-01 5.03005981e-01 -4.65200275e-01 -1.19951439e+00
-5.39441705e-01 -2.54061043e-01 -3.25806588e-01 -6.16334319e-01
4.89863575e-01 -6.28417552e-01 -1.19700439e-01 1.61299956e+00
-2.13117093e-01 -5.83003104e-01 -1.43449418e-02 1.30767852e-01
9.03505266e-01 8.40248823e-01 3.06433618e-01 -1.05718642e-01
1.29567766e+00 -6.94831133e-01 -5.07211745e-01 -4.28754717e-01
7.92965889e-01 -1.19376612e+00 1.27047610e+00 1.23985685e-01
-9.69487190e-01 -5.27080297e-01 -6.25208497e-01 -1.61666915e-01
-8.99961352e-01 2.55136728e-01 5.21010756e-01 9.64765012e-01
-1.03450477e+00 2.26727873e-01 -3.46648037e-01 -5.69159865e-01
1.30234227e-01 9.78331789e-02 -3.61228585e-01 4.06731069e-01
-1.20398521e+00 9.84772265e-01 -7.12654460e-03 -5.65762758e-01
-1.83246285e-01 -5.72056413e-01 -8.83278251e-01 -5.92590034e-01
-2.62072235e-01 1.75133362e-01 1.15866089e+00 -1.56621194e+00
-1.57218301e+00 1.57656074e+00 -3.71154189e-01 -1.66743264e-01
3.94720465e-01 -2.55602181e-01 -9.05279636e-01 -2.99130619e-01
5.60697317e-01 4.79950786e-01 5.64308643e-01 -7.12549329e-01
-7.58479834e-01 -1.82547837e-01 -3.57585669e-01 3.61946449e-02
-9.21560585e-01 6.89046621e-01 -1.88970461e-01 -6.23246551e-01
-3.75562131e-01 -1.14903402e+00 4.14912045e-01 -8.31220329e-01
-3.49185407e-01 -4.60232913e-01 4.99520093e-01 -1.13496399e+00
1.42172587e+00 -2.15550184e+00 5.54794222e-02 1.86333388e-01
1.39722630e-01 -2.11237311e-01 1.64883822e-01 5.67409277e-01
2.22381189e-01 6.43437266e-01 2.78810650e-01 -4.24603492e-01
4.28115167e-02 -1.03419758e-01 -2.91637719e-01 6.19926691e-01
1.34750828e-01 8.22587967e-01 -7.94116378e-01 -5.01936674e-01
-1.34016871e-01 5.14820457e-01 -6.41871989e-01 -6.80306777e-02
-1.47314575e-02 5.59615016e-01 -2.37567663e-01 3.89313906e-01
2.09380984e-01 -1.81132108e-01 2.39051789e-01 2.69579113e-01
-5.77526391e-01 8.57863963e-01 -2.92363346e-01 1.32714462e+00
-1.07415175e+00 1.18533802e+00 2.89299227e-02 -5.07002056e-01
8.56940866e-01 1.87126726e-01 2.10983574e-01 -6.65149808e-01
4.65010703e-01 6.29760146e-01 2.86868453e-01 -4.60553706e-01
5.95876276e-01 -2.46260792e-01 -6.90701365e-01 6.93315327e-01
2.04552487e-02 -1.23676233e-01 2.11680606e-01 7.50069171e-02
3.94199818e-01 -1.80635303e-01 5.58305740e-01 -8.70867789e-01
5.34580827e-01 -2.03644350e-01 6.78044260e-02 4.45396125e-01
-6.79301322e-02 1.13806263e-01 5.17181814e-01 -1.40766680e-01
-8.98855448e-01 -7.53402829e-01 -4.99912173e-01 2.02037430e+00
-5.22180557e-01 -4.01873946e-01 -6.74995661e-01 -3.51651341e-01
1.18035808e-01 8.64656568e-01 -6.12169147e-01 3.23805630e-01
-5.04126549e-01 -7.12332487e-01 7.05060124e-01 2.03607157e-02
1.64206728e-01 -1.16027486e+00 2.24228561e-01 2.01730281e-01
-3.80023122e-01 -1.38531351e+00 -7.60614574e-01 -8.32106322e-02
-2.63930887e-01 -7.68413186e-01 -5.89945912e-01 -1.03741860e+00
3.37263018e-01 -1.57693386e-01 1.23004127e+00 -4.13095504e-02
2.23457560e-01 3.46913278e-01 -3.13724607e-01 -7.06924140e-01
-1.04868782e+00 9.09274697e-01 4.01507199e-01 2.59766191e-01
7.94113576e-01 -3.10033739e-01 2.79868752e-01 -1.16698314e-02
-4.61647034e-01 9.37760621e-02 3.59968126e-01 3.73402923e-01
-1.12291068e-01 -4.26292628e-01 6.18133426e-01 -1.37763202e+00
9.07388926e-01 -1.11285949e+00 -9.70517397e-02 -5.26873916e-02
-2.34561324e-01 -8.02708268e-02 7.80160964e-01 -6.36553347e-01
-9.27476048e-01 -2.82521278e-01 -1.47164479e-01 2.79976666e-01
-7.92731121e-02 7.44996786e-01 4.49450791e-01 1.41196966e-01
8.08009386e-01 2.00959861e-01 6.46679848e-02 -4.14198339e-01
2.44324416e-01 1.32343137e+00 1.26306325e-01 -7.14970231e-01
6.19345784e-01 2.02264577e-01 -9.74391460e-01 -1.52201366e+00
-8.14209819e-01 -5.30703187e-01 -6.84048772e-01 -2.42688209e-01
1.13157296e+00 -1.21275020e+00 -5.76913953e-01 7.93020844e-01
-1.13300610e+00 -3.70028764e-01 2.73548752e-01 5.08642256e-01
-1.54822245e-01 -1.61076576e-01 -1.10826862e+00 -6.47912979e-01
-7.91890025e-02 -1.18471885e+00 7.83131719e-01 -1.79862589e-01
-8.01155627e-01 -1.54269004e+00 1.90425649e-01 3.76837105e-01
6.41374528e-01 -5.10641560e-03 8.10808063e-01 -9.78773296e-01
2.45531946e-01 -4.29935567e-02 -1.60334319e-01 2.93365777e-01
3.70739907e-01 3.44658852e-01 -8.94550681e-01 -8.74525458e-02
-3.88937950e-01 -7.21858978e-01 5.41432500e-01 2.46157825e-01
7.26208448e-01 -5.49988866e-01 -8.08773935e-02 4.49283719e-01
1.13317180e+00 -2.50728130e-01 5.38096502e-02 4.01119053e-01
8.28022242e-01 8.80101800e-01 -3.30660343e-01 3.26468170e-01
7.65476823e-01 2.73800075e-01 -5.35779595e-01 9.31708664e-02
1.50280505e-01 -4.74896222e-01 1.12489522e+00 1.73418117e+00
2.94654109e-02 1.01311445e-01 -1.24780202e+00 4.85168219e-01
-1.16973567e+00 -8.04821849e-01 -1.93550840e-01 1.79739892e+00
1.18058062e+00 2.55328774e-01 5.01227498e-01 -3.68234277e-01
6.83981657e-01 1.36572868e-01 -1.05289310e-01 -7.59839773e-01
-3.65268588e-01 8.58328864e-02 8.08420897e-01 9.74781811e-01
-9.72875595e-01 1.31441951e+00 6.53197002e+00 8.79626036e-01
-1.65132284e+00 3.77147734e-01 9.34467137e-01 8.02498981e-02
-5.48130333e-01 -4.92946804e-01 -1.24789047e+00 5.94616890e-01
1.55228281e+00 -2.30443120e-01 6.75767899e-01 7.52086043e-01
1.82094529e-01 8.31753537e-02 -9.91702676e-01 7.87658811e-01
3.09584886e-01 -1.14385855e+00 -1.14153661e-01 2.35076427e-01
9.78656828e-01 8.00502419e-01 4.13898528e-01 6.60656691e-01
5.10746598e-01 -9.85985518e-01 1.23602843e+00 2.68170774e-01
1.11948109e+00 -5.49507618e-01 2.52020985e-01 5.20035207e-01
-8.76246691e-01 1.34802591e-02 -3.76543254e-02 -2.91121304e-01
-8.51910114e-02 3.10587525e-01 -1.00336623e+00 -1.61709428e-01
5.38318157e-01 9.86787975e-01 -8.52382302e-01 -1.35956377e-01
-8.51109698e-02 1.00330353e+00 -2.04998791e-01 -4.00470525e-01
5.07268965e-01 -1.06723130e-01 3.99455428e-01 1.95337272e+00
1.59057200e-01 -4.87235904e-01 2.44477183e-01 7.37633824e-01
-3.10392439e-01 1.00511861e+00 -1.04612017e+00 -7.13402927e-01
3.39009106e-01 1.11123157e+00 -6.37760758e-01 -3.50788951e-01
-1.06661272e+00 7.96970308e-01 8.69842172e-01 2.72356391e-01
-5.75914264e-01 -1.54558957e-01 5.02424479e-01 5.37049651e-01
-2.89958030e-01 -4.92942810e-01 -2.35890180e-01 -1.25884533e+00
-4.30753797e-01 -1.14413714e+00 8.15932304e-02 -3.63282144e-01
-1.84170997e+00 8.13849568e-01 -2.65830845e-01 -7.38856435e-01
-6.50595665e-01 -9.07294571e-01 -3.15256178e-01 1.18578553e+00
-1.48934460e+00 -1.14294577e+00 3.74590218e-01 5.12602806e-01
6.42172754e-01 -8.63720536e-01 7.61693001e-01 4.93050933e-01
-5.08809268e-01 7.92138755e-01 1.89456671e-01 7.17795014e-01
9.61376309e-01 -1.10704064e+00 3.30619395e-01 2.35871196e-01
1.92190573e-01 8.06694508e-01 3.66200894e-01 -6.76647902e-01
-1.11974049e+00 -9.55705881e-01 1.66518188e+00 -7.77506471e-01
1.41803885e+00 -5.06138325e-01 -4.84181345e-01 1.04085135e+00
6.86014056e-01 -4.58636940e-01 1.16609979e+00 6.69803619e-01
-5.21001160e-01 2.39235863e-01 -7.04645276e-01 7.03423381e-01
6.03637218e-01 -1.37026775e+00 -4.94295210e-01 4.61892486e-01
6.32378340e-01 7.66792893e-03 -7.41058350e-01 -3.01732838e-01
6.54688656e-01 -8.23166728e-01 5.59225440e-01 -7.01044321e-01
7.95081556e-01 4.57818985e-01 -3.63511115e-01 -1.55891633e+00
-3.26229721e-01 -6.35042429e-01 7.10489869e-01 1.38305402e+00
1.05680299e+00 -8.75593185e-01 1.64778933e-01 2.67367184e-01
-1.53075624e-03 -2.88659364e-01 -7.15633869e-01 -4.13042545e-01
7.47166514e-01 -6.17135286e-01 1.80487841e-01 1.55823708e+00
3.65496755e-01 8.12877893e-01 -2.73355782e-01 -3.78575534e-01
1.05615802e-01 -3.83282393e-01 7.76160896e-01 -1.18834543e+00
-2.61660635e-01 -9.62593436e-01 1.68889780e-02 -7.58091569e-01
9.72333789e-01 -1.57212555e+00 -1.89173281e-01 -8.70875597e-01
2.60076761e-01 -4.51238692e-01 2.11539239e-01 2.72611916e-01
5.54808006e-02 3.96545470e-01 6.95218891e-02 2.18282342e-01
-3.17511141e-01 3.78196873e-02 9.37478542e-01 -1.32574737e-01
-4.54266667e-01 -2.88671434e-01 -9.86942410e-01 1.00403249e+00
6.85903549e-01 -2.92957544e-01 5.69103546e-02 -5.21724105e-01
8.12193394e-01 -9.31559503e-02 -3.61795396e-01 -6.94066167e-01
-1.46492302e-01 5.90624660e-03 3.29617828e-01 2.02752259e-02
-1.48344925e-02 -5.23125887e-01 -4.36767876e-01 2.82932341e-01
-5.73267341e-01 4.34506178e-01 3.83591413e-01 -1.52119538e-02
-2.11189181e-01 -9.34486650e-03 8.11439872e-01 -2.06403121e-01
-4.18371528e-01 2.05185741e-01 -1.08255219e+00 5.53346455e-01
6.04979575e-01 -2.49421187e-02 -1.62375048e-01 -5.77411056e-01
-5.30782938e-01 -2.25578189e-01 3.76327187e-01 7.58632123e-01
-1.34959713e-01 -1.19655275e+00 -1.30379105e+00 3.82251024e-01
1.84068173e-01 -9.59438324e-01 -2.80358940e-01 7.84786582e-01
-5.59311807e-01 4.77302462e-01 -9.16221067e-02 -3.58895570e-01
-8.54069710e-01 1.38799548e-01 1.54790163e-01 -1.05918154e-01
-4.19600755e-02 8.16124976e-01 4.00751755e-02 -1.01062942e+00
-2.85990745e-01 -5.29899262e-02 -3.27064455e-01 7.43730187e-01
3.94926727e-01 2.58950353e-01 -1.06188729e-01 -1.54105377e+00
-2.19993129e-01 3.22030038e-01 -2.24139929e-01 -4.98839825e-01
1.15193141e+00 -2.83792555e-01 -3.83268595e-01 1.29286695e+00
1.80907965e+00 1.00015867e+00 -2.83124208e-01 -4.32504505e-01
5.60191423e-02 -6.34126216e-02 -2.39638370e-02 -3.96971583e-01
-7.31657386e-01 7.45312870e-01 6.68976307e-02 3.21452975e-01
3.02307695e-01 1.89857975e-01 8.00484061e-01 8.90010670e-02
1.92021161e-01 -1.51635957e+00 -9.03759450e-02 1.04586768e+00
8.87748241e-01 -1.53774631e+00 -2.70340919e-01 -6.82935417e-02
-7.64304161e-01 1.10651946e+00 4.66872811e-01 -5.30322865e-02
1.35219800e+00 1.80723101e-01 3.64139080e-01 -1.04987249e-03
-4.22857732e-01 5.35644144e-02 4.59168315e-01 1.46850035e-01
1.32635915e+00 5.50911069e-01 -4.64159966e-01 6.65776610e-01
-1.02160347e+00 -5.00037193e-01 5.71140826e-01 4.15115088e-01
-3.13053548e-01 -1.10550952e+00 -4.23756957e-01 6.86349392e-01
-1.13982296e+00 -6.67774558e-01 -5.33767939e-01 7.46481121e-01
1.48737729e-01 1.01141787e+00 4.18222427e-01 -5.91853142e-01
-2.94565529e-01 4.56238985e-01 1.32960826e-01 -8.80959988e-01
-8.51950347e-01 5.72679192e-02 3.95470887e-01 9.17931795e-02
-4.71783310e-01 -1.07965863e+00 -1.00154626e+00 -8.02025020e-01
8.58261138e-02 1.29006326e-01 8.58171999e-01 1.01596928e+00
-6.60805330e-02 1.54512137e-01 7.46676028e-01 -6.90623641e-01
-1.71855956e-01 -1.29690790e+00 -5.80541730e-01 4.41672891e-01
3.82863343e-01 -2.18160331e-01 -5.76377690e-01 1.63925350e-01] | [10.16694450378418, 10.278953552246094] |
0b486f05-a500-4fed-b362-d3ff158ca3be | a-complete-recipe-for-stochastic-gradient | 1506.04696 | null | http://arxiv.org/abs/1506.04696v2 | http://arxiv.org/pdf/1506.04696v2.pdf | A Complete Recipe for Stochastic Gradient MCMC | Many recent Markov chain Monte Carlo (MCMC) samplers leverage continuous
dynamics to define a transition kernel that efficiently explores a target
distribution. In tandem, a focus has been on devising scalable variants that
subsample the data and use stochastic gradients in place of full-data gradients
in the dynamic simulations. However, such stochastic gradient MCMC samplers
have lagged behind their full-data counterparts in terms of the complexity of
dynamics considered since proving convergence in the presence of the stochastic
gradient noise is non-trivial. Even with simple dynamics, significant physical
intuition is often required to modify the dynamical system to account for the
stochastic gradient noise. In this paper, we provide a general recipe for
constructing MCMC samplers--including stochastic gradient versions--based on
continuous Markov processes specified via two matrices. We constructively prove
that the framework is complete. That is, any continuous Markov process that
provides samples from the target distribution can be written in our framework.
We show how previous continuous-dynamic samplers can be trivially "reinvented"
in our framework, avoiding the complicated sampler-specific proofs. We likewise
use our recipe to straightforwardly propose a new state-adaptive sampler:
stochastic gradient Riemann Hamiltonian Monte Carlo (SGRHMC). Our experiments
on simulated data and a streaming Wikipedia analysis demonstrate that the
proposed SGRHMC sampler inherits the benefits of Riemann HMC, with the
scalability of stochastic gradient methods. | ['Tianqi Chen', 'Yi-An Ma', 'Emily B. Fox'] | 2015-06-15 | a-complete-recipe-for-stochastic-gradient-1 | http://papers.nips.cc/paper/5891-a-complete-recipe-for-stochastic-gradient-mcmc | http://papers.nips.cc/paper/5891-a-complete-recipe-for-stochastic-gradient-mcmc.pdf | neurips-2015-12 | ['physical-intuition'] | ['reasoning'] | [-5.75921834e-02 -2.00190559e-01 1.16861589e-01 4.77465391e-02
-8.96025836e-01 -5.92575848e-01 9.23757255e-01 -2.42046878e-01
-4.37334388e-01 9.48789358e-01 1.25581160e-01 -7.62996197e-01
-8.68074223e-02 -9.26418364e-01 -7.66283691e-01 -1.08643115e+00
-3.46982688e-01 7.56834209e-01 2.98088491e-01 -1.04939058e-01
2.21234053e-01 3.32132697e-01 -1.07589972e+00 -3.69017631e-01
7.83838093e-01 6.00181036e-02 7.37450272e-02 1.20244634e+00
-8.57165456e-03 4.93182600e-01 2.17863619e-02 -3.08975011e-01
1.10861458e-01 -8.20285141e-01 -6.32971227e-01 -2.05643162e-01
-2.08235886e-02 -3.25379342e-01 -2.88305342e-01 1.12911677e+00
4.84007388e-01 1.92259386e-01 8.10155034e-01 -9.84449625e-01
7.68001005e-02 6.56352460e-01 -4.80722636e-01 2.55312528e-02
2.93694437e-01 3.96153718e-01 8.20820451e-01 -7.34475493e-01
6.62689745e-01 1.30572975e+00 7.69808710e-01 6.23766005e-01
-1.72372067e+00 -5.32838464e-01 6.78262562e-02 -1.82780653e-01
-1.25262082e+00 -1.51901782e-01 5.85462809e-01 -5.58307946e-01
6.63030982e-01 2.80640692e-01 1.11917734e+00 1.27809227e+00
1.98857337e-01 8.26287210e-01 1.33119905e+00 -3.33330482e-01
6.91661835e-01 -1.26241431e-01 3.88172358e-01 9.34047580e-01
4.94128913e-01 2.40711063e-01 -3.40563327e-01 -5.61253726e-01
7.20000446e-01 1.28976047e-01 -1.45313725e-01 -5.93270361e-01
-1.13850355e+00 1.08319652e+00 -3.07206750e-01 -1.77431390e-01
-1.96583107e-01 5.44344306e-01 3.59662235e-01 8.26864988e-02
2.51519263e-01 -1.00658529e-01 -9.37787816e-02 -6.41417325e-01
-1.16374278e+00 6.04520917e-01 1.43938935e+00 7.20519245e-01
9.11509812e-01 8.66528600e-03 -8.40086415e-02 2.39609573e-02
3.22282702e-01 1.16765773e+00 -7.72706717e-02 -1.03162003e+00
2.60689288e-01 -1.34778410e-01 5.58272064e-01 -4.94022369e-01
-1.87757120e-01 -3.17804486e-01 -1.06726801e+00 8.93138647e-02
5.67448020e-01 -3.76309454e-01 -5.98546803e-01 1.96303105e+00
6.12686396e-01 3.22274745e-01 1.59246044e-03 5.84777534e-01
-2.13646919e-01 8.48543227e-01 -3.25210869e-01 -4.49917376e-01
9.44165051e-01 -5.19251585e-01 -5.17099857e-01 3.11116904e-01
5.29460728e-01 -3.14927667e-01 1.23427331e+00 2.63802081e-01
-1.11382413e+00 1.84613634e-02 -9.88399684e-01 3.66753548e-01
8.40225741e-02 -3.60570192e-01 7.05809176e-01 8.89958441e-01
-1.04565370e+00 9.01440024e-01 -1.55897093e+00 -3.21983665e-01
1.11774780e-01 -3.29520442e-02 2.94183165e-01 2.85722494e-01
-1.03970432e+00 5.59728026e-01 2.53335983e-02 3.98150943e-02
-1.44979763e+00 -5.14099717e-01 -4.35334086e-01 -3.99723127e-02
4.11781698e-01 -8.85666847e-01 1.35353935e+00 -3.18312377e-01
-1.85295093e+00 2.90935427e-01 -3.92989427e-01 -6.76215827e-01
1.06582594e+00 -7.47383386e-02 1.15645155e-01 2.42063373e-01
-5.41525036e-02 -4.83446568e-02 7.17736840e-01 -9.13098156e-01
-2.45678708e-01 -1.68156661e-02 3.79303768e-02 3.26876305e-02
1.92508042e-01 -3.26329917e-01 -2.81109989e-01 -1.60603434e-01
-8.91701281e-02 -1.29032588e+00 -5.81066310e-01 -3.14409047e-01
-4.89813179e-01 1.15734033e-01 4.67758864e-01 -1.65574774e-01
1.33545995e+00 -1.75554466e+00 2.71525025e-01 3.71892452e-01
1.68872982e-01 -9.14285425e-03 3.40092659e-01 9.14526165e-01
4.42545086e-01 1.64929315e-01 -5.64178169e-01 -4.23693031e-01
2.07990408e-01 1.24721430e-01 -7.27878630e-01 8.67720306e-01
-1.71743020e-01 7.52902687e-01 -1.19057262e+00 -5.49368739e-01
9.22400653e-02 2.98162580e-01 -9.00072396e-01 -2.09012106e-01
-2.69756228e-01 4.66136158e-01 -5.49059093e-01 1.05784930e-01
7.51241505e-01 -4.05277789e-01 4.42305028e-01 2.85545200e-01
-2.77150422e-01 4.01085019e-01 -1.65162873e+00 1.30953991e+00
-3.73019606e-01 2.56930947e-01 2.84678102e-01 -6.72729909e-01
2.37054065e-01 1.45260505e-02 2.00519279e-01 1.83684155e-01
-1.93454936e-01 2.93474525e-01 -1.48697913e-01 -1.39374621e-02
5.47282517e-01 -5.88644981e-01 -2.28949353e-01 9.00544822e-01
-2.52014160e-01 -2.86088973e-01 3.15257758e-01 7.30167866e-01
1.02124798e+00 4.45018619e-01 2.89658725e-01 -5.43770671e-01
4.26772743e-01 5.11222407e-02 5.75809836e-01 1.37306976e+00
-2.47984558e-01 3.43568385e-01 7.02111304e-01 -1.09269261e-01
-1.22203481e+00 -1.53690660e+00 -5.45553863e-02 5.82981229e-01
5.48311248e-02 -7.09681034e-01 -9.57327008e-01 -3.58435750e-01
-1.64350376e-01 5.98877609e-01 -6.02449894e-01 1.02130726e-01
-5.37611127e-01 -1.06532085e+00 6.48787975e-01 4.45522666e-02
6.03826046e-01 -6.07357621e-01 -6.61857605e-01 5.05323589e-01
-3.39919664e-02 -5.56456029e-01 -4.91300344e-01 7.70204365e-02
-1.09279251e+00 -1.04851055e+00 -5.74279189e-01 -5.21340817e-02
3.69831562e-01 1.91964760e-01 7.58616030e-01 -2.30328590e-01
-8.79083499e-02 5.32762945e-01 6.11079037e-02 1.78829562e-02
-8.14902544e-01 1.98601335e-01 2.37122387e-01 -1.07202686e-01
-8.21607187e-02 -8.61173332e-01 -6.52287126e-01 -6.26384839e-02
-9.36368823e-01 5.12436807e-01 3.60306978e-01 8.67804408e-01
3.94399911e-01 -1.27190381e-01 1.08457208e-01 -1.03892446e+00
6.12773478e-01 -4.50358301e-01 -1.02648044e+00 2.98690386e-02
-6.55095637e-01 5.93513668e-01 6.72955632e-01 -4.59113777e-01
-1.12225735e+00 -8.18886310e-02 -9.95589271e-02 -4.75756712e-02
3.23594362e-01 5.09749949e-01 1.00274444e-01 3.15759718e-01
4.24327374e-01 4.56418335e-01 1.50913596e-01 -3.63559395e-01
5.50044298e-01 2.48933166e-01 3.10000122e-01 -1.06120646e+00
9.12813544e-01 1.17496836e+00 4.74576622e-01 -7.35529423e-01
-7.44232655e-01 -2.64721423e-01 -2.05094561e-01 -1.42778262e-01
7.38391519e-01 -7.32334375e-01 -1.17101443e+00 7.83589780e-01
-8.62407327e-01 -6.95847571e-01 -3.56633276e-01 6.65989637e-01
-8.47531259e-01 5.86401105e-01 -8.93432975e-01 -1.42636764e+00
-8.61499459e-02 -1.12213588e+00 7.57450044e-01 1.06008299e-01
5.59301749e-02 -1.18153977e+00 7.14512229e-01 -3.38886559e-01
4.36223179e-01 2.53526747e-01 6.58765018e-01 -8.94179493e-02
-8.15788627e-01 -7.97667578e-02 9.34586897e-02 4.05523144e-02
-3.39687109e-01 4.45394963e-01 -7.18004167e-01 -4.90663826e-01
1.76816031e-01 1.11054093e-01 9.52593684e-01 5.51270306e-01
5.05242467e-01 -3.61152261e-01 -4.16780502e-01 6.97396696e-01
1.67812324e+00 -4.64211226e-01 4.82253909e-01 1.17414037e-03
5.44173121e-01 7.66679272e-02 1.03518099e-01 7.78383374e-01
3.21081638e-01 3.16325575e-01 1.43758289e-03 2.73033708e-01
3.60009998e-01 -6.77624047e-01 8.96121502e-01 1.09542489e+00
-1.96374878e-01 1.89760804e-01 -8.70987177e-01 4.18327063e-01
-1.91384089e+00 -1.43997812e+00 -5.13907194e-01 2.41061592e+00
1.24431837e+00 3.36969465e-01 4.14427757e-01 -8.13572928e-02
6.61107063e-01 1.21369503e-01 -6.83374822e-01 -1.96878746e-01
-4.52552177e-02 3.47874790e-01 8.54990184e-01 1.08296120e+00
-8.20303679e-01 8.69265139e-01 6.56908417e+00 8.76366436e-01
-7.09276676e-01 3.95912260e-01 1.34763271e-01 -2.11986557e-01
-4.44723278e-01 7.81254649e-01 -1.19264317e+00 5.18779218e-01
1.33603323e+00 -2.93010294e-01 6.17436528e-01 7.19646633e-01
5.27373433e-01 -5.34537494e-01 -8.79348218e-01 6.61513805e-01
-5.44015288e-01 -1.43729186e+00 5.40927686e-02 4.24627513e-01
8.38510156e-01 -1.24822417e-02 -5.06847650e-02 4.36788738e-01
1.18453991e+00 -6.07094228e-01 8.04914117e-01 8.04745555e-01
5.31047642e-01 -7.78270662e-01 2.35082209e-01 6.22763932e-01
-1.12456357e+00 2.26383299e-01 -2.89454371e-01 -4.18412209e-01
6.03942335e-01 1.07704067e+00 -5.90678394e-01 3.73262167e-01
2.18679741e-01 4.11593616e-01 -1.70354187e-01 7.57561862e-01
-1.55648395e-01 1.25411272e+00 -7.14087248e-01 -3.84748161e-01
3.86529565e-01 -7.81039119e-01 9.35542703e-01 1.41641331e+00
1.56193465e-01 -1.57314882e-01 2.09507093e-01 1.02579582e+00
3.59289765e-01 -2.43148535e-01 -4.05167580e-01 -1.00660533e-01
4.09196287e-01 9.72028315e-01 -8.27204049e-01 -6.47738516e-01
-2.83110708e-01 9.14798319e-01 2.21562728e-01 6.38095915e-01
-1.10725570e+00 -3.88807267e-01 7.10770726e-01 -6.90767393e-02
4.91905302e-01 -7.78575599e-01 -5.33969961e-02 -1.62453246e+00
-1.06711157e-01 -7.39716649e-01 1.98189989e-01 -2.31940418e-01
-1.18359840e+00 -1.22066379e-01 2.55260378e-01 -7.47453272e-01
-5.44053733e-01 -2.33183473e-01 -5.78041434e-01 1.00764573e+00
-1.15275991e+00 -6.56782627e-01 2.62584329e-01 5.50160944e-01
1.44782469e-01 4.28358793e-01 5.60692728e-01 -2.41455078e-01
-6.06536031e-01 1.36403695e-01 7.06921399e-01 -1.03277236e-01
1.98003620e-01 -1.42326248e+00 5.94176292e-01 1.12906909e+00
-9.64918211e-02 1.03469551e+00 1.09765470e+00 -1.00052941e+00
-1.87928236e+00 -7.45490789e-01 5.28578639e-01 -3.86022568e-01
1.10811257e+00 -6.54588342e-01 -6.56724989e-01 5.35171270e-01
-2.03326479e-01 -3.15822572e-01 3.19197327e-01 1.04876846e-01
-9.79980752e-02 1.31186977e-01 -8.51569116e-01 9.78682041e-01
1.05464005e+00 -7.69285619e-01 -1.75563812e-01 2.43382186e-01
4.68814462e-01 -2.29057506e-01 -5.21036983e-01 -9.08548534e-02
6.65093541e-01 -1.01260304e+00 7.75498331e-01 -5.01061559e-01
-1.30291507e-02 -6.10314906e-01 -1.96758389e-01 -9.03853357e-01
1.92647036e-02 -1.42305934e+00 -4.64325905e-01 8.71923566e-01
1.06958345e-01 -8.87700856e-01 6.86664045e-01 3.70328248e-01
2.85287559e-01 -6.21940076e-01 -8.79578710e-01 -9.94195044e-01
4.35864270e-01 -7.79591322e-01 4.45869893e-01 4.23755735e-01
-1.14153944e-01 1.92058742e-01 -3.47871691e-01 2.94119239e-01
1.14493692e+00 2.25166827e-01 1.04526651e+00 -8.89898419e-01
-8.47265184e-01 -4.08239543e-01 7.08179623e-02 -1.35759819e+00
-9.84128565e-02 -8.23595345e-01 6.30435273e-02 -1.33921516e+00
8.43067348e-01 -2.73798585e-01 3.55042458e-01 -3.01944882e-01
-3.61836702e-01 -2.31619447e-01 1.49464473e-01 4.23209757e-01
-6.64128542e-01 7.44918525e-01 1.08491731e+00 3.36940050e-01
-2.40072951e-01 1.94724947e-01 -2.86750913e-01 7.67684162e-01
5.92544079e-01 -6.51283026e-01 -2.94058114e-01 3.38978708e-01
6.94818020e-01 2.89956242e-01 6.57942653e-01 -9.49569762e-01
2.86253333e-01 -2.83890605e-01 -2.14563817e-01 -9.55873489e-01
3.51493172e-02 -4.92215753e-02 4.42510337e-01 8.14999402e-01
-2.94564724e-01 6.28099951e-04 -2.07194522e-01 1.01526439e+00
4.06812817e-01 -3.97548527e-01 8.62803996e-01 -1.97667569e-01
4.57936488e-02 3.21034551e-01 -9.18508232e-01 4.73127872e-01
5.54457307e-01 1.64988935e-01 2.14578599e-01 -7.05779254e-01
-8.99147213e-01 5.61851710e-02 9.06595886e-01 -7.23138511e-01
2.56828219e-01 -1.08217382e+00 -5.89268267e-01 -4.55065370e-02
-4.96950716e-01 -1.36143476e-01 1.83796674e-01 1.21487546e+00
-5.35336971e-01 2.24405736e-01 5.22362113e-01 -6.72635794e-01
-6.56808197e-01 4.34310645e-01 4.39272583e-01 -7.11552441e-01
-7.98320472e-01 3.40654284e-01 1.49732247e-01 -4.58188981e-01
-9.02569294e-02 -4.81812000e-01 7.70783007e-01 -1.81125522e-01
4.65201676e-01 6.49224639e-01 -4.86454159e-01 1.03367299e-01
-1.29653782e-01 2.83930808e-01 8.67312551e-02 -1.08318722e+00
1.17303836e+00 -5.42602420e-01 5.86737581e-02 9.64333951e-01
1.02529764e+00 3.29725206e-01 -1.74125373e+00 -9.21979025e-02
-8.89750421e-02 4.61720228e-02 -2.98336267e-01 -2.75896192e-01
-4.72934812e-01 1.08724678e+00 2.44113192e-01 2.39515603e-01
5.63780010e-01 -2.02215284e-01 7.61746705e-01 6.41251266e-01
6.43455267e-01 -1.08125794e+00 -2.93281794e-01 7.16167331e-01
1.53186202e-01 -7.46430516e-01 3.74723487e-02 -2.88024135e-02
-3.97429407e-01 1.01065528e+00 -2.22458482e-01 -3.48099202e-01
8.72719526e-01 3.81319672e-01 -7.06637442e-01 -1.56264037e-01
-8.54793310e-01 -3.36293489e-01 -4.66153651e-01 1.45860195e-01
8.21767449e-02 2.64848739e-01 -4.23410267e-01 3.12932372e-01
-1.72235906e-01 4.77391593e-02 9.65317488e-01 9.87268686e-01
-3.93282652e-01 -1.00795281e+00 -2.92102814e-01 2.28684574e-01
-2.67808080e-01 -4.06664312e-01 1.69660687e-01 9.03385520e-01
-6.09672666e-01 7.07842529e-01 -1.72238916e-01 8.33084360e-02
-2.86939561e-01 3.30637842e-01 6.84251308e-01 -2.60052651e-01
-2.29810208e-01 1.64491221e-01 2.62380596e-02 -5.40070534e-01
-4.08450335e-01 -1.23712838e+00 -1.27343917e+00 -9.75558341e-01
-3.31472963e-01 4.69942659e-01 7.99721479e-01 9.54448164e-01
2.13973343e-01 2.16759872e-02 5.66041946e-01 -7.93299973e-01
-1.26348913e+00 -8.56249273e-01 -7.27908671e-01 -1.69587843e-02
3.94223869e-01 -4.99691278e-01 -8.58758450e-01 -7.45175779e-02] | [6.90904426574707, 3.9341232776641846] |
458d3dd1-a8fd-449c-91f7-24659887f01c | pose2pose-3d-positional-pose-guided-3d | 2011.11534 | null | https://arxiv.org/abs/2011.11534v4 | https://arxiv.org/pdf/2011.11534v4.pdf | Accurate 3D Hand Pose Estimation for Whole-Body 3D Human Mesh Estimation | Whole-body 3D human mesh estimation aims to reconstruct the 3D human body, hands, and face simultaneously. Although several methods have been proposed, accurate prediction of 3D hands, which consist of 3D wrist and fingers, still remains challenging due to two reasons. First, the human kinematic chain has not been carefully considered when predicting the 3D wrists. Second, previous works utilize body features for the 3D fingers, where the body feature barely contains finger information. To resolve the limitations, we present Hand4Whole, which has two strong points over previous works. First, we design Pose2Pose, a module that utilizes joint features for 3D joint rotations. Using Pose2Pose, Hand4Whole utilizes hand MCP joint features to predict 3D wrists as MCP joints largely contribute to 3D wrist rotations in the human kinematic chain. Second, Hand4Whole discards the body feature when predicting 3D finger rotations. Our Hand4Whole is trained in an end-to-end manner and produces much better 3D hand results than previous whole-body 3D human mesh estimation methods. The codes are available here at https://github.com/mks0601/Hand4Whole_RELEASE. | ['Kyoung Mu Lee', 'Hongsuk Choi', 'Gyeongsik Moon'] | 2020-11-23 | null | null | null | null | ['3d-human-reconstruction'] | ['computer-vision'] | [-6.37589335e-01 1.85115233e-01 -4.30791646e-01 7.85250738e-02
-3.81543845e-01 -3.20091039e-01 2.01514348e-01 -5.30506968e-01
-1.02895148e-01 4.46816623e-01 3.77165377e-01 1.44518152e-01
4.43712287e-02 -6.54792190e-01 -5.24178624e-01 -7.73472711e-02
8.28820746e-03 9.18066680e-01 4.03104663e-01 -2.69035429e-01
-7.82095790e-02 7.12169588e-01 -1.35139513e+00 -1.06708305e-02
2.85605580e-01 8.72973025e-01 -2.44555131e-01 6.39678597e-01
2.36931711e-01 1.32809803e-01 -1.93360671e-01 -6.17007852e-01
4.84333128e-01 -3.49020720e-01 -6.49476647e-01 -9.66212302e-02
3.43639940e-01 -6.97410285e-01 -2.29409397e-01 2.87848264e-01
8.50637376e-01 -4.14203480e-02 7.23574519e-01 -1.18388820e+00
7.89936110e-02 1.58403799e-01 -8.42705667e-01 -5.71208000e-01
9.19265687e-01 -1.48066180e-02 8.19477260e-01 -1.38087618e+00
1.01344895e+00 1.43071187e+00 1.06248713e+00 6.61474466e-01
-8.88419926e-01 -8.05268049e-01 -7.33989105e-02 -3.39077562e-01
-1.70579934e+00 -2.80778199e-01 9.90125418e-01 -7.73136854e-01
6.75310552e-01 3.94345939e-01 1.22277927e+00 1.00031531e+00
5.68863928e-01 8.92049193e-01 8.46507251e-01 -3.75917226e-01
-3.66600007e-01 -4.45342332e-01 -5.17247021e-02 1.01421452e+00
1.17856562e-01 1.40094347e-02 -5.15506387e-01 -4.72730219e-01
1.41132402e+00 -8.28288645e-02 1.50661562e-02 -3.15748841e-01
-1.43455553e+00 3.58152211e-01 1.64587006e-01 -1.66556299e-01
-5.14095306e-01 3.65516692e-01 3.05786252e-01 -2.47550771e-01
4.38101619e-01 -1.88690037e-01 -6.69323862e-01 -3.45685005e-01
-8.75923395e-01 8.79169762e-01 9.79057491e-01 1.12952042e+00
4.14686531e-01 -3.10793042e-01 -8.20651650e-02 8.18209887e-01
5.19139171e-01 6.41138911e-01 -1.38813883e-01 -1.25484288e+00
5.28977692e-01 6.16237998e-01 1.38695553e-01 -9.23416734e-01
-7.75756240e-01 -3.66769023e-02 -8.12212467e-01 1.64123654e-01
7.25302637e-01 -2.09996894e-01 -8.11586142e-01 1.29079926e+00
7.41581738e-01 -6.09403133e-01 -8.01866174e-01 1.29871118e+00
9.09944296e-01 -2.98833977e-02 -1.27653435e-01 1.03865877e-01
1.58887267e+00 -9.50454414e-01 -4.71187383e-01 -1.56359486e-02
4.32828106e-02 -1.05590212e+00 7.59750664e-01 4.49014992e-01
-1.50835872e+00 -7.45827556e-01 -5.16323328e-01 -2.28931442e-01
7.36925602e-02 1.62143126e-01 3.86243343e-01 4.17544723e-01
-6.68232322e-01 7.00236857e-01 -1.06738532e+00 -4.39800650e-01
-1.20949931e-03 4.58568245e-01 -4.87208098e-01 1.83284864e-01
-1.27185225e+00 1.09644413e+00 6.40712008e-02 1.73065975e-01
-1.15364559e-01 -4.65823650e-01 -7.40828812e-01 -5.28878391e-01
4.86467868e-01 -1.22633207e+00 1.26467693e+00 -6.59328923e-02
-1.64173806e+00 9.92312729e-01 -3.94719064e-01 4.41376269e-01
1.23213923e+00 -4.71593708e-01 2.15622596e-02 1.39078930e-01
1.17030283e-02 5.13323843e-01 7.98981190e-01 -1.07966280e+00
-9.04623568e-02 -7.00851202e-01 -4.01405126e-01 1.40460685e-01
3.43909115e-01 -1.90754816e-01 -1.20215130e+00 -1.12161744e+00
5.54174602e-01 -1.34872568e+00 -1.82814687e-01 4.49994922e-01
-6.51165843e-01 -3.59249383e-01 3.95787925e-01 -1.15428984e+00
1.25766242e+00 -1.62990177e+00 4.92782831e-01 5.59023976e-01
3.59703749e-01 1.45635726e-02 2.69534886e-01 6.39617085e-01
1.13118336e-01 8.05735588e-02 1.96162239e-02 -4.71573323e-01
9.66890827e-02 9.28133503e-02 2.72563130e-01 4.94941562e-01
-4.54308540e-02 8.87818336e-01 -5.65779150e-01 -9.79875207e-01
2.79807240e-01 6.40144706e-01 -6.12600386e-01 1.14181936e-01
3.51887345e-02 7.05133438e-01 -8.36012065e-01 1.18936312e+00
5.91498256e-01 -2.82112304e-02 1.55785546e-01 -4.79211658e-01
-1.46047369e-01 -6.76482543e-02 -1.32060301e+00 1.91747344e+00
-1.09794870e-01 -2.71646827e-01 2.36176342e-01 -7.44533166e-02
6.92356944e-01 5.65567791e-01 9.95428145e-01 -1.34718582e-01
3.74514520e-01 3.51078123e-01 -2.23454267e-01 -2.99526334e-01
2.08256524e-02 -1.56364053e-01 -4.97215725e-02 4.65657979e-01
-2.10808173e-01 -3.16971213e-01 -1.20593324e-01 -8.94817412e-02
7.32532978e-01 8.83195162e-01 5.88472605e-01 -8.59957561e-02
1.29504800e-01 -1.82036892e-01 5.38043678e-01 1.85386226e-01
-4.04850543e-02 9.61983383e-01 4.82698977e-01 -3.11985165e-01
-1.05050731e+00 -1.33528090e+00 -6.07875437e-02 8.58831942e-01
-2.48276573e-02 -6.81830883e-01 -6.53848231e-01 -4.54167247e-01
7.28034675e-01 5.01347110e-02 -5.77219188e-01 3.93076688e-01
-9.13170338e-01 -1.69902965e-01 5.61873376e-01 8.73150706e-01
4.30154093e-02 -6.53134942e-01 -6.51429474e-01 1.69712484e-01
-2.30410457e-01 -8.08320165e-01 -7.39996314e-01 -3.16270530e-01
-1.01480138e+00 -1.38177407e+00 -1.31548107e+00 -3.89572620e-01
4.94746804e-01 -3.00063580e-01 9.59160805e-01 2.79376090e-01
-4.20796961e-01 5.57261825e-01 -2.12221310e-01 -1.91677019e-01
-1.18925674e-02 1.01719797e-01 4.52716589e-01 -6.31202877e-01
-1.74137652e-01 -6.59573317e-01 -7.31074572e-01 7.88596570e-01
-1.55563936e-01 3.83979410e-01 4.12236303e-01 5.47789574e-01
8.19210768e-01 -3.57708633e-01 1.39587298e-01 -5.12167275e-01
2.77058274e-01 -1.95685267e-01 -3.64633799e-02 2.59472039e-02
-2.43666202e-01 -1.87920272e-01 2.81299293e-01 -3.59396070e-01
-9.02710915e-01 4.16539580e-01 -6.23162866e-01 -5.36987782e-01
-9.11741238e-03 2.68740773e-01 -2.68087924e-01 1.34851396e-01
2.31951326e-01 -6.57074973e-02 5.42251289e-01 -1.05749094e+00
1.45967394e-01 4.42756534e-01 3.02087933e-01 -9.10609961e-01
7.24820614e-01 4.05767679e-01 2.33126357e-01 -7.47250497e-01
-4.03174430e-01 -4.21189308e-01 -1.31494939e+00 -5.85721076e-01
8.10579181e-01 -6.44377828e-01 -1.19221675e+00 6.30413234e-01
-1.25933552e+00 -2.17204258e-01 1.90294310e-02 5.60775280e-01
-8.10390115e-01 5.63672185e-01 -8.75995457e-01 -8.81841421e-01
-6.89084053e-01 -1.04588306e+00 1.37479758e+00 -3.89892489e-01
-1.01586127e+00 -5.65211892e-01 -1.53148714e-02 4.25258815e-01
-2.24661365e-01 8.29896331e-01 5.82279563e-01 4.33713943e-02
-3.51617560e-02 -5.66989541e-01 1.82529777e-01 1.19837858e-01
7.58690313e-02 2.36750394e-01 -3.22493941e-01 -3.23469996e-01
-5.43750405e-01 -7.33714327e-02 3.97154301e-01 3.37595254e-01
8.54611397e-01 -2.01670840e-01 -4.95816171e-01 4.71180469e-01
7.67936468e-01 -1.97850034e-01 4.34679538e-01 5.25571853e-02
9.59786832e-01 8.18800986e-01 7.35747457e-01 7.98617244e-01
7.05495179e-01 1.00839150e+00 2.59990007e-01 8.82335901e-02
-4.46569026e-01 -4.68896240e-01 8.63937065e-02 1.00969958e+00
-1.14321744e+00 2.53349215e-01 -1.16786873e+00 2.52283484e-01
-1.68672562e+00 -4.74650174e-01 -2.79003084e-01 2.14158535e+00
9.18655097e-01 2.99474299e-02 8.38206291e-01 2.71867722e-01
4.76678997e-01 -4.91605438e-02 -6.76929712e-01 2.12372690e-01
4.60364074e-01 3.61699969e-01 3.92922848e-01 4.67935801e-01
-6.72742665e-01 8.54293168e-01 5.60994864e+00 3.42509836e-01
-8.31222594e-01 7.12481216e-02 -2.79176474e-01 -2.25889593e-01
9.02263075e-02 -9.53021273e-02 -8.76932681e-01 4.77666646e-01
5.15951030e-02 1.79163530e-01 7.81651288e-02 7.51911163e-01
2.40262061e-01 1.58302765e-02 -1.06499875e+00 8.93880785e-01
-1.57387257e-01 -6.76385701e-01 1.71360131e-02 2.28151307e-01
2.60044247e-01 -3.81780475e-01 -2.77695656e-01 -3.44458558e-02
-1.40448570e-01 -8.45791221e-01 1.25245214e+00 1.03639233e+00
1.14723492e+00 -7.59787738e-01 3.78201306e-01 6.42201364e-01
-1.57476950e+00 5.12768328e-01 9.95210856e-02 -2.27680147e-01
5.79455674e-01 6.25159740e-01 -6.72225356e-01 6.39159322e-01
6.91968262e-01 6.06687665e-01 -2.99687564e-01 6.61763906e-01
-3.00597578e-01 2.72595227e-01 -4.35718745e-01 3.10227245e-01
-5.33725142e-01 -4.40541422e-04 6.70707405e-01 9.54664111e-01
2.34528184e-01 2.80445784e-01 4.07478839e-01 5.73514700e-01
1.81225345e-01 1.44696668e-01 -2.01859087e-01 1.32771328e-01
3.88176858e-01 9.07216728e-01 -6.64474905e-01 -7.13383928e-02
-2.46175509e-02 1.09862828e+00 -8.66255611e-02 1.19435817e-01
-7.68594563e-01 -2.54175574e-01 6.62206173e-01 9.68441486e-01
-1.18454307e-01 -5.23582399e-01 -3.81361544e-01 -1.24723256e+00
3.21157306e-01 -7.27569103e-01 2.70678073e-01 -8.22268248e-01
-1.17443323e+00 1.81222171e-01 1.62016809e-01 -1.20295608e+00
-4.50799495e-01 -5.76483011e-01 -6.52481914e-02 9.56042826e-01
-5.27828574e-01 -1.63250661e+00 -3.25418890e-01 6.85324013e-01
5.39492011e-01 4.03968453e-01 9.42461014e-01 1.43341154e-01
-2.80118644e-01 7.31636286e-01 -5.84154069e-01 3.82293940e-01
8.69706094e-01 -9.49494362e-01 7.03916788e-01 1.61714926e-01
-5.03278673e-01 1.02580404e+00 5.60756803e-01 -1.29623520e+00
-1.76769388e+00 -5.77380896e-01 8.37852955e-01 -8.51185143e-01
2.81787753e-01 -3.17718804e-01 -3.88384372e-01 8.71874392e-01
-5.60813308e-01 1.71413079e-01 5.59612691e-01 1.74139261e-01
-1.77983746e-01 2.55411476e-01 -1.12143731e+00 6.73786938e-01
1.47167110e+00 -1.65294990e-01 -6.81562483e-01 -3.22213303e-03
1.21173359e-01 -1.01160359e+00 -1.64309883e+00 5.94078422e-01
1.74136126e+00 -6.68951333e-01 1.33099747e+00 -3.26085061e-01
2.53874958e-01 -2.99092650e-01 8.44538491e-03 -8.50983262e-01
-2.74538517e-01 -4.15713817e-01 -6.19388342e-01 7.89413333e-01
-8.81910101e-02 -4.73408312e-01 1.03456771e+00 6.97087288e-01
2.35160410e-01 -1.06397986e+00 -1.01847255e+00 -7.76119232e-01
5.90892136e-02 -4.53264832e-01 4.55736637e-01 7.15704978e-01
-1.76490303e-02 -4.64815050e-02 -8.56380701e-01 -2.55095631e-01
8.75594199e-01 1.25739649e-01 1.13019240e+00 -1.52489054e+00
-1.76059291e-01 -3.13461781e-01 -2.89049685e-01 -1.09253478e+00
-8.55505243e-02 -6.57445073e-01 -1.65626109e-01 -1.61139286e+00
9.72674936e-02 -3.95516962e-01 2.88753361e-01 7.18870878e-01
-5.34657165e-02 2.35591233e-01 2.98305184e-01 4.21252131e-01
-4.90951352e-02 2.54712552e-01 1.87081718e+00 3.26717854e-01
-1.28003776e-01 2.95183212e-01 -1.19917333e-01 1.08002496e+00
5.92778444e-01 -1.45552129e-01 8.12453181e-02 -1.86614960e-01
5.90093285e-02 5.67525148e-01 5.95050037e-01 -7.94899166e-01
3.59447710e-02 -1.95922360e-01 1.03952301e+00 -1.07342744e+00
6.39249027e-01 -7.64132142e-01 6.46831691e-01 8.34000587e-01
2.47459769e-01 1.72026217e-01 -6.90401196e-02 1.60780340e-01
2.70824581e-01 2.12666199e-01 6.16399050e-01 -6.02706134e-01
-1.24284238e-01 4.75777417e-01 -3.03433657e-01 -8.08645040e-02
7.92620242e-01 -5.18539608e-01 4.80945855e-01 -2.00459555e-01
-1.25232720e+00 1.44421831e-01 7.46400476e-01 5.17576575e-01
6.76718175e-01 -1.33802354e+00 -6.26900613e-01 6.63435832e-02
-1.63643241e-01 2.93020338e-01 2.34105065e-01 1.13118207e+00
-6.65111125e-01 2.45521680e-01 -2.54448861e-01 -5.90446293e-01
-1.56573510e+00 1.60008177e-01 1.84156835e-01 -1.10140035e-03
-7.16569364e-01 6.72193706e-01 -3.77337933e-01 -8.00158381e-01
2.32360899e-01 -3.19363415e-01 3.08127075e-01 1.18603647e-01
1.38407260e-01 1.02088523e+00 -1.55063376e-01 -1.01365101e+00
-6.89800680e-01 1.14135098e+00 3.76272649e-01 -5.08454777e-02
1.22537458e+00 2.09457427e-02 -2.09997818e-01 2.14305863e-01
1.01952171e+00 4.46200818e-01 -1.06785738e+00 1.08839333e-01
-2.25829214e-01 -4.69036281e-01 -4.50680792e-01 -8.39875877e-01
-9.22002673e-01 7.45931447e-01 2.22111657e-01 -5.81248701e-01
8.63026917e-01 2.35664397e-01 1.19235289e+00 -9.46798399e-02
9.00786996e-01 -9.84621465e-01 -1.03374116e-01 5.23772597e-01
1.34254754e+00 -8.70470881e-01 4.70103741e-01 -8.52951407e-01
-4.45902467e-01 1.28220618e+00 7.12768257e-01 -9.50813442e-02
9.74283993e-01 3.13697487e-01 -9.73006934e-02 -1.63323954e-01
-1.30531356e-01 -2.61072051e-02 7.87867188e-01 2.16072753e-01
6.93703830e-01 2.87130862e-01 -7.19694614e-01 1.06027424e+00
-5.26304901e-01 3.28012764e-01 -1.93526387e-01 1.35168290e+00
-5.68310879e-02 -1.34545767e+00 -8.26392233e-01 3.91100854e-01
-5.25891602e-01 3.99140954e-01 -5.52595556e-01 1.15892828e+00
3.82149339e-01 3.00578147e-01 -3.77831906e-01 -6.94869936e-01
8.98201287e-01 2.14016810e-01 9.19983447e-01 -4.98276889e-01
-4.00603265e-01 3.50489348e-01 4.08938788e-02 -9.09159184e-01
-8.31034333e-02 -5.72507083e-01 -1.51661444e+00 -5.11846542e-01
-1.46128312e-01 -2.05425113e-01 5.93755960e-01 5.94668925e-01
2.28656396e-01 1.05085514e-01 4.13176417e-02 -1.64525366e+00
-4.96204466e-01 -9.14920688e-01 -8.75960886e-01 2.04853907e-01
1.55444387e-02 -1.31942570e+00 1.18547445e-02 -4.56879176e-02] | [7.020819187164307, -1.0933732986450195] |
cbc0bf03-60bb-4a96-81d8-72ba30d61597 | crowd-powered-face-manipulation-detection | 2201.13084 | null | https://arxiv.org/abs/2201.13084v1 | https://arxiv.org/pdf/2201.13084v1.pdf | Crowd-powered Face Manipulation Detection: Fusing Human Examiner Decisions | We investigate the potential of fusing human examiner decisions for the task of digital face manipulation detection. To this end, various decision fusion methods are proposed incorporating the examiners' decision confidence, experience level, and their time to take a decision. Conducted experiments are based on a psychophysical evaluation of digital face image manipulation detection capabilities of humans in which different manipulation techniques were applied, i.e. face morphing, face swapping and retouching. The decisions of 223 participants were fused to simulate crowds of up to seven human examiners. Experimental results reveal that (1) despite the moderate detection performance achieved by single human examiners, a high accuracy can be obtained through decision fusion and (2) a weighted fusion which takes the examiners' decision confidence into account yields the most competitive detection performance. | ['Christoph Busch', 'Pawel Drozdowski', 'Mathias Ibsen', 'Robert Nichols', 'Christian Rathgeb'] | 2022-01-31 | null | null | null | null | ['image-manipulation-detection'] | ['computer-vision'] | [ 2.29268357e-01 5.84334172e-02 4.40081358e-01 -3.40727478e-01
-5.00300944e-01 -5.87031722e-01 4.09431607e-01 2.70113889e-02
-5.77481270e-01 3.19787383e-01 -1.79568335e-01 -2.02697292e-01
-9.40414742e-02 -2.16076970e-01 -1.66989431e-01 -5.11073291e-01
3.61937642e-01 -8.44942704e-02 2.87595421e-01 -9.82019603e-02
5.99994898e-01 7.72361577e-01 -2.04671597e+00 3.09042990e-01
1.03211343e+00 1.09670293e+00 -1.50494099e-01 7.59093761e-01
3.05160582e-01 6.69309556e-01 -8.84489834e-01 -8.53747785e-01
7.18389869e-01 -7.64345080e-02 -2.13411957e-01 4.71441269e-01
8.24473917e-01 -6.47550046e-01 -2.01040283e-01 1.14440155e+00
8.05428743e-01 2.83273816e-01 6.19466126e-01 -1.48787236e+00
-8.34739149e-01 1.29652739e-01 -7.59876728e-01 2.67546445e-01
1.13132465e+00 6.11566722e-01 1.66036829e-01 -9.04364645e-01
1.18336499e-01 1.56950343e+00 5.16200066e-01 4.47791547e-01
-9.50440586e-01 -1.03664649e+00 5.48434854e-02 2.47030646e-01
-1.68283939e+00 -6.96315646e-01 4.96028602e-01 -6.84616566e-01
7.97541320e-01 1.46845579e-01 3.82954240e-01 9.07665431e-01
3.00854653e-01 1.50769338e-01 1.66607249e+00 -6.04218185e-01
2.13077083e-01 6.10519648e-01 1.24363907e-01 7.23697603e-01
5.71062684e-01 2.83947259e-01 -7.05770493e-01 -4.11840290e-01
5.35947382e-01 -3.78718555e-01 -1.27505779e-01 4.87333715e-01
-7.05840409e-01 4.05289263e-01 6.50687069e-02 1.93163738e-01
-6.80062950e-01 -4.82998818e-01 -6.31822553e-03 5.69457412e-01
2.12331370e-01 2.75211632e-01 2.23841056e-01 3.22830588e-01
-7.20676363e-01 4.39123899e-01 6.42818332e-01 6.78273559e-01
4.78509158e-01 1.77857503e-02 -6.74952149e-01 4.49183613e-01
3.76251370e-01 5.74367881e-01 2.51592189e-01 -9.83972669e-01
1.64351299e-01 8.41004908e-01 4.93797719e-01 -1.23916781e+00
9.28601846e-02 3.74827802e-01 -6.80096522e-02 1.00331974e+00
3.17924738e-01 -4.24683452e-01 -1.00514328e+00 1.24644554e+00
3.45516175e-01 -4.54181321e-02 -1.76438577e-02 8.56490731e-01
4.10637945e-01 7.69462883e-02 2.86974788e-01 -4.44114625e-01
1.83687401e+00 -3.75201553e-01 -9.97721076e-01 -2.23311976e-01
-7.76110590e-02 -9.74227905e-01 5.60055137e-01 8.26242626e-01
-1.21566796e+00 -1.06062984e+00 -1.34318566e+00 3.87995809e-01
-2.79155701e-01 3.21379453e-01 3.55390668e-01 1.53801811e+00
-1.24637473e+00 3.95369917e-01 -2.00632662e-01 -2.16950908e-01
2.66031384e-01 6.90893054e-01 -5.04778624e-01 -1.70994103e-01
-9.80570793e-01 1.14560473e+00 -3.97481918e-02 1.66798756e-01
-7.00330198e-01 -1.97197497e-01 -6.66698873e-01 -3.55507165e-01
3.31668913e-01 -4.49511528e-01 1.12949061e+00 -1.03799808e+00
-1.30439949e+00 1.25957954e+00 -2.68978000e-01 -2.40945265e-01
7.35151529e-01 -1.16071686e-01 -7.82626569e-01 4.52822506e-01
7.06903562e-02 4.77600276e-01 1.37409103e+00 -1.27056408e+00
-7.13625252e-01 -6.69026315e-01 1.71554871e-02 2.57768840e-01
-9.67670083e-02 7.56468773e-01 1.83486581e-01 -4.14416671e-01
-6.48297966e-02 -8.09915185e-01 4.18300442e-02 2.49615446e-01
-1.76164806e-02 -4.01729196e-01 7.19192684e-01 -9.39580321e-01
1.37941158e+00 -2.13972068e+00 -2.29467854e-01 1.89908281e-01
4.80014116e-01 6.39751673e-01 4.29592952e-02 -1.51580153e-02
6.87210187e-02 6.33283630e-02 1.32234842e-01 -3.30699205e-01
1.56802639e-01 -3.56728137e-01 1.33478880e-01 6.11003280e-01
4.13094312e-01 3.77330571e-01 -5.29572546e-01 -4.91207004e-01
2.41280779e-01 2.59848535e-01 -8.89930055e-02 4.13255572e-01
4.64763165e-01 -3.12145799e-02 -2.60948658e-01 1.11816454e+00
1.02799797e+00 4.00970072e-01 2.44595762e-02 -2.16336116e-01
-8.84507522e-02 -2.64786094e-01 -1.44647539e+00 7.02625036e-01
1.48543864e-01 5.31722367e-01 5.08672535e-01 -1.17788412e-01
9.12819684e-01 5.93191087e-01 -7.20550073e-03 -5.53965211e-01
3.49649638e-01 1.84274107e-01 2.52106845e-01 -8.32451105e-01
5.77643573e-01 -2.07644507e-01 8.71953666e-02 5.74458659e-01
-1.98485300e-01 1.49302900e-01 5.95160052e-02 -9.24413130e-02
1.07814646e+00 -2.36725599e-01 4.15972531e-01 -9.46773663e-02
5.29869080e-01 -3.71991962e-01 4.76361841e-01 7.65163839e-01
-9.57378566e-01 2.68198341e-01 3.56914163e-01 -2.73946613e-01
-4.25486743e-01 -1.05754495e+00 1.64507434e-01 1.16190600e+00
2.03725666e-01 3.59127849e-01 -1.11820507e+00 -6.38660669e-01
2.52622902e-01 6.37308955e-01 -7.45540321e-01 -3.12266678e-01
-2.58332998e-01 -4.12304550e-01 7.63327122e-01 4.69970435e-01
6.83265448e-01 -8.74740481e-01 -7.66147733e-01 -1.82022944e-01
-2.42156684e-02 -1.18906283e+00 -4.93669569e-01 -4.53881115e-01
-1.91857740e-01 -9.74204779e-01 -5.32260776e-01 -6.21524155e-01
8.99298549e-01 7.33935416e-01 6.34073079e-01 3.91336024e-01
-5.70819497e-01 7.77045131e-01 -4.14535582e-01 -7.84176230e-01
-5.01035333e-01 -8.62477899e-01 6.39161825e-01 1.88407332e-01
7.62371480e-01 -1.54879123e-01 -7.17556238e-01 7.94862330e-01
-5.88015437e-01 -5.94335496e-01 5.11558890e-01 -6.66924641e-02
-1.60598963e-01 2.72135317e-01 4.41368490e-01 -2.19377443e-01
1.15126681e+00 -6.06665649e-02 -3.60115051e-01 6.20562017e-01
-4.33129162e-01 -3.90861005e-01 -3.53763551e-01 -7.61616886e-01
-1.40762389e+00 -7.18395710e-02 5.31073749e-01 -5.47872245e-01
-4.90022540e-01 -2.65522063e-01 7.03949332e-02 -8.22062492e-01
9.64325130e-01 -3.65009338e-01 2.35416114e-01 -1.94455460e-02
-2.45274171e-01 9.75293696e-01 3.94843489e-01 -4.41047519e-01
6.38882756e-01 1.86121538e-01 -3.25573266e-01 -5.78797042e-01
-2.19693989e-01 -1.13326661e-01 -5.89253366e-01 -9.50226009e-01
1.05771685e+00 -9.09629762e-01 -1.12781274e+00 7.86805212e-01
-1.15287232e+00 2.71808565e-01 3.66563141e-01 5.20674467e-01
5.24619184e-02 5.56907713e-01 -3.52599233e-01 -1.59875822e+00
-6.78519756e-02 -1.13119268e+00 9.94500399e-01 5.94257772e-01
-3.69232684e-01 -3.37347537e-01 -5.02270639e-01 8.16175044e-01
1.54556885e-01 4.05050486e-01 4.06724721e-01 -5.76539099e-01
-3.44619185e-01 -5.38285971e-01 -2.00717628e-01 2.83132672e-01
2.66068190e-01 3.08797419e-01 -1.38373363e+00 -3.06829304e-01
2.73298889e-01 -2.91268587e-01 4.08653587e-01 1.09691478e-01
4.48874295e-01 -2.54739039e-02 -2.83376962e-01 -3.63467544e-01
8.99769068e-01 6.05010152e-01 6.33701563e-01 -2.86110967e-01
2.94419169e-01 1.04067409e+00 6.68802679e-01 5.01224816e-01
9.84616205e-02 3.90062958e-01 1.78933039e-01 2.21698731e-01
2.40347795e-02 1.93105817e-01 5.20686805e-01 2.08065361e-01
-6.11138999e-01 -4.84017015e-01 -7.51729965e-01 1.38112798e-01
-1.31210434e+00 -8.39619637e-01 4.27602865e-02 2.47979259e+00
2.07283482e-01 1.73523024e-01 2.42754832e-01 4.63360101e-01
1.40054321e+00 -3.06233287e-01 -3.26049626e-01 -5.62022448e-01
1.13845542e-01 8.52152407e-02 3.31133395e-01 4.40067738e-01
-7.31932461e-01 4.71259475e-01 7.21171331e+00 5.95789731e-01
-7.80457199e-01 3.55990566e-02 4.87664729e-01 -5.63190132e-02
2.07376003e-01 -3.46742451e-01 -9.95068312e-01 6.19533956e-01
5.04649222e-01 -2.16071665e-01 3.90533954e-01 2.39161864e-01
-1.58318563e-03 -6.68882430e-01 -7.73668885e-01 9.10531282e-01
5.28645337e-01 -3.45606208e-01 -9.56602022e-02 1.83118463e-01
4.32033390e-01 -9.55936909e-01 1.88975438e-01 3.21144491e-01
2.28651524e-01 -1.07599831e+00 7.49254405e-01 7.26862133e-01
5.85756898e-01 -5.43469369e-01 7.65569746e-01 2.94227928e-01
-9.60854173e-01 -4.25274342e-01 -9.35741812e-02 -4.40983206e-01
8.42750147e-02 9.79756638e-02 -8.87147009e-01 3.06975216e-01
4.70086545e-01 -3.38404477e-01 -8.46998930e-01 7.23869741e-01
-2.90595531e-01 1.71832591e-01 -2.67736971e-01 1.00477315e-01
-2.44498312e-01 8.70783776e-02 4.66862082e-01 8.02102506e-01
4.25564736e-01 6.29215062e-01 -1.20484373e-02 5.85330427e-01
2.00289905e-01 -9.77925360e-02 -4.50818300e-01 6.26208410e-02
7.37202823e-01 1.20635986e+00 -8.02455246e-01 -1.59906879e-01
-3.84280562e-01 9.79172409e-01 1.36006996e-01 2.64111936e-01
-7.27259278e-01 -3.05381596e-01 5.87194443e-01 3.41833472e-01
1.36337742e-01 1.29421219e-01 -2.40437463e-01 -3.51594955e-01
4.36430573e-01 -9.85052943e-01 3.31457376e-01 -9.95740652e-01
-1.28868783e+00 7.33187139e-01 2.67069906e-01 -1.11155856e+00
-7.62154385e-02 -9.39984918e-01 -7.20240653e-01 1.06489551e+00
-7.22249568e-01 -8.46335769e-01 -5.23090482e-01 3.06727827e-01
3.75129849e-01 -4.58212972e-01 3.34939539e-01 1.75968096e-01
-6.43706977e-01 8.78454924e-01 -1.00381565e+00 -7.22449869e-02
8.68649602e-01 -8.97607446e-01 9.68371555e-02 8.08283329e-01
-4.82591748e-01 7.20693707e-01 7.44823515e-01 -9.64149892e-01
-1.07615185e+00 -4.25332755e-01 6.98993027e-01 -6.72007084e-01
3.28097492e-02 -1.18826218e-01 -9.57292736e-01 2.33427778e-01
3.84031653e-01 -6.40915483e-02 8.14731181e-01 -2.79140681e-01
-1.63874567e-01 7.84226507e-02 -1.94548881e+00 5.02080977e-01
8.57331812e-01 -7.91903257e-01 -8.57452035e-01 -1.76276863e-02
1.90734729e-01 -2.22219437e-01 -8.39866757e-01 5.37125289e-01
8.57821882e-01 -1.22474170e+00 7.76313543e-01 -2.25694805e-01
-4.09397706e-02 -5.06182432e-01 -4.15022336e-02 -7.73508668e-01
-4.59481537e-01 -7.38683343e-01 4.87718582e-02 1.25003076e+00
8.06447268e-02 -6.61388576e-01 1.70594335e-01 1.38770616e+00
3.62537354e-01 -4.72826332e-01 -9.01946664e-01 -4.93194580e-01
-5.60408115e-01 -1.33854687e-01 4.00400966e-01 7.61328876e-01
4.90021100e-03 -2.27221653e-01 -2.40939200e-01 5.77238917e-01
6.87336624e-01 -5.08766592e-01 4.16259855e-01 -1.27141964e+00
-6.15694672e-02 -3.95759016e-01 -8.77245367e-01 -1.46941632e-01
5.17550148e-02 -1.65338814e-01 2.27169530e-03 -9.89909470e-01
3.93148623e-02 3.26007515e-01 -2.16494232e-01 3.23337287e-01
-8.01383018e-01 3.54181081e-01 2.75287241e-01 -1.52816311e-01
-4.22127843e-01 -8.96889940e-02 1.00740993e+00 3.04608256e-01
-8.12337473e-02 -3.04205660e-02 -1.04674399e+00 9.00334001e-01
5.70834816e-01 -2.45545700e-01 -5.88792339e-02 -2.22364366e-01
3.90808247e-02 3.04027557e-01 5.30686080e-01 -1.33571637e+00
5.72092652e-01 -2.02150270e-02 7.63181031e-01 -1.89572558e-01
3.89528602e-01 -6.13077521e-01 5.65122291e-02 5.33833563e-01
-1.00950792e-01 2.59776831e-01 5.62487006e-01 7.85353184e-01
4.35061678e-02 -4.52345222e-01 7.96610475e-01 2.74554007e-02
-6.76338494e-01 -2.03125790e-01 -1.00988829e+00 -5.51667213e-01
1.44707632e+00 -7.62387037e-01 -2.56910115e-01 -2.59322405e-01
-7.39190698e-01 6.79861531e-02 4.05289501e-01 4.04400796e-01
6.08174324e-01 -1.19410789e+00 -7.66186297e-01 3.12234551e-01
6.80511668e-02 -7.94680178e-01 3.65633607e-01 7.62081921e-01
-2.84463674e-01 -1.74836174e-01 -5.33064365e-01 -2.10210040e-01
-1.85125577e+00 5.25690198e-01 2.20261723e-01 2.50540704e-01
3.41650426e-01 9.48744893e-01 -3.69630195e-02 1.21754102e-01
2.27093890e-01 -5.70929646e-02 -2.73030519e-01 2.37202257e-01
9.34161782e-01 1.13742876e+00 9.68730524e-02 -6.94474936e-01
-4.19075757e-01 6.07942164e-01 -3.14124972e-01 -2.21221685e-01
2.97731966e-01 -1.96075439e-01 1.61377430e-01 -4.54824232e-02
4.08150971e-01 2.65653372e-01 -1.17153955e+00 -3.91012691e-02
-4.92993027e-01 -8.93688560e-01 2.57085022e-02 -9.25173342e-01
-4.84977871e-01 5.44174492e-01 1.00612819e+00 2.33406723e-01
1.25134254e+00 -3.21521729e-01 2.21491694e-01 4.30754721e-01
7.01609492e-01 -1.28884292e+00 1.84274632e-02 -2.94886619e-01
8.96944582e-01 -1.49185205e+00 4.20243889e-01 -6.66210830e-01
-8.23414147e-01 7.69339323e-01 9.92893517e-01 -1.63553625e-01
3.55637640e-01 2.52289981e-01 1.30303010e-01 -2.25272059e-01
-6.88270032e-01 -2.70767480e-01 5.01902461e-01 7.03545570e-01
1.56173140e-01 1.29054204e-01 -2.11673498e-01 7.77607083e-01
1.76377356e-01 1.49105966e-01 2.78569013e-01 1.15751839e+00
-7.31034279e-01 -5.29144943e-01 -1.10357189e+00 4.69999343e-01
-4.06226695e-01 5.46300054e-01 -9.47158694e-01 5.06978571e-01
6.41587496e-01 1.50374353e+00 -5.38908765e-02 -5.79448104e-01
5.71721554e-01 1.45593539e-01 8.13855290e-01 -4.05849248e-01
-9.75196779e-01 -3.41251165e-01 2.78491881e-02 -3.48847628e-01
-4.46491212e-01 -8.72489393e-01 -4.71740782e-01 -4.01978046e-01
-4.37780380e-01 -2.16560811e-01 4.27244961e-01 1.12668872e+00
2.26786986e-01 2.55702674e-01 6.08268857e-01 -9.37137187e-01
-7.13592350e-01 -1.10119545e+00 -7.45429456e-01 1.84916332e-01
1.22389533e-01 -1.02729940e+00 -7.03652799e-01 8.30888152e-02] | [13.088458061218262, 1.0404903888702393] |
ce470f40-320b-4554-a285-55e6cdf31326 | domain-adaptation-for-structured-output-via | 1901.05427 | null | https://arxiv.org/abs/1901.05427v4 | https://arxiv.org/pdf/1901.05427v4.pdf | Domain Adaptation for Structured Output via Discriminative Patch Representations | Predicting structured outputs such as semantic segmentation relies on expensive per-pixel annotations to learn supervised models like convolutional neural networks. However, models trained on one data domain may not generalize well to other domains without annotations for model finetuning. To avoid the labor-intensive process of annotation, we develop a domain adaptation method to adapt the source data to the unlabeled target domain. We propose to learn discriminative feature representations of patches in the source domain by discovering multiple modes of patch-wise output distribution through the construction of a clustered space. With such representations as guidance, we use an adversarial learning scheme to push the feature representations of target patches in the clustered space closer to the distributions of source patches. In addition, we show that our framework is complementary to existing domain adaptation techniques and achieves consistent improvements on semantic segmentation. Extensive ablations and results are demonstrated on numerous benchmark datasets with various settings, such as synthetic-to-real and cross-city scenarios. | ['Yi-Hsuan Tsai', 'Kihyuk Sohn', 'Samuel Schulter', 'Manmohan Chandraker'] | 2019-01-16 | domain-adaptation-for-structured-output-via-2 | http://openaccess.thecvf.com/content_ICCV_2019/html/Tsai_Domain_Adaptation_for_Structured_Output_via_Discriminative_Patch_Representations_ICCV_2019_paper.html | http://openaccess.thecvf.com/content_ICCV_2019/papers/Tsai_Domain_Adaptation_for_Structured_Output_via_Discriminative_Patch_Representations_ICCV_2019_paper.pdf | iccv-2019-10 | ['synthetic-to-real-translation'] | ['computer-vision'] | [ 6.42253816e-01 3.72581571e-01 -1.91149399e-01 -7.18977094e-01
-9.60856736e-01 -9.69241261e-01 4.39800411e-01 -2.05889285e-01
-1.11564152e-01 7.50271022e-01 -8.50382969e-02 -6.44533783e-02
2.03856379e-01 -8.28280985e-01 -1.11083746e+00 -7.40341663e-01
2.27932662e-01 6.54058456e-01 4.32545245e-01 1.28699029e-02
-3.06739360e-02 3.85178328e-01 -1.07931089e+00 4.10207242e-01
9.45717931e-01 7.66713679e-01 1.60409883e-01 5.00108004e-01
-1.74304798e-01 3.08292657e-01 -6.71397507e-01 2.48713628e-03
5.65057516e-01 -4.26008135e-01 -7.48027265e-01 5.75398922e-01
4.19017524e-01 -7.87896756e-03 -1.80087879e-01 1.09698427e+00
6.61896691e-02 2.52407223e-01 8.85571301e-01 -1.04433835e+00
-7.79704452e-01 2.59842694e-01 -7.64431894e-01 -5.59439398e-02
-1.03720397e-01 2.33165681e-01 7.07532227e-01 -6.52051687e-01
6.82134628e-01 1.00256157e+00 7.14512646e-01 6.56642139e-01
-1.61778522e+00 -7.30282366e-01 4.49111938e-01 -3.12377006e-01
-1.22132075e+00 -2.76879162e-01 8.70386004e-01 -5.46810448e-01
5.19628167e-01 -1.42896980e-01 2.22366780e-01 1.22802424e+00
-2.50287175e-01 8.31235707e-01 9.89520967e-01 -3.73397619e-01
4.43911016e-01 2.81659633e-01 -3.18539441e-01 4.75333273e-01
5.23789711e-02 2.44713258e-02 -3.25704783e-01 -8.34540650e-02
9.51394677e-01 -4.70290892e-02 8.85513127e-02 -7.53972888e-01
-9.05869067e-01 9.42789018e-01 6.32605314e-01 7.93458521e-02
-1.36578083e-01 2.96252668e-01 2.22050101e-01 1.19254723e-01
7.05172062e-01 5.11225939e-01 -9.16088879e-01 2.52893835e-01
-9.38264966e-01 3.77767146e-01 5.21454036e-01 1.16923904e+00
1.20371652e+00 -4.19883616e-02 -9.70796272e-02 9.49622691e-01
1.47573918e-01 4.63453621e-01 3.38635057e-01 -1.24843168e+00
5.64680219e-01 6.79496229e-01 1.49556443e-01 -5.54323852e-01
-1.48671687e-01 -5.74030876e-01 -5.24674416e-01 2.24111959e-01
6.83886468e-01 -4.82404321e-01 -1.46833694e+00 1.72863412e+00
5.35198510e-01 4.05186594e-01 1.61957331e-02 7.12208807e-01
2.67611057e-01 6.50035501e-01 3.21480274e-01 4.63834435e-01
7.27244139e-01 -1.06043899e+00 -8.14222842e-02 -7.05152988e-01
5.80216587e-01 -4.52743053e-01 1.27083325e+00 7.90051520e-02
-7.64557540e-01 -5.78657746e-01 -8.40438306e-01 8.48994777e-02
-4.41263914e-01 9.38973352e-02 6.20605052e-01 4.56647277e-01
-7.21748412e-01 4.91013706e-01 -9.99957740e-01 -4.31468040e-01
1.11732948e+00 2.65859306e-01 -2.12842032e-01 -1.19967319e-01
-8.07365954e-01 4.10254985e-01 4.16237414e-01 -4.66332167e-01
-1.23640084e+00 -1.03207576e+00 -8.92893314e-01 -3.59209515e-02
2.04108462e-01 -5.72776616e-01 1.32929897e+00 -1.70697701e+00
-1.35527980e+00 1.00103998e+00 -6.95212558e-02 -4.38544393e-01
2.44797200e-01 -1.32565647e-01 -1.57424793e-01 1.52071223e-01
4.75035965e-01 1.08524990e+00 1.08600819e+00 -1.54233170e+00
-7.06525207e-01 -3.41432244e-01 -8.20215642e-02 1.45072356e-01
-2.33228967e-01 -4.26994711e-01 -4.23212022e-01 -8.93094897e-01
1.02811664e-01 -9.66361225e-01 -6.20317876e-01 1.76888555e-01
-4.70926017e-01 1.24483071e-01 9.52861190e-01 -4.57854897e-01
6.48455024e-01 -2.41103911e+00 -8.75286609e-02 3.92923653e-01
-7.10540488e-02 1.14780508e-01 -2.59917974e-01 -9.42428876e-03
-4.81898859e-02 -6.22814745e-02 -7.81749368e-01 -2.07176089e-01
-1.20393552e-01 5.22910833e-01 -4.51698869e-01 4.15488809e-01
6.27567351e-01 9.08417881e-01 -9.17403877e-01 -2.78399944e-01
3.58249918e-02 1.78120479e-01 -7.31600285e-01 2.56432414e-01
-8.14878464e-01 9.44870174e-01 -7.47402489e-01 6.20160460e-01
7.15017796e-01 -3.60359579e-01 1.12220384e-01 2.53219426e-01
4.53379333e-01 1.70306474e-01 -8.27999413e-01 2.14331079e+00
-4.28608298e-01 4.61258501e-01 2.07428336e-01 -1.46740139e+00
1.04614913e+00 -1.98156498e-02 4.10302818e-01 -6.17766321e-01
-1.64155468e-01 1.15355484e-01 -2.59241641e-01 -2.74911344e-01
9.43197682e-02 -2.37558350e-01 -3.17657709e-01 4.22026873e-01
2.74820983e-01 -1.99213028e-01 -2.67477989e-01 -9.93542955e-04
1.06764996e+00 4.63041276e-01 -5.72158396e-02 -2.15060368e-01
2.78083514e-03 5.19288540e-01 7.46806562e-01 5.24291933e-01
-1.38159946e-01 9.22751486e-01 5.02434671e-01 -2.95235962e-01
-1.18512690e+00 -1.38070393e+00 -1.89182729e-01 1.30723703e+00
1.97799221e-01 2.99331784e-01 -9.97842073e-01 -1.22794652e+00
2.69293338e-01 6.32781565e-01 -8.38559091e-01 -1.91629365e-01
-3.84326816e-01 -5.89952886e-01 6.02309048e-01 9.15004075e-01
5.37717700e-01 -1.01668978e+00 -3.57172281e-01 1.49967998e-01
1.03206895e-01 -1.16991353e+00 -3.88536960e-01 5.28944492e-01
-1.04978502e+00 -1.00407171e+00 -7.62736619e-01 -1.02714527e+00
1.04352403e+00 -2.00698245e-02 1.22085929e+00 -3.33393306e-01
-1.35350853e-01 2.74656475e-01 -2.45163694e-01 -4.55831617e-01
-2.88971096e-01 3.68137151e-01 -3.64793390e-01 -1.10146953e-02
4.91440862e-01 -6.73542798e-01 -5.86589813e-01 4.40104514e-01
-9.58807290e-01 -1.06042109e-01 5.02711594e-01 9.03744519e-01
8.60817909e-01 9.34022889e-02 7.66527593e-01 -1.46930683e+00
1.87192291e-01 -7.85854280e-01 -5.94210804e-01 1.36538208e-01
-3.58888209e-01 1.14068173e-01 6.52636051e-01 -6.67089283e-01
-1.24983501e+00 6.44593179e-01 1.95388749e-01 -5.27507186e-01
-7.16499567e-01 1.87271714e-01 -4.08962280e-01 1.98738053e-01
1.14587784e+00 5.70621192e-02 -1.22901827e-01 -6.03046715e-01
5.80431461e-01 4.05506104e-01 6.73641622e-01 -8.85326982e-01
1.14161050e+00 7.27510929e-01 -3.13080400e-01 -4.15316284e-01
-9.34791148e-01 -3.37082148e-01 -8.78842831e-01 2.85445154e-01
8.83401155e-01 -1.12810099e+00 3.40595782e-01 2.54128128e-01
-8.82448196e-01 -9.45563197e-01 -6.93076193e-01 4.63665314e-02
-6.68715239e-01 -9.73883644e-02 -1.67406172e-01 -3.03359330e-01
1.72972590e-01 -8.98653865e-01 1.31775033e+00 4.33253884e-01
-2.75612026e-01 -1.36290979e+00 1.36416212e-01 2.76056230e-01
2.35994115e-01 3.72934520e-01 9.81582642e-01 -8.20194602e-01
-5.31434119e-01 -1.88603476e-01 -2.43611202e-01 4.70603973e-01
2.83194333e-01 -1.91012591e-01 -1.21162498e+00 -1.88486964e-01
-3.86850685e-01 -4.16305691e-01 9.13032532e-01 6.19849622e-01
1.57613456e+00 -8.08156431e-02 -6.02192521e-01 8.74752223e-01
1.38454735e+00 1.57923222e-01 5.71471572e-01 3.36310178e-01
6.74059033e-01 6.39872491e-01 6.91718280e-01 1.74589798e-01
2.74206400e-01 4.37291831e-01 3.96510631e-01 -4.81449574e-01
-1.29650444e-01 -6.77034557e-01 1.49923921e-01 -2.13217199e-01
4.27355409e-01 -6.51878789e-02 -8.87697577e-01 1.01267135e+00
-1.76202154e+00 -5.76649368e-01 3.49179566e-01 1.94262016e+00
9.11770940e-01 1.49009287e-01 2.39998028e-01 -3.32736254e-01
7.72716820e-01 1.27218645e-02 -1.03530395e+00 -2.53981650e-01
1.31350765e-02 5.42747617e-01 7.32102573e-01 2.55012780e-01
-1.35912621e+00 1.32107270e+00 6.83179235e+00 8.10840786e-01
-1.04978156e+00 2.18530595e-01 9.89784658e-01 -8.53014886e-02
-4.71199721e-01 6.85430318e-02 -5.32945037e-01 3.27261329e-01
6.47464812e-01 2.53810614e-01 4.37213928e-01 1.12605321e+00
-7.24056689e-03 -1.53459925e-02 -1.05416656e+00 5.81906855e-01
-2.94528306e-01 -1.32086635e+00 -2.03768745e-01 -3.32777686e-02
1.34387445e+00 1.73826352e-01 2.55751550e-01 3.31580043e-01
8.52279186e-01 -1.21296155e+00 4.59663868e-01 1.88397706e-01
9.92602527e-01 -5.77863574e-01 2.48479545e-01 2.90131092e-01
-8.60146046e-01 -5.49061038e-02 -4.25878555e-01 6.06058538e-02
-1.52144045e-01 5.52258074e-01 -1.11635113e+00 6.07222542e-02
7.68160999e-01 9.06080365e-01 -5.82029045e-01 7.02607632e-01
-3.92113388e-01 8.52722943e-01 -2.90517151e-01 5.20915806e-01
2.93665886e-01 -1.37346849e-01 3.23946834e-01 1.10136771e+00
2.27831885e-01 -2.39504248e-01 2.05694333e-01 1.32661521e+00
-2.09595025e-01 -3.44008237e-01 -9.48432982e-01 -9.13554728e-02
4.87446845e-01 1.09656620e+00 -7.61967242e-01 -3.15455973e-01
-4.38608706e-01 1.10910082e+00 2.72595763e-01 8.34094882e-01
-8.25572193e-01 -2.85238028e-01 9.80140924e-01 3.12613279e-01
6.68146968e-01 -5.92940971e-02 -9.15620506e-01 -8.55750978e-01
-1.06605247e-01 -6.99999332e-01 3.07681262e-01 -5.92506826e-01
-1.45384812e+00 1.89852417e-01 -3.54887694e-02 -1.33183050e+00
-2.41607189e-01 -4.98995930e-01 -7.88044095e-01 9.76981699e-01
-1.51721847e+00 -1.27272713e+00 -2.15369657e-01 7.70712614e-01
6.92137599e-01 -3.69392395e-01 8.59230042e-01 4.16347086e-02
-3.31766546e-01 6.33678496e-01 3.43648732e-01 3.65387797e-01
8.16529393e-01 -1.44716883e+00 5.59801161e-01 8.34743440e-01
2.44366288e-01 2.43995860e-01 4.67154741e-01 -5.41236401e-01
-5.87329268e-01 -1.68428028e+00 2.34969243e-01 -5.90534151e-01
4.79627937e-01 -4.53294575e-01 -9.93930519e-01 1.02335906e+00
3.74172702e-02 3.00198048e-01 6.58901632e-01 1.47913158e-01
-5.58364451e-01 -8.15076903e-02 -1.40466177e+00 3.64269644e-01
1.02756584e+00 -5.22593260e-01 -3.30781192e-01 3.47143769e-01
7.50979602e-01 -5.13313293e-01 -6.15492582e-01 3.44401300e-01
1.17442444e-01 -6.44156694e-01 1.03201985e+00 -9.01337624e-01
6.31228328e-01 -3.77258152e-01 -2.84554958e-01 -1.63770545e+00
-2.52943337e-01 -1.92610383e-01 1.62556231e-01 1.25731993e+00
7.08747208e-01 -5.21172643e-01 1.22627532e+00 6.13974631e-01
-2.22642198e-01 -5.37175357e-01 -6.96099401e-01 -6.32673979e-01
6.15610480e-01 -3.29911679e-01 7.21827924e-01 9.65874195e-01
-5.15822411e-01 1.56386703e-01 1.72887236e-01 5.01104057e-01
5.48893690e-01 3.73134017e-01 9.50534165e-01 -1.05031347e+00
-5.22297561e-01 -2.24211246e-01 -2.82311708e-01 -1.22893226e+00
4.57925737e-01 -8.60728145e-01 2.99578547e-01 -1.37415278e+00
9.83506069e-02 -9.57558632e-01 -3.39002997e-01 6.96909785e-01
-1.43048450e-01 3.41781706e-01 -1.62837267e-01 1.87531888e-01
-5.98034561e-01 3.80556941e-01 1.38615310e+00 -4.80852664e-01
-2.76692241e-01 1.35467023e-01 -9.79181230e-01 7.52583861e-01
8.96569014e-01 -7.59491742e-01 -7.01318383e-01 -7.81511307e-01
-1.91102445e-01 -3.71208757e-01 4.52321172e-01 -9.68893111e-01
-2.20810801e-01 -4.38341975e-01 7.33176649e-01 -1.58695623e-01
1.69714510e-01 -9.24477279e-01 -6.46528378e-02 -2.82727685e-02
-5.15092015e-01 -5.70313692e-01 3.53053600e-01 7.56956339e-01
-1.85124025e-01 -1.10752456e-01 1.09053683e+00 -1.32053912e-01
-8.93356085e-01 3.05439383e-01 -1.70912817e-01 3.63721430e-01
1.30011630e+00 -3.41947109e-01 -9.58152562e-02 -3.13411444e-01
-9.21238601e-01 3.25835347e-01 8.89866054e-01 3.64682972e-01
2.96894521e-01 -1.14453232e+00 -4.33197916e-01 3.68494868e-01
2.42319092e-01 7.82055497e-01 8.77343863e-02 2.99970418e-01
-4.10595059e-01 8.85946155e-02 -1.98629484e-01 -8.71453404e-01
-6.86381519e-01 4.47319120e-01 5.64070344e-01 -1.86699480e-01
-5.51408947e-01 9.85190153e-01 7.63758421e-01 -9.37119663e-01
3.55105586e-02 -3.11423033e-01 2.14672908e-01 -3.66458297e-01
1.04886234e-01 -5.48595637e-02 -7.20597133e-02 -2.84533441e-01
-1.51485607e-01 4.14606005e-01 5.10995053e-02 -1.92870013e-02
1.34475946e+00 -1.23710319e-01 3.75313938e-01 2.50643432e-01
1.18080640e+00 -2.37432420e-01 -2.16360545e+00 -3.32821250e-01
1.05603255e-01 -4.69664007e-01 -2.55649179e-01 -1.11618268e+00
-1.29213786e+00 8.87058139e-01 5.33460200e-01 -9.56299305e-02
1.25587142e+00 3.91590953e-01 7.32558787e-01 8.01843032e-02
1.47111043e-01 -1.34580088e+00 2.15660617e-01 4.00931180e-01
5.34706652e-01 -1.32933986e+00 -4.28497970e-01 -4.59758103e-01
-8.95836771e-01 7.93280005e-01 8.24306130e-01 -4.57895875e-01
7.10726917e-01 3.86744529e-01 3.62600833e-01 -1.23137079e-01
-4.55752164e-01 -1.36939675e-01 9.51545537e-02 1.16232979e+00
1.99553072e-01 2.49685526e-01 5.37849963e-01 6.32161438e-01
6.77626356e-02 1.58009343e-02 9.48032811e-02 7.61414349e-01
-3.34672630e-01 -1.21960187e+00 -4.47392792e-01 5.04894376e-01
-2.87198961e-01 1.26774490e-01 -3.99952590e-01 6.98519170e-01
3.26388001e-01 7.34263062e-01 5.19171894e-01 -1.97374478e-01
2.98935950e-01 1.97400540e-01 3.91461104e-01 -1.08488238e+00
-1.90980852e-01 1.53701141e-01 -2.26375133e-01 -5.18901885e-01
-3.70811224e-01 -6.79308057e-01 -1.49862731e+00 1.59274369e-01
5.92558943e-02 -8.43356475e-02 4.64435786e-01 9.81598794e-01
4.97698724e-01 5.95115662e-01 6.50674760e-01 -9.15659368e-01
-3.68748397e-01 -9.00291383e-01 -6.94501877e-01 7.09131837e-01
2.86423057e-01 -6.93509459e-01 -6.87616840e-02 5.68374515e-01] | [9.783434867858887, 1.3582803010940552] |
e389de76-b06b-421b-ba8c-5ae73ddcabe2 | safe-reinforcement-learning-via-shielding-for | 2204.00755 | null | https://arxiv.org/abs/2204.00755v2 | https://arxiv.org/pdf/2204.00755v2.pdf | Safe Reinforcement Learning via Shielding under Partial Observability | Safe exploration is a common problem in reinforcement learning (RL) that aims to prevent agents from making disastrous decisions while exploring their environment. A family of approaches to this problem assume domain knowledge in the form of a (partial) model of this environment to decide upon the safety of an action. A so-called shield forces the RL agent to select only safe actions. However, for adoption in various applications, one must look beyond enforcing safety and also ensure the applicability of RL with good performance. We extend the applicability of shields via tight integration with state-of-the-art deep RL, and provide an extensive, empirical study in challenging, sparse-reward environments under partial observability. We show that a carefully integrated shield ensures safety and can improve the convergence rate and final performance of RL agents. We furthermore show that a shield can be used to bootstrap state-of-the-art RL agents: they remain safe after initial learning in a shielded setting, allowing us to disable a potentially too conservative shield eventually. | ['Ufuk Topcu', 'Sebastian Junges', 'Nils Jansen', 'Steven Carr'] | 2022-04-02 | null | null | null | null | ['safe-exploration'] | ['robots'] | [ 4.64006215e-02 4.38606709e-01 -2.73191959e-01 -9.16478038e-02
-8.62939835e-01 -8.64968777e-01 5.88694453e-01 -1.22984173e-03
-8.83344412e-01 1.15775752e+00 -9.46326554e-03 -4.51169103e-01
-1.22373633e-01 -7.84739971e-01 -1.04357588e+00 -8.88558865e-01
-5.67462385e-01 4.92896855e-01 3.30074996e-01 -4.89080489e-01
4.98510376e-02 4.70128268e-01 -1.42527759e+00 -2.45403513e-01
7.90924430e-01 6.87074006e-01 -5.53309880e-02 6.30855739e-01
7.76914775e-01 1.14771914e+00 -6.07551455e-01 2.24850670e-01
6.31426632e-01 -4.12766963e-01 -8.79940629e-01 -3.22335176e-02
-2.39907593e-01 -7.60952890e-01 -1.59388736e-01 1.10655773e+00
4.18210566e-01 4.07753468e-01 1.70688868e-01 -1.41601968e+00
-3.62702012e-02 8.80417645e-01 -3.80884379e-01 -1.50684640e-01
2.44127542e-01 7.36516654e-01 8.99413407e-01 1.35035589e-01
6.43966734e-01 1.16846240e+00 3.67162853e-01 8.67882907e-01
-1.25788379e+00 -6.20338678e-01 7.19308496e-01 -2.15198204e-01
-1.05481541e+00 -4.22310203e-01 3.72144967e-01 -7.43506700e-02
9.91009891e-01 1.59682095e-01 7.53268063e-01 1.29420936e+00
2.17600152e-01 8.60620975e-01 1.41365194e+00 -2.81706423e-01
8.87311876e-01 -7.61185661e-02 -2.22469524e-01 6.81799948e-01
3.24553370e-01 7.71605670e-01 -3.86512727e-01 -3.97257388e-01
7.18938649e-01 -4.88930225e-01 -1.19012915e-01 -7.70442963e-01
-9.59423959e-01 1.00081348e+00 4.84667629e-01 -8.33396465e-02
-4.12082613e-01 4.51767564e-01 4.36772287e-01 6.30197644e-01
-5.10359034e-02 8.45542967e-01 -3.08391362e-01 -3.24713945e-01
-4.85336274e-01 6.73260629e-01 9.45903122e-01 6.30250335e-01
4.54020500e-01 3.03464890e-01 3.38198617e-02 9.82458144e-02
1.20277047e-01 3.15841317e-01 1.12998448e-01 -1.38169932e+00
2.72929221e-01 2.32866630e-01 7.15510845e-01 -1.62010670e-01
-5.13573110e-01 -6.44391358e-01 -1.44856155e-01 1.06284034e+00
2.92371392e-01 -6.66005552e-01 -5.90484202e-01 2.19294238e+00
5.89615107e-01 8.74143690e-02 4.73742336e-01 9.81429994e-01
-1.51390821e-01 3.88800591e-01 -1.40260801e-01 -4.01427716e-01
7.52600253e-01 -8.39136600e-01 -2.34893575e-01 -6.35034859e-01
7.45520353e-01 1.54978245e-01 1.10464501e+00 9.04885769e-01
-1.17615473e+00 5.76452091e-02 -1.18980265e+00 4.33065236e-01
4.51744571e-02 -4.61058855e-01 7.67241418e-01 5.27634025e-01
-1.13259816e+00 6.83813810e-01 -1.06407201e+00 -1.79616868e-01
4.79842335e-01 7.09849060e-01 -1.62165970e-01 1.97094560e-01
-1.17177963e+00 1.18219268e+00 3.68574232e-01 -4.58229817e-02
-1.89724338e+00 -2.75052071e-01 -7.72250473e-01 -2.20171243e-01
1.13734353e+00 -4.82268333e-01 1.78592908e+00 -1.03086448e+00
-1.83783615e+00 3.67743611e-01 4.24653351e-01 -9.84006464e-01
1.02576578e+00 -5.64426780e-01 3.02203596e-01 4.70830798e-02
1.64259020e-02 6.20462060e-01 8.27998698e-01 -1.44765437e+00
-7.45163321e-01 -1.90877885e-01 7.67764390e-01 5.68115532e-01
1.82324946e-02 -2.07334056e-01 9.11324248e-02 -2.02524364e-01
-6.00815475e-01 -1.35784328e+00 -7.44634509e-01 -7.51389489e-02
-3.60477030e-01 -1.18805431e-02 4.19961154e-01 -6.81621656e-02
6.76684797e-01 -1.85519397e+00 2.54746586e-01 1.45880416e-01
3.19703505e-03 7.11523145e-02 -4.28777277e-01 4.13812816e-01
3.22061628e-01 -6.39044046e-02 -3.29694599e-01 -3.24264407e-01
2.56240547e-01 5.33500254e-01 -7.22227097e-01 9.91644025e-01
-6.29184470e-02 7.59754360e-01 -1.28425348e+00 -1.79040208e-01
1.38321266e-01 2.02533081e-01 -7.20810950e-01 4.83475894e-01
-7.07304955e-01 7.75312483e-01 -8.88128698e-01 2.23472893e-01
2.79836327e-01 1.42348364e-01 4.19169605e-01 8.06835532e-01
-2.00711891e-01 4.05883133e-01 -1.21362352e+00 1.33864951e+00
-5.40607274e-01 1.31048262e-01 4.80094850e-01 -6.42602861e-01
4.17742282e-01 8.22512805e-02 4.05573964e-01 -6.85760081e-01
3.34586561e-01 6.09529354e-02 1.30464181e-01 -1.69443116e-01
4.46549445e-01 -1.60851076e-01 -2.69888550e-01 8.10609341e-01
-4.04527724e-01 -1.04693092e-01 5.59649132e-02 1.52570186e-02
1.32465112e+00 6.36331797e-01 3.62545460e-01 -3.41467619e-01
3.37850094e-01 1.00866348e-01 6.53767705e-01 1.25976646e+00
-3.02111864e-01 -8.03985521e-02 8.21012378e-01 -3.95323277e-01
-7.24758923e-01 -8.12782526e-01 1.16124734e-01 1.29100978e+00
1.50205299e-01 -1.19507879e-01 -8.33050728e-01 -1.14111614e+00
8.28043893e-02 9.68392432e-01 -9.18782353e-01 -3.59081209e-01
-6.70229971e-01 -4.75320011e-01 6.64103508e-01 4.29874182e-01
4.41375941e-01 -1.27042747e+00 -1.63010371e+00 1.79172426e-01
2.07743406e-01 -7.53269613e-01 -2.10342675e-01 6.44129574e-01
-5.41945994e-01 -1.08428371e+00 -2.42178053e-01 -3.15412343e-01
6.48256242e-01 6.27971590e-02 9.91238832e-01 2.06530899e-01
1.70030475e-01 4.38318998e-01 -3.32494110e-01 -2.00864077e-01
-6.50049090e-01 4.62412499e-02 4.17927742e-01 -4.81424153e-01
-2.40644142e-01 -5.12114763e-01 -4.80374157e-01 1.71270669e-01
-9.41322684e-01 -2.23516732e-01 3.69927645e-01 7.00104654e-01
3.48841250e-01 2.41716236e-01 4.43983227e-01 -7.23480940e-01
8.16248417e-01 -4.30405170e-01 -1.27638233e+00 1.32418677e-01
-5.73421896e-01 6.52738452e-01 9.83861387e-01 -5.78690648e-01
-8.68130505e-01 1.00363992e-01 4.62563895e-02 -2.75414646e-01
-4.09003049e-02 8.07738155e-02 -9.02641714e-02 -4.29983199e-01
7.54505932e-01 1.51046723e-01 7.91141018e-02 -2.34874591e-01
3.75174969e-01 1.41573384e-01 3.13289821e-01 -1.02797985e+00
8.01286638e-01 4.21671093e-01 2.00448006e-01 -2.91545928e-01
-8.10659111e-01 2.60021150e-01 -1.88775495e-01 -1.38590485e-01
3.60896051e-01 -9.22816694e-01 -1.40057778e+00 3.74313071e-02
-6.35763288e-01 -1.18649483e+00 -5.05677819e-01 6.90706596e-02
-9.89073813e-01 1.13890834e-01 -3.29256207e-01 -1.18068433e+00
1.44210588e-02 -1.40959847e+00 8.08449566e-01 1.70325726e-01
-1.34148523e-01 -7.86958992e-01 3.95883441e-01 -2.36013774e-02
2.50284553e-01 3.04977477e-01 6.28406167e-01 -6.52245283e-01
-7.14938939e-01 4.39667523e-01 4.89095002e-01 1.02955565e-01
-1.89137980e-01 -3.27130467e-01 -8.94481778e-01 -7.52878845e-01
4.72432701e-03 -9.60892081e-01 8.31441104e-01 3.13902795e-01
8.62443268e-01 -8.63452554e-01 -2.09960386e-01 4.74679112e-01
1.27643585e+00 2.64936715e-01 3.21799248e-01 8.57698858e-01
1.67172685e-01 5.64471781e-01 1.00660861e+00 8.94886851e-01
3.79678637e-01 5.36116242e-01 1.02255976e+00 2.34091222e-01
4.99577284e-01 -3.52194607e-01 7.59768307e-01 -2.86305100e-01
1.49289623e-01 -1.75695390e-01 -6.77143276e-01 4.27036852e-01
-2.17685032e+00 -8.19824517e-01 6.26905501e-01 2.63195038e+00
1.22043562e+00 3.91247720e-01 4.93652612e-01 -1.26741827e-01
1.76532492e-01 2.83092678e-01 -1.20948505e+00 -5.85808337e-01
1.27774760e-01 -8.48930702e-02 8.55784655e-01 8.81110549e-01
-1.08655930e+00 1.27726817e+00 6.78088188e+00 4.82872337e-01
-1.03526688e+00 -6.40228987e-02 4.83637244e-01 -4.30659145e-01
-2.95321614e-01 1.06650397e-01 -5.87342680e-01 3.57197076e-02
9.18699145e-01 -1.98952645e-01 1.10073066e+00 1.13990998e+00
2.33333081e-01 -5.21401405e-01 -1.36789405e+00 2.56131738e-01
-4.11011219e-01 -9.47161496e-01 -5.95374167e-01 2.72475392e-01
7.99396932e-01 2.58003175e-01 2.09871471e-01 7.11702764e-01
1.45382833e+00 -1.27724624e+00 9.79643762e-01 8.20068121e-02
4.89666879e-01 -1.22006094e+00 3.31763715e-01 7.09797442e-01
-7.56783247e-01 -4.27118331e-01 -1.88213810e-01 -3.64820719e-01
-7.78944567e-02 -5.76067008e-02 -1.01108265e+00 3.01122278e-01
4.03476685e-01 3.49625319e-01 -3.23627412e-01 7.34352231e-01
-6.18322074e-01 3.58821183e-01 -4.11897063e-01 -1.19178228e-01
7.42592096e-01 -1.38128519e-01 5.72208107e-01 6.61062598e-01
-2.02376157e-01 8.11192859e-03 5.66761672e-01 7.78945863e-01
1.28783956e-01 -4.54104125e-01 -8.70158076e-01 1.53731674e-01
4.90575731e-01 9.08263385e-01 -5.00442982e-01 -1.11882970e-01
7.45727271e-02 6.23184204e-01 7.16857791e-01 4.26092565e-01
-1.00837290e+00 2.82466650e-01 9.60893691e-01 -3.55865747e-01
3.09137672e-01 -2.69608736e-01 -2.58811593e-01 -9.86896873e-01
-6.75350279e-02 -1.28737414e+00 4.94244576e-01 -4.26947057e-01
-9.11817312e-01 7.01628923e-01 -3.80257964e-02 -1.08116710e+00
-6.57208622e-01 -2.69865483e-01 -3.65761489e-01 3.63631725e-01
-1.70188332e+00 -7.59624720e-01 1.18256882e-01 5.72666049e-01
3.74673575e-01 3.19227204e-02 7.22303033e-01 -5.53002000e-01
-5.59501648e-01 3.68502647e-01 5.14538884e-02 -3.09675068e-01
5.44926524e-01 -1.36459398e+00 2.99398601e-01 8.67586732e-01
-1.25690773e-01 4.74218041e-01 1.12047851e+00 -7.79218197e-01
-1.78676474e+00 -1.15612614e+00 -1.06150761e-01 -4.31854516e-01
7.22563982e-01 -3.07333916e-01 -5.84917068e-01 9.36826885e-01
2.21460298e-01 1.29150286e-01 5.43153398e-02 7.61769852e-03
-2.81930029e-01 -4.56307158e-02 -1.20692444e+00 1.09362376e+00
1.04527962e+00 -2.31214345e-01 -5.66933393e-01 1.94705859e-01
7.65854537e-01 -5.89479864e-01 -3.50465178e-01 3.05586338e-01
4.94049072e-01 -1.09441304e+00 7.55213261e-01 -8.13174427e-01
6.51214123e-02 -3.99558842e-01 3.47933769e-02 -1.53695679e+00
-1.41326683e-02 -1.22803569e+00 -2.78557688e-01 5.39469063e-01
1.94819242e-01 -7.55773962e-01 7.81993508e-01 6.96741402e-01
1.45147085e-01 -6.92898691e-01 -1.09382081e+00 -9.99980569e-01
4.94293541e-01 -3.90965283e-01 5.03954470e-01 4.69150007e-01
1.95992172e-01 -9.98120531e-02 -6.20659113e-01 5.07037163e-01
7.44507551e-01 1.17821783e-01 7.35398233e-01 -8.08799028e-01
-5.80504835e-01 -3.46107095e-01 4.12737310e-01 -8.47749531e-01
7.16784418e-01 -4.40270901e-01 5.87247312e-01 -1.25305736e+00
5.73860388e-03 -6.79095864e-01 -2.32737526e-01 8.55058014e-01
1.48040444e-01 -2.93132752e-01 4.10113543e-01 1.02768308e-02
-1.20647168e+00 8.26143980e-01 1.26124716e+00 1.79470792e-01
-5.03285170e-01 3.36736701e-02 -7.74205983e-01 6.44853830e-01
9.35475528e-01 -5.44040501e-01 -6.81484997e-01 -3.54041249e-01
5.24984062e-01 2.09796637e-01 4.07340705e-01 -8.84213388e-01
1.77687243e-01 -8.28235686e-01 -1.32899031e-01 4.19682898e-02
2.29860157e-01 -8.52643192e-01 -5.66775687e-02 9.89803791e-01
-8.78144026e-01 -9.57179889e-02 2.06281245e-01 5.10893345e-01
3.72646570e-01 -1.79294050e-01 9.16292191e-01 -2.50730306e-01
-5.07962942e-01 1.88890994e-01 -5.55335522e-01 3.21513534e-01
1.40043199e+00 1.87817246e-01 -4.15787458e-01 -5.96733272e-01
-3.23516041e-01 8.23413491e-01 8.57997775e-01 2.06307188e-01
4.91460264e-01 -7.99902201e-01 -4.59118396e-01 1.48669809e-01
-1.24696486e-01 1.18166782e-01 -6.35346845e-02 6.11591101e-01
-1.49642959e-01 1.81384236e-01 -3.82868141e-01 -1.17597938e-01
-1.00103259e+00 8.37010443e-01 6.96086228e-01 -5.05595028e-01
-7.71182716e-01 6.81753933e-01 2.99498975e-01 -2.94377208e-01
6.15450978e-01 -3.73577356e-01 -8.25941712e-02 -2.85934776e-01
5.89517176e-01 1.35157943e-01 -2.48637766e-01 -1.97233975e-01
-6.05809391e-01 2.01489419e-01 -1.33048385e-01 -7.35284090e-01
1.40883422e+00 2.51279725e-03 2.53176272e-01 1.82664722e-01
4.97678071e-01 6.41819909e-02 -2.27282143e+00 4.86956537e-02
-1.52575448e-01 -3.87915075e-01 1.51845023e-01 -9.99758899e-01
-8.23661029e-01 5.26087940e-01 1.98330462e-01 1.91811442e-01
1.01774824e+00 -2.65889794e-01 3.99104685e-01 8.21292520e-01
1.03638756e+00 -1.18183291e+00 -3.23948376e-02 6.48664534e-01
8.59797120e-01 -1.10392416e+00 2.71388087e-02 2.45449007e-01
-1.16641212e+00 8.69459867e-01 7.27639377e-01 -4.34184819e-01
-1.76326558e-02 6.20047510e-01 -1.95696265e-01 2.12497890e-01
-1.22154593e+00 -4.73019838e-01 -4.12696660e-01 7.30004728e-01
-3.84646028e-01 3.22022997e-02 1.02153137e-01 4.95337009e-01
-1.32508278e-01 -3.20217274e-02 8.05752337e-01 1.41747844e+00
-7.40020752e-01 -1.14829254e+00 -3.43189597e-01 -9.03993100e-02
-4.49123651e-01 2.39397079e-01 -4.74516183e-01 8.95799637e-01
-8.67766663e-02 1.02756727e+00 -2.32769549e-01 -9.24770162e-02
2.88070738e-02 -3.26843470e-01 6.56318188e-01 -4.02095258e-01
-8.19273472e-01 -9.47103351e-02 4.07007039e-01 -1.06640363e+00
-1.57012925e-01 -6.18370533e-01 -1.51352084e+00 -2.45303541e-01
3.28828655e-02 3.20064992e-01 2.78478891e-01 1.04275978e+00
1.73887268e-01 4.45647836e-01 9.23045933e-01 -5.76277435e-01
-1.35337579e+00 -3.98866028e-01 -5.01056731e-01 -9.05986801e-02
1.04401302e+00 -7.62950122e-01 -3.90518486e-01 -4.81881768e-01] | [4.439940929412842, 2.1311991214752197] |
219d53b6-684c-4b70-a384-14e0d04eb031 | defending-black-box-classifiers-by-bayesian | 2306.16979 | null | https://arxiv.org/abs/2306.16979v1 | https://arxiv.org/pdf/2306.16979v1.pdf | Defending Black-box Classifiers by Bayesian Boundary Correction | Classifiers based on deep neural networks have been recently challenged by Adversarial Attack, where the widely existing vulnerability has invoked the research in defending them from potential threats. Given a vulnerable classifier, existing defense methods are mostly white-box and often require re-training the victim under modified loss functions/training regimes. While the model/data/training specifics of the victim are usually unavailable to the user, re-training is unappealing, if not impossible for reasons such as limited computational resources. To this end, we propose a new black-box defense framework. It can turn any pre-trained classifier into a resilient one with little knowledge of the model specifics. This is achieved by new joint Bayesian treatments on the clean data, the adversarial examples and the classifier, for maximizing their joint probability. It is further equipped with a new post-train strategy which keeps the victim intact. We name our framework Bayesian Boundary Correction (BBC). BBC is a general and flexible framework that can easily adapt to different data types. We instantiate BBC for image classification and skeleton-based human activity recognition, for both static and dynamic data. Exhaustive evaluation shows that BBC has superior robustness and can enhance robustness without severely hurting the clean accuracy, compared with existing defense methods. | ['Yunfeng Diao', 'He Wang'] | 2023-06-29 | null | null | null | null | ['adversarial-attack', 'activity-recognition', 'human-activity-recognition', 'human-activity-recognition'] | ['adversarial', 'computer-vision', 'computer-vision', 'time-series'] | [ 4.41747606e-01 6.72118785e-03 -8.95674434e-03 -1.10202909e-01
-5.78446090e-01 -7.27601886e-01 6.71785951e-01 -1.51025787e-01
-5.87634563e-01 7.22448170e-01 -7.90223777e-02 -2.61810839e-01
-2.22943395e-01 -8.24105740e-01 -6.62614644e-01 -1.04467773e+00
-1.76575825e-01 2.53722906e-01 4.90597546e-01 -2.69385964e-01
8.84924084e-02 7.02395439e-01 -1.31391764e+00 1.71894357e-01
6.41523719e-01 9.81921315e-01 -4.27930564e-01 6.56205475e-01
3.82671535e-01 5.27906418e-01 -7.76417315e-01 -7.06570089e-01
4.67422605e-01 -9.76672173e-02 -6.15708888e-01 -3.49724919e-01
3.50219369e-01 -3.15576077e-01 -5.55918694e-01 1.31005228e+00
4.89304960e-01 3.65548134e-02 6.77298784e-01 -1.37598217e+00
-2.66970217e-01 6.21307850e-01 -5.37514746e-01 1.90335676e-01
4.59511504e-02 2.42660061e-01 4.03413326e-01 -3.45071942e-01
3.55077982e-01 1.10845578e+00 8.31077456e-01 1.09718788e+00
-1.06782651e+00 -7.25063145e-01 3.26378971e-01 3.00293624e-01
-1.16403568e+00 -3.17036539e-01 8.48023415e-01 -3.56649727e-01
4.20041502e-01 4.83618379e-01 2.98595428e-01 1.95575190e+00
3.34645241e-01 5.61390817e-01 1.11822331e+00 -2.49668807e-01
3.55093598e-01 3.97408232e-02 3.67173374e-01 5.57116032e-01
3.48872602e-01 5.33063710e-01 -3.31202358e-01 -5.00886858e-01
2.63244808e-01 4.63127270e-02 -3.87222052e-01 -4.14398134e-01
-6.42953932e-01 7.72745669e-01 3.75334680e-01 8.21680725e-02
-2.36957550e-01 1.92870274e-01 5.62434673e-01 2.37067357e-01
1.96405128e-01 1.47691011e-01 -4.15962845e-01 8.48229975e-02
-8.04732144e-01 3.82642269e-01 7.90219367e-01 3.82118732e-01
1.75552070e-01 2.79142976e-01 -2.30578054e-02 6.18206024e-01
9.71643180e-02 4.62888330e-01 4.59895253e-01 -5.13271391e-01
2.28392437e-01 2.65910745e-01 -2.42788211e-01 -1.09087980e+00
-3.03888887e-01 -6.73589468e-01 -1.13340497e+00 7.50962317e-01
5.34183562e-01 -2.46441364e-01 -9.38345015e-01 2.07486510e+00
5.57039261e-01 2.97218710e-01 1.63515896e-01 5.52334011e-01
1.54415578e-01 3.75716686e-01 7.46738240e-02 3.50688584e-02
1.06318426e+00 -6.01765931e-01 -4.04513419e-01 -2.88828880e-01
1.68830454e-01 -3.26446533e-01 7.33647943e-01 8.89075756e-01
-6.62711918e-01 -4.36132908e-01 -1.38497281e+00 4.64333355e-01
-6.05046511e-01 -4.26123559e-01 4.02838230e-01 1.28849936e+00
-5.04618585e-01 9.37390208e-01 -9.44923818e-01 -1.28878849e-02
7.06947565e-01 3.93224120e-01 -5.35367072e-01 9.16804299e-02
-1.46229374e+00 1.10215437e+00 4.74575430e-01 1.84065297e-01
-1.39884675e+00 -5.51844716e-01 -6.07173264e-01 -2.41360478e-02
6.61085248e-01 -6.31131709e-01 8.27374458e-01 -8.93438876e-01
-1.51167154e+00 4.75638092e-01 6.24971807e-01 -8.66137862e-01
1.07966018e+00 -4.60238069e-01 -3.68412018e-01 4.04966548e-02
-2.56688505e-01 2.87083656e-01 1.52602816e+00 -1.20044816e+00
-3.62960637e-01 -4.13889289e-01 1.04410224e-01 -2.39781410e-01
-6.10004783e-01 3.48690301e-02 -1.30474627e-01 -1.01786351e+00
-1.43694714e-01 -8.57821167e-01 -1.25563636e-01 1.49299383e-01
-6.32337332e-01 2.32536644e-01 1.15061772e+00 -6.42737508e-01
1.06646514e+00 -2.12663794e+00 2.00898319e-01 3.67999762e-01
-4.19024043e-02 7.11421549e-01 -2.04638336e-02 1.97368816e-01
-3.29987258e-01 8.65901411e-02 -6.77234590e-01 -2.24292949e-01
-7.67366141e-02 2.91762948e-01 -6.84628963e-01 7.58966446e-01
1.51690513e-01 4.27875429e-01 -6.40224397e-01 -3.24714929e-01
8.07340294e-02 5.65543830e-01 -4.81049001e-01 8.13068375e-02
1.15207605e-01 3.93212140e-01 -4.70492512e-01 6.86790168e-01
8.05195332e-01 4.01477426e-01 -5.12404628e-02 2.12947791e-03
4.46339548e-01 -3.60583484e-01 -1.39122748e+00 1.28171647e+00
-3.23197216e-01 2.02390909e-01 3.00732553e-01 -1.31330192e+00
8.44000578e-01 1.61830142e-01 2.64687955e-01 -1.02985695e-01
2.91333288e-01 1.32428393e-01 8.19073841e-02 -4.17475909e-01
1.40548171e-02 -2.00826302e-01 -2.51081854e-01 4.52534407e-01
-6.13500662e-02 1.52628466e-01 -2.30979830e-01 1.70006588e-01
1.38401783e+00 1.62916660e-01 1.99817404e-01 -1.42716765e-01
6.85860932e-01 -3.60168725e-01 8.16801488e-01 1.01210535e+00
-4.18892056e-01 4.19236153e-01 4.22133535e-01 -5.05120695e-01
-7.56025732e-01 -1.19562256e+00 -3.72343093e-01 8.40571940e-01
-6.47741556e-02 -2.03625038e-01 -1.19977629e+00 -1.33747458e+00
-2.74259020e-02 5.31529427e-01 -9.48415339e-01 -7.15168595e-01
-6.42163157e-01 -9.25463200e-01 1.14894891e+00 5.80945253e-01
6.14513338e-01 -8.55709851e-01 -8.27226877e-01 1.12855479e-01
1.46239325e-01 -1.02277827e+00 -1.42945111e-01 3.85668993e-01
-7.59938896e-01 -1.25374198e+00 -4.63114023e-01 -8.21313560e-02
5.67929387e-01 -1.53654516e-01 5.51524222e-01 3.73070985e-01
-4.24450189e-01 2.52351731e-01 -4.18916970e-01 -5.07780135e-01
-6.08539581e-01 -8.14953521e-02 4.92759258e-01 3.05012435e-01
-1.31217659e-01 -8.03786874e-01 -3.13291162e-01 2.79825509e-01
-1.16302121e+00 -3.23204696e-01 4.94054794e-01 1.03873444e+00
1.56061679e-01 2.20261469e-01 6.27607524e-01 -9.66965258e-01
4.42991763e-01 -5.07322252e-01 -4.82063800e-01 2.21127599e-01
-4.18013185e-01 1.38307393e-01 8.03121805e-01 -8.82831573e-01
-9.46432173e-01 8.71884078e-02 -3.67161065e-01 -5.13206482e-01
-2.92676508e-01 2.17122763e-01 -5.67577481e-01 -2.38287881e-01
1.07320070e+00 -4.21062373e-02 -6.71221241e-02 -6.41079724e-01
1.72400162e-01 4.89084303e-01 9.31254685e-01 -8.24028492e-01
1.20817661e+00 5.56778610e-01 3.33578378e-01 -5.92653573e-01
-7.60742128e-01 1.59933999e-01 -7.44411528e-01 -2.64944375e-01
5.32770753e-01 -1.65915564e-01 -5.78645349e-01 9.50576901e-01
-9.94506121e-01 -2.89117068e-01 -2.04286277e-01 2.02034593e-01
-3.27938259e-01 7.80731201e-01 -3.51838857e-01 -7.57476807e-01
-3.93068731e-01 -1.22478485e+00 5.97061276e-01 1.29567742e-01
5.02332263e-02 -9.77646887e-01 8.33654702e-02 3.59747112e-01
4.54160452e-01 8.22301626e-01 9.03531373e-01 -1.04916656e+00
-1.01745933e-01 -8.39137018e-01 1.77278742e-01 9.39895213e-01
-1.05646096e-01 -4.31434345e-03 -1.31999540e+00 -4.40502405e-01
3.63539100e-01 -2.92097330e-01 9.72322643e-01 -1.84621420e-02
1.42526519e+00 -4.79742408e-01 -2.85012394e-01 7.61767805e-01
1.04609513e+00 3.25007327e-02 7.13442504e-01 4.51674491e-01
6.32111967e-01 6.86549187e-01 3.57216060e-01 2.04538941e-01
-4.04965520e-01 7.60884404e-01 8.71814728e-01 1.76819742e-01
7.73821473e-02 1.36628002e-03 5.85763931e-01 -2.18497161e-02
-6.79762885e-02 -1.98093548e-01 -9.54722643e-01 1.00837737e-01
-1.82623315e+00 -1.09214628e+00 1.07555173e-01 2.30523181e+00
8.15763116e-01 5.41243017e-01 6.35042861e-02 6.42358482e-01
7.05000818e-01 1.45602331e-01 -7.54788280e-01 -3.03240746e-01
-6.50481433e-02 4.62639987e-01 3.41733277e-01 4.83558714e-01
-1.42671561e+00 7.73832262e-01 6.21891546e+00 1.23041332e+00
-1.00594103e+00 2.70950586e-01 3.96500975e-01 -1.90945432e-01
3.34098697e-01 -2.14408357e-02 -6.99643433e-01 5.30775666e-01
8.69386852e-01 1.33237705e-01 2.35605955e-01 1.08984888e+00
-1.82720527e-01 -6.57068286e-03 -9.69266236e-01 5.98876894e-01
2.12878555e-01 -1.08512938e+00 -1.71925919e-03 2.05502599e-01
2.74479479e-01 -3.59557688e-01 2.05357045e-01 4.14976150e-01
3.11455488e-01 -9.74889636e-01 7.39850581e-01 5.59893250e-01
4.78936821e-01 -9.16302204e-01 7.82934070e-01 6.83615625e-01
-6.94784939e-01 -4.61484045e-01 -2.26973593e-01 1.56313524e-01
-1.56382492e-04 4.71539885e-01 -3.40776175e-01 6.91795528e-01
6.86051250e-01 1.76014721e-01 -7.04833150e-01 8.02853048e-01
-4.68226254e-01 6.75039113e-01 -3.54680568e-01 2.98016608e-01
6.53930306e-02 2.91445524e-01 9.63210404e-01 1.08023691e+00
4.52304818e-02 -1.42586172e-01 2.02567443e-01 6.00669801e-01
2.27194935e-01 -2.40357593e-01 -5.75519502e-01 3.59210163e-01
3.67759198e-01 1.25246477e+00 -7.48801410e-01 -1.76857859e-01
1.16288334e-01 8.92631769e-01 2.97629029e-01 9.19012502e-02
-1.13590539e+00 -4.17132497e-01 7.00267196e-01 -5.87674715e-02
-8.52900906e-04 -1.06691696e-01 -2.61116624e-01 -1.21532035e+00
7.20115080e-02 -1.19744015e+00 6.78793371e-01 -2.42668360e-01
-1.41046047e+00 7.10507154e-01 3.27680200e-01 -1.05679703e+00
-1.12528451e-01 -9.30436730e-01 -8.82931590e-01 5.51383436e-01
-1.03648472e+00 -1.27471685e+00 -5.13864197e-02 8.51399243e-01
3.02696437e-01 -4.85822588e-01 8.06672752e-01 2.38229543e-01
-9.99050081e-01 9.00442421e-01 -1.83482647e-01 2.83871233e-01
6.31542206e-01 -1.10267639e+00 2.58677185e-01 1.42780054e+00
8.75792131e-02 6.93139911e-01 8.36106956e-01 -7.92685211e-01
-1.08724594e+00 -1.01461482e+00 1.65023312e-01 -6.47750020e-01
7.25102186e-01 -5.77917695e-01 -1.21421981e+00 2.24196211e-01
-1.17648616e-01 1.23631097e-01 6.51992738e-01 9.51600727e-04
-7.56018400e-01 -1.46586865e-01 -1.38901699e+00 6.26759827e-01
7.96108007e-01 -3.70760202e-01 -6.46500409e-01 2.71506697e-01
3.94658804e-01 -1.97499618e-01 -6.09576821e-01 6.76987469e-01
5.59359729e-01 -9.53865707e-01 1.18320060e+00 -8.88746619e-01
-4.70427759e-02 -2.55051792e-01 -2.27572411e-01 -1.09213686e+00
-3.14050131e-02 -7.45339811e-01 -4.17170256e-01 1.25338995e+00
1.20329201e-01 -6.26247823e-01 7.60183632e-01 6.00077212e-01
-1.84036210e-01 -7.42022395e-01 -1.30338848e+00 -1.16527748e+00
3.66337925e-01 -7.42969692e-01 4.57548290e-01 9.05036986e-01
-1.84996396e-01 -9.94161218e-02 -7.48892128e-01 4.74558234e-01
8.37094843e-01 -4.40663189e-01 8.29431593e-01 -1.24631405e+00
-5.71397543e-01 -4.31992948e-01 -5.64986527e-01 -2.93518305e-01
3.32511574e-01 -7.95161247e-01 -3.01538850e-03 -7.57221997e-01
4.40262035e-02 -3.35319549e-01 -3.58994126e-01 9.10463452e-01
-2.37802014e-01 2.66200066e-01 8.72490108e-02 9.23927277e-02
-1.32095471e-01 3.84709299e-01 6.65844262e-01 -2.22478226e-01
7.75045380e-02 2.83925563e-01 -5.67061067e-01 1.00413918e+00
8.30301106e-01 -9.66989458e-01 -2.89646298e-01 -2.51662806e-02
-6.48587570e-02 -2.49398157e-01 8.49543393e-01 -1.40708661e+00
2.19488651e-01 -2.05355763e-01 4.01679546e-01 -1.02723822e-01
4.04229850e-01 -8.95992398e-01 1.99197009e-01 8.60079169e-01
-3.28096002e-01 -2.21960604e-01 1.32530466e-01 8.08419585e-01
1.62610590e-01 -6.85929894e-01 1.26012087e+00 1.90364212e-01
-2.15873286e-01 3.44909877e-01 -3.87206763e-01 -8.68897066e-02
1.16942263e+00 -1.90028071e-01 -3.47851545e-01 -7.56302029e-02
-9.28841412e-01 -1.61164269e-01 3.27600539e-01 3.64008933e-01
4.15132821e-01 -1.12179661e+00 -5.54180861e-01 3.54628175e-01
-2.05198944e-01 -2.51881212e-01 4.50972706e-01 6.01528466e-01
-1.47847533e-01 -1.83078438e-01 -3.17745209e-01 -3.15200388e-01
-1.38339508e+00 9.96528029e-01 5.36952794e-01 -3.47197384e-01
-7.10417211e-01 6.74791098e-01 8.10457841e-02 -1.01742335e-01
5.50664485e-01 1.22160740e-01 -1.47283763e-01 -1.14437295e-02
6.44602180e-01 4.92429763e-01 3.83118950e-02 -4.96872425e-01
-3.75070810e-01 3.72630715e-01 -2.26398125e-01 -1.14244796e-01
1.23851299e+00 3.40291440e-01 1.41512841e-01 -1.18826786e-02
8.76933157e-01 4.26821522e-02 -1.34047258e+00 -8.08799416e-02
-4.56670020e-03 -4.99081373e-01 6.33062273e-02 -7.84903109e-01
-1.18151975e+00 1.05487061e+00 7.73257136e-01 2.86409587e-01
1.16732705e+00 -4.57537115e-01 6.19552970e-01 4.73453850e-01
3.46512973e-01 -1.03470695e+00 2.62283325e-01 4.81771469e-01
8.93628299e-01 -9.19149995e-01 7.87883922e-02 -1.79463506e-01
-4.70661551e-01 1.14564335e+00 6.38309896e-01 -3.46050113e-01
8.06116760e-01 4.60508436e-01 -1.18802348e-02 6.13634177e-02
-5.65243423e-01 1.59029469e-01 2.19405040e-01 9.34320986e-01
-3.78612190e-01 -2.25849584e-01 1.04714222e-02 9.39100921e-01
-1.08007528e-01 -4.68684465e-01 3.97615135e-01 1.04881930e+00
-3.11358392e-01 -1.39068604e+00 -7.10061014e-01 8.83443505e-02
-6.30364656e-01 2.18108550e-01 -4.64247257e-01 7.72920191e-01
3.49726826e-01 8.49952996e-01 -5.62088788e-01 -6.50889039e-01
2.76592195e-01 2.43579999e-01 2.86763966e-01 -3.86158884e-01
-7.62677908e-01 -1.88151062e-01 -1.79413129e-02 -5.40849805e-01
-3.30855288e-02 -7.29437411e-01 -7.95199752e-01 -2.41235062e-01
-4.03566033e-01 5.02159446e-02 6.54492140e-01 9.56925869e-01
1.21112354e-01 4.99767095e-01 6.48703635e-01 -8.59067857e-01
-1.20808113e+00 -8.28865349e-01 -3.82886827e-01 3.27420413e-01
3.34943146e-01 -1.05620027e+00 -5.33518851e-01 -7.97872841e-02] | [5.557491779327393, 7.782773971557617] |
dbbeaeac-85cf-44c0-8f65-66ddce4fbb2d | efficient-multi-scale-attention-module-with | 2305.13563 | null | https://arxiv.org/abs/2305.13563v2 | https://arxiv.org/pdf/2305.13563v2.pdf | Efficient Multi-Scale Attention Module with Cross-Spatial Learning | Remarkable effectiveness of the channel or spatial attention mechanisms for producing more discernible feature representation are illustrated in various computer vision tasks. However, modeling the cross-channel relationships with channel dimensionality reduction may bring side effect in extracting deep visual representations. In this paper, a novel efficient multi-scale attention (EMA) module is proposed. Focusing on retaining the information on per channel and decreasing the computational overhead, we reshape the partly channels into the batch dimensions and group the channel dimensions into multiple sub-features which make the spatial semantic features well-distributed inside each feature group. Specifically, apart from encoding the global information to re-calibrate the channel-wise weight in each parallel branch, the output features of the two parallel branches are further aggregated by a cross-dimension interaction for capturing pixel-level pairwise relationship. We conduct extensive ablation studies and experiments on image classification and object detection tasks with popular benchmarks (e.g., CIFAR-100, ImageNet-1k, MS COCO and VisDrone2019) for evaluating its performance. | ['Jian Zhan', 'Guozhong Zhang', 'Mingzhu Luo', 'Zhijie Huang', 'Huaiyong Guo', 'Su He', 'Daliang Ouyang'] | 2023-05-23 | null | null | null | null | ['dimensionality-reduction'] | ['methodology'] | [ 1.75819024e-02 -3.40776294e-01 1.72067091e-01 -5.20469785e-01
-6.57761395e-01 -3.59939069e-01 3.92230690e-01 -1.21072315e-01
-5.52755713e-01 5.21738887e-01 2.74833918e-01 -1.20972291e-01
-1.34416565e-01 -5.96087158e-01 -8.59277725e-01 -8.85884345e-01
-2.42089644e-01 -3.93061668e-01 1.14273071e-01 7.30576888e-02
2.89899617e-01 5.01814306e-01 -1.54165661e+00 6.63067341e-01
6.66703045e-01 1.40951633e+00 3.62977505e-01 5.10954797e-01
-4.00827169e-01 4.42084044e-01 -5.50865591e-01 -2.48296723e-01
3.65033150e-01 -3.51147562e-01 -6.32927954e-01 2.37679318e-01
4.90973026e-01 -4.08140361e-01 -5.83924055e-01 1.24403083e+00
5.93163073e-01 -1.19038545e-01 6.02755606e-01 -1.26835835e+00
-8.58846247e-01 6.64947033e-01 -1.01260912e+00 5.58213532e-01
-3.16594809e-01 3.51249814e-01 9.74595487e-01 -9.82776940e-01
4.07520503e-01 1.51181412e+00 3.52298975e-01 1.23658240e-01
-1.13416433e+00 -9.49824631e-01 5.57543218e-01 4.22389150e-01
-1.47943568e+00 -2.22337782e-01 8.51404011e-01 -4.17870760e-01
7.64541328e-01 1.25617161e-01 5.77509940e-01 9.87165868e-01
2.54115850e-01 9.10382867e-01 1.14622629e+00 -9.13957283e-02
-2.97277607e-02 -2.73661278e-02 2.77336478e-01 6.05630219e-01
2.91509479e-01 -2.42172368e-02 -5.21730185e-01 1.46050856e-01
9.13037658e-01 3.62668097e-01 -1.60279289e-01 -2.46246606e-01
-1.36992180e+00 7.94340312e-01 1.09379435e+00 2.16555670e-01
-4.46467221e-01 2.69734234e-01 5.78353524e-01 2.70088404e-01
1.90864056e-01 2.49291971e-01 -6.27025306e-01 1.87179506e-01
-4.12010163e-01 9.43145007e-02 -2.38287579e-02 1.07967842e+00
9.93508756e-01 -8.10454786e-02 -6.96443915e-01 9.11190569e-01
2.96594650e-01 3.97496760e-01 5.86121202e-01 -6.00426972e-01
7.01205134e-01 7.28998184e-01 -2.08782881e-01 -1.12738299e+00
-6.47695839e-01 -7.56150007e-01 -1.21074772e+00 -8.29471201e-02
2.44030118e-01 -2.91802943e-01 -1.20363927e+00 1.61360824e+00
4.40274552e-02 2.58144796e-01 -4.02007923e-02 1.19007075e+00
8.39495003e-01 6.97482109e-01 4.26463962e-01 3.92191857e-02
1.50550401e+00 -1.10245204e+00 -5.38451970e-01 -2.50227064e-01
5.73346972e-01 -5.62160432e-01 1.03143513e+00 1.16687775e-01
-7.51898110e-01 -8.76231432e-01 -1.23282623e+00 -2.82379091e-01
-4.47884560e-01 3.39876413e-01 9.74229097e-01 1.43530890e-01
-7.35279620e-01 2.89108038e-01 -5.84236026e-01 -7.79201160e-04
1.03363669e+00 3.05732697e-01 -3.11613619e-01 -2.82568216e-01
-1.14683938e+00 1.79858655e-01 3.06502253e-01 2.84865022e-01
-9.12352681e-01 -6.09472692e-01 -7.54120171e-01 3.18673491e-01
-3.67848165e-02 -4.53756779e-01 6.84037387e-01 -1.11556351e+00
-9.64285851e-01 4.95122284e-01 -1.36506721e-01 -2.63847858e-01
2.14253381e-01 3.42044272e-02 -3.88616055e-01 6.56343773e-02
2.02731982e-01 1.27315545e+00 1.01985002e+00 -1.15035057e+00
-7.62041092e-01 -6.80721998e-01 8.68265629e-02 3.60885322e-01
-6.57513320e-01 -1.89445242e-01 -7.77495742e-01 -8.25795650e-01
2.75691062e-01 -7.34913290e-01 -3.49783748e-01 7.59633556e-02
-5.66790462e-01 -2.23628487e-02 7.35302687e-01 -5.10725439e-01
1.19045472e+00 -2.55458379e+00 1.30639821e-01 2.75853395e-01
3.77988666e-01 1.48333549e-01 -5.85956812e-01 -7.29525983e-02
-1.09985754e-01 1.58246115e-01 -2.21241549e-01 -1.18142314e-01
-2.17689618e-01 6.41660690e-02 -1.08798310e-01 3.44957083e-01
5.38651645e-01 1.18435681e+00 -5.07098734e-01 -3.95751655e-01
2.19378293e-01 5.41292310e-01 -6.63526773e-01 -1.24986835e-01
1.79091245e-01 3.70837599e-01 -6.62241876e-01 6.41116560e-01
1.02496397e+00 -4.51480180e-01 -2.49384582e-01 -4.95975703e-01
9.33532268e-02 -4.44057621e-02 -1.11875451e+00 1.99140632e+00
-4.97344047e-01 6.81616247e-01 -4.76400405e-02 -9.97621179e-01
7.86395192e-01 -2.58124053e-01 3.43530178e-01 -1.20914328e+00
2.25008786e-01 -1.65484026e-01 3.07488322e-01 -5.48280656e-01
3.83851469e-01 3.61227393e-01 -1.94236219e-01 1.05551064e-01
1.92604676e-01 7.30332434e-01 -2.04243302e-01 1.87987506e-01
7.34205842e-01 -3.31122965e-01 -4.57334816e-02 -3.74663204e-01
4.20345545e-01 -2.08097577e-01 4.52427387e-01 7.17761099e-01
-3.62093210e-01 6.18638575e-01 6.20633245e-01 -5.33597767e-01
-8.68001997e-01 -7.94123530e-01 -3.33557725e-01 1.18643630e+00
4.70987916e-01 -4.54925716e-01 -6.80540681e-01 -7.34344542e-01
2.99362302e-01 1.42736003e-01 -1.02104700e+00 -3.32594275e-01
-2.08841607e-01 -1.03780198e+00 4.48314816e-01 8.88488173e-01
8.81901801e-01 -9.51618314e-01 -4.56174761e-01 2.47000039e-01
3.42447571e-02 -8.78993869e-01 -5.32718241e-01 3.72560948e-01
-5.93571126e-01 -8.79765570e-01 -7.39048123e-01 -7.62819171e-01
8.17094207e-01 5.72305262e-01 6.18707240e-01 -5.42056710e-02
-6.83857262e-01 -2.46483833e-03 -4.44407284e-01 -4.58953917e-01
6.39164448e-01 3.85967307e-02 -4.56428498e-01 3.24681461e-01
5.22040009e-01 -3.33886504e-01 -1.02315831e+00 2.51474470e-01
-8.69977415e-01 -6.17020344e-03 1.00663519e+00 1.08266056e+00
7.13368297e-01 -4.21866328e-02 6.32757068e-01 -6.20226920e-01
5.76550305e-01 -4.77987349e-01 -3.63461345e-01 6.65448830e-02
-2.76877671e-01 2.17087224e-01 5.98980486e-01 -4.61865872e-01
-9.10176218e-01 2.64240026e-01 9.72554758e-02 -5.20837188e-01
-1.00121170e-01 4.12751913e-01 -5.23342669e-01 -3.08605023e-02
4.75779206e-01 4.43667501e-01 -1.80096641e-01 -5.14623940e-01
4.55994874e-01 7.01913178e-01 3.10374528e-01 -2.74374843e-01
6.66244984e-01 4.98207748e-01 -1.65025607e-01 -5.82841337e-01
-6.80661500e-01 -3.29083294e-01 -5.93234837e-01 1.44294098e-01
1.02392876e+00 -1.17165339e+00 -6.26280248e-01 6.78263605e-01
-1.13988006e+00 1.45270884e-01 7.96455592e-02 5.14235497e-01
-2.64761578e-02 5.28519265e-02 -3.94779444e-01 -3.18054438e-01
-2.09041432e-01 -1.48676169e+00 1.29100764e+00 4.02172327e-01
4.02932763e-01 -5.05489349e-01 -4.23363119e-01 9.75675136e-03
4.90144193e-01 -1.62818268e-01 1.01275706e+00 -3.64479393e-01
-7.16009438e-01 -1.03352955e-02 -1.03142822e+00 2.91166782e-01
-1.80209316e-02 -3.25425416e-01 -1.27677214e+00 -1.64503738e-01
-5.59163034e-01 -1.99742883e-01 1.43466055e+00 5.49261093e-01
1.93902564e+00 -1.74648806e-01 -3.78527582e-01 1.00707090e+00
1.49491131e+00 1.58964351e-01 5.28918326e-01 4.07782853e-01
1.12329423e+00 4.18684870e-01 3.50727201e-01 5.05025923e-01
4.37758476e-01 4.54994261e-01 4.27042454e-01 -3.23058963e-01
-2.25078940e-01 -9.76479948e-02 -2.34179739e-02 4.51870471e-01
1.04593605e-01 3.18320096e-02 -5.84176362e-01 4.62760806e-01
-1.71416891e+00 -6.67244434e-01 1.11662902e-01 1.86603892e+00
3.95357400e-01 -6.15280494e-02 -1.73123926e-01 -1.45808652e-01
7.16795921e-01 2.69505948e-01 -8.01889181e-01 -2.40402281e-01
-4.71656322e-01 -6.62795976e-02 7.96519697e-01 5.98533824e-02
-1.34332728e+00 8.84833276e-01 5.61982012e+00 1.04629493e+00
-1.33930421e+00 -2.74104532e-02 1.10223329e+00 -1.65007219e-01
-3.31122488e-01 -2.37415403e-01 -8.45501542e-01 5.67949951e-01
4.01814282e-01 1.93463176e-01 4.57271516e-01 7.70809412e-01
-1.25574753e-01 1.20032854e-01 -7.99951255e-01 1.45232177e+00
-5.26508428e-02 -1.28176808e+00 4.34093565e-01 8.14760923e-02
7.24033237e-01 1.86845481e-01 2.34594449e-01 3.58075351e-01
-1.51775897e-01 -1.23251820e+00 6.00071430e-01 3.35602731e-01
7.05048203e-01 -9.97475445e-01 6.45047069e-01 -7.72155821e-02
-1.31277180e+00 -5.09532094e-01 -7.23262608e-01 1.28766134e-01
-2.49162331e-01 4.76324379e-01 -7.62601271e-02 4.82678831e-01
1.02218676e+00 1.02840662e+00 -9.25743699e-01 1.01734805e+00
1.51929915e-01 3.35131586e-01 -1.41804785e-01 2.08154663e-01
6.32319212e-01 1.85615718e-02 1.78506538e-01 1.26851141e+00
1.66466981e-01 9.63344648e-02 -1.74292375e-03 8.00646544e-01
-2.95919836e-01 8.56229514e-02 -3.52249801e-01 5.84966019e-02
4.57662344e-01 1.48833573e+00 -7.13499844e-01 -3.74284685e-01
-7.64116466e-01 1.11169565e+00 3.13985944e-01 6.26587927e-01
-8.76262128e-01 -6.51907325e-01 8.98058236e-01 -1.31444544e-01
7.21410930e-01 -1.14344899e-02 -5.08842707e-01 -1.03274798e+00
7.51436353e-02 -6.36012554e-01 3.05093527e-01 -4.91677642e-01
-1.29581833e+00 7.59082794e-01 -1.81214243e-01 -1.26703191e+00
3.27908516e-01 -6.99015558e-01 -5.53315818e-01 1.07620263e+00
-1.80051100e+00 -1.17390466e+00 -5.48520684e-01 7.99943447e-01
5.28750837e-01 -1.32575482e-01 4.09952164e-01 4.74450767e-01
-8.53665590e-01 9.94290769e-01 1.12424485e-01 2.96454996e-01
6.42391443e-01 -9.29579318e-01 3.68515939e-01 5.84035277e-01
3.04836575e-02 6.17704034e-01 1.94674414e-02 -2.84090847e-01
-1.34643197e+00 -1.38903522e+00 1.95351645e-01 -2.77001467e-02
4.49542403e-01 -6.22202694e-01 -9.47402954e-01 4.81272519e-01
7.63494000e-02 5.51474214e-01 4.04195368e-01 8.00359696e-02
-6.74471140e-01 -3.16574454e-01 -7.50512481e-01 3.07978243e-01
1.28567553e+00 -5.15456438e-01 -6.33144230e-02 7.88481236e-02
7.02284396e-01 -1.23230964e-01 -7.02539027e-01 3.16311359e-01
5.49312174e-01 -7.94499576e-01 9.74655628e-01 -7.42892265e-01
5.53866029e-01 -3.77034992e-01 -2.66416907e-01 -1.30690730e+00
-6.71545923e-01 -1.36581779e-01 3.37894946e-01 1.21812701e+00
5.16946793e-01 -4.47341204e-01 4.68023777e-01 3.01640153e-01
-1.35709420e-01 -8.11222732e-01 -8.27494383e-01 -4.24796522e-01
2.68903822e-02 -3.25993061e-01 8.06756556e-01 8.90159786e-01
-3.59753609e-01 4.37289953e-01 -4.16601032e-01 2.25528166e-01
5.27222693e-01 2.30612710e-01 5.31396925e-01 -1.05153763e+00
-1.95760235e-01 -5.10848939e-01 -6.74915612e-01 -1.20140636e+00
-7.10813031e-02 -8.80996108e-01 -1.62299499e-01 -1.25628209e+00
5.88271260e-01 -4.30685997e-01 -8.31876636e-01 5.46829283e-01
-4.11691874e-01 2.73109674e-01 2.65900671e-01 2.52361715e-01
-7.58054137e-01 7.05029130e-01 1.61458826e+00 -3.27519745e-01
-4.95461486e-02 -5.38178563e-01 -1.14715171e+00 4.68662530e-01
5.60584009e-01 -3.33971530e-01 -5.44426918e-01 -8.42052817e-01
-1.24127246e-01 -2.91686445e-01 5.27550995e-01 -9.33565676e-01
2.35338882e-01 4.69090752e-02 1.13766527e+00 -5.11754513e-01
1.38615698e-01 -8.30999255e-01 -3.86811882e-01 2.31698200e-01
-5.26242673e-01 -6.01659827e-02 4.28206831e-01 7.14384973e-01
-5.24883807e-01 3.09336811e-01 7.25631058e-01 2.20713094e-02
-1.15765727e+00 6.35067642e-01 1.11317569e-02 -2.44798407e-01
1.10909915e+00 -3.32722276e-01 -3.99307787e-01 -4.20291871e-02
-5.29428065e-01 4.00031090e-01 9.77157429e-02 8.09123874e-01
6.66972399e-01 -1.51581609e+00 -6.33751690e-01 6.27512455e-01
4.21710312e-01 9.90578383e-02 8.81935954e-01 6.76968455e-01
-2.41832718e-01 5.38307607e-01 -7.27266073e-01 -6.91040635e-01
-8.87053847e-01 6.20398879e-01 2.75331080e-01 1.12426706e-01
-6.26371861e-01 1.14909232e+00 1.00465238e+00 7.14663193e-02
3.56604844e-01 -5.06289184e-01 -3.17979187e-01 2.01524302e-01
8.07613611e-01 5.14802672e-02 -5.49869984e-02 -6.95701301e-01
-5.20877361e-01 7.11021304e-01 -4.25661534e-01 2.49560073e-01
1.31531274e+00 -4.47758496e-01 2.76096463e-02 1.83228198e-02
1.74691498e+00 -3.86488795e-01 -1.59508848e+00 -3.07872146e-01
-3.75127435e-01 -5.78563809e-01 3.25158060e-01 -7.26547182e-01
-1.59685051e+00 1.18372929e+00 9.41406488e-01 -1.75711423e-01
1.37383747e+00 9.73352939e-02 6.01776004e-01 2.25396246e-01
3.45348790e-02 -1.01771784e+00 4.98140138e-03 3.74608397e-01
9.44029450e-01 -1.40786409e+00 -3.23195159e-01 -2.58944333e-01
-8.43823195e-01 8.63457203e-01 9.37279999e-01 -2.40891710e-01
8.06445777e-01 1.87334582e-01 4.78236564e-03 -2.73222029e-01
-4.87706602e-01 -2.25654140e-01 3.50321203e-01 5.14304698e-01
2.52455473e-01 1.81241348e-01 -1.38542235e-01 9.03120160e-01
2.07995251e-01 -3.92731756e-01 5.23490086e-02 6.03706300e-01
-4.74646211e-01 -6.56599045e-01 -1.93573818e-01 7.56807089e-01
-4.28962320e-01 -3.85834754e-01 -2.80099362e-01 6.32914066e-01
3.03733796e-01 5.79179168e-01 4.23509836e-01 -6.18403316e-01
2.56601036e-01 -2.19602078e-01 2.02623919e-01 -2.17140317e-01
-3.41886312e-01 3.02584082e-01 -2.50829577e-01 -7.29366541e-01
-2.08000213e-01 -4.60586190e-01 -1.29568470e+00 8.90245512e-02
-1.76232129e-01 -1.16504863e-01 7.45398164e-01 7.15124726e-01
7.93374240e-01 8.98518622e-01 6.77890599e-01 -8.34339678e-01
-3.92028123e-01 -1.09805644e+00 -7.30188072e-01 6.23101115e-01
3.84985209e-01 -7.52845228e-01 -1.28304079e-01 -1.57045126e-01] | [9.56281852722168, 2.0169005393981934] |
2b73bc69-bdb3-4f94-9d1b-645425317f16 | reliability-adaptive-consistency | 2303.05164 | null | https://arxiv.org/abs/2303.05164v1 | https://arxiv.org/pdf/2303.05164v1.pdf | Reliability-Adaptive Consistency Regularization for Weakly-Supervised Point Cloud Segmentation | Weakly-supervised point cloud segmentation with extremely limited labels is highly desirable to alleviate the expensive costs of collecting densely annotated 3D points. This paper explores to apply the consistency regularization that is commonly used in weakly-supervised learning, for its point cloud counterpart with multiple data-specific augmentations, which has not been well studied. We observe that the straightforward way of applying consistency constraints to weakly-supervised point cloud segmentation has two major limitations: noisy pseudo labels due to the conventional confidence-based selection and insufficient consistency constraints due to discarding unreliable pseudo labels. Therefore, we propose a novel Reliability-Adaptive Consistency Network (RAC-Net) to use both prediction confidence and model uncertainty to measure the reliability of pseudo labels and apply consistency training on all unlabeled points while with different consistency constraints for different points based on the reliability of corresponding pseudo labels. Experimental results on the S3DIS and ScanNet-v2 benchmark datasets show that our model achieves superior performance in weakly-supervised point cloud segmentation. The code will be released. | ['Jianfei Cai', 'Guosheng Lin', 'Yicheng Wu', 'Zhonghua Wu'] | 2023-03-09 | null | null | null | null | ['point-cloud-segmentation'] | ['computer-vision'] | [-1.54010832e-01 2.18779385e-01 -4.33019340e-01 -6.78279161e-01
-1.04771304e+00 -4.83902574e-01 1.81281373e-01 1.80811331e-01
-2.71054953e-01 5.25740027e-01 -5.07372797e-01 -1.98113233e-01
-1.59293205e-01 -3.54901910e-01 -8.79054606e-01 -6.95463598e-01
8.27624742e-03 1.20172691e+00 4.22949165e-01 2.45463967e-01
2.14510098e-01 5.41431129e-01 -1.57388687e+00 -1.33823082e-01
1.18081033e+00 1.02511668e+00 1.36640877e-01 1.32206902e-01
-3.01381111e-01 4.86064464e-01 -1.81890309e-01 -2.07321882e-01
5.73528409e-01 3.91712748e-02 -9.10790443e-01 4.67699707e-01
3.64080429e-01 -4.13722657e-02 4.91965771e-01 1.25015891e+00
2.82317717e-02 -2.70995703e-02 5.61419010e-01 -1.52348006e+00
-4.12739426e-01 3.70419204e-01 -8.19175363e-01 -2.90099919e-01
6.30524084e-02 -8.64909664e-02 9.51726317e-01 -1.03151047e+00
3.63866866e-01 9.07240689e-01 9.27504718e-01 3.95287424e-01
-1.20022869e+00 -4.53558922e-01 2.91747779e-01 7.64256436e-03
-1.78171051e+00 -4.00794968e-02 8.93790185e-01 -4.04556513e-01
5.20743430e-01 2.05207527e-01 3.60733867e-01 6.68053091e-01
-4.83201087e-01 6.58982277e-01 1.29719281e+00 -3.40091497e-01
4.90284950e-01 3.15382600e-01 3.98073196e-01 6.74497724e-01
1.81159690e-01 1.75300818e-02 -1.64959028e-01 -3.88228476e-01
6.77960753e-01 -8.86360481e-02 6.12380542e-02 -6.70207977e-01
-1.04208612e+00 5.82263350e-01 6.05906725e-01 9.31426734e-02
-1.31175250e-01 9.44554247e-03 1.41649559e-01 2.19068065e-01
9.46680307e-01 1.74417615e-01 -8.07165861e-01 3.95339914e-02
-1.02871871e+00 8.56625438e-02 5.38455844e-01 1.57270098e+00
1.08457100e+00 -1.45139694e-01 1.17133550e-01 8.98124576e-01
5.44857025e-01 4.62303281e-01 -2.67203338e-02 -1.04990268e+00
3.35474312e-01 6.98540747e-01 1.59157366e-01 -5.26824832e-01
-4.64817017e-01 -4.81034815e-01 -7.56436527e-01 5.01970470e-01
1.95859030e-01 3.83608975e-02 -1.25846338e+00 1.35720837e+00
6.05929136e-01 7.16202915e-01 -1.39659286e-01 1.13703036e+00
7.32058644e-01 3.15640807e-01 1.23954773e-01 -1.79906458e-01
8.70146036e-01 -7.91208625e-01 -3.60113949e-01 4.00911048e-02
8.22483897e-01 -5.99886239e-01 1.27030957e+00 2.80472428e-01
-1.03488398e+00 -6.61200762e-01 -9.05592620e-01 -4.71114554e-02
-7.38866553e-02 1.29164264e-01 5.66215992e-01 4.71274316e-01
-9.89522874e-01 7.17755556e-01 -1.05025268e+00 -9.98188704e-02
6.08201444e-01 4.44419980e-01 -3.15190166e-01 6.99320957e-02
-6.29483521e-01 6.81811869e-01 3.65401179e-01 2.69331396e-01
-4.76099789e-01 -6.49764359e-01 -7.95761168e-01 -2.00159103e-01
6.27203643e-01 -5.26132822e-01 1.06589818e+00 -7.14928091e-01
-1.32074511e+00 1.03210485e+00 -9.36438814e-02 -2.45121568e-01
6.64575160e-01 -2.51476526e-01 2.91144252e-02 -2.31588054e-02
4.69074935e-01 8.90286386e-01 7.85806537e-01 -1.79525590e+00
-7.65594184e-01 -5.99269927e-01 -2.63743550e-01 3.15900654e-01
1.04149900e-01 -4.05886650e-01 -9.93605912e-01 -3.90923291e-01
1.04413116e+00 -1.45706618e+00 -4.98135507e-01 9.65364426e-02
-4.52727437e-01 -5.26776433e-01 8.58505607e-01 -1.78774491e-01
3.51082295e-01 -2.08368111e+00 1.99925937e-02 6.74719453e-01
-4.30003740e-03 -5.09214178e-02 -8.49250853e-02 -2.10696444e-01
1.13580450e-01 2.21304893e-01 -7.38341987e-01 -8.50612104e-01
-1.12596944e-01 6.02072954e-01 -1.78251937e-01 6.36291027e-01
4.14091885e-01 7.40880370e-01 -9.41887796e-01 -7.46009707e-01
5.06475806e-01 2.16911167e-01 -3.28268081e-01 2.65951723e-01
-4.76937354e-01 7.93498099e-01 -5.68217099e-01 9.27022696e-01
1.17194510e+00 -4.74938750e-01 -2.53122896e-01 -1.15618162e-01
1.14940647e-02 -1.22600764e-01 -1.25530219e+00 2.00851250e+00
-2.87906498e-01 -1.08893186e-01 7.03597292e-02 -8.08500409e-01
9.99630153e-01 1.63458481e-01 7.69628048e-01 -2.43597060e-01
-5.55762183e-03 3.63738894e-01 -4.62902576e-01 -3.74757349e-01
4.20189857e-01 -1.85768172e-01 3.92879136e-02 3.31737131e-01
4.72331457e-02 -7.73229659e-01 -1.58033937e-01 1.38908297e-01
6.60988212e-01 7.20614135e-01 -4.07253146e-01 -2.62757272e-01
4.87779409e-01 3.50887358e-01 7.34623373e-01 7.42031097e-01
-2.51755446e-01 1.10547328e+00 1.82650745e-01 -1.30532131e-01
-9.59136069e-01 -9.61659074e-01 -5.62232614e-01 7.12913632e-01
5.76083720e-01 -1.82711557e-01 -5.18824399e-01 -1.12197018e+00
1.33817077e-01 5.99846780e-01 -2.81186432e-01 1.33329660e-01
-3.34862858e-01 -6.13913596e-01 1.16643257e-01 7.09597707e-01
3.85581732e-01 -7.17221200e-01 1.33545473e-01 -1.01514190e-01
-1.02500409e-01 -1.42580605e+00 2.87991855e-02 4.79998738e-01
-1.26912928e+00 -1.02803576e+00 -4.68867272e-01 -8.73240352e-01
1.07021523e+00 2.99871266e-01 1.13253129e+00 4.08633500e-01
4.47574973e-01 3.90244067e-01 -4.96693194e-01 -2.60551482e-01
-1.91985860e-01 1.72199517e-01 9.09794644e-02 -2.96373963e-01
4.35399026e-01 -4.42728639e-01 -1.32591864e-02 5.89974523e-01
-8.54226708e-01 -1.36340126e-01 5.03703475e-01 7.91130602e-01
1.25848150e+00 -5.26252054e-02 4.87578601e-01 -1.24277079e+00
5.83341578e-03 -4.69098181e-01 -7.57880926e-01 2.07823113e-01
-9.02182519e-01 2.63573625e-03 3.07121813e-01 -7.83059001e-02
-9.72999394e-01 4.00753379e-01 -4.99483794e-01 -9.19811845e-01
-3.75361919e-01 4.57685113e-01 -5.74480072e-02 -4.10725415e-01
4.19676453e-01 -2.66288370e-01 -1.95760950e-01 -5.64982355e-01
3.62019658e-01 5.85905194e-01 6.23221517e-01 -9.27486002e-01
1.09860814e+00 8.83043468e-01 2.06791922e-01 -5.35116732e-01
-9.72002745e-01 -9.02026832e-01 -9.87313867e-01 -9.85515937e-02
6.16687477e-01 -1.05006909e+00 -5.11994660e-01 2.65765637e-01
-1.08508945e+00 -6.20266497e-02 -5.23965120e-01 5.57122231e-01
-6.19214773e-01 7.62795389e-01 -4.77304161e-01 -7.82493412e-01
-2.20030382e-01 -1.20632970e+00 1.35976374e+00 -1.46904573e-01
1.82052046e-01 -7.89911151e-01 -5.42379841e-02 5.17644942e-01
-1.84992895e-01 2.99525827e-01 5.44638097e-01 -5.94690323e-01
-6.47910893e-01 -3.71656775e-01 -3.12606841e-01 6.57723844e-01
-2.40874924e-02 3.08688916e-02 -9.90061581e-01 -2.13931873e-01
2.83007324e-01 -5.58834791e-01 7.23216593e-01 3.29170108e-01
1.42319584e+00 3.20999414e-01 -2.52854526e-01 7.15193331e-01
1.44377291e+00 -5.40466011e-01 3.61466438e-01 1.02524877e-01
9.91106153e-01 6.27944291e-01 1.06628942e+00 2.63916045e-01
4.25428748e-01 4.52202171e-01 7.33893633e-01 -1.78238213e-01
2.00499400e-01 -1.35991424e-01 -2.02252463e-01 9.08394575e-01
-2.36734360e-01 6.99891075e-02 -1.01800585e+00 4.29232210e-01
-2.19587660e+00 -2.53473938e-01 -6.88285470e-01 2.18155074e+00
6.73947632e-01 4.16995555e-01 -2.25769490e-01 1.63172856e-01
7.61268556e-01 -2.41851017e-01 -5.22866368e-01 1.51148602e-01
-2.56175473e-02 5.34800775e-02 6.40166163e-01 4.26823050e-01
-1.13655603e+00 9.94210064e-01 5.44905376e+00 8.23351085e-01
-7.00168014e-01 3.53486300e-01 7.38101363e-01 9.56835970e-02
-3.35034668e-01 3.26872796e-01 -6.25244796e-01 4.44058120e-01
4.41842586e-01 6.53702140e-01 -4.87855822e-02 1.12634635e+00
1.44467607e-01 -1.96001619e-01 -1.26116419e+00 1.09959221e+00
-1.39508024e-01 -1.10682642e+00 -2.73783714e-01 -2.25556731e-01
1.04457533e+00 3.88290644e-01 -2.25898437e-02 1.52763963e-01
3.12927037e-01 -6.08408809e-01 8.88467491e-01 4.71332878e-01
6.39127970e-01 -6.83937728e-01 9.06769931e-01 6.05023086e-01
-9.54186559e-01 2.77126402e-01 -6.05713010e-01 4.73568030e-02
1.85873941e-01 1.08777583e+00 -7.69763827e-01 7.45764494e-01
9.68910336e-01 8.07308853e-01 -4.72369909e-01 8.80711734e-01
-4.03160065e-01 5.72252274e-01 -7.59450197e-01 3.45853001e-01
2.54781663e-01 -5.26685119e-01 4.61327702e-01 7.78587162e-01
1.25646323e-01 1.05905883e-01 4.14325356e-01 1.09935164e+00
-5.87044097e-02 -7.22494423e-02 -2.23648086e-01 6.62137508e-01
5.07717788e-01 1.31635439e+00 -9.20026064e-01 -2.59333163e-01
-4.71969604e-01 7.96385229e-01 4.62921143e-01 1.86259866e-01
-6.15666032e-01 3.79181921e-01 1.01622954e-01 1.29644237e-02
-3.95143218e-02 -4.85211074e-01 -1.02073193e+00 -1.08355761e+00
3.78455937e-01 -1.21730953e-01 2.78883398e-01 -9.04057026e-01
-1.68082666e+00 5.90712845e-01 9.26925391e-02 -1.57008457e+00
1.05540015e-01 -1.46302983e-01 -4.58471060e-01 8.95624161e-01
-1.86618340e+00 -1.43915105e+00 -4.62784350e-01 4.76179749e-01
4.13853675e-01 2.98165947e-01 5.23114562e-01 1.73716873e-01
-4.61429477e-01 2.29471117e-01 -1.02714384e-02 -1.32349432e-01
5.86006939e-01 -1.51672065e+00 2.62322962e-01 6.40105307e-01
1.57024428e-01 2.08383828e-01 4.59067613e-01 -9.42155063e-01
-9.24063861e-01 -1.28387582e+00 6.21252179e-01 -7.86779702e-01
3.15287203e-01 -2.53908873e-01 -1.35647345e+00 5.71925700e-01
-3.59003663e-01 6.51871681e-01 5.67725301e-01 1.39244452e-01
-3.39232981e-02 5.39719407e-03 -1.43079495e+00 1.81546554e-01
1.18236732e+00 -2.70908028e-01 -5.42782485e-01 6.38293862e-01
9.49574292e-01 -5.21691442e-01 -8.56913805e-01 1.02729368e+00
4.04404812e-02 -8.17875326e-01 8.17316830e-01 -1.32555604e-01
-9.27182008e-03 -7.27011979e-01 5.85294627e-02 -9.51128602e-01
-2.19136804e-01 -4.96189781e-02 1.93522811e-01 1.45139551e+00
4.45649028e-01 -3.93963665e-01 1.34099817e+00 9.08156991e-01
-6.08595252e-01 -6.50976479e-01 -1.19372940e+00 -7.98425555e-01
3.90748073e-06 -8.39821041e-01 7.14513838e-01 1.17810154e+00
-2.78410941e-01 -1.43846244e-01 -1.42437622e-01 7.82660425e-01
8.96600127e-01 1.55126616e-01 7.61647463e-01 -1.61150432e+00
-1.22043870e-01 1.55008197e-01 -2.58550823e-01 -1.03145528e+00
4.37560588e-01 -8.76560807e-01 4.79166180e-01 -1.29245853e+00
-1.05280973e-01 -1.47818029e+00 -1.76742271e-01 4.78122085e-01
-1.82378247e-01 4.76355880e-01 -5.00666611e-02 8.22973847e-01
-7.35320807e-01 6.92645907e-01 1.09498906e+00 -1.42780870e-01
-3.41397732e-01 3.50424379e-01 -2.13767067e-01 9.28879321e-01
6.20533288e-01 -6.34372115e-01 -4.20530975e-01 -6.13882065e-01
3.01679015e-01 -7.28348568e-02 4.09728616e-01 -1.16367805e+00
3.35956305e-01 -9.13595036e-02 2.35144407e-01 -1.12493217e+00
2.41513863e-01 -1.46141267e+00 1.38759315e-01 3.08472086e-02
-1.81237474e-01 -1.75545946e-01 1.78057179e-02 7.92350352e-01
-1.73071831e-01 -5.54873228e-01 7.94121861e-01 -2.41942838e-01
-6.57628834e-01 5.97751021e-01 3.12063396e-01 -2.96442032e-01
1.07846415e+00 -2.86286801e-01 3.47107172e-01 5.89386523e-02
-9.69208658e-01 5.80865324e-01 7.90205538e-01 2.78943330e-01
6.91019297e-01 -1.22712398e+00 -7.17843473e-01 2.32511505e-01
4.02396441e-01 9.66964066e-01 1.02365747e-01 6.73553467e-01
-4.25395787e-01 3.59923542e-02 2.64852852e-01 -1.42742503e+00
-9.60417211e-01 4.87671047e-01 3.30372341e-02 4.26329598e-02
-4.78721589e-01 8.90746295e-01 -3.88955653e-01 -6.89910591e-01
2.68295318e-01 -5.85382760e-01 -7.25707188e-02 -5.40412128e-01
-3.04845691e-01 3.37755322e-01 4.95617598e-01 -6.77773833e-01
-4.09166008e-01 8.98152471e-01 8.88838395e-02 7.92404264e-02
1.17533076e+00 -3.29829723e-01 -1.97989076e-01 5.04943609e-01
9.09598947e-01 -2.75965542e-01 -1.49180424e+00 -4.82029289e-01
3.33808035e-01 -5.41191578e-01 2.16781124e-01 -5.53032815e-01
-1.13101184e+00 5.95354736e-01 6.78572834e-01 1.48148179e-01
7.22848058e-01 3.88123333e-01 5.37374735e-01 3.66949350e-01
7.32327640e-01 -1.34274912e+00 -1.99166432e-01 3.66820186e-01
5.91505826e-01 -1.76959419e+00 7.09122196e-02 -8.31705451e-01
-6.57600760e-01 7.98161983e-01 8.61881733e-01 -2.53930151e-01
8.89792919e-01 6.51505888e-02 1.30197212e-01 -3.54864120e-01
-3.03115219e-01 -3.77002895e-01 2.18477473e-01 6.46313071e-01
-5.65036526e-03 -4.68070582e-02 -3.13165963e-01 3.43620718e-01
2.24240020e-01 1.98589899e-02 2.32189372e-01 1.00945020e+00
-2.21949428e-01 -1.15629828e+00 -5.70634782e-01 5.06643355e-01
-7.85526186e-02 1.35495558e-01 -2.34572709e-01 5.07509887e-01
5.07087231e-01 1.07389879e+00 2.16083094e-01 -2.34918132e-01
2.43062317e-01 -1.88768879e-02 2.82844394e-01 -9.23843920e-01
-3.82010370e-01 1.69228882e-01 -2.37170979e-01 -3.46541911e-01
-9.78523731e-01 -6.46383345e-01 -1.71862400e+00 2.37866063e-02
-9.35438514e-01 3.45410228e-01 9.54566479e-01 1.01225352e+00
3.38871926e-01 2.87449379e-02 8.21187139e-01 -9.82507586e-01
-5.08941650e-01 -9.03657138e-01 -6.60760045e-01 6.06358469e-01
1.95776209e-01 -7.93493569e-01 -5.31972528e-01 -1.26389503e-01] | [7.995454788208008, -3.218722105026245] |
6e010a06-b2ba-463c-bee8-6da144acd03d | innovators-smm4h22-an-ensembles-approach-for-1 | null | null | https://aclanthology.org/2022.smm4h-1.35 | https://aclanthology.org/2022.smm4h-1.35.pdf | Innovators@SMM4H’22: An Ensembles Approach for Stance and Premise Classification of COVID-19 Health Mandates Tweets | This paper presents our submission for the Shared Task-2 of classification of stance and premise in tweets about health mandates related to COVID-19 at the Social Media Mining for Health 2022. There have been a plethora of tweets about people expressing their opinions on the COVID-19 epidemic since it first emerged. The shared task emphasizes finding the level of cooperation within the mandates for their stance towards the health orders of the pandemic. Overall the shared subjects the participants to propose system’s that can efficiently perform 1) Stance Detection, which focuses on determining the author’s point of view in the text. 2) Premise Classification, which indicates whether or not the text has arguments. Through this paper we propose an orchestration of multiple transformer based encoders to derive the output for stance and premise classification. Our best model achieves a F1 score of 0.771 for Premise Classification and an aggregate macro-F1 score of 0.661 for Stance Detection. We have made our code public here | ['Muskaan Singh', 'Nidhir Bhavsar', 'Aakash Bhatnagar', 'Vatsal Savaliya'] | null | null | null | null | smm4h-coling-2022-10 | ['stance-detection'] | ['natural-language-processing'] | [ 1.56682104e-01 7.09270239e-01 -3.29810560e-01 -5.15220404e-01
-9.62782443e-01 -5.07718623e-01 9.16005731e-01 7.46981323e-01
-3.28327328e-01 5.96786141e-01 8.11022460e-01 -8.89286220e-01
6.14138320e-02 -7.59685338e-01 -6.56201959e-01 -5.19859850e-01
6.52573407e-02 6.09875023e-01 -1.73930481e-01 -5.28731048e-01
9.00056437e-02 -4.82801318e-01 -1.06029701e+00 9.34320033e-01
3.62273604e-01 9.76133525e-01 -3.24889570e-01 7.75325537e-01
1.95566013e-01 1.30179822e+00 -8.99824083e-01 -5.19544244e-01
-3.16511720e-01 -3.42332393e-01 -1.08767307e+00 -5.95864952e-01
-3.38729732e-02 -2.71949410e-01 3.74159425e-01 7.68487275e-01
6.59119189e-01 -7.02558458e-01 6.55311882e-01 -1.30683732e+00
-2.01390997e-01 1.23431075e+00 -2.65617490e-01 5.97278774e-01
5.15252292e-01 1.52040767e-02 1.30641019e+00 -5.66272557e-01
1.04549277e+00 1.08898032e+00 1.00001645e+00 3.39678109e-01
-7.96161890e-01 -7.72335887e-01 -4.08953950e-02 -9.28130969e-02
-7.97264993e-01 -5.34637451e-01 5.89652359e-01 -1.00337815e+00
1.03920817e+00 3.99422914e-01 5.23820341e-01 1.45000148e+00
3.70981246e-01 5.22924304e-01 1.16527224e+00 1.09674223e-01
-2.73941681e-02 1.82404310e-01 3.97358418e-01 3.64684194e-01
2.73141831e-01 -4.11657721e-01 -4.29549098e-01 -6.40497684e-01
-1.50357708e-01 -2.28826061e-01 -2.99139321e-02 8.59949887e-01
-1.37333286e+00 1.23136783e+00 1.24681450e-01 3.26854587e-01
-6.41154766e-01 -4.77135032e-02 8.24360549e-01 3.14063311e-01
9.84548748e-01 3.82950902e-01 -3.88956994e-01 -1.74351528e-01
-1.02105594e+00 5.96233666e-01 1.01564240e+00 3.87082666e-01
1.23039491e-01 -5.59431612e-01 -3.72724205e-01 3.49708289e-01
4.26939785e-01 7.27949619e-01 -9.98891592e-02 -6.93883955e-01
7.61663079e-01 7.94050932e-01 1.70740202e-01 -1.28018355e+00
-8.78561080e-01 -5.21989584e-01 -6.24596357e-01 -3.55385125e-01
1.31986067e-01 -8.62500727e-01 -2.20004514e-01 1.73431742e+00
4.36776340e-01 -2.31918380e-01 1.37937590e-01 5.69998860e-01
1.30670381e+00 6.15395963e-01 1.56535432e-01 -2.45848864e-01
1.86893177e+00 -2.34114274e-01 -9.90007281e-01 7.99102783e-02
7.96252728e-01 -1.02841651e+00 3.20595205e-01 1.43788576e-01
-1.21264029e+00 -1.36409551e-01 -9.83476102e-01 7.91963339e-02
-3.99935246e-01 -2.48130649e-01 9.11730751e-02 4.38116103e-01
-9.11461949e-01 2.40474179e-01 -3.87565076e-01 -2.91455299e-01
3.85129899e-01 2.42308378e-01 1.08675309e-01 6.89271390e-01
-1.72516286e+00 9.13715005e-01 -1.04785219e-01 -8.12719762e-02
-4.52920586e-01 -7.68721104e-01 -4.68736351e-01 -3.28870356e-01
8.50457326e-02 -8.10135424e-01 1.33202648e+00 -5.73893070e-01
-7.14309692e-01 1.47345209e+00 -1.96070835e-01 -6.58865392e-01
5.55700779e-01 -1.21742949e-01 -5.42369604e-01 -1.39642477e-01
6.61782682e-01 3.18425953e-01 5.53300798e-01 -6.32963300e-01
-9.06361282e-01 -2.50015795e-01 3.14679414e-01 -6.65871575e-02
-2.57194117e-02 7.34282613e-01 4.90637869e-01 -2.54142284e-01
-4.62273985e-01 -7.04874218e-01 1.38556108e-01 -7.87136734e-01
-6.59892380e-01 -7.26661980e-01 1.02776849e+00 -7.02431917e-01
1.36133802e+00 -1.48297572e+00 -3.29490542e-01 1.80206560e-02
6.18768632e-01 9.59061608e-02 4.05465245e-01 8.74692559e-01
-7.91913569e-02 5.64223349e-01 2.50839710e-01 -8.61356929e-02
4.91731465e-02 -1.21357799e-01 -6.79201186e-01 5.47886670e-01
3.45633775e-01 9.83009338e-01 -9.86066580e-01 -4.41449404e-01
-4.41219568e-01 3.74310911e-01 -7.40977108e-01 2.40414232e-01
-4.31299686e-01 4.45579231e-01 -5.56345522e-01 3.27644438e-01
4.96175736e-01 -8.74034584e-01 4.89872247e-01 -3.64581674e-01
-4.49725717e-01 1.12654924e+00 -2.92136133e-01 6.62858784e-01
-1.44309834e-01 7.22021759e-01 4.35884088e-01 -7.58940756e-01
5.59546590e-01 8.44344199e-01 8.23102176e-01 -5.14788985e-01
5.16554654e-01 1.88782349e-01 1.45343691e-01 -6.81592762e-01
2.37822518e-01 -6.22279495e-02 -4.58653927e-01 1.12329090e+00
-6.46479130e-01 3.35215062e-01 7.84493163e-02 2.73469508e-01
1.10663593e+00 -3.10877264e-01 3.78464878e-01 -6.73868537e-01
6.63016200e-01 1.07143298e-01 2.58673638e-01 3.62485975e-01
-1.92030996e-01 6.29145876e-02 9.55386758e-01 -5.38965166e-01
-8.10952604e-01 -3.30592364e-01 -1.72265708e-01 1.27042198e+00
-4.68644559e-01 -5.01660764e-01 -8.92063737e-01 -5.18135428e-01
-1.43450022e-01 4.91664588e-01 -1.11818349e+00 6.15142167e-01
-8.50715041e-01 -7.17362583e-01 7.60154486e-01 1.58311650e-01
4.74600554e-01 -9.24554348e-01 -1.16181839e+00 2.81844229e-01
-1.15404785e+00 -1.26408577e+00 -3.67713481e-01 1.81791738e-01
-1.39937103e-01 -1.47301483e+00 -4.59183574e-01 -5.37449777e-01
2.99914390e-01 -1.88173175e-01 1.10527933e+00 1.01536460e-01
2.87244827e-01 -7.11053535e-02 -2.94528335e-01 -9.12171602e-01
-8.03503275e-01 1.55245587e-01 5.86596644e-03 -1.84790090e-01
5.15650034e-01 -9.04492289e-02 -7.07158804e-01 2.12364927e-01
-5.75225234e-01 2.57263392e-01 -1.92225039e-01 5.09821892e-01
1.61844231e-02 -3.50033998e-01 7.17225909e-01 -1.34143901e+00
1.01953077e+00 -1.07526886e+00 -2.20555142e-01 -1.10266656e-01
-4.99744564e-01 -4.08585340e-01 1.81946397e-01 1.79798648e-01
-5.87209284e-01 -8.02645683e-01 -6.81625187e-01 4.72483695e-01
1.41324192e-01 9.00512874e-01 5.12724280e-01 9.13149238e-01
7.78148174e-01 -2.73811013e-01 1.51175007e-01 -1.07505724e-01
7.37558827e-02 1.27759147e+00 1.80039346e-01 -2.72703260e-01
3.32788885e-01 6.16948605e-01 -5.07013738e-01 -7.17960417e-01
-1.43565679e+00 -6.14919960e-01 1.12031490e-01 -3.81724179e-01
1.28488970e+00 -1.09431851e+00 -1.24867904e+00 3.67821574e-01
-1.65661490e+00 -3.39153677e-01 1.50606647e-01 3.14822644e-02
-2.60188282e-01 -1.83786809e-01 -6.83722258e-01 -7.63228893e-01
-1.07836545e+00 -1.02762794e+00 9.78733599e-01 -3.43788147e-01
-1.13845015e+00 -1.14394391e+00 4.34426099e-01 8.99557054e-01
5.78637004e-01 6.85668111e-01 9.85500872e-01 -9.77117300e-01
2.79436409e-01 1.42629087e-01 -2.35827133e-01 -1.99654460e-01
3.01788628e-01 7.11397231e-02 -1.16069722e+00 -3.31338435e-01
1.67111620e-01 -3.90532911e-01 4.88619983e-01 5.48562944e-01
5.69352269e-01 -1.08050001e+00 -4.74197537e-01 -7.64025897e-02
9.39323723e-01 5.50462306e-02 2.80144304e-01 2.89790660e-01
8.24608356e-02 9.05826509e-01 3.52860034e-01 6.97849095e-01
7.59784639e-01 6.14825249e-01 4.83610451e-01 -2.58269966e-01
8.56247246e-02 -1.08072035e-01 6.61066830e-01 7.84590304e-01
-1.41508907e-01 -3.25352460e-01 -1.14381349e+00 5.69520056e-01
-1.82222462e+00 -1.19095838e+00 -5.52320123e-01 1.48248219e+00
9.03107345e-01 4.54636931e-01 5.55949688e-01 3.46531630e-01
5.74797630e-01 3.67018431e-01 -4.86383624e-02 -8.54613900e-01
3.67044173e-02 -5.66419065e-02 2.44438052e-01 7.01914012e-01
-1.23402798e+00 4.36410725e-01 6.46487141e+00 2.07308009e-01
-1.31979156e+00 4.98497933e-01 7.12729931e-01 1.64248258e-01
-5.46730697e-01 -3.23226750e-01 -9.60931838e-01 6.17315769e-01
1.40411448e+00 -2.12557435e-01 -2.74070621e-01 3.01960886e-01
6.87106133e-01 1.66860223e-01 -9.67339039e-01 3.31038713e-01
-7.40493163e-02 -1.92724943e+00 -2.78696984e-01 2.90348858e-01
6.18200421e-01 5.54147243e-01 1.54639646e-01 -7.69349411e-02
3.77966642e-01 -9.51172411e-01 9.69252169e-01 2.02101842e-01
8.95000100e-01 -3.85801941e-01 9.63994503e-01 4.99155223e-01
-8.35138977e-01 1.50686456e-02 2.06746012e-01 -3.07872742e-01
2.85309941e-01 9.71913517e-01 -1.51502299e+00 3.74033988e-01
5.25499463e-01 7.36200809e-01 9.97422710e-02 7.55692199e-02
-3.04321349e-01 1.07588267e+00 -1.21767662e-01 -3.25099200e-01
5.36025167e-01 4.19663846e-01 7.20644951e-01 1.51854336e+00
-4.42853849e-03 1.47782162e-01 -3.57131474e-02 6.50102973e-01
-9.83520523e-02 9.46542695e-02 -6.17314458e-01 -3.74565959e-01
3.84883016e-01 1.02282715e+00 -4.79469270e-01 -5.19506276e-01
-3.68223526e-02 1.40004680e-01 -1.66069672e-01 3.69198471e-02
-1.01256323e+00 6.84813038e-02 6.39455736e-01 6.56068683e-01
2.44001597e-01 3.26853573e-01 -3.45077217e-01 -4.90907133e-01
-2.66325414e-01 -1.19794583e+00 5.74418306e-01 -3.82230133e-01
-1.04436684e+00 7.73714304e-01 -1.85332805e-01 -8.27962935e-01
-5.96722722e-01 -4.52329457e-01 -7.95949996e-01 7.80460894e-01
-1.23740876e+00 -1.33431256e+00 2.47426704e-01 2.91144878e-01
3.42271209e-01 1.22848116e-01 9.07659948e-01 4.17272002e-01
-4.14943308e-01 2.85420597e-01 -5.01460671e-01 4.57318544e-01
6.18304968e-01 -8.70803535e-01 5.19693017e-01 3.74321997e-01
-5.62899888e-01 7.06052661e-01 1.15666044e+00 -8.20390880e-01
-9.28301811e-01 -1.06983757e+00 2.03369164e+00 -7.15947926e-01
8.70553732e-01 -3.63612592e-01 -3.23526502e-01 5.94810009e-01
5.50100148e-01 -9.62376475e-01 1.18517184e+00 4.53396976e-01
-4.83518749e-01 2.95503855e-01 -1.19166338e+00 3.35048288e-01
6.13054752e-01 -6.03140950e-01 -7.54998147e-01 9.15777922e-01
8.64671648e-01 -2.85516590e-01 -8.73613298e-01 2.66705036e-01
6.26092136e-01 -7.19630659e-01 6.92252338e-01 -8.79937291e-01
1.04575241e+00 -1.12070277e-01 -2.86987931e-01 -8.61977577e-01
-2.84352958e-01 -7.58730710e-01 -7.05664307e-02 8.34869921e-01
7.84639120e-01 -8.36449027e-01 4.42152441e-01 7.24579617e-02
1.11860566e-01 -1.08602655e+00 -7.99156725e-01 5.27801402e-02
2.22220778e-01 -3.67873609e-01 5.70288837e-01 1.11130798e+00
4.01133209e-01 7.62537122e-01 -2.77915537e-01 6.36934862e-02
3.09665412e-01 3.65088552e-01 5.35071015e-01 -1.20781708e+00
-8.61563385e-02 -6.32895827e-01 2.31759951e-01 -5.73685944e-01
-2.97036201e-01 -9.97626662e-01 -3.42978746e-01 -1.80755365e+00
3.66721362e-01 -3.14701915e-01 -1.37979224e-01 5.51244915e-01
1.10296078e-01 5.31898215e-02 -1.70995250e-01 4.12313282e-01
-5.58577359e-01 -3.51615816e-01 9.11275625e-01 -3.37263227e-01
1.15237080e-01 1.92508250e-01 -1.27196336e+00 7.15480268e-01
8.15431654e-01 -6.82221949e-01 -9.17602256e-02 -3.38604361e-01
1.18374121e+00 1.35702476e-01 3.77581507e-01 -5.06938636e-01
1.76045105e-01 -2.72318181e-02 -1.13291912e-01 -1.06284714e+00
1.38622701e-01 -2.33489126e-01 1.60650939e-01 1.08354402e+00
-6.72988534e-01 3.58326048e-01 -8.51238444e-02 2.03995749e-01
-2.22618189e-02 3.02374661e-01 4.05226052e-01 -2.62597855e-02
3.54694128e-01 -1.22904032e-01 -7.83340454e-01 6.23773634e-01
6.67178810e-01 2.34209925e-01 -8.39718997e-01 -6.15240633e-01
-5.88188171e-01 3.47567737e-01 2.58440878e-02 2.90121824e-01
2.62373060e-01 -7.55360305e-01 -1.56086969e+00 -1.47762507e-01
-2.58186281e-01 -3.65812629e-01 -1.22314975e-01 1.39199710e+00
-2.92463213e-01 7.58432865e-01 1.39363453e-01 -6.50306046e-01
-1.53684342e+00 1.41659528e-01 2.83127367e-01 -7.87582755e-01
-3.08079809e-01 8.60150456e-01 -1.67234555e-01 -4.23416436e-01
-1.00529820e-01 -3.86325657e-01 -4.55823809e-01 7.60820568e-01
8.28050733e-01 3.88087034e-01 2.91937888e-01 -9.70879138e-01
-7.87449121e-01 5.54411262e-02 -2.50979839e-03 -7.76851252e-02
1.39144933e+00 8.19288790e-02 -3.63027751e-01 5.15728652e-01
1.40835762e+00 1.21947214e-01 -2.63964266e-01 -7.53120184e-02
-2.62104347e-02 4.11316335e-01 -1.78033292e-01 -1.07584250e+00
-5.59136868e-01 7.31517553e-01 1.27903357e-01 7.33324587e-01
4.65194523e-01 1.67586312e-01 9.98974800e-01 1.23625755e-01
-2.60114335e-02 -1.07765651e+00 -2.20255986e-01 8.79928231e-01
1.03986311e+00 -1.07348645e+00 1.38115123e-01 -1.63663775e-01
-4.89705414e-01 7.68105149e-01 -2.13777661e-01 2.24739641e-01
8.46520364e-01 5.66151738e-01 5.01715362e-01 -9.52055693e-01
-1.15216064e+00 2.07028374e-01 1.06063731e-01 2.20221907e-01
9.58436251e-01 5.12996316e-01 -7.29580164e-01 6.04246557e-01
-5.31057119e-01 6.65280269e-03 3.56853098e-01 6.48393571e-01
-4.76189524e-01 -8.51018548e-01 -2.49413952e-01 5.14547110e-01
-1.10362148e+00 -9.29511786e-02 -7.06559658e-01 4.63654101e-01
5.54263890e-01 1.41137731e+00 4.01815623e-02 -5.04716575e-01
1.15090065e-01 1.32916987e-01 -8.99661928e-02 -5.07549047e-01
-1.23235440e+00 -9.60148592e-03 9.28747296e-01 -3.81150872e-01
-8.42497110e-01 -7.93238163e-01 -1.35265517e+00 -5.60504436e-01
4.52895276e-03 4.30576086e-01 5.91857493e-01 1.05237043e+00
2.89071649e-01 5.56582987e-01 5.77650607e-01 -1.57412335e-01
-5.37814796e-01 -8.96675408e-01 2.41605833e-01 2.89404303e-01
5.46001375e-01 -2.09939748e-01 -1.81665510e-01 -2.26213094e-02] | [8.566055297851562, 9.520858764648438] |
25ded87e-7a9a-48e5-ad51-17a42394a08e | universal-language-modelling-agent | 2306.06521 | null | https://arxiv.org/abs/2306.06521v1 | https://arxiv.org/pdf/2306.06521v1.pdf | Universal Language Modelling agent | Large Language Models are designed to understand complex Human Language. Yet, Understanding of animal language has long intrigued researchers striving to bridge the communication gap between humans and other species. This research paper introduces a novel approach that draws inspiration from the linguistic concepts found in the Quran, a revealed Holy Arabic scripture dating back 1400 years. By exploring the linguistic structure of the Quran, specifically the components of ism, fil, and harf, we aim to unlock the underlying intentions and meanings embedded within animal conversations using audio data. To unravel the intricate complexities of animal language, we employ word embedding techniques to analyze each distinct frequency component. This methodology enables the identification of potential correlations and the extraction of meaningful insights from the data. Furthermore, we leverage a bioacoustics model to generate audio, which serves as a valuable resource for training natural language processing (NLP) techniques. This Paper aims to find the intention* behind animal language rather than having each word translation. | ['Anees Aslam'] | 2023-06-10 | null | null | null | null | ['word-translation'] | ['natural-language-processing'] | [ 2.80422926e-01 2.04214886e-01 3.24710347e-02 1.12260096e-02
-1.38237655e-01 -6.40108585e-01 6.40304863e-01 2.26196229e-01
-1.76981077e-01 3.16233158e-01 8.91924381e-01 -5.21377623e-01
2.10000034e-02 -6.24618590e-01 -2.96106994e-01 -5.59544921e-01
-3.67407113e-01 -1.23410285e-01 -3.34745795e-01 -6.84791744e-01
3.17435294e-01 2.55087346e-01 -1.40988207e+00 2.66505301e-01
4.58302587e-01 5.09381473e-01 3.70202899e-01 7.82332003e-01
-2.95904636e-01 1.12912083e+00 -4.82416511e-01 -3.42984557e-01
-2.57411808e-01 -8.73675406e-01 -8.19956899e-01 -1.72273919e-01
-5.60768694e-02 -3.91751491e-02 -3.28045487e-01 7.74501324e-01
2.11897120e-01 -5.62755242e-02 4.73173290e-01 -9.42130327e-01
-7.57048965e-01 1.04561484e+00 -1.64600551e-01 3.25733513e-01
4.32250887e-01 3.87425646e-02 1.62202442e+00 -7.27691650e-01
4.26230431e-01 1.43155873e+00 8.01350594e-01 6.00960493e-01
-1.21345174e+00 -4.11983192e-01 -4.70279783e-01 4.91796941e-01
-1.19169748e+00 -5.05071580e-01 1.12137830e+00 -6.58448935e-01
6.83560789e-01 1.24704525e-01 9.48077500e-01 1.32786214e+00
3.51975560e-01 6.19322836e-01 9.47985649e-01 -6.61282778e-01
-5.13169095e-02 -6.27639424e-03 1.67064726e-01 7.07417190e-01
-2.61700571e-01 2.60696024e-01 -9.89227772e-01 -2.85117686e-01
3.88456732e-01 -2.04751089e-01 -2.68584937e-01 2.59758830e-01
-1.44804025e+00 1.15320563e+00 2.92944938e-01 6.39685154e-01
-4.89503920e-01 4.41040188e-01 3.62575501e-01 1.17305547e-01
6.62667230e-02 5.82396805e-01 -2.99815238e-01 -3.86074960e-01
-5.66973448e-01 6.79011317e-03 8.90488684e-01 2.23673180e-01
5.49569666e-01 1.21462934e-01 5.00622392e-01 9.31288540e-01
6.56470060e-01 3.87382865e-01 6.96726024e-01 -8.74910533e-01
-1.82228699e-01 4.12950993e-01 -2.63949513e-01 -1.40060997e+00
-3.75965714e-01 -1.71398982e-01 -4.35344368e-01 -3.97521257e-01
2.89299846e-01 -1.69681758e-02 -3.32088619e-01 1.61276388e+00
2.57194608e-01 5.19782901e-02 6.24191053e-02 5.34437180e-01
7.53489971e-01 9.98397589e-01 1.13632314e-01 8.15099627e-02
1.75224030e+00 -6.65453255e-01 -7.71725297e-01 -3.17081243e-01
4.68328327e-01 -8.46548855e-01 1.24966252e+00 2.04778090e-01
-6.02206290e-01 -5.37719429e-01 -1.16535974e+00 -2.27507889e-01
-3.98869872e-01 -2.97132492e-01 7.21839488e-01 7.58332193e-01
-4.89198089e-01 3.88184309e-01 -8.11474502e-01 -4.14238900e-01
1.40770808e-01 -9.23370868e-02 -1.06481090e-01 2.73582578e-01
-1.26727808e+00 9.84142423e-01 5.17279863e-01 1.82544485e-01
-5.76081872e-01 -6.94811881e-01 -1.00406134e+00 -5.77657484e-02
3.24372143e-01 -2.71099180e-01 1.13849962e+00 -8.83318186e-01
-1.49751627e+00 8.06100070e-01 -1.90144196e-01 -5.61879218e-01
-3.18139851e-01 -2.66348273e-01 -4.65308487e-01 3.41251791e-01
-1.95299014e-02 5.64607680e-01 7.05418468e-01 -1.10809577e+00
-4.04193401e-01 -1.61378980e-01 -1.48096219e-01 -3.41009468e-01
-3.75843823e-01 3.29379082e-01 2.69876659e-01 -1.07169569e+00
-7.87991732e-02 -8.82594883e-01 8.13080519e-02 -1.01211993e-02
-2.27483362e-01 -1.65510938e-01 4.66073692e-01 -1.03426838e+00
1.39630520e+00 -2.44395757e+00 2.24293277e-01 1.35942921e-01
2.53140211e-01 -1.73373982e-01 -2.82020450e-01 1.01699150e+00
9.84626785e-02 2.98004765e-02 -3.83258104e-01 1.35106236e-01
1.29911497e-01 6.17087901e-01 -7.44147062e-01 4.17211413e-01
3.44032258e-01 1.05935478e+00 -9.58141148e-01 -3.64174247e-01
4.23936620e-02 7.58640766e-01 -8.46504152e-01 1.50401458e-01
-1.75377250e-01 3.56671393e-01 -3.31778049e-01 6.08942330e-01
4.82186750e-02 -1.03124417e-01 1.69036672e-01 -3.26543331e-01
-2.39717275e-01 6.95382893e-01 -5.46519518e-01 1.46824670e+00
-5.38043857e-01 8.54195297e-01 6.97884187e-02 -1.17613828e+00
7.13946521e-01 2.10305348e-01 4.99302328e-01 -5.94572723e-01
4.14390057e-01 7.03852028e-02 5.87343931e-01 -8.27171743e-01
5.62635183e-01 -7.12643504e-01 -3.12991798e-01 5.68672061e-01
1.29359320e-01 -3.56036991e-01 -4.61464413e-02 -2.86921971e-02
8.71304691e-01 1.03469253e-01 7.36322939e-01 -4.66985345e-01
5.17596543e-01 1.30428025e-03 1.62572637e-01 2.30526686e-01
-2.32224375e-01 2.35408962e-01 3.00995499e-01 -5.47054410e-01
-8.36395860e-01 -1.29077899e+00 -1.50914133e-01 1.36540532e+00
-6.32057115e-02 -7.11789012e-01 -4.39651996e-01 1.35137275e-01
-9.97202396e-02 9.04954553e-01 -8.84640098e-01 -3.12151045e-01
-6.79686666e-01 -7.49843180e-01 9.46215630e-01 2.46504009e-01
4.40871269e-02 -1.38305938e+00 -9.84284699e-01 5.65025568e-01
-6.37544155e-01 -1.08377945e+00 -2.59680986e-01 1.51707351e-01
-3.68589699e-01 -9.37628210e-01 -5.37918173e-02 -7.33368814e-01
-5.00893127e-03 -8.09616372e-02 9.23734069e-01 1.13529228e-01
-6.45216525e-01 4.05532926e-01 -5.54254770e-01 -7.45595336e-01
-1.01073205e+00 -1.75350204e-01 1.11107655e-01 7.56649440e-03
5.76995790e-01 -6.38116539e-01 -8.99574831e-02 -4.53902185e-02
-1.09423077e+00 -2.96142865e-02 3.29641223e-01 8.23674977e-01
7.85728637e-03 -1.87003627e-01 6.96820617e-01 -4.11044180e-01
7.49764085e-01 -8.17366779e-01 -1.00352094e-01 -9.92825534e-03
-7.57503584e-02 1.86325923e-01 6.37725949e-01 -4.88767475e-01
-5.81891954e-01 -4.73834664e-01 -5.41717172e-01 4.50037688e-01
-6.38920292e-02 8.77435446e-01 2.33856693e-01 2.80698508e-01
6.13731980e-01 4.39039767e-01 1.89283893e-01 -3.76754224e-01
6.30637348e-01 1.00159156e+00 6.27751172e-01 -6.39324486e-01
6.47812247e-01 6.02411270e-01 -3.16623628e-01 -1.77871203e+00
-7.56732702e-01 -4.42905754e-01 -5.01066685e-01 -1.69239700e-01
9.84696984e-01 -7.67315030e-01 -8.51112723e-01 -5.54070696e-02
-1.32552564e+00 2.91510876e-02 -3.83599043e-01 5.91617286e-01
-6.10719860e-01 4.37695444e-01 -7.61656165e-01 -8.07684898e-01
-1.34459168e-01 -5.66802263e-01 8.28481793e-01 -1.62466615e-01
-1.09502888e+00 -9.64202583e-01 3.75288993e-01 5.54605663e-01
3.42715979e-01 2.43565768e-01 1.24113059e+00 -5.91073215e-01
-2.22082421e-01 1.99107677e-01 1.98802590e-01 3.85560513e-01
4.71034139e-01 -7.84380063e-02 -9.84638929e-01 9.87185985e-02
3.77318978e-01 -3.85399044e-01 4.32218134e-01 -5.57968952e-03
6.04273558e-01 -5.72980285e-01 1.28491983e-01 2.57734746e-01
1.01688218e+00 1.79243386e-01 4.44795758e-01 3.33607882e-01
4.24750090e-01 1.05870819e+00 -5.13350824e-03 5.08193135e-01
4.87485945e-01 2.28011504e-01 4.85452488e-02 4.71857041e-01
-4.96033616e-02 -5.21008074e-01 7.62460709e-01 1.75651145e+00
1.67058229e-01 -1.32950721e-02 -1.13185990e+00 8.99541676e-01
-1.28045678e+00 -1.10081196e+00 1.83547392e-01 1.54993594e+00
1.01810694e+00 -9.56105664e-02 -4.03539240e-02 2.58272290e-01
1.25970945e-01 3.23154926e-01 -1.32115871e-01 -6.70223653e-01
-7.68006220e-02 4.71024781e-01 -1.33976653e-01 5.95521688e-01
-7.14120090e-01 9.04189050e-01 6.97696161e+00 5.06250799e-01
-1.05466831e+00 -1.97262153e-01 -1.19117104e-01 3.05226266e-01
-4.49377924e-01 -7.71988109e-02 -3.78954291e-01 4.22219664e-01
1.28130925e+00 -3.87653291e-01 6.97979093e-01 3.69164556e-01
4.48667526e-01 5.68444058e-02 -1.19382954e+00 7.07505882e-01
3.32213283e-01 -1.27800488e+00 2.08668694e-01 7.31771439e-02
9.92036164e-02 2.42589399e-01 -2.09762886e-01 7.75120556e-02
1.33575305e-01 -1.31414783e+00 9.20608282e-01 3.02912980e-01
1.05623215e-01 -4.97771293e-01 3.66445184e-01 5.78476787e-01
-1.12927341e+00 -1.88957408e-01 -1.48691103e-01 -4.47772413e-01
3.03862482e-01 1.77255943e-01 -8.63743246e-01 1.98888883e-01
4.74906355e-01 7.06720233e-01 -2.63019919e-01 3.11786562e-01
-3.37276369e-01 1.02982247e+00 -4.06669438e-01 -3.46407086e-01
2.42649019e-01 -2.40593553e-01 5.68937838e-01 1.33256245e+00
1.94249555e-01 2.10450441e-01 -6.61101490e-02 1.15583694e+00
7.23637417e-02 3.07543963e-01 -6.13126874e-01 -1.06643665e+00
3.72299641e-01 9.06995893e-01 -7.20123529e-01 8.21693838e-02
-4.17128682e-01 8.12681496e-01 -5.17099053e-02 -1.34723321e-01
-7.22827852e-01 -2.96827257e-01 7.88508117e-01 -7.54270842e-03
2.35724717e-01 -7.24758744e-01 -3.91330197e-02 -9.98161435e-01
-3.06225985e-01 -1.04847598e+00 -8.38966146e-02 -5.70184231e-01
-1.34435391e+00 3.98717940e-01 -8.28073323e-02 -9.40168738e-01
-4.19524610e-01 -4.69751775e-01 -4.99160856e-01 6.75704598e-01
-1.33090043e+00 -1.36459732e+00 3.21005732e-01 1.06622659e-01
5.13807774e-01 -6.26156433e-03 1.08371019e+00 5.00558428e-02
1.09624313e-02 2.16435269e-01 1.26756907e-01 3.31308246e-01
1.97416455e-01 -8.45892429e-01 3.61404926e-01 5.74785233e-01
7.33047783e-01 9.75475132e-01 9.99127388e-01 -2.74942219e-01
-1.45551229e+00 -4.91120219e-01 1.20475900e+00 -5.80432892e-01
1.39966643e+00 -5.41579247e-01 -8.70309293e-01 5.26070237e-01
4.50006366e-01 -5.08153379e-01 1.39944315e+00 5.85317723e-02
-4.50485140e-01 2.72271574e-01 -7.18426406e-01 8.46984088e-01
7.48536408e-01 -1.12413609e+00 -1.46405983e+00 -2.23178074e-01
9.34791207e-01 4.51552957e-01 -6.88164175e-01 7.17017651e-02
1.14589000e+00 -6.71103179e-01 1.05149662e+00 -6.49798393e-01
8.89752746e-01 -2.45390013e-01 -5.01407146e-01 -1.25013554e+00
-2.10114606e-02 -7.71909654e-01 6.63382560e-02 9.99807715e-01
1.83814421e-01 -3.90501022e-01 4.27822083e-01 -1.33141309e-01
7.83664286e-02 -3.41968626e-01 -8.80720615e-01 -4.73798275e-01
2.33490914e-01 -8.49797070e-01 1.87941968e-01 1.07473922e+00
3.84473473e-01 7.65137017e-01 -4.93662387e-01 1.33741677e-01
5.55873752e-01 2.49726802e-01 5.27329981e-01 -1.05827987e+00
-5.63165367e-01 -3.88513923e-01 -4.62026715e-01 -9.65358436e-01
2.53156632e-01 -9.69906271e-01 2.91585237e-01 -1.06759810e+00
-1.94146544e-01 -3.98843773e-02 -1.13295376e-01 3.81051362e-01
1.21402502e-01 3.93515378e-01 4.62567061e-01 3.09238657e-02
1.16590269e-01 7.91910052e-01 8.97739708e-01 -6.94522634e-02
-3.66647318e-02 -5.06005764e-01 -9.35091972e-01 1.05337143e+00
8.19728851e-01 -6.19211972e-01 -2.16048002e-01 -3.07093054e-01
5.57022095e-01 -1.72300756e-01 5.30150294e-01 -8.53932261e-01
-6.74108714e-02 -3.47110301e-01 -1.67676270e-01 -4.34290349e-01
3.04377645e-01 -8.93053353e-01 -3.64234038e-02 7.73463726e-01
-4.78891790e-01 -2.65640114e-02 2.93640524e-01 4.52796370e-01
-3.49603802e-01 -1.98833480e-01 7.04874158e-01 -9.23063830e-02
-7.11513638e-01 -3.94721597e-01 -1.01482522e+00 2.71012902e-01
6.66202843e-01 4.28561587e-03 1.10113457e-01 -3.04772377e-01
-5.86762726e-01 2.30516233e-02 -8.06214230e-05 8.18941116e-01
5.80396235e-01 -1.18783522e+00 -7.57313311e-01 3.77721965e-01
2.19038218e-01 -6.72088444e-01 7.91383758e-02 5.03475606e-01
-7.46731222e-01 2.68542230e-01 -2.42323875e-01 -2.41097927e-01
-1.19630623e+00 3.22629303e-01 9.89601612e-02 3.38666677e-01
-5.72264016e-01 7.87531853e-01 1.58987239e-01 -5.95127046e-01
-1.80551112e-01 -4.94484305e-01 -3.81340027e-01 3.66423756e-01
6.78261697e-01 2.65763849e-01 -6.25107527e-01 -1.19799685e+00
-3.87775451e-01 5.04239082e-01 3.93455595e-01 -2.40413681e-01
1.57038391e+00 -3.36218834e-01 -4.56706792e-01 1.15233707e+00
1.35000455e+00 6.41200066e-01 -5.24296880e-01 -1.19013838e-01
4.02386934e-01 -1.07241191e-01 -2.63833135e-01 -5.72779834e-01
-8.81788358e-02 1.15675378e+00 1.84063897e-01 4.45239872e-01
5.86250246e-01 2.29379907e-01 1.12839556e+00 5.21216393e-01
1.60375372e-01 -9.12245095e-01 2.04320669e-01 6.98716819e-01
9.79148805e-01 -9.47219849e-01 -1.85456723e-01 -1.67763501e-01
-3.98337901e-01 1.36718965e+00 -1.58794194e-01 -5.35416231e-02
9.17777181e-01 3.60036433e-01 2.74051309e-01 -3.10517669e-01
-6.06027246e-01 -1.67790398e-01 2.92637825e-01 3.40198457e-01
6.78498566e-01 1.54679731e-01 -4.64927852e-01 7.90558398e-01
-1.02219176e+00 -1.78175926e-01 6.78648829e-01 9.23820078e-01
-6.67629540e-01 -1.10205781e+00 -3.58224183e-01 3.24324183e-02
-6.75215006e-01 -4.81857568e-01 -5.17744601e-01 5.26616514e-01
3.63849819e-01 1.04967070e+00 -1.21158823e-01 -4.42848623e-01
-1.38464672e-02 3.37730438e-01 4.24932688e-01 -6.40243888e-01
-4.13777947e-01 3.70985158e-02 5.03197908e-02 -2.74552792e-01
-7.60178328e-01 -4.25680280e-01 -1.41442728e+00 -2.82121390e-01
-1.49413899e-01 4.82227415e-01 6.71456635e-01 1.07239306e+00
-8.21519569e-02 4.59028244e-01 4.88675117e-01 -6.68533385e-01
-5.15417755e-01 -9.01442349e-01 -5.33343554e-01 1.90852582e-01
6.31704688e-01 -1.92196563e-01 -4.62059736e-01 5.59812605e-01] | [10.671309471130371, 9.28238582611084] |
5f0be6ff-81a3-47bb-8dd9-7618b050bf4e | mbw-multi-view-bootstrapping-in-the-wild | 2210.01721 | null | https://arxiv.org/abs/2210.01721v1 | https://arxiv.org/pdf/2210.01721v1.pdf | MBW: Multi-view Bootstrapping in the Wild | Labeling articulated objects in unconstrained settings have a wide variety of applications including entertainment, neuroscience, psychology, ethology, and many fields of medicine. Large offline labeled datasets do not exist for all but the most common articulated object categories (e.g., humans). Hand labeling these landmarks within a video sequence is a laborious task. Learned landmark detectors can help, but can be error-prone when trained from only a few examples. Multi-camera systems that train fine-grained detectors have shown significant promise in detecting such errors, allowing for self-supervised solutions that only need a small percentage of the video sequence to be hand-labeled. The approach, however, is based on calibrated cameras and rigid geometry, making it expensive, difficult to manage, and impractical in real-world scenarios. In this paper, we address these bottlenecks by combining a non-rigid 3D neural prior with deep flow to obtain high-fidelity landmark estimates from videos with only two or three uncalibrated, handheld cameras. With just a few annotations (representing 1-2% of the frames), we are able to produce 2D results comparable to state-of-the-art fully supervised methods, along with 3D reconstructions that are impossible with other existing approaches. Our Multi-view Bootstrapping in the Wild (MBW) approach demonstrates impressive results on standard human datasets, as well as tigers, cheetahs, fish, colobus monkeys, chimpanzees, and flamingos from videos captured casually in a zoo. We release the codebase for MBW as well as this challenging zoo dataset consisting image frames of tail-end distribution categories with their corresponding 2D, 3D labels generated from minimal human intervention. | ['Simon Lucey', 'Ian R. Fasel', 'Laszlo Attila Jeni', 'Tim Clifford', 'Chaoyang Wang', 'Mosam Dabhi'] | 2022-10-04 | null | null | null | null | ['unsupervised-landmark-detection', 'semi-supervised-2d-and-3d-landmark-labeling'] | ['computer-vision', 'computer-vision'] | [-1.54413581e-02 -5.63994087e-02 7.39610791e-02 -2.69714624e-01
-7.01741278e-01 -8.08996141e-01 2.88509369e-01 -2.22023293e-01
-7.73893178e-01 7.33850479e-01 -1.46287590e-01 1.64100736e-01
2.65777618e-01 -2.35569254e-01 -7.94706702e-01 -4.53487605e-01
-2.74452180e-01 8.98273706e-01 5.38888991e-01 9.73774418e-02
-8.03314894e-03 5.33457935e-01 -1.55113041e+00 -5.70723154e-02
1.90565556e-01 6.70206249e-01 3.29619825e-01 5.87024212e-01
2.74299502e-01 4.72437412e-01 -1.65669501e-01 -4.86500025e-01
4.93660957e-01 -2.44865090e-01 -7.41887212e-01 2.46030539e-01
9.34329331e-01 -8.42470527e-01 -1.35387585e-01 8.31674516e-01
4.59402829e-01 2.32164517e-01 4.52826619e-01 -1.15926838e+00
-9.77821127e-02 2.64190137e-01 -7.86852717e-01 1.29051730e-01
5.32687485e-01 3.61336499e-01 7.58954108e-01 -7.99065113e-01
9.35035229e-01 1.34892559e+00 1.08416116e+00 7.90690303e-01
-1.29942000e+00 -7.29725897e-01 -3.59332301e-02 -7.08790347e-02
-1.30968761e+00 -6.15213513e-01 4.60137576e-01 -7.86080658e-01
7.62889385e-01 -3.20644289e-01 9.48672652e-01 1.33932257e+00
-7.57967159e-02 5.29720485e-01 9.87290084e-01 -3.92752215e-02
2.27806509e-01 -2.80332863e-01 -3.29588413e-01 1.08141983e+00
3.10060203e-01 7.18211159e-02 -5.56617141e-01 -1.39970243e-01
1.15968430e+00 3.75312954e-01 -2.41024405e-01 -7.60651231e-01
-1.64178050e+00 6.49881303e-01 3.42583030e-01 -1.35896161e-01
-2.93676555e-01 4.56719548e-01 2.81558812e-01 -1.40887305e-01
2.16132656e-01 2.01825678e-01 -5.13534546e-01 -3.93994629e-01
-1.13500607e+00 2.25332275e-01 7.88951278e-01 1.18437922e+00
7.38054574e-01 -3.14742774e-02 4.68833953e-01 6.09955490e-01
3.06055605e-01 6.12099469e-01 2.69183874e-01 -1.37194824e+00
1.82060376e-01 3.30288321e-01 3.45679909e-01 -9.00850654e-01
-5.55071115e-01 9.65504069e-03 -5.29395044e-01 5.34636080e-01
7.62931287e-01 -1.03873663e-01 -1.00258934e+00 1.69851065e+00
6.63092673e-01 3.25271338e-01 -3.40196967e-01 1.13634157e+00
6.68369293e-01 2.01088533e-01 1.20630465e-01 7.27433637e-02
1.40046942e+00 -1.06911814e+00 -2.45024681e-01 -5.32601833e-01
1.94478303e-01 -7.10168839e-01 1.03213513e+00 3.72720748e-01
-1.00917315e+00 -3.19979548e-01 -6.86022878e-01 -8.53297114e-02
-8.58432502e-02 -6.65475577e-02 6.45641088e-01 3.84715408e-01
-8.67301762e-01 6.95318818e-01 -1.38838100e+00 -7.77290702e-01
6.53563917e-01 4.13539082e-01 -9.79042053e-01 -1.21238664e-01
-4.48926091e-01 9.49899197e-01 9.41323414e-02 1.57217175e-01
-1.42847240e+00 -6.18720889e-01 -1.01166034e+00 -2.39541844e-01
4.77240205e-01 -6.24784648e-01 1.26544082e+00 -7.79584825e-01
-1.46817183e+00 1.24407518e+00 3.06863431e-02 -2.35144004e-01
9.05774355e-01 -4.55487549e-01 1.94199234e-01 5.31592190e-01
2.54370391e-01 1.08895314e+00 7.12656021e-01 -1.27325177e+00
-4.69453335e-01 -3.36275905e-01 1.84117347e-01 1.82791248e-01
1.55986905e-01 5.26256710e-02 -5.13519824e-01 -5.23753822e-01
9.34531912e-02 -1.12587070e+00 -2.86699921e-01 7.10396588e-01
-1.15386203e-01 2.59028256e-01 7.37266064e-01 -7.69046724e-01
4.40449774e-01 -2.01141763e+00 2.94548005e-01 -1.95748478e-01
1.37442678e-01 1.66078016e-01 7.30321137e-03 1.71214923e-01
3.20709348e-01 -4.76624146e-02 -3.43026668e-01 -5.40802002e-01
-1.38546288e-01 3.33727896e-01 7.18245581e-02 9.11517084e-01
-2.57423297e-02 6.31609917e-01 -1.18836272e+00 -7.40066409e-01
4.34061170e-01 5.84601760e-01 -9.02058721e-01 3.36515844e-01
-6.50186688e-02 8.34590554e-01 -9.42867547e-02 9.24549937e-01
3.08144629e-01 -3.53479028e-01 1.84647843e-01 -3.02461535e-01
-5.86224440e-03 -1.44691139e-01 -1.25994337e+00 2.08719993e+00
-3.21559638e-01 5.11611164e-01 3.57440799e-01 -6.99949861e-01
3.73565674e-01 2.06512779e-01 6.01567626e-01 1.46337356e-02
1.16361611e-01 3.22925508e-01 -1.40888438e-01 -6.42613053e-01
2.34707609e-01 -4.02470559e-01 5.61453775e-02 3.11270118e-01
4.02462900e-01 -3.37283105e-01 2.63686508e-01 9.98881832e-03
1.18727148e+00 6.88115895e-01 4.48162794e-01 -4.66117859e-02
-2.30154265e-02 2.01753139e-01 7.38939881e-01 4.87638116e-01
-4.94089931e-01 1.14340937e+00 2.23616511e-02 -7.41223216e-01
-1.33321583e+00 -9.76954639e-01 -1.16893776e-01 9.47803974e-01
2.47470871e-01 -2.55708992e-01 -8.14076364e-01 -5.79072475e-01
-6.73158886e-03 7.02435449e-02 -4.19906974e-01 2.29215816e-01
-6.95625067e-01 -2.57347167e-01 6.61622286e-01 5.87815762e-01
6.22965574e-01 -1.02438259e+00 -1.18521357e+00 2.15074942e-01
-2.66923010e-01 -1.45010257e+00 -4.79672074e-01 1.22004181e-01
-7.44954944e-01 -1.23562908e+00 -8.61215591e-01 -7.39015758e-01
8.24811220e-01 3.17500204e-01 1.11122966e+00 1.41526178e-01
-4.14191872e-01 6.20338619e-01 -1.97369888e-01 4.97920923e-02
-6.07606247e-02 -3.12097013e-01 5.23087680e-01 -3.51028889e-01
1.53349310e-01 -6.01753235e-01 -6.38648987e-01 6.64222240e-01
-6.24521792e-01 -1.86852515e-02 3.76900703e-01 9.40686166e-01
6.89746618e-01 -4.91636068e-01 1.39347479e-01 -7.73392558e-01
-2.59163141e-01 -3.22451293e-01 -7.49041438e-01 9.17626172e-02
2.25694738e-02 -2.17077091e-01 5.31961560e-01 -6.63621783e-01
-7.46374905e-01 6.36009395e-01 -1.04040757e-01 -8.28623176e-01
-4.48409259e-01 5.06775044e-02 1.39034569e-01 -3.50312710e-01
6.90045416e-01 -2.75005907e-01 1.48448408e-01 -4.98096555e-01
3.06978375e-01 4.67323571e-01 8.87010813e-01 -6.56325459e-01
7.47567654e-01 7.79638767e-01 -4.13252637e-02 -8.94583762e-01
-8.17485213e-01 -4.96059835e-01 -1.09158087e+00 -4.68492985e-01
1.01007962e+00 -1.06605911e+00 -8.90857577e-01 3.36808383e-01
-1.08747578e+00 -6.38221085e-01 -2.29969084e-01 7.05593288e-01
-8.27907801e-01 5.37837625e-01 -6.06498241e-01 -5.38763881e-01
-8.19310993e-02 -1.34719598e+00 1.49652779e+00 1.39755949e-01
-4.11492765e-01 -8.40722740e-01 2.50666356e-03 5.61196506e-01
1.93091914e-01 5.52242637e-01 3.31750512e-01 -3.99820387e-01
-7.05000281e-01 -1.65058479e-01 1.20262094e-01 2.01236546e-01
-6.34062886e-02 1.85870472e-02 -8.52635145e-01 -4.94971961e-01
-3.38862658e-01 -7.22103894e-01 5.04027605e-01 2.68088102e-01
7.54984558e-01 -1.15668111e-01 -3.15858662e-01 8.50921035e-01
1.01550424e+00 -1.51096836e-01 1.81155667e-01 2.04700202e-01
8.08817744e-01 4.45282519e-01 5.40550411e-01 4.05756414e-01
3.96700531e-01 7.57865012e-01 4.59803581e-01 3.93220969e-03
-3.21537435e-01 -3.85266066e-01 4.32713091e-01 4.64334786e-01
-4.45765644e-01 1.89516712e-02 -1.07482255e+00 5.49941540e-01
-1.63964009e+00 -1.09576225e+00 1.09295860e-01 2.21122313e+00
6.36241078e-01 -1.94908276e-01 2.05450118e-01 -2.81175017e-01
7.93922544e-01 -2.49727532e-01 -6.71004176e-01 3.99764001e-01
1.01079732e-01 -4.52260636e-02 5.21422684e-01 3.50956798e-01
-1.25121224e+00 9.97992456e-01 6.62706852e+00 1.63801476e-01
-9.60278273e-01 1.66898593e-01 3.20073068e-01 -2.31321201e-01
1.71596095e-01 9.94816348e-02 -7.41836071e-01 3.80643070e-01
5.92134058e-01 3.10733438e-01 6.22808933e-01 1.10665083e+00
1.11221530e-01 -2.64133960e-01 -1.41663086e+00 1.40995729e+00
2.87027508e-01 -1.11457753e+00 -3.56933117e-01 2.17507575e-02
6.31080747e-01 3.41420799e-01 -3.61139119e-01 -4.78820354e-02
4.71013129e-01 -8.45584691e-01 9.58778501e-01 2.74376512e-01
9.80368435e-01 -2.88934529e-01 6.31610990e-01 4.34113681e-01
-1.00202942e+00 1.38492048e-01 -4.35230792e-01 1.34795815e-01
5.38814425e-01 1.82755381e-01 -6.15340889e-01 -3.08026914e-02
1.08302569e+00 7.59879887e-01 -4.12059426e-01 1.18734574e+00
-2.66773075e-01 4.09419745e-01 -8.61626804e-01 3.13505113e-01
8.31190273e-02 -7.91464746e-02 4.78897572e-01 1.04649961e+00
4.41540748e-01 3.13756853e-01 3.33634853e-01 6.21769369e-01
-2.60661870e-01 -2.88714498e-01 -6.70861065e-01 1.96642667e-01
3.61678421e-01 1.43632066e+00 -1.17147398e+00 -3.01560760e-01
-4.47409868e-01 1.09111035e+00 4.64035124e-01 1.49652481e-01
-8.65677357e-01 -6.45592362e-02 6.20249093e-01 2.08938420e-01
2.78737128e-01 -5.19454062e-01 2.02403083e-01 -1.61946785e+00
-8.39390233e-02 -8.35077524e-01 3.26757163e-01 -8.21844459e-01
-1.26880610e+00 4.82333481e-01 3.13886344e-01 -1.51847160e+00
-3.92890781e-01 -6.30450487e-01 -1.04491733e-01 3.40227962e-01
-1.18798769e+00 -1.16437376e+00 -6.87314451e-01 5.87446868e-01
5.58290005e-01 5.02547473e-02 7.33836114e-01 5.22318363e-01
-3.32941264e-01 2.21649602e-01 -1.25031024e-01 2.50661165e-01
8.93306315e-01 -9.48567808e-01 2.50539124e-01 8.72746050e-01
2.90409625e-01 6.39934301e-01 6.85364962e-01 -6.02824509e-01
-1.39121640e+00 -8.60355139e-01 3.18011433e-01 -7.24607885e-01
4.46502149e-01 -4.70686138e-01 -6.59989119e-01 1.13754821e+00
-1.24723822e-01 6.48600340e-01 5.72926581e-01 -1.74313232e-01
-2.65986979e-01 1.15639128e-01 -1.35054815e+00 4.90259945e-01
1.46643758e+00 -3.73570800e-01 -6.43353343e-01 4.85510051e-01
2.68283427e-01 -7.61621177e-01 -7.41379797e-01 2.54704565e-01
9.04366493e-01 -8.95707726e-01 1.08347213e+00 -5.63389957e-01
3.87401342e-01 -6.69656754e-01 -1.62564427e-01 -1.11563885e+00
-2.44740676e-02 -5.31840622e-01 4.38226350e-02 9.91656780e-01
-8.44623446e-02 -2.30560869e-01 8.48599851e-01 7.56166637e-01
-9.45602059e-02 -2.90179640e-01 -1.03482056e+00 -7.77372122e-01
-2.58255333e-01 -2.12255001e-01 1.44501403e-01 7.98604488e-01
-1.77498043e-01 1.76540405e-01 -6.48382664e-01 1.45312577e-01
1.05908275e+00 4.19147760e-02 1.11196089e+00 -1.23269618e+00
-2.72091508e-01 -8.21905769e-03 -8.53152394e-01 -1.11568177e+00
3.05206716e-01 -7.52646744e-01 3.67359161e-01 -1.35375404e+00
2.34645635e-01 -4.62856948e-01 4.18788433e-01 8.66199434e-01
1.49092764e-01 7.04526484e-01 1.01791471e-01 4.44941670e-01
-7.75534928e-01 2.92569190e-01 9.06140089e-01 9.55328066e-03
1.83262125e-01 -2.63987005e-01 -7.21711069e-02 1.30996716e+00
3.59109551e-01 -6.64064229e-01 -8.32696110e-02 -7.33473063e-01
-6.18128441e-02 6.00621626e-02 6.63991690e-01 -1.17537880e+00
3.47331524e-01 -1.42340675e-01 4.58141059e-01 -2.90441662e-01
5.71278632e-01 -1.22078633e+00 5.58235109e-01 4.21354383e-01
-9.75886360e-02 1.90199435e-01 -5.18991090e-02 6.56433165e-01
-3.37086944e-03 -2.33459935e-01 1.06222785e+00 -6.73137844e-01
-9.01614904e-01 3.24788988e-01 -2.19790995e-01 2.55784661e-01
1.23415351e+00 -2.49949813e-01 -1.79709867e-01 -2.83540785e-01
-6.72492802e-01 2.28471026e-01 9.28792477e-01 2.07347170e-01
6.03320956e-01 -1.02668226e+00 -4.06521618e-01 2.43345261e-01
-1.02761835e-01 4.98550624e-01 2.85457194e-01 8.09391320e-01
-1.09094799e+00 -5.59256896e-02 -5.44227362e-01 -9.53625560e-01
-1.23630583e+00 4.26871359e-01 3.75853628e-01 2.00613990e-01
-8.27931821e-01 7.23578453e-01 5.86962029e-02 -5.91367304e-01
2.86180496e-01 -3.38358939e-01 1.65488869e-01 1.08769338e-03
4.19444889e-01 3.45227659e-01 -5.19266166e-02 -9.25575912e-01
-5.40728152e-01 9.74090219e-01 2.38066569e-01 -4.38638404e-02
1.52826846e+00 -3.54684927e-02 1.23779438e-01 3.56687635e-01
1.04630125e+00 -4.10317034e-02 -1.75383949e+00 1.99982971e-02
-3.14305276e-01 -6.51526570e-01 -2.78383166e-01 -3.91698390e-01
-1.03648758e+00 9.94435191e-01 5.75922370e-01 -4.04178858e-01
6.65448427e-01 1.73606694e-01 7.63723850e-01 5.24357975e-01
1.10414672e+00 -8.82022858e-01 2.16752946e-01 2.93528020e-01
6.12680912e-01 -1.53731287e+00 2.56572157e-01 -1.59698159e-01
-6.87444270e-01 1.11699367e+00 6.93944335e-01 -1.20341644e-01
4.51941729e-01 3.27537984e-01 1.68210372e-01 -2.06951037e-01
-4.27988172e-01 -1.94534004e-01 -1.81472600e-01 5.92770636e-01
2.57278740e-01 -1.53754294e-01 1.98085383e-01 1.23703264e-01
-1.50483981e-01 1.69334356e-02 5.67155480e-01 1.15288007e+00
-2.65856236e-01 -7.36939073e-01 -4.09441203e-01 3.13092589e-01
-5.34980297e-01 1.35443076e-01 -3.08368914e-02 8.99312437e-01
1.96034461e-02 6.62403524e-01 3.51967067e-02 -2.53480256e-01
3.37526053e-01 7.26419464e-02 5.73763132e-01 -6.65213823e-01
-4.31145489e-01 1.62456900e-01 -3.41486633e-02 -8.13171148e-01
-1.01357973e+00 -9.06982422e-01 -1.25828969e+00 -3.19961935e-01
-2.52230555e-01 -2.00956747e-01 5.59373617e-01 8.05035710e-01
2.76375979e-01 -7.69862458e-02 4.63102199e-02 -1.69372797e+00
-3.53812128e-01 -7.95574129e-01 -4.12411422e-01 7.03460693e-01
3.96529317e-01 -1.17868733e+00 -4.76354212e-01 5.86844325e-01] | [7.538674354553223, -0.9517372250556946] |
8ee2f3a3-5eba-4c79-901e-31bb456000be | deep-generative-models-on-3d-representations | 2210.15663 | null | https://arxiv.org/abs/2210.15663v2 | https://arxiv.org/pdf/2210.15663v2.pdf | Deep Generative Models on 3D Representations: A Survey | Generative models, as an important family of statistical modeling, target learning the observed data distribution via generating new instances. Along with the rise of neural networks, deep generative models, such as variational autoencoders (VAEs) and generative adversarial network (GANs), have made tremendous progress in 2D image synthesis. Recently, researchers switch their attentions from the 2D space to the 3D space considering that 3D data better aligns with our physical world and hence enjoys great potential in practice. However, unlike a 2D image, which owns an efficient representation (i.e., pixel grid) by nature, representing 3D data could face far more challenges. Concretely, we would expect an ideal 3D representation to be capable enough to model shapes and appearances in details, and to be highly efficient so as to model high-resolution data with fast speed and low memory cost. However, existing 3D representations, such as point clouds, meshes, and recent neural fields, usually fail to meet the above requirements simultaneously. In this survey, we make a thorough review of the development of 3D generation, including 3D shape generation and 3D-aware image synthesis, from the perspectives of both algorithms and more importantly representations. We hope that our discussion could help the community track the evolution of this field and further spark some innovative ideas to advance this challenging task. | ['Yujun Shen', 'Yiyi Liao', 'Yinghao Xu', 'Sida Peng', 'Zifan Shi'] | 2022-10-27 | null | null | null | null | ['3d-shape-generation', '3d-aware-image-synthesis'] | ['computer-vision', 'computer-vision'] | [ 1.71800196e-01 2.29685888e-01 2.34655868e-02 -2.47564651e-02
-4.00336921e-01 -4.61992532e-01 8.83912861e-01 -3.51882398e-01
2.89646834e-01 7.44195759e-01 8.12512860e-02 -1.34771839e-01
1.75910920e-01 -1.44448566e+00 -8.12007725e-01 -8.93174291e-01
2.39536926e-01 5.82276165e-01 -1.18092522e-01 -2.67298430e-01
2.21337173e-02 8.98596466e-01 -1.64376950e+00 -1.89629793e-01
8.78125966e-01 9.79071677e-01 1.05208047e-01 3.53543580e-01
-4.39658046e-01 2.93874502e-01 -5.41291595e-01 -4.37577933e-01
1.91722855e-01 -5.84068239e-01 -3.81100029e-01 2.55565673e-01
2.85898954e-01 -4.65996973e-02 -6.14051878e-01 9.81345177e-01
4.71626043e-01 1.24273293e-01 9.16478515e-01 -1.30287933e+00
-1.18107939e+00 3.05054691e-02 -5.11487722e-01 -4.69937265e-01
2.78840289e-02 1.69359118e-01 5.70211887e-01 -8.40941489e-01
7.54556715e-01 1.20484138e+00 6.08415008e-01 8.12880576e-01
-1.34033048e+00 -4.26184118e-01 -1.85136702e-02 -1.22254774e-01
-1.21324217e+00 -1.54286832e-01 1.33845377e+00 -4.43587631e-01
6.00467205e-01 2.12501749e-01 9.02406454e-01 1.47463036e+00
2.83301145e-01 9.10630524e-01 1.10723567e+00 -3.05228293e-01
3.39473724e-01 -6.08303845e-02 -6.63960636e-01 3.90292615e-01
1.95511729e-01 2.73631096e-01 -3.61019760e-01 -8.80105346e-02
1.45676899e+00 9.60836411e-02 -1.38171628e-01 -6.91909432e-01
-1.14214718e+00 1.04793954e+00 5.12824059e-01 3.34921867e-01
-6.81202173e-01 4.51746672e-01 6.13892451e-02 -2.97362711e-02
7.20604479e-01 3.97078216e-01 -1.20417789e-01 -6.97909072e-02
-9.30655837e-01 5.71176231e-01 4.59697127e-01 9.71056223e-01
7.50348508e-01 6.68962419e-01 -8.14728532e-03 8.61985147e-01
2.44381338e-01 8.26913953e-01 2.26083189e-01 -1.03029644e+00
-3.04363910e-02 5.41089237e-01 -5.69046242e-03 -1.17001653e+00
-1.11601099e-01 -4.75422204e-01 -1.48909295e+00 5.12103796e-01
2.29392331e-02 -1.32940590e-01 -1.09849668e+00 1.87990189e+00
4.58893627e-01 1.80372387e-01 -1.08349703e-01 8.28084350e-01
8.31179917e-01 8.20703149e-01 -2.49730200e-01 2.37571951e-02
1.03547204e+00 -3.73964459e-01 -5.60873806e-01 -4.97273095e-02
-7.81638641e-03 -6.97757840e-01 8.25682163e-01 1.13648802e-01
-1.41986752e+00 -7.38575518e-01 -9.40102339e-01 6.92502186e-02
-2.42496371e-01 -3.18779022e-01 8.89132440e-01 5.27040899e-01
-1.12070143e+00 5.93640506e-01 -1.02389407e+00 -2.63910413e-01
7.04312265e-01 5.85718714e-02 -2.54731566e-01 2.94497842e-03
-1.21416175e+00 8.15939844e-01 -1.32199615e-01 8.80024023e-03
-8.93758833e-01 -7.83330977e-01 -9.46326613e-01 -1.13159359e-01
4.42222282e-02 -1.27168262e+00 8.63039076e-01 -6.72735274e-01
-1.69011152e+00 9.13116992e-01 -1.45925120e-01 -3.32644433e-01
4.64472532e-01 6.26980960e-02 -1.10101484e-01 -1.41263828e-01
-2.10256234e-01 8.49875510e-01 1.08069575e+00 -1.63519633e+00
-1.89668432e-01 -3.95740539e-01 -6.19652718e-02 3.42772417e-02
-7.83417895e-02 -5.21835685e-01 -1.25273079e-01 -8.12662125e-01
2.20608145e-01 -9.02791500e-01 -5.62240779e-01 2.52540112e-01
-4.07621115e-01 -8.95678177e-02 8.84800315e-01 -3.30022126e-01
5.93331695e-01 -1.95096076e+00 4.51515228e-01 1.48163857e-02
4.64351773e-01 1.74318820e-01 6.06187284e-02 5.25008142e-01
-6.85551614e-02 2.54811853e-01 -3.92640948e-01 -4.77276891e-01
1.20777510e-01 3.71742398e-01 -4.55165416e-01 4.44479972e-01
5.58298767e-01 1.31190610e+00 -8.30565929e-01 -2.20786393e-01
5.22505820e-01 9.63175714e-01 -6.83954537e-01 3.60670567e-01
-4.35419381e-01 8.57505739e-01 -5.79570949e-01 4.41095740e-01
8.55046928e-01 -3.24328780e-01 -2.32453942e-01 -6.60510510e-02
-8.24626088e-02 7.52486708e-03 -9.22959864e-01 1.60696542e+00
-6.76120818e-01 5.79393268e-01 9.38062295e-02 -1.17606223e+00
1.37547112e+00 4.33386743e-01 6.95839763e-01 -6.84196472e-01
-2.03686468e-02 1.12785824e-01 -2.39235714e-01 -1.84345171e-01
4.47710127e-01 -4.63125706e-01 -6.43222407e-02 2.51030803e-01
-1.61779553e-01 -8.64915609e-01 -4.28121805e-01 -1.04833851e-02
6.94975913e-01 3.00417423e-01 1.65261179e-01 -4.83031198e-03
2.42095515e-01 -2.02058684e-02 4.55220997e-01 5.00268459e-01
1.70369834e-01 8.75382066e-01 3.16599041e-01 -5.35535693e-01
-1.45611632e+00 -1.33442461e+00 -6.61955476e-02 2.52932124e-02
1.13256916e-01 -5.03372168e-03 -6.53579891e-01 -3.80535424e-01
1.38330162e-01 7.25282311e-01 -7.50252128e-01 -2.44852006e-01
-7.02021360e-01 -6.72236800e-01 2.84728795e-01 5.31188786e-01
5.77929020e-01 -1.20028841e+00 -4.41481441e-01 2.10308984e-01
1.05116889e-01 -8.99054587e-01 -6.70217499e-02 -1.74021065e-01
-1.01613796e+00 -6.56379700e-01 -1.11797297e+00 -6.61307633e-01
6.65433526e-01 1.39018044e-01 1.40239608e+00 -7.87419751e-02
-1.38915524e-01 4.52261120e-01 -3.02341014e-01 -6.43797278e-01
-6.79895699e-01 -7.45370686e-02 3.75003666e-02 -1.41026862e-02
4.79814708e-02 -1.20535195e+00 -6.34393632e-01 5.25501855e-02
-1.12752056e+00 3.37531567e-01 5.39995849e-01 9.44130659e-01
9.18590724e-01 1.55977875e-01 5.81895649e-01 -7.20784485e-01
4.77074355e-01 -4.63396460e-01 -5.09211123e-01 -3.55787054e-02
-3.84209186e-01 9.66014341e-03 7.13788748e-01 -2.59451151e-01
-1.02426541e+00 -2.20764488e-01 -5.00137389e-01 -8.65397513e-01
-3.92415643e-01 3.03346574e-01 -2.95615524e-01 -3.18239778e-02
5.55782497e-01 6.29942656e-01 2.17562750e-01 -5.27705729e-01
5.51155269e-01 3.34343195e-01 4.35043812e-01 -6.29781425e-01
1.17637706e+00 6.66537166e-01 3.44100416e-01 -9.52969074e-01
-5.08504629e-01 2.04568177e-01 -5.47129154e-01 -1.58054277e-01
9.54072118e-01 -6.24715507e-01 -4.30260688e-01 6.33307219e-01
-1.31546354e+00 -3.39807779e-01 -7.07580030e-01 1.64135039e-01
-9.56907868e-01 1.24322914e-01 -3.51862073e-01 -9.22131956e-01
-2.18997300e-01 -1.17394412e+00 1.24557698e+00 3.79677236e-01
-1.77799538e-01 -1.26469958e+00 6.63729385e-02 -2.72795139e-03
6.79434836e-01 8.77757549e-01 1.19842267e+00 8.71493146e-02
-7.66053736e-01 -1.67100951e-01 -7.15688691e-02 2.98081756e-01
2.91729718e-01 1.42864212e-01 -8.93151045e-01 -1.05441865e-02
1.70341820e-01 -1.26132742e-01 5.42684019e-01 6.90827310e-01
1.40917265e+00 -3.59371752e-02 -2.97783732e-01 7.63585865e-01
1.39677930e+00 1.75125360e-01 8.53686631e-01 -9.25114080e-02
7.81955302e-01 4.27389532e-01 7.94042945e-02 3.74060541e-01
2.83114791e-01 8.52255285e-01 8.09403956e-01 -4.29792196e-01
-5.17309308e-01 -5.64295769e-01 -1.58694088e-01 1.02217662e+00
-4.19277251e-01 -3.34523946e-01 -7.07160652e-01 3.91526252e-01
-1.58781433e+00 -9.18177724e-01 3.99145372e-02 2.14325809e+00
5.67856729e-01 9.97031690e-04 -6.78228289e-02 1.49305537e-01
6.40002906e-01 3.12325478e-01 -7.73979902e-01 -3.08441550e-01
-3.96510571e-01 5.04591525e-01 1.40602767e-01 1.94129705e-01
-8.34592044e-01 8.41609001e-01 6.42351580e+00 8.24737668e-01
-1.21980774e+00 -9.55881029e-02 7.19059169e-01 1.42315224e-01
-8.77984881e-01 -2.30374292e-01 -5.89242101e-01 5.11474669e-01
6.38297439e-01 -1.86533317e-01 4.68990237e-01 8.80193174e-01
1.83286920e-01 3.25724542e-01 -9.06410098e-01 1.29662538e+00
-4.38120067e-02 -1.77333927e+00 3.22789788e-01 3.72883111e-01
1.07242668e+00 -8.22894871e-02 3.32264274e-01 1.88252762e-01
3.25344324e-01 -1.27217388e+00 7.07739234e-01 7.06261992e-01
9.87267017e-01 -8.26583147e-01 4.20940727e-01 5.05373478e-01
-9.16473687e-01 6.39435232e-01 -4.79879469e-01 1.00245528e-01
4.96778876e-01 8.66998971e-01 -3.29895735e-01 6.02109671e-01
5.02425194e-01 8.51359308e-01 -3.19043882e-02 9.29834783e-01
-2.20046237e-01 3.85017455e-01 -1.90158159e-01 8.53864662e-03
2.61303455e-01 -4.46267933e-01 7.90983796e-01 6.30391955e-01
6.10896826e-01 1.32729426e-01 -2.53709890e-02 1.44000423e+00
-2.30213553e-01 -1.30376965e-01 -9.68883336e-01 -1.22101769e-01
3.75939786e-01 8.55825245e-01 -5.76829791e-01 -2.15738699e-01
-3.64683300e-01 9.24154818e-01 1.27202481e-01 4.34173256e-01
-9.14594114e-01 -1.73597544e-01 1.03162313e+00 2.75119722e-01
2.78967381e-01 -5.80648959e-01 -5.38704574e-01 -1.09903443e+00
-1.76585481e-01 -7.83694565e-01 -2.46970773e-01 -9.31901276e-01
-1.53725779e+00 6.97562277e-01 -1.36961669e-01 -1.31409168e+00
-2.81920522e-01 -5.95065832e-01 -5.75689733e-01 9.58399117e-01
-1.38516009e+00 -1.10452259e+00 -3.36186856e-01 3.59968364e-01
5.12869596e-01 3.24519910e-02 1.01984203e+00 1.10004015e-01
-2.44094521e-01 3.39116901e-01 2.02527598e-01 -2.15337686e-02
2.78955638e-01 -1.09445465e+00 8.74943137e-01 4.75930691e-01
4.07653093e-01 4.25075084e-01 6.79515243e-01 -6.15043581e-01
-1.56225431e+00 -1.09957743e+00 4.15879071e-01 -4.73986000e-01
2.35908210e-01 -3.28602105e-01 -9.73842323e-01 4.52416390e-01
6.90663233e-02 -2.78898445e-03 3.38153243e-01 -1.86004445e-01
1.72768515e-02 2.29147583e-01 -1.16738462e+00 7.27699697e-01
1.26674986e+00 -3.50935847e-01 -3.18884373e-01 2.45897934e-01
6.66787624e-01 -6.81276560e-01 -1.10079348e+00 5.53457499e-01
3.41653228e-01 -1.13038933e+00 1.22141254e+00 -5.16309142e-01
7.33121216e-01 -1.20844342e-01 -2.05310449e-01 -1.66998386e+00
-3.68613362e-01 -7.07245529e-01 -3.22492719e-01 1.06344354e+00
4.29181494e-02 -6.19580925e-01 1.21157682e+00 5.15327454e-01
-3.37412268e-01 -1.01435757e+00 -9.66314912e-01 -7.69392252e-01
5.24899602e-01 -5.52446842e-01 1.02306366e+00 8.32982481e-01
-7.28909314e-01 6.32708147e-02 -4.44919378e-01 1.34006767e-02
7.98787415e-01 4.62975979e-01 9.72123444e-01 -1.31608462e+00
-1.90148860e-01 -6.84107959e-01 -6.71737850e-01 -1.35917997e+00
1.85309201e-01 -7.96894133e-01 -1.75042212e-01 -1.73223484e+00
-1.61054298e-01 -7.23712087e-01 2.31739983e-01 2.77749728e-02
-2.29306258e-02 5.64267099e-01 4.37015444e-02 1.78626314e-01
1.61198407e-01 1.11618471e+00 1.87456775e+00 -1.75054446e-01
-9.31427777e-02 8.79177228e-02 -6.01157129e-01 7.26533175e-01
6.42453671e-01 -1.09021850e-01 -4.59124357e-01 -5.43871760e-01
1.55710950e-01 1.13467731e-01 6.28585756e-01 -8.47339988e-01
-1.60085469e-01 -3.64874095e-01 7.23217726e-01 -6.23866498e-01
6.72042489e-01 -7.29636490e-01 5.19853234e-01 1.31843835e-01
1.36965020e-02 -1.03998706e-01 1.27982929e-01 4.07616317e-01
-3.51206094e-01 1.57490611e-01 9.61746573e-01 -3.49911004e-01
-4.80182797e-01 8.52617919e-01 -1.85170889e-01 4.12265249e-02
9.88007784e-01 -4.23316628e-01 -1.67487897e-02 -6.71809375e-01
-6.94167316e-01 -1.76482633e-01 8.60591114e-01 4.28666770e-01
7.42737114e-01 -1.69984341e+00 -8.29348326e-01 4.51644510e-01
-1.38471931e-01 4.87920791e-01 6.04015768e-01 4.23744053e-01
-4.03637528e-01 3.63498777e-01 -2.77616769e-01 -7.35778511e-01
-5.57753563e-01 5.23625255e-01 3.58386666e-01 -3.74374464e-02
-7.94714451e-01 7.76513934e-01 5.68718553e-01 -4.07830328e-01
-2.32692271e-01 -3.53405327e-02 3.43711339e-02 -3.55807662e-01
3.21198970e-01 1.64047435e-01 -7.46279880e-02 -6.09804511e-01
-6.43677637e-02 7.88447142e-01 4.75890636e-01 1.53575584e-01
1.52405751e+00 8.04755762e-02 6.70177117e-02 3.32139194e-01
1.04229212e+00 -1.85500470e-03 -1.53179371e+00 -1.34664327e-01
-6.11751616e-01 -4.78605330e-01 1.18539914e-01 -2.87524253e-01
-1.47415960e+00 1.09288597e+00 7.82826245e-02 5.88377714e-01
1.04060698e+00 2.65756279e-01 9.90017831e-01 -2.80394167e-01
5.71166039e-01 -5.27947724e-01 6.81551769e-02 3.68593961e-01
1.11651039e+00 -1.03651857e+00 -1.11456141e-01 -4.15839463e-01
-4.35884774e-01 9.61819351e-01 4.80375826e-01 -5.42085886e-01
7.34381974e-01 2.29531482e-01 -1.63744405e-01 -3.04656774e-01
-6.21169865e-01 -3.46275009e-02 3.46003681e-01 1.10691011e+00
3.76198739e-01 8.90974253e-02 1.98718086e-01 1.80453703e-01
-4.18631285e-01 -1.90273836e-01 3.04006964e-01 4.99548793e-01
-6.19108379e-02 -1.35764468e+00 -3.82578731e-01 4.04274255e-01
-2.01519318e-02 1.00756645e-01 -1.53924063e-01 9.16048527e-01
2.07484797e-01 4.04365391e-01 3.09182286e-01 -2.29926869e-01
3.85012865e-01 -5.73386662e-02 7.37707853e-01 -5.08585334e-01
3.61777805e-02 2.28662305e-02 -3.75222713e-01 -3.97491455e-01
-5.07198513e-01 -6.32781148e-01 -9.16884243e-01 -6.40263021e-01
-8.28747153e-02 4.48421687e-02 8.32187831e-01 6.31138682e-01
5.10068774e-01 5.40882051e-01 7.37856269e-01 -1.28097224e+00
-3.77270937e-01 -7.31468320e-01 -6.78215325e-01 3.13322008e-01
8.79782438e-02 -9.62525725e-01 -1.76809043e-01 -2.30546929e-02] | [9.01052188873291, -3.546456813812256] |
28e6296f-46eb-4ce9-b32a-8ed5d7940b37 | an-empirical-evaluation-of-generic | 1803.01271 | null | http://arxiv.org/abs/1803.01271v2 | http://arxiv.org/pdf/1803.01271v2.pdf | An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling | For most deep learning practitioners, sequence modeling is synonymous with
recurrent networks. Yet recent results indicate that convolutional
architectures can outperform recurrent networks on tasks such as audio
synthesis and machine translation. Given a new sequence modeling task or
dataset, which architecture should one use? We conduct a systematic evaluation
of generic convolutional and recurrent architectures for sequence modeling. The
models are evaluated across a broad range of standard tasks that are commonly
used to benchmark recurrent networks. Our results indicate that a simple
convolutional architecture outperforms canonical recurrent networks such as
LSTMs across a diverse range of tasks and datasets, while demonstrating longer
effective memory. We conclude that the common association between sequence
modeling and recurrent networks should be reconsidered, and convolutional
networks should be regarded as a natural starting point for sequence modeling
tasks. To assist related work, we have made code available at
http://github.com/locuslab/TCN . | ['Shaojie Bai', 'Vladlen Koltun', 'J. Zico Kolter'] | 2018-03-04 | null | null | null | null | ['sequential-image-classification', 'music-modeling'] | ['computer-vision', 'music'] | [ 4.45867002e-01 -7.10597932e-02 -3.34969580e-01 -2.21075475e-01
-5.45019746e-01 -5.35275519e-01 6.00234628e-01 -3.16423118e-01
-4.26037997e-01 5.12218297e-01 4.53041971e-01 -7.90707111e-01
4.05877143e-01 -3.12125534e-01 -7.21512258e-01 -3.35721344e-01
3.65671590e-02 1.01444989e-01 -7.87797272e-02 -2.77687490e-01
1.38887867e-01 3.80173028e-01 -1.34699929e+00 3.73828560e-01
2.82037705e-01 6.42327785e-01 3.93182755e-01 7.54349172e-01
-1.78714618e-01 1.16223001e+00 -5.64264774e-01 -4.49746996e-01
-9.65909362e-02 -5.93339741e-01 -1.09897792e+00 -2.70103365e-01
-3.88043635e-02 -1.83630317e-01 -6.01266980e-01 7.60132015e-01
8.00382793e-01 3.14521432e-01 2.12335601e-01 -8.98128390e-01
-6.18573010e-01 1.03976214e+00 -1.13049723e-01 4.14027303e-01
2.32609943e-01 3.05495560e-01 1.13880372e+00 -8.58152926e-01
6.04658782e-01 1.12607479e+00 1.06462002e+00 7.30157256e-01
-1.36570191e+00 -7.82319307e-01 2.51453161e-01 1.24717362e-01
-1.13045287e+00 -8.16121519e-01 5.97267210e-01 -3.05147499e-01
1.45019424e+00 2.98098445e-01 4.23822671e-01 1.80073619e+00
2.25116938e-01 1.00479364e+00 5.47792256e-01 -3.13699275e-01
-2.21985057e-01 -3.37547243e-01 2.07877353e-01 4.12923932e-01
-7.80271515e-02 9.29257199e-02 -6.10925198e-01 -2.24675953e-01
7.06425071e-01 -2.73064282e-02 -2.07378030e-01 1.20986275e-01
-1.23743451e+00 7.47548699e-01 1.82068169e-01 5.65972507e-01
-4.18006718e-01 7.10167527e-01 8.97629321e-01 5.20579696e-01
5.08984447e-01 5.45633018e-01 -5.59328675e-01 -7.44355619e-01
-7.83945441e-01 2.84810394e-01 6.79381490e-01 8.48107040e-01
4.48422819e-01 6.15793169e-01 -2.15577818e-02 1.18788350e+00
1.47424117e-01 -8.76260176e-02 8.27632189e-01 -9.60970044e-01
1.45069361e-01 1.33003101e-01 -1.28913864e-01 -7.29302168e-01
-5.42410672e-01 -8.13212454e-01 -8.08064640e-01 -3.34047765e-01
1.25020355e-01 -3.32274526e-01 -8.50256741e-01 1.84837914e+00
-4.17449087e-01 4.95609224e-01 4.64697033e-02 6.57985687e-01
1.01530302e+00 7.17462778e-01 3.81282680e-02 -1.87924914e-02
1.06335878e+00 -9.90717769e-01 -6.18664443e-01 -3.28909725e-01
1.10098541e+00 -1.00964129e+00 1.00705469e+00 3.25809479e-01
-1.19041812e+00 -5.41303813e-01 -9.38328683e-01 -1.57250360e-01
-1.18772313e-01 1.46105766e-01 5.35430253e-01 5.21586120e-01
-1.33966017e+00 7.29599774e-01 -9.11434770e-01 -6.33678138e-01
-8.37416500e-02 2.27717653e-01 6.10859767e-02 2.85972625e-01
-1.40657866e+00 1.11174202e+00 4.94744927e-01 4.04041857e-01
-1.04469562e+00 -6.42232120e-01 -6.77329957e-01 -3.81215848e-02
3.82766500e-02 -7.59724379e-01 1.95760906e+00 -1.09001851e+00
-1.52736485e+00 7.48039365e-01 -3.29438448e-01 -9.64619398e-01
2.21037626e-01 -4.17156786e-01 -6.28956735e-01 -1.47042543e-01
-3.35933715e-01 6.57345057e-01 4.95714158e-01 -8.50134850e-01
-3.69164020e-01 2.95385957e-01 -1.34602547e-01 1.87376782e-01
-1.32911831e-01 3.28057855e-01 -2.02530980e-01 -8.65979612e-01
-8.27534571e-02 -1.18219268e+00 -3.71714920e-01 -6.76008582e-01
-4.07319635e-01 -2.83449471e-01 7.39034832e-01 -6.45046473e-01
1.26693451e+00 -1.90370882e+00 1.95430964e-01 -2.33723924e-01
1.05209343e-01 4.16908056e-01 -4.63101357e-01 7.64870226e-01
-4.53973025e-01 4.05705124e-01 -5.99415675e-02 -4.98492777e-01
-1.28581792e-01 7.63111413e-02 -6.56405389e-01 2.59860635e-01
1.84375718e-01 1.34604347e+00 -6.07216537e-01 5.25736883e-02
4.94241677e-02 6.45427942e-01 -2.12766230e-01 3.66981998e-02
-5.38150489e-01 4.27712083e-01 -8.24742243e-02 3.29864830e-01
-6.25555590e-03 -6.42300904e-01 3.79586637e-01 1.83019817e-01
-7.94379693e-03 9.69643772e-01 -4.97811258e-01 2.02527094e+00
-5.29838085e-01 9.53642786e-01 -5.52355587e-01 -8.29441845e-01
1.12521684e+00 7.37174749e-01 2.79621005e-01 -6.50214016e-01
5.79959080e-02 3.57911438e-01 4.80358243e-01 -2.87538618e-01
7.82279730e-01 -1.29920006e-01 6.37455285e-02 8.86229873e-01
2.46295482e-01 2.66262412e-01 2.85576098e-03 1.08144693e-01
1.28676486e+00 2.98866004e-01 2.95051467e-02 -6.66300729e-02
1.42441750e-01 -1.28433123e-01 6.23370588e-01 7.87827492e-01
5.43228351e-02 6.70641840e-01 4.33530837e-01 -6.47962034e-01
-1.34691870e+00 -6.21593177e-01 1.38393715e-01 1.33769834e+00
-4.85157132e-01 -5.37755370e-01 -4.72230613e-01 -7.77498782e-02
-3.66320312e-01 6.54375315e-01 -5.64593673e-01 -2.37314939e-01
-8.92011821e-01 -7.16162205e-01 1.21870792e+00 6.29252911e-01
9.56271216e-02 -1.39174497e+00 -5.17249346e-01 5.99152505e-01
-4.65655625e-01 -9.32526410e-01 -3.88416529e-01 4.68270957e-01
-9.66167152e-01 -5.94553828e-01 -8.88583660e-01 -8.07604492e-01
-2.01301966e-02 3.20814043e-01 1.33362579e+00 3.87256384e-01
1.36284148e-02 1.51084751e-01 -5.67362428e-01 -2.83468366e-01
-7.37122595e-01 8.66122961e-01 -7.74032548e-02 -3.63118440e-01
3.26562673e-01 -7.67866313e-01 -4.56046492e-01 2.26996675e-01
-8.84640157e-01 1.44094467e-01 4.41058695e-01 8.66169333e-01
1.94450021e-02 -6.11652911e-01 9.26697433e-01 -8.39382946e-01
9.41959321e-01 -6.32513702e-01 -1.57544509e-01 1.89397946e-01
-3.01186323e-01 8.03416371e-02 4.75650370e-01 -4.12559539e-01
-7.80265570e-01 -2.54393160e-01 -5.42250752e-01 -5.74042022e-01
-2.43670400e-02 9.46498573e-01 3.68797928e-01 2.72109896e-01
6.79676831e-01 5.72277486e-01 2.91723490e-01 -5.50300360e-01
1.39325738e-01 4.21123922e-01 1.18943155e-01 -4.57022637e-01
2.86245197e-01 2.84879785e-02 -3.83345038e-01 -9.21288967e-01
-4.88673896e-01 -3.01450670e-01 -4.22875434e-01 -1.24702327e-01
5.17501175e-01 -9.55670595e-01 -7.16722369e-01 4.59690332e-01
-1.45894027e+00 -7.66626596e-01 4.94306348e-02 4.43755090e-01
-7.59608030e-01 3.21760923e-01 -1.05286086e+00 -7.31503427e-01
-5.18525422e-01 -1.24017692e+00 8.18402529e-01 -3.29564698e-02
-9.10700858e-01 -1.29985213e+00 3.07673454e-01 -2.96742339e-02
6.45958602e-01 -4.26149406e-02 1.03013909e+00 -8.01077724e-01
-5.39566457e-01 1.64503360e-03 1.30891666e-01 1.89507931e-01
8.07518419e-03 2.19393596e-01 -1.12606061e+00 -2.67691314e-01
-1.74712837e-01 -5.06475508e-01 1.10233760e+00 4.20311689e-01
1.01106250e+00 -8.59316364e-02 -2.08644718e-01 6.97238982e-01
1.02893734e+00 4.24015313e-01 7.81592429e-01 4.33627754e-01
5.45831561e-01 3.92598927e-01 7.09217861e-02 2.92551011e-01
2.42671520e-01 6.25425577e-01 1.18932076e-01 -3.51997167e-02
-4.03975062e-02 -2.79057622e-01 5.70825160e-01 1.34008741e+00
2.19146926e-02 -3.03952903e-01 -1.12440085e+00 5.93575358e-01
-1.95659494e+00 -1.14811361e+00 1.19712070e-01 1.73067772e+00
7.46721983e-01 9.02435482e-02 5.41767299e-01 8.60293861e-03
5.83742380e-01 4.26760793e-01 -5.27888596e-01 -7.79797971e-01
-1.85133502e-01 2.10622966e-01 2.39671797e-01 2.70354420e-01
-7.65836418e-01 1.11439538e+00 7.26499748e+00 6.93770289e-01
-1.48617065e+00 1.53264254e-01 7.44793832e-01 -1.98530108e-01
-5.25426924e-01 -9.29609686e-02 -8.33979607e-01 3.73538345e-01
1.70997477e+00 -3.31515908e-01 2.71284938e-01 4.83888328e-01
3.72972161e-01 5.19300938e-01 -1.17205489e+00 7.71309972e-01
-7.31932893e-02 -1.74193752e+00 1.29137248e-01 -8.59862864e-02
4.78267223e-01 6.36056662e-01 3.94295245e-01 3.78273726e-01
6.48237884e-01 -1.54403603e+00 6.09253287e-01 5.75826228e-01
5.90138376e-01 -6.51164532e-01 4.76557046e-01 2.03189954e-01
-1.11385870e+00 9.24775302e-02 -3.37029308e-01 -1.99467435e-01
2.29855672e-01 1.85248479e-01 -9.72199321e-01 5.56335211e-01
4.99699503e-01 1.23111224e+00 -4.06115741e-01 9.65310991e-01
5.39951362e-02 8.38986337e-01 -2.88514723e-03 -2.95362659e-02
5.85792899e-01 9.52592120e-02 3.34015191e-01 1.51479471e+00
2.92202652e-01 -2.59429663e-01 -1.99621826e-01 7.96675861e-01
-1.65222630e-01 -3.76314931e-02 -8.70803297e-01 -5.52489817e-01
5.41617215e-01 9.05889094e-01 -6.22902989e-01 -1.75565332e-01
-4.36923027e-01 7.26173759e-01 3.15249205e-01 6.80144787e-01
-8.29951346e-01 -2.59031594e-01 9.61424232e-01 -2.38362461e-01
2.19681486e-01 -4.05419767e-01 -4.59167272e-01 -1.16395903e+00
-1.64514109e-01 -1.20577121e+00 2.48803407e-01 -9.30608511e-01
-7.51840830e-01 8.74915123e-01 -3.34717274e-01 -1.19810224e+00
-9.35920596e-01 -3.75570446e-01 -7.59503484e-01 9.23772037e-01
-1.23808861e+00 -8.94046962e-01 2.46383324e-01 2.18054965e-01
7.80662656e-01 -3.13570678e-01 9.82222736e-01 2.77411461e-01
-6.88591897e-01 7.00659990e-01 1.26668349e-01 3.19142401e-01
3.07767630e-01 -6.14703536e-01 1.30123353e+00 8.61245632e-01
3.59120786e-01 8.90987813e-01 9.21567976e-01 -4.75465447e-01
-1.32154500e+00 -1.10316133e+00 9.51002061e-01 -4.15814698e-01
7.83246458e-01 -3.69715124e-01 -1.20013130e+00 1.30684149e+00
4.28119928e-01 -4.98035669e-01 7.51539767e-01 3.24907452e-01
-4.31620330e-01 4.30726022e-01 -2.98577040e-01 8.47887874e-01
1.24659443e+00 -9.08776641e-01 -3.27603996e-01 1.24566168e-01
1.24260807e+00 -3.15833271e-01 -7.88847685e-01 4.28003758e-01
8.35436583e-01 -7.43189871e-01 7.75252879e-01 -8.06789219e-01
5.77350140e-01 1.59922875e-02 -1.39814556e-01 -1.41986692e+00
-3.74777436e-01 -9.56392765e-01 -6.37202263e-02 8.60058486e-01
7.28578687e-01 -6.57415450e-01 8.66938174e-01 1.47614822e-01
-3.97978634e-01 -8.36065531e-01 -7.24283338e-01 -8.97156119e-01
3.35940719e-01 -5.96460879e-01 5.64458847e-01 9.91989195e-01
4.00114469e-02 5.03250480e-01 -6.89258337e-01 -2.75409371e-01
1.18678927e-01 -1.65374503e-02 7.53720760e-01 -9.39075649e-01
-1.87057137e-01 -7.12590933e-01 -2.95788825e-01 -1.14731205e+00
4.73183900e-01 -1.08813655e+00 -1.64718091e-01 -1.38654804e+00
-1.15725622e-01 -2.28321284e-01 -3.75540704e-01 4.92902189e-01
1.94002137e-01 3.02791148e-01 2.54533440e-01 3.94919783e-01
-3.55287433e-01 6.03090525e-01 8.67917895e-01 2.67724115e-02
-4.84933369e-02 1.25788152e-01 -7.76915073e-01 4.70108837e-01
1.23607743e+00 -2.60015756e-01 -3.75339687e-01 -6.61914647e-01
4.56865579e-01 2.23183483e-01 2.03067079e-01 -8.74008954e-01
1.54034480e-01 -4.31580981e-03 1.89782888e-01 -5.77448905e-01
5.68459272e-01 -3.30338389e-01 5.91070831e-01 7.04234660e-01
-8.86530876e-01 4.55684125e-01 5.68266451e-01 1.64966181e-01
-1.96351379e-01 -1.64451912e-01 5.56052625e-01 -2.26674721e-01
-7.53559649e-01 9.84162390e-02 -8.77946734e-01 -1.23144031e-01
4.89185095e-01 -3.13542068e-01 -3.86739939e-01 -7.43231297e-01
-8.93265426e-01 -1.02600241e-02 4.13426816e-01 7.74793565e-01
6.74756467e-01 -1.29534423e+00 -8.08754623e-01 -1.32675171e-02
1.98710170e-02 -5.86156130e-01 1.93862706e-01 7.99095452e-01
-4.05020684e-01 8.73739064e-01 -1.94206968e-01 -5.36309838e-01
-1.17900693e+00 2.89220035e-01 5.74835479e-01 -1.20631702e-01
-7.76427388e-01 8.50377500e-01 1.25849649e-01 -6.24690950e-01
4.15121913e-01 -4.01153654e-01 4.58554141e-02 -5.76064698e-02
5.60101926e-01 2.69668788e-01 2.58177638e-01 -6.41370952e-01
-1.81869119e-01 -3.16899940e-02 -3.28094363e-01 -9.63617712e-02
1.34998322e+00 -1.06703922e-01 9.45084617e-02 1.11379051e+00
1.25011802e+00 -7.66168177e-01 -1.08806503e+00 -4.64911312e-01
3.65619212e-01 5.28715290e-02 -3.19242865e-01 -6.44777477e-01
-8.15909684e-01 1.06598032e+00 3.17525774e-01 2.18994990e-01
8.48541915e-01 -2.79757679e-01 8.40164185e-01 4.69056576e-01
2.17534110e-01 -7.76742935e-01 7.44770765e-02 1.16079831e+00
8.97524178e-01 -7.31800437e-01 -3.97150487e-01 2.08885327e-01
-6.96262896e-01 1.09894168e+00 3.58070344e-01 -2.37260744e-01
4.47476596e-01 3.52138788e-01 2.20658138e-01 -3.01416889e-02
-1.59017086e+00 -1.44185022e-01 -8.49325676e-03 3.47705424e-01
1.21467280e+00 -9.21886191e-02 -6.11221269e-02 2.04351932e-01
-4.29123849e-01 2.06709966e-01 7.51615286e-01 7.69058466e-01
-3.07197899e-01 -1.26844716e+00 -6.06895536e-02 5.02593398e-01
-6.96726441e-01 -4.33312684e-01 -3.98795784e-01 4.85237092e-01
-6.39641941e-01 6.99027717e-01 1.94692492e-01 -6.75675094e-01
-9.69020501e-02 6.40889883e-01 2.82352686e-01 -7.67825007e-01
-9.44024086e-01 9.77929384e-02 4.27377284e-01 -3.92388076e-01
-5.39605021e-01 -7.08166778e-01 -1.00587404e+00 -5.74006796e-01
-5.58197349e-02 1.39967695e-01 5.22576690e-01 8.83929193e-01
5.61617732e-01 6.14796042e-01 1.96304515e-01 -7.66472995e-01
-4.09513593e-01 -1.24301696e+00 -2.75086313e-01 -1.49917737e-01
3.78928751e-01 -3.20776284e-01 2.10888907e-02 9.37092006e-02] | [10.84047794342041, 6.832894802093506] |
d68d3532-8a7b-4048-8ae1-829fc35551a7 | survey-of-matrix-completion-algorithms | 2204.01532 | null | https://arxiv.org/abs/2204.01532v2 | https://arxiv.org/pdf/2204.01532v2.pdf | Survey of Matrix Completion Algorithms | Matrix completion problem has been investigated under many different conditions since Netflix announced the Netflix Prize problem. Many research work has been done in the field once it has been discovered that many real life dataset could be estimated with a low-rank matrix. Since then compressed sensing, adaptive signal detection has gained the attention of many researchers. In this survey paper we are going to visit some of the matrix completion methods, mainly in the direction of passive and adaptive directions. First, we discuss passive matrix completion methods with convex optimization, and the second active matrix completion techniques with adaptive signal detection methods. Traditionally many machine learning problems are solved in passive environment. However, later it has been observed that adaptive sensing algorithms many times performs more efficiently than former algorithms. Hence algorithms in this setting has been extensively studied. Therefore, we are going to present some of the latest adaptive matrix completion algorithms in this paper meanwhile providing passive methods. | ['Jafar Jafarov'] | 2022-04-01 | null | null | null | null | ['matrix-completion'] | ['methodology'] | [ 1.02647424e+00 -2.76654363e-02 -2.85130814e-02 -9.03680399e-02
-7.50146627e-01 -5.25114536e-01 3.03196669e-01 -5.57724126e-02
-4.90052968e-01 5.65331399e-01 4.93362933e-01 -6.89842552e-02
-5.94882607e-01 -3.31166267e-01 -4.41424072e-01 -8.73522401e-01
-5.29242337e-01 1.37274474e-01 -2.94818848e-01 -3.19610387e-01
2.75715739e-01 1.79048210e-01 -1.01487148e+00 5.85031556e-03
6.20319605e-01 8.24838281e-01 4.27795231e-01 8.31895053e-01
3.86998296e-01 7.36564457e-01 -1.98964864e-01 -2.73202121e-01
9.07272816e-01 -3.62146467e-01 -3.41911972e-01 4.99354750e-01
2.21477225e-01 2.79716440e-02 -5.92888296e-01 1.34265304e+00
7.52729177e-01 4.34112549e-01 1.48412496e-01 -1.20502388e+00
-3.78102273e-01 8.81515324e-01 -9.61214662e-01 3.15294504e-01
7.32303262e-01 -5.33189714e-01 9.17182922e-01 -1.37728417e+00
3.24609548e-01 1.11438704e+00 7.25034535e-01 3.70456763e-02
-1.12865913e+00 -5.87666154e-01 5.39236292e-02 5.17518401e-01
-1.55137408e+00 -7.61107266e-01 1.02950680e+00 -1.28679633e-01
3.28326732e-01 5.98280728e-01 5.46447515e-01 6.13822758e-01
-2.29404286e-01 1.14977729e+00 1.28950250e+00 -7.45408773e-01
8.13561454e-02 -1.05499804e-01 7.31515437e-02 4.83940691e-01
4.31566954e-01 1.40629886e-02 -5.68345606e-01 -3.88775408e-01
5.53328335e-01 1.98383212e-01 -6.23282075e-01 -3.19062769e-01
-1.54595006e+00 7.43280351e-01 -1.71118155e-01 4.70336199e-01
-4.79666501e-01 3.91512625e-02 2.12472230e-01 8.36870253e-01
1.35768786e-01 1.54164359e-01 -1.56252071e-01 1.03891809e-02
-1.23676765e+00 1.49641871e-01 9.44092631e-01 8.84959698e-01
5.94254553e-01 2.76737839e-01 1.24101952e-01 9.19233561e-01
3.14007580e-01 6.44601464e-01 2.55197853e-01 -1.07004964e+00
7.61115372e-01 6.42829165e-02 1.72947928e-01 -1.53163946e+00
-2.84693480e-01 -8.02024901e-01 -1.45951378e+00 -3.56518775e-01
2.62240797e-01 -3.50633204e-01 -2.14622132e-02 1.35926855e+00
3.24614972e-01 7.02258408e-01 1.74762327e-02 8.78422797e-01
3.24923187e-01 5.54903746e-01 -6.26103699e-01 -9.24120188e-01
9.39236343e-01 -9.38342571e-01 -1.06077373e+00 -1.15747802e-01
2.07027808e-01 -1.24490702e+00 4.48700279e-01 9.54067230e-01
-9.02385235e-01 -4.22882915e-01 -1.13957703e+00 3.83658290e-01
2.27037638e-01 7.07818195e-02 9.53171372e-01 9.06548858e-01
-1.08166420e+00 4.25052941e-01 -8.13306749e-01 -4.77835089e-01
2.39090472e-02 5.14832020e-01 -3.79725069e-01 -5.02716005e-01
-1.01674783e+00 2.11407274e-01 3.78887244e-02 3.33147883e-01
-8.69668305e-01 -3.69902730e-01 -5.70866883e-01 -4.06637102e-01
7.35666692e-01 -5.41037381e-01 8.04930210e-01 -9.01325703e-01
-1.33552730e+00 6.41963720e-01 -2.14343697e-01 -6.40505195e-01
4.63702321e-01 -4.88386571e-01 -7.14515209e-01 1.44114926e-01
3.53166945e-02 -2.43622512e-01 1.18656743e+00 -8.97080243e-01
-3.30293208e-01 -5.82818806e-01 5.07960431e-02 2.82316089e-01
-5.07730842e-01 7.73616433e-02 -4.64446783e-01 -1.11712003e+00
7.13766992e-01 -1.07576215e+00 -7.66685843e-01 -1.64282039e-01
-5.72260141e-01 1.44365162e-01 5.37992716e-01 -3.36516142e-01
1.40814507e+00 -2.25129461e+00 3.44660938e-01 3.58549863e-01
3.47161502e-01 -4.99584898e-02 -2.02546231e-02 1.06664288e+00
-4.05440122e-01 -4.13796544e-01 -4.56949562e-01 -4.36573446e-01
-1.79205477e-01 -2.10053194e-02 -5.12242436e-01 1.14809465e+00
-7.69604862e-01 2.70568341e-01 -7.63824880e-01 -3.91613543e-01
2.07686856e-01 2.62282997e-01 -5.84051728e-01 -1.78919584e-01
6.89727724e-01 6.11600161e-01 -3.61315936e-01 8.12226653e-01
1.00236559e+00 -2.17793792e-01 2.03150526e-01 -4.57062811e-01
-9.82050151e-02 -4.42705035e-01 -1.99012828e+00 1.95373464e+00
-1.64324403e-01 7.05228209e-01 9.03392792e-01 -1.71585846e+00
6.52688324e-01 6.68822348e-01 1.20335639e+00 -3.02090019e-01
-5.64173572e-02 1.93021774e-01 -3.68194208e-02 -4.49494481e-01
7.31711209e-01 -7.15352967e-02 1.01273537e-01 4.54489082e-01
-5.93640864e-01 1.42706305e-01 3.33933204e-01 6.88924491e-01
1.40590930e+00 -2.65026391e-01 6.52779460e-01 -3.04756492e-01
7.97488332e-01 -7.06834942e-02 3.82406235e-01 1.24280131e+00
-1.45134732e-01 6.12186849e-01 -4.50787932e-01 -9.49793160e-02
-6.75509989e-01 -9.58278656e-01 -1.80714697e-01 1.08636081e+00
1.66183755e-01 -7.38306046e-01 -3.45691621e-01 7.28714839e-02
-1.94720432e-01 -2.46234797e-02 -4.25060302e-01 2.06539482e-01
-5.92758358e-01 -1.03935397e+00 4.12286371e-01 1.63919821e-01
6.94196045e-01 -3.78937066e-01 -4.34243195e-02 4.46953803e-01
-2.07901582e-01 -1.13361478e+00 -4.16987211e-01 -6.71888664e-02
-1.30585384e+00 -1.07594514e+00 -8.92497778e-01 -5.00337839e-01
6.99439347e-01 1.08913052e+00 8.29832733e-01 1.25566289e-01
-1.96292490e-01 9.04556096e-01 -6.16360486e-01 -3.00498426e-01
1.92035347e-01 -2.75998890e-01 6.42517030e-01 7.38437593e-01
1.84359387e-01 -9.91734207e-01 -7.45214820e-01 3.37601364e-01
-1.13937891e+00 -2.77852595e-01 7.24668324e-01 5.68098009e-01
6.88375294e-01 2.36154273e-02 3.99010450e-01 -1.34061527e+00
6.94137573e-01 -5.55679977e-01 -3.31411928e-01 2.94420645e-02
-4.71288234e-01 -2.46263072e-01 4.95700121e-01 -2.79101312e-01
-8.21621180e-01 5.38013935e-01 -5.45790493e-02 -2.30981737e-01
3.41050684e-01 8.51398468e-01 -1.51071921e-01 -2.02469289e-01
7.69432902e-01 5.55485666e-01 -3.38512957e-01 -5.73862255e-01
4.33987856e-01 7.74925709e-01 3.75680715e-01 -5.35252392e-01
1.31560445e+00 1.00326872e+00 2.08605677e-01 -1.16579056e+00
-1.07856500e+00 -1.07289743e+00 -6.22730017e-01 -2.13360325e-01
1.61947310e-01 -1.19263077e+00 -3.96059752e-01 3.21838617e-01
-6.41540051e-01 5.56207076e-02 -2.15158001e-01 8.47611248e-01
-5.00485301e-01 9.84571517e-01 -2.72646427e-01 -9.87681210e-01
-1.94380507e-01 -8.74110401e-01 7.61813641e-01 -1.67389780e-01
-2.39344351e-02 -1.04240847e+00 4.93465751e-01 4.13030922e-01
4.54575837e-01 1.62150070e-01 -5.68518378e-02 -3.69933903e-01
-5.36834359e-01 -4.48699921e-01 6.81143114e-03 1.27604365e-01
1.60153434e-01 -6.36652410e-01 -7.89145291e-01 -8.71461928e-01
5.33931553e-01 8.83722603e-02 8.98329139e-01 6.71384752e-01
1.01919115e+00 -3.31225097e-01 -5.17334700e-01 7.59845376e-01
1.68279946e+00 -8.09194241e-03 6.72804654e-01 1.56132057e-01
4.53105688e-01 2.22260058e-01 6.77634954e-01 8.67563486e-01
-1.22740902e-02 6.62603736e-01 2.25744456e-01 1.19441427e-01
2.25064650e-01 1.24974333e-01 5.02695918e-01 1.42505229e+00
-3.41218233e-01 -1.03116564e-01 -3.83138567e-01 4.07848865e-01
-1.92475498e+00 -1.29960668e+00 -5.30253887e-01 2.25726295e+00
5.48950016e-01 -2.24102274e-01 7.30264261e-02 7.97770619e-01
8.57281864e-01 4.11730379e-01 -3.98047239e-01 2.72735924e-01
-4.67649698e-01 4.67345417e-02 6.70885086e-01 5.95875740e-01
-1.06146717e+00 3.92337292e-01 6.13700676e+00 9.09905493e-01
-7.34453142e-01 2.18695104e-01 1.15830533e-01 5.51183484e-02
-9.36320424e-02 3.82056773e-01 -5.20850420e-01 5.54314479e-02
4.61231470e-01 -1.99991822e-01 6.73435569e-01 8.62898231e-01
4.58828062e-01 -1.05566919e-01 -9.35079634e-01 1.71148133e+00
3.85575414e-01 -9.33999598e-01 -3.24876338e-01 2.23652348e-01
1.03826749e+00 2.88534686e-02 1.68043822e-01 1.20329134e-01
9.69178975e-02 -8.88699055e-01 1.91530228e-01 6.03401423e-01
6.00797176e-01 -2.47361287e-01 2.76557177e-01 5.29213250e-01
-1.55390716e+00 -2.65115112e-01 -6.45737290e-01 -5.35271049e-01
4.33148921e-01 1.33700192e+00 -4.31850761e-01 7.61259139e-01
3.61575991e-01 1.08253622e+00 -3.25511843e-01 1.49768960e+00
1.71363741e-01 9.85091269e-01 -6.82103574e-01 2.87626356e-01
-3.29231918e-02 -5.65942705e-01 1.08564472e+00 1.05606151e+00
4.49215442e-01 3.81899714e-01 5.08340895e-01 1.05042554e-01
1.55911401e-01 4.16215897e-01 -7.67047226e-01 -1.14756469e-02
3.70223254e-01 1.37076533e+00 -7.31675684e-01 -1.71426922e-01
-6.23058200e-01 9.59555924e-01 -2.79382050e-01 3.17531347e-01
-4.45938975e-01 -3.35868061e-01 1.59097925e-01 1.40348881e-01
-1.15608618e-01 -7.75257528e-01 -8.94679800e-02 -1.47739661e+00
-2.13294461e-01 -1.00418460e+00 5.64482510e-01 -3.98770541e-01
-1.07583332e+00 2.94225305e-01 -7.77248740e-02 -1.49491584e+00
1.54026970e-01 -3.44522297e-01 -3.18228185e-01 3.54706794e-01
-1.07800829e+00 -4.30624962e-01 -2.61154830e-01 1.11771870e+00
8.85866225e-01 -3.79891604e-01 4.78421211e-01 7.70326614e-01
-4.62010831e-01 3.52755159e-01 7.74226665e-01 5.72748668e-02
8.06704819e-01 -1.09813869e+00 -2.20122278e-01 1.28652608e+00
7.26489365e-01 9.63511586e-01 1.05126262e+00 -4.94452268e-01
-2.08060431e+00 -8.17583144e-01 6.23421192e-01 -1.99605659e-01
6.49130464e-01 -1.36670336e-01 -3.63310635e-01 7.21929133e-01
4.43242311e-01 -3.10119707e-02 8.21474493e-01 -8.37569162e-02
3.31142917e-02 -4.16691005e-01 -8.48183692e-01 3.44860643e-01
1.24316418e+00 -3.61874998e-01 -3.24502438e-01 8.73692691e-01
1.25192016e-01 -2.32023910e-01 -6.35488749e-01 2.32501358e-01
3.12239259e-01 -9.93605435e-01 1.26213348e+00 -1.16137750e-01
-2.19861075e-01 -6.65396988e-01 -7.09725082e-01 -9.64209378e-01
-3.36734831e-01 -1.12831974e+00 -1.46749407e-01 7.91947901e-01
9.31934714e-02 -4.40209508e-01 9.39763665e-01 1.84579387e-01
-1.41969785e-01 -4.01904494e-01 -8.23709905e-01 -5.90616703e-01
-7.73903549e-01 -8.84158254e-01 -2.08612371e-04 1.10530400e+00
-1.52187124e-01 5.32085598e-01 -1.00644565e+00 2.31340840e-01
1.13011587e+00 1.96678281e-01 9.58407700e-01 -1.13962197e+00
-8.17948222e-01 1.30857736e-01 -2.59664565e-01 -1.83295786e+00
-4.00621980e-01 -9.94720638e-01 -3.00851911e-01 -1.23772192e+00
1.42344996e-01 -4.37417567e-01 -1.92074865e-01 8.93555656e-02
1.67628136e-02 6.39811873e-01 1.85299873e-01 4.93374497e-01
-9.02810991e-01 1.48664489e-01 1.09686768e+00 -2.83998519e-01
-1.60035133e-01 4.51864451e-01 -7.15224624e-01 6.01300299e-01
6.40915811e-01 -5.04811108e-01 -6.76074922e-01 -4.42484200e-01
8.06073546e-01 3.79931241e-01 4.11714101e-03 -1.28028262e+00
6.77183688e-01 -1.93135894e-03 1.83433279e-01 -6.55010462e-01
6.65748775e-01 -1.09303200e+00 4.22753245e-01 3.86849850e-01
-2.73198366e-01 2.31335551e-01 -5.07670581e-01 1.21631670e+00
-3.57640475e-01 -4.37031925e-01 5.85419178e-01 -3.64375740e-01
-6.89175010e-01 5.58721364e-01 -5.02698958e-01 1.16767436e-01
7.58620620e-01 -4.84465927e-01 4.06073183e-01 -8.01426291e-01
-1.14839387e+00 -1.08346812e-01 4.62519042e-02 1.74543578e-02
7.48743832e-01 -1.07580316e+00 -9.21651900e-01 -3.80779468e-02
-1.33243278e-01 -3.39655697e-01 3.65237653e-01 1.41412318e+00
-3.93651724e-01 3.44533741e-01 2.55710155e-01 -6.29781425e-01
-1.23709750e+00 5.55809438e-01 -2.62801081e-01 -2.42824554e-01
-4.78259385e-01 9.02891576e-01 -1.88282117e-01 -1.01393722e-01
1.94288164e-01 2.82149196e-01 -1.61268994e-01 -8.16621333e-02
8.44131827e-01 8.18344355e-01 3.56174484e-02 -7.47496545e-01
-2.18465313e-01 7.53394902e-01 1.62373081e-01 -2.77931422e-01
1.48801208e+00 -7.37674236e-01 -3.62236440e-01 3.95258874e-01
1.11982048e+00 8.02274227e-01 -7.22175419e-01 -6.33971274e-01
3.69287357e-02 -6.95729971e-01 5.91951348e-02 -2.39269748e-01
-1.20986485e+00 5.01706719e-01 7.15100825e-01 5.47239125e-01
1.55776882e+00 -4.47697878e-01 5.79811573e-01 8.31595063e-01
7.87217319e-01 -1.12289715e+00 9.58792498e-06 3.31839293e-01
8.68255973e-01 -1.31911743e+00 4.63818878e-01 -6.53120399e-01
-1.99356243e-01 9.80873883e-01 -1.82425410e-01 -4.98347819e-01
9.91658509e-01 3.93929482e-01 -2.10269034e-01 -1.93827644e-01
-2.98165768e-01 -2.80770976e-02 5.06385081e-02 7.09782481e-01
5.55655420e-01 4.99345623e-02 -4.99974132e-01 2.92390913e-01
-1.25856981e-01 -8.69142786e-02 6.12740695e-01 8.00683916e-01
-5.78655064e-01 -1.44155455e+00 -9.72755849e-01 5.75492382e-01
-5.81149161e-01 -3.14396679e-01 -1.53409109e-01 4.64807749e-01
-2.57292777e-01 1.33602571e+00 -6.58394933e-01 -2.53009349e-01
9.54977348e-02 -5.73142350e-01 6.18538082e-01 -6.19624615e-01
-2.60529548e-01 2.28301719e-01 -5.81558235e-02 -5.53931236e-01
-1.05436170e+00 -9.65581477e-01 -7.40954876e-01 -6.10814802e-02
-3.69972140e-01 6.88460529e-01 5.35121500e-01 8.10198307e-01
5.29836938e-02 -1.22792115e-02 7.63828695e-01 -6.64936543e-01
-6.50587678e-01 -9.19146359e-01 -1.03890073e+00 2.52507150e-01
2.38076463e-01 -3.89188945e-01 -3.81128937e-01 1.51963860e-01] | [6.988105773925781, 4.6638689041137695] |
e81610e6-8c91-4aec-bb99-0ca47fe72b47 | causal-models-in-string-diagrams | 2304.07638 | null | https://arxiv.org/abs/2304.07638v1 | https://arxiv.org/pdf/2304.07638v1.pdf | Causal models in string diagrams | The framework of causal models provides a principled approach to causal reasoning, applied today across many scientific domains. Here we present this framework in the language of string diagrams, interpreted formally using category theory. A class of string diagrams, called network diagrams, are in 1-to-1 correspondence with directed acyclic graphs. A causal model is given by such a diagram with its components interpreted as stochastic maps, functions, or general channels in a symmetric monoidal category with a 'copy-discard' structure (cd-category), turning a model into a single mathematical object that can be reasoned with intuitively and yet rigorously. Building on prior works by Fong and Jacobs, Kissinger and Zanasi, as well as Fritz and Klingler, we present diagrammatic definitions of causal models and functional causal models in a cd-category, generalising causal Bayesian networks and structural causal models, respectively. We formalise general interventions on a model, including but beyond do-interventions, and present the natural notion of an open causal model with inputs. We also give an approach to conditioning based on a normalisation box, allowing for causal inference calculations to be done fully diagrammatically. We define counterfactuals in this setup, and treat the problems of the identifiability of causal effects and counterfactuals fully diagrammatically. The benefits of such a presentation of causal models lie in foundational questions in causal reasoning and in their clarificatory role and pedagogical value. This work aims to be accessible to different communities, from causal model practitioners to researchers in applied category theory, and discusses many examples from the literature for illustration. Overall, we argue and demonstrate that causal reasoning according to the causal model framework is most naturally and intuitively done as diagrammatic reasoning. | ['Sean Tull', 'Robin Lorenz'] | 2023-04-15 | null | null | null | null | ['causal-inference', 'causal-inference'] | ['knowledge-base', 'miscellaneous'] | [ 5.06287873e-01 7.64668465e-01 -4.08605009e-01 -2.33747691e-01
1.54620484e-01 -7.34713554e-01 1.45206988e+00 4.65476662e-02
9.72031578e-02 6.92545176e-01 8.16406608e-01 -1.04528821e+00
-1.04956174e+00 -1.16777384e+00 -8.63906741e-01 -6.41022444e-01
-6.82803750e-01 2.55082399e-01 9.60843340e-02 -1.14266485e-01
3.14997643e-01 3.12059850e-01 -1.44852996e+00 6.88336864e-02
6.94153070e-01 2.46037439e-01 -1.90469921e-01 7.36779273e-01
-1.92408524e-02 1.11418533e+00 -1.15450479e-01 -6.82765365e-01
-2.69071490e-01 -7.84850478e-01 -1.12484968e+00 -3.90196383e-01
3.83517705e-03 -6.15482815e-02 -5.33872962e-01 8.40735018e-01
-7.02174529e-02 -1.82128772e-01 1.04580534e+00 -1.45114803e+00
-8.01373363e-01 1.35757864e+00 -3.38089406e-01 4.22639325e-02
5.73204041e-01 -1.28327742e-01 1.23310947e+00 -4.99162436e-01
5.40851235e-01 2.06652308e+00 4.38796610e-01 3.61944407e-01
-1.87827921e+00 -3.73575658e-01 3.16134870e-01 1.31118253e-01
-7.29032278e-01 4.45966376e-03 3.76808196e-01 -8.15038741e-01
2.25397378e-01 6.22897863e-01 8.43018174e-01 1.14710903e+00
3.28160346e-01 4.70987499e-01 1.31743634e+00 -9.15301263e-01
3.42881382e-01 -4.03845400e-01 4.86965656e-01 5.01955509e-01
5.16728401e-01 9.72961664e-01 -5.27507782e-01 -3.80677044e-01
1.05729806e+00 -1.14727974e-01 -2.88461477e-01 -8.26336265e-01
-1.45110655e+00 1.22408688e+00 4.65812832e-01 4.47181284e-01
-1.28234640e-01 7.72226751e-01 3.47071469e-01 1.84493154e-01
8.33056942e-02 1.65058803e-02 -2.56192446e-01 3.23240966e-01
-2.39398822e-01 6.29033804e-01 9.95251298e-01 6.89948976e-01
3.18857059e-02 -3.03168595e-01 -1.74794141e-02 2.73880422e-01
1.00513911e+00 6.68782830e-01 -2.79986411e-01 -1.11878490e+00
-1.19611651e-01 2.27684841e-01 9.82555524e-02 -8.42008173e-01
-3.30476671e-01 3.13309170e-02 -7.35318542e-01 2.16848031e-01
6.58495486e-01 2.84455586e-02 -5.80486894e-01 2.04121757e+00
1.82671562e-01 1.57593951e-01 -1.14288911e-01 6.72270000e-01
4.41815704e-01 4.05670434e-01 6.08715475e-01 -5.19808531e-01
1.29370499e+00 4.29804958e-02 -7.83044755e-01 3.61856222e-01
6.91509604e-01 -4.07045305e-01 8.40644419e-01 4.59832340e-01
-8.99862289e-01 4.03402783e-02 -9.08726811e-01 3.43746334e-01
-2.70506948e-01 -5.85857451e-01 1.17260599e+00 9.48932648e-01
-1.09833109e+00 7.65965939e-01 -7.63655484e-01 -6.27846718e-01
1.59161359e-01 4.25877795e-02 -1.16388798e-01 -4.12318371e-02
-1.54956830e+00 1.03657186e+00 3.29685211e-01 6.37850314e-02
-1.06308126e+00 -7.59211779e-01 -7.76685059e-01 -6.99402019e-02
3.73515397e-01 -1.08762467e+00 1.45876324e+00 -5.14043033e-01
-1.06113625e+00 5.59461296e-01 1.53677151e-01 -5.15031517e-01
5.43724477e-01 8.38662684e-02 -5.58154404e-01 -7.41923824e-02
9.96935591e-02 1.75366729e-01 3.31755161e-01 -1.48647630e+00
-3.39924544e-01 -5.31088412e-01 6.00577831e-01 -1.88917905e-01
5.08327603e-01 4.07592744e-01 4.27777410e-01 -4.49812412e-01
2.02091292e-01 -6.20837510e-01 -3.26254487e-01 -2.38767475e-01
-6.31097674e-01 -5.11292279e-01 5.17816246e-01 1.80770515e-03
1.35754836e+00 -1.74394894e+00 8.25410411e-02 4.70063061e-01
3.90174448e-01 -5.28800368e-01 2.74973541e-01 7.64631152e-01
-9.06330466e-01 5.54278553e-01 -5.96668243e-01 7.11901665e-01
4.99842256e-01 2.48934075e-01 -6.64232790e-01 8.61232638e-01
5.14732562e-02 8.33808661e-01 -1.17009711e+00 -4.65564132e-01
6.00704849e-01 3.27895015e-01 -5.46809554e-01 -3.32089588e-02
-2.58366704e-01 2.88349450e-01 -3.65851432e-01 1.45729199e-01
3.35257202e-01 2.10988824e-03 7.09321320e-01 9.63752419e-02
-4.72926170e-01 6.44276857e-01 -1.48350990e+00 1.19851518e+00
-3.80704075e-01 4.08985108e-01 -1.60392210e-01 -1.17363596e+00
3.65274608e-01 6.11800313e-01 -4.30421308e-02 -2.33680919e-01
1.77216783e-01 5.69244772e-02 3.34290236e-01 -3.91505182e-01
-1.48193464e-01 -5.89802146e-01 -3.57706398e-01 6.65613890e-01
9.79049653e-02 -2.06076667e-01 3.58391315e-01 7.28065848e-01
9.91672575e-01 3.69229853e-01 6.19414151e-01 -8.35320592e-01
1.11400872e-01 -4.51315232e-02 1.86509207e-01 1.04223084e+00
1.97035581e-01 -5.18395044e-02 1.06601334e+00 -2.43366942e-01
-8.97759676e-01 -1.55927455e+00 -7.09436357e-01 8.76701832e-01
-8.19713175e-02 -4.78955984e-01 -6.15353107e-01 -3.25556159e-01
1.65502414e-01 1.24981987e+00 -1.13021684e+00 -6.01874925e-02
-2.83892989e-01 -9.00345862e-01 4.86863166e-01 3.04210722e-01
-7.63996467e-02 -7.65031934e-01 -6.97199285e-01 1.17399879e-01
1.77479044e-01 -7.73377717e-02 2.08364442e-01 3.06038737e-01
-9.48851347e-01 -1.50516820e+00 -1.47749528e-01 1.59301069e-02
2.62482077e-01 -8.46401155e-02 1.17226112e+00 -1.05476409e-01
-8.17594677e-02 5.11311054e-01 -1.37976080e-01 -6.44915104e-01
-8.66138756e-01 -9.98308897e-01 2.06453055e-01 -2.39847913e-01
5.57030328e-02 -8.68134856e-01 -4.02506053e-01 1.47308737e-01
-1.02034807e+00 -2.89811846e-02 1.78776205e-01 8.72643173e-01
-1.56123415e-01 2.50862576e-02 3.83277386e-01 -1.12869954e+00
5.44241726e-01 -7.06244946e-01 -6.91684186e-01 1.92266122e-01
-6.43169999e-01 1.54090285e-01 8.10386315e-02 7.36384988e-02
-1.36804616e+00 -5.10167837e-01 3.40205580e-01 3.05930287e-01
-1.74233690e-01 7.74713159e-01 -4.53742266e-01 3.40635538e-01
9.95584130e-01 -5.80844283e-01 -1.55895635e-01 -2.70428032e-01
1.26147449e+00 3.01187396e-01 4.75189716e-01 -9.81704950e-01
5.67975700e-01 6.04883671e-01 5.63569725e-01 -2.91529179e-01
-5.39216697e-01 1.11084178e-01 -7.03201532e-01 -3.46117735e-01
7.29804218e-01 -5.39876819e-01 -1.26191282e+00 7.55227506e-02
-1.35795534e+00 -2.73329854e-01 -3.72106403e-01 7.06628919e-01
-8.67372692e-01 -1.22449547e-03 -4.53452170e-01 -1.31560230e+00
6.67502761e-01 -7.08335280e-01 5.44687450e-01 -2.70604610e-01
-6.28219187e-01 -1.50083363e+00 2.05622256e-01 -2.82855451e-01
-5.93586005e-02 4.66733336e-01 1.34452271e+00 -3.92945439e-01
-4.98583645e-01 1.77792534e-01 -1.90837592e-01 -2.96918422e-01
-2.70177484e-01 4.95814651e-01 -8.73802006e-01 4.13205355e-01
2.33923867e-02 2.26935238e-01 7.63289154e-01 7.31127560e-01
7.00292110e-01 -4.54046756e-01 -7.98204899e-01 -2.39377096e-01
1.55186498e+00 3.80534649e-01 6.64709926e-01 -5.35565503e-02
6.51450634e-01 1.24794161e+00 2.64105529e-01 1.46033913e-01
2.96737522e-01 4.17347014e-01 5.58511138e-01 2.02914715e-01
-5.56391440e-02 -5.92557847e-01 8.87674913e-02 4.05266643e-01
-3.27355564e-01 -9.76655334e-02 -1.00916791e+00 6.97606742e-01
-2.03011036e+00 -1.44860184e+00 -1.23279035e+00 2.25587010e+00
9.53346074e-01 6.77676797e-02 3.72128248e-01 2.51035452e-01
1.09586334e+00 -1.97276935e-01 1.60857335e-01 -5.33818901e-01
-5.38677759e-02 2.37622514e-01 6.11798942e-01 7.29256809e-01
-8.03573370e-01 4.17314351e-01 7.75919485e+00 5.18987358e-01
-2.30854750e-01 2.18763217e-01 4.00311500e-01 2.10540593e-01
-8.90338421e-01 8.39552820e-01 -1.76636234e-01 4.27748889e-01
1.39752948e+00 -4.39908177e-01 2.85939187e-01 3.69362056e-01
6.23008430e-01 -5.23290932e-01 -1.62880647e+00 3.59246075e-01
-6.46943510e-01 -1.43535423e+00 2.15583052e-02 1.78962588e-01
6.60039425e-01 -5.66556215e-01 -3.60460609e-01 -2.21450061e-01
1.49150550e+00 -1.15921772e+00 1.08204770e+00 5.05070925e-01
5.07804930e-01 -4.96394038e-01 3.56660545e-01 -1.64218154e-02
-6.75413549e-01 -2.12324202e-01 1.70029029e-01 -7.25547433e-01
3.60015541e-01 1.02709138e+00 -1.80659965e-01 7.82114983e-01
5.70744634e-01 4.96753097e-01 1.60847574e-01 8.75464380e-01
-7.40251899e-01 1.02893448e+00 -8.67954046e-02 -1.02990009e-02
-8.75825882e-02 -2.82144397e-01 4.53199446e-01 1.17596591e+00
-3.38261016e-02 3.43701392e-01 -6.08857214e-01 1.27030766e+00
5.18443882e-01 -3.30692708e-01 -1.05050838e+00 1.11192733e-01
6.60945117e-01 6.80557609e-01 -8.03293467e-01 -2.92523354e-01
-4.65979874e-01 -2.66433172e-02 -3.55769098e-01 2.51240164e-01
-8.38758349e-01 -1.48272365e-01 4.53821868e-01 2.18559310e-01
-2.10653543e-01 1.05086215e-01 -6.51856482e-01 -8.31190109e-01
-5.81265330e-01 -4.97360706e-01 6.20445430e-01 -8.15137208e-01
-1.33899868e+00 -4.30247098e-01 8.49583149e-01 -6.26108408e-01
-2.82678723e-01 -6.27946854e-01 -7.14461863e-01 9.43852127e-01
-5.90647995e-01 -1.08955133e+00 4.06767935e-01 4.46887076e-01
-2.96797603e-01 7.16942906e-01 8.70283365e-01 -2.04169437e-01
-2.81117707e-01 -3.35446507e-01 -1.25220860e-03 -1.27593473e-01
3.14998716e-01 -1.76882946e+00 3.91511112e-01 9.01422977e-01
-2.12080255e-02 1.19132698e+00 1.13104010e+00 -7.11325347e-01
-1.37958670e+00 -7.11578965e-01 1.07419491e+00 -8.66296053e-01
1.36369991e+00 -4.51991022e-01 -4.88458127e-01 1.03568220e+00
4.37040597e-01 -4.62072551e-01 4.31236506e-01 7.37977624e-01
-4.91367131e-01 2.33551890e-01 -8.13345790e-01 9.39553380e-01
1.60776579e+00 -3.78214329e-01 -1.19879770e+00 3.76607984e-01
7.88387656e-01 1.21813394e-01 -9.29162741e-01 3.62848580e-01
7.29731917e-01 -1.19975948e+00 8.86392772e-01 -6.56647444e-01
5.40001631e-01 -4.55795169e-01 -7.51066431e-02 -1.38337195e+00
-4.06960428e-01 -7.67801642e-01 3.65084797e-01 1.23118162e+00
2.16331288e-01 -8.09012473e-01 -1.17398083e-01 6.04899108e-01
-2.90112272e-02 -1.62902281e-01 -8.70775402e-01 -6.52083635e-01
5.26370943e-01 -9.52211022e-01 5.41333318e-01 1.17263317e+00
8.74271512e-01 5.75391233e-01 1.08551845e-01 -1.40244514e-01
9.83397722e-01 3.19726542e-02 3.57556015e-01 -1.81214690e+00
-2.88503975e-01 -6.07060552e-01 -3.97251040e-01 -4.82348979e-01
2.71076839e-02 -9.50989485e-01 -1.10870995e-01 -1.56294096e+00
4.01941448e-01 -4.96289521e-01 2.48231545e-01 2.26670608e-01
1.84983015e-01 -2.87918836e-01 5.25144339e-02 7.66346902e-02
4.55151908e-02 1.98835567e-01 9.91131604e-01 8.60990509e-02
1.15688853e-01 -2.26874858e-01 -9.43357468e-01 9.45569694e-01
4.84064102e-01 -5.83304644e-01 -5.87681055e-01 1.30002663e-01
6.95478439e-01 5.46803713e-01 1.29681897e+00 -1.93758771e-01
2.04022657e-02 -6.29405558e-01 4.88413423e-02 -1.77427083e-01
-4.90185708e-01 -5.34953952e-01 7.48235822e-01 6.87059999e-01
-6.41001165e-01 -2.97350943e-01 -2.11513154e-02 8.37668419e-01
1.88676178e-01 -2.78327674e-01 4.59609300e-01 -1.36459678e-01
-4.51761454e-01 -3.57266366e-01 -5.93721867e-01 -1.53232589e-01
9.66676533e-01 1.35747999e-01 -5.98000348e-01 -2.66925693e-01
-1.02329099e+00 8.43148679e-02 1.81966662e-01 9.49646235e-02
4.41156030e-02 -1.38792825e+00 -6.01534545e-01 -5.20268500e-01
-5.67575060e-02 -3.96688193e-01 3.65992665e-01 1.05887234e+00
-1.41159385e-01 8.88447940e-01 1.49674773e-01 -4.05950069e-01
-6.34864151e-01 7.79370308e-01 2.98383892e-01 1.26964197e-01
-3.37641537e-01 6.72224045e-01 9.08782899e-01 -4.42041844e-01
-1.18131094e-01 -4.33374166e-01 -6.90679550e-02 2.09044963e-02
4.58705068e-01 5.30539572e-01 -3.81885231e-01 -1.97369486e-01
-5.09141564e-01 1.51110724e-01 5.67353964e-01 -5.76770782e-01
1.09793496e+00 -2.65957862e-01 -7.83279479e-01 9.35284019e-01
6.72937691e-01 -4.58556823e-02 -9.87462342e-01 1.96625337e-01
2.41976112e-01 -2.19537348e-01 -1.73380405e-01 -1.12839127e+00
-2.17497364e-01 6.82953537e-01 2.13592917e-01 9.20662642e-01
5.91063201e-01 5.65490901e-01 -5.54625630e-01 -3.41699660e-01
3.56623918e-01 -4.99265760e-01 -5.04028678e-01 -2.81563345e-02
1.23826218e+00 -5.07115901e-01 -7.34168068e-02 -8.08074176e-01
2.76139490e-02 1.05210447e+00 -2.08766028e-01 -1.07130013e-01
8.55965793e-01 3.07539791e-01 -5.05138695e-01 -5.85120678e-01
-9.55440044e-01 -2.79887289e-01 -3.15807164e-02 8.07618678e-01
7.84054339e-01 7.79852390e-01 -9.77625370e-01 5.34542203e-01
-3.96218926e-01 1.12359822e-01 8.66722107e-01 6.56815112e-01
-2.54906058e-01 -1.16891158e+00 -8.78652334e-01 3.79992455e-01
-3.37879330e-01 -2.64487863e-01 -3.10184002e-01 1.31597865e+00
3.84039395e-02 1.41911221e+00 3.10158104e-01 -9.81076732e-02
2.77532458e-01 5.16890958e-02 8.02030504e-01 -5.72533906e-01
-7.68954009e-02 -9.30702128e-03 4.31108057e-01 -4.45606917e-01
-9.90227163e-01 -1.08059525e+00 -1.06374824e+00 -8.66820276e-01
-3.42551351e-01 3.09082180e-01 5.25581360e-01 1.08134866e+00
-3.06061357e-01 6.89905584e-01 3.17407578e-01 -4.19858724e-01
-5.29415071e-01 -1.00679505e+00 -8.43890131e-01 -1.45169675e-01
1.45892903e-01 -1.09598887e+00 -6.68749332e-01 3.30170870e-01] | [8.125129699707031, 5.754879474639893] |
ce5d8db2-b8ac-4eb7-bb88-c8cb5ef824ec | distributed-adversarial-training-to-robustify-1 | 2206.06257 | null | https://arxiv.org/abs/2206.06257v2 | https://arxiv.org/pdf/2206.06257v2.pdf | Distributed Adversarial Training to Robustify Deep Neural Networks at Scale | Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification. To defend against such attacks, an effective and popular approach, known as adversarial training (AT), has been shown to mitigate the negative impact of adversarial attacks by virtue of a min-max robust training method. While effective, it remains unclear whether it can successfully be adapted to the distributed learning context. The power of distributed optimization over multiple machines enables us to scale up robust training over large models and datasets. Spurred by that, we propose distributed adversarial training (DAT), a large-batch adversarial training framework implemented over multiple machines. We show that DAT is general, which supports training over labeled and unlabeled data, multiple types of attack generation methods, and gradient compression operations favored for distributed optimization. Theoretically, we provide, under standard conditions in the optimization theory, the convergence rate of DAT to the first-order stationary points in general non-convex settings. Empirically, we demonstrate that DAT either matches or outperforms state-of-the-art robust accuracies and achieves a graceful training speedup (e.g., on ResNet-50 under ImageNet). Codes are available at https://github.com/dat-2022/dat. | ['Sijia Liu', 'Mingyi Hong', 'Lior Horesh', 'Lee Martie', 'Quanfu Fan', 'Pin-Yu Chen', 'Xiangyi Chen', 'Yihua Zhang', 'Songtao Lu', 'Gaoyuan Zhang'] | 2022-06-13 | distributed-adversarial-training-to-robustify | https://openreview.net/forum?id=kmBFHJ5pr0o | https://openreview.net/pdf?id=kmBFHJ5pr0o | null | ['distributed-optimization'] | ['methodology'] | [ 8.14477727e-02 -4.49745264e-03 1.11712657e-01 -3.76883209e-01
-1.01896250e+00 -1.02082109e+00 5.21327019e-01 -1.90084912e-02
-7.28832960e-01 6.98033929e-01 -2.61223644e-01 -6.22986615e-01
4.00198903e-03 -8.12390268e-01 -1.27565706e+00 -9.33506727e-01
-3.44255924e-01 3.36699247e-01 2.58459784e-02 -2.19425902e-01
-7.36661777e-02 9.34393585e-01 -9.80339646e-01 1.37734830e-01
5.16770303e-01 8.63080978e-01 -3.47042143e-01 1.01671541e+00
2.92879581e-01 7.59034991e-01 -1.06124699e+00 -8.53436172e-01
8.49974811e-01 -1.59722537e-01 -5.59703410e-01 -4.08550948e-01
8.83076012e-01 -6.60229146e-01 -6.65826559e-01 1.56388557e+00
7.64455676e-01 1.20605439e-01 3.91308635e-01 -1.64096093e+00
-6.35475039e-01 8.24897766e-01 -2.13327885e-01 1.73203096e-01
-4.29239571e-01 2.27704808e-01 5.76339364e-01 -6.31976366e-01
2.71286428e-01 1.27006459e+00 7.25075245e-01 8.96426380e-01
-1.04223275e+00 -9.20564771e-01 3.67687941e-02 6.30408525e-02
-1.26675868e+00 -6.12554550e-01 5.44256747e-01 -1.42066494e-01
7.91326165e-01 4.94860023e-01 -9.05395374e-02 1.41378462e+00
3.83513808e-01 7.51966298e-01 8.96007240e-01 -3.73713583e-01
6.04709208e-01 2.87912283e-02 -3.23625028e-01 4.71544206e-01
3.35749775e-01 3.48878831e-01 -2.14360446e-01 -6.42213166e-01
4.31204557e-01 1.19707547e-01 -2.54171103e-01 -1.73027515e-01
-7.61539221e-01 1.05585730e+00 5.55659354e-01 -2.84588989e-02
-1.31369293e-01 4.80239540e-01 8.81123662e-01 7.59628534e-01
5.56974411e-01 4.19572055e-01 -9.52770114e-01 -3.46917808e-02
-5.95029831e-01 2.69213051e-01 9.97823358e-01 8.20940137e-01
4.80677485e-01 4.08103496e-01 2.98294693e-01 5.51045418e-01
1.40387550e-01 7.31373727e-01 5.41011333e-01 -9.35060501e-01
6.73282862e-01 -6.30731136e-02 -3.21073860e-01 -9.53350782e-01
-7.64565617e-02 -3.17624450e-01 -1.10645688e+00 7.05429196e-01
4.40716952e-01 -7.15768218e-01 -6.55538857e-01 2.05534935e+00
5.73737919e-01 5.01222968e-01 3.96909595e-01 6.46471143e-01
1.66973412e-01 4.04995710e-01 1.17064398e-02 3.69943716e-02
7.22776353e-01 -8.61451089e-01 -2.54347384e-01 -2.75842607e-01
7.37543762e-01 -5.64558804e-01 5.19427419e-01 4.04209554e-01
-9.50244963e-01 -5.47833368e-02 -1.07327378e+00 2.53242403e-01
-5.91867030e-01 -5.90926766e-01 4.74901021e-01 1.21224999e+00
-1.05492961e+00 7.88221776e-01 -1.15285599e+00 1.78066760e-01
9.21744585e-01 5.29806674e-01 -4.91151482e-01 -1.66706085e-01
-1.18646371e+00 8.34922910e-01 2.08439782e-01 1.17190406e-02
-1.38207459e+00 -8.42006862e-01 -7.28701770e-01 -2.15577796e-01
2.04909623e-01 -5.57742894e-01 1.16419208e+00 -1.29040813e+00
-1.59978771e+00 5.64084888e-01 4.02529091e-01 -9.60610032e-01
8.44387054e-01 -3.92615467e-01 -2.49276802e-01 2.31049910e-01
-3.60899121e-01 2.44477347e-01 1.24484134e+00 -9.46976304e-01
-2.62890041e-01 -4.97296929e-01 2.17158094e-01 -7.32451975e-02
-9.82566178e-01 4.53341573e-01 1.99157923e-01 -9.22490716e-01
-4.64303255e-01 -1.07221079e+00 -5.20735621e-01 1.72074243e-01
-4.94483143e-01 2.22786173e-01 1.10443258e+00 -3.81745696e-01
5.63081086e-01 -2.15580225e+00 7.52203688e-02 3.40246409e-01
4.26870763e-01 7.01128602e-01 -2.68659741e-01 3.40313107e-01
-3.43009382e-01 4.09528702e-01 -2.88079500e-01 -6.35310292e-01
2.55708694e-01 3.66936743e-01 -6.52043045e-01 1.11758423e+00
-6.57781586e-02 8.11649442e-01 -5.94152629e-01 1.73789784e-02
2.08180957e-02 4.07834053e-01 -7.31445849e-01 1.63909271e-01
-1.27152607e-01 3.67412150e-01 -4.60759640e-01 4.86315757e-01
8.70033860e-01 3.67523059e-02 1.43342726e-02 2.85769492e-01
6.17284954e-01 -1.23568989e-01 -1.16884947e+00 1.24486637e+00
-4.40248638e-01 6.34568393e-01 5.96417844e-01 -1.24353230e+00
5.02362072e-01 4.76518363e-01 3.60972166e-01 -4.50511910e-02
3.26195657e-01 2.83292264e-01 -3.31242904e-02 -3.23441215e-02
4.27286066e-02 9.03369933e-02 -5.11864759e-02 6.44509733e-01
1.80482209e-01 5.17001413e-02 -4.64813352e-01 3.33242089e-01
1.52708435e+00 -5.90733647e-01 5.13875820e-02 -1.75520793e-01
1.58862039e-01 -3.34513664e-01 4.38338101e-01 1.08425152e+00
-4.75442439e-01 2.51314580e-01 2.48706251e-01 -3.46072108e-01
-1.06733370e+00 -1.00027263e+00 -2.12490410e-01 1.40386760e+00
-1.53437823e-01 -2.71266460e-01 -9.44775820e-01 -9.54733789e-01
2.70914048e-01 4.65074569e-01 -5.01008809e-01 -4.82596904e-01
-5.01969755e-01 -6.97620809e-01 1.32502270e+00 4.49011952e-01
6.05324686e-01 -8.66582751e-01 -1.78646073e-01 -5.24290726e-02
3.69386882e-01 -1.09411502e+00 -5.50068378e-01 3.25110704e-01
-8.28264236e-01 -8.70191097e-01 -6.25549316e-01 -5.49454808e-01
7.68483102e-01 2.92408094e-02 9.71486688e-01 6.76170886e-02
-2.00765222e-01 4.95873183e-01 -1.25038311e-01 -7.00884342e-01
-8.62675011e-01 3.34611088e-02 5.49667597e-01 -4.84079085e-02
-9.42367837e-02 -8.45138788e-01 -3.60352069e-01 3.19626302e-01
-1.26232910e+00 -4.85280722e-01 3.23148072e-01 8.22086155e-01
2.47320652e-01 9.71581936e-02 7.07627356e-01 -1.09585595e+00
4.89661604e-01 -6.84869945e-01 -7.11747706e-01 1.54865012e-01
-4.50881422e-01 -1.27909198e-01 1.22824967e+00 -8.31366241e-01
-4.12932307e-01 -2.51518667e-01 -3.16385597e-01 -1.10149026e+00
-2.74809331e-01 3.33510488e-01 -3.81769150e-01 -6.17563784e-01
1.09029245e+00 -6.95971623e-02 1.50238678e-01 -1.70837834e-01
6.18930399e-01 5.44147134e-01 4.08712149e-01 -8.85754168e-01
1.23571432e+00 4.51543272e-01 3.69401351e-02 -5.73400557e-01
-5.23218751e-01 9.09503400e-02 -2.83559591e-01 8.28847755e-03
4.00135666e-01 -9.00924742e-01 -6.38398588e-01 9.11144912e-01
-1.00288415e+00 -8.63922119e-01 -2.72798806e-01 2.89931864e-01
-3.90695900e-01 2.80814260e-01 -8.98676395e-01 -6.63817286e-01
-6.60086930e-01 -1.09423053e+00 4.77902532e-01 1.88708063e-02
2.85614252e-01 -1.36867356e+00 -1.31240755e-01 1.90687060e-01
8.15314233e-01 5.57168782e-01 5.05687356e-01 -1.39915895e+00
-4.81645495e-01 -6.22237146e-01 3.11945468e-01 9.02641416e-01
-1.28816798e-01 1.21300727e-01 -1.09505022e+00 -7.66775012e-01
2.93112338e-01 -7.76041746e-01 5.82496464e-01 1.09195441e-01
1.33443308e+00 -1.01813471e+00 -1.72291063e-02 1.05651820e+00
1.48040843e+00 -2.87407398e-01 5.21399498e-01 4.10878718e-01
9.00463521e-01 2.76880991e-02 8.98099467e-02 5.04255354e-01
-9.50190425e-02 3.31181496e-01 9.00435865e-01 7.25446418e-02
2.77787894e-01 -4.33538482e-03 6.48604214e-01 6.09084487e-01
3.12910855e-01 -2.46545941e-01 -8.23290944e-01 1.86132580e-01
-1.61713827e+00 -1.00315702e+00 3.60454857e-01 2.29238582e+00
1.08351707e+00 2.07441702e-01 -5.11936583e-02 -5.26179783e-02
7.75201142e-01 1.72759488e-01 -8.91404688e-01 -5.80931962e-01
-1.25706002e-01 5.29812932e-01 1.13818777e+00 4.60199416e-01
-1.21979809e+00 8.93357813e-01 6.17654467e+00 1.07431686e+00
-1.14929795e+00 5.31712234e-01 8.63381088e-01 -3.82380486e-01
2.12510563e-02 -3.56845558e-01 -6.81708932e-01 3.94231647e-01
1.32998145e+00 -4.10724014e-01 8.68399799e-01 1.33028448e+00
-1.89444974e-01 7.04138696e-01 -1.00736570e+00 6.47605240e-01
6.77171582e-03 -1.25414562e+00 -8.08263198e-02 2.14916691e-01
1.02378166e+00 7.09537268e-01 3.06917787e-01 4.23464805e-01
9.41370785e-01 -1.17607713e+00 6.01254821e-01 -3.35204341e-02
7.68134296e-01 -1.11731124e+00 6.35671914e-01 6.75368011e-01
-7.65262842e-01 -2.59134769e-01 -6.64905488e-01 2.84796059e-01
-2.10916191e-01 4.82128769e-01 -5.93950272e-01 3.37378293e-01
6.40152633e-01 3.83518547e-01 -5.29354215e-01 6.74205244e-01
-1.92904636e-01 9.30104613e-01 -7.17024028e-01 1.24417730e-01
9.43483785e-02 1.07075520e-01 7.73451865e-01 9.61098731e-01
-4.06620502e-02 -1.04040295e-01 2.01196983e-01 5.44352055e-01
-6.86566710e-01 -8.28051493e-02 -8.46214592e-01 5.58551364e-02
7.04735935e-01 1.13822556e+00 -1.75806195e-01 -2.06770718e-01
-1.18363425e-01 9.76495981e-01 5.54946542e-01 4.10690159e-01
-1.05495882e+00 -3.51981610e-01 1.09982777e+00 -4.80143756e-01
1.85592815e-01 -2.40874052e-01 -3.40658545e-01 -1.23275232e+00
-1.06268730e-02 -1.51549494e+00 3.87522459e-01 -1.91007450e-01
-1.74596095e+00 6.65091217e-01 -1.35453641e-01 -8.85392606e-01
-2.16135800e-01 -8.00534010e-01 -8.60223234e-01 6.76706016e-01
-1.05245841e+00 -1.15931189e+00 2.24493384e-01 1.27489638e+00
2.79884756e-01 -5.73935091e-01 1.14408731e+00 3.48808169e-01
-7.06041694e-01 1.47347569e+00 6.73584938e-01 5.93513489e-01
8.32067668e-01 -1.30393577e+00 5.65964341e-01 1.24986839e+00
2.70774215e-01 5.22479594e-01 7.44474888e-01 -3.12178016e-01
-1.60552788e+00 -1.46226501e+00 1.71440601e-01 -4.20518100e-01
1.00487876e+00 -3.64714533e-01 -8.50522757e-01 9.77756083e-01
-1.96696687e-02 6.35292709e-01 7.72513926e-01 -2.85128839e-02
-7.46030331e-01 -2.08317518e-01 -1.53727269e+00 8.22885334e-01
8.11631858e-01 -6.57119572e-01 -1.23549849e-01 8.09309781e-01
7.89253712e-01 -7.29528069e-01 -9.96667683e-01 1.22278199e-01
1.66907296e-01 -6.54250264e-01 1.12949967e+00 -1.03504217e+00
2.66641647e-01 2.43814036e-01 -4.81988758e-01 -1.42450452e+00
1.56258717e-01 -1.18930185e+00 -4.72250521e-01 1.09688818e+00
2.90518731e-01 -1.35213470e+00 7.56659746e-01 9.59924698e-01
-2.20416203e-01 -7.18400240e-01 -1.36554599e+00 -9.67237771e-01
7.92858541e-01 -5.86511910e-01 5.41823685e-01 1.09681773e+00
-3.51442188e-01 -4.16635722e-01 -3.40538144e-01 7.17599988e-01
7.61926234e-01 -4.94434297e-01 1.07705593e+00 -5.56174099e-01
-6.37863517e-01 -4.54356104e-01 -7.24161148e-01 -7.71345615e-01
5.79099298e-01 -9.61719334e-01 -1.16848245e-01 -6.89230740e-01
-4.14582014e-01 -5.84669292e-01 -4.02549088e-01 8.19572449e-01
-1.34752944e-01 2.30181515e-01 3.49337965e-01 3.59280348e-01
-4.70240742e-01 4.54998255e-01 7.92302728e-01 -1.68787554e-01
5.66442646e-02 2.94123769e-01 -6.25405073e-01 8.09888721e-01
1.22588432e+00 -9.32584763e-01 -2.89414942e-01 -5.88865936e-01
-4.30842526e-02 -2.26720229e-01 5.01415908e-01 -9.91980910e-01
4.37517762e-01 -1.54785231e-01 1.42935559e-01 2.55503058e-01
1.85021356e-01 -9.04235244e-01 -1.43456325e-01 4.82838005e-01
-4.56056356e-01 2.62116075e-01 3.50139737e-01 6.06573284e-01
4.32271548e-02 -2.63039380e-01 1.11187172e+00 1.28344163e-01
-4.95717712e-02 7.44464874e-01 -1.52917236e-01 4.10996825e-01
1.24487412e+00 4.12913501e-01 -7.72927463e-01 -3.14820737e-01
-5.22459865e-01 8.37021619e-02 4.61412311e-01 1.09931782e-01
5.13194025e-01 -1.26804173e+00 -9.49641585e-01 2.04527900e-01
-3.86242241e-01 4.40532938e-02 2.15624720e-01 5.94755650e-01
-6.39573693e-01 -2.58361816e-01 1.11998813e-02 -3.20480168e-01
-1.31778848e+00 7.22576201e-01 7.62460947e-01 -1.09599240e-01
-6.35727227e-01 1.09729993e+00 -1.10752918e-01 -5.30935526e-01
3.69087100e-01 1.33402765e-01 4.95971560e-01 -5.26958883e-01
7.24882185e-01 2.81167150e-01 2.69469559e-01 -2.83477902e-01
-3.09390515e-01 -2.18106851e-01 -2.56081939e-01 -1.95280328e-01
1.27073538e+00 3.33111137e-01 -1.91888258e-01 3.41781154e-02
1.60574138e+00 1.74556002e-01 -1.33293474e+00 -2.77852923e-01
-5.52104533e-01 -5.04750967e-01 -8.76945108e-02 -4.89627510e-01
-1.44210291e+00 6.79694235e-01 5.52934885e-01 4.60431516e-01
1.02939475e+00 -2.88587421e-01 8.19534302e-01 8.54699433e-01
4.28554416e-01 -6.82564676e-01 -7.86394998e-02 5.24216354e-01
8.37778211e-01 -1.18732810e+00 -1.13395832e-01 2.41823718e-02
-3.68205845e-01 1.03548789e+00 4.48760182e-01 -5.71081579e-01
1.00329709e+00 7.20771134e-01 2.08940387e-01 2.94864267e-01
-8.11029196e-01 7.11541533e-01 -1.77300438e-01 6.27502680e-01
-2.98760623e-01 -2.39786617e-02 4.10019666e-01 3.12543273e-01
-3.05746287e-01 -5.33362687e-01 3.66428941e-01 1.10111392e+00
-1.70781583e-01 -1.02909124e+00 -5.36191583e-01 3.79206300e-01
-1.15261245e+00 -1.73712671e-01 -1.33705989e-01 5.15225291e-01
-4.74474020e-02 1.03772438e+00 -2.14844033e-01 -3.94808769e-01
-1.24583587e-01 -1.18041813e-01 3.68289143e-01 -4.09920484e-01
-8.58210087e-01 -5.12736380e-01 -2.51139343e-01 -5.87757766e-01
-1.41107682e-02 -4.32315528e-01 -8.66053581e-01 -9.28073943e-01
-4.05568331e-01 -6.26316965e-02 9.20014203e-01 1.00529206e+00
4.10787642e-01 3.47498775e-01 1.04891491e+00 -1.04585969e+00
-1.57065547e+00 -8.76472294e-01 -5.87436497e-01 3.13740849e-01
3.33367407e-01 -7.59412497e-02 -1.00264287e+00 -7.73305073e-02] | [5.672677993774414, 7.798150062561035] |
745df7b0-6c00-4875-8514-c1cf81ed2bc2 | the-provable-benefits-of-unsupervised-data | 2302.13493 | null | https://arxiv.org/abs/2302.13493v1 | https://arxiv.org/pdf/2302.13493v1.pdf | The Provable Benefits of Unsupervised Data Sharing for Offline Reinforcement Learning | Self-supervised methods have become crucial for advancing deep learning by leveraging data itself to reduce the need for expensive annotations. However, the question of how to conduct self-supervised offline reinforcement learning (RL) in a principled way remains unclear. In this paper, we address this issue by investigating the theoretical benefits of utilizing reward-free data in linear Markov Decision Processes (MDPs) within a semi-supervised setting. Further, we propose a novel, Provable Data Sharing algorithm (PDS) to utilize such reward-free data for offline RL. PDS uses additional penalties on the reward function learned from labeled data to prevent overestimation, ensuring a conservative algorithm. Our results on various offline RL tasks demonstrate that PDS significantly improves the performance of offline RL algorithms with reward-free data. Overall, our work provides a promising approach to leveraging the benefits of unlabeled data in offline RL while maintaining theoretical guarantees. We believe our findings will contribute to developing more robust self-supervised RL methods. | ['Chongjie Zhang', 'Qianchuan Zhao', 'Yiqin Yang', 'Hao Hu'] | 2023-02-27 | null | null | null | null | ['offline-rl'] | ['playing-games'] | [ 2.53687426e-02 4.57357913e-01 -7.75010645e-01 -6.53212905e-01
-1.19299138e+00 -6.24903738e-01 3.17766756e-01 8.88766870e-02
-7.70656407e-01 1.16599095e+00 8.29015598e-02 -3.56897980e-01
1.20445386e-01 -3.80743444e-01 -8.69035065e-01 -7.06710279e-01
-3.47143084e-01 3.89498502e-01 -6.46317005e-02 2.06176698e-01
-2.68761646e-02 3.50262970e-01 -1.35764563e+00 -1.69912100e-01
8.48085642e-01 1.01637018e+00 2.51391917e-01 5.16815305e-01
2.34403074e-01 1.32850718e+00 -3.21020663e-01 -1.45877570e-01
5.14644146e-01 -6.11545205e-01 -8.29900742e-01 1.39215618e-01
-1.54455118e-02 -1.00892866e+00 -2.97836095e-01 7.32012868e-01
4.61097032e-01 3.34534734e-01 2.48425126e-01 -1.47650480e+00
-3.58109742e-01 1.00578737e+00 -5.22025585e-01 9.91692301e-03
-7.30089098e-02 3.23545128e-01 1.18151367e+00 -2.71185935e-01
5.31879365e-01 1.08787060e+00 3.79629076e-01 9.88302767e-01
-1.25922430e+00 -7.90925145e-01 3.42726499e-01 4.90693841e-03
-8.46526623e-01 -6.14780843e-01 7.50399172e-01 -1.15523867e-01
6.60459280e-01 -2.69312650e-01 5.07594585e-01 1.06220043e+00
-1.82618827e-01 1.49149096e+00 1.67269742e+00 -3.61325413e-01
7.52702415e-01 6.48622960e-02 4.69380729e-02 8.33640039e-01
7.24288896e-02 4.22416568e-01 -9.03522849e-01 -2.23513827e-01
7.57205844e-01 5.12801819e-02 2.95144320e-01 -6.16796792e-01
-1.00459564e+00 9.18322802e-01 1.87390611e-01 -2.08134010e-01
-3.44914913e-01 6.25312507e-01 4.10082042e-01 5.28332353e-01
5.74169099e-01 2.66813219e-01 -7.20987618e-01 -6.27522469e-01
-9.08028483e-01 3.13158453e-01 7.84908891e-01 1.14220333e+00
9.71656859e-01 8.76291096e-02 -1.38616636e-01 5.27861476e-01
2.46208116e-01 5.82873583e-01 2.99294144e-01 -1.55568039e+00
6.01934493e-01 1.28449038e-01 6.05745554e-01 -1.85084775e-01
-3.09871852e-01 -1.36569262e-01 -2.13423818e-01 1.70001924e-01
4.83109683e-01 -6.31860077e-01 -4.70875978e-01 2.04212308e+00
5.29181242e-01 -6.61180466e-02 3.86784345e-01 9.22949076e-01
-7.75223449e-02 3.14846396e-01 1.23204418e-01 -5.05725563e-01
6.08799517e-01 -1.12303174e+00 -6.78801775e-01 -9.31935757e-02
9.35790062e-01 -1.59973055e-01 1.28902495e+00 4.71922517e-01
-1.03894341e+00 -1.58076167e-01 -8.80713701e-01 1.12041086e-02
3.24957401e-01 2.03761980e-01 1.05906224e+00 6.92397892e-01
-9.27985787e-01 9.39044535e-01 -1.32691026e+00 -1.25062615e-02
9.62613165e-01 4.63619590e-01 -6.29811734e-02 -1.22622743e-01
-9.45196986e-01 5.44289470e-01 8.20539370e-02 -1.77375451e-01
-1.59790456e+00 -5.33422709e-01 -6.80269539e-01 -1.76286757e-01
8.85126591e-01 -1.28359884e-01 1.93273497e+00 -1.07249308e+00
-1.97208023e+00 5.45813501e-01 -1.29195184e-01 -9.95872557e-01
8.89059424e-01 -4.31414515e-01 1.91639915e-01 3.62271637e-01
8.03565755e-02 7.53526688e-01 9.14026558e-01 -1.25614285e+00
-7.95799851e-01 -3.20862710e-01 1.96555972e-01 4.61901575e-01
-3.58688921e-01 -1.37739167e-01 5.46699017e-02 -2.45379210e-01
-3.80351484e-01 -1.16900480e+00 -5.81236541e-01 6.94836453e-02
-1.07910216e-01 -5.04034698e-01 6.09041691e-01 -3.20925981e-01
6.37029529e-01 -2.19575334e+00 -3.61391753e-01 -1.54045969e-01
4.00179923e-01 2.75183637e-02 -1.38809532e-01 4.75976110e-01
6.57333553e-01 -8.52998495e-02 -1.17031850e-01 -6.82888448e-01
1.54876456e-01 5.72698593e-01 -5.99048793e-01 5.69197237e-01
6.65068850e-02 9.06425416e-01 -1.43941855e+00 -5.69421411e-01
-1.31191447e-01 -1.42485455e-01 -5.07578313e-01 5.27126610e-01
-6.09517515e-01 6.49949670e-01 -6.98684871e-01 6.29150689e-01
3.45065951e-01 -2.97429144e-01 5.51100075e-01 6.20117486e-01
7.59105850e-03 4.61973131e-01 -9.29408193e-01 1.73285437e+00
-5.53741693e-01 4.22178298e-01 2.87605494e-01 -9.56382215e-01
7.52645016e-01 2.21338913e-01 7.51362324e-01 -6.07362926e-01
-2.85056625e-02 1.36760354e-01 -2.54026562e-01 -2.06625834e-01
4.20486540e-01 -2.47469202e-01 -4.52404059e-02 1.10863876e+00
7.69055635e-03 1.05759002e-01 -7.37902429e-03 4.02787030e-01
1.26607478e+00 6.16480529e-01 1.73565984e-01 -2.59040091e-02
-1.92399651e-01 1.86608225e-01 8.04155827e-01 1.15698779e+00
-8.77913654e-01 -1.13777466e-01 5.74066162e-01 -8.46228525e-02
-8.47365618e-01 -1.01788712e+00 2.64441013e-01 1.44403112e+00
-5.16250208e-02 -1.40966237e-01 -5.35187840e-01 -1.21835649e+00
2.63229996e-01 5.32289267e-01 -4.61238086e-01 -7.73282200e-02
-2.77314067e-01 -3.82128239e-01 6.08415008e-01 7.20910728e-01
4.69278812e-01 -9.60004687e-01 -7.44098961e-01 3.67145032e-01
-5.31252772e-02 -1.17036915e+00 -4.60971564e-01 6.96350873e-01
-1.24427104e+00 -8.28188181e-01 -6.97437763e-01 -4.14583057e-01
8.29038620e-01 5.59098840e-01 7.49480903e-01 -3.06595653e-01
1.81920215e-01 7.37197101e-01 -3.72017682e-01 -4.87479925e-01
-4.60699975e-01 8.42547938e-02 3.99183244e-01 -2.10420072e-01
1.72141984e-01 -4.70942408e-01 -5.70234060e-01 2.43655547e-01
-6.18871868e-01 -1.24297939e-01 5.13644338e-01 7.89385080e-01
7.23361909e-01 -1.12134911e-01 1.08194184e+00 -1.05918968e+00
6.70347750e-01 -5.15159130e-01 -8.62704277e-01 9.48181078e-02
-1.07550585e+00 4.95959938e-01 1.00225151e+00 -6.50155425e-01
-1.24697149e+00 4.22095954e-01 3.74095500e-01 -6.31962597e-01
8.37889314e-02 1.49997994e-01 1.46666273e-01 -2.49107294e-02
5.32655537e-01 1.79402709e-01 3.14693660e-01 -3.07707906e-01
5.93798995e-01 5.78121781e-01 1.85159715e-05 -1.03142476e+00
6.02901995e-01 7.20522583e-01 8.25293735e-02 -2.53919214e-01
-1.35203326e+00 -4.49979544e-01 -3.67946237e-01 -2.80890316e-01
3.58692855e-01 -1.14267480e+00 -1.01249099e+00 2.05926582e-01
-5.45959532e-01 -1.17504823e+00 -7.34745145e-01 5.30953050e-01
-1.15904725e+00 4.44192976e-01 -7.17551470e-01 -1.38324285e+00
-2.31914252e-01 -9.34424639e-01 7.57431328e-01 1.53953075e-01
1.09421372e-01 -8.23373675e-01 2.45419458e-01 6.39170051e-01
8.23842809e-02 -1.80400699e-01 2.88766772e-01 -6.73821628e-01
-7.14867175e-01 2.02915192e-01 -2.43539717e-02 6.34950638e-01
1.06916122e-01 -4.25482959e-01 -1.05437315e+00 -5.06033361e-01
-7.42820650e-02 -1.37540841e+00 8.73819768e-01 1.62954316e-01
1.25350678e+00 -5.68129659e-01 3.11900079e-02 2.81038761e-01
1.23576677e+00 -9.80267767e-03 1.03498995e-02 1.66130796e-01
5.86605549e-01 5.83984017e-01 1.31266785e+00 9.58551586e-01
5.90511978e-01 9.32081789e-02 3.88534188e-01 1.01741582e-01
2.33057007e-01 -7.72175789e-01 7.23742962e-01 5.16741991e-01
4.29567993e-02 6.13236055e-02 -6.03033066e-01 4.78599399e-01
-2.15852809e+00 -7.81515419e-01 3.87978494e-01 2.30331969e+00
1.51321507e+00 -2.28615329e-02 3.78952324e-01 -7.27893133e-03
3.43780279e-01 8.65534693e-02 -1.19541180e+00 -3.79694134e-01
1.45670384e-01 2.26587504e-01 1.01352894e+00 3.45185548e-01
-1.03049028e+00 1.29025078e+00 6.70998478e+00 8.33512902e-01
-8.85823727e-01 3.12741131e-01 5.74239194e-01 -3.78627747e-01
-1.36789873e-01 2.16016918e-01 -9.92465138e-01 2.53042877e-01
1.13714564e+00 -4.69129272e-02 9.82976496e-01 1.31939542e+00
5.90304732e-01 -3.16044688e-01 -1.23718607e+00 6.85660541e-01
-2.79380232e-01 -1.10428679e+00 -5.99002242e-01 2.24237263e-01
1.02009642e+00 2.45804906e-01 -1.44590801e-02 5.91345608e-01
1.29193211e+00 -6.73741043e-01 6.59268141e-01 3.37471575e-01
7.37373710e-01 -9.09636974e-01 2.59072810e-01 6.95373714e-01
-7.31338739e-01 -2.41148233e-01 -3.34147900e-01 -2.36409962e-01
-1.09428659e-01 5.62434137e-01 -1.23769248e+00 2.55922735e-01
3.52756768e-01 8.99261177e-01 -8.02105963e-02 3.93849581e-01
-4.55169916e-01 1.09132946e+00 -2.93931782e-01 -1.83964700e-01
4.11167681e-01 -4.00503241e-02 1.09297872e-01 7.73002326e-01
-2.24422798e-01 -1.11621417e-01 4.81287956e-01 7.56398201e-01
-3.82004857e-01 1.21866306e-03 -5.57016492e-01 -4.44179893e-01
5.82669795e-01 1.21106207e+00 -5.99499702e-01 -1.99342683e-01
-1.60697132e-01 9.24418569e-01 8.37152421e-01 3.13971132e-01
-7.46760607e-01 1.45583987e-01 4.77260768e-01 -1.77762121e-01
2.45387986e-01 -5.91445565e-01 -2.05058247e-01 -1.08382392e+00
-4.62589413e-02 -8.06563079e-01 4.24022853e-01 -5.23894548e-01
-1.44780815e+00 -1.20013557e-01 -1.74331978e-01 -1.14219964e+00
-2.69737065e-01 -4.94925603e-02 -3.35812271e-02 3.62539440e-01
-1.94019639e+00 -9.13045585e-01 1.69453859e-01 6.46322906e-01
4.22190517e-01 1.03056446e-01 5.10054767e-01 -1.13035142e-01
-4.52935666e-01 7.17805505e-01 4.80983555e-01 -1.15947761e-01
9.54276800e-01 -1.40362954e+00 -1.38480991e-01 5.80610394e-01
2.25798711e-01 4.29057658e-01 3.89679909e-01 -6.75484419e-01
-1.67578113e+00 -1.09201753e+00 2.67406493e-01 -3.07861954e-01
7.73774266e-01 -3.10650855e-01 -5.33892572e-01 7.85909534e-01
-2.39134416e-01 2.11317703e-01 8.21037233e-01 1.77184135e-01
-3.22637498e-01 -2.88297713e-01 -1.29853523e+00 5.06026804e-01
1.09131503e+00 -5.60303688e-01 -2.42578164e-01 3.82113129e-01
9.66222823e-01 -2.42720053e-01 -8.77114654e-01 -5.24046691e-03
3.93945336e-01 -5.58141947e-01 5.34562647e-01 -6.90971136e-01
4.08529341e-01 6.29668832e-02 -1.51185049e-02 -1.21349764e+00
2.82486290e-01 -1.15696049e+00 -6.50256813e-01 1.04310703e+00
1.94396362e-01 -6.97286963e-01 1.13441014e+00 7.64442742e-01
5.97141869e-02 -7.99129784e-01 -8.01510215e-01 -1.27953744e+00
1.08996764e-01 -4.70709056e-01 2.25938022e-01 7.82493353e-01
9.68630165e-02 -9.05389413e-02 -7.33390749e-01 -1.10316478e-01
1.07424068e+00 1.42880976e-01 8.09346139e-01 -8.91100824e-01
-5.31081557e-01 1.79535165e-01 3.32402945e-01 -1.44863486e+00
5.91119945e-01 -7.95549512e-01 3.84002686e-01 -1.22000480e+00
2.72459716e-01 -1.06803882e+00 -3.97216320e-01 8.07525635e-01
-9.74756330e-02 -2.11717755e-01 3.41568917e-01 5.41331410e-01
-1.36228406e+00 9.48057473e-01 1.49853873e+00 2.78841585e-01
-3.24450940e-01 1.79325685e-01 -7.42619812e-01 5.04971981e-01
1.24295294e+00 -8.98161769e-01 -6.81222618e-01 -1.66335329e-01
8.29843208e-02 1.88550115e-01 7.23204464e-02 -5.93608260e-01
1.85524061e-01 -6.65436745e-01 -8.38472471e-02 -5.16815126e-01
1.93857923e-01 -7.14813232e-01 -7.05085516e-01 5.26908338e-01
-1.00045824e+00 -3.84766042e-01 -1.81303531e-01 1.16642010e+00
2.06360206e-01 -2.65412658e-01 7.35369146e-01 -1.73412085e-01
-4.55990344e-01 4.85000640e-01 -4.30709571e-01 5.45480907e-01
1.28937101e+00 2.02416733e-01 -9.14322957e-02 -6.33755088e-01
-5.73047817e-01 5.96195936e-01 4.16119426e-01 -1.21734068e-02
4.90361929e-01 -9.04068589e-01 -2.40650058e-01 -9.16303098e-02
-2.71377582e-02 7.53777027e-02 2.52237245e-02 6.44905865e-01
-6.77898701e-04 2.68305153e-01 -6.45672977e-02 -3.36497366e-01
-9.78955209e-01 5.31558156e-01 9.30345580e-02 -6.33365929e-01
-5.36375582e-01 6.88245773e-01 -3.46844614e-01 -4.76085782e-01
6.84755743e-01 -3.34585816e-01 2.59340495e-01 -1.89161286e-01
2.85160065e-01 5.53994477e-01 -3.84244025e-01 2.59696275e-01
-1.61380053e-03 -3.34665596e-01 -2.57918805e-01 -6.21247411e-01
1.37710238e+00 -3.67219627e-01 3.94702792e-01 7.64559329e-01
8.56166780e-01 3.14743468e-03 -2.37634087e+00 -5.05902827e-01
1.20372735e-01 -3.67758304e-01 1.12509914e-01 -8.89540374e-01
-9.12921190e-01 6.99125826e-01 2.89782852e-01 -2.53584143e-02
8.67453694e-01 1.49905281e-02 9.84864593e-01 8.50053787e-01
9.26136494e-01 -1.59762836e+00 3.54135811e-01 4.11822528e-01
1.96289182e-01 -1.57572055e+00 4.14443873e-02 1.23451486e-01
-1.24636424e+00 7.85700798e-01 5.31096518e-01 -2.81434923e-01
4.14046615e-01 2.52302140e-01 -7.76244104e-02 1.87416151e-01
-1.13827991e+00 -4.20769960e-01 -5.32554686e-01 6.97612345e-01
3.25292945e-02 3.40006709e-01 -1.59926623e-01 6.56565905e-01
1.00550465e-01 3.94434154e-01 5.91273129e-01 1.49916077e+00
-4.83869612e-01 -1.34100711e+00 -5.20666018e-02 4.58359063e-01
-5.36134362e-01 -5.78899160e-02 -2.91890144e-01 4.48844522e-01
-3.53534788e-01 1.20062590e+00 -2.00494751e-01 -8.10242370e-02
-3.92805904e-01 -4.59630676e-02 6.83640301e-01 -6.38955772e-01
-4.13755000e-01 -3.47908251e-02 1.90691635e-01 -7.45968282e-01
-6.58083916e-01 -7.51111269e-01 -1.72433698e+00 -2.52127171e-01
-2.30299175e-01 9.63554084e-02 7.18249381e-01 1.04759169e+00
4.74981129e-01 4.37740125e-02 1.25462568e+00 -4.57084119e-01
-1.49968398e+00 -5.56037188e-01 -7.44608998e-01 1.31977210e-02
4.82829660e-01 -6.45288825e-01 -4.76817042e-01 -1.52391493e-02] | [4.080907344818115, 2.1831188201904297] |
0a31368c-ee4c-4d67-a2a7-28ae4a2bbece | light-weighted-cnn-for-text-classification | 2004.07922 | null | https://arxiv.org/abs/2004.07922v1 | https://arxiv.org/pdf/2004.07922v1.pdf | Light-Weighted CNN for Text Classification | For management, documents are categorized into a specific category, and to do these, most of the organizations use manual labor. In today's automation era, manual efforts on such a task are not justified, and to avoid this, we have so many software out there in the market. However, efficiency and minimal resource consumption is the focal point which is also creating a competition. The categorization of such documents into specified classes by machine provides excellent help. One of categorization technique is text classification using a Convolutional neural network(TextCNN). TextCNN uses multiple sizes of filters, as in the case of the inception layer introduced in Googlenet. The network provides good accuracy but causes high memory consumption due to a large number of trainable parameters. As a solution to this problem, we introduced a whole new architecture based on separable convolution. The idea of separable convolution already exists in the field of image classification but not yet introduces to text classification tasks. With the help of this architecture, we can achieve a drastic reduction in trainable parameters. | ['Ritu Yadav'] | 2020-04-16 | null | null | null | null | ['document-image-classification'] | ['computer-vision'] | [-0.04988106 -0.18714315 0.10613034 -0.59252 0.2420434 -0.45964152
0.59907776 0.17518361 -0.72071356 0.36096328 -0.2898486 -0.50386333
-0.11041854 -1.1624225 -0.19068234 -0.41870746 0.45290148 0.3257912
0.24727085 -0.27794665 0.6544092 0.42256984 -1.6222981 0.54902935
0.79350823 1.207264 0.6003436 0.4355845 -1.0699377 0.69916135
-0.70519286 -0.41649702 0.12582466 -0.07035264 -0.9726545 0.07428202
0.07559324 -0.38527566 -0.1368042 1.0725273 0.27312213 0.08046602
0.6379885 -1.07626 -0.7656959 0.7840067 -0.29327554 -0.00835047
-0.08727816 -0.28305668 0.7084921 -0.69000316 0.2819869 1.0867956
0.67581624 0.3795874 -0.88724256 -0.58822846 -0.02075949 0.12813796
-1.21903 -0.04400229 0.4318771 -0.7299582 0.91929716 0.2386455
0.5080511 0.8834432 0.44094437 0.4892662 0.8279203 -0.6039934
0.04431842 0.7335786 0.66851765 0.56630075 0.45768234 -0.58674395
-0.06078609 0.23591636 0.5693342 0.6898908 -0.09507228 0.1301205
-0.84136987 0.83577675 0.50126624 0.9967917 0.11161167 0.1867306
0.48982218 0.42799458 0.28503573 0.5234877 -0.34505215 -0.16985603
-0.88333535 -0.12889735 0.83265936 0.85741246 0.8251088 -0.09085651
0.16211975 0.81684506 0.10498732 0.04297265 0.9531607 -0.37413308
0.40399513 1.3254355 -0.18258792 -1.1442616 -0.55132526 -0.43104675
-1.2053242 0.34457955 0.35777542 -0.06456494 -1.054059 1.0678215
-0.17931822 -0.5630307 -0.2616922 0.70313114 0.74066234 0.7338843
-0.1074112 0.10400903 1.3496013 -1.0032755 -0.9486668 -0.09739193
0.7125538 -0.86046493 1.1449884 0.5901205 -0.55860305 -0.76704025
-1.0685185 -0.06290636 -1.1721054 0.3187268 0.9345836 0.8369387
-0.93466973 0.7994866 -0.54534245 -0.63296044 0.28817213 0.668055
-0.44442257 0.1886143 -1.096098 0.961118 0.64872575 0.33154166
-0.3436534 -0.10835581 -0.30576104 0.54535663 0.27907088 -0.25657064
0.8699046 -1.4002862 -1.2671568 0.697938 0.37635392 -0.3218169
0.5824887 -0.10240094 -0.37619784 -0.12436188 -0.07192972 0.5062511
0.84896576 -0.86675346 -0.7559129 -0.14680438 0.17672409 -0.2154395
-1.1964577 0.21952368 -0.28020304 -0.49058232 0.06240321 -0.65598303
-0.18232498 -0.18399286 -0.20751283 -0.55026245 0.80946004 -0.46824166
1.3974147 -2.2533004 -0.25207692 0.14273867 0.3544059 0.35181051
0.24633536 0.47825 -0.06791202 0.45213968 -0.03419142 -0.18062508
0.08982243 -0.03241558 -0.143859 0.06923652 -0.10569111 0.50591296
-0.37238333 -0.5420132 0.19322416 0.34563324 -0.46399343 0.13598189
-0.08094546 -0.18717018 -0.5567678 0.47185132 0.7337944 -0.3804627
0.16760427 0.05489463 -0.4010534 -0.0218815 -1.239762 1.4017557
-0.4470837 0.7215704 0.0222152 -1.3663588 1.0158011 0.28862453
0.3693282 -0.3131581 0.6481245 0.37642708 0.14252064 -0.5827893
0.5996803 0.2091473 0.09998398 0.37565318 0.14788824 0.03356981
0.26921365 0.0656553 1.1036152 -0.13308053 0.09924167 -0.45372343
0.71177524 0.15512435 0.01390124 0.7230998 0.26301038 0.556966
0.49189803 -1.1054729 -0.94210815 -0.17714317 -0.32040095 1.0259297
-0.13972026 -0.47788566 -0.8678375 -0.64469934 0.06194271 0.20312017
-0.56088996 0.13031723 -0.4102466 -0.608976 0.28419507 0.37679288
0.9718402 -1.2257153 -0.63717586 0.17968974 0.22960655 -1.0353117
-0.22773317 0.62085 -0.8417426 -0.96176237 -0.64957017 -0.96499133
0.72836643 0.30211505 0.7917817 0.4522202 -0.37790704 -0.04372336
-0.5294264 -0.73850876 -0.3390131 0.7017995 -0.08654628 0.14534935
0.71950287 -0.2942164 -0.36181352 0.08034268 -1.094155 0.15249479
0.60881555 0.69692147 -0.23613897 0.41966927 0.48586547 -0.9313524
0.8862234 -0.25271675 -0.726697 0.14680232 -0.903718 -0.13823792
1.0160191 -0.38555583 -0.8784155 -0.02912011 -0.10005989 -0.08494029
-0.22846372 0.62449855 0.15635613 -0.011241 0.6577617 0.14977798
0.1978127 -0.60682946 -0.13136941 1.4885821 -0.04555486 -0.11752318
0.590828 0.28494385 -0.20205928 -0.69608974 -0.64830387 -0.54020727
-0.5792269 -0.10107419 1.1203715 -0.4752582 -0.9956734 0.51226616
-1.3550559 -0.06993491 0.052147 0.46176466 -0.07609435 0.31794897
-0.5528179 -0.74575406 -0.38060027 -1.0534314 0.48335788 0.25865808
-0.09613241 -0.7433032 -0.56014717 0.18082808 0.89478046 -0.214353
1.0225904 -0.8013478 -0.5071219 -0.6379642 -0.42725277 0.92312986
0.24852058 0.06373207 -0.86407226 -0.27214038 0.25657037 -0.08740907
0.8925882 0.19068846 1.7639755 -0.08869249 -0.3350735 0.5038563
1.516145 0.6162438 0.67028606 0.7923555 0.5637068 0.6982407
0.35689476 0.3225237 -0.11531835 0.47605845 0.44334924 -0.2276896
0.24304014 0.29091528 0.05629167 0.8456451 -0.2820598 -0.31484514
-1.097946 0.2250905 -1.769485 -0.8180166 -0.22790195 2.014838
0.6338368 0.44500545 -0.18358016 0.3996955 0.82800394 -0.2233719
-0.03035841 -0.6247195 0.16699861 0.17066106 0.49503553 0.0961934
-1.1316062 0.6914262 6.2221184 0.9133077 -1.4503295 -0.01671291
0.5443977 0.23446988 0.19604114 -0.21307771 -0.92847776 0.75897384
0.8812614 0.08305146 0.29440007 1.2225944 -0.06383841 -0.12834793
-0.7835791 1.2338243 -0.01391137 -1.5040007 0.19252422 0.10776953
0.3114105 -0.38125408 -0.15626958 0.41309175 -0.06083161 -1.2937247
0.44532675 0.33080667 0.6855489 -0.83868784 1.2626709 0.41447514
-0.7959521 -0.36374074 -0.86640257 -0.28415254 -0.34110498 0.60081613
-0.6122112 0.28233472 0.9798732 0.4055347 -0.5030876 0.824751
0.2605597 0.3309667 -0.14001945 -0.5468621 0.49680364 -0.4674022
-0.10840175 1.3304238 0.36949137 -0.16718733 0.00727054 0.65732825
-0.13029775 0.40728307 -0.5321156 -0.25975865 0.00905353 1.6614403
-1.1472309 -0.40327483 -0.55002666 0.92372066 0.15351684 -0.03605435
-0.656584 -1.0102416 0.17069377 0.3999298 0.05391727 -0.2574577
-0.4521779 -0.9116507 -0.04458417 -0.78981966 0.08517986 -0.5114815
-0.9628895 0.856938 -0.2782912 -1.1737345 0.11806772 -1.2033243
-0.34212765 0.8416822 -1.129361 -0.90594345 -0.76633036 0.41206095
0.68451643 -0.5687462 0.8718034 0.67576736 -0.48894793 0.4018791
0.23345347 0.41245642 0.84707814 -1.2593881 0.08026975 0.41269702
-0.19755945 0.7813229 0.35054904 -0.24108937 -1.071341 -0.8074581
0.9910591 -0.2880892 0.61517245 -0.66674185 -0.8618258 0.6233533
0.382347 -0.30643603 0.6042151 0.08820026 -0.02079191 -0.2601745
-0.9701521 0.44641244 0.747705 -0.17923719 -0.47758895 0.41996968
0.6326135 -0.10007775 -0.4961666 -0.01489261 0.52306783 -1.0875257
0.5093588 -0.5260502 0.71166235 -0.21440321 0.07436748 -0.97918934
-0.36712262 -0.43885294 0.4124683 1.2250999 0.2825729 -0.9504419
0.8375685 0.45811194 -0.17759049 -0.55074936 -0.55316 -0.7706831
0.01222661 -0.22730413 0.6246317 1.2154937 0.080845 0.40721968
-0.17385867 -0.49050382 0.15247141 0.04833147 0.7535569 -1.6049716
-0.1609683 -0.7080556 -0.6045506 -0.91169137 -0.09750006 -0.8667477
-0.22846475 -1.6812657 0.1907283 -0.5564091 -0.21842135 0.49820924
0.12830992 0.01652659 0.30584955 0.36876187 -0.23944539 0.05161723
1.0210494 -0.30152974 -0.03721396 -0.0078711 -0.70513135 0.85492337
0.90815675 -0.4872359 -0.26119322 -0.5099693 0.36494237 -0.35374805
-0.16505493 -1.2668202 0.3841894 -0.1233 0.5540496 -0.6085775
0.02835526 -1.2591147 0.09389668 0.5040892 -0.23830433 0.04161752
0.01655263 0.07689705 -0.41210872 -0.86276317 0.74464726 -0.3850269
-0.6181145 -0.01498301 -0.67225546 -0.6118043 0.9166992 -0.5652838
-0.33734283 -0.14834088 -0.54659396 0.09023444 0.17604862 0.37961403
0.24283983 -0.9114979 -0.24373515 0.19330387 -0.1499199 0.10453287
0.06143489 0.6421017 -0.98245335 0.73160505 -0.5023933 -0.37243545
-1.127281 0.6881561 0.3741022 -0.28669146 -0.5420138 0.483018
0.14409338 -0.4480943 0.4228799 -0.4258409 -0.6952604 0.29303035
0.5944611 0.30611676 0.3627234 0.04770037 -0.07839561 0.38742954
-0.28492802 0.245524 1.3917456 0.15646605 -0.51018673 0.40742633
1.0419666 -0.1024794 -0.54231274 0.2493708 0.08299502 -0.31802636
0.08711076 -0.6418188 -0.9933492 1.0375395 0.6971969 1.0097587
1.0288997 -0.629643 0.4790906 0.8303687 0.36572453 -1.4580567
0.04046315 0.7044196 0.72064656 -1.2647285 -0.1567347 -0.40992984
-0.21843301 1.7304091 0.7934896 -0.19387619 0.92679995 0.40363425
0.07340477 -0.17683053 -0.37037814 -0.09262192 -0.15250936 0.36416394
0.7458153 -0.16064468 -0.72838444 0.718317 -0.21372671 0.17399709
0.71243906 1.007295 -0.825979 -1.119156 -0.49061874 0.8578429
-0.84628093 -0.13122034 -0.27192798 0.8898586 0.27990022 0.8228479
0.3435287 -0.49656293 0.262054 0.19108139 -0.02901679 -0.6974328
-0.94501084 -0.21200067 -0.19809338 -0.0827461 -0.20600368 0.08269286
-1.2620479 -0.7253682 -0.5545845 0.30339476 1.1098218 0.7458937
0.14351606 0.78441626 0.61943495 -0.6097203 -0.7399717 -1.3551737
-0.76848084 0.4319946 -0.1020894 -0.5437597 -0.5265929 0.05013686] | [11.354191780090332, 2.7221827507019043] |
97fabfe8-8e15-469c-a09b-db1da18611ef | transfer-learning-with-joint-fine-tuning-for | 2210.05790 | null | https://arxiv.org/abs/2210.05790v1 | https://arxiv.org/pdf/2210.05790v1.pdf | Transfer Learning with Joint Fine-Tuning for Multimodal Sentiment Analysis | Most existing methods focus on sentiment analysis of textual data. However, recently there has been a massive use of images and videos on social platforms, motivating sentiment analysis from other modalities. Current studies show that exploring other modalities (e.g., images) increases sentiment analysis performance. State-of-the-art multimodal models, such as CLIP and VisualBERT, are pre-trained on datasets with the text paired with images. Although the results obtained by these models are promising, pre-training and sentiment analysis fine-tuning tasks of these models are computationally expensive. This paper introduces a transfer learning approach using joint fine-tuning for sentiment analysis. Our proposal achieved competitive results using a more straightforward alternative fine-tuning strategy that leverages different pre-trained unimodal models and efficiently combines them in a multimodal space. Moreover, our proposal allows flexibility when incorporating any pre-trained model for texts and images during the joint fine-tuning stage, being especially interesting for sentiment classification in low-resource scenarios. | ['Ricardo Marcondes Marcacini', 'Guilherme Lourenço de Toledo'] | 2022-10-11 | null | null | null | null | ['multimodal-sentiment-analysis', 'multimodal-sentiment-analysis'] | ['computer-vision', 'natural-language-processing'] | [ 6.79294243e-02 -1.95163548e-01 -2.16144443e-01 -4.88439023e-01
-9.34840560e-01 -8.99872661e-01 9.21597004e-01 8.44494551e-02
-7.97619581e-01 4.34490025e-01 3.55980277e-01 -7.62599707e-02
3.56783688e-01 -5.36810637e-01 -7.27819204e-01 -6.79968238e-01
3.06345284e-01 3.66830856e-01 3.74521166e-02 -4.60478276e-01
2.01025873e-01 8.54495242e-02 -1.66020787e+00 9.99533832e-01
3.22643876e-01 1.02720642e+00 7.44991079e-02 8.68999481e-01
-3.43376249e-01 6.61596656e-01 -3.62926394e-01 -1.03046966e+00
1.28138736e-01 -1.20406114e-01 -7.67031252e-01 2.02651635e-01
6.70819461e-01 -2.96267241e-01 -5.33134378e-02 8.49669933e-01
5.86800039e-01 8.10387209e-02 7.27375746e-01 -1.32557583e+00
-7.07023442e-01 5.22453785e-01 -8.76854181e-01 -1.58777267e-01
4.90891576e-01 -1.00217890e-02 1.11114800e+00 -1.13843477e+00
7.51277864e-01 1.34534419e+00 6.66099727e-01 4.13476795e-01
-1.21760249e+00 -5.24560452e-01 2.76533991e-01 2.50500321e-01
-9.63601232e-01 -2.97005683e-01 8.41634393e-01 -5.92212319e-01
9.07440186e-01 1.67431220e-01 4.50225741e-01 1.22639155e+00
-4.45127040e-02 1.15287220e+00 1.11445713e+00 -5.99273503e-01
-9.18281376e-02 7.67511964e-01 -2.85505891e-01 4.88349348e-01
-2.50488430e-01 -5.30827165e-01 -9.22945082e-01 8.73303413e-02
2.55835861e-01 9.83482748e-02 6.66380897e-02 -7.42173791e-01
-1.35519898e+00 1.03634000e+00 3.83517832e-01 3.83131802e-01
-2.89412707e-01 1.16801128e-01 9.02106345e-01 3.91170651e-01
5.68897486e-01 2.38938868e-01 -5.87862372e-01 -1.54587984e-01
-1.36351347e+00 -1.16790488e-01 6.72446728e-01 7.19240129e-01
8.51994395e-01 -2.69392461e-01 -2.73472697e-01 8.90678465e-01
5.18729866e-01 5.97061992e-01 5.15827656e-01 -5.64637065e-01
7.97463179e-01 5.70992529e-01 -1.27142817e-01 -1.02116919e+00
-5.50425708e-01 -1.33591658e-03 -5.80063462e-01 1.51565820e-01
5.26927412e-01 -2.52868652e-01 -7.97862530e-01 1.50788069e+00
3.11494052e-01 -3.46572995e-01 1.45205379e-01 9.95616317e-01
8.61658633e-01 6.33504808e-01 3.54502946e-01 1.48314729e-01
1.70096588e+00 -1.34391201e+00 -5.17286003e-01 -1.05173111e-01
7.61707366e-01 -1.15336835e+00 1.29666042e+00 4.71717983e-01
-1.19001186e+00 -5.67059696e-01 -7.48461783e-01 -3.46857041e-01
-9.56541598e-01 4.36842263e-01 6.99692309e-01 1.00118434e+00
-1.13135850e+00 1.91395760e-01 -5.93120098e-01 -7.11302161e-01
5.16897917e-01 4.28484350e-01 -7.79983699e-01 -1.66452199e-01
-1.02174962e+00 9.18762922e-01 1.26647592e-01 5.33419326e-02
-6.52913451e-01 -4.58769351e-01 -9.27679300e-01 2.76393387e-02
1.73321128e-01 -7.49565482e-01 1.09850955e+00 -1.58985209e+00
-1.47260070e+00 1.13529313e+00 -1.13925368e-01 -6.50116205e-02
6.09478712e-01 -2.24227205e-01 -2.50942975e-01 5.35230279e-01
-1.70613065e-01 1.11684453e+00 1.32567477e+00 -1.28344929e+00
-5.04544914e-01 -2.84700155e-01 4.74021375e-01 4.15017307e-01
-1.11153531e+00 1.98891565e-01 -8.41712117e-01 -5.60585856e-01
-5.92359602e-01 -1.02778530e+00 -7.27052465e-02 -1.48336679e-01
-2.54694283e-01 1.08297631e-01 8.74123991e-01 -4.57271487e-01
1.05958545e+00 -2.17547846e+00 4.15026665e-01 2.73725390e-01
-1.57392070e-01 5.61197512e-02 -5.95174849e-01 7.27536261e-01
-1.34936765e-01 1.25097811e-01 5.32930456e-02 -9.32741463e-01
3.24768335e-01 -3.16277780e-02 -1.97062582e-01 4.79326844e-01
2.50301629e-01 9.93253767e-01 -5.95180273e-01 -7.69522429e-01
4.16750401e-01 7.56226361e-01 -6.96998596e-01 -1.22311927e-01
-5.19021414e-02 5.27446747e-01 -2.87528753e-01 8.52546215e-01
6.93843007e-01 -2.87009835e-01 1.09939441e-01 -6.11908138e-01
-3.59024890e-02 -4.26136851e-01 -9.47662413e-01 1.90569377e+00
-6.97307289e-01 8.31459105e-01 1.32238954e-01 -1.17501342e+00
4.93341833e-01 3.55198592e-01 5.14238417e-01 -7.26014197e-01
3.11532527e-01 5.34882583e-02 -5.52110732e-01 -7.71009803e-01
9.56438303e-01 -3.32173616e-01 -3.52514803e-01 5.36886275e-01
4.28082198e-01 -2.46468768e-01 4.53824162e-01 4.10465330e-01
4.83677030e-01 4.91350621e-01 1.15448353e-03 9.96555202e-03
7.95287013e-01 9.28567499e-02 -3.32902104e-01 5.88730335e-01
-9.70916357e-03 7.30795741e-01 5.35820484e-01 -2.13197172e-01
-1.01666927e+00 -6.60020471e-01 -1.01073116e-01 1.77133000e+00
4.58177179e-02 -5.18007755e-01 -7.54416943e-01 -8.41515601e-01
-9.97525305e-02 1.07731111e-01 -8.91205311e-01 8.20504948e-02
-1.28888175e-01 -8.06997001e-01 3.65711510e-01 5.39092243e-01
1.57262892e-01 -1.05426216e+00 -3.72738183e-01 -1.60389781e-01
-2.97835261e-01 -1.21734250e+00 -2.59622484e-01 1.60454467e-01
-6.60216212e-01 -7.69278169e-01 -1.13278365e+00 -7.07626402e-01
7.61332273e-01 1.76539376e-01 1.05223465e+00 -1.37960717e-01
-1.20048866e-01 1.09006500e+00 -6.66985333e-01 -4.75034535e-01
-2.83938460e-02 4.06328470e-01 -2.04048514e-01 5.44146478e-01
5.23958147e-01 -5.24541177e-02 -5.37165821e-01 2.17190012e-01
-1.30231786e+00 -5.02846204e-02 7.79748857e-01 8.64185512e-01
4.18495417e-01 -2.73714662e-01 5.42789161e-01 -9.13005233e-01
4.92992520e-01 -5.67763150e-01 -2.33474940e-01 3.82427812e-01
-2.24257275e-01 -2.01583486e-02 4.13886636e-01 -5.61324596e-01
-1.22279298e+00 3.13274950e-01 -9.14444402e-03 -5.86397111e-01
-2.16370121e-01 8.26794744e-01 2.03258976e-01 -1.56747833e-01
5.29564738e-01 -1.82614237e-01 8.84999260e-02 -2.66609728e-01
7.40668952e-01 6.05302036e-01 2.17368409e-01 -4.04082179e-01
7.44203329e-01 8.12781751e-01 -6.87705800e-02 -7.69679189e-01
-9.14921105e-01 -7.30007231e-01 -8.49224985e-01 -6.12554789e-01
1.05989110e+00 -1.21521807e+00 -8.15408528e-01 3.57025981e-01
-7.08954573e-01 -2.30841026e-01 -2.46558338e-02 5.84647834e-01
-6.28914773e-01 5.75096965e-01 -5.00165164e-01 -5.86847603e-01
-2.44188368e-01 -1.25279200e+00 1.51619053e+00 1.01971723e-01
-2.27301329e-01 -1.40950811e+00 1.51778296e-01 8.68928850e-01
5.17894506e-01 2.90070288e-02 4.62829679e-01 -4.93066370e-01
-2.74813980e-01 -5.11621535e-01 -4.32177991e-01 2.44918332e-01
-2.99331695e-01 9.12241489e-02 -1.46053851e+00 -3.64562064e-01
-4.94480431e-01 -9.19914246e-01 1.23479140e+00 4.49970543e-01
9.75282609e-01 1.58483982e-02 -1.91486061e-01 3.47310990e-01
1.29027283e+00 -4.25021976e-01 5.51838577e-01 6.51911318e-01
8.40015113e-01 9.91870403e-01 8.43682408e-01 5.63220143e-01
7.58293748e-01 5.26813567e-01 5.78202724e-01 -4.69033152e-01
2.22414825e-02 1.11787833e-01 6.68159246e-01 5.59482276e-01
-2.50033349e-01 -2.66097426e-01 -7.42328584e-01 6.08030915e-01
-2.07282400e+00 -1.00481546e+00 1.00343473e-01 1.84590530e+00
7.32067049e-01 -2.62300104e-01 2.67993897e-01 -2.46101990e-02
4.96668845e-01 4.53994572e-02 -2.61396438e-01 -6.36147976e-01
-4.02278602e-01 8.75886232e-02 4.01098102e-01 2.60089576e-01
-1.51044238e+00 8.94160450e-01 5.91337347e+00 8.60822737e-01
-1.25986969e+00 1.92759022e-01 6.01711810e-01 -5.74435592e-01
-4.27814454e-01 -2.40059584e-01 -6.53863609e-01 2.35113889e-01
8.32996666e-01 4.86639023e-01 1.91641733e-01 7.38189697e-01
-6.45039678e-02 -3.43018144e-01 -1.02329671e+00 1.13452375e+00
5.09181082e-01 -1.23849308e+00 8.92585739e-02 -1.05662763e-01
8.94766688e-01 4.50154059e-02 4.74263489e-01 6.07895613e-01
-2.29082227e-01 -8.11170936e-01 9.83920336e-01 5.47287226e-01
6.85521245e-01 -7.14775980e-01 9.12094891e-01 -1.68984801e-01
-9.85352039e-01 -9.95513648e-02 -1.53401792e-01 2.00965151e-01
2.97940820e-01 4.47699249e-01 -5.16658843e-01 5.61853051e-01
1.01461744e+00 9.51568961e-01 -9.83179271e-01 6.28658831e-01
9.30472389e-02 2.56240845e-01 -1.41301885e-01 -4.24340814e-02
4.37345594e-01 -1.45158125e-02 1.85904682e-01 1.78671193e+00
2.07688481e-01 -5.33133745e-01 6.68867379e-02 1.69966161e-01
-7.01506659e-02 3.71823162e-01 -5.05784333e-01 -2.21551701e-01
-3.62482995e-01 1.91304243e+00 -8.33791554e-01 -3.93658489e-01
-1.02564001e+00 8.96696866e-01 3.07309240e-01 4.80432868e-01
-9.85666454e-01 -2.86484867e-01 1.58510998e-01 -3.02872121e-01
6.50603175e-01 -1.12194158e-02 -2.62530684e-01 -1.43254030e+00
-1.16824210e-01 -8.51889729e-01 6.31660223e-01 -1.09836590e+00
-1.39601994e+00 5.30081034e-01 -2.52049919e-02 -1.37926757e+00
-2.31380641e-01 -9.90934014e-01 -1.98453575e-01 5.19219756e-01
-1.93062925e+00 -1.89024341e+00 -2.78879285e-01 1.14294159e+00
3.27712864e-01 -1.23934120e-01 7.92933881e-01 5.43679059e-01
-2.85995662e-01 7.43755817e-01 1.29051387e-01 -3.02229244e-02
1.35240614e+00 -1.21285856e+00 -4.49693233e-01 5.29389560e-01
1.12977542e-01 3.31305534e-01 5.88115692e-01 -3.12732935e-01
-1.55947483e+00 -7.03432977e-01 7.06952989e-01 -6.12060070e-01
9.67157900e-01 -4.70024019e-01 -4.81418461e-01 6.30469918e-01
7.71160424e-01 -2.36239165e-01 1.04026306e+00 4.30638224e-01
-5.34089863e-01 -4.42304276e-02 -8.69050264e-01 6.45851314e-01
3.53535295e-01 -8.25913370e-01 -2.55142868e-01 2.87418693e-01
1.26938894e-01 -1.52966857e-01 -9.47002113e-01 1.23174421e-01
7.72023618e-01 -8.94948125e-01 1.08719432e+00 -5.20995080e-01
8.59248638e-01 -2.13143259e-01 -2.74759978e-01 -1.23440266e+00
1.39542639e-01 -2.67804861e-01 -2.82990914e-02 1.28102434e+00
7.04718828e-01 -1.76229760e-01 7.07578897e-01 6.61165476e-01
9.83509049e-02 -3.61116320e-01 -5.47888279e-01 -2.49347091e-01
-8.44191387e-02 -5.94113410e-01 8.75694025e-03 1.11712825e+00
4.74036992e-01 4.95585799e-01 -6.06958032e-01 -1.92903712e-01
2.76270747e-01 3.39756608e-01 1.02001560e+00 -8.89171898e-01
-1.75112307e-01 -5.88755548e-01 -2.93375015e-01 -5.63570380e-01
2.07906470e-01 -8.54547501e-01 -2.26671174e-01 -1.47111011e+00
4.69394147e-01 -1.48639092e-02 -2.72898257e-01 7.11063981e-01
-4.15714756e-02 1.00148988e+00 4.26661849e-01 1.77691355e-02
-9.81774271e-01 4.68498826e-01 1.40962553e+00 -2.33173713e-01
-3.47023755e-02 -4.72562551e-01 -6.42747343e-01 7.14610279e-01
6.97980106e-01 -2.22169489e-01 -1.91261649e-01 -4.32076037e-01
9.29991603e-01 -2.15652242e-01 2.21119195e-01 -5.20942211e-01
3.92395675e-01 1.57798693e-01 6.11916661e-01 -7.32303083e-01
8.16485465e-01 -1.01046574e+00 -2.85126179e-01 3.27476271e-04
-2.91236162e-01 -3.35662588e-02 5.25200486e-01 5.34055173e-01
-7.18548834e-01 -2.94287592e-01 5.65174103e-01 1.45198181e-02
-8.24207246e-01 -4.77119237e-02 -5.23126125e-01 -2.88774520e-01
1.05157077e+00 -3.83929968e-01 -3.59582663e-01 -6.43451691e-01
-1.02721155e+00 2.90384442e-01 3.09255570e-01 6.48712516e-01
2.43920878e-01 -1.19026911e+00 -4.98691469e-01 9.67987254e-03
4.47885066e-01 -4.26639676e-01 6.50251031e-01 1.42471492e+00
-1.95964321e-01 4.73434299e-01 -3.96702945e-01 -7.69580364e-01
-1.47468841e+00 6.47634745e-01 -8.07569250e-02 -4.07081991e-01
1.60568431e-02 7.35782027e-01 3.89432609e-01 -6.55289054e-01
6.65796027e-02 1.26790963e-02 -6.45868063e-01 1.05405855e+00
4.70704347e-01 9.70954448e-02 1.42662838e-01 -9.00506377e-01
-4.17840511e-01 8.66850436e-01 -1.18881285e-01 -4.18654442e-01
1.34361553e+00 -5.59148848e-01 -8.72433558e-02 4.46153611e-01
1.35379970e+00 1.09901294e-01 -1.04826403e+00 -1.94159329e-01
-2.61610538e-01 -3.44486326e-01 9.72471833e-02 -8.36145043e-01
-1.24813700e+00 1.11004865e+00 3.92222911e-01 2.82388866e-01
1.43225646e+00 1.05439432e-01 3.04702163e-01 5.40343881e-01
3.88905476e-03 -1.37506473e+00 5.87319553e-01 4.72069740e-01
7.41504192e-01 -1.72954249e+00 9.42686051e-02 2.26767566e-02
-1.29783130e+00 1.24441373e+00 3.29526782e-01 8.36324915e-02
5.98883331e-01 -2.76300814e-02 3.14437747e-01 -1.51704699e-01
-5.16471267e-01 -3.38392675e-01 6.46884918e-01 4.29177821e-01
5.98701477e-01 -1.28596842e-01 -8.44756514e-03 5.20543456e-01
-1.46664921e-02 -1.04413182e-01 4.94421035e-01 9.22878265e-01
2.97554396e-02 -1.07479095e+00 -5.47075808e-01 2.10974082e-01
-8.24935615e-01 -2.84898251e-01 -2.16782793e-01 8.34858418e-01
-7.90481195e-02 9.53453243e-01 1.11746587e-01 -1.14160784e-01
2.02607334e-01 1.51376054e-01 5.71428537e-01 -4.05931741e-01
-9.58154142e-01 4.10057664e-01 2.19655260e-01 -7.00582147e-01
-1.18136263e+00 -8.93119037e-01 -7.39422023e-01 -1.00230768e-01
-3.46348077e-01 -1.88813075e-01 1.17620230e+00 8.58787477e-01
2.73678750e-01 3.80490601e-01 4.16735291e-01 -1.48122084e+00
1.13400809e-01 -8.51469755e-01 -5.21048725e-01 6.18803084e-01
4.03513551e-01 -5.62755406e-01 -1.58359826e-01 6.50884330e-01] | [13.083312034606934, 5.079772472381592] |
1438ff8b-8ae2-4b9e-a56a-e31cc681d0fa | a-threefold-review-on-deep-semantic | 2303.04315 | null | https://arxiv.org/abs/2303.04315v1 | https://arxiv.org/pdf/2303.04315v1.pdf | A Threefold Review on Deep Semantic Segmentation: Efficiency-oriented, Temporal and Depth-aware design | Semantic image and video segmentation stand among the most important tasks in computer vision nowadays, since they provide a complete and meaningful representation of the environment by means of a dense classification of the pixels in a given scene. Recently, Deep Learning, and more precisely Convolutional Neural Networks, have boosted semantic segmentation to a new level in terms of performance and generalization capabilities. However, designing Deep Semantic Segmentation models is a complex task, as it may involve application-dependent aspects. Particularly, when considering autonomous driving applications, the robustness-efficiency trade-off, as well as intrinsic limitations - computational/memory bounds and data-scarcity - and constraints - real-time inference - should be taken into consideration. In this respect, the use of additional data modalities, such as depth perception for reasoning on the geometry of a scene, and temporal cues from videos to explore redundancy and consistency, are promising directions yet not explored to their full potential in the literature. In this paper, we conduct a survey on the most relevant and recent advances in Deep Semantic Segmentation in the context of vision for autonomous vehicles, from three different perspectives: efficiency-oriented model development for real-time operation, RGB-Depth data integration (RGB-D semantic segmentation), and the use of temporal information from videos in temporally-aware models. Our main objective is to provide a comprehensive discussion on the main methods, advantages, limitations, results and challenges faced from each perspective, so that the reader can not only get started, but also be up to date in respect to recent advances in this exciting and challenging research field. | ['Fernando Santos Osório', 'Felipe Manfio Barbosa'] | 2023-03-08 | null | null | null | null | ['video-semantic-segmentation', 'data-integration'] | ['computer-vision', 'knowledge-base'] | [ 4.12238210e-01 -1.66617081e-01 -1.82921529e-01 -4.78526533e-01
-2.21929684e-01 -4.47072566e-01 4.33133930e-01 7.79635981e-02
-5.80536544e-01 4.25861835e-01 -4.81276244e-01 -1.23178571e-01
-3.35689992e-01 -9.11731839e-01 -4.84083235e-01 -8.56071472e-01
2.49637682e-02 4.06340182e-01 5.08814275e-01 -2.09708601e-01
3.74643356e-01 8.38517964e-01 -2.16716099e+00 -1.09421238e-01
8.46948326e-01 1.36578274e+00 5.54547906e-01 3.56320649e-01
-2.55235136e-01 4.43579346e-01 -2.65020490e-01 -2.50258565e-01
1.48996934e-01 -2.76343852e-01 -6.23613715e-01 4.51208830e-01
7.61952847e-02 -2.03100771e-01 -2.96734601e-01 1.02996361e+00
1.66882440e-01 2.84471452e-01 2.86181360e-01 -1.19838119e+00
-1.04617998e-02 -4.09423038e-02 -3.09924692e-01 2.87234187e-01
-1.87822711e-02 3.27397704e-01 6.42536879e-01 -5.86945355e-01
5.96892595e-01 7.62518883e-01 2.29388013e-01 4.46806580e-01
-7.02382147e-01 -2.65451461e-01 5.09309828e-01 8.48144114e-01
-1.14732194e+00 -3.41194391e-01 8.43097329e-01 -4.91050065e-01
9.99467075e-01 2.52803683e-01 1.00248051e+00 8.94797325e-01
4.85454611e-02 9.15224612e-01 9.72542167e-01 -2.40172535e-01
5.51873028e-01 4.56118435e-02 1.11448869e-01 4.85331923e-01
1.74221680e-01 2.84307271e-01 -5.46459138e-01 5.46705425e-01
5.01312733e-01 -3.82693522e-02 -5.77977076e-02 -7.59983718e-01
-9.38517809e-01 6.72160566e-01 4.87155020e-01 3.99125069e-01
-3.29102695e-01 9.64008272e-02 4.53421801e-01 -7.51402900e-02
2.84061462e-01 1.13668986e-01 -5.21990776e-01 -1.91705108e-01
-1.00366449e+00 2.76210159e-01 4.17434394e-01 8.52382481e-01
1.00599587e+00 1.99973717e-01 2.36490250e-01 4.78402823e-01
2.66111344e-01 4.32575464e-01 1.84502289e-01 -1.19889021e+00
2.78146148e-01 5.57822764e-01 -1.18099935e-01 -9.22864914e-01
-6.91576123e-01 -4.03138578e-01 -6.28278255e-01 4.86736059e-01
3.52795422e-01 1.06881015e-01 -9.64039207e-01 1.45562160e+00
4.62995768e-01 1.61878884e-01 1.65914476e-01 1.20953596e+00
8.02085102e-01 5.11247158e-01 2.90830322e-02 -2.35163555e-01
1.38994658e+00 -8.70411038e-01 -6.34481907e-01 -7.07414806e-01
2.82362044e-01 -5.21394849e-01 6.05914056e-01 3.40133578e-01
-8.96760702e-01 -6.87579393e-01 -1.19140399e+00 -2.35064149e-01
-7.08762586e-01 -3.40929092e-03 9.17613626e-01 5.95237494e-01
-9.35593307e-01 4.11752433e-01 -1.18440747e+00 -7.00874031e-01
3.31609607e-01 2.78791130e-01 -2.27960408e-01 -3.16957414e-01
-1.23308909e+00 8.57426822e-01 5.30504823e-01 4.92113501e-01
-7.45947897e-01 -3.70107621e-01 -9.08296347e-01 -2.41543651e-01
7.24222720e-01 -6.50816321e-01 1.12951064e+00 -1.01349604e+00
-1.42140532e+00 9.48929787e-01 -2.51784176e-01 -5.89284062e-01
5.90432286e-01 -6.57905936e-02 -2.70512968e-01 3.80295545e-01
-7.90840760e-02 8.55896115e-01 5.26776195e-01 -1.25127447e+00
-9.51531827e-01 -6.68927848e-01 2.73754269e-01 3.20411712e-01
5.44588380e-02 -2.65167326e-01 -9.07510102e-01 -1.72509223e-01
3.13723564e-01 -9.18398261e-01 -5.02793133e-01 1.97829470e-01
-5.55005297e-02 2.37932149e-03 8.80166709e-01 -5.31294823e-01
9.30851042e-01 -2.14586425e+00 3.01052600e-01 -2.64151935e-02
-7.66653866e-02 4.36894953e-01 1.19042762e-01 2.20725745e-01
2.72520989e-01 -2.58310705e-01 -5.29295444e-01 -2.80254275e-01
-2.32217804e-01 6.20789528e-01 1.74322892e-02 6.02803767e-01
2.90590078e-01 9.82252240e-01 -8.76140833e-01 -3.42411965e-01
1.02437270e+00 5.15840888e-01 -2.34687924e-01 -1.19703643e-01
-4.84560341e-01 7.14249372e-01 -6.36645555e-01 6.18152380e-01
6.51631713e-01 2.71989524e-01 -1.11403158e-02 -1.15047708e-01
-6.26606882e-01 -3.67267579e-02 -1.08900809e+00 1.89599526e+00
-3.17733586e-01 8.84932637e-01 1.13175340e-01 -1.41869080e+00
8.12547863e-01 7.81157836e-02 6.85700417e-01 -1.31273258e+00
1.78474545e-01 4.36575741e-01 -2.14227155e-01 -7.11256385e-01
7.50597715e-01 1.02929175e-01 5.01786917e-03 -1.18083782e-01
-1.98193595e-01 -2.49532148e-01 5.46919286e-01 -3.01243365e-01
4.54116493e-01 3.96399558e-01 1.96671307e-01 1.49843758e-02
6.79709077e-01 4.52573389e-01 5.32619119e-01 4.48501796e-01
-3.33257943e-01 5.09010613e-01 3.96479696e-01 -3.73245180e-01
-8.49701405e-01 -6.14227951e-01 -3.11916083e-01 6.17469430e-01
7.79810488e-01 -3.83404903e-02 -8.96611929e-01 -2.75990337e-01
-1.70688123e-01 5.85460901e-01 -5.30180216e-01 -8.60715732e-02
-7.16882944e-01 -6.89566135e-01 9.58131626e-03 6.32633090e-01
6.71590924e-01 -9.63459134e-01 -1.32357657e+00 2.38883704e-01
-1.01887994e-01 -1.56953478e+00 4.10686374e-01 3.29654783e-01
-1.16658926e+00 -1.18335664e+00 -6.16020203e-01 -5.93392193e-01
3.32661688e-01 6.39416873e-01 8.40494633e-01 -6.29354492e-02
-5.13603210e-01 3.60371590e-01 -3.63841683e-01 -2.92631298e-01
-6.91428110e-02 -1.35156959e-01 -3.39356929e-01 -2.69388985e-02
4.90387946e-01 -4.60803002e-01 -6.69243872e-01 4.84973907e-01
-1.04610860e+00 2.39033341e-01 5.22560894e-01 4.39997464e-01
7.61742830e-01 2.40923926e-01 1.03884056e-01 -4.60289061e-01
-1.97123483e-01 -2.93451190e-01 -9.56844151e-01 3.93369868e-02
-4.61401224e-01 -1.55524135e-01 3.83585989e-01 1.72068775e-01
-1.03818095e+00 3.04161996e-01 -3.18096280e-01 -4.16746229e-01
-5.38008690e-01 5.43555975e-01 -3.28429341e-01 -1.07588626e-01
3.76645178e-01 2.92031884e-01 1.17013462e-01 -3.93405646e-01
4.78209436e-01 4.51832741e-01 6.70762599e-01 -3.65057498e-01
4.16542798e-01 9.36505020e-01 2.78316617e-01 -1.05283654e+00
-7.05293953e-01 -7.81596541e-01 -8.60439479e-01 -4.81070042e-01
1.15427113e+00 -7.40906239e-01 -4.72569287e-01 7.63968885e-01
-1.14216936e+00 -3.11926544e-01 -2.46584475e-01 3.89861465e-01
-7.89411366e-01 4.49250549e-01 -2.32664898e-01 -7.57457197e-01
1.90062821e-01 -1.60034800e+00 9.78857160e-01 4.60682541e-01
2.46888250e-01 -1.02377093e+00 -4.62867767e-01 7.99196184e-01
3.12659651e-01 3.54991436e-01 6.66699111e-01 -1.90468535e-01
-1.03722548e+00 -1.67757809e-01 -3.54811370e-01 3.60558689e-01
-1.49849892e-01 9.81699526e-02 -1.19324982e+00 1.23752072e-01
2.31136531e-02 3.35664861e-02 9.82018828e-01 6.76988304e-01
1.24851835e+00 3.15560222e-01 -3.71766418e-01 6.30685210e-01
1.59859574e+00 3.70369047e-01 6.05322480e-01 4.67066169e-01
5.85786998e-01 9.15294230e-01 1.03651643e+00 5.02761602e-01
3.95243257e-01 8.69487166e-01 1.00153017e+00 -1.48513421e-01
-2.74815232e-01 1.66980535e-01 -9.38376188e-02 4.35375482e-01
-3.18243653e-01 -2.94108272e-01 -9.58463252e-01 4.12905723e-01
-1.99301875e+00 -7.77188420e-01 -3.03726643e-01 2.25693130e+00
2.21532080e-02 2.43233144e-01 -3.87584344e-02 4.28478301e-01
5.24087608e-01 1.68689549e-01 -8.86674702e-01 -2.36259490e-01
-2.14727819e-01 -6.58018067e-02 6.74443901e-01 4.06670868e-01
-1.10736871e+00 9.60276425e-01 5.27655411e+00 7.43322909e-01
-1.41178799e+00 8.15260783e-02 6.75671637e-01 2.28419565e-02
-1.30514175e-01 5.20024411e-02 -7.37818182e-01 3.57758194e-01
7.82151222e-01 1.49859369e-01 3.23151618e-01 7.63992667e-01
5.45853019e-01 -7.11902261e-01 -8.94338787e-01 1.15691090e+00
1.52962640e-01 -1.30040979e+00 -2.78131217e-01 8.10424238e-02
6.39085650e-01 3.06996644e-01 1.62546933e-02 -2.15501450e-02
-5.79066157e-01 -7.28579700e-01 1.12648976e+00 4.03363407e-01
4.61625278e-01 -8.04192364e-01 7.36281037e-01 3.81263465e-01
-1.27283907e+00 -1.20608695e-01 -2.13795528e-01 -6.68258965e-02
4.81195509e-01 7.28434086e-01 -1.57787502e-01 7.97637939e-01
7.66514897e-01 8.69066060e-01 -3.66926104e-01 1.14218962e+00
-1.66870072e-01 9.87911373e-02 -2.54099697e-01 9.65104997e-03
5.84462404e-01 -3.19910347e-01 4.17401493e-01 9.97398198e-01
1.88286647e-01 1.63667463e-02 1.59685597e-01 8.07277143e-01
5.12944877e-01 -2.64647812e-01 -4.06495541e-01 2.14366429e-02
1.21039979e-01 1.23243654e+00 -1.07472765e+00 -1.77682206e-01
-6.17391050e-01 7.70977795e-01 -3.15708406e-02 4.96870399e-01
-8.85231555e-01 -1.73780039e-01 8.76707733e-01 1.25253618e-01
2.45843858e-01 -7.15539873e-01 -5.74597478e-01 -7.67319560e-01
1.22541994e-01 -2.91498214e-01 1.62132636e-01 -7.29999363e-01
-5.40417194e-01 4.71719116e-01 2.73699254e-01 -1.21710515e+00
-2.24282265e-01 -8.92654002e-01 -1.27097473e-01 5.39564312e-01
-2.05069733e+00 -8.32638800e-01 -6.99848771e-01 3.66121441e-01
9.97671127e-01 1.80379912e-01 3.84919733e-01 3.47658068e-01
-5.94755530e-01 -5.94639033e-02 1.30806267e-01 -2.90514886e-01
1.91356800e-02 -8.00226092e-01 3.44488829e-01 9.74402487e-01
-2.00227834e-02 1.47311175e-02 6.93912029e-01 -2.38055438e-01
-1.46396530e+00 -8.73695731e-01 6.69651687e-01 -8.30206797e-02
4.31670457e-01 -1.03114702e-01 -7.79041052e-01 1.66688740e-01
-1.39734060e-01 8.01835582e-02 2.19885588e-01 -3.35117459e-01
1.78260773e-01 -2.74186939e-01 -9.17256594e-01 5.43575764e-01
1.06303644e+00 -3.64032090e-01 -6.47476390e-02 2.24017799e-01
5.33496976e-01 -6.05998099e-01 -5.20316899e-01 6.51091874e-01
3.95134866e-01 -1.51276648e+00 1.01595390e+00 2.02631317e-02
1.39026538e-01 -4.59863842e-01 -1.11900210e-01 -7.14018404e-01
1.30799696e-01 -2.90009081e-01 6.68197721e-02 7.67101765e-01
4.36392091e-02 -4.58820671e-01 9.70279515e-01 6.53213859e-01
-5.88955522e-01 -8.05964828e-01 -1.13272607e+00 -6.88693106e-01
-2.84679830e-01 -1.05387151e+00 3.92767042e-01 5.07891297e-01
-4.29435313e-01 -6.51189089e-02 -6.00553565e-02 2.27733478e-01
5.48240900e-01 1.84831068e-01 5.23113012e-01 -1.10993838e+00
1.21145777e-01 -6.35934949e-01 -8.89803588e-01 -1.14324856e+00
9.92880017e-02 -4.03128445e-01 1.18930124e-01 -1.88103700e+00
-1.86559007e-01 -3.83226037e-01 -8.06298926e-02 1.74589545e-01
2.44863242e-01 3.70431930e-01 7.88336918e-02 6.88803941e-02
-5.45925200e-01 4.18697655e-01 1.33903635e+00 -7.77621791e-02
-9.82657447e-02 2.00525343e-01 -2.56046295e-01 7.64548182e-01
9.21145499e-01 -8.28053504e-02 -5.62923551e-01 -5.98632216e-01
1.69433892e-01 2.01358452e-01 4.66480494e-01 -1.29365540e+00
3.97559941e-01 -3.16219836e-01 8.01576674e-02 -7.76839077e-01
7.17322588e-01 -9.71073031e-01 1.69765100e-01 4.87257212e-01
1.11568265e-01 -1.79538667e-01 3.07511896e-01 6.32876396e-01
-5.77150464e-01 -3.88305187e-01 8.35346341e-01 -3.21725130e-01
-1.74941945e+00 4.25942510e-01 -5.13618171e-01 -2.45849192e-01
1.42186403e+00 -9.33185816e-01 4.60872566e-03 -4.19231877e-02
-6.27276897e-01 2.66963035e-01 4.41990674e-01 6.05683982e-01
4.89371598e-01 -7.82337666e-01 -2.43853778e-01 3.59542906e-01
3.43809336e-01 3.55898112e-01 8.05415392e-01 9.72093880e-01
-7.06541061e-01 7.48544633e-01 -2.88113326e-01 -9.86926973e-01
-1.04732978e+00 6.12177670e-01 4.16303933e-01 2.73116767e-01
-5.42134523e-01 4.99797493e-01 2.71412015e-01 3.96155701e-05
3.58873546e-01 -4.31839228e-01 -3.83736938e-01 1.76996276e-01
2.64572352e-01 4.95569408e-01 5.27534366e-01 -8.08663845e-01
-4.85059708e-01 9.95279431e-01 3.93913329e-01 -3.53696123e-02
9.18623745e-01 -4.63002503e-01 -7.07276016e-02 3.95422846e-01
1.05375874e+00 -6.09733045e-01 -1.59649146e+00 -1.15978830e-01
3.91337089e-02 -4.20032740e-01 3.17862004e-01 -5.75719714e-01
-1.36550283e+00 1.14939010e+00 6.64722204e-01 1.80209175e-01
1.26500881e+00 1.73938453e-01 7.33802199e-01 1.10937588e-01
5.13155878e-01 -1.36266899e+00 -7.62830526e-02 5.94731271e-01
5.36499441e-01 -1.31326532e+00 -5.03778569e-02 -6.02912307e-01
-4.91239220e-01 1.30609858e+00 5.31674623e-01 2.54304290e-01
5.33789873e-01 -4.56140302e-02 1.63979352e-01 -9.72984508e-02
-4.23295766e-01 -7.55496919e-01 2.10322931e-01 7.98056960e-01
1.47552907e-01 -7.06285462e-02 -2.66635686e-01 6.45261258e-02
1.00255378e-01 1.87448990e-02 1.51362866e-01 8.99448991e-01
-6.52533531e-01 -1.03631330e+00 -1.67731568e-01 4.15134169e-02
-3.06964237e-02 4.34127748e-01 -4.09478275e-03 7.87636280e-01
5.49140155e-01 1.11172378e+00 2.19220534e-01 -2.50028849e-01
3.40943545e-01 -3.16947520e-01 4.95987087e-01 -3.23130250e-01
-7.46996328e-02 -2.14485005e-02 6.67066127e-02 -7.68039763e-01
-8.21611881e-01 -8.02128911e-01 -1.45737946e+00 -2.09255919e-01
-2.34277457e-01 -1.00381471e-01 1.36423492e+00 1.28746140e+00
1.66850433e-01 5.44414103e-01 3.77824515e-01 -1.22127795e+00
-6.14392944e-02 -3.09933901e-01 -5.53600729e-01 7.85008296e-02
2.21210077e-01 -7.73690581e-01 -2.13352993e-01 -1.31468013e-01] | [8.521341323852539, -1.9626970291137695] |
ffe9c755-7e38-4468-9e1b-f0ba90bedaf2 | temporal-word-meaning-disambiguation-using | 2210.08207 | null | https://arxiv.org/abs/2210.08207v2 | https://arxiv.org/pdf/2210.08207v2.pdf | Temporal Word Meaning Disambiguation using TimeLMs | Meaning of words constantly changes given the events in modern civilization. Large Language Models use word embeddings, which are often static and thus cannot cope with this semantic change. Thus,it is important to resolve ambiguity in word meanings. This paper is an effort in this direction, where we explore methods for word sense disambiguation for the EvoNLP shared task. We conduct rigorous ablations for two solutions to this problem. We see that an approach using time-aware language models helps this task. Furthermore, we explore possible future directions to this problem. | ['Aditya Kane', 'Parth Dandavate', 'Mihir Godbole'] | 2022-10-15 | null | null | null | null | ['word-sense-disambiguation'] | ['natural-language-processing'] | [-5.22032343e-02 -1.33744121e-01 -3.77133965e-01 -4.09091920e-01
-4.67410058e-01 -8.07814717e-01 7.26750135e-01 4.99063462e-01
-9.42995071e-01 6.40052319e-01 6.85050905e-01 -5.22139311e-01
-1.87901467e-01 -8.64643037e-01 4.46636900e-02 -3.68268043e-01
-2.23775402e-01 4.10124481e-01 1.78422183e-01 -6.67097747e-01
5.51448047e-01 2.97640204e-01 -1.07251894e+00 -8.93563256e-02
4.24950391e-01 2.57520109e-01 1.89202473e-01 6.11827672e-01
-7.61151552e-01 2.89392084e-01 -7.62512088e-01 -2.98568130e-01
6.00076504e-02 7.85525665e-02 -1.15129113e+00 -6.02872550e-01
1.94812194e-01 2.58278131e-01 -2.12445542e-01 1.04697573e+00
5.89900136e-01 5.96514881e-01 4.19971496e-01 -1.23800063e+00
-9.83900070e-01 8.69834542e-01 -4.65576798e-01 8.88907790e-01
3.19605440e-01 -1.77450657e-01 1.34916091e+00 -8.60798836e-01
6.06628835e-01 1.48496830e+00 6.85849547e-01 4.98938769e-01
-9.07981396e-01 -6.14556134e-01 6.91230476e-01 2.76656598e-01
-1.49994886e+00 -3.45393956e-01 6.24923825e-01 -3.70806158e-01
1.63906038e+00 2.23939672e-01 5.59859455e-01 1.35523307e+00
2.44446427e-01 4.98945355e-01 7.98370659e-01 -4.54087466e-01
2.25349888e-01 -2.62976050e-01 6.37279451e-01 2.34803513e-01
6.52685463e-01 -1.14680357e-01 -4.52317268e-01 -3.87841374e-01
3.56954366e-01 5.69140464e-02 -1.12331256e-01 6.29950762e-02
-1.27242601e+00 9.19494033e-01 1.29021436e-01 1.09899342e+00
-3.17368545e-02 5.88221550e-01 4.97348815e-01 4.60642815e-01
8.09741020e-01 1.15677273e+00 -9.12014246e-01 -5.94685435e-01
-6.93455875e-01 3.69877398e-01 8.02141190e-01 5.67956924e-01
6.64506733e-01 -1.38306082e-03 1.58244550e-01 8.97508383e-01
2.61560351e-01 3.45595896e-01 7.82106280e-01 -6.41433358e-01
1.48743823e-01 2.59735137e-01 -8.41407944e-03 -1.10563028e+00
-7.78337240e-01 -1.96705744e-01 -2.87812680e-01 -7.96753466e-02
6.82907403e-02 -1.74350381e-01 -9.61195588e-01 2.04971695e+00
1.39308915e-01 3.79786521e-01 8.90231654e-02 5.44382095e-01
4.25489962e-01 4.89473909e-01 6.64913893e-01 -9.72010791e-02
1.57747364e+00 -5.18809140e-01 -1.00296474e+00 -7.77366698e-01
7.69285738e-01 -8.09434474e-01 1.14217365e+00 2.36530434e-02
-6.79369271e-01 4.96214256e-03 -1.02361500e+00 -2.09483624e-01
-9.09353971e-01 -7.82379329e-01 9.92232859e-01 6.33144319e-01
-9.85496700e-01 5.16828477e-01 -9.31715906e-01 -9.24064815e-01
2.63762102e-02 1.16815634e-01 -1.50042921e-01 2.36589342e-01
-1.79259193e+00 1.30604541e+00 5.12829065e-01 -4.15681638e-02
-4.49995510e-02 -6.99825943e-01 -1.11680460e+00 -1.52953669e-01
3.75880748e-01 -6.47707641e-01 1.29265511e+00 -7.19470143e-01
-9.09740031e-01 8.94734621e-01 -3.93254876e-01 -3.84262234e-01
-7.23679960e-02 -3.14935327e-01 -7.57156312e-01 -4.37348962e-01
3.41864228e-01 4.37576026e-01 3.23497325e-01 -1.00138927e+00
-5.57223916e-01 -4.27418262e-01 1.50045648e-01 1.42043279e-02
-6.54876292e-01 2.73458630e-01 -1.15932778e-01 -1.03668106e+00
-6.87602460e-02 -9.38833416e-01 -5.27996302e-01 -3.61050576e-01
7.35947341e-02 -5.49405992e-01 6.47164404e-01 -5.05376339e-01
1.63109016e+00 -2.13898015e+00 8.75049978e-02 6.65587559e-02
1.86652899e-01 1.82409272e-01 -4.83420432e-01 6.38490975e-01
-2.94774204e-01 9.20445621e-01 -2.64608622e-01 -4.54638749e-01
1.47927895e-01 6.70814216e-01 -6.24033034e-01 2.74687022e-01
1.25165626e-01 9.39633071e-01 -1.24389851e+00 -2.40294635e-01
9.34681445e-02 3.54199350e-01 -2.58565992e-01 -2.69081265e-01
-1.64758667e-01 -2.67623931e-01 -6.08466387e-01 5.10812044e-01
3.74904245e-01 7.04380125e-02 4.99072641e-01 3.49129885e-02
-2.68874377e-01 6.41019404e-01 -8.99343789e-01 1.97913337e+00
-8.14072669e-01 7.26041198e-01 -1.15698032e-01 -7.79390812e-01
5.25141001e-01 2.62194842e-01 4.83935833e-01 -6.56849325e-01
1.33446425e-01 1.13398984e-01 6.65708492e-03 -5.46749294e-01
1.03406584e+00 -5.56756377e-01 -3.86315435e-01 4.92100507e-01
-1.03271864e-01 -2.72813797e-01 1.72617644e-01 1.45628199e-01
1.30908585e+00 -1.19767010e-01 6.05276346e-01 -6.07654631e-01
-6.65017497e-03 9.93473306e-02 7.39843190e-01 5.79330862e-01
-3.21395129e-01 3.77507448e-01 1.69512376e-01 -7.70920515e-01
-7.31965899e-01 -9.92755532e-01 -1.01711743e-01 1.26274896e+00
1.78535700e-01 -9.76802528e-01 -1.76654130e-01 -4.69846845e-01
-3.91886150e-03 1.21800482e+00 -5.84099591e-01 -1.84450850e-01
-7.58741140e-01 -9.41623271e-01 5.28990209e-01 7.57776260e-01
-8.77009556e-02 -9.07773376e-01 -7.63169587e-01 5.18812597e-01
-1.77137807e-01 -1.06348014e+00 -3.24900687e-01 2.19774932e-01
-6.28348112e-01 -9.10460174e-01 -2.94567704e-01 -6.36792839e-01
1.65683195e-01 3.96080703e-01 1.32169855e+00 2.34219097e-02
-4.29465115e-01 6.00850403e-01 -6.10219896e-01 -6.56519294e-01
-1.47304144e-02 3.79308879e-01 3.40290457e-01 -5.98751724e-01
9.57171619e-01 -7.44122148e-01 -3.86074096e-01 -1.40715703e-01
-1.06580389e+00 -5.08591056e-01 7.11457357e-02 4.96422976e-01
3.00213993e-01 4.22316715e-02 6.42232955e-01 -8.38190496e-01
1.08844590e+00 -8.17544222e-01 -2.53773689e-01 2.99603194e-01
-9.01408970e-01 3.61175984e-01 2.45548233e-01 -6.18279815e-01
-7.84053624e-01 -4.28507060e-01 -3.75107914e-01 -1.68334302e-02
1.60473108e-01 6.96939349e-01 1.00223266e-01 3.17455441e-01
5.58490217e-01 -1.63928807e-01 -5.15922010e-01 -4.77107763e-01
6.32063329e-01 5.61944306e-01 2.14443579e-01 -8.43656480e-01
7.52389669e-01 4.67576504e-01 -3.85014057e-01 -9.79323268e-01
-8.54757071e-01 -5.79143465e-01 -3.46284002e-01 3.24048907e-01
1.03159440e+00 -7.49939263e-01 2.80770697e-02 7.46534541e-02
-1.54341769e+00 -2.43698910e-01 -3.95567507e-01 2.82443076e-01
-1.01017222e-01 5.07745028e-01 -3.65170926e-01 -7.41037607e-01
-3.10721517e-01 -4.81797427e-01 9.44806159e-01 9.21373814e-02
-1.01933181e+00 -1.72960985e+00 6.08890831e-01 -2.50032544e-01
8.19328308e-01 1.83258235e-01 8.99141192e-01 -9.42682922e-01
2.46262699e-02 8.54515731e-02 8.37275609e-02 -5.12093455e-02
5.60217202e-01 -1.39474764e-01 -8.60949934e-01 -2.76684165e-01
-4.18137014e-02 1.30394036e-02 1.00160933e+00 9.33189020e-02
9.54712689e-01 -2.01116830e-01 -5.08369029e-01 2.93887943e-01
1.39849913e+00 2.16759145e-01 4.27252293e-01 6.28631413e-01
5.49951971e-01 6.41635776e-01 5.96439242e-01 4.16295171e-01
7.20810652e-01 5.34424543e-01 2.05413476e-02 -1.15236662e-01
-7.71159455e-02 -8.60669091e-02 2.84658372e-01 7.33849168e-01
2.55229563e-01 -6.03526771e-01 -1.41546559e+00 1.25538349e+00
-1.82628238e+00 -9.88709569e-01 -5.35872616e-02 1.78470421e+00
7.28366077e-01 9.19980630e-02 -3.62947315e-01 -7.66289160e-02
4.36766893e-01 8.18886817e-01 -3.34228963e-01 -7.67076790e-01
-1.53463021e-01 4.93945271e-01 6.01094782e-01 7.89289594e-01
-9.09282148e-01 1.32552826e+00 7.55936432e+00 4.95683193e-01
-1.00557029e+00 4.02157545e-01 8.81831534e-03 -9.52985808e-02
-9.48178411e-01 4.09368306e-01 -4.78705287e-01 2.97932386e-01
9.60709333e-01 -5.95030963e-01 3.63544613e-01 5.01453340e-01
1.04523391e-01 1.17407709e-01 -1.03333020e+00 1.12104547e+00
2.21263170e-01 -1.02834606e+00 1.04713909e-01 -2.60551095e-01
3.31475884e-01 3.84154618e-01 -1.62908226e-01 3.42707723e-01
6.35650098e-01 -9.67914939e-01 4.32856113e-01 2.20726162e-01
5.50497353e-01 -6.20553493e-01 5.26768446e-01 -8.07216689e-02
-1.44116139e+00 5.19826561e-02 -2.35472992e-01 -3.91338259e-01
5.59188247e-01 7.48290896e-01 -4.82787251e-01 3.31216097e-01
6.19473040e-01 7.74318099e-01 -5.25415242e-01 5.42777896e-01
-3.40487093e-01 6.46620095e-01 -3.62848192e-01 1.61923524e-02
2.26518378e-01 1.90852925e-01 7.15038240e-01 1.53427780e+00
3.67945194e-01 2.54644230e-02 2.97297299e-01 5.61832309e-01
1.23090953e-01 -4.10227329e-02 -8.92282724e-01 -5.67260504e-01
5.39883375e-01 8.71488094e-01 -7.34457076e-01 -2.47576877e-01
-5.17091393e-01 9.84729409e-01 3.10494512e-01 4.24974650e-01
-4.86178666e-01 -5.00512958e-01 1.54342592e+00 -1.85634270e-02
-1.71884954e-01 -7.98115492e-01 -3.47853333e-01 -1.39477146e+00
-1.19381130e-01 -5.36213458e-01 6.65760100e-01 -5.41918516e-01
-1.48885059e+00 4.18745637e-01 1.64666787e-01 -6.15083873e-01
-2.08027989e-01 -6.67157292e-01 -6.07751548e-01 6.08296037e-01
-1.64974833e+00 -7.99358308e-01 2.05647573e-01 6.11053854e-02
9.00321543e-01 2.29005769e-01 1.06477308e+00 2.43733793e-01
-2.10369155e-01 3.58008713e-01 -2.73332506e-01 -7.11935535e-02
7.76579738e-01 -1.36688018e+00 1.04005551e+00 1.01940823e+00
4.44385111e-01 9.58681345e-01 9.69010115e-01 -7.41436958e-01
-1.29048276e+00 -8.80855501e-01 1.67942715e+00 -8.28841984e-01
1.27365327e+00 -3.64862859e-01 -9.89906907e-01 9.78988111e-01
5.35445333e-01 -4.04045165e-01 1.12483013e+00 7.67613053e-01
-6.97936833e-01 2.08816662e-01 -8.08665037e-01 7.75846064e-01
1.39576709e+00 -6.45057321e-01 -1.23258865e+00 3.10710758e-01
1.22398317e+00 5.80836199e-02 -7.07037568e-01 1.37894571e-01
4.04712588e-01 -1.28340706e-01 8.76655459e-01 -7.96730042e-01
-1.40758485e-01 -2.03344047e-01 -2.83596039e-01 -1.54660559e+00
-2.35770553e-01 -6.20032072e-01 2.54653633e-01 1.26260889e+00
4.34466273e-01 -9.24890459e-01 2.06914887e-01 7.68314540e-01
3.08706705e-02 -3.05802494e-01 -1.04405284e+00 -1.02877796e+00
5.90548158e-01 -9.02796865e-01 7.84564912e-01 1.29473054e+00
2.41129696e-01 6.42950773e-01 -1.62669823e-01 1.49654702e-03
1.62987649e-01 -2.29820646e-02 1.21314950e-01 -1.20690596e+00
1.23614892e-01 -5.17469049e-01 -5.62271833e-01 -7.31021225e-01
6.14637852e-01 -8.29543352e-01 -1.31822541e-01 -1.73606896e+00
-3.55563685e-02 -4.28572327e-01 -5.98464668e-01 6.97224677e-01
-3.17171037e-01 -1.34039223e-01 1.65803447e-01 -1.80226922e-01
-5.26154995e-01 4.76244062e-01 4.93246138e-01 -2.69008040e-01
-1.67212814e-01 -6.66141570e-01 -1.06523883e+00 7.04582036e-01
1.17332172e+00 -8.01493049e-01 -5.26445210e-01 -1.06897748e+00
9.17875767e-01 -5.80119073e-01 1.82104900e-01 -6.18633926e-01
8.31468403e-02 -6.15907252e-01 -2.59998530e-01 -2.53202528e-01
1.54433295e-01 -7.55619228e-01 -6.10810444e-02 3.69899243e-01
-2.38404229e-01 8.09161782e-01 4.04054791e-01 5.64949095e-01
-1.66505486e-01 -1.54431716e-01 4.41992521e-01 -1.95619494e-01
-1.16090810e+00 9.49854553e-02 -6.81685865e-01 4.13641036e-01
8.28622818e-01 7.25633353e-02 -2.27100492e-01 -9.73707661e-02
-6.25088513e-01 5.19537568e-01 5.57223439e-01 1.12996709e+00
4.46106642e-01 -1.28572762e+00 -5.25234878e-01 -2.56496608e-01
2.97635436e-01 -3.56738001e-01 -6.84973672e-02 2.90626228e-01
-2.13829517e-01 1.68295532e-01 1.71784148e-01 1.21529505e-01
-1.08332610e+00 7.49323547e-01 2.88136601e-01 -1.30657464e-01
-4.41895008e-01 7.66251028e-01 -4.78611849e-02 -4.25434977e-01
-1.65622517e-01 -5.45580566e-01 -3.81033808e-01 4.17478949e-01
8.28602970e-01 1.51248485e-01 -7.32100904e-02 -5.75197518e-01
-9.40840483e-01 6.82884991e-01 -1.85496826e-02 -3.55793804e-01
1.33661592e+00 -3.63970906e-01 -2.99561530e-01 8.65984857e-01
1.27882564e+00 2.12684929e-01 -2.50472546e-01 -1.01985447e-01
6.39369667e-01 -3.70783836e-01 1.41028650e-02 -7.62850702e-01
-5.77018678e-01 6.25221312e-01 6.44772232e-01 2.51602620e-01
9.73409951e-01 6.59305751e-02 1.03569818e+00 5.42008877e-01
4.27908808e-01 -1.17870462e+00 -4.30906475e-01 9.00548518e-01
6.35831237e-01 -1.03950083e+00 1.16643179e-02 5.39328866e-02
-2.94373661e-01 1.07096219e+00 4.42093760e-01 -2.67934576e-02
9.40041661e-01 3.81198078e-01 2.36246809e-01 -4.80065227e-01
-9.15712416e-01 -4.89982873e-01 -2.10289419e-01 4.89479125e-01
6.17133141e-01 1.75509855e-01 -9.54556048e-01 4.77273762e-01
-3.80185127e-01 -3.36003751e-01 4.67175603e-01 1.12471426e+00
-4.02236313e-01 -1.72861350e+00 -1.43438593e-01 3.58734466e-03
-5.19482195e-01 -4.94312048e-01 -7.09938109e-01 7.90999591e-01
1.19440682e-01 1.19660330e+00 1.32779494e-01 -4.81122255e-01
2.98560262e-01 2.91267186e-01 2.10591868e-01 -8.85309696e-01
-4.43091601e-01 -3.84073675e-01 3.36234987e-01 -6.24330103e-01
-3.76399040e-01 -5.34851015e-01 -1.61717963e+00 -2.60696173e-01
-1.04105294e-01 3.41722846e-01 7.75944412e-01 8.67444277e-01
3.95933092e-01 5.17526031e-01 1.67355865e-01 -2.39922598e-01
-3.76247793e-01 -7.42505074e-01 -4.54485774e-01 4.49922472e-01
2.22258046e-01 -6.30834341e-01 -4.51603979e-01 -2.65369475e-01] | [10.27392292022705, 8.951506614685059] |
c3ad5947-9c79-4bca-a3b8-87adbcaaa267 | real-time-online-skeleton-extraction-and | 2206.11376 | null | https://arxiv.org/abs/2206.11376v1 | https://arxiv.org/pdf/2206.11376v1.pdf | Real-Time Online Skeleton Extraction and Gesture Recognition on Pepper | We present a multi-stage pipeline for simple gesture recognition. The novelty of our approach is the association of different technologies, resulting in the first real-time system as of now to conjointly extract skeletons and recognise gesture on a Pepper robot. For this task, Pepper has been augmented with an embedded GPU for running deep CNNs and a fish-eye camera to capture whole scene interaction. We show in this article that real-case scenarios are challenging, and the state-of-the-art approaches hardly deal with unknown human gestures. We present here a way to handle such cases. | ['Jean-Marc Montanier', 'Axel Lefrant'] | 2022-06-22 | null | null | null | null | ['gesture-recognition'] | ['computer-vision'] | [ 6.67006299e-02 8.36847797e-02 4.25869167e-01 -1.30806088e-01
-2.79942930e-01 -4.34003621e-01 5.69778681e-01 -4.13462132e-01
-8.41869473e-01 1.46395728e-01 -1.53760731e-01 5.45773916e-02
1.61528543e-01 -3.72299939e-01 -4.98614371e-01 -4.96297598e-01
-1.87846884e-01 6.27882659e-01 8.44549417e-01 -3.80216002e-01
2.15111107e-01 9.49413180e-01 -1.55503333e+00 2.87331879e-01
-1.74394131e-01 6.94815040e-01 2.16524422e-01 1.26046276e+00
2.14611236e-02 4.65427935e-01 -4.48174447e-01 -4.78889912e-01
6.30079865e-01 -2.42399111e-01 -6.58824086e-01 7.41403848e-02
3.30367893e-01 -7.37894654e-01 -5.78453660e-01 5.17845154e-01
6.81210876e-01 -5.82938753e-02 5.22404850e-01 -1.25930059e+00
2.77811915e-01 3.64153922e-01 -4.03985441e-01 -2.90515184e-01
5.65109670e-01 4.20320302e-01 4.65950191e-01 -6.59079432e-01
7.82766640e-01 1.16674328e+00 7.44607806e-01 8.07454050e-01
-6.31486535e-01 -3.22871566e-01 -1.46430984e-01 5.74010462e-02
-1.04355955e+00 -5.56857944e-01 4.74112719e-01 -1.99627846e-01
1.25784838e+00 1.60420299e-01 7.47589469e-01 1.45526969e+00
-4.26038094e-02 9.62041855e-01 9.49440062e-01 -5.88914752e-01
2.23597676e-01 -5.79453647e-01 2.37391982e-02 7.07000375e-01
-1.09860348e-02 1.88129291e-01 -3.90556455e-01 7.61711448e-02
1.24197066e+00 3.49723995e-01 9.45286173e-03 -4.80752230e-01
-1.52274942e+00 1.90896884e-01 3.52999240e-01 5.63448727e-01
-5.36037147e-01 5.26468575e-01 4.27561641e-01 2.25008354e-01
-4.17179763e-01 6.47233874e-02 -7.27606773e-01 -6.01350605e-01
-8.71609509e-01 2.40647972e-01 1.37294900e+00 8.15854430e-01
2.81164408e-01 -4.25801545e-01 1.18707284e-01 2.34748036e-01
4.64896917e-01 2.78421044e-01 3.53735954e-01 -1.00482512e+00
3.49815100e-01 4.55984414e-01 1.79064408e-01 -6.27301514e-01
-7.50176311e-01 1.77900925e-01 -4.96976644e-01 1.02108312e+00
1.13555729e+00 -3.26397598e-01 -1.17469037e+00 9.86348212e-01
3.44723850e-01 1.32210836e-01 7.81035870e-02 1.27103198e+00
6.16596997e-01 1.14430189e-01 1.73240807e-02 3.09413493e-01
1.46029961e+00 -1.25095499e+00 -5.66021740e-01 -2.55328745e-01
3.75474274e-01 -9.41646934e-01 8.93531740e-01 9.47418630e-01
-9.51418757e-01 -3.50992620e-01 -9.89391685e-01 -3.49487737e-02
-3.96810889e-01 3.37056011e-01 8.18235397e-01 7.07936704e-01
-7.51138926e-01 8.17762434e-01 -1.49962580e+00 -9.95602489e-01
1.75755665e-01 6.40283227e-01 -7.25323200e-01 1.30338311e-01
-5.02090156e-01 1.11845195e+00 5.58152854e-01 3.97897035e-01
-6.72235072e-01 6.38542026e-02 -5.93799889e-01 -1.39316600e-02
6.10190809e-01 -5.49287260e-01 1.52549779e+00 -1.04561388e+00
-2.29648042e+00 8.82438481e-01 2.63078272e-01 -4.29996520e-01
1.02073741e+00 -6.82309508e-01 3.14269774e-02 2.85679430e-01
-6.09842718e-01 7.56473601e-01 7.93468654e-01 -1.04558206e+00
-5.60275555e-01 -4.14909363e-01 1.75083756e-01 1.99071094e-01
1.18090212e-01 4.26488429e-01 -7.58666694e-01 -4.15426403e-01
1.38005406e-01 -1.10633910e+00 -5.56643724e-01 2.45974064e-01
-2.33722031e-01 2.26011500e-03 1.05877590e+00 -6.18250549e-01
4.70659882e-01 -2.07469249e+00 1.60499826e-01 -1.42146781e-01
3.17024328e-02 6.71201587e-01 -5.29659167e-02 6.21780217e-01
3.29018980e-01 -5.21060884e-01 -2.71818131e-01 -5.70432365e-01
2.69214481e-01 6.42991960e-01 -6.42647669e-02 4.83886212e-01
1.62883729e-01 9.71511483e-01 -7.57848918e-01 -4.18430060e-01
6.14910007e-01 6.90864384e-01 -1.45100728e-01 3.57855856e-01
-3.21547538e-01 6.64086342e-01 -3.74852568e-01 8.78407896e-01
5.11496782e-01 2.11324394e-01 2.02064246e-01 7.81807750e-02
-3.49808723e-01 -1.31168097e-01 -1.55857444e+00 2.18755150e+00
-1.90636829e-01 6.00887418e-01 6.07528210e-01 -5.87180793e-01
8.00065815e-01 3.18939209e-01 2.56250560e-01 -2.30477065e-01
5.34239352e-01 4.74464059e-01 4.29651998e-02 -8.59382749e-01
4.91203755e-01 7.30437338e-02 -8.67019844e-05 3.19133610e-01
2.05629826e-01 1.52937490e-02 1.12176195e-01 -4.15448695e-01
1.39966297e+00 8.57861400e-01 4.98778105e-01 3.43111485e-01
2.10856184e-01 1.77987576e-01 1.65153801e-01 6.84580266e-01
-4.07931387e-01 1.03894329e+00 2.90325940e-01 -6.61445260e-01
-1.02122915e+00 -7.43126571e-01 4.33801562e-01 1.06675255e+00
-5.12000993e-02 -2.31485680e-01 -8.71859670e-01 -6.70133471e-01
-3.42515528e-01 5.28734736e-02 -3.23552012e-01 7.82923162e-01
-1.04912066e+00 -2.70300776e-01 9.92141247e-01 7.67009974e-01
6.78068936e-01 -1.50468993e+00 -1.77959657e+00 4.09400702e-01
4.54175562e-01 -1.36334050e+00 1.76278248e-01 3.44367683e-01
-7.78537929e-01 -1.35422862e+00 -1.05829465e+00 -7.64553428e-01
3.48190457e-01 -2.32906461e-01 6.82330012e-01 6.86159208e-02
-5.55447340e-01 5.22061110e-01 -6.97401047e-01 -2.92220771e-01
-2.72735894e-01 1.21690325e-01 -1.80230081e-01 -3.15925837e-01
4.73352700e-01 -6.59746349e-01 -5.89575768e-01 1.52429432e-01
-9.05875564e-01 -3.75783220e-02 1.01580024e+00 5.17081618e-01
1.62510976e-01 -5.80437124e-01 -2.82679498e-01 -4.12195146e-01
2.33264327e-01 -2.21456662e-02 -6.16448641e-01 2.35495448e-01
1.50571823e-01 4.34866175e-02 2.81745404e-01 -8.35280180e-01
-8.58441591e-01 1.13961518e+00 -5.89114189e-01 -4.89306986e-01
-9.01198506e-01 6.86269328e-02 -1.97522730e-01 -1.64438829e-01
5.23869991e-01 -6.71517923e-02 1.64488167e-01 -8.74836445e-01
5.01921475e-01 8.16471279e-01 1.02886450e+00 -3.31218213e-01
3.82876486e-01 7.48062015e-01 2.57047057e-01 -8.65348816e-01
-6.48969784e-02 -6.17154777e-01 -1.35595012e+00 -2.65938461e-01
1.04821336e+00 -5.87559700e-01 -1.15087306e+00 1.19018126e+00
-1.59266865e+00 -8.92540276e-01 -1.09221891e-01 5.97404122e-01
-7.89026260e-01 5.84489644e-01 -7.64296770e-01 -8.19100738e-01
-2.83021897e-01 -1.12813485e+00 1.21212721e+00 3.43824506e-01
-1.60953119e-01 -5.12039065e-01 2.40558892e-01 -5.48528582e-02
3.15599024e-01 5.63318312e-01 -3.09924513e-01 -6.67127371e-01
-4.73173052e-01 -3.26927483e-01 -2.03563094e-01 -6.42579198e-02
-1.96794003e-01 2.69633532e-01 -1.12103975e+00 7.13639334e-02
-1.13982022e-01 -2.06294551e-01 6.55189455e-01 6.98297545e-02
6.56372964e-01 5.92285432e-02 -4.81676817e-01 5.92657745e-01
1.26090765e+00 3.11778625e-03 8.51741493e-01 5.68585038e-01
7.83986628e-01 6.37162507e-01 6.95285082e-01 3.94489616e-01
4.82269451e-02 9.49484706e-01 5.26937008e-01 -1.04260020e-01
-1.64956599e-01 9.79418904e-02 5.34466505e-01 2.33458146e-01
-3.90793771e-01 -1.43778786e-01 -1.22683942e+00 4.18145150e-01
-2.13587499e+00 -7.32003808e-01 -6.35802388e-01 1.75251067e+00
3.63460273e-01 -2.36299690e-02 3.26747805e-01 6.27087951e-02
4.83531982e-01 -2.80376285e-01 -1.60204172e-01 -2.44323015e-01
2.51872718e-01 4.52541709e-01 7.29513049e-01 2.95626730e-01
-1.42545497e+00 1.06530464e+00 6.58306026e+00 2.84312278e-01
-1.14186609e+00 2.75334101e-02 -2.72297233e-01 2.61313934e-02
9.95990276e-01 -2.68270988e-02 -4.94607836e-01 6.72833920e-02
7.17211723e-01 7.80225933e-01 2.92412847e-01 9.63432491e-01
-1.62700504e-01 -1.74188748e-01 -1.13500845e+00 1.07452989e+00
7.74485543e-02 -7.65827060e-01 -5.67623317e-01 1.48958247e-02
1.01224013e-01 3.76074374e-01 -5.41784883e-01 1.67224668e-02
2.52947032e-01 -9.64005113e-01 6.71711743e-01 6.03367925e-01
5.27552426e-01 -2.98525155e-01 8.14673960e-01 6.49315715e-01
-1.12236965e+00 -2.82735508e-02 -4.52924334e-02 -5.40291905e-01
4.03106213e-01 1.08213983e-01 -8.03278267e-01 3.52064401e-01
7.52075195e-01 2.29430124e-01 -2.98446089e-01 1.11016047e+00
-3.80206198e-01 3.37697119e-02 -9.05522346e-01 -2.22382575e-01
3.97164881e-01 1.56136692e-01 4.82992202e-01 1.68265653e+00
3.92863810e-01 3.68301749e-01 4.25370447e-02 4.37638432e-01
3.89955610e-01 -9.30046439e-02 -4.99345511e-01 3.29505503e-02
-8.49593878e-02 1.49300110e+00 -1.32339370e+00 -2.01719180e-01
-4.52741355e-01 1.59224725e+00 1.96049079e-01 -8.88366252e-02
-5.13467550e-01 -5.16534925e-01 5.12244284e-01 -1.82837889e-01
7.08733439e-01 -8.58859658e-01 -2.87691027e-01 -1.21768665e+00
8.85854214e-02 -6.88065946e-01 2.30854064e-01 -7.14805424e-01
-1.04815376e+00 4.77164328e-01 -1.80284739e-01 -1.10321820e+00
-4.96882439e-01 -1.31004167e+00 -7.15597630e-01 4.78172034e-01
-1.20042479e+00 -1.53542984e+00 -4.12568748e-01 6.82481349e-01
5.91476679e-01 -6.04359396e-02 1.12477946e+00 1.10564694e-01
-2.38135144e-01 2.12606207e-01 -1.14263147e-01 5.54643035e-01
6.44806623e-01 -1.28836262e+00 7.07817376e-01 8.45365763e-01
1.89204469e-01 4.12158072e-01 7.25969315e-01 -5.59232652e-01
-1.67046082e+00 -3.66869509e-01 7.59598672e-01 -7.03327239e-01
6.24835014e-01 -5.11685431e-01 -6.72254741e-01 7.93439269e-01
3.17219317e-01 2.33191982e-01 2.89985090e-01 -2.87026316e-01
-1.70041233e-01 3.89796048e-01 -1.12284911e+00 6.83068395e-01
1.15583432e+00 -1.48341611e-01 -9.92521226e-01 2.67384350e-02
2.43163288e-01 -1.07089758e+00 -6.13990963e-01 3.04860443e-01
1.09427154e+00 -1.15434575e+00 7.98000872e-01 -2.25081772e-01
2.61263520e-01 -4.69097435e-01 6.49904311e-02 -7.52366722e-01
4.76407915e-01 -8.37674260e-01 -3.70742768e-01 9.20022368e-01
-1.43773392e-01 -3.35749716e-01 1.06123757e+00 6.19909167e-01
-1.20166270e-02 -2.73574263e-01 -1.00202549e+00 -6.86076820e-01
-3.74715358e-01 -6.26369059e-01 3.50373507e-01 5.40069103e-01
2.09249169e-01 -7.01759011e-03 -3.15151632e-01 2.55171806e-01
4.18618917e-01 -2.71530360e-01 1.35907507e+00 -1.09949553e+00
-6.11974537e-01 -4.80262220e-01 -7.95364916e-01 -1.06250370e+00
-1.10328734e-01 -1.05125651e-01 3.88708174e-01 -1.47201920e+00
-1.93604499e-01 -1.34409573e-02 1.97679415e-01 7.00772047e-01
2.67805994e-01 3.78296763e-01 5.07336020e-01 2.97066242e-01
-5.94452083e-01 9.04013927e-04 8.35604370e-01 3.08519483e-01
-3.29300463e-01 3.35800126e-02 2.39837021e-01 9.81143713e-01
8.19021702e-01 -5.52142918e-01 2.79188514e-01 -3.90153527e-01
6.48783743e-02 3.30911875e-02 8.64764571e-01 -1.37319553e+00
6.11257792e-01 9.17845145e-02 3.80281806e-01 -7.05924928e-01
4.46755320e-01 -1.26406169e+00 2.54818678e-01 8.59155297e-01
9.66736525e-02 -1.24531724e-02 1.69865549e-01 1.22155607e-01
-6.06635101e-02 -3.54925215e-01 3.96883577e-01 -3.70453119e-01
-1.03686655e+00 -1.15124553e-01 -4.60569441e-01 -5.53865731e-01
1.12129617e+00 -3.61243010e-01 -1.07213430e-01 1.12733431e-02
-9.28113997e-01 -1.53871119e-01 6.74377322e-01 3.93105656e-01
5.60033679e-01 -8.45912397e-01 -6.01727962e-01 1.91927865e-01
-2.24519342e-01 2.09103629e-01 1.57291293e-02 7.50858843e-01
-1.37943447e+00 2.27128834e-01 -7.67190993e-01 -4.90731925e-01
-1.57304251e+00 4.28364038e-01 2.73176849e-01 -2.47422233e-01
-1.03934240e+00 5.39661229e-01 -3.85492414e-01 -6.00935578e-01
4.00943339e-01 -4.05497223e-01 -1.82242580e-02 -1.90024391e-01
6.45765722e-01 4.65889841e-01 1.13043666e-01 -5.51760316e-01
-4.79073495e-01 6.87193274e-01 3.91474187e-01 -5.39183855e-01
1.46906674e+00 1.64384574e-01 -2.30696723e-02 3.75596881e-01
7.51695931e-01 -2.05495477e-01 -1.73784900e+00 2.25455523e-01
1.51882797e-01 -3.78953010e-01 -2.60883689e-01 -8.66657615e-01
-7.70865440e-01 1.03797960e+00 8.87673676e-01 -9.28303003e-02
1.09081185e+00 -3.78719419e-02 8.22547078e-01 8.85746181e-01
5.90051532e-01 -1.00845468e+00 -1.69930294e-01 8.18414569e-01
8.22951198e-01 -1.16610074e+00 -1.14766411e-01 -3.58717024e-01
-5.98399401e-01 1.83428657e+00 3.73999923e-01 -4.82026130e-01
4.17333513e-01 8.23240221e-01 3.85326475e-01 -3.33735019e-01
-1.52108043e-01 -5.16665637e-01 -6.89586625e-02 7.82500088e-01
2.61705667e-01 2.68311687e-02 -3.23492765e-01 5.26194990e-01
-8.90684202e-02 3.76135409e-01 3.39076549e-01 1.52172542e+00
-2.18677178e-01 -1.22655404e+00 -7.10972369e-01 -2.02498525e-01
-5.68574131e-01 2.89581299e-01 -7.08359718e-01 1.26126945e+00
2.37751938e-02 6.36316478e-01 -4.58394811e-02 -2.75938481e-01
5.69840908e-01 2.56215870e-01 8.27807844e-01 -3.41204882e-01
-1.17168760e+00 7.30303973e-02 -3.19574550e-02 -8.90735507e-01
-5.61576307e-01 -8.01611900e-01 -1.43558419e+00 -4.72870953e-02
-2.75452901e-02 -5.86859047e-01 1.11870170e+00 1.04543126e+00
1.19594663e-01 1.18742160e-01 -9.42472592e-02 -1.86528969e+00
-3.31851423e-01 -1.10638702e+00 -4.91633654e-01 3.08639973e-01
2.40130931e-01 -4.64197248e-01 -9.65276510e-02 1.59947604e-01] | [6.619039058685303, -0.171511709690094] |
e98dfc82-1f80-4ee1-ad23-1b8740ae7def | dasnet-dual-attentive-fully-convolutional | 2003.03608 | null | https://arxiv.org/abs/2003.03608v2 | https://arxiv.org/pdf/2003.03608v2.pdf | DASNet: Dual attentive fully convolutional siamese networks for change detection of high resolution satellite images | Change detection is a basic task of remote sensing image processing. The research objective is to identity the change information of interest and filter out the irrelevant change information as interference factors. Recently, the rise of deep learning has provided new tools for change detection, which have yielded impressive results. However, the available methods focus mainly on the difference information between multitemporal remote sensing images and lack robustness to pseudo-change information. To overcome the lack of resistance of current methods to pseudo-changes, in this paper, we propose a new method, namely, dual attentive fully convolutional Siamese networks (DASNet) for change detection in high-resolution images. Through the dual-attention mechanism, long-range dependencies are captured to obtain more discriminant feature representations to enhance the recognition performance of the model. Moreover, the imbalanced sample is a serious problem in change detection, i.e. unchanged samples are much more than changed samples, which is one of the main reasons resulting in pseudo-changes. We put forward the weighted double margin contrastive loss to address this problem by punishing the attention to unchanged feature pairs and increase attention to changed feature pairs. The experimental results of our method on the change detection dataset (CDD) and the building change detection dataset (BCDD) demonstrate that compared with other baseline methods, the proposed method realizes maximum improvements of 2.1\% and 3.6\%, respectively, in the F1 score. Our Pytorch implementation is available at https://github.com/lehaifeng/DASNet. | ['Yu Liu', 'Haifeng Li', 'Jie Chen', 'Li Chen', 'Haozhe Huang', 'Ziyang Yuan', 'Jiawei Zhu', 'Jian Peng'] | 2020-03-07 | null | null | null | null | ['change-detection-for-remote-sensing-images'] | ['miscellaneous'] | [ 2.58538604e-01 -6.18592978e-01 2.08507732e-01 -4.71227974e-01
-4.75217849e-01 -1.84482232e-01 4.66139525e-01 -1.55140534e-01
-4.81375158e-01 6.24956250e-01 1.55994758e-01 8.74813199e-02
-2.01745152e-01 -9.47859764e-01 -6.00985408e-01 -9.76851463e-01
7.83548057e-02 -2.03124493e-01 2.02797413e-01 -4.36194599e-01
1.28684536e-01 6.05034471e-01 -1.62694037e+00 6.74056411e-02
1.11447978e+00 9.55444694e-01 3.29471022e-01 2.59825349e-01
1.45036560e-02 4.51793432e-01 -2.64326930e-01 2.61414677e-01
4.69700336e-01 -4.24359232e-01 -4.50328976e-01 -3.36366780e-02
4.30803716e-01 -5.26605606e-01 -4.80848372e-01 1.38594425e+00
8.45609546e-01 2.35414818e-01 3.44136238e-01 -9.93531346e-01
-7.10286856e-01 4.46664542e-01 -9.64659274e-01 8.86121631e-01
-1.99925348e-01 2.26327941e-01 9.62055266e-01 -1.19035220e+00
2.94725090e-01 1.26267803e+00 5.04334152e-01 2.07749039e-01
-9.84831035e-01 -8.65410507e-01 5.11435568e-01 6.75711215e-01
-1.50421762e+00 -4.57625180e-01 9.59105849e-01 -3.55037242e-01
7.53916562e-01 4.44320112e-01 5.93765378e-01 7.07309663e-01
8.71657506e-02 8.89046788e-01 9.28280890e-01 -1.49519900e-02
-7.70533010e-02 -2.37050280e-01 1.49742216e-01 3.32575500e-01
3.10469508e-01 3.88549231e-02 4.91930097e-02 2.93992639e-01
7.15159297e-01 5.73151767e-01 -6.71700954e-01 6.67914189e-03
-1.08536851e+00 6.81492507e-01 1.05056512e+00 5.05809903e-01
-4.46252942e-01 -1.05464056e-01 2.31887728e-01 2.54097760e-01
7.11277246e-01 1.55531451e-01 -4.74732786e-01 1.19516686e-01
-6.25670791e-01 9.94203165e-02 5.06927893e-02 3.63817334e-01
9.33674514e-01 -2.85452567e-02 -1.60715654e-01 9.09167409e-01
3.14963728e-01 8.71463060e-01 5.67948103e-01 -4.17181194e-01
6.80064797e-01 8.18752050e-01 7.11297393e-02 -1.51868200e+00
-4.81738716e-01 -8.15569520e-01 -1.29671025e+00 9.90062207e-02
-1.37946270e-02 6.69748560e-02 -9.31005716e-01 1.57274866e+00
3.68671507e-01 9.12118424e-03 -2.52578884e-01 1.11972821e+00
8.00592422e-01 8.30615878e-01 -2.55640358e-01 -2.51422167e-01
1.03698778e+00 -8.27186763e-01 -7.56343842e-01 -4.00496304e-01
2.10416675e-01 -5.37069678e-01 1.29239118e+00 6.17014132e-02
-4.59871888e-01 -7.48705506e-01 -1.06395292e+00 1.52615026e-01
-3.74526709e-01 7.81674236e-02 3.42250288e-01 1.87663734e-01
-6.10664010e-01 5.67215323e-01 -9.50267553e-01 -2.40263298e-01
7.24685073e-01 1.58007994e-01 -2.86501735e-01 -3.15165639e-01
-1.35921967e+00 7.08600223e-01 3.31787825e-01 6.79242194e-01
-6.46635234e-01 -6.25095010e-01 -6.15525007e-01 1.10478714e-01
2.70547122e-01 -1.42635286e-01 8.10841322e-01 -1.31993723e+00
-1.01949131e+00 6.35722220e-01 1.65923033e-02 2.29105772e-03
6.71275795e-01 -3.28601509e-01 -6.03717923e-01 -7.56362230e-02
2.00737223e-01 4.66706961e-01 7.95156717e-01 -1.03594792e+00
-6.87532961e-01 -5.11789918e-01 -1.51099488e-01 3.76489788e-01
-2.70584375e-01 -5.32655306e-02 -2.32257605e-01 -7.46871173e-01
4.53422219e-01 -6.85975909e-01 -1.95201367e-01 1.16439387e-01
-1.25292316e-01 -1.04739089e-02 9.90660667e-01 -9.01928961e-01
1.27034009e+00 -2.33218575e+00 -1.01418905e-01 5.78856543e-02
7.12681785e-02 5.46068549e-01 -4.11567688e-01 1.47399321e-01
-3.35399866e-01 1.89006284e-01 -6.75654709e-01 2.07917199e-01
-1.92150250e-01 1.69791698e-01 -2.33273759e-01 6.45698905e-01
4.46807683e-01 7.19805360e-01 -8.60272646e-01 -1.25800744e-01
2.22846359e-01 4.54752088e-01 -3.74533832e-01 -9.98157915e-03
3.65412869e-02 5.73323607e-01 -5.41092396e-01 6.32439315e-01
1.25389278e+00 -5.60674742e-02 -3.13426256e-01 -3.63821536e-01
-2.88880795e-01 6.47125393e-02 -1.44626427e+00 1.35094750e+00
-1.75882310e-01 5.84741235e-01 -1.10525690e-01 -9.43164706e-01
9.88662422e-01 -1.30002201e-01 5.30247390e-01 -1.02687430e+00
-8.54112804e-02 2.07241714e-01 3.54664847e-02 -7.13775992e-01
3.55030000e-01 -7.62368068e-02 2.05186963e-01 1.24925904e-01
-6.31457150e-01 1.70718357e-01 -4.19757888e-02 -2.72544026e-01
9.71136093e-01 9.15641859e-02 3.85546863e-01 -1.70949697e-01
6.33732140e-01 -1.36213899e-01 9.78231490e-01 5.35876870e-01
-5.62836826e-01 5.87647855e-01 -5.70637137e-02 -6.83511972e-01
-6.76647604e-01 -8.20924759e-01 -2.51439601e-01 6.85826302e-01
5.02379239e-01 2.28844151e-01 -2.83373326e-01 -5.46910048e-01
6.90382719e-02 4.02830511e-01 -4.93164390e-01 -3.46603602e-01
-6.99453354e-01 -1.33729661e+00 2.99892366e-01 4.36822236e-01
1.19352090e+00 -1.16337931e+00 -4.75745320e-01 3.16011041e-01
-4.95368809e-01 -6.04044199e-01 -3.87638152e-01 -8.44251141e-02
-9.06938374e-01 -1.04846931e+00 -5.58771849e-01 -6.53219223e-01
6.47296190e-01 7.80830979e-01 7.41201162e-01 -3.95880602e-02
-3.09129655e-01 -2.58141249e-01 -4.12233949e-01 -2.22501129e-01
1.44573361e-01 4.76487614e-02 -9.61578414e-02 2.05957830e-01
3.76211107e-01 -5.67313313e-01 -9.91514742e-01 3.73772979e-01
-1.12580025e+00 -6.16040416e-02 7.69394040e-01 9.33084011e-01
6.09010875e-01 4.99250740e-01 5.90634167e-01 -5.21139324e-01
2.98493773e-01 -4.85827953e-01 -4.36822772e-01 6.57476345e-03
-7.32548356e-01 -1.69836655e-01 5.29183328e-01 -3.01604152e-01
-1.28473651e+00 -8.28104839e-02 -2.13822067e-01 -2.00919822e-01
-2.34115124e-01 6.73514187e-01 -5.47968984e-01 -3.51405069e-02
5.52864432e-01 4.17139411e-01 -2.35207975e-01 -6.46268606e-01
1.91577040e-02 7.97492862e-01 2.80357182e-01 1.61577351e-02
9.05482709e-01 6.51561975e-01 -3.43794078e-01 -7.07708836e-01
-8.22609425e-01 -4.73941028e-01 -3.44878197e-01 -1.94144890e-01
5.13428211e-01 -1.21810925e+00 -1.40034944e-01 9.69081938e-01
-8.72543514e-01 -2.01318651e-01 -2.05425888e-01 5.38204908e-01
-1.55326836e-02 4.47242409e-01 -3.59190881e-01 -5.97461522e-01
-5.40165424e-01 -9.54809427e-01 8.17873776e-01 5.65000772e-01
4.05142248e-01 -5.55817246e-01 2.15449363e-01 1.97902128e-01
7.46493399e-01 3.81799042e-01 6.62566602e-01 -2.98342317e-01
-6.39163852e-01 -8.73726532e-02 -5.37730694e-01 4.94965613e-01
6.16854310e-01 6.13539740e-02 -8.91737938e-01 -4.05686677e-01
1.33725524e-01 1.45044640e-01 1.09214818e+00 3.22085351e-01
1.05696821e+00 -3.43014002e-01 -2.22053915e-01 7.65831649e-01
1.68805492e+00 3.15777540e-01 8.72287631e-01 5.88973522e-01
8.46031368e-01 2.58778334e-01 6.65101230e-01 5.13072073e-01
3.98987263e-01 5.97422421e-01 7.58129001e-01 -3.31024349e-01
-1.82024315e-01 7.04678008e-03 4.12599683e-01 8.36960435e-01
-4.37343977e-02 -5.51884584e-02 -9.14180100e-01 6.94862187e-01
-1.87253058e+00 -1.18126667e+00 -4.78380322e-01 1.94819272e+00
8.82722676e-01 -2.95082610e-02 -3.72190446e-01 2.25598827e-01
1.02243960e+00 5.55361509e-01 -9.98571873e-01 3.74436587e-01
-4.35808539e-01 4.47255336e-02 4.21861053e-01 2.66259193e-01
-1.44173634e+00 7.12208629e-01 4.98969889e+00 8.48736048e-01
-1.45885074e+00 1.37505472e-01 4.73742902e-01 -6.46419600e-02
-2.39929363e-01 -2.51413226e-01 -6.35873735e-01 7.14871228e-01
3.21984887e-01 7.40781948e-02 3.98820311e-01 5.09709895e-01
6.43882871e-01 -5.93667403e-02 -5.20973325e-01 1.07161105e+00
1.08793549e-01 -7.84711838e-01 1.20566115e-01 -2.22720757e-01
8.72901022e-01 3.80357325e-01 -2.62285061e-02 3.46490294e-01
-1.08825952e-01 -6.12423539e-01 5.01913726e-01 7.09638178e-01
5.29088974e-01 -6.01317406e-01 9.74958122e-01 3.08522582e-01
-1.32078934e+00 -2.12638378e-01 -5.59773147e-01 -3.42030317e-01
-1.81526452e-01 1.01564479e+00 -2.83955306e-01 7.54204571e-01
9.27038252e-01 1.16214979e+00 -6.40737474e-01 1.19370294e+00
-3.39422226e-01 6.18903458e-01 -4.03487206e-01 2.39230335e-01
1.07763097e-01 -3.63516748e-01 7.11238921e-01 9.78790283e-01
3.57442588e-01 1.55186787e-01 8.42706114e-02 8.33940029e-01
-3.72384116e-02 1.45338401e-01 -3.40946347e-01 2.32375816e-01
2.87985444e-01 1.21843505e+00 -5.49214542e-01 -7.21353740e-02
-2.89166749e-01 9.89768803e-01 1.00671612e-01 3.58506203e-01
-9.05540109e-01 -7.29229689e-01 8.15827549e-01 -1.47627234e-01
5.86689651e-01 -4.22407724e-02 -2.05877349e-01 -1.47088146e+00
4.38712895e-01 -9.09906328e-01 4.21768486e-01 -7.45084763e-01
-1.24840963e+00 4.08713371e-01 -2.65624315e-01 -1.34868908e+00
5.16327500e-01 -1.91149935e-01 -7.55352795e-01 9.32144523e-01
-2.04326582e+00 -8.67456198e-01 -9.45042193e-01 5.06082416e-01
5.42642117e-01 2.72461444e-01 3.51188809e-01 7.77215421e-01
-9.73947644e-01 3.71918321e-01 4.73438799e-01 1.70344085e-01
6.77316606e-01 -9.03001249e-01 3.36486191e-01 1.37285352e+00
-1.84637651e-01 1.62890494e-01 4.82769847e-01 -5.51471472e-01
-1.00409055e+00 -1.38898742e+00 5.66603482e-01 1.15144342e-01
4.27232295e-01 5.96173033e-02 -1.25288987e+00 4.11989152e-01
-1.94328591e-01 9.44763720e-02 3.17295372e-01 -3.27011555e-01
-3.20464522e-01 -7.28441238e-01 -1.19553792e+00 4.17333245e-01
1.13650489e+00 -3.50990236e-01 -5.72192729e-01 1.13620155e-01
6.43419862e-01 -2.17398733e-01 -5.94500303e-01 6.76534653e-01
2.76828051e-01 -8.62029254e-01 7.54649460e-01 -2.68487483e-01
3.93500566e-01 -8.38998735e-01 -2.51306981e-01 -1.36266255e+00
-7.92536795e-01 -1.47087139e-03 1.70183793e-01 1.24837911e+00
5.48812784e-02 -8.71280909e-01 3.51847053e-01 1.75231025e-01
-2.90007979e-01 -4.61731642e-01 -1.00274420e+00 -6.29706681e-01
-1.14747442e-01 -8.68360847e-02 8.43787253e-01 1.17416084e+00
-6.30593598e-01 2.21864536e-01 -2.63966709e-01 5.50235033e-01
3.81705314e-01 3.90553147e-01 5.09361267e-01 -1.15289688e+00
7.88353905e-02 -6.44473016e-01 -4.34724450e-01 -9.50524628e-01
-1.80209160e-01 -8.46997440e-01 1.64150283e-01 -1.66921961e+00
3.08597773e-01 -3.75734985e-01 -5.79196513e-01 7.36824214e-01
-6.97254419e-01 1.95393085e-01 -3.28032412e-02 4.86942530e-01
-2.12605447e-01 1.06492054e+00 1.33835626e+00 -5.04730701e-01
-2.70503551e-01 1.56508363e-03 -7.19280005e-01 5.27212024e-01
1.09856784e+00 -5.19963980e-01 -1.54086903e-01 -7.30215967e-01
2.27358133e-01 -5.53460360e-01 4.57808197e-01 -1.18844390e+00
-1.90182999e-02 -3.97621721e-01 4.22535777e-01 -6.75261796e-01
-1.11562140e-01 -8.80112648e-01 3.33152950e-01 7.38920748e-01
-4.86364914e-03 -2.40640007e-02 1.70562655e-01 6.00935340e-01
-4.13661271e-01 3.77888307e-02 8.76665533e-01 -9.89037901e-02
-1.02937245e+00 6.21644199e-01 -1.04271539e-01 6.17241934e-02
8.18310976e-01 -1.21390671e-01 -5.06815672e-01 -1.33366793e-01
-3.57512474e-01 3.59849095e-01 2.93847680e-01 5.51275492e-01
6.12840295e-01 -1.46336699e+00 -1.06641281e+00 3.54900539e-01
1.84202090e-01 2.12536901e-01 6.93578720e-01 9.32273388e-01
-5.50854087e-01 -1.99728888e-02 -3.19176048e-01 -5.61134219e-01
-1.02213776e+00 3.06987047e-01 6.70738637e-01 -1.49356753e-01
-6.87221646e-01 6.77706778e-01 2.66805768e-01 -4.71857965e-01
-1.60022512e-01 -5.29847264e-01 -3.06091934e-01 2.87810326e-01
7.25149989e-01 4.46923792e-01 2.54074842e-01 -6.02246761e-01
-6.91600382e-01 6.65606081e-01 -1.87745076e-02 4.07747597e-01
1.70778608e+00 -3.89012724e-01 -2.17600420e-01 3.47772777e-01
1.16205955e+00 -1.20417558e-01 -1.42844617e+00 -5.49616396e-01
-3.18136305e-01 -6.87821567e-01 2.49794245e-01 -8.08533490e-01
-1.43544543e+00 8.31409097e-01 1.19272947e+00 1.93175420e-01
1.40323496e+00 -3.40607792e-01 7.32325673e-01 4.47785765e-01
4.38839383e-02 -9.79723871e-01 -3.58952284e-02 5.84165156e-01
1.10047150e+00 -1.56994450e+00 4.06681001e-02 -8.60507190e-02
-3.44749480e-01 8.08556497e-01 7.33723044e-01 -1.14579573e-01
7.01784670e-01 -2.09455177e-01 2.31194556e-01 -1.88169509e-01
-2.90208995e-01 -4.32908565e-01 1.13008358e-01 3.88194740e-01
6.49344698e-02 1.41689584e-01 -3.95529687e-01 3.70646328e-01
2.52193689e-01 -2.09132537e-01 3.70770544e-01 8.27172875e-01
-6.49183035e-01 -6.31261289e-01 -5.13331532e-01 5.64671993e-01
-2.62757838e-01 -1.72387943e-01 -1.40226126e-01 6.56350255e-01
3.55394334e-01 9.31343734e-01 1.48709610e-01 -3.92747313e-01
6.12490594e-01 -3.23308587e-01 -2.13150028e-02 -2.93646187e-01
-4.59846348e-01 -1.35640010e-01 -3.40186328e-01 -4.51514184e-01
-6.77610278e-01 -7.32095659e-01 -1.12002254e+00 -1.06023557e-01
-5.26947737e-01 -5.78044169e-02 3.76469582e-01 7.80758262e-01
5.39029300e-01 6.30751967e-01 1.16077638e+00 -7.63863921e-01
-6.92303360e-01 -1.17796957e+00 -6.46782339e-01 4.99578297e-01
5.04295647e-01 -6.02643430e-01 -6.78274691e-01 -1.04184285e-01] | [9.770905494689941, -1.2613641023635864] |
489c51de-0c0d-4ce5-b7a2-04accd6e4e58 | a-resource-efficient-embedded-iris | 1909.03385 | null | https://arxiv.org/abs/1909.03385v1 | https://arxiv.org/pdf/1909.03385v1.pdf | A Resource-Efficient Embedded Iris Recognition System Using Fully Convolutional Networks | Applications of Fully Convolutional Networks (FCN) in iris segmentation have shown promising advances. For mobile and embedded systems, a significant challenge is that the proposed FCN architectures are extremely computationally demanding. In this article, we propose a resource-efficient, end-to-end iris recognition flow, which consists of FCN-based segmentation, contour fitting, followed by Daugman normalization and encoding. To attain accurate and efficient FCN models, we propose a three-step SW/HW co-design methodology consisting of FCN architectural exploration, precision quantization, and hardware acceleration. In our exploration, we propose multiple FCN models, and in comparison to previous works, our best-performing model requires 50X less FLOPs per inference while achieving a new state-of-the-art segmentation accuracy. Next, we select the most efficient set of models and further reduce their computational complexity through weights and activations quantization using 8-bit dynamic fixed-point (DFP) format. Each model is then incorporated into an end-to-end flow for true recognition performance evaluation. A few of our end-to-end pipelines outperform the previous state-of-the-art on two datasets evaluated. Finally, we propose a novel DFP accelerator and fully demonstrate the SW/HW co-design realization of our flow on an embedded FPGA platform. In comparison with the embedded CPU, our hardware acceleration achieves up to 8.3X speedup for the overall pipeline while using less than 15% of the available FPGA resources. We also provide comparisons between the FPGA system and an embedded GPU showing different benefits and drawbacks for the two platforms. | ['Hokchhay Tann', 'Sherief Reda', 'Heng Zhao'] | 2019-09-08 | null | null | null | null | ['iris-segmentation'] | ['medical'] | [ 3.75372291e-01 -2.93762296e-01 -3.47208142e-01 -3.57283622e-01
-2.38354191e-01 -4.08995986e-01 1.34095341e-01 3.05912327e-02
-7.05894887e-01 1.55332938e-01 -8.60532820e-02 -7.80796409e-01
-2.51068711e-01 -5.62919319e-01 -5.04624367e-01 -3.50143671e-01
1.14754401e-01 3.34848836e-02 3.72637138e-02 -1.72100868e-02
4.69745964e-01 7.73615062e-01 -1.71870708e+00 2.34092087e-01
9.77182925e-01 1.12319756e+00 -3.52307081e-01 1.12602508e+00
4.13559116e-02 5.78958213e-01 -6.04857981e-01 -5.41111290e-01
5.48480809e-01 -2.50190675e-01 -6.22520447e-01 -6.60336912e-02
9.71410334e-01 -4.69312429e-01 -1.53670698e-01 1.02839577e+00
7.38745272e-01 -1.84311867e-01 4.03286368e-02 -8.03955853e-01
-9.15626809e-02 3.85303974e-01 -8.56215000e-01 2.34038308e-01
-7.81518444e-02 4.46170211e-01 4.11475688e-01 -4.63785708e-01
3.01642597e-01 1.14765799e+00 9.15617883e-01 4.87764359e-01
-9.97498214e-01 -6.09668911e-01 -3.64566475e-01 1.07676350e-01
-1.41246831e+00 -2.98796713e-01 2.65938401e-01 -9.23348963e-02
1.21685433e+00 5.14333189e-01 1.02474523e+00 3.78715545e-01
2.69494653e-01 5.77749252e-01 1.04249835e+00 -6.29651964e-01
2.99992472e-01 -3.01246047e-01 3.15510690e-01 8.66485119e-01
5.64306676e-01 2.93811858e-01 -3.39849174e-01 4.00701910e-02
8.67618859e-01 -5.87785468e-02 -1.57370657e-01 3.05230647e-01
-7.90707290e-01 6.39567971e-01 6.99032366e-01 2.19834253e-01
-2.27821752e-01 5.24099886e-01 4.84911919e-01 -1.63802713e-01
1.31856408e-02 2.78172284e-01 -3.07238072e-01 -4.16990787e-01
-1.44724905e+00 5.85200861e-02 6.39112771e-01 7.05222845e-01
5.96581876e-01 4.41625789e-02 -3.75529706e-01 3.23844522e-01
2.26093262e-01 2.93929249e-01 5.21939754e-01 -7.06895649e-01
1.02926530e-01 8.99200916e-01 -3.13679367e-01 -8.24305892e-01
-7.31650352e-01 -9.98871148e-01 -9.92746532e-01 3.77175838e-01
4.85962570e-01 -2.70211309e-01 -1.19019210e+00 9.25256014e-01
3.94932121e-01 6.06436968e-01 -2.06522308e-02 9.28777575e-01
6.43492639e-01 3.11213344e-01 3.86567302e-02 4.74149846e-02
1.75228560e+00 -1.43312788e+00 -5.26023746e-01 -2.50446368e-02
7.76348531e-01 -1.13465607e+00 9.28416371e-01 5.94795704e-01
-1.11729872e+00 -8.99816871e-01 -1.42667198e+00 -5.19418597e-01
-5.72605245e-03 9.15886819e-01 7.93642104e-01 1.29512274e+00
-1.20874453e+00 8.53220880e-01 -1.29221296e+00 -1.27653375e-01
5.56680083e-01 1.06861556e+00 2.07511783e-01 2.49550700e-01
-4.38509315e-01 2.97792673e-01 4.12957162e-01 3.65302473e-01
-1.34297833e-01 -1.00061357e+00 -6.33888185e-01 3.08279842e-01
1.08891033e-01 -8.12679589e-01 1.28771007e+00 -1.15944409e+00
-1.81016493e+00 5.38630605e-01 -1.77026942e-01 -1.00439465e+00
2.01593101e-01 -2.01164275e-01 -3.71779323e-01 3.39186311e-01
-5.66312850e-01 8.20290446e-01 6.99897289e-01 -2.63715565e-01
-1.03015661e+00 -2.27076307e-01 1.43176809e-01 -4.20430228e-02
-5.13511896e-01 1.05011709e-01 -7.91105211e-01 -4.94241804e-01
-1.40404567e-01 -1.02721071e+00 -5.20010650e-01 2.86528409e-01
-2.69406110e-01 1.25925057e-02 6.51912630e-01 -4.28769916e-01
1.67394757e+00 -2.23304200e+00 -5.42762160e-01 3.42708915e-01
2.11662874e-01 1.00563896e+00 2.20562905e-01 -2.80576915e-01
6.03369139e-02 -1.12707153e-01 -4.40409146e-02 -4.49070632e-01
-1.91272974e-01 1.60097823e-01 -1.17320530e-02 5.87842762e-01
1.30440786e-01 8.58317733e-01 -5.82356513e-01 -3.41704309e-01
4.85867709e-01 9.70517576e-01 -7.83410311e-01 -2.77317375e-01
1.26452684e-01 7.19131529e-02 -8.07847157e-02 8.52516949e-01
1.04443157e+00 -3.45776349e-01 2.00994462e-01 -5.89231431e-01
-4.57281977e-01 5.52540869e-02 -1.31377494e+00 1.86344421e+00
-4.50076461e-01 6.65098250e-01 -2.74720893e-04 -4.99907523e-01
8.13534260e-01 -1.71583761e-02 -1.12989657e-01 -6.96467340e-01
4.96358037e-01 5.54692149e-01 3.03956389e-01 -1.12772107e-01
7.86339462e-01 3.03525954e-01 3.07790071e-01 1.20926173e-02
9.02597085e-02 3.32975149e-01 4.47964668e-01 -3.14349562e-01
7.53974140e-01 1.29548207e-01 2.67947435e-01 -5.53994358e-01
8.74985039e-01 2.65894562e-01 6.27289414e-01 4.97968912e-01
-2.60263473e-01 2.77113169e-01 5.57660699e-01 -8.02692771e-01
-8.64202559e-01 -4.39521581e-01 -4.10339177e-01 4.95658189e-01
-6.36661053e-02 -5.67096472e-01 -1.25010264e+00 -3.11379522e-01
-3.03062171e-01 2.53520757e-01 -2.83528119e-01 3.49327743e-01
-9.25460756e-01 -9.79729414e-01 9.43148017e-01 5.16029119e-01
8.34864259e-01 -6.09233022e-01 -1.39605153e+00 3.13315630e-01
7.06932187e-01 -1.02667856e+00 -5.87591052e-01 -1.78186819e-01
-1.02908921e+00 -1.07326436e+00 -2.60980159e-01 -8.37940156e-01
7.71636009e-01 -6.35426259e-03 8.98354411e-01 3.67949516e-01
-8.02200854e-01 -2.12997779e-01 7.83994719e-02 -2.48144493e-01
1.32868194e-03 7.10404366e-02 -3.15635130e-02 8.99811015e-02
5.78363955e-01 -2.08022460e-01 -1.26994324e+00 4.21525910e-02
-7.94479966e-01 9.71824303e-02 7.09011137e-01 9.96281028e-01
8.26187849e-01 3.22475731e-02 -1.98146060e-01 -8.23571980e-01
1.94809660e-01 3.99701774e-01 -1.22989941e+00 4.39635329e-02
-8.67638648e-01 1.58192925e-02 8.40011477e-01 -2.74990767e-01
-8.09475660e-01 5.68672061e-01 -4.42269802e-01 -4.80246633e-01
4.24112789e-02 1.55348480e-01 3.16250175e-01 -7.47563601e-01
7.07485914e-01 -1.74590290e-01 2.97700971e-01 -3.14821124e-01
2.71005899e-01 7.66021669e-01 9.00632918e-01 -3.06557417e-01
2.93940187e-01 5.41517317e-01 4.51194286e-01 -8.40791285e-01
-4.85769063e-01 -3.79421771e-01 -4.24928665e-01 1.48557097e-01
7.29768157e-01 -9.62893069e-01 -1.45574200e+00 5.82680345e-01
-1.01029968e+00 -1.20367683e-01 -3.08407068e-01 6.45745635e-01
-2.13900968e-01 4.59342837e-01 -7.38423586e-01 -5.89642167e-01
-9.92908537e-01 -1.80782509e+00 8.47662687e-01 9.87400651e-01
-8.59333426e-02 -7.04281151e-01 -3.93170148e-01 3.54469031e-01
5.80640197e-01 2.44262978e-01 5.32683849e-01 -2.09041446e-01
-5.97223580e-01 -1.35917589e-02 -5.57591975e-01 3.04774016e-01
-2.37851441e-01 4.50895458e-01 -9.80030239e-01 -5.28256416e-01
-4.31899019e-02 1.97481841e-01 8.17470372e-01 7.02872276e-01
1.38418794e+00 -1.93400830e-01 -3.15567404e-01 1.45357108e+00
1.90470290e+00 3.23731214e-01 8.07676196e-01 1.83588654e-01
4.46151972e-01 1.67824998e-01 5.21954477e-01 2.68920094e-01
9.03257281e-02 6.63320005e-01 3.00189435e-01 -5.67944288e-01
-4.17999923e-01 8.93625524e-03 5.13625070e-02 5.40936649e-01
-1.92991763e-01 -1.59341604e-01 -9.14208531e-01 3.78171206e-01
-1.50121903e+00 -4.64529335e-01 -3.63190264e-01 2.29209447e+00
6.89438760e-01 3.21114391e-01 -2.36340873e-02 3.49831015e-01
3.86369050e-01 -2.24420086e-01 -5.55238724e-01 -8.85818183e-01
1.80451304e-01 1.19850445e+00 9.96679544e-01 5.88862538e-01
-1.24898612e+00 8.74820232e-01 5.46358967e+00 1.18603027e+00
-1.50941205e+00 -1.12590402e-01 8.55798364e-01 -2.71969229e-01
4.31262940e-01 1.48967579e-01 -1.32010555e+00 3.23685884e-01
1.47913301e+00 2.87112147e-01 2.27424324e-01 8.38292778e-01
9.50578451e-02 -1.60768703e-01 -5.92368662e-01 1.19779754e+00
-1.04810216e-01 -1.69716430e+00 -1.76751450e-01 2.18614236e-01
4.50374782e-01 -1.79381594e-01 2.55432278e-01 -7.34978691e-02
-2.80811965e-01 -1.11756504e+00 2.33075276e-01 1.62656888e-01
1.21842980e+00 -1.20207143e+00 8.24740052e-01 -1.54999077e-01
-1.12957394e+00 -2.90833116e-01 -3.56035203e-01 -1.73183709e-01
-6.95817545e-02 6.13583803e-01 -7.36954033e-01 4.60310906e-01
6.32708728e-01 3.77071738e-01 -7.45893359e-01 1.28734052e+00
-5.73036186e-02 6.52885437e-01 -3.46655250e-01 -1.99628830e-01
4.86042649e-01 -1.57251894e-01 5.56460507e-02 1.42422664e+00
3.41089219e-01 1.52560011e-01 -1.83095336e-01 4.87947226e-01
3.07088997e-02 1.73251078e-01 3.97392899e-01 2.23448843e-01
1.99973330e-01 1.53391814e+00 -1.06130362e+00 -4.25222844e-01
-4.31261569e-01 9.31739569e-01 -8.88689235e-02 -2.35914037e-01
-8.69038880e-01 -9.60566044e-01 9.26672041e-01 1.13596292e-02
3.99695724e-01 -1.11948498e-01 -6.73131704e-01 -9.44758117e-01
-8.00857171e-02 -9.40890133e-01 4.67170775e-02 -1.17179893e-01
-4.59749848e-01 7.83222377e-01 -5.40867627e-01 -1.27863705e+00
-1.01946466e-01 -9.58926797e-01 -3.50150585e-01 1.03945887e+00
-1.69242597e+00 -1.18883610e+00 -5.44997990e-01 3.61725450e-01
4.02423114e-01 -1.85790882e-01 7.96659231e-01 5.78335106e-01
-8.46346140e-01 1.14884520e+00 -4.78332154e-02 1.60660431e-01
4.45945770e-01 -1.00673223e+00 7.75082946e-01 1.36138427e+00
-2.58664209e-02 7.44577229e-01 2.44716614e-01 -4.44796920e-01
-1.62980926e+00 -1.11946523e+00 6.67721689e-01 3.52461427e-01
2.11826295e-01 -1.67502418e-01 -5.55576026e-01 2.56093353e-01
2.30266213e-01 5.20256042e-01 7.59572327e-01 -1.50869370e-01
2.70067267e-02 -3.13006669e-01 -1.39513218e+00 6.37443423e-01
8.01085591e-01 -2.84263659e-02 1.70553073e-01 2.06200644e-01
5.64910591e-01 -1.24378824e+00 -6.98009610e-01 2.66349494e-01
7.22408056e-01 -1.20731950e+00 9.27230954e-01 -8.98198336e-02
3.71321499e-01 -6.86071277e-01 1.86834931e-01 -6.50717020e-01
-2.10913882e-01 -9.83865738e-01 -1.74017787e-01 7.49253094e-01
1.97950691e-01 -5.08417189e-01 1.14999068e+00 3.14496696e-01
-3.06960464e-01 -1.14918041e+00 -9.87139583e-01 -4.49984252e-01
-3.04338276e-01 -3.53230804e-01 7.36954570e-01 4.29522961e-01
-2.62567461e-01 2.15240624e-02 -9.57712904e-02 2.82518715e-01
6.25232577e-01 4.88869250e-02 5.62042713e-01 -8.57430279e-01
-5.16176105e-01 -5.09386718e-01 -9.28655863e-01 -1.10107815e+00
-4.36206967e-01 -6.36800110e-01 -5.02353489e-01 -9.94502544e-01
-3.36496532e-01 -3.21685135e-01 3.37357670e-02 6.29113197e-01
5.10829315e-02 7.76303887e-01 1.55594006e-01 -1.49948433e-01
-8.16518143e-02 -2.36262277e-01 1.08160162e+00 4.33846153e-02
-4.50242549e-01 -3.88630554e-02 -5.91961503e-01 6.94139719e-01
6.57300293e-01 4.79254220e-03 -2.41513103e-01 -4.74327236e-01
-5.32975867e-02 -1.00464739e-01 2.56484658e-01 -1.48837316e+00
7.40194619e-01 4.30729330e-01 7.02831507e-01 -7.03702331e-01
2.98404485e-01 -7.38198996e-01 2.76109651e-02 1.09273028e+00
2.38786057e-01 6.51427824e-03 7.11705625e-01 -6.02055825e-02
-2.89144009e-01 -1.88827083e-01 1.12857473e+00 4.09930110e-01
-6.34516239e-01 1.32773548e-01 9.22868699e-02 -4.11205620e-01
9.49617743e-01 -4.29380268e-01 -5.13265848e-01 4.40547466e-01
-5.37451208e-01 2.41624117e-02 3.61373425e-01 -5.28803244e-02
6.14137352e-01 -8.51584971e-01 -5.21764934e-01 9.36401486e-01
-3.56895655e-01 6.26761392e-02 6.34055316e-01 9.25020456e-01
-1.47866964e+00 9.39908206e-01 -4.33281064e-01 -7.78261304e-01
-1.63271642e+00 3.62714827e-01 5.51323831e-01 -4.01072234e-01
-5.15408039e-01 8.93139958e-01 -4.85754818e-01 -1.33207133e-02
1.08215287e-01 -8.16894233e-01 -8.38746130e-02 -8.69742781e-02
9.13664460e-01 5.76099932e-01 5.61208248e-01 -3.14791560e-01
-2.40160793e-01 8.65484655e-01 -2.44012982e-01 3.62937391e-01
8.52585554e-01 4.52838391e-01 -3.06869805e-01 -5.82837045e-01
1.04952335e+00 -5.37361242e-02 -1.21361983e+00 1.15191631e-01
-2.01150134e-01 -5.84938943e-01 5.30344665e-01 -7.84888983e-01
-1.31395066e+00 9.18359995e-01 1.34047019e+00 -5.35500824e-01
1.86561346e+00 -8.77781570e-01 9.47036982e-01 -1.92425251e-01
1.80172130e-01 -8.90921474e-01 -6.30264699e-01 2.64617980e-01
1.10535510e-01 -7.59142220e-01 4.63397861e-01 -6.88223422e-01
-1.79356799e-01 1.53917539e+00 5.79010427e-01 -2.97199875e-01
6.28749549e-01 5.80761373e-01 2.66803689e-02 7.97184408e-02
-4.04899955e-01 -5.59456684e-02 5.77191174e-01 2.25830942e-01
4.76130396e-01 2.19840139e-01 -8.19527984e-01 4.03589755e-01
-5.08096695e-01 3.95737588e-01 6.80739403e-01 7.81078935e-01
5.07399291e-02 -1.31446087e+00 -2.09642887e-01 4.56695080e-01
-7.74038732e-01 -1.87742904e-01 3.33361924e-01 7.02504158e-01
4.71423239e-01 8.08370352e-01 5.24812102e-01 -5.32476664e-01
2.93188542e-01 -4.64860022e-01 4.18584704e-01 -2.14182138e-01
-1.44397032e+00 3.52839679e-01 -2.25182846e-01 -8.67748380e-01
-3.71560156e-01 -3.72272134e-01 -1.22050285e+00 -6.09448314e-01
-2.42228284e-01 -2.49654129e-01 1.00170565e+00 5.34442008e-01
7.32120872e-01 7.40409732e-01 2.74295211e-01 -5.94313025e-01
-4.36930567e-01 -5.79984009e-01 -4.03360337e-01 -3.94811690e-01
4.29927617e-01 -1.78882256e-01 -4.69367839e-02 -1.83906257e-01] | [8.597228050231934, 2.824005126953125] |
941ee1c7-4eba-46dc-9ca7-14ee4446a225 | diachronic-word-embeddings-reveal-statistical | 1605.09096 | null | http://arxiv.org/abs/1605.09096v6 | http://arxiv.org/pdf/1605.09096v6.pdf | Diachronic Word Embeddings Reveal Statistical Laws of Semantic Change | Understanding how words change their meanings over time is key to models of
language and cultural evolution, but historical data on meaning is scarce,
making theories hard to develop and test. Word embeddings show promise as a
diachronic tool, but have not been carefully evaluated. We develop a robust
methodology for quantifying semantic change by evaluating word embeddings
(PPMI, SVD, word2vec) against known historical changes. We then use this
methodology to reveal statistical laws of semantic evolution. Using six
historical corpora spanning four languages and two centuries, we propose two
quantitative laws of semantic change: (i) the law of conformity---the rate of
semantic change scales with an inverse power-law of word frequency; (ii) the
law of innovation---independent of frequency, words that are more polysemous
have higher rates of semantic change. | ['Dan Jurafsky', 'William L. Hamilton', 'Jure Leskovec'] | 2016-05-30 | diachronic-word-embeddings-reveal-statistical-1 | https://aclanthology.org/P16-1141 | https://aclanthology.org/P16-1141.pdf | acl-2016-8 | ['diachronic-word-embeddings'] | ['natural-language-processing'] | [-1.02440529e-01 -4.11008537e-01 -3.01082462e-01 -1.93159029e-01
6.82402216e-03 -8.44293296e-01 1.20973074e+00 5.52919209e-01
-9.23751712e-01 6.02201283e-01 9.25535142e-01 -6.04660153e-01
-4.06437889e-02 -9.54302788e-01 -4.37327534e-01 -4.22502011e-01
-6.82781562e-02 1.85286999e-01 2.04389617e-01 -6.22919798e-01
5.04858553e-01 7.31312037e-02 -1.29123271e+00 -4.79387790e-01
6.54687226e-01 3.84912640e-01 1.13178320e-01 5.70850968e-01
-3.93710673e-01 1.31839782e-01 -4.64531302e-01 -5.17364025e-01
1.51699424e-01 -6.41267836e-01 -8.36653292e-01 -4.19313759e-01
1.25461802e-01 3.25989187e-01 -6.27546191e-01 1.32369471e+00
3.12349528e-01 2.18390808e-01 8.64392996e-01 -6.45916879e-01
-1.55590212e+00 8.25320780e-01 -2.87678957e-01 8.41950297e-01
2.17302799e-01 7.96678439e-02 1.44156766e+00 -5.59027374e-01
9.84181643e-01 1.46657479e+00 9.34743166e-01 3.96552086e-01
-1.18986857e+00 -1.72493771e-01 5.05226739e-02 8.23790133e-02
-1.29738057e+00 -1.17334381e-01 7.06000566e-01 -6.74043834e-01
8.01672518e-01 2.64956281e-02 1.16632032e+00 1.18634474e+00
5.50800562e-01 2.03000933e-01 1.16467094e+00 -4.26740408e-01
1.85195550e-01 1.63094223e-01 3.51838589e-01 4.18264419e-01
6.04412317e-01 1.70977563e-01 -7.28315473e-01 -1.46762326e-01
7.53697097e-01 -1.83795094e-02 -1.88438952e-01 6.77593425e-02
-1.15338981e+00 1.08227086e+00 2.81869829e-01 1.05544841e+00
-1.77732661e-01 6.33691609e-01 3.66924882e-01 6.14073515e-01
8.38207304e-01 7.05859661e-01 -7.84990191e-01 -6.38949811e-01
-5.31983078e-01 4.58660126e-01 4.15677518e-01 2.91107774e-01
6.00014508e-01 4.48440276e-02 4.66201514e-01 9.91442680e-01
3.86193395e-01 5.66710711e-01 1.17775488e+00 -4.22101021e-01
-1.66480571e-01 3.32268625e-01 -6.69681132e-02 -1.11738801e+00
-3.36992413e-01 -3.21884483e-01 -2.14097455e-01 -2.56209344e-01
4.15997773e-01 -4.84421775e-02 -6.03554785e-01 2.14399314e+00
-1.08030643e-02 -1.57928467e-02 -7.31431916e-02 6.09390140e-01
3.03691953e-01 7.17884958e-01 3.13035548e-01 -2.87673295e-01
1.64536476e+00 -1.74486250e-01 -6.31412745e-01 -2.24084511e-01
4.96264905e-01 -5.84803581e-01 1.41252327e+00 4.24880683e-02
-8.63977611e-01 -4.48287070e-01 -9.70668137e-01 -8.45273286e-02
-7.87736416e-01 -1.06318057e+00 8.40613306e-01 9.69864070e-01
-1.14720833e+00 7.14861810e-01 -8.37601781e-01 -8.94889176e-01
1.63784029e-03 -2.27918088e-01 -1.70697436e-01 2.81612515e-01
-1.48685825e+00 1.13185155e+00 3.68087053e-01 -5.85172594e-01
-4.01472658e-01 -1.06270325e+00 -7.11572587e-01 -1.55751646e-01
-3.21828425e-01 -6.89279318e-01 1.04466915e+00 -1.03411138e+00
-1.21482611e+00 9.37985659e-01 -7.22284466e-02 -3.75586778e-01
9.61486846e-02 -2.40636423e-01 -9.53551054e-01 -2.83799142e-01
7.28687271e-02 3.08954567e-01 5.06015658e-01 -1.22122610e+00
-4.55638885e-01 -6.06805384e-01 -1.87318772e-01 1.51048750e-01
-8.94547760e-01 -2.56109476e-01 1.02263145e-01 -9.77333426e-01
7.84981102e-02 -7.37554669e-01 -6.03976026e-02 -2.35845391e-02
3.75999361e-01 -3.77704620e-01 3.80265445e-01 -8.15948009e-01
1.54987895e+00 -2.24018717e+00 1.65624514e-01 -6.71327813e-04
2.74507165e-01 -1.39732480e-01 -1.58584967e-01 4.35627311e-01
1.51533216e-01 5.42339623e-01 -2.89118230e-01 2.66331881e-01
2.65798748e-01 3.52478355e-01 -2.77441680e-01 6.90500081e-01
4.81360704e-02 9.54981387e-01 -1.36183608e+00 -1.34390146e-02
1.04371428e-01 5.27610302e-01 -6.40007317e-01 -4.73762661e-01
-1.39621124e-01 -9.59170088e-02 -1.69175148e-01 3.02009076e-01
2.43171304e-01 -3.25885043e-02 2.75830269e-01 1.53973520e-01
-4.83999372e-01 3.91313434e-01 -5.43764830e-01 1.61615515e+00
-5.63534737e-01 1.06479919e+00 -5.49885273e-01 -6.07493877e-01
6.95142388e-01 -6.45817444e-02 1.55600682e-01 -8.38534117e-01
3.92537653e-01 2.22312704e-01 2.51556635e-01 -3.67617577e-01
8.41609538e-01 -8.58850837e-01 -3.62486929e-01 3.70621204e-01
1.79647148e-01 -3.61192703e-01 1.62159190e-01 3.54475528e-02
1.12022376e+00 -3.29413235e-01 3.89571875e-01 -8.48120749e-01
1.01127975e-01 -1.00551069e-01 6.08805418e-01 4.16816384e-01
-2.40001991e-01 9.79492664e-02 4.07281131e-01 -5.18862724e-01
-1.39198017e+00 -1.51486170e+00 -5.33371031e-01 1.15295720e+00
2.46157408e-01 -5.06350160e-01 -4.73784804e-01 -2.17319205e-02
4.58536565e-01 1.15273225e+00 -9.81399715e-01 -4.65928555e-01
-2.69546658e-01 -1.00209713e+00 4.40148562e-01 3.18913043e-01
-2.82779871e-03 -7.93435395e-01 -5.69242120e-01 4.45667207e-02
1.67579859e-01 -6.18065238e-01 -5.71984828e-01 -2.27024794e-01
-8.55117798e-01 -6.10535681e-01 -5.74470222e-01 -4.00633156e-01
2.40606830e-01 1.25719070e-01 1.13177550e+00 -6.35154620e-02
-5.17810345e-01 6.19690955e-01 -5.33690691e-01 -4.82895076e-01
-5.55189788e-01 -6.64456412e-02 6.25104129e-01 -3.10726494e-01
5.06781638e-01 -6.52861297e-01 -6.85717702e-01 -1.38140887e-01
-1.19810867e+00 -7.46076703e-01 2.22388864e-01 6.55615032e-01
9.86752138e-02 7.60297552e-02 4.42639202e-01 -7.08550334e-01
1.00564158e+00 -8.10760856e-01 -3.68671656e-01 5.01384921e-02
-1.13044906e+00 2.74181396e-01 3.91950727e-01 -5.82538903e-01
-8.69049251e-01 -8.49764824e-01 -1.27563506e-01 1.28391311e-01
2.32676134e-01 6.92759693e-01 3.65491211e-01 3.23782831e-01
7.72113383e-01 9.70697999e-02 -2.08102778e-01 -4.66203123e-01
1.02146506e+00 5.40812075e-01 4.85913098e-01 -5.25002778e-01
7.98857033e-01 5.04451096e-01 -5.52148819e-01 -1.36191154e+00
-5.90815902e-01 -3.25232357e-01 -6.13379598e-01 -1.28621399e-01
1.16221941e+00 -6.82538033e-01 -3.65264714e-01 2.93940693e-01
-8.85010123e-01 -9.21579078e-02 -4.62865978e-01 5.81267953e-01
-2.36639455e-01 3.69656026e-01 -5.81139803e-01 -6.90285563e-01
-1.29507765e-01 -4.88454938e-01 4.88478184e-01 3.83217394e-01
-7.39098132e-01 -1.76567316e+00 7.26681888e-01 -8.74327868e-02
6.03225231e-01 1.56115472e-01 1.43607914e+00 -4.25543606e-01
1.42580360e-01 9.96598378e-02 2.06871077e-01 1.22241549e-01
4.67774570e-01 7.80376419e-02 -6.86688006e-01 -1.98826686e-01
-5.46392500e-02 1.54763341e-01 8.92723739e-01 2.81593025e-01
5.57552874e-01 -3.11230600e-01 -2.06201673e-01 5.16730011e-01
1.62590098e+00 2.06616431e-01 3.94980490e-01 4.78552788e-01
4.27009583e-01 2.94500291e-01 -1.32003739e-01 4.68943328e-01
4.94565457e-01 2.35250607e-01 -2.14877456e-01 3.99522662e-01
-7.63657466e-02 -5.25295496e-01 6.53867483e-01 1.59438920e+00
3.01398383e-03 -1.63976416e-01 -1.20564806e+00 9.89128947e-01
-1.31887078e+00 -1.05341423e+00 -8.57583657e-02 2.35206079e+00
9.86078441e-01 3.23790610e-01 2.44578689e-01 -1.17207661e-01
4.10860628e-01 5.31200171e-01 -4.08374101e-01 -6.13061428e-01
-3.45320702e-01 4.50244278e-01 6.27364695e-01 7.79550374e-01
-4.66894478e-01 1.24387550e+00 7.72876787e+00 3.66500944e-01
-1.08091545e+00 4.52690750e-01 2.39143908e-01 5.82317226e-02
-1.20287085e+00 1.45120084e-01 -2.38365427e-01 5.78892052e-01
1.25176716e+00 -7.41247177e-01 2.86066979e-01 3.70410860e-01
-1.26955420e-01 9.92810056e-02 -7.63354778e-01 7.59413958e-01
1.80524409e-01 -1.05798197e+00 1.06946431e-01 -1.99585501e-02
8.24691236e-01 2.97427684e-01 2.32310131e-01 7.95181617e-02
7.45917022e-01 -6.14496410e-01 9.41380203e-01 6.14908099e-01
9.11106586e-01 -6.47144496e-01 3.97392899e-01 -1.78860903e-01
-9.61717248e-01 -1.38525754e-01 -5.38068354e-01 -2.36446694e-01
3.58545542e-01 8.26704562e-01 -3.62911165e-01 1.85558498e-01
5.98210096e-01 7.28349328e-01 -6.77417696e-01 4.70755011e-01
-2.96258599e-01 7.41276383e-01 1.57453865e-02 -2.12115034e-01
1.89892486e-01 -4.05023545e-01 5.23767650e-01 1.19518328e+00
5.16361594e-01 4.58372906e-02 -4.45844531e-01 8.59569609e-01
2.61353683e-02 1.64904431e-01 -5.56758642e-01 -9.58333194e-01
7.29694486e-01 7.95501530e-01 -8.87644529e-01 -2.19671994e-01
-6.05575681e-01 1.12309301e+00 1.27944961e-01 1.03878804e-01
-5.04463077e-01 -3.88007671e-01 1.35809016e+00 1.08356811e-01
-4.40205671e-02 -7.92547941e-01 -3.37239921e-01 -1.06357419e+00
-3.85386467e-01 -4.20554757e-01 2.44921610e-01 -3.93750936e-01
-1.69074512e+00 2.96985179e-01 -1.71266377e-01 -3.25936586e-01
1.33569196e-01 -7.60830522e-01 -4.40599233e-01 5.89530289e-01
-1.03873718e+00 -6.39618993e-01 2.51348257e-01 1.34413347e-01
4.24354970e-01 -5.91397360e-02 7.56077051e-01 1.01584189e-01
-3.26409996e-01 4.26974922e-01 5.04707158e-01 -2.05427080e-01
4.52146024e-01 -1.32142472e+00 9.85861361e-01 5.59210896e-01
4.95600879e-01 9.27990794e-01 9.95198309e-01 -8.28383684e-01
-1.50335336e+00 -5.22181273e-01 1.05498660e+00 -8.20300817e-01
1.49257243e+00 -3.87077332e-01 -9.19839501e-01 5.59896708e-01
2.06178889e-01 -4.87690657e-01 9.81539011e-01 5.48754454e-01
-7.16184735e-01 6.99530244e-02 -8.25458229e-01 8.35127532e-01
1.31210601e+00 -9.84707296e-01 -1.10702348e+00 1.89117119e-01
1.31767142e+00 5.84797740e-01 -1.15522933e+00 -4.67330664e-02
8.68162274e-01 -5.52700937e-01 7.57818222e-01 -6.02648556e-01
2.65463471e-01 -5.96595230e-03 -4.01102573e-01 -1.71356666e+00
-7.26303220e-01 -5.61125338e-01 3.85230392e-01 1.09306931e+00
4.69956338e-01 -9.56670582e-01 2.33078361e-01 7.69854262e-02
4.87504620e-03 -3.16574275e-01 -1.01458836e+00 -1.10377312e+00
6.74198449e-01 -4.12001848e-01 5.22164762e-01 1.54132259e+00
1.91779524e-01 4.91138130e-01 1.46381587e-01 -8.79238024e-02
1.75534293e-01 -5.87547004e-01 1.62351251e-01 -1.46012282e+00
-1.03555948e-01 -1.11614740e+00 -8.95799160e-01 -5.03471553e-01
1.42560020e-01 -1.09773207e+00 -2.32601836e-01 -1.34962261e+00
2.01036364e-01 -1.05098389e-01 -5.27463734e-01 -4.79041152e-02
-2.96619743e-01 3.86635065e-02 6.29865378e-02 1.36285409e-01
1.62769035e-02 6.51966989e-01 5.91497660e-01 8.78493711e-02
-6.14006594e-02 -7.86104262e-01 -8.32771003e-01 7.74470448e-01
6.28548145e-01 -3.59921217e-01 -4.59149569e-01 -5.29408872e-01
8.75314534e-01 -5.89033425e-01 -1.27459150e-02 -7.43874729e-01
-3.75244498e-01 -1.87727168e-01 2.25729436e-01 1.23471566e-01
6.97962567e-02 -5.22005141e-01 1.02141336e-01 7.28358924e-01
-2.86157846e-01 8.25658083e-01 1.60727531e-01 7.13379681e-01
5.01057394e-02 -9.64434892e-02 7.11670637e-01 -9.43496898e-02
-8.77393842e-01 1.02697000e-01 -6.55991137e-01 4.81485426e-01
7.78904259e-01 -3.62418126e-03 -3.01243007e-01 -1.06690913e-01
-3.67020875e-01 -7.84895420e-02 8.91034842e-01 1.01223099e+00
2.42522165e-01 -1.58515692e+00 -6.79131269e-01 -7.23013282e-02
1.85282186e-01 -1.03475320e+00 1.40603676e-01 3.31452698e-01
-6.57684624e-01 1.11496642e-01 -5.49808294e-02 -1.92685828e-01
-8.33508313e-01 7.21546471e-01 1.39973521e-01 3.50472689e-01
-4.18875307e-01 1.06899989e+00 7.00379461e-02 -4.04930830e-01
-3.79189342e-01 -2.93699563e-01 -2.76316758e-02 6.90815270e-01
3.87345850e-01 4.30389136e-01 -4.01572853e-01 -7.87363112e-01
-4.03364301e-01 7.58927584e-01 8.38086382e-02 -5.80429971e-01
1.48490345e+00 -2.75244892e-01 -3.97869021e-01 1.42320633e+00
1.30137157e+00 3.05708987e-03 -5.83084822e-01 -2.89396167e-01
4.18211728e-01 -6.35749161e-01 2.09241305e-02 -5.74388146e-01
-4.53582674e-01 6.67752743e-01 8.13479722e-01 5.74121892e-01
6.30911708e-01 2.92168796e-01 9.41852987e-01 -1.83205396e-01
2.68991530e-01 -1.36529815e+00 1.27613768e-01 6.00668848e-01
5.70273340e-01 -6.88312054e-01 2.79598348e-02 1.74219877e-01
-4.58410829e-01 7.05330908e-01 1.02201290e-01 4.39774953e-02
1.06211877e+00 -1.13380253e-01 5.21779954e-02 -3.96482438e-01
-7.13204443e-01 -2.71110564e-01 3.09789717e-01 1.96721688e-01
7.60501802e-01 5.64730644e-01 -1.08098078e+00 3.22619438e-01
-8.92063618e-01 -4.21699792e-01 3.77336174e-01 6.82707131e-01
-6.87682927e-01 -1.12109768e+00 -2.37341136e-01 3.77481878e-01
-4.65376645e-01 -3.36069256e-01 -6.37062728e-01 6.96605802e-01
2.15236843e-01 5.99892199e-01 5.02953112e-01 -5.77193558e-01
1.12646855e-01 4.75324661e-01 5.62381446e-01 -4.45142686e-01
-2.83939302e-01 -2.06422105e-01 -8.88043121e-02 -1.73960015e-01
-1.96094424e-01 -1.03846574e+00 -1.11552131e+00 -6.10137761e-01
-1.29753813e-01 2.71297041e-02 9.23481047e-01 8.12482595e-01
1.79549411e-01 3.37541699e-01 3.38087618e-01 -3.12549263e-01
-4.67995465e-01 -9.82583344e-01 -7.73355365e-01 7.45096803e-01
4.93661202e-02 -6.07045412e-01 -5.90871274e-01 1.06179630e-02] | [10.148149490356445, 8.865030288696289] |
799dc09c-75e2-4e21-bace-1d073776789b | auco-resnet-an-end-to-end-network-for-covid | null | null | https://www.sciencedirect.com/science/article/pii/S0031320322001376 | https://www.researchgate.net/publication/359245461_AUCO_ResNet_an_end-to-end_network_for_Covid-19_pre-screening_from_cough_and_breath | AUCO ResNet: an end-to-end network for Covid-19 pre-screening from cough and breath | This study presents the Auditory Cortex ResNet (AUCO ResNet), it is a biologically inspired deep neural network especially designed for sound classification and more specifically for Covid-19 recognition from audio tracks of coughs and breaths. Differently from other approaches, it can be trained end-to-end thus optimizing (with gradient descent) all the modules of the learning algorithm: mel-like filter design, feature extraction, feature selection, dimensionality reduction and prediction. This neural network includes three attention mechanisms namely the squeeze and excitation mechanism, the convolutional block attention module, and the novel sinusoidal learnable attention. The attention mechanism is able to merge relevant information from activation maps at various levels of the network. The net takes as input raw audio files and it is able to fine tune also the features extraction phase. In fact, a Mel-like filter is designed during the training, thus adapting filter banks on important frequencies. AUCO ResNet has proved to provide state of art results on many datasets. Firstly, it has been tested on many datasets containing Covid-19 cough and breath. This choice is related to the fact that that cough and breath are language independent, allowing for cross dataset tests with generalization aims. These tests demonstrate that the approach can be adopted as a low cost, fast and remote Covid-19 pre-screening tool. The net has also been tested on the famous UrbanSound 8K dataset, achieving state of the art accuracy without any data preprocessing or data augmentation technique. | ['Giuseppe Pirlo', 'Luigi Moretti', 'Donato Impedovo', 'Paolo Giglio', 'Vincenzo Dentamaro'] | 2022-03-15 | null | null | null | pattern-recognition-2022-3 | ['environmental-sound-classification', 'sound-classification', 'covid-19-detection'] | ['audio', 'audio', 'medical'] | [-1.20358326e-01 5.83958928e-04 4.18881208e-01 -6.63664797e-03
-3.71365875e-01 -2.34246567e-01 3.40081722e-01 3.01929832e-01
-8.83437812e-01 4.53342468e-01 2.12376580e-01 1.80922840e-02
-3.82811397e-01 -6.38527751e-01 -4.33702677e-01 -6.91147208e-01
-3.58728528e-01 4.26672429e-01 3.01335305e-01 -3.68391484e-01
9.65360180e-02 8.12407017e-01 -2.08414292e+00 2.16055512e-01
4.25626338e-01 9.93300498e-01 4.45510626e-01 1.03920090e+00
2.32339114e-01 6.89603567e-01 -7.38857746e-01 7.87265971e-02
-2.17835277e-01 -3.15842092e-01 -7.84614921e-01 -6.34006500e-01
2.84870476e-01 6.23061024e-02 -8.49403813e-02 7.22462714e-01
1.26171184e+00 1.05915964e-01 6.27896011e-01 -6.76292062e-01
-2.35494241e-01 9.08737481e-01 1.82628423e-01 5.76074958e-01
2.62441933e-01 9.83674750e-02 1.05609167e+00 -1.18910325e+00
2.75709957e-01 9.56077337e-01 8.62656951e-01 6.21073186e-01
-1.03673553e+00 -5.62288821e-01 -3.88680071e-01 5.42459369e-01
-1.34801352e+00 -2.50155568e-01 5.22139311e-01 -6.92521572e-01
1.27716768e+00 3.78859788e-01 9.30281579e-01 1.08184814e+00
2.52013922e-01 4.15153205e-01 8.99194181e-01 -5.11707306e-01
3.66692960e-01 3.74353796e-01 2.57090837e-01 2.63162494e-01
-1.64354984e-02 1.69810787e-01 -6.18919551e-01 9.57464427e-02
3.58544767e-01 -3.62899214e-01 -3.42521369e-01 3.48479927e-01
-9.55660999e-01 5.79772234e-01 7.30557084e-01 8.71149838e-01
-6.25242829e-01 3.67638141e-01 5.32634377e-01 3.75005722e-01
1.53070003e-01 6.80568278e-01 -6.58131301e-01 -9.03315768e-02
-9.37905312e-01 1.32546946e-01 6.59847260e-01 7.55111501e-02
4.70562160e-01 4.78542507e-01 -1.70395151e-01 9.04391229e-01
2.26912141e-01 4.25808221e-01 1.01481581e+00 -2.13491067e-01
6.35492206e-02 3.24016243e-01 -3.77684742e-01 -7.92768836e-01
-1.07526767e+00 -7.16005564e-01 -8.54334831e-01 1.90721124e-01
6.39055371e-02 -3.80937517e-01 -9.16976452e-01 1.78421390e+00
1.06652319e-01 1.55042082e-01 -2.01862287e-02 9.24863875e-01
1.26053238e+00 5.53174615e-01 1.36938885e-01 3.38606052e-02
1.61292851e+00 -4.59151804e-01 -6.89758003e-01 -3.38752382e-02
2.34106258e-01 -6.91627383e-01 9.59861696e-01 5.89744389e-01
-1.10226476e+00 -1.01781678e+00 -1.10804737e+00 7.17525408e-02
-8.09406638e-01 2.82713920e-01 1.23905204e-01 6.92258239e-01
-1.12185848e+00 7.75300145e-01 -4.48313385e-01 -2.93395787e-01
1.11081965e-01 5.96800447e-01 -2.36044973e-01 6.92404211e-01
-1.39447045e+00 8.50343108e-01 5.97406447e-01 2.32876614e-01
-8.00467432e-01 -6.63067818e-01 -4.86136824e-01 5.35584807e-01
-1.33280382e-01 -8.12641680e-01 9.20236349e-01 -8.56263399e-01
-1.58749020e+00 7.80139625e-01 3.10880989e-01 -9.69328821e-01
3.05238843e-01 -4.25066411e-01 -4.13026333e-01 2.69174486e-01
-2.96551645e-01 6.55980825e-01 1.15461671e+00 -7.14246333e-01
-3.79932642e-01 -7.86741152e-02 -4.24055398e-01 -2.29537740e-01
-5.00726461e-01 4.44723666e-02 1.25072286e-01 -1.05740166e+00
-2.17580676e-01 -6.95535183e-01 2.26614811e-02 -6.37076080e-01
-4.06720847e-01 -1.88855559e-01 5.57566047e-01 -6.47900939e-01
1.22190642e+00 -2.21943259e+00 2.78186232e-01 2.41758227e-01
9.35201868e-02 6.20150983e-01 -1.67496353e-01 5.64802885e-01
-5.19176483e-01 6.70459792e-02 -1.60169065e-01 3.94773223e-02
-9.29189995e-02 -2.35889763e-01 -2.19174922e-01 3.03191364e-01
4.14159536e-01 7.49340475e-01 -5.97469449e-01 -1.76795840e-01
3.46852303e-01 8.01642418e-01 -6.68869436e-01 2.89494902e-01
-8.28267112e-02 4.14946437e-01 -6.18605018e-02 2.29664907e-01
5.42562544e-01 2.44564384e-01 -2.35771641e-01 -1.44182742e-01
-2.19701976e-01 2.73043305e-01 -1.09267342e+00 1.39781916e+00
-7.31473684e-01 9.18510616e-01 -5.13233356e-02 -9.80753541e-01
1.03131211e+00 6.99846685e-01 4.87780631e-01 -5.76211870e-01
6.01159990e-01 4.42195863e-01 3.57512623e-01 -7.66396701e-01
1.62720799e-01 -1.40642628e-01 1.58660963e-01 2.55150557e-01
5.71657896e-01 -1.63793951e-01 -5.38287759e-02 -4.11880225e-01
9.98835385e-01 -2.67213017e-01 1.85729057e-01 -4.10220414e-01
1.05763197e+00 -4.36631858e-01 9.84715763e-03 4.72723991e-01
2.56402791e-01 5.97982109e-01 1.88507587e-01 -3.25775594e-01
-6.52529776e-01 -8.37423623e-01 -3.25551361e-01 1.26085985e+00
-4.34639335e-01 -2.46448144e-01 -1.00889421e+00 -1.84005797e-01
-2.26337433e-01 5.78042150e-01 -7.48939037e-01 -3.12092781e-01
-6.07580543e-01 -6.82855546e-01 7.53576398e-01 3.66716594e-01
2.35482275e-01 -1.78588426e+00 -1.05398118e+00 5.83059251e-01
1.00924760e-01 -8.65277946e-01 7.75704384e-02 8.70678723e-01
-5.92995167e-01 -9.96600032e-01 -6.24275684e-01 -7.79591858e-01
7.27501959e-02 -3.28630060e-01 1.00811553e+00 1.49639666e-01
-6.62593424e-01 3.58844668e-01 -4.58045661e-01 -8.90598834e-01
-4.13861364e-01 4.48676497e-01 4.67269793e-02 1.73347637e-01
2.09435567e-01 -9.02311206e-01 -4.95721638e-01 1.27912059e-01
-9.00908232e-01 -3.44828010e-01 5.63467145e-01 9.02868807e-01
5.22218287e-01 -1.83610559e-01 1.01971364e+00 -4.09225941e-01
8.05621505e-01 -3.06512088e-01 -4.15371776e-01 -1.69866189e-01
-2.42246166e-01 -7.01604187e-02 8.06658268e-01 -2.94193000e-01
-2.68798232e-01 9.36440304e-02 -8.96576405e-01 -2.30952173e-01
-3.75477761e-01 3.11529279e-01 2.92452462e-02 -4.54538763e-02
8.55491698e-01 1.44570783e-01 -3.78686309e-01 -8.58233094e-01
1.27915563e-02 8.17929089e-01 4.37446684e-01 1.72602069e-02
7.50805497e-01 5.38077466e-02 -1.15619622e-01 -1.37214649e+00
-5.27034760e-01 -4.52636153e-01 -7.68865347e-01 -2.71817535e-01
1.25031483e+00 -6.47122622e-01 -8.86435390e-01 5.45484245e-01
-1.15474522e+00 -2.37277806e-01 -7.54505813e-01 7.30873287e-01
-4.60067749e-01 -3.40430111e-01 -4.68860656e-01 -9.10202444e-01
-8.96972656e-01 -8.74710917e-01 6.72419369e-01 3.24718207e-01
-2.02388212e-01 -7.94891059e-01 3.47707778e-01 -1.01827182e-01
5.82197368e-01 1.77130312e-01 9.69893932e-01 -1.01879013e+00
-6.27216473e-02 -2.59827912e-01 1.44614801e-01 6.32985592e-01
-1.84544042e-01 -3.34573388e-02 -1.76682329e+00 -1.69747844e-01
8.83444250e-02 -3.67490470e-01 1.24274755e+00 4.76380914e-01
1.24939752e+00 -1.46901295e-01 2.30059892e-01 5.57512701e-01
1.33422983e+00 2.07550019e-01 4.94463980e-01 1.74205318e-01
2.88169086e-01 5.47988892e-01 1.96876481e-01 3.84602070e-01
-8.14614743e-02 7.08225667e-01 6.79901242e-01 -1.72501132e-01
-4.46173906e-01 1.81392297e-01 4.29241091e-01 9.80749249e-01
-2.01529711e-01 -2.59667307e-01 -8.58462393e-01 6.14990175e-01
-1.40285432e+00 -1.04142404e+00 -1.63302749e-01 2.18744755e+00
4.99701738e-01 1.98168665e-01 2.71767169e-01 8.99021566e-01
4.99169976e-01 -3.00022401e-02 -2.53775001e-01 -9.34880972e-01
-6.96873888e-02 1.10526168e+00 -4.96133044e-02 3.70484471e-01
-1.10261297e+00 6.48307562e-01 5.50119305e+00 8.51330280e-01
-1.63890445e+00 3.12552303e-01 1.60842717e-01 -1.54234454e-01
1.56777695e-01 -7.16180503e-01 -7.11626768e-01 2.93305099e-01
1.30392206e+00 3.58410627e-01 5.06685853e-01 5.63318729e-01
2.72892058e-01 1.47024542e-01 -8.52479875e-01 8.68150234e-01
-8.13306198e-02 -1.23442793e+00 -1.97304234e-01 -2.49492109e-01
1.69313550e-01 4.63773400e-01 -2.57134866e-02 2.31558383e-01
-5.43954313e-01 -1.17631245e+00 9.64178026e-01 7.04469323e-01
7.72413254e-01 -9.41491544e-01 9.09519434e-01 2.46781096e-01
-1.17856908e+00 -4.89402920e-01 -2.77386934e-01 9.18200836e-02
-1.28289223e-01 5.61475933e-01 -1.06086135e+00 4.22914505e-01
9.30006802e-01 2.50078529e-01 -6.87979460e-01 1.25922155e+00
-1.95280030e-01 7.28754222e-01 -3.77080083e-01 -3.95363867e-01
2.18116909e-01 3.70237350e-01 8.13743949e-01 1.71896827e+00
3.82262617e-01 -4.80750173e-01 -4.63931650e-01 7.47179627e-01
1.00885950e-01 5.07211804e-01 -3.38942915e-01 1.91888273e-01
2.21909478e-01 1.30546570e+00 -6.88128829e-01 -4.29735892e-02
2.33730599e-01 5.44272006e-01 -8.62012729e-02 8.39657187e-02
-8.30212772e-01 -8.47029030e-01 5.05192041e-01 2.00330690e-01
6.87714159e-01 1.84195101e-01 -1.27660455e-02 -6.39894783e-01
-2.92847753e-01 -7.01637030e-01 1.88793197e-01 -6.94089949e-01
-9.76636052e-01 1.15416706e+00 -2.38637507e-01 -1.01907432e+00
-4.19225931e-01 -7.58608341e-01 -6.62626028e-01 9.13385451e-01
-1.47423708e+00 -8.78635645e-01 -2.62799084e-01 6.08092725e-01
4.86454546e-01 -3.26434106e-01 1.04435980e+00 5.22754014e-01
-5.38070440e-01 5.35279214e-01 -1.55237406e-01 7.33747780e-02
4.34021086e-01 -1.34805942e+00 3.16685200e-01 6.21210217e-01
4.61890250e-01 3.48542064e-01 5.82042158e-01 -9.16133523e-02
-9.63443398e-01 -1.02370667e+00 9.93584216e-01 1.27483979e-01
5.63272953e-01 -5.85311234e-01 -9.35635626e-01 9.81586613e-03
3.24435532e-01 5.71402758e-02 6.24835968e-01 -2.06406027e-01
-2.20043492e-02 -3.64332289e-01 -1.02054930e+00 5.96399382e-02
5.17938077e-01 -5.68043947e-01 -6.61301970e-01 2.51329273e-01
6.68035448e-01 -3.04441482e-01 -8.35845649e-01 3.26640844e-01
6.41091943e-01 -1.28981709e+00 1.06868887e+00 -4.48267460e-01
1.91293791e-01 -9.89012793e-02 1.70919731e-01 -1.29353261e+00
-3.25103670e-01 -6.59470201e-01 -1.13517106e-01 1.28008878e+00
3.98662895e-01 -7.08439469e-01 3.09525102e-01 -3.96658123e-01
-2.46410519e-01 -7.26151466e-01 -1.25030851e+00 -5.89731157e-01
-9.05773863e-02 -7.61020482e-01 5.85329652e-01 4.19356346e-01
-3.87186527e-01 6.40027761e-01 -1.56403795e-01 8.42550993e-02
1.75856911e-02 -1.58502638e-01 4.57192481e-01 -1.57245362e+00
-4.64641601e-01 -8.21809173e-01 -5.88494301e-01 -3.17772001e-01
-1.22985408e-01 -9.63696539e-01 1.10788569e-02 -1.17024255e+00
-4.37306881e-01 -3.49432230e-01 -5.78747809e-01 4.33975726e-01
1.51888102e-01 4.85608548e-01 2.87226379e-01 -2.83388197e-01
1.22327201e-01 3.63474399e-01 9.79438424e-01 1.56416595e-02
-4.80234325e-01 3.88819873e-01 -2.86486685e-01 8.10068130e-01
9.72006500e-01 -5.81802487e-01 -1.29859298e-01 -1.19605944e-01
2.97975779e-01 -1.49609700e-01 6.36496961e-01 -1.61506939e+00
1.03267439e-01 5.54888606e-01 3.64976138e-01 -6.51277959e-01
4.89224374e-01 -8.80632102e-01 7.98530206e-02 9.42534566e-01
-3.57609302e-01 -1.52575359e-01 5.37548840e-01 2.99656689e-01
-2.60381311e-01 -6.18999124e-01 1.12186563e+00 7.63869286e-02
-4.54944998e-01 -4.55789119e-02 -7.93739736e-01 2.09740959e-02
5.49758613e-01 -1.02562733e-01 7.34741092e-02 -5.14775813e-02
-1.10917687e+00 -2.49520943e-01 -3.30981135e-01 3.47235590e-01
4.69054103e-01 -9.91231143e-01 -8.79482865e-01 4.98931885e-01
-1.71030238e-01 -2.30080158e-01 4.52972502e-01 1.04170728e+00
-6.80362642e-01 4.29033399e-01 -2.75407851e-01 -6.55245423e-01
-1.32602513e+00 5.56462467e-01 6.91688657e-01 -2.39631608e-01
-4.95960265e-01 1.01190591e+00 -1.59525961e-01 -2.69056708e-01
5.24354756e-01 -7.20226288e-01 -9.17760193e-01 6.21430576e-01
5.03818691e-01 3.64268690e-01 5.29735386e-01 -4.50637102e-01
-5.62185705e-01 8.32675517e-01 4.87496793e-01 -4.63684872e-02
1.80184269e+00 1.80302724e-01 -8.79119933e-02 5.26292205e-01
1.11280775e+00 2.04559878e-01 -5.16409099e-01 1.56535447e-01
2.53773089e-02 2.43877947e-01 2.07762226e-01 -8.81629765e-01
-1.14987946e+00 1.42275023e+00 1.13589966e+00 6.59441292e-01
1.39955211e+00 -3.29964846e-01 7.12468684e-01 3.44134063e-01
-1.41418770e-01 -1.06610322e+00 9.79561359e-02 6.69835985e-01
1.25030613e+00 -6.77424669e-01 -2.57241547e-01 2.17601404e-01
-1.71911940e-01 1.41713500e+00 1.98910549e-01 -3.56670558e-01
1.04325438e+00 4.32800859e-01 -8.59130993e-02 -2.75670737e-01
-6.78090274e-01 -5.78864634e-01 5.34021556e-01 6.50920749e-01
5.35320818e-01 -5.22747226e-02 -3.06003451e-01 8.63880098e-01
-6.22613907e-01 -1.82599813e-01 2.54014432e-01 2.34487921e-01
-6.12330377e-01 -7.74222970e-01 -4.69138533e-01 2.75095880e-01
-7.30950594e-01 -2.33117774e-01 -4.63458925e-01 8.41026068e-01
5.98522007e-01 7.48219907e-01 3.01816389e-02 -7.04893172e-01
5.06761491e-01 1.21935800e-01 3.04675281e-01 -6.27290368e-01
-1.68328464e+00 1.29114002e-01 -1.25899583e-01 -3.31108809e-01
-2.77395576e-01 -4.96503055e-01 -1.34805870e+00 2.13883236e-01
-4.61315930e-01 2.09101990e-01 8.40563178e-01 8.33366692e-01
2.27980360e-01 1.20212793e+00 7.89935410e-01 -1.17369175e+00
-3.25234532e-01 -1.11857569e+00 -4.82076168e-01 -3.02728694e-02
7.27710485e-01 -4.04286623e-01 -2.77040184e-01 -7.11533502e-02] | [15.203173637390137, 5.308226108551025] |
c5b19a57-bcb0-423e-8b85-39be92f363c2 | variational-latent-discrete-representation | 2306.15282 | null | https://arxiv.org/abs/2306.15282v2 | https://arxiv.org/pdf/2306.15282v2.pdf | Variational Latent Discrete Representation for Time Series Modelling | Discrete latent space models have recently achieved performance on par with their continuous counterparts in deep variational inference. While they still face various implementation challenges, these models offer the opportunity for a better interpretation of latent spaces, as well as a more direct representation of naturally discrete phenomena. Most recent approaches propose to train separately very high-dimensional prior models on the discrete latent data which is a challenging task on its own. In this paper, we introduce a latent data model where the discrete state is a Markov chain, which allows fast end-to-end training. The performance of our generative model is assessed on a building management dataset and on the publicly available Electricity Transformer Dataset. | ['Sylvain Le Corff', 'Maurice Charbit', 'Max Cohen'] | 2023-06-27 | null | null | null | null | ['management'] | ['miscellaneous'] | [ 5.22316769e-02 1.45488933e-01 -7.97931552e-02 -4.45867717e-01
-9.24246669e-01 -4.87461656e-01 1.30996776e+00 -1.84619635e-01
9.03508142e-02 6.04205489e-01 3.49223256e-01 -2.57767141e-01
-2.40577415e-01 -9.07905161e-01 -5.32000542e-01 -9.26056027e-01
1.89426571e-01 1.02527475e+00 -7.12683573e-02 1.30752161e-01
-6.20884970e-02 3.90404314e-01 -1.35969889e+00 4.62018438e-02
7.76762068e-01 6.43723428e-01 1.84631139e-01 5.76376021e-01
4.34570312e-02 6.67303979e-01 -2.97031373e-01 -6.33981302e-02
-8.38230401e-02 -3.19161564e-01 -5.40238917e-01 3.34595889e-01
1.53089613e-01 -5.70017457e-01 -3.99011850e-01 8.41472626e-01
1.05300933e-01 5.15103303e-02 1.10660458e+00 -1.40788269e+00
-6.13194823e-01 4.82728958e-01 -1.80300698e-01 3.51301990e-02
-4.22329381e-02 1.68640599e-01 1.33894122e+00 -6.45617425e-01
4.82838362e-01 1.36649835e+00 5.09347022e-01 2.23485023e-01
-2.00042725e+00 -3.39887649e-01 1.09437145e-01 3.73879708e-02
-1.17041802e+00 -5.13905466e-01 9.87900019e-01 -6.65165007e-01
9.67605412e-01 -2.06418447e-02 7.19957054e-01 1.46934974e+00
1.37425184e-01 9.86269891e-01 1.08341861e+00 -4.32004094e-01
5.22582054e-01 -1.27548845e-02 6.42038584e-02 3.64357173e-01
-1.08408824e-01 3.23515534e-02 -4.29923326e-01 -4.56374377e-01
1.08932984e+00 4.07199502e-01 1.02275252e-01 -6.74550653e-01
-8.97423744e-01 1.17384565e+00 -8.00245330e-02 1.77614525e-01
-6.52718544e-01 5.06336927e-01 8.07507487e-04 -3.16106379e-02
7.54077196e-01 -1.86655104e-01 -2.48688668e-01 -4.52391863e-01
-1.50402164e+00 4.01055247e-01 9.91146684e-01 7.83040583e-01
6.14446580e-01 1.20513096e-01 -4.40412045e-01 7.15791762e-01
9.18418646e-01 4.10886019e-01 1.64152368e-03 -1.01128340e+00
2.19425023e-01 2.39305288e-01 3.72211277e-01 -5.48154056e-01
-7.25718681e-03 -3.20221782e-01 -1.00054824e+00 2.70015180e-01
2.51975030e-01 1.58767909e-01 -1.16013539e+00 1.82745242e+00
1.50184005e-01 5.01176000e-01 2.81361118e-02 2.37229839e-01
3.25070292e-01 1.00570929e+00 9.99895334e-02 -3.69783968e-01
1.07840002e+00 -8.06421936e-01 -1.04883039e+00 -6.35334253e-02
2.67260224e-02 -5.54137826e-01 8.26897502e-01 4.72750396e-01
-1.21798706e+00 -4.32976514e-01 -7.91229606e-01 -2.36717746e-01
-1.86771333e-01 -2.73309518e-02 6.96051955e-01 6.43228590e-01
-1.22819221e+00 5.98251820e-01 -1.67283177e+00 -1.67637601e-01
2.94540524e-01 7.24586025e-02 2.25634828e-01 1.05369709e-01
-1.13132679e+00 6.99427068e-01 2.70820320e-01 2.30883852e-01
-1.46313453e+00 -6.26401842e-01 -8.93332601e-01 2.98772335e-01
1.84989586e-01 -5.40367246e-01 1.24257886e+00 3.45033035e-03
-1.70751262e+00 6.32939279e-01 -2.98881352e-01 -6.73957825e-01
7.54446089e-01 -2.97316819e-01 -2.98828572e-01 -1.02972753e-01
7.18994513e-02 4.64378774e-01 9.96209800e-01 -1.07401025e+00
-2.26627856e-01 -1.20442554e-01 -4.64318097e-02 -1.72502056e-01
-1.52194917e-01 -2.92420894e-01 -3.22953492e-01 -5.67423642e-01
2.96466559e-01 -9.97864604e-01 -2.70486772e-01 -1.20269902e-01
-3.60659719e-01 -6.07390583e-01 9.46199000e-01 -6.97108567e-01
1.13456655e+00 -2.13179636e+00 4.60055888e-01 -9.04031247e-02
2.64907360e-01 -1.13353789e-01 3.63502651e-01 8.69551837e-01
-2.93593369e-02 8.81081820e-02 -3.54177296e-01 -1.07317948e+00
6.16984487e-01 6.96026802e-01 -7.74532795e-01 4.84899163e-01
2.64451295e-01 1.05620658e+00 -8.08908582e-01 -3.72124314e-01
4.84176517e-01 8.03338826e-01 -5.90648174e-01 2.17332810e-01
-5.19466043e-01 4.09932584e-01 -2.95653522e-01 3.34417343e-01
5.68416595e-01 -5.92315733e-01 3.73966217e-01 1.97104454e-01
-1.00717716e-01 3.03964555e-01 -1.23782623e+00 1.87068963e+00
-3.78369004e-01 6.80976093e-01 -1.56501412e-01 -9.97612953e-01
7.99270511e-01 6.52563810e-01 5.60139537e-01 -2.09108591e-01
-2.78203547e-01 -1.47786900e-01 -4.19355035e-01 -8.27939138e-02
3.67765039e-01 -6.18752480e-01 -2.15340659e-01 5.72526872e-01
6.92445636e-02 -2.82228947e-01 1.19759008e-01 2.32100293e-01
7.79649138e-01 4.48712379e-01 -2.71416223e-03 -3.31758708e-01
-5.13535403e-02 -4.27013874e-01 6.03670895e-01 8.81497025e-01
1.68928862e-01 6.32014513e-01 5.78268409e-01 -3.14646065e-01
-1.22195995e+00 -1.73719025e+00 -4.58212584e-01 5.19454360e-01
-2.82940596e-01 -5.97379208e-01 -5.23162484e-01 -2.89741844e-01
8.81660804e-02 1.23712575e+00 -5.29714227e-01 7.24499822e-02
-3.59828144e-01 -8.80548954e-01 3.43713939e-01 7.05357075e-01
2.47993961e-01 -8.79408300e-01 -5.37007451e-01 6.10315561e-01
-2.49456927e-01 -1.06400859e+00 2.23724768e-01 3.71430844e-01
-1.16109121e+00 -3.75787377e-01 -5.18308938e-01 -3.07255656e-01
2.57644713e-01 -3.06393832e-01 1.43016374e+00 -4.17317957e-01
-2.77728409e-01 3.22668880e-01 1.47470623e-01 -3.08230877e-01
-6.23803258e-01 -2.11455040e-02 1.29092246e-01 -1.16268553e-01
4.56677288e-01 -9.72627103e-01 -3.82170498e-01 -4.03473265e-02
-1.02997065e+00 2.89385915e-01 2.68351018e-01 8.99984777e-01
7.16078579e-01 3.53470087e-01 2.60608435e-01 -6.29391611e-01
5.46869993e-01 -6.33143425e-01 -8.89159620e-01 2.33283103e-01
-7.47128725e-01 3.90125513e-01 2.87407666e-01 -1.91770434e-01
-1.19310212e+00 -2.02372521e-01 -2.24337861e-01 -5.84033191e-01
-4.58463430e-01 6.59434557e-01 -6.36390895e-02 9.25822377e-01
6.04797453e-02 3.98938507e-01 3.12915072e-03 -1.02856600e+00
5.09509683e-01 3.25080186e-01 2.80297726e-01 -7.25182414e-01
9.65847611e-01 8.03421736e-01 1.05052456e-01 -8.18068504e-01
-9.14392054e-01 -2.84552574e-01 -9.95196700e-01 2.32157454e-01
1.13318169e+00 -1.02082884e+00 -1.69677868e-01 3.82461429e-01
-1.08793151e+00 -4.79351252e-01 -5.22097528e-01 3.08632880e-01
-8.03771555e-01 4.16352481e-01 -7.73779392e-01 -9.96123314e-01
1.88985631e-01 -1.23627663e+00 1.38491631e+00 -1.99943066e-01
-3.07800710e-01 -1.69382453e+00 3.27867806e-01 7.83245787e-02
2.54584670e-01 4.48648721e-01 1.09020901e+00 -3.99418384e-01
-8.76925051e-01 -1.87495798e-01 8.43952522e-02 3.98290992e-01
2.18687788e-01 3.05440277e-01 -9.27765608e-01 -3.94288898e-01
2.95172215e-01 -1.72110826e-01 9.50191319e-01 6.64330661e-01
9.77121651e-01 4.53573726e-02 -4.65572834e-01 4.95288163e-01
1.51468313e+00 -1.34937525e-01 6.11457944e-01 -8.19045156e-02
4.70753282e-01 9.67232063e-02 2.20361918e-01 5.74383676e-01
3.74433130e-01 6.97416425e-01 4.32404697e-01 -1.07030235e-01
1.88036993e-01 -4.11161780e-01 2.86106467e-01 9.18139696e-01
-3.57407108e-02 -2.95268387e-01 -1.17943609e+00 6.07843220e-01
-2.00042963e+00 -1.16207767e+00 -3.19125921e-01 1.72712851e+00
7.30614007e-01 3.57267380e-01 -7.55793974e-02 1.41877115e-01
3.68111193e-01 3.58583808e-01 -5.02849996e-01 -3.64634991e-02
8.28078985e-02 2.80045539e-01 -1.83277782e-02 6.26541495e-01
-1.03327370e+00 6.80211604e-01 7.98569632e+00 7.52175927e-01
-6.40187800e-01 3.49483758e-01 4.20449197e-01 -1.46659642e-01
-5.88328123e-01 3.46936941e-01 -1.14648759e+00 5.51510334e-01
1.08198750e+00 9.02792960e-02 3.23604167e-01 7.23327041e-01
3.21995884e-01 -8.65643099e-02 -1.51448822e+00 8.09033036e-01
-3.60587925e-01 -1.40772486e+00 5.47735840e-02 6.12512052e-01
7.90860057e-01 2.24252969e-01 2.56179750e-01 4.07715708e-01
6.77099824e-01 -1.10261428e+00 7.46686876e-01 8.47533345e-01
5.91837227e-01 -5.67281902e-01 2.39784241e-01 7.61130214e-01
-9.60938871e-01 1.90867126e-01 -3.26769412e-01 -3.24606448e-01
6.81342125e-01 6.70240164e-01 -5.44873774e-01 5.02422988e-01
5.07013738e-01 9.07951355e-01 -3.58858645e-01 5.85254192e-01
-3.52879226e-01 1.15601838e+00 -6.16648734e-01 3.91061723e-01
4.45283175e-01 -4.76961553e-01 5.75202107e-01 9.84330356e-01
1.47124171e-01 -1.50844350e-01 2.90680915e-01 1.56169593e+00
2.81287819e-01 -5.65267146e-01 -5.47941148e-01 -4.18461144e-01
2.45156407e-01 1.04150248e+00 -8.67466569e-01 -4.72831935e-01
-3.89238238e-01 7.57856369e-01 2.92083472e-01 5.48784554e-01
-1.13232958e+00 2.52227068e-01 7.25652993e-01 -4.78946157e-02
5.06610990e-01 -6.87926412e-01 -9.43792239e-02 -1.40485275e+00
-2.33112216e-01 -4.33134437e-01 2.82505542e-01 -6.84718609e-01
-1.32732737e+00 7.78732300e-02 5.13000190e-01 -9.50115800e-01
-7.69022763e-01 -4.23148096e-01 -6.36794686e-01 1.21242654e+00
-1.34552169e+00 -1.19094849e+00 2.19068211e-02 3.42772394e-01
6.15294576e-01 -9.14439708e-02 1.09535217e+00 3.90088633e-02
-5.56950688e-01 -1.54211395e-03 8.39701414e-01 -5.79877123e-02
8.14304799e-02 -1.57569253e+00 7.62162268e-01 8.16737175e-01
6.17386281e-01 8.48533213e-01 1.05749142e+00 -6.33941412e-01
-1.17485428e+00 -6.34244323e-01 5.56072474e-01 -9.13692594e-01
6.70439065e-01 -7.87282825e-01 -9.97760296e-01 1.06437325e+00
3.92263234e-01 -2.36728147e-01 8.04385126e-01 4.78864700e-01
4.49511930e-02 4.23871011e-01 -8.14697087e-01 3.08139741e-01
6.56404197e-01 -8.68774712e-01 -7.28772581e-01 3.91430259e-01
5.26769519e-01 -1.16000868e-01 -1.03976250e+00 1.08412273e-01
3.90759081e-01 -9.31272686e-01 1.13230181e+00 -5.10382891e-01
5.56149244e-01 -1.79906011e-01 -3.11580420e-01 -1.04203260e+00
-5.73114336e-01 -7.14515090e-01 -7.12216973e-01 1.41759813e+00
6.31470308e-02 -3.59771669e-01 8.52450073e-01 7.66430855e-01
2.95300692e-01 -7.13329792e-01 -9.84589458e-01 -7.44671702e-01
2.46399999e-01 -5.77183247e-01 6.83128238e-01 8.26966345e-01
-4.91147369e-01 3.90955269e-01 -4.54861790e-01 2.09707782e-01
1.11832476e+00 2.94600397e-01 5.58174253e-01 -1.63762474e+00
-5.74162066e-01 -2.37409964e-01 -1.56524211e-01 -1.37327778e+00
3.34201843e-01 -9.03785110e-01 -7.22166672e-02 -1.87309468e+00
3.08554351e-01 -2.98738480e-01 -4.43483025e-01 2.86200374e-01
9.76387858e-02 7.69123137e-02 -1.65916994e-01 4.57887083e-01
-4.56526518e-01 9.79858160e-01 7.40704954e-01 -8.35218653e-02
-6.86291158e-02 1.79593004e-02 -1.71998948e-01 8.08863640e-01
5.25421262e-01 -5.29787242e-01 -6.39478862e-01 -5.10622084e-01
1.55547425e-01 4.22049880e-01 8.59364390e-01 -7.40988076e-01
-2.90789399e-02 -1.78126067e-01 3.98958832e-01 -1.33170342e+00
8.15903425e-01 -7.38394558e-01 5.78970432e-01 3.59557778e-01
-1.97416082e-01 -1.43954918e-01 1.03827648e-01 8.53789747e-01
-2.08587244e-01 -1.74711034e-01 6.48605764e-01 -1.35630921e-01
-4.63211685e-01 3.04182976e-01 -5.29628158e-01 -9.67395753e-02
7.96001077e-01 -2.04395905e-01 3.63183409e-01 -4.80215311e-01
-1.20889270e+00 8.89015123e-02 5.65014243e-01 3.67415041e-01
3.55112016e-01 -1.44984066e+00 -6.81728125e-01 2.79173017e-01
-2.06052467e-01 2.30675086e-01 7.47619867e-02 6.18719757e-01
-1.26240745e-01 5.37947655e-01 -4.66874018e-02 -1.11338365e+00
-8.28825116e-01 3.92220706e-01 2.26520881e-01 -5.67224205e-01
-9.69021559e-01 7.00004399e-01 3.09152722e-01 -2.37574831e-01
3.01395394e-02 -4.72464859e-01 8.77840742e-02 2.36737549e-01
1.45493373e-01 3.47883731e-01 -3.93568069e-01 -4.39891756e-01
-4.21442352e-02 5.86843044e-02 -7.64726177e-02 -4.95786101e-01
1.80453491e+00 -2.31868029e-01 -1.76129594e-01 1.19398522e+00
1.00559688e+00 -4.45607394e-01 -1.76581013e+00 -3.66399407e-01
1.22279890e-01 -3.45288783e-01 3.15037817e-01 -5.17190278e-01
-4.84893233e-01 1.35523903e+00 5.20800710e-01 7.49305964e-01
6.00110829e-01 1.81398064e-01 4.95822608e-01 5.29973730e-02
2.45587990e-01 -1.05056930e+00 6.59372136e-02 3.96671593e-01
6.71162367e-01 -1.03482914e+00 2.03075141e-01 -7.52192736e-02
-2.59948760e-01 9.01974857e-01 -3.28429528e-02 -1.06809311e-01
1.07315385e+00 2.93946356e-01 -2.93276697e-01 -3.43173236e-01
-1.02757883e+00 9.09490883e-02 1.61619708e-01 3.86059433e-01
4.49659735e-01 1.67457238e-01 3.12153995e-01 2.70323306e-01
-1.29112154e-01 4.50928472e-02 3.26282322e-01 1.01395249e+00
-1.60389438e-01 -1.30707753e+00 -2.23734185e-01 2.82905757e-01
-4.08517361e-01 -9.22271311e-02 3.00108969e-01 5.26628196e-01
-2.42026910e-01 8.26559901e-01 2.42889464e-01 4.21305865e-01
-3.36725116e-02 4.05259937e-01 5.05285084e-01 -7.96828270e-01
1.40715078e-01 4.08682346e-01 -2.34986708e-01 -3.55710864e-01
-3.24716449e-01 -1.29590845e+00 -9.49074924e-01 -1.90485895e-01
-3.22168231e-01 1.61234543e-01 5.97660840e-01 1.12896121e+00
6.64366633e-02 7.30217218e-01 3.42469007e-01 -9.89249706e-01
-1.03041959e+00 -1.10804939e+00 -7.92891562e-01 4.47503865e-01
4.31972206e-01 -9.28121328e-01 -2.95321435e-01 2.66474336e-01] | [6.973645210266113, 3.8490617275238037] |
5652de72-b0e3-4ed0-ba5e-42ead70e66c6 | school-based-malaria-chemoprevention-as-a | 2303.10684 | null | https://arxiv.org/abs/2303.10684v1 | https://arxiv.org/pdf/2303.10684v1.pdf | School-based malaria chemoprevention as a cost-effective approach to improve cognitive and educational outcomes: a meta-analysis | There is limited evidence of health interventions impact on cognitive function and educational outcomes. We build on two prior systematic reviews to conduct a meta-analysis, exploring the effects of one of the most consequential health interventions, malaria chemoprevention, on education outcomes. We pool data from nine study treatment groups (N=4,075) and outcomes across four countries. We find evidence of a positive effect (Cohen's d = 0.12, 95% CI [0.08, 0.16]) on student cognitive function, achieved at low cost. These results show that malaria chemoprevention can be highly cost effective in improving some cognitive skills, such as sustained attention. Moreover, we conduct simulations using a new common metric (learning-adjusted years of development) to compare cost-effectiveness across diverse interventions. While we might expect that traditional education interventions provide an immediate learning gain, health interventions such as malaria prevention can have surprisingly cost-effective education benefits, enabling children to achieve their full human capital potential. | ['Lauren M. Cohee', 'Donald Bundy', 'Charles Opondo', 'R. Matthew Chico', 'Sian Clarke', 'Matthew C. H. Jukes', 'Noam Angrist'] | 2023-03-19 | null | null | null | null | ['metric-learning', 'metric-learning'] | ['computer-vision', 'methodology'] | [ 4.33585010e-02 2.06327170e-01 -4.87583965e-01 -8.12349934e-03
-3.17467153e-01 -3.67669374e-01 4.86668587e-01 8.48744452e-01
-7.18067586e-01 6.57455206e-01 5.95902264e-01 -9.28987205e-01
-4.22601342e-01 -9.62546051e-01 -1.08584082e+00 -3.50594491e-01
-8.05291981e-02 -1.24170333e-01 1.11311655e-02 2.37745985e-01
6.74755931e-01 2.97258079e-01 -1.85209966e+00 -2.19907790e-01
1.52889276e+00 -2.73218453e-01 5.76571584e-01 5.17224073e-01
-2.38742471e-01 6.37510121e-01 -6.86902881e-01 -3.76526624e-01
-4.32013720e-01 -5.68732083e-01 -5.21312952e-01 -3.69325221e-01
3.60885441e-01 -7.90706813e-01 6.87558874e-02 6.48105681e-01
9.26281571e-01 -9.78632495e-02 6.82094693e-01 -8.76258612e-01
-9.45004523e-01 2.26022750e-01 -2.77877063e-01 2.53117234e-01
6.80417597e-01 1.96993485e-01 8.39008167e-02 -4.89788294e-01
3.21612954e-01 1.36970627e+00 6.11353338e-01 3.53723526e-01
-1.14505053e+00 -1.15188968e+00 -1.50779590e-01 1.77255228e-01
-6.32293344e-01 -5.65699518e-01 -1.54634520e-01 -6.73643410e-01
1.07877660e+00 -3.02054659e-02 1.29406190e+00 4.20284301e-01
4.50989127e-01 -1.15487933e-01 1.61683822e+00 -7.33069718e-01
4.34438102e-02 1.11290015e-01 1.87689304e-01 5.80569923e-01
9.37213123e-01 2.02057540e-01 -4.09353912e-01 -4.18318026e-02
5.77545285e-01 2.05741212e-01 -3.38907927e-01 7.77832717e-02
-7.54359245e-01 7.36639619e-01 3.08151990e-01 9.53132436e-02
-5.05337059e-01 2.57404298e-01 7.74170086e-02 3.66964787e-01
6.09666467e-01 2.86135525e-01 -3.39467376e-01 -1.59718916e-01
-4.35014367e-01 1.77386135e-01 6.55126274e-01 2.02991709e-01
6.42275035e-01 -5.24733178e-02 -4.11144793e-01 6.45133436e-01
6.01724148e-01 1.03112054e+00 3.49928886e-02 -9.77437675e-01
3.54688436e-01 4.51137066e-01 1.81591645e-01 -5.46800256e-01
-4.53984827e-01 -1.03548244e-01 -2.50441104e-01 2.86022514e-01
4.14337456e-01 -6.82263494e-01 -6.81302547e-01 1.91745412e+00
2.06803411e-01 3.09018612e-01 1.79503136e-03 3.31752360e-01
8.85975897e-01 4.90513057e-01 7.12802887e-01 -2.13602498e-01
1.23056209e+00 -5.27831674e-01 -6.67913437e-01 -1.67912275e-01
7.47061551e-01 -6.97090626e-01 1.01609278e+00 -1.65729761e-01
-1.52133644e+00 -1.96532533e-01 -6.95995510e-01 3.20615292e-01
-5.87809324e-01 -5.69777548e-01 7.32632279e-01 1.46846688e+00
-1.47733307e+00 5.16149580e-01 -1.01426971e+00 -4.94668871e-01
3.59347373e-01 2.03354433e-01 -2.14074299e-01 -5.84882736e-01
-8.39987397e-01 1.40721583e+00 1.17180599e-02 -4.89836007e-01
-8.75994265e-01 -1.33179271e+00 -6.35267019e-01 3.33416492e-01
1.54669359e-01 -9.37671065e-01 9.35052276e-01 -7.50269830e-01
-1.15555477e+00 5.01543462e-01 -2.56766379e-01 -4.76294383e-03
-1.35382131e-01 -2.17550337e-01 1.00056836e-02 3.63153368e-01
3.16307694e-01 6.93041086e-01 -5.54521419e-02 -4.26574647e-01
-7.02389479e-01 -7.20137119e-01 1.36039689e-01 5.58458149e-01
-6.60714030e-01 8.74387264e-01 4.52135623e-01 -4.29490536e-01
-4.30169463e-01 -5.12689352e-01 -1.54807210e-01 -4.33984756e-01
4.58196640e-01 -4.32729363e-01 -1.85714401e-02 -9.59117413e-01
6.90039039e-01 -1.43578565e+00 -3.55331272e-01 -3.89498204e-01
6.21079840e-02 1.15830116e-01 6.68595135e-02 4.68209833e-01
2.86859512e-01 3.76213104e-01 3.08103144e-01 2.10972145e-01
-1.16883218e-01 -7.24374363e-03 5.94704270e-01 5.70807159e-01
6.21157050e-01 6.92132413e-01 -9.07462835e-01 -2.12861970e-01
4.54396069e-01 9.47758436e-01 -8.81791651e-01 3.50145437e-02
4.42117006e-01 1.85881361e-01 -2.20676035e-01 2.31761023e-01
6.88100815e-01 -1.26486868e-02 6.23398200e-02 8.81785035e-01
-7.81574368e-01 9.56434608e-01 -5.32561362e-01 1.01504958e+00
-4.14299428e-01 6.35020435e-01 6.50548860e-02 -8.43755424e-01
5.85802078e-01 4.85320598e-01 3.09514254e-02 -1.07990479e+00
-2.56011546e-01 -1.51857480e-01 4.70144659e-01 -5.02315164e-01
3.47075574e-02 -2.66449273e-01 5.42448342e-01 5.44923782e-01
4.06310856e-02 4.48278040e-02 1.47288054e-01 -3.43041271e-02
1.17340004e+00 -1.04600444e-01 -9.85949785e-02 -9.38235223e-01
1.80345714e-01 3.71759199e-02 4.12513673e-01 7.88872123e-01
-1.47105074e-02 -7.18676224e-02 4.76279855e-01 3.25316429e-01
-7.55253553e-01 -9.85323727e-01 -2.75447905e-01 1.32652557e+00
-4.93174970e-01 -5.20554781e-02 -8.05959404e-01 1.13045163e-01
-8.41729119e-02 7.98886776e-01 -3.77327442e-01 -2.34357521e-01
-2.37804800e-01 -1.03522861e+00 6.14842772e-01 4.64952350e-01
7.20804513e-01 -8.74117196e-01 -1.23238909e+00 1.07875414e-01
4.13148075e-01 -3.24838132e-01 -5.63432649e-02 -1.54310465e-01
-1.12659073e+00 -9.68679428e-01 -1.29729664e+00 -7.92949200e-01
5.21524429e-01 5.15036404e-01 1.20866144e+00 4.71758336e-01
3.34701352e-02 8.05507183e-01 -6.22152500e-02 -8.56890142e-01
-1.90456867e-01 -4.64846492e-01 4.86340038e-02 -1.25469744e+00
5.23601711e-01 -3.66524905e-01 -1.02624023e+00 -1.54948130e-01
-5.05344450e-01 -1.84689417e-01 6.34143353e-01 3.51480544e-01
5.44252731e-02 -9.71710309e-02 1.14692438e+00 -4.86223876e-01
5.20026326e-01 -6.76499546e-01 -3.44478041e-01 2.54204243e-01
-1.09874129e+00 -4.17471915e-01 1.11680530e-01 -7.62405157e-01
-1.33397973e+00 -8.67057264e-01 1.97028015e-02 6.57988787e-01
-4.50874686e-01 9.06470120e-01 1.57972723e-01 -6.72394857e-02
3.65254164e-01 -1.14739779e-02 4.55337577e-02 -4.17533815e-01
-8.13897923e-02 1.33855909e-01 2.87653327e-01 -8.98618519e-01
2.83306777e-01 -1.75785661e-01 2.64458638e-02 -1.02974224e+00
-1.04829758e-01 1.16390660e-02 1.91302270e-01 -2.69727260e-01
1.03510654e+00 -1.34545434e+00 -9.54486847e-01 3.38759482e-01
-5.42383313e-01 -9.95853603e-01 4.56576824e-01 1.24123585e+00
-7.58150890e-02 -1.51555806e-01 -5.72305679e-01 -6.80972219e-01
-4.45221096e-01 -1.01055861e+00 1.39013425e-01 8.00820231e-01
7.90249929e-02 -1.21677887e+00 4.29936618e-01 2.54043519e-01
8.61364007e-01 3.28214765e-01 1.01896107e+00 -2.05821559e-01
-3.44472438e-01 3.39000881e-01 -3.54596764e-01 -1.66372195e-01
3.01109731e-01 -9.01010856e-02 -5.10143995e-01 -3.83453518e-01
-8.07697102e-02 -2.45987639e-01 3.88282627e-01 1.13566494e+00
4.32897806e-01 -4.46956128e-01 -1.80792287e-01 1.90081418e-01
1.36551023e+00 5.95618784e-01 6.85102522e-01 5.95484436e-01
2.64081299e-01 1.13165307e+00 3.58258963e-01 -1.47365332e-01
9.58805263e-01 2.60942906e-01 8.33248422e-02 -6.95651770e-02
-4.25642222e-01 -3.19295153e-02 5.59973836e-01 2.91271776e-01
-3.91594529e-01 3.33442360e-01 -1.25216436e+00 8.00618291e-01
-8.64507735e-01 -9.24011469e-01 -4.77073252e-01 2.57353425e+00
8.28217685e-01 2.51430452e-01 3.97758365e-01 -2.41734311e-01
6.95582688e-01 -5.53216338e-01 -2.34349787e-01 -8.44584703e-01
1.34324819e-01 7.64696658e-01 6.03008449e-01 3.30478042e-01
-1.26484379e-01 3.18807900e-01 7.21038723e+00 1.17205329e-01
-9.58091319e-01 2.15457931e-01 5.36256969e-01 -1.64574564e-01
-2.52005428e-01 2.29196772e-02 -6.18061185e-01 4.14749920e-01
1.95746326e+00 -5.47542274e-01 1.65669292e-01 -2.63834931e-03
8.03380132e-01 -5.69720149e-01 -6.12763345e-01 -2.05747947e-01
-1.60762802e-01 -1.20676720e+00 -6.82213545e-01 1.17290683e-01
9.10621583e-01 -1.20112091e-01 2.30163097e-01 4.47968185e-01
5.44261098e-01 -1.31642973e+00 4.12400782e-01 3.32728833e-01
8.61962438e-01 -1.10538745e+00 4.76539820e-01 2.67930478e-01
-7.03658462e-01 2.31843755e-01 -4.01180208e-01 -1.10280871e+00
-3.46131265e-01 5.19697785e-01 -7.68285394e-01 1.46998376e-01
9.35843468e-01 3.49053949e-01 -7.91073978e-01 1.23831379e+00
-1.91146478e-01 1.07661152e+00 -3.59589420e-02 -3.93435001e-01
2.29062006e-01 -1.33628160e-01 -2.35835999e-01 1.15154028e+00
4.20265555e-01 6.61836803e-01 -6.24414682e-01 7.27146327e-01
1.91859201e-01 1.68697819e-01 -8.21191728e-01 -2.66196370e-01
5.73771000e-01 6.49998963e-01 -9.91119683e-01 -3.87262076e-01
-1.00156760e+00 1.96212456e-01 -4.43710424e-02 1.52942672e-01
-3.47727716e-01 -4.86631691e-01 5.73701859e-01 1.91214368e-01
-8.16262066e-02 3.03548127e-01 -3.27402622e-01 -3.78985733e-01
-4.51930374e-01 -6.80022299e-01 1.68731540e-01 -7.13368356e-01
-3.32879573e-01 -7.32954085e-01 3.90574157e-01 7.44114956e-03
5.56971021e-02 -1.66640863e-01 -8.66250038e-01 1.47353005e+00
-1.22782731e+00 -8.14424455e-01 9.00184363e-02 1.31767094e-01
3.06931645e-01 4.95184690e-01 6.32897437e-01 3.87484968e-01
-6.92016721e-01 5.09334683e-01 2.35604107e-01 -4.39881444e-01
8.21129560e-01 -1.20366824e+00 -1.70716971e-01 7.53109992e-01
-1.12787664e+00 9.75490987e-01 4.94434088e-01 -1.14383292e+00
-1.27073979e+00 -7.60015249e-01 1.00050926e+00 -1.78761289e-01
2.72974402e-01 1.42951787e-01 -8.46477091e-01 7.26352274e-01
6.53849363e-01 -1.27454865e+00 6.57883704e-01 3.01723868e-01
3.79160382e-02 4.04232860e-01 -1.44959331e+00 6.43345356e-01
9.24021959e-01 -2.52417296e-01 -6.69245422e-01 1.84713557e-01
1.02642739e+00 -1.10386267e-01 -1.24075186e+00 3.28848481e-01
6.79882288e-01 -1.06975603e+00 1.47712803e+00 -5.59506893e-01
1.00905275e+00 3.95030767e-01 2.10547224e-01 -1.25854027e+00
-4.06469345e-01 -3.86611037e-02 2.32896790e-01 1.55329382e+00
-6.62261294e-03 -9.14408147e-01 6.23258054e-01 8.49519134e-01
-3.42392683e-01 -2.87658781e-01 -6.86928451e-01 -4.62182313e-01
8.46329629e-01 1.18661240e-01 9.35363054e-01 1.10833716e+00
1.95408743e-02 2.01300099e-01 1.84611887e-01 3.85688961e-01
6.61111772e-01 -5.11894524e-01 4.24248457e-01 -9.46284592e-01
1.31815681e-02 -6.88843131e-01 -1.73228234e-01 7.84581974e-02
2.10102219e-02 -5.58157206e-01 -4.71951395e-01 -2.09642649e+00
7.05048203e-01 -7.34935626e-02 -4.51819859e-02 6.07501566e-01
-6.32238150e-01 -6.33371115e-01 1.23224974e-01 -6.44787431e-01
-7.22772926e-02 2.69865394e-01 1.14924216e+00 1.44226357e-01
-5.36339462e-01 -1.34334549e-01 -1.05681074e+00 4.08992738e-01
1.07134938e+00 -4.43060666e-01 -5.44394374e-01 -6.02685273e-01
3.63990180e-02 5.31031609e-01 3.43730211e-01 -8.20661008e-01
-7.27512464e-02 -8.30334604e-01 4.17204022e-01 -2.52836645e-01
-3.87273580e-01 -3.57735902e-01 3.43793243e-01 1.54522789e+00
-1.04101822e-01 3.65115047e-01 6.17181182e-01 -2.02551469e-01
5.98987103e-01 -4.24365669e-01 3.17875624e-01 2.33798802e-01
-4.19317335e-02 -3.32050830e-01 -9.38046396e-01 1.35979205e-01
5.95250666e-01 1.89577937e-02 -1.00857425e+00 -2.56444633e-01
-5.63816875e-02 3.50855023e-01 7.10626006e-01 6.98561817e-02
3.94115776e-01 -1.06654859e+00 -8.19125414e-01 -3.50906432e-01
-3.93742740e-01 -2.55470008e-01 2.51388669e-01 8.46302092e-01
-7.47324884e-01 8.84734094e-01 -6.63934350e-01 -1.11475952e-01
-1.21537805e+00 5.78235269e-01 1.50133252e-01 1.79153875e-01
-5.79772532e-01 4.56481427e-01 3.26518953e-01 -2.70095915e-01
2.78811872e-01 -2.25036025e-01 -3.27721953e-01 -3.69656086e-02
1.10714436e+00 1.33681166e+00 -1.62580162e-01 -1.66544765e-02
-5.88503480e-01 5.06837428e-01 2.90913671e-01 -3.02627087e-01
1.50851059e+00 -2.79127657e-01 -3.46987545e-01 6.51777536e-02
7.81544447e-01 -1.08175360e-01 -1.24497545e+00 4.03321177e-01
-1.60531819e-01 -3.38654190e-01 3.84831876e-02 -9.61395860e-01
-4.49866176e-01 9.06622291e-01 1.08584952e+00 6.52348846e-02
1.38998413e+00 -2.52750337e-01 -1.65395483e-01 2.07416251e-01
7.66665041e-02 -7.40012288e-01 6.77611083e-02 1.25084668e-01
3.64009798e-01 -8.73512328e-01 -5.13366237e-02 1.06593400e-01
1.29940748e-01 4.35071200e-01 6.80720985e-01 1.32521719e-01
4.40409809e-01 -1.37055546e-01 -4.01059628e-01 -3.90374243e-01
-9.12018716e-01 -2.36242279e-01 -4.00955193e-02 1.10770750e+00
7.79461205e-01 3.84099185e-01 -1.08766329e+00 3.40064794e-01
-2.38332421e-01 1.56947732e-01 9.52138186e-01 9.34565187e-01
-9.31667864e-01 -9.10893738e-01 -1.00024700e+00 8.73968661e-01
-9.86211538e-01 -1.33608460e-01 -2.87403524e-01 1.12748158e+00
1.13601983e-01 1.27856505e+00 4.42293942e-01 3.39133739e-01
2.23027900e-01 2.12492451e-01 7.19945550e-01 -6.66652620e-01
-6.14871144e-01 -1.12155870e-01 2.57840216e-01 1.61313545e-03
-9.16444480e-01 -9.79407609e-01 -1.09398329e+00 -1.10403061e+00
-8.76160413e-02 -1.22247878e-02 7.80216217e-01 8.05761278e-01
1.55432180e-01 7.77175307e-01 3.24459851e-01 -5.49721479e-01
7.67011791e-02 -8.66320074e-01 -1.97547406e-01 -1.91430628e-01
2.23194599e-01 -8.21275711e-01 -7.77936727e-02 -6.22555077e-01] | [7.9983391761779785, 5.408670902252197] |
0c73d43d-849c-45d3-812a-e988029b3a86 | the-benefits-of-close-domain-fine-tuning-for | 1912.05846 | null | https://arxiv.org/abs/1912.05846v1 | https://arxiv.org/pdf/1912.05846v1.pdf | The Benefits of Close-Domain Fine-Tuning for Table Detection in Document Images | A correct localisation of tables in a document is instrumental for determining their structure and extracting their contents; therefore, table detection is a key step in table understanding. Nowadays, the most successful methods for table detection in document images employ deep learning algorithms; and, particularly, a technique known as fine-tuning. In this context, such a technique exports the knowledge acquired to detect objects in natural images to detect tables in document images. However, there is only a vague relation between natural and document images, and fine-tuning works better when there is a close relation between the source and target task. In this paper, we show that it is more beneficial to employ fine-tuning from a closer domain. To this aim, we train different object detection algorithms (namely, Mask R-CNN, RetinaNet, SSD and YOLO) using the TableBank dataset (a dataset of images of academic documents designed for table detection and recognition), and fine-tune them for several heterogeneous table detection datasets. Using this approach, we considerably improve the accuracy of the detection models fine-tuned from natural images (in mean a 17%, and, in the best case, up to a 60%). | ['Jónathan Heras', 'César Domínguez', 'Ángela Casado-García', 'Vico Pascual', 'Eloy Mata'] | 2019-12-12 | null | null | null | null | ['table-detection'] | ['miscellaneous'] | [ 1.43345788e-01 9.13986936e-02 2.04580091e-03 -2.34472919e-02
-8.58578324e-01 -9.92156088e-01 8.19556952e-01 5.47014713e-01
-4.49149340e-01 4.59925950e-01 1.20516434e-01 -7.16745527e-03
-3.62453945e-02 -9.48228955e-01 -9.57023025e-01 -4.94927913e-01
3.06512117e-01 8.86053741e-01 5.15295029e-01 -3.07007283e-01
3.43734294e-01 6.71518087e-01 -1.56002784e+00 8.54724944e-01
7.86991239e-01 1.12734568e+00 3.50338280e-01 6.81524515e-01
-3.80170882e-01 8.46234679e-01 -9.81500804e-01 -9.37771320e-01
8.14952925e-02 -5.06950438e-01 -8.41151655e-01 3.66703182e-01
4.27363843e-01 -2.29223207e-01 -1.37764186e-01 1.08659768e+00
2.01403290e-01 -1.82021961e-01 7.11963236e-01 -5.81690133e-01
-7.07214892e-01 1.11535490e+00 -3.94626200e-01 4.37537760e-01
4.42767799e-01 -1.32690355e-01 1.11893392e+00 -7.94408381e-01
7.71714330e-01 1.24865675e+00 4.66026962e-01 2.30721191e-01
-1.06054068e+00 -2.30984092e-01 2.52435822e-02 1.75983101e-01
-1.35321939e+00 -6.06512070e-01 4.17930961e-01 -4.85956579e-01
7.30304122e-01 2.67500848e-01 4.51533794e-01 1.06967652e+00
-4.07087654e-02 1.16323853e+00 8.14923465e-01 -7.02084601e-01
5.76745272e-02 6.94446146e-01 -1.29679933e-01 5.32904148e-01
4.06856179e-01 -4.90407020e-01 -5.69526851e-01 3.83405179e-01
5.90553343e-01 -3.78896385e-01 -3.02019387e-01 -5.14581859e-01
-1.40446079e+00 6.70802891e-01 5.76780677e-01 8.23838770e-01
-2.70231366e-01 -3.96640748e-01 6.06610239e-01 1.80014446e-01
2.16237664e-01 6.50677979e-01 -2.38490820e-01 -9.96042509e-03
-9.85456407e-01 1.70425177e-01 9.39816892e-01 9.06233907e-01
4.09639299e-01 -2.84664243e-01 -4.70938772e-01 6.73786819e-01
-7.32712522e-02 2.52825618e-01 6.08152270e-01 -3.34093869e-01
8.59553099e-01 9.47141767e-01 1.29470840e-01 -1.10022867e+00
-5.37523091e-01 -5.07373095e-01 -9.46014166e-01 -5.44228069e-02
1.11894310e+00 3.56848001e-01 -6.81365430e-01 1.19136155e+00
8.56850296e-02 -7.08641529e-01 2.30591036e-02 8.77866507e-01
7.34851718e-01 5.85245848e-01 -3.24893773e-01 7.48007558e-03
1.78183377e+00 -7.77605295e-01 -8.32795322e-01 -3.56942147e-01
7.04576433e-01 -8.92003357e-01 1.37726438e+00 7.61206090e-01
-9.18610394e-01 -5.94843209e-01 -1.23006451e+00 -1.59914508e-01
-8.79648507e-01 7.13184953e-01 3.88338298e-01 8.63817930e-01
-7.90277183e-01 5.27590573e-01 -4.51895565e-01 -5.98367751e-01
5.70020676e-01 1.73445150e-01 -3.92645538e-01 -5.46333082e-02
-1.14046299e+00 1.02941000e+00 6.52536988e-01 1.25652567e-01
-5.39709508e-01 -2.78966457e-01 -5.40020227e-01 4.86703485e-01
7.35512853e-01 -3.97803068e-01 9.91767049e-01 -6.35596275e-01
-1.01758623e+00 1.48802066e+00 2.34437406e-01 -7.91579783e-01
9.52142477e-01 -1.91976398e-01 -2.17522413e-01 2.51133293e-01
9.48223323e-02 3.54298562e-01 1.00253010e+00 -1.17542148e+00
-6.04724288e-01 -5.92049778e-01 1.61747158e-01 -4.89871055e-02
-3.02537411e-01 2.06230834e-01 -8.28887582e-01 -6.01809025e-01
1.91999879e-03 -5.81604540e-01 3.58479977e-01 -1.07527114e-01
-6.38007104e-01 -1.89582184e-01 3.55581105e-01 -7.44758666e-01
1.09335792e+00 -2.07270622e+00 1.65472955e-01 1.29438132e-01
2.77175128e-01 4.62443590e-01 1.27863571e-01 2.01193929e-01
2.25164250e-01 -2.86082588e-02 -1.52639285e-01 -1.55800402e-01
1.70592085e-01 -1.54670745e-01 -2.20204949e-01 3.07500184e-01
3.16457897e-01 7.99278557e-01 -5.52937925e-01 -7.20384002e-01
1.71862975e-01 4.82977629e-01 -3.99135917e-01 -5.88832237e-02
-4.71471786e-01 1.44066259e-01 -4.07660782e-01 5.20153344e-01
5.73008895e-01 -4.53941911e-01 3.62042308e-01 -2.88359612e-01
2.28825584e-02 1.80347994e-01 -1.54782164e+00 1.45174444e+00
-3.01190257e-01 8.23723555e-01 1.05110444e-02 -9.82621968e-01
1.04416060e+00 3.99633832e-02 5.96136861e-02 -1.08449256e+00
3.14583629e-01 2.81027377e-01 -1.00645544e-02 -4.01566923e-01
6.26464784e-01 4.16107327e-01 -7.22405538e-02 2.59917319e-01
-3.83325145e-02 -1.02905706e-01 9.15059388e-01 2.02428326e-01
8.93128335e-01 -3.47535722e-02 4.72891062e-01 -1.40470460e-01
1.05618596e+00 8.25332105e-02 -2.60286517e-02 9.39481616e-01
-2.90779658e-02 7.76089191e-01 9.15026307e-01 -5.02951264e-01
-1.03970146e+00 -7.93902934e-01 -1.84716925e-01 1.16295969e+00
-7.81884119e-02 -4.82164770e-01 -1.27090716e+00 -7.05643117e-01
1.60435475e-02 3.54002118e-01 -8.28985810e-01 -5.06191254e-02
-7.38799930e-01 -7.40824819e-01 5.43233335e-01 4.42504942e-01
7.42815018e-01 -1.47285163e+00 -6.96825027e-01 1.11431703e-01
-2.13445172e-01 -1.47802269e+00 -1.90982282e-01 5.25984645e-01
-6.21085942e-01 -1.11813164e+00 -7.86999524e-01 -7.13205755e-01
3.70396942e-01 -1.20826639e-01 1.40053284e+00 9.75927934e-02
-3.66191328e-01 -1.77966118e-01 -2.90943980e-01 -3.73000383e-01
-6.78502321e-01 5.12552500e-01 -2.31767550e-01 1.65693179e-01
3.97497445e-01 1.56032503e-01 -1.47119597e-01 3.07683080e-01
-8.82727206e-01 -3.01945299e-01 9.36457753e-01 7.04382122e-01
4.21662807e-01 1.47938773e-01 -9.75980517e-03 -1.12529314e+00
5.89056015e-01 3.06304425e-01 -1.01754200e+00 5.23635209e-01
-3.81168574e-01 2.90008366e-01 8.02630544e-01 -9.12626684e-02
-9.37352717e-01 2.07098991e-01 -5.72617538e-02 -1.05018906e-01
-2.64789313e-01 1.43684864e-01 -6.23432338e-01 1.71235979e-01
9.77981627e-01 3.10510725e-01 -3.55322033e-01 -5.92609346e-01
5.06496489e-01 6.31833911e-01 5.87222457e-01 -2.53660828e-01
7.70630419e-01 5.04522383e-01 -2.39648923e-01 -5.72713792e-01
-1.12678814e+00 -3.22529763e-01 -1.04650402e+00 -8.52991119e-02
1.04681778e+00 -6.94096625e-01 -8.67918074e-01 3.48170698e-01
-1.00801110e+00 -1.25113845e-01 -1.63972899e-01 2.26812989e-01
-4.92733836e-01 4.94608283e-02 -6.33391023e-01 -5.70372045e-01
-1.28444657e-01 -1.19067073e+00 1.34082997e+00 1.10743202e-01
-1.05849653e-01 -7.55861104e-01 -3.59297514e-01 4.86711085e-01
1.82315007e-01 2.96524679e-03 8.57475758e-01 -7.82458723e-01
-8.40092778e-01 -2.52681285e-01 -6.21339142e-01 8.07587802e-02
1.07654415e-01 -7.20557049e-02 -1.27621293e+00 5.93377091e-02
-1.93882287e-01 -2.04795897e-01 1.21258152e+00 2.41131335e-01
1.01447737e+00 -3.75127159e-02 -3.37458432e-01 3.28117222e-01
1.19620991e+00 1.77548587e-01 7.31189668e-01 8.93114209e-01
6.81473374e-01 7.10311830e-01 7.48918533e-01 5.05852878e-01
1.54564515e-01 8.07896316e-01 3.19516748e-01 -1.93874612e-02
-2.22374603e-01 -6.41204193e-02 2.27062926e-02 3.06685954e-01
1.09869272e-01 -4.26792026e-01 -8.23180616e-01 3.62912238e-01
-1.56991506e+00 -8.24946344e-01 -6.07409030e-02 2.00047302e+00
8.41118217e-01 8.56651723e-01 3.22510540e-01 7.24683464e-01
8.57945144e-01 1.51728362e-01 -2.63106346e-01 -4.42878515e-01
-4.91150886e-01 -4.16837558e-02 4.61583793e-01 1.36198953e-01
-1.43885314e+00 1.04388189e+00 5.32619143e+00 9.63707566e-01
-9.15086865e-01 -1.83892056e-01 6.88108683e-01 1.99590981e-01
1.76171482e-01 -4.82604206e-01 -1.13843179e+00 2.63719082e-01
7.68769801e-01 1.51385322e-01 4.50536877e-01 8.76363039e-01
-9.91180688e-02 -1.19924821e-01 -1.28077638e+00 1.19693303e+00
3.89102519e-01 -1.49286246e+00 9.80952755e-02 -1.73761904e-01
2.87448019e-01 -5.27200520e-01 -1.00906357e-01 2.26823211e-01
-2.51700372e-01 -8.74880075e-01 1.01652813e+00 3.46187443e-01
4.66600180e-01 -8.22128415e-01 8.62736762e-01 2.93906569e-01
-9.66360331e-01 -6.55555874e-02 -3.48442942e-01 3.05935591e-01
-2.25099251e-01 6.96007371e-01 -8.57426107e-01 2.43951365e-01
1.00997400e+00 4.92150187e-01 -1.01895750e+00 8.53456140e-01
-3.44017684e-01 1.21315859e-01 -5.93189672e-02 -2.39192054e-01
1.83473974e-01 -1.36508018e-01 2.74572134e-01 1.34935558e+00
3.81168462e-02 -5.90335965e-01 -2.84378439e-01 8.97908628e-01
-3.70888412e-01 1.75649002e-01 -5.04823208e-01 -1.58328295e-01
1.35722786e-01 1.40243876e+00 -1.37705028e+00 -4.12982255e-01
-2.14937121e-01 9.69645858e-01 3.21819127e-01 -1.78865179e-01
-6.31078720e-01 -6.60778284e-01 3.24263901e-01 9.70830694e-02
8.41327369e-01 8.97888467e-02 -4.50995326e-01 -1.00043750e+00
3.39292049e-01 -1.24847817e+00 5.54845631e-01 -8.43962371e-01
-8.78998637e-01 8.08029056e-01 -5.20761609e-01 -1.02425468e+00
-3.74931335e-01 -1.05886006e+00 6.46223575e-02 6.40176833e-01
-1.27511096e+00 -8.77566397e-01 -4.57706481e-01 5.45173407e-01
4.81525540e-01 -1.06028683e-01 7.00595260e-01 5.39276838e-01
-5.72971761e-01 6.69868648e-01 2.64737189e-01 5.92919230e-01
8.01001251e-01 -1.58393896e+00 5.65440178e-01 9.42328274e-01
6.24654710e-01 4.11130130e-01 7.42143929e-01 -2.96078801e-01
-1.39337993e+00 -8.67909491e-01 9.70046699e-01 -6.95296049e-01
5.42412162e-01 -9.54651535e-01 -1.00748098e+00 5.22288203e-01
1.02622792e-01 -1.70953497e-01 2.24887133e-02 2.95231678e-02
-4.50434238e-01 -3.64479095e-01 -1.15654218e+00 5.09833932e-01
8.24320674e-01 -6.45362616e-01 -5.79438388e-01 5.92519104e-01
4.68950272e-01 -6.18104935e-01 -8.03648174e-01 -8.12791884e-02
5.49661040e-01 -1.34406233e+00 1.04835093e+00 -2.25242838e-01
3.46185476e-01 -2.64583349e-01 -7.15443566e-02 -1.08831048e+00
-1.46433055e-01 -2.65281826e-01 -2.17220381e-01 1.41888452e+00
5.78680694e-01 -1.51571140e-01 9.88997757e-01 -1.26734376e-01
4.87633720e-02 -2.88781047e-01 -5.56051910e-01 -7.11111486e-01
-4.91212271e-02 -2.48082846e-01 6.63261592e-01 7.20370352e-01
-2.55427241e-01 4.44263309e-01 -5.95087670e-02 1.58037335e-01
3.17042589e-01 3.35953385e-01 7.75013566e-01 -1.28357363e+00
-2.03780040e-01 -6.82277918e-01 -4.04375166e-01 -9.02019322e-01
-7.83629641e-02 -7.27680922e-01 -1.69120990e-02 -1.54576206e+00
1.35957211e-01 -6.13203980e-02 -1.47762671e-01 9.32540074e-02
-1.13336362e-01 4.88428652e-01 4.81179684e-01 3.12924176e-01
-7.96400309e-01 4.90735993e-02 1.30301011e+00 -4.00566250e-01
-1.23734497e-01 1.07077055e-01 -6.94056749e-01 6.12543404e-01
6.22715533e-01 -3.94613057e-01 8.83956552e-02 -3.46581995e-01
5.84360957e-01 -1.29920736e-01 1.33060679e-01 -1.18815219e+00
1.54493481e-01 5.51365554e-01 9.47385907e-01 -1.18227446e+00
1.41695321e-01 -5.94126046e-01 -5.43180525e-01 5.77524602e-01
-4.12708998e-01 -1.62058175e-01 2.16390923e-01 2.39595771e-01
-3.13806027e-01 -3.91452312e-01 7.84263492e-01 -4.21221048e-01
-8.22322190e-01 -3.04955721e-01 -4.48477775e-01 1.60626322e-01
5.94971955e-01 -1.70547023e-01 -3.24498683e-01 -1.08607158e-01
-8.14586163e-01 -2.00814605e-02 2.62512803e-01 4.92229074e-01
3.81942481e-01 -9.18925047e-01 -5.15434682e-01 1.98109150e-01
5.54980159e-01 -9.58584175e-02 -1.27335578e-01 7.54092813e-01
-6.59188509e-01 8.96215200e-01 -2.49034002e-01 -7.72301733e-01
-1.17064762e+00 8.96419883e-01 2.49542817e-01 -5.18908918e-01
-5.72430134e-01 8.95522475e-01 2.35009685e-01 -3.38530034e-01
4.64727223e-01 -7.71824896e-01 -6.52905345e-01 6.82182670e-01
7.58662701e-01 1.00611150e-01 7.95306981e-01 -4.27029878e-01
-5.71610034e-01 6.42307043e-01 -2.63880163e-01 2.23419055e-01
1.04282618e+00 -6.71358258e-02 8.01284984e-02 4.04089123e-01
7.50067055e-01 2.84292787e-01 -1.03637385e+00 -2.61326492e-01
4.83235031e-01 -3.79417837e-01 -2.36694112e-01 -8.05160224e-01
-9.89661753e-01 7.86375165e-01 4.83322799e-01 7.17922151e-01
1.13177240e+00 2.68439770e-01 2.71826327e-01 8.01085830e-01
1.42463684e-01 -1.04882693e+00 1.41873911e-01 4.44056183e-01
8.93699348e-01 -1.54077077e+00 5.55186486e-03 -4.79810953e-01
-5.47483563e-01 1.30283439e+00 3.81831467e-01 8.80734250e-02
8.15487951e-02 2.68578023e-01 4.49443012e-02 -2.47877479e-01
-3.58640462e-01 -6.28146112e-01 3.62307429e-01 5.82826138e-01
5.30007720e-01 -1.40100166e-01 4.53829505e-02 4.55878466e-01
-4.05848414e-01 -1.45844430e-01 5.27888656e-01 6.63256288e-01
-4.66173172e-01 -8.85925293e-01 -8.53391767e-01 4.85540748e-01
-6.12017810e-01 -1.04572490e-01 -8.12440097e-01 1.13447475e+00
1.10756002e-01 8.44274461e-01 1.18133090e-01 9.43220854e-02
5.92806876e-01 -9.52762067e-02 6.45206332e-01 -4.68033403e-01
-8.91435802e-01 4.55557182e-03 2.20801860e-01 -4.67247844e-01
-2.99921960e-01 -6.30257607e-01 -9.96190727e-01 -1.58841789e-01
-2.88326293e-01 4.18738350e-02 6.97187126e-01 1.02734745e+00
-7.41112828e-02 9.12731886e-01 3.07738811e-01 -6.00476742e-01
-5.12813449e-01 -9.98453319e-01 -7.16226757e-01 4.27795023e-01
2.32019156e-01 -6.42818332e-01 -1.98270977e-01 2.45526910e-01] | [11.685132026672363, 2.9879727363586426] |
8efb0d84-1c74-4a5f-8fd4-871d3d56254f | sparsity-exploitation-via-discovering | 2306.17090 | null | https://arxiv.org/abs/2306.17090v1 | https://arxiv.org/pdf/2306.17090v1.pdf | Sparsity exploitation via discovering graphical models in multi-variate time-series forecasting | Graph neural networks (GNNs) have been widely applied in multi-variate time-series forecasting (MTSF) tasks because of their capability in capturing the correlations among different time-series. These graph-based learning approaches improve the forecasting performance by discovering and understanding the underlying graph structures, which represent the data correlation. When the explicit prior graph structures are not available, most existing works cannot guarantee the sparsity of the generated graphs that make the overall model computational expensive and less interpretable. In this work, we propose a decoupled training method, which includes a graph generating module and a GNNs forecasting module. First, we use Graphical Lasso (or GraphLASSO) to directly exploit the sparsity pattern from data to build graph structures in both static and time-varying cases. Second, we fit these graph structures and the input data into a Graph Convolutional Recurrent Network (GCRN) to train a forecasting model. The experimental results on three real-world datasets show that our novel approach has competitive performance against existing state-of-the-art forecasting algorithms while providing sparse, meaningful and explainable graph structures and reducing training time by approximately 40%. Our PyTorch implementation is publicly available at https://github.com/HySonLab/GraphLASSO | ['Duy Khuong Nguyen', 'Truong Son Hy', 'Ngoc-Dung Do'] | 2023-06-29 | null | null | null | null | ['time-series-forecasting'] | ['time-series'] | [-6.82821274e-02 5.73644154e-02 -2.32052878e-01 -5.20646989e-01
-1.28146455e-01 -4.96724218e-01 4.73493010e-01 4.53207530e-02
6.47902310e-01 4.50566858e-01 2.59766132e-01 -6.96081340e-01
-1.00549489e-01 -8.60294819e-01 -8.11671019e-01 -5.74120998e-01
-4.96008813e-01 4.14251745e-01 -1.28112167e-01 -3.53534907e-01
-7.28710368e-02 3.06616873e-01 -1.16471887e+00 1.59936666e-01
9.36290562e-01 1.00775230e+00 9.14832875e-02 4.54595953e-01
-1.69478402e-01 1.07680535e+00 -1.90545529e-01 -2.10332498e-01
2.34426245e-01 -5.65068781e-01 -3.09992999e-01 3.21444720e-02
1.60952523e-01 3.94128487e-02 -7.22883582e-01 9.48084176e-01
1.72957689e-01 2.13484675e-01 2.65612423e-01 -1.40568566e+00
-7.92410135e-01 1.05967510e+00 -5.23838460e-01 2.52384782e-01
1.17046237e-01 -6.84423223e-02 1.16301918e+00 -5.24905443e-01
4.68025029e-01 1.21714151e+00 8.01875412e-01 2.17159450e-01
-1.09473217e+00 -7.98513770e-01 5.73238611e-01 1.21818498e-01
-1.18112791e+00 -2.75228560e-01 1.30128562e+00 -4.49945897e-01
9.72357988e-01 2.54254520e-01 7.48307586e-01 1.04713655e+00
3.07595849e-01 5.09008765e-01 8.94329965e-01 -1.20163765e-02
-2.34815408e-03 -3.37518513e-01 3.72333676e-01 9.30632412e-01
1.59627765e-01 3.39335091e-02 -4.02961135e-01 -2.10612133e-01
8.47520649e-01 5.75081229e-01 -3.89970124e-01 -3.41062509e-02
-9.79566038e-01 8.54683399e-01 8.00579548e-01 3.38778734e-01
-6.19537652e-01 3.08996707e-01 4.15376633e-01 3.73457074e-01
1.02451146e+00 1.25980839e-01 -1.85578257e-01 2.22150922e-01
-7.37191975e-01 -2.83160787e-02 8.78165185e-01 7.76927829e-01
6.32888496e-01 7.53042459e-01 1.50142387e-01 5.59182644e-01
3.31267178e-01 5.13735652e-01 5.15179515e-01 -2.27490947e-01
6.92856729e-01 8.13180149e-01 -4.96789128e-01 -1.73774505e+00
-7.54784107e-01 -8.25213373e-01 -1.32431901e+00 -4.86722410e-01
8.00131783e-02 -2.16403246e-01 -1.00639939e+00 1.58036625e+00
1.54056773e-01 8.57190728e-01 -1.57342896e-01 9.65964735e-01
1.00951457e+00 9.81885970e-01 -1.87806219e-01 -1.97921008e-01
9.34824646e-01 -1.20242822e+00 -6.90721333e-01 -2.35180840e-01
8.56171727e-01 -4.35302287e-01 9.06023502e-01 1.60427913e-01
-5.56298614e-01 -4.44342077e-01 -8.92552495e-01 1.70774460e-01
-3.27513456e-01 -4.49688472e-02 1.08515513e+00 4.80290912e-02
-9.92935002e-01 8.40258360e-01 -1.01217997e+00 -6.96993023e-02
1.99949726e-01 1.72400475e-01 -2.37592727e-01 -1.40540570e-01
-1.27426112e+00 3.12142760e-01 3.97108674e-01 5.81332207e-01
-8.26639950e-01 -5.00022948e-01 -8.82268786e-01 2.92709082e-01
3.67429912e-01 -6.43911183e-01 5.66340566e-01 -9.77096260e-01
-1.25338078e+00 2.37681881e-01 -2.00199679e-01 -5.94898522e-01
1.08443961e-01 1.17169477e-01 -7.17377424e-01 -2.16150329e-01
-2.23403633e-01 -1.29549876e-01 9.72850919e-01 -9.36199129e-01
-1.24444102e-03 -2.75836766e-01 -1.29492208e-01 -3.36517431e-02
-2.22461253e-01 -1.98833629e-01 -1.54912159e-01 -9.45389569e-01
3.76279682e-01 -1.02885056e+00 -3.03453654e-01 -6.30540550e-01
-7.21567094e-01 -2.46152475e-01 9.85490203e-01 -8.54419053e-01
1.58472991e+00 -1.94473326e+00 1.72886506e-01 6.14574730e-01
6.36766851e-01 7.84342661e-02 -2.74572551e-01 8.38929534e-01
-3.75014186e-01 4.15951014e-02 -8.09731707e-02 -3.77628773e-01
-2.35940307e-01 4.46800232e-01 -7.10159838e-01 4.04100239e-01
-6.44443035e-02 1.13112462e+00 -8.75451565e-01 5.18713184e-02
1.03321478e-01 6.00481212e-01 -2.28669405e-01 3.55086297e-01
-3.94552380e-01 7.17720032e-01 -5.63075185e-01 5.17177880e-01
4.87185895e-01 -9.77991819e-01 6.21700406e-01 -8.18509981e-02
2.77496874e-01 3.63929451e-01 -1.05230427e+00 1.25976562e+00
-3.87479216e-01 4.41073477e-01 -4.30244178e-01 -1.42316318e+00
1.37653518e+00 2.93742090e-01 5.20332217e-01 -5.00965476e-01
-2.54187156e-02 3.04151773e-01 2.56796293e-02 -2.34624788e-01
9.87263992e-02 1.45769611e-01 1.81576774e-01 5.48417270e-01
5.99398576e-02 1.89670101e-01 1.61412656e-01 3.41877818e-01
1.01243258e+00 -1.04410090e-01 6.64033890e-02 -1.39130503e-01
4.14097100e-01 -2.27981031e-01 6.57824099e-01 3.52803349e-01
4.55849141e-01 4.84622538e-01 7.45982349e-01 -9.96399164e-01
-9.21594620e-01 -5.42941391e-01 4.33917701e-01 8.68653119e-01
-2.69912273e-01 -8.06657493e-01 -3.34533691e-01 -5.21196485e-01
3.43440846e-02 5.55398583e-01 -5.48184574e-01 -9.79447439e-02
-6.49967015e-01 -8.06938529e-01 1.35803252e-01 4.80989039e-01
2.94514857e-02 -9.27359521e-01 2.85021096e-01 3.06569308e-01
-8.75286609e-02 -1.19340682e+00 -4.87647206e-01 -1.64711904e-02
-1.10208130e+00 -9.25929070e-01 -3.12400252e-01 -6.09286189e-01
9.05670524e-01 4.62455153e-01 1.17513740e+00 4.58153635e-01
1.79543748e-01 4.28416301e-03 -4.54482526e-01 -1.21230759e-01
-2.04048410e-01 1.78547561e-01 -1.16746858e-01 3.36212873e-01
-7.35604540e-02 -1.13451004e+00 -4.27359432e-01 2.13608474e-01
-6.80310786e-01 4.44074243e-01 2.29009092e-01 8.46205592e-01
6.78683519e-01 7.09455535e-02 5.93074083e-01 -1.27872372e+00
8.10929835e-01 -9.27562058e-01 -9.55506802e-01 2.99519956e-01
-9.19387639e-01 8.45307708e-02 1.18427062e+00 -4.36910510e-01
-4.23026234e-01 4.97281784e-03 2.59737074e-01 -9.78031337e-01
3.56181592e-01 1.24550629e+00 3.70799154e-01 -9.28909034e-02
2.92573243e-01 3.58625531e-01 7.61561934e-03 -5.71740210e-01
2.76301652e-01 1.01610042e-01 3.14927757e-01 -2.85662562e-01
8.48462284e-01 2.34288171e-01 3.51492435e-01 -4.98393923e-01
-9.50443387e-01 -3.29964429e-01 -3.32828611e-01 -3.07282448e-01
4.49065328e-01 -1.06552207e+00 -6.07723475e-01 3.33921045e-01
-9.92148578e-01 -4.07220751e-01 1.78518936e-01 4.45531607e-01
-1.21190466e-01 2.64776498e-01 -4.96624947e-01 -7.76475728e-01
-7.15395808e-01 -8.59441280e-01 9.85231638e-01 1.02800556e-01
9.62222219e-02 -1.55578399e+00 -2.14406457e-02 1.68178216e-01
5.99942207e-01 7.57829070e-01 9.07950222e-01 -8.34683239e-01
-6.96037471e-01 -3.57882619e-01 -2.00257987e-01 7.01398998e-02
1.13678239e-01 -1.84278097e-02 -5.72739124e-01 -4.16789740e-01
-1.72415972e-01 5.11236824e-02 7.98225045e-01 4.67024505e-01
1.34311569e+00 -7.80114770e-01 -2.60339350e-01 1.01895845e+00
1.35713935e+00 1.57722842e-03 1.82016373e-01 -1.58064127e-01
1.48287046e+00 4.82664853e-01 -7.45161176e-02 5.47452390e-01
8.01042736e-01 4.07297879e-01 4.56536978e-01 -2.20400766e-01
-1.03749186e-01 -7.25672483e-01 4.17231172e-01 1.64395392e+00
-3.11857432e-01 -6.16222203e-01 -1.27341390e+00 3.91699046e-01
-2.35502148e+00 -8.83422852e-01 -4.45313811e-01 1.81847751e+00
2.98265874e-01 4.20539379e-02 4.95020784e-02 -8.65095705e-02
7.65851796e-01 6.36472166e-01 -6.46681964e-01 -1.43329963e-01
-2.05253541e-01 -1.56947933e-02 4.10245508e-01 5.65636516e-01
-9.06236231e-01 8.35553586e-01 5.43826675e+00 5.52863538e-01
-1.59192419e+00 -7.23051503e-02 8.23968530e-01 1.81333259e-01
-6.79550111e-01 1.97272554e-01 -4.92695540e-01 4.62463617e-01
1.34405613e+00 -4.39308316e-01 8.79580438e-01 8.34358692e-01
4.21948999e-01 7.08729208e-01 -9.17614162e-01 9.77929175e-01
1.00995135e-02 -1.58199978e+00 1.26902446e-01 -1.22014962e-01
7.74355531e-01 4.59297508e-01 -1.44465446e-01 2.10865423e-01
4.13267553e-01 -1.18611097e+00 3.67109895e-01 8.23816657e-01
4.77151662e-01 -4.90913957e-01 6.89751327e-01 4.10089940e-01
-1.65682650e+00 1.19973607e-02 -3.16275746e-01 -3.55412811e-01
2.75208473e-01 9.80245948e-01 -8.64412546e-01 1.01687658e+00
4.57216799e-01 1.44813538e+00 -5.51969171e-01 6.15464628e-01
-3.74141961e-01 1.10071373e+00 -4.37369853e-01 -2.15233620e-02
3.06083232e-01 -5.89154303e-01 5.84766328e-01 7.51494288e-01
3.90232950e-01 1.39134452e-01 5.82973957e-01 8.73527527e-01
-9.96996611e-02 1.71532974e-01 -6.88454449e-01 -6.38865769e-01
2.97039688e-01 1.33211672e+00 -7.83004463e-01 -3.18023026e-01
-4.37933236e-01 4.88820881e-01 5.37592888e-01 5.86701274e-01
-7.20145047e-01 -1.68136820e-01 2.00180411e-01 1.64738223e-01
3.25740069e-01 -5.13664842e-01 -1.50384158e-01 -1.58632839e+00
2.31773674e-01 -9.42333043e-01 6.03551745e-01 -7.24293470e-01
-1.56754339e+00 1.02067947e+00 -1.80470482e-01 -1.25667751e+00
-5.78916550e-01 -2.63286561e-01 -8.83146763e-01 9.99779582e-01
-1.48063469e+00 -1.54296136e+00 -4.88646597e-01 6.52905703e-01
2.36906618e-01 -2.92794973e-01 7.33269811e-01 2.41132751e-01
-8.32325399e-01 3.52246463e-01 1.36031553e-01 1.57933518e-01
1.08009636e-01 -9.72369969e-01 8.66747618e-01 9.46103454e-01
4.74124461e-01 6.24205589e-01 5.40005684e-01 -9.05435443e-01
-1.77798867e+00 -1.29135549e+00 9.01786029e-01 -6.86652809e-02
1.18743801e+00 -6.84705555e-01 -1.25782633e+00 9.82788324e-01
-1.39680684e-01 5.90072334e-01 4.07049388e-01 3.05801332e-01
-5.50332904e-01 -2.29549065e-01 -4.47413623e-01 2.67824292e-01
1.12101734e+00 -5.16521633e-01 -4.16398086e-02 7.47387707e-01
9.10222828e-01 -5.33546686e-01 -9.41639960e-01 3.01293463e-01
4.01749074e-01 -6.18233681e-01 6.24062002e-01 -7.86965251e-01
4.44748908e-01 -2.61508882e-01 6.93595707e-02 -1.48109281e+00
-3.14003259e-01 -9.92331803e-01 -6.08685195e-01 1.06765997e+00
5.31295598e-01 -1.23225892e+00 4.99221444e-01 2.64775008e-01
-2.04935417e-01 -1.08737814e+00 -5.18639684e-01 -7.70766199e-01
-4.25004780e-01 -3.18529814e-01 9.88934636e-01 1.36210382e+00
-8.84197801e-02 5.03639638e-01 -8.24353278e-01 2.97094315e-01
5.25340259e-01 6.96479976e-01 7.47940063e-01 -1.28722882e+00
-4.65285838e-01 -2.62727439e-01 -4.79059339e-01 -8.65983725e-01
4.19055283e-01 -1.30650246e+00 -4.67960685e-01 -1.50647736e+00
-1.92429125e-01 -5.18592179e-01 -4.70999986e-01 7.94412553e-01
-1.96390957e-01 -2.32644036e-01 1.61481664e-01 5.45801163e-01
-4.08908576e-01 6.07430577e-01 1.19915104e+00 -8.18216335e-03
-1.33480966e-01 1.16335914e-01 -5.48106253e-01 5.22727191e-01
7.80254662e-01 -5.15175641e-01 -7.78782248e-01 -5.85611224e-01
3.95794034e-01 3.83134425e-01 3.15097839e-01 -7.36386180e-01
1.46957219e-01 -1.31443277e-01 2.69473121e-02 -3.94653916e-01
-7.46133626e-02 -7.22819924e-01 6.94547236e-01 3.55078906e-01
-1.72819003e-01 5.35985589e-01 1.23223528e-01 6.70571446e-01
-4.03281301e-01 4.04499441e-01 1.58339590e-01 1.32841140e-01
-5.58286369e-01 8.70233893e-01 3.61477733e-01 -3.90435606e-02
6.22000337e-01 2.94833392e-01 -5.15120447e-01 -8.84850740e-01
-5.73580265e-01 3.34838837e-01 3.06200907e-02 6.06357992e-01
5.67121804e-01 -1.38729393e+00 -7.81982660e-01 3.72456193e-01
-7.13754520e-02 -1.49940133e-01 2.50522137e-01 9.10295010e-01
-3.28676224e-01 4.30904627e-01 4.88522947e-02 -5.35331666e-01
-9.24313068e-01 6.42354429e-01 2.72594869e-01 -5.22435665e-01
-1.02205062e+00 6.60994530e-01 1.80551782e-01 -4.08593088e-01
-2.76373532e-02 -4.22593325e-01 -2.99064249e-01 -2.44433478e-01
1.56063154e-01 1.25907779e-01 -4.56752926e-02 -6.63732350e-01
-2.15985045e-01 4.64281738e-01 1.84707224e-01 5.70986032e-01
1.83079207e+00 2.58894023e-02 -4.23606604e-01 6.27289534e-01
1.25397635e+00 -3.18578660e-01 -9.81031716e-01 -3.18906873e-01
-7.94962689e-04 -2.89186120e-01 1.47505224e-01 -3.43038231e-01
-1.61228263e+00 7.20486164e-01 1.13756098e-01 8.24427187e-01
1.18553448e+00 -5.25115430e-02 9.93575275e-01 2.50942022e-01
2.15200350e-01 -4.00060683e-01 -3.03428024e-01 5.43962538e-01
1.08320987e+00 -1.20451283e+00 1.19508795e-01 -5.35905600e-01
-5.39968073e-01 1.40759265e+00 3.54929417e-01 -4.51008320e-01
9.08295989e-01 3.73204798e-02 -8.14617723e-02 -6.20139062e-01
-1.01505947e+00 9.21460688e-02 8.66795123e-01 1.94746271e-01
4.86750782e-01 3.75425369e-01 -1.46337152e-01 6.47656381e-01
-4.11827952e-01 -2.26488054e-01 2.11433053e-01 3.92983675e-01
3.15702781e-02 -9.09719050e-01 7.03268424e-02 7.00352788e-01
-2.14386523e-01 -2.34349146e-01 -2.47181952e-01 4.99225646e-01
-4.63291317e-01 8.03377628e-01 -3.35912444e-02 -6.36527836e-01
1.92045927e-01 -1.34285197e-01 -1.97093174e-01 -4.58714455e-01
-4.97412473e-01 1.49626076e-01 2.77330935e-01 -8.26328754e-01
-3.64966542e-01 -4.25899595e-01 -1.18054175e+00 -4.62636024e-01
-2.59969652e-01 2.11724207e-01 5.13522387e-01 8.71879101e-01
7.66860247e-01 7.22871304e-01 9.35590684e-01 -8.07527184e-01
-2.11666748e-01 -8.60675156e-01 -5.90025902e-01 4.23317462e-01
3.62817615e-01 -5.62880576e-01 -4.44569081e-01 -8.38350952e-02] | [6.794571876525879, 2.878671407699585] |
9e549c8b-578d-4334-bddc-5112d27ab7df | self-organising-maps-in-computer-security | 1608.01668 | null | http://arxiv.org/abs/1608.01668v1 | http://arxiv.org/pdf/1608.01668v1.pdf | Self-Organising Maps in Computer Security | Some argue that biologically inspired algorithms are the future of solving
difficult problems in computer science. Others strongly believe that the future
lies in the exploration of mathematical foundations of problems at hand. The
field of computer security tends to accept the latter view as a more
appropriate approach due to its more workable validation and verification
possibilities. The lack of rigorous scientific practices prevalent in
biologically inspired security research does not aid in presenting bio-inspired
security approaches as a viable way of dealing with complex security problems.
This chapter introduces a biologically inspired algorithm, called the Self
Organising Map (SOM), that was developed by Teuvo Kohonen in 1981. Since the
algorithm's inception it has been scrutinised by the scientific community and
analysed in more than 4000 research papers, many of which dealt with various
computer security issues, from anomaly detection, analysis of executables all
the way to wireless network monitoring. In this chapter a review of security
related SOM research undertaken in the past is presented and analysed. The
algorithm's biological analogies are detailed and the author's view on the
future possibilities of this successful bio-inspired approach are given. The
SOM algorithm's close relation to a number of vital functions of the human
brain and the emergence of multi-core computer architectures are the two main
reasons behind our assumption that the future of the SOM algorithm and its
variations is promising, notably in the field of computer security. | ['Jan Feyereisl', 'Uwe Aickelin'] | 2016-08-05 | null | null | null | null | ['computer-security'] | ['miscellaneous'] | [ 3.07733029e-01 5.23561127e-02 2.23146543e-01 -7.96851050e-03
7.17903316e-01 -4.17018056e-01 8.76510382e-01 3.95356864e-01
-7.46474743e-01 6.17227614e-01 -5.49895577e-02 -5.06271243e-01
-5.44078112e-01 -8.67014647e-01 -2.61962600e-02 -9.73055005e-01
-1.77805752e-01 1.86120108e-01 5.12283623e-01 -7.94941247e-01
9.88623679e-01 8.59625220e-01 -1.82542861e+00 7.73801096e-03
2.28603140e-01 6.50029957e-01 -3.25922631e-02 6.64754331e-01
-1.86065316e-01 7.71671295e-01 -7.49062598e-01 -2.00144038e-01
-7.91748092e-02 -5.30499518e-01 -8.69855106e-01 -4.03278202e-01
-6.36673868e-01 2.54177779e-01 -4.66874009e-03 8.98566365e-01
5.24806917e-01 1.79484189e-01 6.12559021e-01 -1.21482503e+00
-2.12668121e-01 2.31952697e-01 -2.40016103e-01 6.60358906e-01
1.56910434e-01 -5.92930838e-02 3.98850143e-01 -6.26360059e-01
2.21329197e-01 9.60378528e-01 6.08914971e-01 7.69335926e-01
-9.50453103e-01 -4.86723244e-01 -1.73888624e-01 4.39315528e-01
-1.36334574e+00 -2.48348311e-01 7.42005050e-01 -2.56371886e-01
1.19335759e+00 5.32257140e-01 7.50549853e-01 7.12429047e-01
6.26130879e-01 2.06211850e-01 1.30364156e+00 -7.85541534e-01
7.40672708e-01 3.46703768e-01 1.34295553e-01 3.63534093e-01
7.27578998e-01 4.73562956e-01 -6.12424076e-01 -4.00764138e-01
4.49456573e-01 -1.21456876e-01 7.02022910e-02 -6.71090707e-02
-8.10073018e-01 7.70132184e-01 2.40319759e-01 1.09282684e+00
-2.99183905e-01 -8.03207513e-03 5.83149254e-01 3.41751635e-01
2.40525424e-01 3.63866389e-01 -1.10449165e-01 -1.63851574e-01
-9.09089863e-01 5.93938679e-02 8.86257827e-01 1.25630513e-01
2.10121125e-01 4.52048928e-01 8.39097142e-01 4.72922027e-01
5.00836611e-01 2.91102491e-02 7.04250813e-01 -6.34455621e-01
-5.40535450e-01 4.21875268e-01 -2.39063486e-01 -1.37233996e+00
-3.57296228e-01 -1.63947567e-01 -8.59767437e-01 6.89609766e-01
2.23837852e-01 1.75525099e-01 -6.86408639e-01 1.08822131e+00
2.29156032e-01 -9.58471075e-02 1.60260379e-01 4.63734835e-01
5.93861341e-01 8.16542447e-01 1.68031976e-01 -1.64757475e-01
1.37775779e+00 -3.44599992e-01 -4.57862467e-01 -2.91268770e-02
1.54779509e-01 -5.89933395e-01 3.24010044e-01 7.19942689e-01
-6.69577479e-01 -2.35363960e-01 -1.25733542e+00 7.14375257e-01
-1.09685254e+00 -9.75099623e-01 7.36867726e-01 1.40109897e+00
-1.12706399e+00 5.49143016e-01 -9.18600738e-01 -1.07075989e+00
1.44393548e-01 6.14160061e-01 -8.82740244e-02 4.78877068e-01
-1.06575930e+00 1.08003199e+00 9.26466286e-01 -3.64165120e-02
-4.61523116e-01 1.56339243e-01 -4.11929131e-01 1.09535344e-02
1.14521921e-01 -3.72035891e-01 4.45544630e-01 -7.50329494e-01
-1.37746513e+00 1.14050055e+00 1.79120097e-02 -8.79213572e-01
-6.72710985e-02 4.74666774e-01 -5.97113431e-01 2.10004672e-01
-4.77915347e-01 3.85226786e-01 6.65851474e-01 -1.09171522e+00
-6.68128848e-01 -4.08908606e-01 -1.92472503e-01 -1.16067968e-01
-7.67201126e-01 4.81050789e-01 3.76059741e-01 -7.37177312e-01
9.36380550e-02 -6.49085283e-01 -1.59183398e-01 -3.80871654e-01
2.12901458e-01 -2.00032145e-01 7.92486191e-01 -2.04422429e-01
1.22743952e+00 -2.16118526e+00 -1.41878277e-01 5.20769060e-01
7.75180236e-02 4.00121391e-01 2.56770402e-01 1.02905834e+00
-1.22894913e-01 2.71559209e-01 -4.08541858e-01 4.84259963e-01
-2.88147897e-01 5.54224730e-01 -4.97721851e-01 5.77917159e-01
-1.12196028e-01 4.46634322e-01 -7.17187345e-01 -4.37176436e-01
2.41066217e-01 6.10495985e-01 6.23954609e-02 -2.25602269e-01
5.09311318e-01 3.10490161e-01 -4.49843019e-01 8.02697897e-01
3.36967558e-01 1.66828454e-01 4.19457145e-02 5.53741872e-01
-3.01647544e-01 1.77465811e-01 -7.29299068e-01 1.19199073e+00
2.47869670e-01 7.97284305e-01 1.01481993e-02 -1.34738028e+00
1.37339103e+00 8.52029502e-01 4.33447599e-01 -6.70540035e-01
3.65491539e-01 3.98926586e-01 2.62217402e-01 -1.99760377e-01
2.05276817e-01 -5.26146114e-01 3.50502223e-01 6.75266147e-01
-1.00440927e-01 -7.35113770e-02 -7.24513491e-04 -1.20714635e-01
1.24015474e+00 1.00269960e-02 5.22696137e-01 -6.62815094e-01
1.05628872e+00 2.33638629e-01 3.81975442e-01 5.40155411e-01
-5.28478622e-01 -1.27498865e-01 -7.77969952e-04 -1.00650024e+00
-8.63875568e-01 -8.38625550e-01 -3.77556056e-01 1.02796102e+00
8.00060481e-02 -2.61651754e-01 -1.02790046e+00 -9.15567875e-02
-3.88074845e-01 7.58760035e-01 -7.09169984e-01 -2.14352518e-01
-5.27859569e-01 -1.31627357e+00 7.51091599e-01 6.84744818e-03
6.10024869e-01 -1.74105597e+00 -1.50743878e+00 3.89254272e-01
1.41413704e-01 -4.83446151e-01 8.97852600e-01 4.82719302e-01
-1.39341795e+00 -9.16531742e-01 -4.58106279e-01 -5.94737947e-01
6.94073677e-01 2.85449952e-01 7.34778523e-01 6.50718153e-01
-5.16230583e-01 4.65443432e-01 -4.45537090e-01 -1.10173678e+00
-7.77801991e-01 -1.65287673e-01 1.72538847e-01 -3.62830073e-01
8.31773877e-01 -8.40233743e-01 -2.79572189e-01 2.69897223e-01
-1.24872911e+00 -4.73371476e-01 3.34204912e-01 7.38382339e-01
-5.79307489e-02 8.15998197e-01 5.80536306e-01 -5.71774423e-01
6.49456501e-01 -3.89112175e-01 -2.45947763e-01 2.06636712e-02
-8.71087909e-01 -2.93395966e-01 2.90590048e-01 -8.60982761e-02
-6.17902935e-01 -4.46164340e-01 -8.24048892e-02 2.82792747e-01
-5.03483176e-01 2.84209341e-01 1.61172658e-01 -5.83674788e-01
8.88151944e-01 5.85468352e-01 1.50500283e-01 -2.26463482e-01
-4.71872747e-01 6.72687590e-01 6.53964996e-01 -5.01473069e-01
8.41513097e-01 6.40655398e-01 1.91772968e-01 -1.35775363e+00
1.76760659e-01 -4.85196263e-01 -3.98368806e-01 -3.39866042e-01
6.83802307e-01 -1.52000878e-02 -6.39219582e-01 4.49862570e-01
-1.15342915e+00 2.63325423e-01 -1.72362581e-01 6.54040948e-02
-5.62380314e-01 4.60515022e-01 -4.13595766e-01 -1.61342251e+00
-5.75586736e-01 -5.71231365e-01 9.69190821e-02 2.38471389e-01
-5.18326521e-01 -1.12911272e+00 2.82673717e-01 2.06304103e-01
5.26675045e-01 6.57242060e-01 9.33942318e-01 -8.07862818e-01
1.29450038e-01 -5.21650374e-01 3.67433369e-01 1.20719366e-01
1.69712484e-01 1.20111153e-01 -1.17371559e+00 -3.08555156e-01
7.96661675e-01 2.05347121e-01 4.97447997e-01 -3.30191627e-02
5.07271409e-01 -2.22579390e-01 -3.07420492e-01 6.95010945e-02
1.61654723e+00 8.74546707e-01 9.51430976e-01 1.14715171e+00
-1.75060049e-01 1.09430599e+00 5.38359940e-01 1.75713941e-01
-2.33379498e-01 1.65945664e-01 8.42665493e-01 1.28322497e-01
5.53559661e-01 3.61649543e-01 3.82683873e-01 8.71824861e-01
-6.31160021e-01 -3.16007525e-01 -1.21993315e+00 4.62374359e-01
-1.58727467e+00 -1.36467123e+00 -3.58367376e-02 2.27077746e+00
2.78499842e-01 5.52134395e-01 4.80627507e-01 1.02204239e+00
9.19283390e-01 -1.67088643e-01 -9.09981802e-02 -1.09032536e+00
-1.78038374e-01 3.28720450e-01 1.88426569e-01 1.49132311e-01
-1.00714135e+00 6.35186195e-01 6.74864817e+00 6.40752614e-01
-1.01411784e+00 -4.14213426e-02 5.43791652e-01 3.68035764e-01
2.74360329e-01 2.18091123e-02 -3.54141861e-01 6.63370848e-01
1.46050298e+00 -2.36715540e-01 3.90865952e-01 4.37503248e-01
1.17502294e-01 -4.62723970e-01 -4.02377099e-01 6.91815019e-01
1.03402182e-01 -1.10601938e+00 6.23882227e-02 5.23258626e-01
1.42612860e-01 -9.41197425e-02 -1.58813726e-02 -3.51327091e-01
-1.84908528e-02 -1.28276765e+00 4.91586179e-01 3.51431280e-01
-1.36113027e-02 -1.23371470e+00 8.65624726e-01 5.88496089e-01
-7.49383688e-01 -3.49744499e-01 -5.52514315e-01 -5.21571159e-01
-2.59788364e-01 1.88987598e-01 -6.18190348e-01 2.95910150e-01
1.00093246e+00 1.37306273e-01 -3.75460207e-01 1.17212021e+00
2.39263058e-01 7.19631851e-01 -3.65007192e-01 -4.73477155e-01
4.65826929e-01 1.61928998e-03 7.49781370e-01 1.23251343e+00
3.21446359e-02 3.28664780e-01 -6.69052362e-01 6.58384204e-01
8.75165939e-01 2.02171132e-01 -7.39494383e-01 -3.38896036e-01
4.89318907e-01 1.06813502e+00 -1.61406410e+00 -7.41774514e-02
-5.74536547e-02 6.84214175e-01 -4.88924831e-01 -3.44384722e-02
-5.67653179e-01 -6.76257312e-01 3.95179868e-01 2.21160591e-01
6.99011832e-02 -2.68898487e-01 -5.49295425e-01 -4.36376631e-01
-4.73333418e-01 -9.43815291e-01 4.23270047e-01 -3.76045316e-01
-9.04366434e-01 1.03403211e+00 -8.73731170e-03 -8.60021114e-01
-9.25630778e-02 -7.85894215e-01 -8.81407678e-01 7.84941137e-01
-8.67524564e-01 -8.42112005e-01 2.74489895e-02 3.72628391e-01
3.59258235e-01 -6.11576259e-01 1.26562226e+00 -2.36558110e-01
-3.17170143e-01 1.27711728e-01 1.29547626e-01 2.01929864e-02
2.92454422e-01 -8.01854908e-01 4.34460074e-01 8.06733012e-01
2.49600291e-01 6.90057874e-01 1.12516844e+00 -5.30656397e-01
-9.00994718e-01 -1.78923830e-01 1.09660411e+00 -5.01524925e-01
7.29630709e-01 -1.30457640e-01 -8.64019752e-01 -1.96750928e-02
4.15019572e-01 -4.22573268e-01 8.89777243e-01 -5.61279535e-01
4.05923165e-02 1.93449974e-01 -1.51059282e+00 4.62274313e-01
4.30906951e-01 -2.21690699e-01 -8.85211587e-01 -6.20829724e-02
-4.25432362e-02 3.80808830e-01 -6.08896375e-01 2.11303383e-01
6.20707095e-01 -1.46576619e+00 1.09185612e+00 -4.00621891e-01
-9.56923440e-02 -4.23356056e-01 -3.92500833e-02 -4.74019796e-01
-4.84004736e-01 -6.05958939e-01 1.83016479e-01 1.07734263e+00
-1.38311431e-01 -1.17347717e+00 9.36960518e-01 2.88208455e-01
3.35233748e-01 -8.10233712e-01 -1.24635017e+00 -8.54048193e-01
7.81527832e-02 -3.21041852e-01 5.34825444e-01 1.02106929e+00
4.15393800e-01 -1.17061749e-01 1.79670617e-01 -2.32856989e-01
7.36640632e-01 -4.31947082e-01 4.07164663e-01 -1.75848639e+00
-1.53599396e-01 -7.14125633e-01 -1.30910587e+00 9.78385210e-02
-3.39562595e-01 -5.54467797e-01 -3.11164379e-01 -1.08213735e+00
-1.49149582e-01 -1.54241979e-01 -8.20699751e-01 4.11543816e-01
4.09648359e-01 6.06236279e-01 1.69985935e-01 5.49464226e-01
7.73197934e-02 -4.50422503e-02 4.71953154e-01 -7.28390832e-03
-9.14182588e-02 -1.37727425e-01 -7.45796323e-01 9.84629750e-01
1.14911580e+00 -7.75858402e-01 -3.47831279e-01 1.73818067e-01
2.21917942e-01 -4.19900626e-01 3.78350407e-01 -1.42756486e+00
5.18314958e-01 -2.72545934e-01 4.60824788e-01 -2.35554472e-01
3.73243988e-01 -1.20337737e+00 2.33952522e-01 1.15211725e+00
4.61115949e-02 3.46366376e-01 4.50997591e-01 5.86990118e-01
-1.03269108e-01 -6.19664729e-01 9.35508013e-01 -3.09715241e-01
-8.12092662e-01 -4.08590317e-01 -1.13370919e+00 -5.22610366e-01
1.27202654e+00 -1.16192150e+00 1.01721575e-02 -1.33840516e-01
-9.01689172e-01 -2.53014773e-01 8.20483983e-01 2.41122499e-01
7.12568223e-01 -6.96892083e-01 -4.19133663e-01 6.16260357e-02
-6.32965714e-02 -7.34179020e-01 -1.55079469e-01 6.57795548e-01
-9.81315255e-01 7.10331261e-01 -9.86250401e-01 -2.28356004e-01
-1.45118773e+00 7.35135376e-01 2.89448529e-01 5.71296029e-02
-5.75165689e-01 6.28697395e-01 -4.81011309e-02 -2.33986713e-02
1.43016309e-01 5.93879044e-01 -5.44362843e-01 -3.06587636e-01
7.58859515e-01 7.25245893e-01 1.17363520e-02 -7.81055212e-01
-7.56806791e-01 2.97009528e-01 1.30271018e-01 -3.80470544e-01
1.59230101e+00 5.95805943e-02 -7.51608849e-01 6.11809552e-01
4.00534093e-01 -3.58553469e-01 -2.95187414e-01 2.72916853e-01
5.74131310e-01 -1.12330072e-01 1.20629020e-01 -9.18614626e-01
-5.36265910e-01 9.11568582e-01 7.06312120e-01 6.50122225e-01
1.49087119e+00 -6.56995356e-01 4.46340531e-01 5.07770538e-01
6.24847710e-01 -1.15685582e+00 -2.93213129e-01 3.43318194e-01
6.64560914e-01 -6.55804038e-01 2.93895632e-01 -3.10941160e-01
-6.23845048e-02 1.56342614e+00 1.60535514e-01 -2.69274235e-01
7.34999001e-01 3.43042791e-01 -8.95635560e-02 -3.42358470e-01
-5.27293563e-01 2.67336667e-01 -1.53764248e-01 9.58978832e-01
5.89872837e-01 -3.10385078e-01 -8.06657314e-01 1.85539667e-02
-1.67147025e-01 -4.22217976e-03 4.52335536e-01 1.50576413e+00
-1.02755976e+00 -1.34476066e+00 -1.11208093e+00 -1.52297290e-02
-5.95356882e-01 5.93024194e-02 -9.85996127e-01 7.88861454e-01
1.83226779e-01 1.15305626e+00 -9.59032997e-02 -4.87463892e-01
-3.11613321e-01 2.05301031e-01 3.99364829e-01 -3.22524965e-01
-1.05245566e+00 -9.64070708e-02 -2.54322946e-01 -1.59993038e-01
-6.75446749e-01 -5.60638309e-01 -1.36189008e+00 -9.11366880e-01
-1.84695777e-02 7.60489523e-01 1.20585012e+00 8.16245139e-01
1.24812052e-01 1.70912832e-01 3.69167536e-01 -8.37607086e-01
-1.94019079e-01 -4.45455015e-01 -8.43042672e-01 -3.25886458e-01
-1.44399747e-01 -4.89732236e-01 -3.86707425e-01 7.25412741e-02] | [5.715864181518555, 4.107307434082031] |
f8f9fe18-7634-4e48-9f87-2a756adbe0ff | smm4h-2022-task-2-dataset-for-stance-and | null | null | https://aclanthology.org/2022.smm4h-1.53 | https://aclanthology.org/2022.smm4h-1.53.pdf | SMM4H 2022 Task 2: Dataset for stance and premise detection in tweets about health mandates related to COVID-19 | This paper is an organizers’ report of the competition on argument mining systems dealing with English tweets about COVID-19 health mandates. This competition was held within the framework of the SMM4H 2022 shared tasks. During the competition, the participants were offered two subtasks: stance detection and premise classification. We present a manually annotated corpus containing 6,156 short posts from Twitter on three topics related to the COVID-19 pandemic: school closures, stay-at-home orders, and wearing masks. We hope the prepared dataset will support further research on argument mining in the health field. | ['Elena Tutubalina', 'Vera Davydova'] | null | null | null | null | smm4h-coling-2022-10 | ['stance-detection', 'argument-mining'] | ['natural-language-processing', 'natural-language-processing'] | [ 2.59080738e-01 9.07622993e-01 -7.60632336e-01 -4.28664625e-01
-7.45590448e-01 -3.79302979e-01 9.01287436e-01 1.30128455e+00
-6.61716521e-01 1.05356002e+00 9.75665331e-01 -7.58637488e-01
-1.28623322e-01 -6.21297538e-01 -7.83732235e-01 -1.91513389e-01
-7.42948875e-02 5.56599259e-01 1.09277256e-01 -5.10324538e-01
4.17796433e-01 -2.62987256e-01 -1.25861621e+00 7.62716830e-01
6.23221755e-01 5.04862607e-01 -4.02701735e-01 6.12265766e-01
1.42245352e-01 1.14292634e+00 -7.60722995e-01 -6.83992028e-01
-4.16652262e-01 -1.79716945e-01 -1.47364593e+00 -6.20934963e-01
1.06575591e-02 -1.19442714e-03 2.61471450e-01 7.30351210e-01
5.41702867e-01 -2.17053562e-01 3.77511084e-01 -1.27063453e+00
8.84750783e-02 1.27394986e+00 -4.26857680e-01 7.98483372e-01
8.51599038e-01 -2.91106015e-01 1.24252069e+00 -4.65893745e-01
1.22339630e+00 1.01372695e+00 9.01319563e-01 2.92551577e-01
-7.41539001e-01 -8.83936465e-01 3.11492175e-01 8.04818720e-02
-8.07702661e-01 -3.50561827e-01 3.78471792e-01 -8.48117113e-01
1.08419406e+00 7.08902955e-01 8.00474703e-01 1.45876980e+00
-1.54921738e-02 7.71075845e-01 1.35526025e+00 -8.48174244e-02
1.17870592e-01 4.20891121e-02 6.61010504e-01 3.73704880e-01
7.33202875e-01 -4.70165431e-01 -6.50952518e-01 -8.77059758e-01
-4.20193821e-01 -3.26621771e-01 -5.48536703e-02 6.68016791e-01
-9.16277587e-01 1.41817570e+00 -7.03327432e-02 2.59932965e-01
-5.22797287e-01 -3.40536416e-01 8.23936164e-01 9.04156789e-02
1.11294854e+00 2.42380545e-01 -5.52387834e-01 -3.08003306e-01
-7.92058825e-01 8.49191725e-01 1.02587664e+00 5.42374790e-01
-3.37981014e-03 -9.62221086e-01 -9.01620463e-02 4.52673078e-01
3.67398649e-01 3.82488817e-01 -7.26028159e-02 -5.13376951e-01
1.07932210e+00 4.07946557e-01 1.65002510e-01 -1.06343842e+00
-8.79264355e-01 -7.89367780e-02 -3.80652338e-01 -6.59614921e-01
2.32204691e-01 -9.68504429e-01 -2.12320104e-01 1.36011422e+00
8.69275987e-01 1.40940353e-01 -1.07350022e-01 4.94402021e-01
1.58981979e+00 2.67442524e-01 5.13452172e-01 -6.48857892e-01
1.74789095e+00 -5.45373619e-01 -1.24404371e+00 8.80692229e-02
9.23288405e-01 -1.16772115e+00 1.95277303e-01 1.56098574e-01
-1.27324796e+00 3.26710373e-01 -8.78300071e-01 2.07281992e-01
-6.92515314e-01 -9.13278401e-01 1.71573207e-01 6.20422840e-01
-4.32356566e-01 1.09002449e-01 -2.64406830e-01 -3.63776922e-01
4.57075804e-01 1.26916710e-02 2.37874333e-02 5.10500491e-01
-1.70799720e+00 6.59145951e-01 1.11876465e-01 -1.54588908e-01
-4.21301246e-01 -7.49782324e-01 -7.56748259e-01 -8.05611372e-01
4.81496006e-01 -3.57058257e-01 1.33618617e+00 1.51525080e-01
-6.29860938e-01 1.67951608e+00 -1.12026773e-01 -9.03013408e-01
5.38491130e-01 -5.61930597e-01 -6.02092981e-01 -7.37260729e-02
7.41324782e-01 1.13409244e-01 4.83577371e-01 -4.37484443e-01
-8.11441958e-01 -3.30436945e-01 4.12168801e-02 -1.41274422e-01
7.37026483e-02 1.05033731e+00 5.37841916e-01 -6.27376199e-01
-5.26500881e-01 -9.10219729e-01 -5.55075072e-02 -1.21459854e+00
-9.23436999e-01 -8.99986207e-01 9.15185034e-01 -5.74592710e-01
1.37248874e+00 -1.64353406e+00 -4.81874347e-01 -1.75608583e-02
2.40870520e-01 1.72633380e-01 4.99869764e-01 8.12732935e-01
-1.73611626e-01 5.38324535e-01 2.94554770e-01 -2.40514316e-02
-3.76697108e-02 9.95770395e-02 -5.18428326e-01 6.78305447e-01
-7.77200386e-02 6.68676853e-01 -1.11904657e+00 -8.05962801e-01
-3.03678870e-01 1.35811225e-01 -5.46435952e-01 -6.91545904e-02
-3.58836442e-01 5.54839253e-01 -8.56177092e-01 2.61143506e-01
5.78599811e-01 -4.38805372e-01 3.92610431e-01 1.63234264e-01
-6.27799153e-01 1.28170824e+00 -4.69507724e-01 1.02392220e+00
2.07763389e-01 6.07218206e-01 5.59285283e-01 -7.64275491e-01
2.38726124e-01 8.59737098e-01 7.39889920e-01 -5.75465977e-01
4.98954952e-01 1.25930712e-01 -2.36867934e-01 -7.90262818e-01
3.27086180e-01 5.87262549e-02 -2.12531790e-01 1.05606759e+00
-8.69201064e-01 -6.68158084e-02 3.05623174e-01 2.71962017e-01
9.62558031e-01 -3.85877997e-01 3.65426272e-01 -6.95966303e-01
5.16486287e-01 1.93016425e-01 3.19216073e-01 4.07155991e-01
-3.10575843e-01 1.07926443e-01 5.21135032e-01 -9.32631075e-01
-5.37924707e-01 -3.23130876e-01 -6.27263725e-01 1.39728343e+00
-3.71591628e-01 -8.24652374e-01 -9.41779494e-01 -9.12448168e-01
-1.59309700e-01 6.83580399e-01 -9.74900007e-01 7.94095576e-01
-1.06116474e+00 -1.12650239e+00 7.30695605e-01 -9.21767205e-02
4.33327079e-01 -9.76119161e-01 -1.29221034e+00 2.33568445e-01
-9.97626424e-01 -1.37249064e+00 -3.46518129e-01 2.01404482e-01
-2.19543174e-01 -1.75457680e+00 -3.02531689e-01 -6.62851274e-01
3.01456869e-01 -2.56749034e-01 1.11165154e+00 4.69305545e-01
-2.07258537e-01 8.18558335e-02 -3.99579585e-01 -1.26275039e+00
-4.23711270e-01 2.84278005e-01 -7.41138756e-02 -4.95310932e-01
5.80755770e-01 2.42653769e-02 -5.71421027e-01 6.36625364e-02
-5.80513299e-01 6.11586608e-02 -5.46458364e-01 4.99251366e-01
1.83237225e-01 -1.94915101e-01 7.44251847e-01 -1.43477392e+00
1.05946815e+00 -1.05151987e+00 -2.73072660e-01 -3.05035621e-01
-7.02947080e-01 -5.11392951e-01 -2.27165848e-01 1.46891534e-01
-8.23485792e-01 -7.83466995e-01 -5.63605249e-01 8.93557489e-01
-1.06499054e-01 6.50032401e-01 6.28990233e-01 7.53780425e-01
6.11489177e-01 -6.17101729e-01 -1.14496507e-01 -3.75690430e-01
4.21602912e-02 9.05807495e-01 -7.14686811e-02 -4.92118180e-01
3.36143434e-01 5.77314079e-01 -2.39034683e-01 -1.02263927e+00
-1.71280038e+00 -6.33344948e-01 1.24613782e-02 -1.71730742e-01
1.47989857e+00 -9.84103143e-01 -1.03420770e+00 2.99013525e-01
-1.32253146e+00 -3.36879849e-01 -2.07015965e-02 2.93083876e-01
5.25933541e-02 -1.64123088e-01 -9.95046198e-01 -7.88901269e-01
-7.63204038e-01 -7.66579866e-01 8.15352321e-01 -2.94081327e-02
-9.82049286e-01 -1.21966946e+00 5.83076477e-01 1.14163482e+00
1.61960974e-01 8.33504438e-01 8.64943624e-01 -1.22755182e+00
3.88925701e-01 2.97988504e-02 3.29189636e-02 -3.06481987e-01
-9.30220559e-02 5.81472218e-02 -9.10014570e-01 -1.87062964e-01
1.25628650e-01 -6.63163602e-01 5.75444996e-01 4.63490278e-01
9.91871893e-01 -9.70992684e-01 -5.98563910e-01 -3.53032827e-01
7.81084359e-01 -6.07745796e-02 1.10801838e-01 6.88331485e-01
5.32458955e-03 9.96061027e-01 6.79353833e-01 8.08776557e-01
6.66746736e-01 4.53737289e-01 4.88233358e-01 1.85003392e-02
2.26076424e-01 -2.64792055e-01 3.50025110e-03 8.78049910e-01
-2.97867864e-01 -1.63598314e-01 -1.24442291e+00 7.59097636e-01
-1.78470314e+00 -1.00617516e+00 -8.17464888e-01 1.52886462e+00
1.03732193e+00 4.90759194e-01 4.88922745e-01 3.38378161e-01
7.27268219e-01 4.69756663e-01 1.78010419e-01 -8.33956540e-01
-1.96191296e-02 2.69797146e-01 2.05614001e-01 6.18837178e-01
-1.57856631e+00 1.81801632e-01 7.09647989e+00 6.02311850e-01
-5.32054424e-01 6.49855554e-01 7.45969594e-01 -9.04967934e-02
-3.31678391e-01 -2.46187955e-01 -9.81631517e-01 4.64379221e-01
1.21995175e+00 -5.93412742e-02 -3.15832824e-01 2.72960514e-01
4.46208000e-01 -1.30623817e-01 -6.69497848e-01 2.93662846e-01
-7.12418258e-02 -1.81628573e+00 -6.25646651e-01 2.87943304e-01
8.28748763e-01 6.01579070e-01 4.43192236e-02 1.51176685e-02
4.07441467e-01 -1.03878117e+00 7.86770880e-01 2.63027735e-02
4.59113449e-01 -5.18102765e-01 8.62549305e-01 6.31739199e-01
-7.36615956e-01 -4.41039680e-03 4.08550620e-01 -5.36980689e-01
3.87566954e-01 7.28137910e-01 -1.27484429e+00 3.77797037e-01
8.53921711e-01 6.21056974e-01 -1.09831132e-01 4.40684855e-01
-3.55071276e-01 1.08421075e+00 -2.11273521e-01 -4.47913378e-01
5.89649141e-01 2.45070711e-01 9.44299221e-01 1.52117467e+00
-3.33184689e-01 4.51312959e-01 5.77445887e-02 2.78642774e-01
-1.95755064e-01 3.59368265e-01 -7.87784696e-01 -1.15103357e-01
3.09339583e-01 1.05225933e+00 -6.50847554e-01 -3.90906632e-01
-2.29241282e-01 -1.38915837e-01 -1.68359727e-01 3.16639915e-02
-1.14055920e+00 1.40689239e-01 4.38270807e-01 8.25121522e-01
8.80118385e-02 4.77892607e-01 -2.35673040e-01 -4.43011552e-01
-4.84022677e-01 -1.06799233e+00 9.36262071e-01 -3.17859083e-01
-1.02409887e+00 5.14253914e-01 4.44243699e-01 -5.72170496e-01
-4.18619394e-01 -2.19372675e-01 -5.99607289e-01 3.26256752e-01
-1.31135666e+00 -1.04949284e+00 3.14464450e-01 4.30424750e-01
5.45637965e-01 2.65752673e-01 9.28023100e-01 6.02342844e-01
-5.85012555e-01 2.03733936e-01 -5.98179996e-01 2.86265045e-01
5.97762048e-01 -8.05924594e-01 4.08774674e-01 8.67913440e-02
-4.18793827e-01 6.15297258e-01 1.16533303e+00 -9.48332727e-01
-7.21005082e-01 -1.05141091e+00 1.81488764e+00 -7.46869266e-01
1.04193997e+00 -2.01657549e-01 -4.82715279e-01 7.36543715e-01
1.07510889e+00 -7.03894973e-01 1.22493422e+00 3.66615742e-01
-2.22827911e-01 6.74977720e-01 -1.17764318e+00 2.43461609e-01
8.21476698e-01 -4.06983167e-01 -1.09615326e+00 1.12306583e+00
9.77798581e-01 -6.91353977e-01 -7.82899559e-01 5.65493286e-01
3.51883292e-01 -4.71855462e-01 6.74234927e-01 -1.23720324e+00
6.24124169e-01 2.08749890e-01 1.73528548e-02 -6.47930861e-01
3.93678546e-01 -1.03512526e+00 7.08521232e-02 8.91709745e-01
8.97263408e-01 -6.92208946e-01 5.49933672e-01 3.33286971e-01
1.52935684e-01 -1.08766496e+00 -9.73722160e-01 -1.34741932e-01
2.82975733e-01 -5.68642378e-01 6.97900832e-01 1.29902852e+00
3.38247478e-01 7.45896995e-01 -1.13395661e-01 -1.46097586e-01
5.61566174e-01 1.09227978e-01 4.12411928e-01 -1.47969592e+00
1.50319263e-01 -4.84352350e-01 4.35718507e-01 -2.94124335e-01
3.01303007e-02 -7.18452930e-01 -4.07021254e-01 -1.61269426e+00
4.57019895e-01 -2.66728610e-01 1.72906313e-02 3.85193169e-01
9.86628532e-02 1.75875112e-01 -2.31885031e-01 -5.30832028e-03
-8.41650069e-01 -1.10241719e-01 1.00277305e+00 -3.02054137e-01
1.66677400e-01 2.59973317e-01 -7.13105977e-01 1.06082296e+00
7.71149397e-01 -8.89271140e-01 -7.20322952e-02 -1.00143865e-01
1.12656140e+00 -1.47114128e-01 1.31105274e-01 -2.14528486e-01
8.82924274e-02 -2.37890616e-01 -2.35305145e-01 -1.16322839e+00
7.52431378e-02 -2.14454159e-01 1.75363854e-01 9.39406514e-01
-5.77195525e-01 2.38099828e-01 7.19790980e-02 2.92649865e-01
-6.80633113e-02 -1.69836670e-01 3.47766697e-01 9.14952159e-02
5.11082172e-01 -1.22544542e-01 -7.56118417e-01 1.02491534e+00
1.04925251e+00 3.49305540e-01 -1.08113122e+00 -4.16529864e-01
-7.58772075e-01 4.55119342e-01 -1.64985999e-01 3.88311297e-01
4.04392928e-01 -8.24824035e-01 -1.36023545e+00 -1.06528968e-01
-2.36386701e-01 -5.62555529e-02 -1.31578401e-01 1.44590223e+00
-2.07862914e-01 7.43694425e-01 5.18910587e-01 -3.19836348e-01
-1.66152537e+00 2.95437068e-01 -2.36782670e-01 -7.57671118e-01
-5.49349487e-01 9.22161460e-01 -2.67769694e-01 -4.17572260e-01
1.68850720e-01 -3.09697688e-01 -6.87840223e-01 6.25570595e-01
6.97740138e-01 6.74640536e-01 1.53515607e-01 -6.52258992e-01
-6.66021228e-01 -5.07638827e-02 -4.50788774e-02 -7.45421201e-02
1.48220944e+00 -5.16254380e-02 -5.53865075e-01 3.89329642e-01
9.70049560e-01 5.48941731e-01 -7.99885951e-03 -3.56220431e-03
4.68753815e-01 2.49562785e-01 -3.29003334e-01 -7.05286145e-01
-3.09022725e-01 2.31498569e-01 -1.31158412e-01 1.01653147e+00
4.72157031e-01 1.84429437e-01 1.09529364e+00 -3.67515609e-02
-9.68874618e-02 -1.45041120e+00 -1.19014509e-01 7.80281425e-01
9.43935275e-01 -1.04723179e+00 3.44489813e-01 -4.75925207e-01
-3.41631889e-01 4.94803578e-01 4.53047315e-03 3.85510176e-01
1.23747051e+00 3.62355262e-01 2.06094719e-02 -1.16474283e+00
-9.72988844e-01 3.04964244e-01 7.45219290e-02 1.92416340e-01
9.15796697e-01 6.05899096e-01 -1.20903301e+00 7.00025678e-01
-4.04626161e-01 -3.58490974e-01 4.65731621e-01 1.12168837e+00
-3.24539006e-01 -1.09051085e+00 -4.66541111e-01 5.36148727e-01
-1.30894303e+00 -1.40749529e-01 -8.12224627e-01 9.39464211e-01
5.06658256e-01 1.46478415e+00 -1.39290437e-01 -2.74268575e-02
2.63692647e-01 2.50885561e-02 6.83923364e-02 -7.06063330e-01
-1.10439467e+00 -1.38070866e-01 1.22830307e+00 -4.07063216e-01
-1.01597643e+00 -1.13115919e+00 -1.50589526e+00 -6.27894044e-01
-1.67715117e-01 7.68230736e-01 5.80662251e-01 1.12553382e+00
8.66237134e-02 3.36263269e-01 2.05180213e-01 1.41041443e-01
-1.77288055e-01 -1.05246413e+00 -5.37265427e-02 3.51949930e-01
5.26008010e-01 -4.74202484e-01 -1.87665567e-01 -1.73799872e-01] | [8.562263488769531, 9.50046157836914] |
5d1fec2d-b44d-40ca-a804-589853675502 | differentially-private-distributed-convex-1 | 2302.14514 | null | https://arxiv.org/abs/2302.14514v1 | https://arxiv.org/pdf/2302.14514v1.pdf | Differentially Private Distributed Convex Optimization | This paper considers distributed optimization (DO) where multiple agents cooperate to minimize a global objective function, expressed as a sum of local objectives, subject to some constraints. In DO, each agent iteratively solves a local optimization model constructed by its own data and communicates some information (e.g., a local solution) with its neighbors until a global solution is obtained. Even though locally stored data are not shared with other agents, it is still possible to reconstruct the data from the information communicated among agents, which could limit the practical usage of DO in applications with sensitive data. To address this issue, we propose a privacy-preserving DO algorithm for constrained convex optimization models, which provides a statistical guarantee of data privacy, known as differential privacy, and a sequence of iterates that converges to an optimal solution in expectation. The proposed algorithm generalizes a linearized alternating direction method of multipliers by introducing a multiple local updates technique to reduce communication costs and incorporating an objective perturbation method in the local optimization models to compute and communicate randomized feasible local solutions that cannot be utilized to reconstruct the local data, thus preserving data privacy. Under the existence of convex constraints, we show that, while both algorithms provide the same level of data privacy, the objective perturbation used in the proposed algorithm can provide better solutions than does the widely adopted output perturbation method that randomizes the local solutions by adding some noise. We present the details of privacy and convergence analyses and numerically demonstrate the effectiveness of the proposed algorithm by applying it in two different applications, namely, distributed control of power flow and federated learning, where data privacy is of concern. | ['Kibaek Kim', 'Minseok Ryu'] | 2023-02-28 | null | null | null | null | ['distributed-optimization'] | ['methodology'] | [ 5.31916842e-02 3.29651237e-02 -3.03697646e-01 -1.85801640e-01
-8.44766557e-01 -8.72784555e-01 1.00801624e-02 5.25250077e-01
-6.54679358e-01 9.84877527e-01 1.16580948e-01 -8.48503634e-02
-4.07654852e-01 -9.02403831e-01 -5.99108934e-01 -1.48108566e+00
-2.18036950e-01 1.55953437e-01 -5.33564270e-01 1.31137341e-01
2.25953057e-01 5.38967609e-01 -9.77760792e-01 -1.92867965e-01
9.16602612e-01 1.03706348e+00 -5.91729395e-02 3.41327071e-01
2.46519879e-01 5.75044036e-01 -9.09359813e-01 -1.13270104e-01
9.29274619e-01 -3.85202378e-01 -6.08236074e-01 2.51774073e-01
7.90416077e-03 -4.24835831e-01 -4.51105013e-02 1.49397564e+00
4.84100431e-01 4.38054055e-01 2.68664584e-02 -1.53485370e+00
-4.46598917e-01 4.84345347e-01 -6.97992980e-01 -1.47379950e-01
2.11483851e-01 -2.80839782e-02 9.04389858e-01 -2.81910926e-01
6.21941388e-01 7.40850687e-01 5.47650158e-01 5.30493855e-01
-1.51528907e+00 -5.05852282e-01 1.30650491e-01 -1.85697988e-01
-1.52435613e+00 -3.70098591e-01 7.47322321e-01 2.10873466e-02
4.55232292e-01 8.04017842e-01 2.82549769e-01 3.53387445e-01
1.70635313e-01 6.98203862e-01 9.97401714e-01 -2.08506420e-01
7.71241307e-01 5.13428748e-01 -4.64149453e-02 5.42024136e-01
4.29680318e-01 5.19964509e-02 -4.86730009e-01 -9.34865892e-01
1.61146820e-01 2.94796824e-01 -8.56509030e-01 -7.47971058e-01
-9.98506546e-01 9.60593760e-01 5.52517533e-01 2.61752725e-01
-6.19253695e-01 -1.48529904e-02 3.17688912e-01 6.26751363e-01
6.47325695e-01 1.22838229e-01 -4.43767965e-01 4.98748481e-01
-7.25535989e-01 4.35980767e-01 1.17321670e+00 8.29625607e-01
1.03667200e+00 -4.36262786e-02 -2.15983182e-01 2.14950889e-01
1.79623961e-01 5.26186943e-01 2.31731072e-01 -1.11373186e+00
8.92206848e-01 3.70750040e-01 5.21365941e-01 -1.54308593e+00
-1.19862892e-01 -3.88380677e-01 -9.66176450e-01 4.49855357e-01
5.02906561e-01 -6.44020796e-01 6.80926368e-02 2.07234073e+00
7.48110771e-01 -1.03616484e-01 2.81007975e-01 1.19884896e+00
7.98112061e-03 1.03472149e+00 -2.44175971e-01 -9.35313761e-01
7.08377242e-01 -7.55474865e-01 -1.05981326e+00 1.30591601e-01
7.13100851e-01 -1.26346692e-01 4.38526988e-01 2.21943289e-01
-1.04521871e+00 3.25656801e-01 -1.01445127e+00 2.03778982e-01
-2.64354080e-01 -2.00122580e-01 3.94806683e-01 9.72337306e-01
-1.07528329e+00 4.40469950e-01 -8.55985165e-01 -2.31358543e-01
4.30389583e-01 6.81187212e-01 -5.44212937e-01 2.80711856e-02
-7.45203197e-01 4.07082826e-01 3.13349098e-01 1.67303056e-01
-7.92331874e-01 -9.25272286e-01 -7.16720998e-01 2.41062745e-01
5.99926233e-01 -6.92670941e-01 6.48316264e-01 -9.32872415e-01
-1.48213947e+00 4.54509586e-01 -3.21605474e-01 -5.34747362e-01
7.77460515e-01 3.41838300e-01 2.54136380e-02 2.01215129e-02
1.79387187e-03 -2.22319648e-01 6.81931674e-01 -1.22854829e+00
-7.68896699e-01 -7.09863782e-01 5.56057245e-02 3.72449100e-01
-8.26195896e-01 -1.22124709e-01 -1.42177314e-01 -5.28903782e-01
-1.45436063e-01 -6.95263207e-01 -6.00859165e-01 5.02859235e-01
-4.06465530e-01 1.79568410e-01 9.95790482e-01 -7.21351445e-01
1.24626887e+00 -2.12320018e+00 5.48849225e-01 8.37462783e-01
3.67937386e-01 -3.00380811e-02 -2.43623462e-02 5.81119120e-01
3.04287195e-01 1.93995729e-01 -5.70463538e-01 -8.48550618e-01
5.00627840e-03 2.36039028e-01 -4.60228696e-02 1.29224193e+00
-7.20939815e-01 5.15387774e-01 -7.26519048e-01 -2.29180958e-02
1.39425337e-01 1.99232161e-01 -6.16951466e-01 1.55322835e-01
-5.94539829e-02 4.45418984e-01 -8.63333881e-01 3.03941697e-01
1.10623848e+00 3.71127166e-02 5.71483016e-01 4.99128830e-03
-1.79581419e-01 -4.08585995e-01 -1.53467643e+00 1.58833992e+00
-4.15539742e-01 1.71166047e-01 1.15443277e+00 -1.33569992e+00
7.67618001e-01 4.92931485e-01 1.01196647e+00 -2.07598045e-01
2.85912335e-01 1.42467260e-01 -6.79501593e-01 -6.20071627e-02
2.24938557e-01 8.86957645e-02 -1.53976172e-01 8.35609198e-01
-4.69816357e-01 3.80861968e-01 -1.46277294e-01 6.90696537e-02
1.12185061e+00 -6.71251953e-01 3.93543780e-01 -4.97365773e-01
8.19170177e-01 -1.04474917e-01 1.02918708e+00 7.16339529e-01
-1.70206323e-01 1.64554447e-01 3.76554489e-01 -3.87132227e-01
-7.15868235e-01 -6.42570317e-01 1.60353690e-01 8.04155588e-01
3.43348622e-01 -3.94512206e-01 -8.09675932e-01 -8.19268286e-01
4.23193604e-01 6.07070863e-01 -5.03909528e-01 -2.22046990e-02
-2.30352134e-01 -9.78309572e-01 1.07102662e-01 -3.22936058e-01
6.54248297e-01 -4.94152665e-01 -4.90941882e-01 2.55176514e-01
-6.75272420e-02 -5.99090397e-01 -1.01454949e+00 -8.36778246e-03
-8.39738011e-01 -1.00646877e+00 -5.44590592e-01 -4.80042547e-01
1.31629241e+00 4.25454259e-01 3.54548246e-01 4.43147868e-02
2.55024862e-02 5.79665720e-01 1.25811258e-02 -2.04079792e-01
-2.74952233e-01 -2.27780621e-02 2.00578928e-01 7.54542768e-01
-3.20367664e-02 -5.48929751e-01 -4.57411140e-01 1.85464099e-01
-1.11559212e+00 -5.61721861e-01 5.69180623e-02 7.58599102e-01
6.91133857e-01 5.94948769e-01 4.54081476e-01 -9.79361713e-01
1.05452406e+00 -7.17798591e-01 -1.06632280e+00 4.26236659e-01
-7.97738194e-01 -1.50190955e-02 1.11168444e+00 -1.56055436e-01
-9.85949874e-01 2.40933642e-01 6.39771283e-01 -4.78624582e-01
2.94071555e-01 5.07296205e-01 -4.55957681e-01 -6.35186434e-01
3.66451144e-01 3.50707352e-01 5.77252209e-01 -4.57322061e-01
3.52306247e-01 6.48246527e-01 2.15860009e-01 -6.42224967e-01
8.64041984e-01 7.59750009e-01 1.60866290e-01 -4.54741716e-01
-3.34426105e-01 -2.87199736e-01 -6.42108917e-02 1.42375603e-01
4.28344727e-01 -7.35093832e-01 -1.32760179e+00 3.48841369e-01
-9.29040909e-01 1.04486771e-01 -5.94712615e-01 2.24087566e-01
-5.10865152e-01 5.36527455e-01 -2.29857132e-01 -1.01628935e+00
-5.03649175e-01 -1.01178002e+00 2.74366170e-01 8.69034603e-02
1.85484022e-01 -1.30522490e+00 6.68125078e-02 2.51557052e-01
5.73727012e-01 7.42929220e-01 4.43177789e-01 -6.17814660e-01
-6.75382316e-01 -4.18808222e-01 3.37949693e-01 2.17546701e-01
3.99016380e-01 -4.98891503e-01 -5.42977810e-01 -1.16258574e+00
5.91010809e-01 -1.55784916e-02 2.49673486e-01 2.95135975e-01
1.19426179e+00 -1.37462950e+00 -3.59255075e-01 9.05199945e-01
1.79318345e+00 1.29034109e-02 6.63832203e-03 1.57522365e-01
3.41133535e-01 5.82263052e-01 4.08890545e-01 1.18507099e+00
3.32261831e-01 4.49474692e-01 6.58677042e-01 7.94970691e-02
7.55763829e-01 -3.35950404e-02 4.31102365e-01 3.63067865e-01
2.12652877e-01 -3.78084302e-01 -3.03277969e-01 7.02623665e-01
-2.26519418e+00 -8.57339680e-01 1.69482425e-01 2.80993915e+00
7.73378074e-01 -8.27625632e-01 1.08492069e-01 -9.27280933e-02
8.74396622e-01 2.85555691e-01 -7.39176333e-01 -4.69166160e-01
-1.94200575e-01 -2.08627537e-01 1.20947993e+00 7.92501688e-01
-7.97707081e-01 2.40909055e-01 5.67642164e+00 6.05992973e-01
-1.02683675e+00 2.95553416e-01 7.07804143e-01 -4.05904740e-01
-5.67544758e-01 5.01895286e-02 -3.11510742e-01 4.84763324e-01
5.88897407e-01 -8.01804602e-01 1.13334751e+00 7.06838667e-01
6.27122343e-01 -5.23659177e-02 -9.97305453e-01 8.78083587e-01
-3.00831776e-02 -1.32924616e+00 -3.46658379e-01 5.40311635e-01
1.14727664e+00 -3.90625864e-01 7.20731542e-02 -5.04464686e-01
4.59200978e-01 -6.84395790e-01 4.25313830e-01 2.79599726e-01
2.90154666e-01 -1.13884783e+00 5.57826996e-01 6.18841827e-01
-9.34538364e-01 -5.34771681e-01 -4.59940076e-01 5.66851757e-02
5.15356995e-02 7.16138184e-01 -3.01922530e-01 8.60810399e-01
6.59492254e-01 5.04672945e-01 1.32876217e-01 9.45286453e-01
1.37505993e-01 1.23919040e-01 -8.32998216e-01 -7.08352076e-04
9.29429829e-02 -6.87318921e-01 1.02963781e+00 4.36305791e-01
3.14504027e-01 1.58507019e-01 4.17851955e-01 9.66059029e-01
-2.51141191e-01 4.37948138e-01 -6.01592183e-01 1.91117764e-01
8.33254457e-01 1.16330695e+00 -5.17387758e-04 1.23409167e-01
-4.22465742e-01 1.10147703e+00 3.91994983e-01 5.80444157e-01
-3.55176538e-01 -3.64377320e-01 9.99401510e-01 -3.84636581e-01
1.13140345e-01 -1.38415217e-01 -3.30424190e-01 -1.14129329e+00
4.21960801e-01 -8.47330391e-01 8.33543718e-01 1.13621287e-01
-1.31437254e+00 2.82421205e-02 -2.33604819e-01 -1.09162951e+00
-2.00632513e-01 7.15703284e-03 -7.34381199e-01 9.48431611e-01
-1.20335770e+00 -7.21989155e-01 6.84323683e-02 1.15597117e+00
-2.73128420e-01 -2.72131115e-01 7.67579079e-01 1.30290717e-01
-6.39955401e-01 8.52319598e-01 8.09759557e-01 -1.71822622e-01
4.30772543e-01 -1.07698143e+00 -6.34766877e-01 9.75818396e-01
-1.98991761e-01 7.12693930e-01 7.32663989e-01 -4.26359564e-01
-1.94098568e+00 -1.12737393e+00 7.56841123e-01 1.83619246e-01
4.40725952e-01 -2.78199047e-01 -5.89823544e-01 9.03317451e-01
1.96585178e-01 5.13404489e-01 5.98386943e-01 -3.98022175e-01
1.41695440e-01 -6.99086308e-01 -2.19207335e+00 4.22327846e-01
4.92553294e-01 -3.14786702e-01 8.84102881e-02 5.17506003e-01
4.72701132e-01 -2.92435348e-01 -1.03263915e+00 -1.96318492e-01
-5.24909748e-03 -7.26900280e-01 7.17470050e-01 -5.54877281e-01
-5.77603996e-01 -6.47340357e-01 -3.77297103e-01 -1.44197655e+00
-5.27794808e-02 -1.42544818e+00 -2.16985703e-01 1.36943471e+00
1.91988930e-01 -1.11884558e+00 1.10257876e+00 1.31801379e+00
4.87409920e-01 -4.18048739e-01 -1.45407844e+00 -6.10374510e-01
-3.33406888e-02 1.94799285e-02 7.24892676e-01 1.15088046e+00
1.81492522e-01 -5.19661844e-01 -6.37720585e-01 8.17018151e-01
1.13039887e+00 2.11552635e-01 9.01856899e-01 -5.82943738e-01
-1.89975649e-01 -3.00576631e-03 -2.41261259e-01 -8.58089745e-01
3.72000426e-01 -1.04276049e+00 -1.91392019e-01 -1.04087961e+00
1.88744497e-02 -5.86360514e-01 -3.25423360e-01 5.17339766e-01
1.09882392e-01 -1.82563514e-01 5.20561874e-01 1.79421231e-01
-4.56714511e-01 6.33235812e-01 9.01155114e-01 -2.80783832e-01
-5.93857944e-01 3.26495081e-01 -9.16386425e-01 1.17646113e-01
7.14779675e-01 -6.45648658e-01 -4.47730660e-01 -3.68555486e-01
-8.53632540e-02 5.27174532e-01 1.70323074e-01 -6.33554220e-01
8.05606365e-01 -4.72229093e-01 -1.54755816e-01 -1.07415535e-01
-1.87800229e-02 -1.75387692e+00 4.43901598e-01 6.08249068e-01
-4.39943314e-01 -1.01821944e-01 -1.93009749e-01 8.85538399e-01
-1.31265163e-01 -2.94726610e-01 6.93658531e-01 1.10658772e-01
-1.22352935e-01 6.07530653e-01 -3.85991096e-01 -2.50272542e-01
1.51293147e+00 9.64405313e-02 -1.48367226e-01 -7.37860501e-01
-7.53388047e-01 8.30835879e-01 5.89658558e-01 -3.85636054e-02
3.61063540e-01 -1.34823799e+00 -7.90387690e-01 1.58252582e-01
-2.52388924e-01 6.42102137e-02 1.13804258e-01 8.42488945e-01
-2.53715187e-01 2.54383266e-01 2.39690602e-01 -2.62068689e-01
-1.20790088e+00 8.35104048e-01 5.62620997e-01 -2.59809196e-01
-4.23472673e-01 3.53153348e-01 -3.28835249e-02 -6.76205814e-01
3.66794467e-01 -6.82689548e-02 3.62629712e-01 -7.14032724e-02
6.06142938e-01 7.21259236e-01 4.78465259e-02 -3.31488192e-01
-2.98500478e-01 3.92533988e-01 1.49475053e-01 -4.88438178e-04
1.46150196e+00 -7.05912471e-01 -6.17795110e-01 -1.29473865e-01
1.68916464e+00 5.03926456e-01 -1.30998898e+00 -4.91516441e-01
-2.68803954e-01 -8.93306136e-01 2.63575524e-01 -5.79007030e-01
-1.84589982e+00 2.50952635e-02 5.27061939e-01 2.21051827e-01
1.39831471e+00 -4.18338418e-01 6.30159199e-01 5.11292398e-01
7.43603826e-01 -9.76842105e-01 -7.35847235e-01 -1.13501035e-01
7.32391536e-01 -1.04891431e+00 2.31214345e-01 -2.75699526e-01
-3.27035517e-01 9.33005214e-01 1.69799298e-01 -1.15706138e-01
6.79265022e-01 3.64892095e-01 -8.29252973e-02 2.81945497e-01
-6.24994159e-01 4.43466097e-01 -2.25894988e-01 6.55227065e-01
-4.06039864e-01 5.24129197e-02 -7.43356287e-01 5.66683173e-01
1.84876487e-01 -1.64500877e-01 5.21247685e-01 1.07236993e+00
-4.16899137e-02 -1.19572699e+00 -7.28706360e-01 1.44897461e-01
-7.38111913e-01 3.61763775e-01 -3.02573055e-01 4.57754105e-01
-1.60946384e-01 1.21937120e+00 -5.29070245e-03 7.58748278e-02
5.58036342e-02 -3.55587572e-01 -3.93422060e-02 -1.17278636e-01
-9.08627689e-01 -2.85532951e-01 -1.72438562e-01 -7.37343252e-01
-5.38162172e-01 -8.02763820e-01 -1.13957787e+00 -8.40111494e-01
-2.30015799e-01 5.44749379e-01 6.57566547e-01 6.13558948e-01
4.74181890e-01 1.66194066e-02 1.46705770e+00 -5.27510583e-01
-9.63343918e-01 -1.88931927e-01 -9.05067742e-01 3.59269887e-01
6.41058445e-01 1.67273059e-01 -8.14791620e-01 -3.05879384e-01] | [5.947376251220703, 5.959488391876221] |
fb8cdd95-d4da-43da-abab-3dbf0ab4a4a5 | multiple-fusion-adaptation-a-strong-framework | 2112.00295 | null | https://arxiv.org/abs/2112.00295v1 | https://arxiv.org/pdf/2112.00295v1.pdf | Multiple Fusion Adaptation: A Strong Framework for Unsupervised Semantic Segmentation Adaptation | This paper challenges the cross-domain semantic segmentation task, aiming to improve the segmentation accuracy on the unlabeled target domain without incurring additional annotation. Using the pseudo-label-based unsupervised domain adaptation (UDA) pipeline, we propose a novel and effective Multiple Fusion Adaptation (MFA) method. MFA basically considers three parallel information fusion strategies, i.e., the cross-model fusion, temporal fusion and a novel online-offline pseudo label fusion. Specifically, the online-offline pseudo label fusion encourages the adaptive training to pay additional attention to difficult regions that are easily ignored by offline pseudo labels, therefore retaining more informative details. While the other two fusion strategies may look standard, MFA pays significant efforts to raise the efficiency and effectiveness for integration, and succeeds in injecting all the three strategies into a unified framework. Experiments on two widely used benchmarks, i.e., GTA5-to-Cityscapes and SYNTHIA-to-Cityscapes, show that our method significantly improves the semantic segmentation adaptation, and sets up new state of the art (58.2% and 62.5% mIoU, respectively). The code will be available at https://github.com/KaiiZhang/MFA. | ['Xiaohui Hu', 'Haichang Li', 'Rui Wang', 'Yifan Sun', 'Kai Zhang'] | 2021-12-01 | null | null | null | null | ['unsupervised-semantic-segmentation', 'synthetic-to-real-translation'] | ['computer-vision', 'computer-vision'] | [ 2.21366793e-01 2.11103827e-01 -1.87300384e-01 -5.28623581e-01
-1.19240332e+00 -5.72642922e-01 4.18466091e-01 6.50511086e-02
-6.10309601e-01 6.12295389e-01 -2.21393824e-01 -1.64279193e-01
2.19416142e-01 -6.16093993e-01 -5.86631119e-01 -7.24901974e-01
4.80811536e-01 6.53451681e-01 7.98327804e-01 -7.66100511e-02
-1.81556866e-01 1.30096488e-02 -1.20906866e+00 5.21233045e-02
1.33869636e+00 1.05062437e+00 3.60698730e-01 2.23251268e-01
-3.48737597e-01 4.53028738e-01 -3.97675127e-01 -5.69938540e-01
2.46674001e-01 -3.66267860e-01 -1.13438976e+00 2.54881412e-01
1.15388267e-01 -1.03406042e-01 1.34375185e-01 1.29843247e+00
4.04023588e-01 3.96295458e-01 5.30589461e-01 -1.10388505e+00
-4.04407322e-01 6.35124624e-01 -9.01568294e-01 -6.88665733e-03
-8.92803967e-02 -3.06409337e-02 7.49183774e-01 -9.34464931e-01
5.98332644e-01 1.13663578e+00 6.65223658e-01 5.43807685e-01
-9.60076690e-01 -6.85205579e-01 5.41952550e-01 1.25797629e-01
-1.46053421e+00 -3.64014089e-01 5.82490981e-01 -3.34971368e-01
6.18591487e-01 1.17627710e-01 3.90724480e-01 9.66193914e-01
-4.87208426e-01 1.26068592e+00 1.20323539e+00 -4.43506122e-01
3.63398492e-01 3.25863250e-03 3.70987713e-01 5.50687194e-01
6.44841343e-02 -1.81675375e-01 -1.43743217e-01 1.09802522e-01
5.31007409e-01 -9.53735635e-02 -1.92408904e-01 -1.97076440e-01
-1.12229657e+00 6.70091569e-01 2.45765463e-01 3.32869589e-01
-2.19269857e-01 -3.74442935e-01 4.41844165e-01 -1.80222556e-01
7.40598798e-01 6.35114163e-02 -8.22718859e-01 -5.46143278e-02
-9.27315652e-01 3.47641855e-02 5.09263933e-01 1.18441606e+00
1.00909269e+00 -1.77888468e-01 -1.15111664e-01 1.20843744e+00
3.84734035e-01 4.39811528e-01 5.78786433e-01 -9.85919714e-01
3.75039011e-01 6.68408692e-01 7.83707574e-03 -5.66042066e-01
-4.50337470e-01 -5.17179370e-01 -5.84838688e-01 -1.54757023e-01
5.24999201e-01 -2.60507613e-01 -1.39913380e+00 1.82688975e+00
6.70959771e-01 4.11497802e-01 1.69730097e-01 9.20770526e-01
6.95858717e-01 5.92826486e-01 5.14735520e-01 -5.88354580e-02
1.45624042e+00 -1.65891862e+00 -7.99938083e-01 -4.56775308e-01
7.85311818e-01 -8.56304228e-01 1.07877064e+00 1.87258869e-01
-9.58940744e-01 -7.27678776e-01 -9.32063341e-01 -9.77877155e-02
-5.72591424e-01 3.26972008e-01 3.84359241e-01 4.13993537e-01
-8.40581536e-01 3.71978194e-01 -1.00500238e+00 -4.58764493e-01
5.52399635e-01 2.25222021e-01 -1.98237702e-01 -1.52831465e-01
-1.20641708e+00 5.81020594e-01 8.60583425e-01 -1.19020090e-01
-6.12410545e-01 -5.81696391e-01 -9.21068192e-01 -1.19109400e-01
8.18802714e-01 -4.88324463e-01 1.61016607e+00 -1.07405829e+00
-1.57444358e+00 8.93359423e-01 -2.23626196e-01 -3.50539744e-01
5.57761371e-01 -3.01856726e-01 -5.08045495e-01 8.44169855e-02
4.99183834e-01 1.02509737e+00 5.69950402e-01 -1.32605064e+00
-9.97225523e-01 -4.85285938e-01 -5.81573322e-02 3.08104277e-01
-2.83181131e-01 -1.61842778e-01 -1.06035161e+00 -9.51869726e-01
2.21566528e-01 -1.02648282e+00 -2.99184740e-01 -4.44233447e-01
-3.67707968e-01 -2.93710232e-01 9.08837199e-01 -9.10539269e-01
1.18196201e+00 -2.16355467e+00 -7.11472929e-02 1.38108283e-01
6.07860647e-02 5.28795004e-01 -3.46879736e-02 -1.20980918e-01
3.00118532e-02 8.47598314e-02 -8.36585164e-01 -6.48843169e-01
-1.14982612e-02 2.11838156e-01 2.17000723e-01 1.48271620e-01
1.98725119e-01 9.66643095e-01 -1.03246307e+00 -7.97402263e-01
2.85582900e-01 2.90885687e-01 -2.89291978e-01 6.87338784e-02
-3.01468551e-01 6.05638027e-01 -5.56710362e-01 9.04056966e-01
9.72649097e-01 -3.56158674e-01 1.22333646e-01 -1.07356995e-01
-2.64498200e-02 1.12480950e-03 -1.14492607e+00 2.14226699e+00
-2.21962035e-01 -5.61975092e-02 8.27384889e-02 -9.44302797e-01
7.78065503e-01 1.84984326e-01 4.92443860e-01 -8.54949951e-01
3.20916355e-01 5.33777893e-01 -3.68983030e-01 -2.36522257e-01
4.83324558e-01 1.05908647e-01 -2.87575483e-01 7.26663992e-02
3.19919378e-01 2.21403822e-01 3.21743429e-01 2.23107964e-01
6.94905877e-01 6.55585766e-01 3.41057241e-01 -4.34214175e-01
6.02353573e-01 2.57752359e-01 1.07497811e+00 4.34638381e-01
-6.37689710e-01 7.04970658e-01 -3.96960974e-02 -4.70729023e-02
-6.99468732e-01 -9.59639668e-01 -2.05057003e-02 1.20747721e+00
5.38413703e-01 -3.55494052e-01 -1.20570207e+00 -1.19151413e+00
-2.06552625e-01 7.40153790e-01 -5.82766891e-01 -9.99746695e-02
-4.42621261e-01 -8.27287793e-01 4.21220660e-01 7.36596406e-01
1.11882842e+00 -8.20233345e-01 -2.54630864e-01 2.85368532e-01
-6.03001118e-01 -1.34731317e+00 -7.39481032e-01 6.28572628e-02
-7.16633201e-01 -7.75760949e-01 -1.02030742e+00 -8.17841053e-01
5.20102322e-01 3.26221526e-01 8.93379092e-01 -2.46519387e-01
1.07929781e-01 1.89528883e-01 -6.61681831e-01 -2.78460085e-01
-2.41986737e-01 3.17433476e-01 -2.69387126e-01 8.94372612e-02
4.82463539e-01 -2.75837332e-01 -5.40010452e-01 5.56965172e-01
-8.19303989e-01 3.53455961e-01 6.26053333e-01 7.61969805e-01
1.12342405e+00 -8.17681849e-02 6.80323541e-01 -1.29786837e+00
2.95775998e-02 -6.26555204e-01 -5.16029537e-01 4.28471565e-01
-6.49724901e-01 -1.95700288e-01 4.88085628e-01 -3.33729446e-01
-1.60196805e+00 4.02788043e-01 -4.39183503e-01 -4.73598182e-01
-4.89499629e-01 3.62439334e-01 -6.55270338e-01 6.35664538e-03
5.33347368e-01 6.90652058e-02 -4.86709118e-01 -7.63460875e-01
4.37619150e-01 6.74748719e-01 6.94889903e-01 -6.56784654e-01
4.64247763e-01 3.84204149e-01 -5.60888648e-01 -4.53363866e-01
-1.03353488e+00 -9.38808322e-01 -6.81567192e-01 -1.64514363e-01
1.09897923e+00 -1.08205581e+00 -5.82501516e-02 7.66367137e-01
-8.24135542e-01 -5.54184914e-01 -2.75540501e-01 3.39815617e-01
-4.86204684e-01 5.17732859e-01 -6.05336189e-01 -5.31813383e-01
-2.57520974e-01 -1.26044679e+00 1.24807405e+00 6.86242342e-01
-9.39472672e-03 -1.01169932e+00 -1.56158298e-01 6.88459456e-01
1.49171352e-01 2.00293392e-01 4.11428392e-01 -9.54486966e-01
-2.62083292e-01 1.52594715e-01 -3.99089396e-01 4.20084894e-01
2.66993880e-01 -2.41423577e-01 -1.19667733e+00 -1.35470077e-01
-1.73481673e-01 -2.16230288e-01 9.93214846e-01 3.57789397e-01
1.16343594e+00 1.23600416e-01 -4.70383376e-01 5.81562459e-01
1.30920649e+00 5.14207363e-01 3.71278286e-01 4.65901762e-01
8.34088087e-01 4.16913569e-01 1.12134707e+00 2.39122078e-01
7.79528320e-01 7.85662115e-01 1.67647988e-01 -3.77838314e-01
-3.23241830e-01 -2.46231109e-01 1.17014334e-01 1.02138543e+00
6.63493425e-02 -2.88469553e-01 -1.13302577e+00 7.18338609e-01
-2.21497869e+00 -3.22775006e-01 -1.17248766e-01 1.98028529e+00
8.91301870e-01 2.24796936e-01 2.41007090e-01 -4.90477011e-02
9.16589558e-01 -8.51606652e-02 -8.10511827e-01 1.32244285e-02
-2.04570487e-01 1.47957474e-01 6.45630062e-01 5.00925124e-01
-1.60488439e+00 1.37185574e+00 4.83280754e+00 1.42118120e+00
-8.21574330e-01 6.07214093e-01 8.95906031e-01 4.64778543e-01
-9.64676663e-02 2.85563283e-02 -8.58786106e-01 5.61541855e-01
8.59875917e-01 6.74543902e-02 1.53560475e-01 8.68421197e-01
-1.03015592e-02 -1.75509319e-01 -4.29427803e-01 7.30979323e-01
-1.33639455e-01 -8.97045016e-01 -1.11860149e-01 -2.34224066e-01
8.85433793e-01 7.39096999e-02 -1.50584579e-01 5.86626172e-01
4.79091525e-01 -3.45665276e-01 8.77581596e-01 2.20604956e-01
6.81556344e-01 -7.25454628e-01 9.16350424e-01 4.16103303e-01
-1.33295143e+00 9.34275314e-02 3.00669223e-02 4.32525724e-01
3.03967953e-01 6.92693353e-01 -4.15075004e-01 1.09766376e+00
9.55746055e-01 7.72393465e-01 -6.56944156e-01 8.80771339e-01
-3.25414181e-01 7.04935431e-01 -3.92737389e-01 5.38680077e-01
4.42436248e-01 -3.09538811e-01 3.43635291e-01 1.31335449e+00
1.32157147e-01 1.89192593e-01 4.74974275e-01 5.34171224e-01
-6.09312840e-02 2.58546233e-01 1.64854713e-03 1.66357443e-01
3.37234080e-01 1.38500297e+00 -1.14441168e+00 -6.99519277e-01
-4.44712043e-01 1.26552200e+00 2.42550671e-01 4.37952608e-01
-1.11205816e+00 -2.98162311e-01 3.70981455e-01 -2.34961957e-01
2.84155279e-01 1.18219871e-02 -4.29134727e-01 -1.31221676e+00
-5.22717871e-02 -7.50045002e-01 7.82726228e-01 -5.95468223e-01
-1.07187450e+00 6.37339950e-01 1.43131778e-01 -1.10130501e+00
2.85909474e-02 -2.66419232e-01 -2.60758460e-01 7.41860092e-01
-1.67138219e+00 -1.37991047e+00 -3.60551804e-01 5.42815149e-01
9.21069205e-01 1.49373800e-01 6.09790444e-01 6.84527874e-01
-8.94401789e-01 7.06842542e-01 -3.96261457e-03 2.41852794e-02
8.23667169e-01 -1.39630687e+00 5.48499584e-01 1.07662201e+00
-4.70515341e-02 1.56329766e-01 2.52099246e-01 -6.63298070e-01
-5.21360874e-01 -1.40598226e+00 7.07565308e-01 -1.57125801e-01
4.79152262e-01 -2.90953517e-01 -1.16475129e+00 7.19234526e-01
1.32689416e-01 -3.16726565e-02 5.65826535e-01 -1.65159956e-01
-2.01276809e-01 2.19118260e-02 -1.30501676e+00 4.25361246e-01
1.07970119e+00 -1.72835112e-01 -4.12206590e-01 2.86378592e-01
1.01256585e+00 -5.54546118e-01 -9.30074632e-01 7.16346741e-01
1.76993147e-01 -7.68023729e-01 8.48447144e-01 -8.79099965e-02
1.24615245e-01 -5.80331743e-01 -1.42555133e-01 -1.19460940e+00
-3.08039695e-01 -3.66986394e-01 3.54832858e-02 1.72747099e+00
5.32816291e-01 -8.14873099e-01 6.94473743e-01 4.70245123e-01
-5.44398665e-01 -6.71587467e-01 -7.93272614e-01 -8.46622467e-01
4.91861105e-02 -3.58178973e-01 6.66881204e-01 1.32781148e+00
-3.78447622e-01 1.69251949e-01 -5.74224815e-02 3.52609545e-01
6.53530240e-01 6.04235567e-02 3.76170784e-01 -1.03769088e+00
-2.14235634e-01 -4.26342428e-01 4.70806733e-02 -1.13360000e+00
1.54701605e-01 -9.09865141e-01 2.28166237e-01 -1.46314764e+00
8.34753364e-02 -5.64373970e-01 -5.44783175e-01 8.91747475e-01
-5.53772807e-01 2.86940932e-01 1.89879656e-01 3.17629755e-01
-1.06593573e+00 5.87724566e-01 1.28021216e+00 -1.65696710e-01
-2.08006486e-01 6.17401674e-02 -7.23921180e-01 9.51549411e-01
1.17445886e+00 -5.02707720e-01 -4.18779135e-01 -5.44522762e-01
-3.86708528e-01 -2.85971999e-01 2.99511924e-02 -1.05028927e+00
1.15279585e-01 -6.83366656e-02 1.15698233e-01 -5.71267247e-01
1.87475681e-01 -8.08072329e-01 3.58864926e-02 2.19505429e-01
5.26588969e-03 -2.65022069e-01 4.28999722e-01 5.84774256e-01
-4.78153348e-01 -1.76270857e-01 1.13682592e+00 -1.34027064e-01
-1.29191208e+00 3.32063586e-01 9.89712626e-02 1.44657925e-01
1.17089736e+00 -1.51583552e-01 -2.58964062e-01 7.93041736e-02
-1.09774113e+00 6.35421038e-01 5.19054890e-01 4.11277026e-01
1.27028972e-01 -1.22950530e+00 -5.39160192e-01 7.71197975e-02
3.45797777e-01 3.56544912e-01 6.47377074e-01 9.20073628e-01
-3.69615197e-01 1.50055647e-01 8.61291513e-02 -7.51210988e-01
-1.00751209e+00 4.10865605e-01 2.38699809e-01 -5.03959358e-01
-4.24850106e-01 1.04477739e+00 4.49202150e-01 -6.44330263e-01
1.90694928e-02 -1.89730570e-01 -2.43095547e-01 5.37130982e-03
2.75177062e-01 4.58208770e-01 2.48301148e-01 -7.84192085e-01
-4.19971913e-01 6.71805799e-01 -2.22621053e-01 6.94353692e-03
9.38943624e-01 -4.44299638e-01 1.85884148e-01 3.85817170e-01
9.54149663e-01 -2.49233544e-01 -1.47802591e+00 -4.93650675e-01
2.75437951e-01 -3.08019996e-01 1.16538443e-02 -1.27731490e+00
-1.30643833e+00 8.45277548e-01 6.65977538e-01 6.36502057e-02
1.53173351e+00 9.78493392e-02 1.11692274e+00 -1.37491763e-01
3.70868742e-01 -1.34314752e+00 -3.28086048e-01 5.37261903e-01
3.54303449e-01 -1.44978976e+00 -2.92722702e-01 -8.20140183e-01
-9.14165676e-01 5.80347300e-01 8.39741886e-01 2.20720083e-01
6.12740755e-01 1.85712948e-01 2.23457754e-01 1.61231875e-01
-2.99710035e-01 -5.80881357e-01 2.19141096e-01 4.36582685e-01
3.70093510e-02 3.27376008e-01 -4.32942122e-01 1.03944254e+00
2.71588236e-01 -3.96389589e-02 6.54605031e-02 9.48905706e-01
-3.01666588e-01 -1.25122595e+00 -2.77661324e-01 2.01648608e-01
-4.33854640e-01 -5.56497881e-03 -1.84478939e-01 7.73289204e-01
6.17867768e-01 9.53920603e-01 -1.37151092e-01 -3.60675216e-01
4.89950031e-01 3.23396266e-01 4.87083495e-02 -4.97586876e-01
-4.74754930e-01 5.52952290e-01 5.03768725e-03 -5.19625306e-01
-6.79771245e-01 -8.06395948e-01 -1.55527639e+00 2.21006144e-02
-4.47077870e-01 1.76193148e-01 6.09506190e-01 1.01481938e+00
5.09922862e-01 6.31145775e-01 3.01589429e-01 -6.02101326e-01
-1.00733772e-01 -1.05416965e+00 -4.29372430e-01 5.02540410e-01
-2.77863424e-02 -8.65592241e-01 -1.43313631e-01 3.05457681e-01] | [9.583600044250488, 1.3464170694351196] |
362c9902-c19f-4792-a15f-c66a90fc3324 | a-mixed-reality-dataset-for-category-level-6d | 2211.10470 | null | https://arxiv.org/abs/2211.10470v1 | https://arxiv.org/pdf/2211.10470v1.pdf | A mixed-reality dataset for category-level 6D pose and size estimation of hand-occluded containers | Estimating the 6D pose and size of household containers is challenging due to large intra-class variations in the object properties, such as shape, size, appearance, and transparency. The task is made more difficult when these objects are held and manipulated by a person due to varying degrees of hand occlusions caused by the type of grasps and by the viewpoint of the camera observing the person holding the object. In this paper, we present a mixed-reality dataset of hand-occluded containers for category-level 6D object pose and size estimation. The dataset consists of 138,240 images of rendered hands and forearms holding 48 synthetic objects, split into 3 grasp categories over 30 real backgrounds. We re-train and test an existing model for 6D object pose estimation on our mixed-reality dataset. We discuss the impact of the use of this dataset in improving the task of 6D pose and size estimation. | ['Andrea Cavallaro', 'Alessio Xompero', 'Xavier Weber'] | 2022-11-18 | null | null | null | null | ['mixed-reality', '6d-pose-estimation'] | ['computer-vision', 'computer-vision'] | [-8.04860443e-02 -3.25654089e-01 2.28689656e-01 -3.00755471e-01
-2.34445557e-01 -9.56824303e-01 2.52231628e-01 4.63413484e-02
-1.51143089e-01 1.15458921e-01 2.43574500e-01 1.72574461e-01
2.04742700e-01 -3.16870779e-01 -1.02384830e+00 -4.39010292e-01
-2.72562951e-01 9.14963543e-01 2.45722264e-01 2.60229737e-01
2.57273078e-01 8.67617428e-01 -1.55302155e+00 2.92702049e-01
2.66849667e-01 1.05972111e+00 3.90700966e-01 9.56023991e-01
3.06890905e-01 4.20767903e-01 -7.93907106e-01 -2.39565954e-01
7.03224957e-01 2.28237107e-01 -3.18037182e-01 6.63764834e-01
8.89386952e-01 -9.85980511e-01 -3.06764454e-01 6.79139197e-01
5.12458205e-01 1.67926356e-01 8.54437351e-01 -1.24612856e+00
-3.16604733e-01 7.03916177e-02 -8.34277689e-01 -9.08740088e-02
9.19809639e-01 9.88600925e-02 4.33240473e-01 -7.26553082e-01
7.02271998e-01 1.59421778e+00 5.07716119e-01 4.98456270e-01
-1.28589320e+00 -7.40681529e-01 4.78637785e-01 -3.68072391e-01
-1.36124063e+00 -4.61948484e-01 3.36283535e-01 -7.35955656e-01
9.14006710e-01 2.08353594e-01 6.15673959e-01 1.30918360e+00
5.38624786e-02 6.16713226e-01 1.07138348e+00 -4.62884873e-01
2.13441774e-01 2.81942457e-01 7.15988576e-02 4.25982356e-01
4.52785969e-01 -1.43330395e-01 -2.43726239e-01 -3.81934106e-01
1.16970003e+00 2.56366525e-02 -2.87801743e-01 -1.06295609e+00
-1.35386944e+00 1.88039795e-01 3.86550725e-01 -1.96912721e-01
-3.56559962e-01 5.79163944e-03 2.31129125e-01 -1.49314821e-01
3.97839397e-01 3.13740075e-01 -8.18776965e-01 -2.05348119e-01
-2.74184257e-01 6.75314724e-01 1.01902556e+00 1.55170715e+00
-9.38230455e-02 -4.19839799e-01 -1.88035458e-01 4.44396466e-01
4.16731209e-01 7.36941755e-01 -2.17538700e-01 -9.61872399e-01
6.99087024e-01 5.29068887e-01 8.92028034e-01 -9.52141106e-01
-4.71426696e-01 1.23290963e-01 7.25215897e-02 4.23735917e-01
9.59694386e-01 1.24903135e-01 -1.12947202e+00 1.33473003e+00
6.76417708e-01 -2.89456099e-01 -5.40566385e-01 1.11417401e+00
9.25295651e-01 1.83689430e-01 1.37550399e-01 2.07535505e-01
1.49965382e+00 -7.21426487e-01 -3.79656017e-01 -2.43062258e-01
-9.06990543e-02 -1.09248543e+00 9.04141307e-01 3.98571700e-01
-9.77432013e-01 -4.71999913e-01 -6.87217474e-01 -5.54055907e-02
-2.60843486e-01 3.39993298e-01 5.99571466e-01 6.47217751e-01
-3.92383426e-01 4.26055908e-01 -1.04688370e+00 -3.65003407e-01
2.87665159e-01 6.45878255e-01 -4.29199398e-01 -2.29076475e-01
-1.03889734e-01 1.18169749e+00 2.39897266e-01 2.13872313e-01
-8.05569589e-01 -6.24620259e-01 -8.00226092e-01 -2.18574822e-01
4.59593236e-01 -3.71975929e-01 1.08981228e+00 -1.60793468e-01
-1.22636986e+00 1.19486713e+00 1.51114419e-01 3.23702246e-01
1.00074780e+00 -5.32323182e-01 1.56050846e-01 2.08056555e-03
-1.52644634e-01 4.80211645e-01 1.05739260e+00 -1.41949964e+00
-1.10253483e-01 -1.11599302e+00 2.53855109e-01 3.01923811e-01
1.77406266e-01 1.43442854e-01 -6.17897630e-01 -4.28189844e-01
3.62201244e-01 -1.27554071e+00 9.93991718e-02 4.33326274e-01
-3.47363949e-01 1.35076135e-01 9.61119771e-01 -9.60788727e-01
2.52966791e-01 -2.32280183e+00 3.97094071e-01 -9.32493657e-02
6.51628003e-02 -6.00809045e-02 -8.47840831e-02 1.10747069e-01
9.63216051e-02 -3.23480666e-01 4.53744739e-01 -5.57701051e-01
1.03626564e-01 -1.66509971e-01 -1.72151297e-01 5.96234679e-01
-2.17609107e-01 5.38129449e-01 -7.88675785e-01 -3.36548477e-01
4.76672530e-01 7.65452743e-01 -2.61491269e-01 6.17824137e-01
-2.46287614e-01 5.75838804e-01 -4.78863150e-01 1.14692998e+00
1.03197038e+00 7.37430975e-02 9.55756009e-02 -5.45611739e-01
2.90277660e-01 1.36422679e-01 -1.47392297e+00 1.68743098e+00
-5.21297216e-01 1.97274387e-01 3.07156265e-01 2.38809437e-02
7.20718026e-01 2.12900132e-01 3.92020881e-01 -1.60500810e-01
2.33277202e-01 1.18461929e-01 -2.04771325e-01 -5.99396825e-01
5.47071517e-01 1.04670204e-01 1.55102938e-01 3.79523933e-01
-2.95055747e-01 -7.06528962e-01 -2.96279192e-02 -1.08830079e-01
8.33957672e-01 6.00720048e-01 -7.90063366e-02 -1.62252724e-01
-3.21243823e-01 -2.11335912e-01 -4.25560139e-02 4.30711180e-01
-2.39550501e-01 9.04925644e-01 3.41547430e-01 -4.80807036e-01
-1.25487792e+00 -1.34080136e+00 -3.63399565e-01 9.35238123e-01
1.85017139e-01 -3.14832330e-02 -4.93302017e-01 -4.97439474e-01
7.26384640e-01 4.94116098e-01 -6.69624388e-01 1.38573140e-01
-4.90010917e-01 -6.34277701e-01 -1.04579434e-01 9.26142931e-01
2.98668109e-02 -7.98963964e-01 -1.00996745e+00 1.18646920e-02
-3.77553366e-02 -1.64719248e+00 -4.52597499e-01 1.13995485e-01
-9.70353842e-01 -1.18306565e+00 -7.98184097e-01 -4.50820088e-01
9.24316168e-01 5.16203761e-01 1.33745682e+00 -1.96358547e-01
-7.10009277e-01 7.12313116e-01 -3.93810749e-01 -6.65927470e-01
-7.72847906e-02 -2.00103566e-01 2.01328501e-01 -4.58472282e-01
2.49027863e-01 -1.80810526e-01 -5.96517861e-01 5.50098538e-01
-4.24460739e-01 -2.04583794e-01 -5.53755537e-02 2.64395386e-01
2.51409680e-01 -3.59499417e-02 -4.00497049e-01 -3.01922858e-01
2.16677636e-01 1.66826171e-03 -7.31944621e-01 1.76852658e-01
4.22837466e-01 -4.87986326e-01 -1.81730181e-01 -8.12260509e-01
-9.72025275e-01 1.26096770e-01 6.29354656e-01 -6.48433566e-01
-3.46602678e-01 -4.42915589e-01 -4.10854042e-01 -2.15952218e-01
3.52277815e-01 -5.40226340e-01 -1.45899534e-01 -5.48779488e-01
5.28793298e-02 8.49846661e-01 3.57875317e-01 -8.78440320e-01
5.13880730e-01 4.05243665e-01 -1.28815006e-02 -8.10844064e-01
-6.67999327e-01 -3.41378808e-01 -1.09736907e+00 -1.32395104e-01
8.79916191e-01 -1.07407212e+00 -1.11954367e+00 8.43141913e-01
-1.32625103e+00 -5.63549340e-01 -6.42758161e-02 6.70548141e-01
-4.09534156e-01 4.15173657e-02 -6.84353411e-01 -1.11928535e+00
1.29001617e-01 -1.34362280e+00 1.92519808e+00 -3.64233879e-03
-2.38526642e-01 -4.03101236e-01 -6.11348212e-01 6.54947579e-01
1.99142605e-01 5.85361898e-01 6.86505735e-01 1.98416431e-02
-7.55125761e-01 -4.46135044e-01 -3.03932279e-01 4.71378230e-02
3.99593323e-01 1.55018836e-01 -1.02128232e+00 -5.65831900e-01
-1.59538075e-01 -5.24896145e-01 2.90028185e-01 6.33022606e-01
1.10704327e+00 2.34118536e-01 -3.51998180e-01 4.32367533e-01
1.21781874e+00 1.46403238e-01 2.33121097e-01 8.21440369e-02
8.52696478e-01 8.45508099e-01 8.16368818e-01 5.44352889e-01
2.19110832e-01 1.02298713e+00 7.17143595e-01 2.03413412e-01
-6.87016249e-02 9.46011022e-03 6.96108267e-02 1.80804774e-01
-5.25314808e-01 -3.50007445e-01 -8.09957147e-01 7.27062002e-02
-1.26857519e+00 -4.06379312e-01 -1.51027456e-01 2.43971562e+00
2.88072854e-01 6.76581487e-02 4.25388783e-01 -1.38975471e-01
7.56433964e-01 -1.34321585e-01 -7.02382088e-01 5.74110895e-02
3.75913262e-01 -2.71468371e-01 6.31794989e-01 3.50777715e-01
-1.11706126e+00 6.47505224e-01 6.50388336e+00 3.51252705e-02
-7.43034482e-01 -3.13818753e-01 2.91061521e-01 -4.82004136e-01
3.20347548e-01 -5.51120937e-01 -8.48312140e-01 4.05829579e-01
-2.49465480e-02 6.82929397e-01 6.39937699e-01 8.89487326e-01
-2.55785674e-01 -4.75318879e-01 -1.53323197e+00 1.08164465e+00
2.76018292e-01 -1.81271598e-01 -4.30055618e-01 1.49267450e-01
4.62937951e-01 -1.93878278e-01 1.63225010e-01 7.42570311e-02
1.33119464e-01 -8.55197906e-01 1.05596411e+00 2.38945335e-01
6.89549446e-01 -2.31351152e-01 4.67707515e-01 2.57020682e-01
-1.04816508e+00 -1.75244749e-01 -4.10050869e-01 -1.71238318e-01
-4.69519198e-02 1.91621870e-01 -9.13872540e-01 -4.85099405e-02
9.90919173e-01 2.03460436e-02 -5.02177358e-01 9.11279559e-01
4.79124449e-02 -2.38607258e-01 -5.04879951e-01 5.76184019e-02
-3.40606123e-01 -1.32309496e-01 5.05158484e-01 9.47503328e-01
-9.69167203e-02 2.99874872e-01 2.81260580e-01 8.24647665e-01
1.32776752e-01 -3.99769753e-01 -4.51245785e-01 -2.11457536e-02
3.67946029e-01 9.68246877e-01 -1.06717384e+00 -7.30129033e-02
-1.80011004e-01 1.08296478e+00 3.44241634e-02 3.80887508e-01
-7.27987468e-01 -3.04250252e-02 5.94047666e-01 2.94318736e-01
5.56290269e-01 -5.61063409e-01 -3.16973776e-02 -1.32863259e+00
7.22064257e-01 -1.01813269e+00 -6.69615567e-02 -1.18519914e+00
-1.25769556e+00 4.87019777e-01 4.94566500e-01 -8.99322689e-01
1.11305758e-01 -1.05486608e+00 1.70312658e-01 7.39940047e-01
-7.37991929e-01 -1.45728970e+00 -9.60297406e-01 1.14940882e-01
6.71959698e-01 1.53907508e-01 9.28038239e-01 7.73887634e-02
-5.07156290e-02 1.89243227e-01 -2.04157904e-01 -8.21973681e-02
7.40985036e-01 -1.21604967e+00 5.22330046e-01 3.59209292e-02
-2.06829891e-01 6.15060449e-01 9.39176440e-01 -5.86697757e-01
-1.94811249e+00 -5.36904752e-01 2.36259937e-01 -1.42115986e+00
3.43506575e-01 -1.14772153e+00 -5.98681152e-01 9.41634893e-01
-4.13361609e-01 3.65603745e-01 3.06622475e-01 1.79383665e-01
-5.29641092e-01 6.75593540e-02 -1.56075621e+00 2.23429367e-01
1.22720313e+00 -5.10753930e-01 -5.74555159e-01 5.51178873e-01
5.18367231e-01 -1.28580463e+00 -9.12957013e-01 4.55084175e-01
1.24260795e+00 -8.34506869e-01 1.44033229e+00 -6.68689311e-01
2.18764886e-01 -1.47444785e-01 -5.81645966e-01 -1.05975795e+00
-1.74610883e-01 8.04350376e-02 -2.57424772e-01 9.60090041e-01
-2.39822924e-01 -1.65816307e-01 8.23229074e-01 1.31863844e+00
4.56065267e-01 -5.11930585e-01 -6.36218429e-01 -7.77153790e-01
-2.94607639e-01 -7.25697875e-02 6.71568334e-01 4.93644416e-01
-3.85991901e-01 -2.95336777e-03 2.80753486e-02 4.55879182e-01
7.17620909e-01 3.29843313e-01 1.14704871e+00 -1.19320464e+00
-3.32594603e-01 3.27363387e-02 -5.69692075e-01 -9.29750443e-01
-5.55503704e-02 -2.01955080e-01 7.75362253e-02 -1.21383762e+00
6.68364406e-01 -6.90031707e-01 2.81158656e-01 1.38488397e-01
-1.60778582e-01 1.62278250e-01 6.54672265e-01 1.59522742e-02
-3.30542147e-01 2.22112402e-01 1.46177697e+00 -5.64225949e-02
-3.62022310e-01 2.62890995e-01 3.47278826e-02 8.25141311e-01
3.06295812e-01 -2.86232084e-01 -1.15278944e-01 -8.51964593e-01
-1.72519505e-01 3.57327372e-01 7.04861939e-01 -7.66637921e-01
-3.76765192e-01 -7.12053031e-02 9.70412135e-01 -7.84057438e-01
8.37939143e-01 -1.30514979e+00 2.33003065e-01 4.48989630e-01
-1.21535882e-01 1.42731965e-01 4.92031276e-01 5.34686208e-01
6.77477658e-01 -2.35072836e-01 5.29690921e-01 -5.52786350e-01
-9.24067497e-02 1.81895018e-01 1.59676835e-01 -2.62494206e-01
1.15855396e+00 -3.27792108e-01 -1.31294370e-01 -8.21834803e-02
-8.41996670e-01 -2.55331490e-02 8.37517560e-01 7.42040396e-01
3.55569512e-01 -9.10718083e-01 -5.38069427e-01 1.95155740e-01
6.05275296e-02 4.30307865e-01 2.39689033e-02 4.26076412e-01
-5.95242798e-01 8.82204995e-02 -3.29092175e-01 -8.94427121e-01
-1.66571450e+00 7.11845219e-01 1.05942629e-01 1.59445673e-01
-4.81506258e-01 8.94763887e-01 1.97933972e-01 -6.96494281e-01
8.15351903e-01 -6.21591091e-01 3.56053710e-01 -1.47794634e-01
5.25937200e-01 7.68322229e-01 4.26050685e-02 -5.28253138e-01
-4.33199942e-01 7.93982744e-01 -6.33776635e-02 3.31804961e-01
1.42822731e+00 8.53578895e-02 -3.52229900e-03 4.07838345e-01
9.09193695e-01 -1.74081139e-02 -1.54725790e+00 1.28640443e-01
-4.96121585e-01 -1.13711548e+00 -3.07728410e-01 -8.52510035e-01
-8.66513789e-01 7.38346934e-01 8.05830717e-01 -2.05195501e-01
5.80729902e-01 2.03071490e-01 3.92945141e-01 3.91796082e-01
1.02917778e+00 -8.63016903e-01 3.95020247e-01 1.94792241e-01
1.30567002e+00 -1.31769645e+00 3.18911284e-01 -8.65493000e-01
-4.54690725e-01 1.07026792e+00 9.68778193e-01 -2.28811800e-02
3.44861060e-01 5.63090980e-01 -1.05437459e-02 -3.20498347e-01
-8.31505433e-02 3.12763393e-01 1.64672941e-01 7.58313298e-01
4.22807366e-01 3.93490076e-01 5.19576371e-01 3.21825072e-02
-9.58134830e-02 -1.45109922e-01 2.93689430e-01 1.16023850e+00
2.05693375e-02 -6.73054695e-01 -9.01418209e-01 4.28245097e-01
-2.74822146e-01 5.26903152e-01 -2.97298044e-01 8.88942361e-01
1.87006548e-01 7.00018227e-01 2.47304052e-01 -3.81252170e-02
7.60723829e-01 -3.57505620e-01 1.42856848e+00 -8.26864302e-01
-2.76867002e-01 3.80763710e-02 -4.15197760e-02 -5.53584635e-01
-3.80651325e-01 -8.65949035e-01 -7.50756681e-01 -1.10949688e-01
-6.71194673e-01 -5.67456007e-01 1.03280151e+00 6.45219922e-01
2.10387800e-02 3.74278098e-01 2.97796071e-01 -1.68499792e+00
-9.88545239e-01 -1.07459295e+00 -8.17094207e-01 5.62218010e-01
3.05606008e-01 -1.15701258e+00 -3.64943951e-01 1.77106019e-02] | [6.5428996086120605, -1.1248953342437744] |
08304d9a-65d0-4cd3-a85a-7e0c3151d36b | temporal-event-knowledge-acquisition-via | 1805.10956 | null | http://arxiv.org/abs/1805.10956v1 | http://arxiv.org/pdf/1805.10956v1.pdf | Temporal Event Knowledge Acquisition via Identifying Narratives | Inspired by the double temporality characteristic of narrative texts, we
propose a novel approach for acquiring rich temporal "before/after" event
knowledge across sentences in narrative stories. The double temporality states
that a narrative story often describes a sequence of events following the
chronological order and therefore, the temporal order of events matches with
their textual order. We explored narratology principles and built a weakly
supervised approach that identifies 287k narrative paragraphs from three large
text corpora. We then extracted rich temporal event knowledge from these
narrative paragraphs. Such event knowledge is shown useful to improve temporal
relation classification and outperform several recent neural network models on
the narrative cloze task. | ['Wenlin Yao', 'Ruihong Huang'] | 2018-05-28 | temporal-event-knowledge-acquisition-via-1 | https://aclanthology.org/P18-1050 | https://aclanthology.org/P18-1050.pdf | acl-2018-7 | ['temporal-relation-classification'] | ['natural-language-processing'] | [ 6.90268949e-02 -1.06692992e-01 -9.11599100e-01 -3.06336403e-01
-6.13362670e-01 -9.26717818e-01 1.50077188e+00 5.46313524e-01
-4.03417826e-01 9.83562708e-01 1.37918925e+00 -1.73823014e-01
-4.56101716e-01 -8.66401434e-01 -6.97716951e-01 -1.73858345e-01
-3.77652138e-01 2.42078304e-01 2.91965842e-01 -3.68689358e-01
3.48476976e-01 1.60631344e-01 -9.64215875e-01 1.16420496e+00
2.12975621e-01 5.70090711e-01 3.45281400e-02 5.36501348e-01
-2.54462153e-01 2.06671000e+00 -6.50653422e-01 -6.30647779e-01
-4.51327533e-01 -8.23077738e-01 -1.33258295e+00 -3.30017000e-01
-1.35975122e-01 -1.82266533e-01 -1.13613200e+00 2.62245476e-01
1.98954511e-02 5.18177330e-01 9.79798555e-01 -8.99897754e-01
-7.04264641e-01 1.68774676e+00 -2.64009953e-01 1.02124918e+00
9.02577937e-01 -3.41620684e-01 1.39730525e+00 -6.38667285e-01
1.34980094e+00 7.49405146e-01 9.93605018e-01 2.54200906e-01
-8.96879911e-01 -2.68185943e-01 1.96874544e-01 7.84148574e-01
-1.18627083e+00 -3.85879695e-01 1.10092902e+00 -5.66209674e-01
1.56255805e+00 1.60537660e-01 8.59661400e-01 1.92262566e+00
4.20750856e-01 8.64775181e-01 6.56084061e-01 -2.84550965e-01
-4.29600291e-02 -1.98362991e-01 2.77141243e-01 2.48241007e-01
-5.25161326e-01 1.29259173e-02 -1.33947480e+00 3.88651788e-02
4.46529359e-01 -3.99065077e-01 -5.43693714e-02 5.69680631e-01
-1.60750842e+00 7.82804012e-01 1.82562664e-01 7.65342653e-01
-2.95742422e-01 3.28014046e-01 1.16285813e+00 2.02894047e-01
4.88196313e-01 5.43555796e-01 -3.54532897e-02 -5.53657949e-01
-1.06240726e+00 5.48561156e-01 9.42426205e-01 7.55049527e-01
-6.38373420e-02 -2.06506118e-01 -2.67901331e-01 7.15894282e-01
-2.45292336e-01 -2.02796757e-01 6.37469053e-01 -6.82204247e-01
9.94310141e-01 2.59303480e-01 -5.53109720e-02 -1.31923068e+00
-7.14570284e-01 -1.16324924e-01 -6.68575764e-01 -7.96973169e-01
3.49770308e-01 1.70223147e-01 -1.63835034e-01 1.65117884e+00
-2.12954611e-01 1.96064651e-01 3.64116341e-01 4.99229610e-01
1.30335915e+00 1.13928616e+00 2.50728339e-01 -7.30251014e-01
1.51230049e+00 -5.94882369e-01 -1.25142443e+00 -2.14902520e-01
6.68213725e-01 -4.29958552e-01 1.11942506e+00 1.07331887e-01
-1.24369431e+00 2.79875994e-02 -1.34286022e+00 -2.62921125e-01
-4.55849558e-01 -1.22511894e-01 7.94143200e-01 -4.72641364e-02
-2.17422843e-01 9.02268469e-01 -6.75354004e-01 -3.06898952e-01
5.55145204e-01 -6.46117985e-01 -3.04227680e-01 3.66259784e-01
-1.71393466e+00 1.21901894e+00 1.16068780e+00 -2.35589445e-01
-8.79854202e-01 -1.07998538e+00 -7.60836720e-01 -1.91929609e-01
4.37328935e-01 -2.05260396e-01 1.51109672e+00 -3.12294900e-01
-1.11654246e+00 1.18760669e+00 -2.30657831e-01 -7.74114966e-01
4.42475885e-01 -2.69259810e-01 -8.24021697e-01 4.27464217e-01
1.92682028e-01 -1.93496436e-01 1.74752146e-01 -7.55233765e-01
-5.42273164e-01 2.34303370e-01 7.10591152e-02 1.96208328e-01
-4.66322660e-01 6.51201129e-01 -1.81027930e-02 -9.00731206e-01
6.98643252e-02 -3.34479362e-01 2.07414702e-01 -7.51927435e-01
-3.77701461e-01 -5.76466858e-01 4.58596498e-01 -7.37032533e-01
1.95407975e+00 -1.83038282e+00 2.53143571e-02 -3.12409997e-01
3.88223901e-02 -7.60785282e-01 4.03197825e-01 1.08128643e+00
-3.17044824e-01 1.54091492e-01 -1.20663114e-01 8.31833333e-02
1.58373982e-01 2.16011792e-01 -9.66297686e-01 2.74792522e-01
2.57533997e-01 1.13970256e+00 -1.25379789e+00 -7.27982640e-01
-2.69366086e-01 1.27372116e-01 -8.98356587e-02 6.01200275e-02
-4.68883902e-01 1.53396547e-01 -2.09512874e-01 2.12973282e-01
-3.42131197e-01 -4.31915790e-01 3.72615546e-01 -1.74888164e-01
-4.14603651e-01 1.36346877e+00 -6.35618448e-01 1.61410367e+00
-2.72126138e-01 1.35655177e+00 -1.27471399e+00 -7.81641245e-01
6.44200742e-01 9.18697178e-01 4.23879415e-01 -8.37861598e-01
1.83124006e-01 -2.01865718e-01 -3.26221198e-01 -9.22345042e-01
8.36115062e-01 -5.44876814e-01 -7.56462634e-01 6.99777663e-01
7.75391012e-02 -1.58509210e-01 7.48200536e-01 4.67570066e-01
1.24774158e+00 3.18486035e-01 9.46445286e-01 1.77918526e-03
2.03948662e-01 6.45711601e-01 3.85544747e-01 5.66803873e-01
6.91184103e-02 6.19894862e-01 1.03931379e+00 -7.79767752e-01
-1.45767665e+00 -1.31862593e+00 -3.12130183e-01 1.02917659e+00
-1.81885481e-01 -1.01511955e+00 -1.32397026e-01 -3.74662519e-01
-5.16393721e-01 1.06290126e+00 -1.08547688e+00 5.50921857e-02
-1.16952395e+00 -7.64466524e-01 1.13088310e+00 1.00919807e+00
2.53093749e-01 -1.39541245e+00 -5.45369446e-01 5.70006013e-01
-8.05926323e-01 -1.46170235e+00 -2.82508314e-01 3.76950622e-01
-3.06122720e-01 -9.95759010e-01 -4.65441085e-02 -8.22865903e-01
-1.75025806e-01 -3.36148292e-01 1.30087972e+00 -5.49955666e-01
1.21438757e-01 -2.01172352e-01 -7.11010814e-01 -2.63292462e-01
-6.27215624e-01 2.14184344e-01 -1.03547618e-01 -5.32563806e-01
2.94757664e-01 -7.92298257e-01 4.15070504e-02 -2.49922171e-01
-7.64075994e-01 3.80813181e-01 -2.65579492e-01 7.44044244e-01
2.09150955e-01 3.34496945e-01 5.37741184e-01 -6.84049606e-01
6.20793402e-01 -1.00592053e+00 1.31884322e-01 2.68764049e-02
-5.48538752e-02 -1.53734520e-01 8.43829751e-01 -9.94002938e-01
-1.33763230e+00 -6.16276681e-01 -1.40784262e-02 2.76611149e-01
1.65059492e-01 1.14633751e+00 1.25997588e-01 9.79308248e-01
9.17988181e-01 3.39171529e-01 -8.78337979e-01 -4.05649729e-02
3.75306249e-01 6.75763488e-02 1.15185487e+00 -6.55348778e-01
7.73076594e-01 6.46649122e-01 -1.05902113e-01 -6.52834058e-01
-1.31897545e+00 -2.67037153e-01 -7.15941727e-01 -6.99336588e-01
9.30433869e-01 -9.34105039e-01 -6.82784557e-01 2.01867800e-02
-1.53855479e+00 -3.13511103e-01 -4.26283985e-01 6.80532038e-01
-8.49395633e-01 -4.49118279e-02 -1.08196354e+00 -4.50231045e-01
8.00532103e-02 -4.76109572e-02 2.09229410e-01 9.64370072e-02
-1.29896414e+00 -1.28008556e+00 2.94794530e-01 -4.52561863e-02
-3.16302538e-01 9.28222418e-01 1.07792461e+00 -6.91351414e-01
-2.42729150e-02 -1.23787574e-01 1.11569762e-01 -6.61186874e-01
7.20304847e-02 1.25189936e-02 -7.41176069e-01 4.96315122e-01
3.93210351e-02 -3.25056136e-01 7.43297279e-01 1.32802680e-01
4.36485410e-01 -8.00096869e-01 -3.81429851e-01 3.28463942e-01
1.22093797e+00 4.79802608e-01 4.87959653e-01 9.97848153e-01
5.14181972e-01 6.27290726e-01 3.32935542e-01 6.86812520e-01
5.84456325e-01 4.35292900e-01 -2.71792918e-01 4.99697775e-01
-2.11959392e-01 -7.13598013e-01 5.23340166e-01 8.97908509e-01
-1.59363195e-01 -3.82189721e-01 -1.23992968e+00 1.27593005e+00
-1.91726875e+00 -1.98902929e+00 -4.89075899e-01 1.21866071e+00
1.55445826e+00 6.17281675e-01 1.16794690e-01 4.47708428e-01
3.83615196e-01 9.14179742e-01 5.23760729e-02 -5.11738598e-01
-7.09805131e-01 -8.65671188e-02 1.16574809e-01 1.70835406e-01
-1.17867804e+00 9.97461736e-01 7.06813860e+00 8.94475222e-01
-5.58017612e-01 3.86063337e-01 1.01856187e-01 -5.26987731e-01
-3.41020346e-01 9.88496915e-02 -6.10504508e-01 3.55381817e-01
1.17230034e+00 -9.38924491e-01 4.71358411e-02 5.75894237e-01
4.21524554e-01 -1.83549061e-01 -1.47067475e+00 4.95407462e-01
1.94290742e-01 -2.24748707e+00 7.15700388e-02 -5.45044363e-01
8.53711724e-01 -5.05853951e-01 -2.60584950e-01 8.06880742e-02
3.91544223e-01 -1.05550957e+00 1.22269154e+00 5.27234435e-01
4.82331157e-01 -8.39659870e-01 4.71517593e-01 2.33002245e-01
-1.42083001e+00 9.28459615e-02 2.27294281e-01 -5.57022333e-01
7.29746342e-01 1.89784676e-01 -8.99776042e-01 6.25994205e-01
7.62219846e-01 1.18816209e+00 -3.32235724e-01 4.70566273e-01
-6.41014516e-01 9.06503141e-01 -9.38206464e-02 -3.39119434e-01
4.95882183e-01 1.97839603e-01 8.16758633e-01 1.78122568e+00
-9.35828164e-02 5.83699524e-01 -3.53373080e-01 7.70825505e-01
-1.38433740e-01 -5.07008284e-03 -7.69188702e-01 -4.97586519e-01
6.19127870e-01 6.78128481e-01 -1.08904505e+00 -3.24927032e-01
-2.97896057e-01 7.35448599e-01 4.12202775e-01 1.24780171e-01
-1.10554266e+00 -1.69411246e-02 3.02608043e-01 1.06675357e-01
2.77041793e-01 -3.71296257e-01 -7.00591505e-01 -9.50795889e-01
3.81979913e-01 -2.04821363e-01 7.78545201e-01 -9.63025331e-01
-1.39171755e+00 7.36607730e-01 4.82640207e-01 -1.18497336e+00
-4.90991354e-01 1.20349089e-02 -9.68717575e-01 2.68009543e-01
-1.10072410e+00 -1.20193195e+00 1.34827778e-01 4.88373995e-01
7.06883013e-01 -1.20164074e-01 6.81157529e-01 8.20840523e-02
-3.53321582e-01 3.20061117e-01 -1.14623368e-01 5.63999176e-01
5.90691626e-01 -1.11272442e+00 4.33818579e-01 1.01025009e+00
3.14580590e-01 4.95694250e-01 1.05345416e+00 -9.04718459e-01
-8.28459322e-01 -8.25331450e-01 1.72006440e+00 -7.58164465e-01
1.61525261e+00 -2.02170029e-01 -9.87122178e-01 9.99488533e-01
7.10998535e-01 -7.01212645e-01 9.24735963e-01 3.50413769e-01
-7.72312403e-01 2.70570010e-01 -3.48903269e-01 9.44824696e-01
1.31062484e+00 -1.02202046e+00 -1.55163670e+00 4.88363177e-01
8.77436936e-01 -6.74511313e-01 -1.01075125e+00 1.43399984e-01
5.01863003e-01 -2.55053312e-01 9.30691242e-01 -1.05946505e+00
1.57068110e+00 -1.18687019e-01 -8.29003081e-02 -1.01109660e+00
-3.14083546e-01 -8.82106364e-01 -4.89596695e-01 1.69890690e+00
5.92498779e-01 2.29516163e-01 4.97245431e-01 1.38654307e-01
-2.47850776e-01 -3.30656588e-01 -1.00015032e+00 -1.00750232e+00
3.45013708e-01 -8.53055239e-01 3.21633101e-01 1.58752513e+00
9.70885158e-01 5.64290822e-01 -3.75000596e-01 -1.68364033e-01
8.09030905e-02 -6.11741059e-02 -7.99555555e-02 -7.98579752e-01
9.62724537e-02 -8.09798717e-01 -3.45896594e-02 -4.95620310e-01
4.38870400e-01 -1.16585028e+00 -4.47207168e-02 -1.52651215e+00
5.03878117e-01 2.45625585e-01 6.75170794e-02 4.01044756e-01
5.17788753e-02 1.59638643e-01 -1.48452982e-01 1.63846105e-01
-6.34822428e-01 4.17430043e-01 8.30986023e-01 -1.82397306e-01
-4.06662852e-01 -4.39309537e-01 -3.09970766e-01 8.94333839e-01
5.79493463e-01 -6.70689166e-01 -3.64892483e-01 -5.55837527e-02
1.08852553e+00 3.98705065e-01 4.79248643e-01 -7.27577329e-01
6.17011726e-01 -5.92720568e-01 3.75063509e-01 -1.08176887e+00
1.68485478e-01 -3.84723425e-01 3.91308665e-01 7.33395964e-02
-9.57508087e-01 2.53262609e-01 3.04062337e-01 3.62790555e-01
-4.16049957e-01 -1.56167477e-01 3.84471208e-01 -1.19765691e-01
-9.64981675e-01 -2.64610350e-01 -9.81040776e-01 4.10513520e-01
1.04951823e+00 -2.70176083e-01 -6.46618128e-01 -2.79354304e-01
-8.29094350e-01 -6.49609789e-02 -8.95264968e-02 6.12680793e-01
7.23286331e-01 -1.75272894e+00 -1.10668492e+00 -7.56130934e-01
2.84416258e-01 -3.81668329e-01 2.28117779e-01 7.65549839e-01
-5.10566473e-01 2.74761677e-01 -1.57224551e-01 -1.32170096e-01
-1.07525468e+00 6.71392262e-01 -1.09764216e-02 -4.86011088e-01
-1.27289271e+00 7.81332016e-01 -3.77203763e-01 4.72250730e-01
2.70593259e-02 -1.17583692e-01 -7.64491737e-01 8.80725503e-01
8.76015365e-01 2.05207378e-01 -2.30714053e-01 -5.61335504e-01
-4.17609274e-01 1.69628754e-01 -1.65350109e-01 -6.61252141e-01
1.68789625e+00 -1.83031365e-01 -1.94779828e-01 1.38279474e+00
1.17974508e+00 -4.10475582e-02 -9.10811603e-01 -5.04537284e-01
8.33901525e-01 6.47052974e-02 -2.65491277e-01 -7.34853387e-01
-7.60619715e-02 2.65612453e-01 -7.45428681e-01 5.47859430e-01
9.23100770e-01 4.52139735e-01 8.66355598e-01 3.26898098e-01
-4.62696254e-02 -1.34912181e+00 3.90263706e-01 1.15201724e+00
1.20154476e+00 -7.50733793e-01 3.08816344e-01 -2.76499093e-01
-1.11352861e+00 1.35286975e+00 2.65903622e-01 -1.75195083e-01
2.82671779e-01 6.29675746e-01 -2.81913161e-01 -4.59418893e-01
-1.16377223e+00 -1.34078696e-01 4.15005475e-01 3.06017935e-01
6.79889083e-01 -1.55776232e-01 -7.54718900e-01 1.11272502e+00
-9.16609645e-01 -3.82099301e-01 7.61225522e-01 7.86732495e-01
9.58749205e-02 -4.78912532e-01 -2.48076946e-01 4.38410379e-02
-4.95334536e-01 -2.19717860e-01 -5.94461620e-01 1.08872032e+00
4.08212654e-02 9.06310916e-01 3.13601345e-01 -3.38374913e-01
1.54542416e-01 3.49404573e-01 5.79397500e-01 -3.22999716e-01
-8.76569033e-01 -1.97544754e-01 8.71201456e-01 -3.72196883e-01
-6.80887580e-01 -1.13328731e+00 -1.49386907e+00 -5.82069516e-01
4.51314360e-01 1.78017631e-01 1.48271427e-01 1.35433865e+00
-4.99393493e-01 1.04581034e+00 5.32097399e-01 -3.23532343e-01
4.43483829e-01 -9.82892096e-01 -2.50092685e-01 5.06578445e-01
2.52328962e-01 -4.86686110e-01 -1.43138140e-01 7.85773277e-01] | [10.851222038269043, 8.91960334777832] |
45470468-6a28-4427-a791-076c112a4996 | self-supervised-shadow-removal | 2010.11619 | null | https://arxiv.org/abs/2010.11619v1 | https://arxiv.org/pdf/2010.11619v1.pdf | Self-Supervised Shadow Removal | Shadow removal is an important computer vision task aiming at the detection and successful removal of the shadow produced by an occluded light source and a photo-realistic restoration of the image contents. Decades of re-search produced a multitude of hand-crafted restoration techniques and, more recently, learned solutions from shad-owed and shadow-free training image pairs. In this work,we propose an unsupervised single image shadow removal solution via self-supervised learning by using a conditioned mask. In contrast to existing literature, we do not require paired shadowed and shadow-free images, instead we rely on self-supervision and jointly learn deep models to remove and add shadows to images. We validate our approach on the recently introduced ISTD and USR datasets. We largely improve quantitatively and qualitatively over the compared methods and set a new state-of-the-art performance in single image shadow removal. | ['Radu Timofte', 'Luc van Gool', 'Andres Romero', 'Florin-Alexandru Vasluianu'] | 2020-10-22 | null | null | null | null | ['shadow-removal', 'image-shadow-removal'] | ['computer-vision', 'computer-vision'] | [ 9.67347383e-01 7.28518888e-02 3.99736434e-01 -3.51149350e-01
-4.38829720e-01 -2.81728894e-01 6.34768665e-01 -4.68777418e-01
-4.45642442e-01 1.00425637e+00 1.72609147e-02 -2.64144927e-01
1.49372727e-01 -2.02458784e-01 -7.47134209e-01 -9.05562758e-01
3.73359293e-01 3.96279663e-01 5.74286878e-01 -1.19696788e-01
2.36141041e-01 6.55652046e-01 -1.82774830e+00 2.65188795e-02
1.10634673e+00 7.33725965e-01 8.10634673e-01 6.51517510e-01
2.49694183e-01 7.11230874e-01 -5.61111510e-01 -1.17877237e-01
4.69985634e-01 -4.26644176e-01 -4.23866779e-01 6.21130884e-01
9.13400948e-01 -6.34765685e-01 -5.84429145e-01 7.14595258e-01
3.73208284e-01 1.05287395e-01 5.45810759e-01 -1.07986403e+00
-6.11247003e-01 -2.78260976e-01 -7.42660463e-01 1.46396875e-01
3.62296939e-01 1.69108003e-01 5.07061839e-01 -9.70536649e-01
8.21812272e-01 1.05547285e+00 6.01053953e-01 3.18927497e-01
-1.46044493e+00 -4.81543124e-01 3.15468535e-02 2.40484700e-01
-9.47484851e-01 -6.27103686e-01 8.19163501e-01 -5.56047447e-02
6.32919490e-01 2.94720650e-01 4.40482020e-01 1.07024550e+00
3.12686265e-01 8.07859898e-01 1.98138428e+00 -7.55282104e-01
5.75025678e-02 1.87016025e-01 -8.50715563e-02 8.61168921e-01
2.60192752e-01 5.04708290e-01 -8.10429692e-01 3.21346894e-02
5.27772188e-01 1.15508229e-01 -7.58269906e-01 -4.67360258e-01
-8.74108791e-01 3.35435390e-01 4.45701182e-01 -3.50198075e-02
-1.04924411e-01 1.01659242e-02 -2.50696063e-01 -2.45556831e-02
6.64761662e-01 9.68247950e-02 -4.42234248e-01 5.95526814e-01
-1.23748016e+00 8.95807445e-02 7.71644592e-01 6.31695628e-01
1.05590451e+00 2.30725646e-01 -3.92532870e-02 5.97416222e-01
1.72434375e-01 1.15077722e+00 1.91574901e-01 -1.05404913e+00
-1.01682283e-01 1.92160666e-01 5.22247255e-01 -8.34311426e-01
-3.13081115e-01 -4.87781942e-01 -6.91999197e-01 9.43800509e-01
3.96367043e-01 1.50912732e-01 -1.47248232e+00 1.20040071e+00
4.08367753e-01 4.14014846e-01 1.42636538e-01 9.25374508e-01
7.68231392e-01 2.91756898e-01 -4.92573559e-01 -5.17573357e-01
9.74868774e-01 -1.18690002e+00 -8.55373025e-01 -6.77688420e-01
-3.18321735e-01 -1.09018517e+00 1.03799570e+00 6.13859594e-01
-9.07783151e-01 -3.17242622e-01 -1.14738297e+00 -1.82172567e-01
-2.34695300e-01 8.05473998e-02 5.00567377e-01 5.23703277e-01
-1.05365038e+00 8.38194788e-01 -5.05139291e-01 -2.49406129e-01
5.89569271e-01 1.22650139e-01 -3.83325309e-01 -3.98524404e-01
-5.17606795e-01 1.11720145e+00 -6.80793673e-02 1.96603417e-01
-1.19208097e+00 -7.08826721e-01 -6.36146307e-01 -2.64023155e-01
7.15871871e-01 -6.04308128e-01 1.03072190e+00 -1.10480857e+00
-1.51014829e+00 1.16500032e+00 -5.03649235e-01 -6.24561489e-01
6.26451254e-01 -6.19619608e-01 -1.00421734e-01 1.48538485e-01
-4.44461294e-02 1.35411501e-01 1.42264771e+00 -2.22299409e+00
-4.36970860e-01 -3.13773364e-01 -1.66968077e-01 4.34983432e-01
1.18655123e-01 -5.75087555e-02 -4.94988084e-01 -5.73179603e-01
1.65121377e-01 -1.05359638e+00 -6.79392368e-02 1.84247315e-01
-5.65520883e-01 5.83948255e-01 1.18457472e+00 -9.42243040e-01
5.26933908e-01 -1.81790566e+00 1.02007464e-01 -1.04853123e-01
3.83155495e-01 4.17913526e-01 -6.31938502e-02 2.74965495e-01
7.87189007e-02 -5.27673900e-01 -8.11971545e-01 -1.02030337e+00
-1.52384728e-01 5.72454751e-01 -7.61364400e-01 9.14488137e-01
-2.10832298e-01 7.66365230e-01 -8.33110034e-01 -5.30122399e-01
6.60941899e-01 7.37751245e-01 9.60438922e-02 5.82301855e-01
-1.84839204e-01 4.94144440e-01 1.87275544e-01 7.79365301e-01
1.00036657e+00 5.50038554e-02 1.03410646e-01 -1.65407449e-01
-1.63362890e-01 -1.43584669e-01 -9.80289221e-01 1.47554219e+00
-5.22262692e-01 1.01479149e+00 4.03156757e-01 -4.85949159e-01
7.62878835e-01 -1.36143729e-01 3.12351227e-01 -9.61330354e-01
8.94336477e-02 3.15891802e-01 -4.62599486e-01 -3.52129400e-01
3.86819512e-01 -3.11713278e-01 5.77333629e-01 4.98151988e-01
-6.62826002e-02 -4.40638900e-01 -1.49885744e-01 2.31765836e-01
1.08767962e+00 4.78189856e-01 2.27372408e-01 -2.98317403e-01
4.57047105e-01 -3.00012380e-01 4.07293648e-01 8.22594762e-01
-1.03762157e-01 1.16070962e+00 -1.20136313e-01 -2.84600586e-01
-7.06559956e-01 -1.23195338e+00 -2.43252814e-01 1.00559866e+00
4.50121522e-01 1.19838722e-01 -6.61534190e-01 -7.04250276e-01
1.99427798e-01 8.48870873e-01 -6.70912147e-01 2.50372738e-01
-6.10196829e-01 -7.82138050e-01 9.39233676e-02 1.10907905e-01
5.41858017e-01 -1.23178375e+00 -8.71233284e-01 -1.44976571e-01
-1.59951314e-01 -1.45388341e+00 -3.25132787e-01 5.30052602e-01
-5.64770699e-01 -1.26666057e+00 -7.80911922e-01 -6.86138511e-01
7.97033846e-01 1.00070596e+00 1.34148455e+00 4.45089370e-01
-8.38796139e-01 4.77669865e-01 -1.93161279e-01 -5.78774154e-01
-2.25127086e-01 -6.84028804e-01 2.78286301e-02 3.40854168e-01
-4.63371545e-01 -7.87679374e-01 -8.56686592e-01 3.22471738e-01
-1.03350294e+00 3.61316085e-01 8.86153638e-01 8.72883260e-01
5.04551172e-01 -1.54391024e-02 -1.22723751e-01 -1.13212109e+00
1.88392833e-01 1.77333191e-01 -8.16435397e-01 2.77580798e-01
-9.78350818e-01 2.73213554e-02 4.44872707e-01 -4.46030945e-02
-1.76476979e+00 4.86112565e-01 3.65763783e-01 -6.74439907e-01
-3.23439687e-01 -4.21047986e-01 -1.51679292e-01 -6.09111845e-01
6.56689882e-01 4.73698765e-01 -1.99201122e-01 -4.69211191e-01
5.00656247e-01 3.59429121e-01 9.52666223e-01 -2.56141543e-01
1.37040114e+00 1.31494391e+00 1.76726684e-01 -1.03225493e+00
-1.13898635e+00 -4.45589870e-01 -9.97480690e-01 -4.87497926e-01
7.21848547e-01 -5.14594376e-01 -4.90129441e-01 7.55916059e-01
-1.11316669e+00 -8.83253455e-01 -2.29605526e-01 -1.60587251e-01
-5.54944456e-01 8.09414983e-01 -1.15612984e-01 -1.09658003e+00
-2.94477731e-01 -7.64760673e-01 1.47943401e+00 3.95144105e-01
3.89747024e-01 -8.40352297e-01 1.73831046e-01 6.34849012e-01
3.58120590e-01 3.15300822e-01 3.19767565e-01 2.38340244e-01
-1.03409564e+00 1.21353477e-01 -6.21280730e-01 6.99495614e-01
2.63525516e-01 -3.43682051e-01 -1.50227523e+00 -3.05093437e-01
9.94633585e-02 -2.21609712e-01 1.37305427e+00 3.60201150e-01
8.17464173e-01 -8.35204646e-02 -4.84824032e-01 8.44917953e-01
1.59292412e+00 -1.13449581e-01 7.91942835e-01 2.63717145e-01
7.38054991e-01 6.79988086e-01 6.79953277e-01 2.40743488e-01
2.53529754e-02 6.10910177e-01 6.12240493e-01 -7.60457039e-01
-9.12307978e-01 1.07224345e-01 7.55899996e-02 4.14491352e-03
-3.28719795e-01 -4.67277944e-01 -6.97289050e-01 3.71073753e-01
-1.83860290e+00 -7.03276396e-01 -3.81686479e-01 2.23785996e+00
7.46642888e-01 -8.16460885e-03 -5.88367462e-01 1.23825684e-01
2.86768436e-01 4.02006865e-01 -6.09466910e-01 2.60644585e-01
-6.31815314e-01 3.89825404e-01 8.72402728e-01 1.06446838e+00
-1.05402970e+00 1.24705780e+00 6.65360117e+00 6.25862658e-01
-8.18480432e-01 2.33516961e-01 3.76716793e-01 -1.34225013e-02
-2.17716157e-01 1.60710320e-01 -4.87286508e-01 2.12004647e-01
3.18912923e-01 3.20472598e-01 6.45812750e-01 3.73621792e-01
1.67926088e-01 -9.02694345e-01 -7.58801460e-01 1.09171975e+00
7.39286482e-01 -1.13822317e+00 -4.76290047e-01 1.33215427e-01
1.03620458e+00 6.73780739e-02 2.97811199e-02 -2.69394994e-01
4.09008712e-01 -9.76977944e-01 6.19914889e-01 8.19246650e-01
6.12072051e-01 -2.16178104e-01 5.46403825e-01 9.80478078e-02
-8.68289948e-01 -2.48836614e-02 -1.74981117e-01 -2.52817534e-02
2.93090343e-01 8.93797040e-01 -8.29190850e-01 5.53199768e-01
8.41470361e-01 4.98889655e-01 -7.10174084e-01 9.12206769e-01
-6.60276651e-01 3.34539741e-01 -1.64377555e-01 4.91605759e-01
-2.99999744e-01 -4.06329304e-01 6.39110267e-01 1.24669147e+00
-3.34326625e-01 1.64345607e-01 1.93944886e-01 5.91520190e-01
5.85558824e-02 -3.74609619e-01 -4.69461054e-01 5.59090018e-01
-1.10709235e-01 1.39773929e+00 -1.03944767e+00 -3.20869863e-01
-1.99556649e-01 1.74699473e+00 1.55710369e-01 7.35287786e-01
-7.52649605e-01 -5.67959882e-02 4.81067926e-01 2.67889529e-01
2.95724690e-01 -2.73404509e-01 -3.60367894e-01 -1.12718475e+00
2.71711145e-02 -5.98893464e-01 -1.41919002e-01 -1.30796206e+00
-1.13338566e+00 5.33339322e-01 -8.35978016e-02 -8.87892127e-01
1.24712519e-01 -5.87295413e-01 -5.76229334e-01 8.27707410e-01
-2.27292347e+00 -1.30967271e+00 -8.99878442e-01 6.62063837e-01
5.83566248e-01 3.04782204e-02 6.99757218e-01 9.20088440e-02
-2.10155874e-01 -3.03699076e-02 4.03898209e-01 -3.72612834e-01
1.09118938e+00 -1.41409433e+00 1.63419291e-01 1.22176194e+00
2.25242168e-01 1.57895729e-01 1.28497100e+00 -8.56757581e-01
-1.40371454e+00 -7.59550571e-01 5.19435942e-01 -6.58362925e-01
3.74766618e-01 -5.44919550e-01 -9.47326005e-01 4.50365394e-01
4.97729987e-01 2.57432461e-01 1.34851187e-01 -2.99984187e-01
-3.43015045e-01 -4.24920022e-01 -1.01039314e+00 5.20122051e-01
1.22589755e+00 -4.61402893e-01 -6.49762034e-01 7.34433234e-01
4.77224648e-01 -5.78266561e-01 3.61427404e-02 4.27100867e-01
5.87184966e-01 -1.61738825e+00 1.27354145e+00 -6.41662776e-02
2.48131394e-01 -4.19611692e-01 -2.16362000e-01 -1.05603313e+00
1.12842254e-01 -7.21944332e-01 -2.21267238e-01 1.04728842e+00
-7.15809613e-02 -5.86179197e-01 8.58679473e-01 3.82862180e-01
-3.97318572e-01 -6.14284158e-01 -7.74894357e-01 -7.24843025e-01
-6.02058053e-01 -1.17076769e-01 -1.14963129e-01 3.66629124e-01
-8.83923173e-01 1.73308909e-01 -8.12046826e-01 4.07172233e-01
1.44114232e+00 7.13464499e-01 1.04012978e+00 -1.31478751e+00
-4.25595760e-01 -6.78185970e-02 1.49420992e-01 -8.13560128e-01
3.31974238e-01 -4.35401529e-01 7.53630638e-01 -1.77612031e+00
3.87879938e-01 -1.61148340e-01 -6.51919991e-02 6.06913626e-01
-1.67799249e-01 7.62545347e-01 1.96300000e-01 3.70243490e-01
-5.88659942e-01 7.04750776e-01 1.27999234e+00 2.80212779e-02
-1.90263614e-01 6.74798293e-03 -3.80649090e-01 8.81292403e-01
4.44356084e-01 -4.87736076e-01 -2.74965018e-01 -2.72721052e-01
-2.16885582e-01 -2.21549168e-01 8.57264698e-01 -8.89452636e-01
8.88146162e-02 -3.09726387e-01 6.37836099e-01 -7.01649189e-01
8.62038732e-01 -8.94093156e-01 -1.85162202e-01 5.42442739e-01
2.52772063e-01 -6.66333795e-01 9.71824750e-02 9.79290426e-01
2.93452978e-01 -3.55909392e-03 9.76915121e-01 -2.49914005e-01
-6.39184892e-01 -5.28680943e-02 -2.41620421e-01 -2.36956239e-01
8.48987818e-01 -2.13313714e-01 -4.52871025e-01 -3.60898763e-01
-4.34304565e-01 -1.58563063e-01 7.17133820e-01 2.36250073e-01
9.79309440e-01 -5.97022355e-01 -6.14183128e-01 3.70717824e-01
-1.63075432e-01 -1.26312613e-01 2.98356026e-01 7.24629402e-01
-5.00601053e-01 2.66275525e-01 -2.38938689e-01 -4.44290876e-01
-1.69184768e+00 3.74965668e-01 4.05671686e-01 -1.88888498e-02
-9.90615606e-01 7.22398996e-01 7.09574938e-01 -2.09137976e-01
4.36373830e-01 -1.45318005e-02 2.48785824e-01 -3.27623188e-01
4.33163017e-01 3.66308421e-01 2.32196346e-01 -6.22402430e-01
-2.45235845e-01 4.96425241e-01 1.95718810e-01 -1.57201126e-01
1.48038936e+00 -3.96863848e-01 -1.88919514e-01 3.33076179e-01
7.65248418e-01 2.71370322e-01 -1.85619879e+00 -4.24848348e-01
-4.00306106e-01 -1.03159893e+00 3.79566520e-01 -1.11729300e+00
-1.13652837e+00 5.88863194e-01 7.32714832e-01 -1.31480634e-01
1.37834299e+00 -4.35115695e-02 7.60661662e-01 3.62083465e-01
2.49031931e-01 -9.48822856e-01 4.61994708e-01 3.47311199e-01
1.13274312e+00 -1.51963532e+00 5.77166498e-01 -5.83185732e-01
-4.84252632e-01 8.82409692e-01 4.14712727e-01 -3.58453125e-01
5.60528636e-01 5.89857578e-01 2.72397101e-01 -8.36420432e-02
-2.47580364e-01 -6.45192444e-01 4.58905667e-01 1.00420845e+00
-1.00583501e-01 -2.30588526e-01 1.41917821e-02 8.49971697e-02
5.18215112e-02 -2.03255296e-01 7.18384802e-01 1.01271260e+00
-5.94211936e-01 -9.79324937e-01 -7.95177639e-01 2.84276783e-01
1.72060698e-01 -2.91906565e-01 -7.75699198e-01 7.13184357e-01
1.19256631e-01 1.01232100e+00 -4.14965302e-01 -1.20221220e-01
1.31914139e-01 -9.76439044e-02 8.01608205e-01 -5.59726954e-01
-1.32207826e-01 2.14150742e-01 -1.21609919e-01 -7.53353179e-01
-5.29455066e-01 -6.72695100e-01 -1.04039931e+00 3.31670456e-02
-4.75872815e-01 -5.11772513e-01 6.98163927e-01 1.15655077e+00
1.11069657e-01 5.97480893e-01 5.16829193e-01 -1.61593151e+00
8.44127405e-03 -6.74689889e-01 -8.01460326e-01 3.94736230e-01
8.86857867e-01 -8.62304151e-01 -6.77907407e-01 2.95270920e-01] | [10.830410957336426, -4.089817047119141] |
71704da5-b1ec-46ce-b1a9-943cd31f98fe | allophant-cross-lingual-phoneme-recognition | 2306.04306 | null | https://arxiv.org/abs/2306.04306v1 | https://arxiv.org/pdf/2306.04306v1.pdf | Allophant: Cross-lingual Phoneme Recognition with Articulatory Attributes | This paper proposes Allophant, a multilingual phoneme recognizer. It requires only a phoneme inventory for cross-lingual transfer to a target language, allowing for low-resource recognition. The architecture combines a compositional phone embedding approach with individually supervised phonetic attribute classifiers in a multi-task architecture. We also introduce Allophoible, an extension of the PHOIBLE database. When combined with a distance based mapping approach for grapheme-to-phoneme outputs, it allows us to train on PHOIBLE inventories directly. By training and evaluating on 34 languages, we found that the addition of multi-task learning improves the model's capability of being applied to unseen phonemes and phoneme inventories. On supervised languages we achieve phoneme error rate improvements of 11 percentage points (pp.) compared to a baseline without multi-task learning. Evaluation of zero-shot transfer on 84 languages yielded a decrease in PER of 2.63 pp. over the baseline. | ['Munir Georges', 'Aaricia Herygers', 'Kevin Glocker'] | 2023-06-07 | null | null | null | null | ['zero-shot-cross-lingual-transfer', 'cross-lingual-transfer'] | ['natural-language-processing', 'natural-language-processing'] | [ 1.94135606e-01 5.12148738e-02 -2.57034123e-01 -4.51602310e-01
-1.76404905e+00 -9.34505343e-01 6.05694532e-01 -1.14997253e-01
-6.95639372e-01 6.48768306e-01 3.16207498e-01 -4.78220463e-01
5.10899484e-01 -4.64630097e-01 -1.01094544e+00 -4.13999945e-01
3.16093475e-01 1.09462428e+00 2.25234535e-02 -7.48737082e-02
-1.53481495e-02 2.96076030e-01 -1.25936902e+00 7.23325908e-01
8.28535676e-01 7.67010152e-01 4.17853326e-01 7.13765740e-01
-2.47872785e-01 2.53568232e-01 -4.61195946e-01 -5.24863601e-01
1.52568668e-01 -1.50867209e-01 -7.65592635e-01 -3.79146963e-01
1.17148030e+00 -5.68405539e-02 7.25785345e-02 5.64596891e-01
5.69736063e-01 -3.55897844e-02 9.68389869e-01 -7.99814403e-01
-8.26363921e-01 6.41261458e-01 -8.85195751e-03 1.18622221e-01
3.00848573e-01 -1.66317344e-01 1.17642307e+00 -1.44664741e+00
3.00596297e-01 1.42179656e+00 9.29399252e-01 4.72569317e-01
-1.33550286e+00 -7.46554255e-01 -1.26013860e-01 5.07934168e-02
-1.51653850e+00 -1.05557537e+00 2.61974305e-01 -4.73756105e-01
1.88417029e+00 1.05409592e-01 1.91739246e-01 1.12590742e+00
1.95270181e-01 5.99307179e-01 1.19902635e+00 -8.12769473e-01
-2.83092260e-01 6.67004287e-01 -1.48197010e-01 7.19431460e-01
-1.18582502e-01 1.48770168e-01 -4.99998331e-01 1.64997160e-01
5.01255095e-01 -7.41053164e-01 1.49572328e-01 -1.76181961e-02
-1.16370964e+00 6.33238912e-01 3.45873982e-02 4.20351714e-01
1.32392056e-03 1.06758907e-01 6.06595337e-01 4.51136500e-01
5.37123144e-01 4.08813715e-01 -7.64210165e-01 -2.87098914e-01
-6.88371658e-01 -4.27176088e-01 8.97190750e-01 1.02633440e+00
8.44206393e-01 4.52306628e-01 6.84613883e-02 1.34232080e+00
-5.77789880e-02 9.44435239e-01 5.24964631e-01 -5.69276869e-01
8.61592889e-01 2.74525676e-02 -1.85318559e-01 -4.13188338e-01
6.13549016e-02 -1.48267746e-01 -3.68314385e-01 1.96701498e-03
4.57350612e-01 -2.94649810e-01 -9.01435912e-01 1.67545927e+00
-2.61751413e-01 -4.72476557e-02 1.72958225e-01 1.72479391e-01
4.10667032e-01 1.06822908e+00 1.64961368e-01 5.33023775e-02
1.35111535e+00 -1.04913223e+00 -5.13211429e-01 -4.81655061e-01
9.04529631e-01 -9.12792206e-01 1.66596794e+00 5.08423984e-01
-9.45520639e-01 -8.66022825e-01 -9.37193155e-01 -3.13262731e-01
-8.62061322e-01 3.44896168e-01 2.54906088e-01 1.01212168e+00
-1.32313514e+00 3.29520732e-01 -7.06577599e-01 -4.28902239e-01
2.76253037e-02 4.78716850e-01 -4.55594748e-01 -4.14858423e-02
-1.08177280e+00 1.39258087e+00 7.96452641e-01 -4.18873757e-01
-9.96856868e-01 -6.54481173e-01 -8.95570993e-01 1.52886331e-01
-6.04856536e-02 -2.46379793e-01 1.09533203e+00 -9.77294385e-01
-1.74727929e+00 1.06311190e+00 -3.45833123e-01 -1.78185537e-01
9.05822366e-02 -4.02505130e-01 -8.69924664e-01 -1.37041152e-01
7.12347254e-02 8.17462981e-01 5.83440065e-01 -9.89767373e-01
-9.68342900e-01 6.44526482e-02 -5.57653487e-01 4.84251261e-01
-6.91253662e-01 3.33859086e-01 -5.36438048e-01 -5.55144608e-01
-5.04106104e-01 -1.02626801e+00 3.59712213e-01 -5.35847723e-01
-1.55614763e-01 -3.70322466e-01 6.22081578e-01 -1.12298322e+00
9.80172276e-01 -2.12435222e+00 6.87672645e-02 -2.67861690e-02
-6.43236697e-01 2.39331335e-01 -4.86725837e-01 4.61790621e-01
1.75619107e-02 2.10010514e-01 -2.48854071e-01 -6.70133173e-01
2.84248032e-02 2.82428712e-01 -1.80063546e-01 1.20394751e-01
2.96231061e-01 1.03397179e+00 -5.67198455e-01 -2.48881444e-01
2.53646523e-01 5.72619021e-01 -5.16645133e-01 -2.74256859e-02
2.04671398e-02 1.51489556e-01 3.83816212e-01 5.51516771e-01
2.82497585e-01 2.61513412e-01 1.52161673e-01 3.12122945e-02
-2.24614684e-02 7.54382670e-01 -6.66295767e-01 1.93661284e+00
-1.34997439e+00 5.07113576e-01 -1.12906225e-01 -6.16280615e-01
1.01282442e+00 7.05804765e-01 -1.00941047e-01 -6.28739178e-01
-2.79218405e-01 8.92463028e-01 2.03175411e-01 9.40517802e-03
4.71805185e-01 -2.92508930e-01 -4.95388895e-01 3.79812241e-01
3.87844205e-01 -1.97348982e-01 -3.86517435e-01 -2.10131124e-01
7.55133986e-01 1.59476131e-01 2.47557268e-01 -6.40375018e-01
4.93934125e-01 -6.43617138e-02 4.46591228e-01 5.73555648e-01
1.26728803e-01 3.95524591e-01 -2.46698320e-01 -1.66830838e-01
-1.21201384e+00 -1.61967564e+00 -3.46438974e-01 1.53673530e+00
-5.95949411e-01 -1.52439937e-01 -6.72405541e-01 -6.82729542e-01
1.65366635e-01 1.06068826e+00 -1.59890935e-01 6.83056489e-02
-9.67232823e-01 -5.44671118e-01 9.59622502e-01 6.66872621e-01
1.62544802e-01 -1.32222140e+00 1.87272131e-01 5.47474563e-01
-2.00526938e-01 -1.33460104e+00 -9.30269182e-01 3.44946384e-01
-6.65583193e-01 -3.70697021e-01 -5.87286055e-01 -1.37295067e+00
2.04886466e-01 -3.78040850e-01 1.23138571e+00 -6.92855775e-01
1.08256742e-01 2.84487516e-01 -1.24893822e-01 -2.44353876e-01
-8.67958307e-01 7.30699837e-01 4.54482108e-01 -1.72531873e-01
6.67534947e-01 -5.47905624e-01 6.05698340e-02 1.90328613e-01
-2.32652143e-01 -1.96447253e-01 8.24042022e-01 7.90906012e-01
6.13239646e-01 -5.68901718e-01 1.00683343e+00 -8.33905339e-01
3.19395632e-01 -2.51490474e-01 -5.13126969e-01 4.54926908e-01
-6.41507745e-01 9.79450569e-02 9.11536157e-01 -4.07261342e-01
-1.18807483e+00 1.48348659e-01 -4.43061501e-01 -2.05725178e-01
-3.37839842e-01 2.12781087e-01 -5.23018241e-01 -4.23441678e-02
4.71654773e-01 3.54517698e-01 -1.79718480e-01 -9.39457476e-01
6.63220584e-01 1.06424856e+00 8.36730421e-01 -5.82878292e-01
3.97016078e-01 -1.25848725e-01 -6.73818588e-01 -1.04566360e+00
-4.52116847e-01 -4.56025153e-01 -7.43452907e-01 2.40934849e-01
9.22856748e-01 -1.22687995e+00 -3.92715752e-01 5.82600772e-01
-1.17303371e+00 -5.99511683e-01 -1.24604598e-01 5.40046096e-01
-6.37448013e-01 -3.30039933e-02 -9.64442790e-01 -5.06637514e-01
-4.45863187e-01 -9.36119437e-01 1.06850493e+00 -4.96308595e-01
-3.99348348e-01 -1.44847798e+00 3.22015136e-01 3.01959395e-01
5.66339374e-01 -4.44639057e-01 1.18687308e+00 -1.07142401e+00
-4.70013738e-01 -8.50619897e-02 -7.84601644e-03 7.09383249e-01
4.54162031e-01 -4.08884823e-01 -1.38257599e+00 -5.46537936e-01
-3.39989126e-01 -6.25412524e-01 7.39140451e-01 1.46988586e-01
8.11498225e-01 -4.42164332e-01 -3.49876285e-01 8.78673792e-01
1.50306726e+00 4.21564162e-01 5.71809709e-01 1.38950601e-01
1.10841143e+00 4.81535107e-01 2.23414630e-01 -3.33924085e-01
5.52308500e-01 1.02630019e+00 -3.06809306e-01 1.37891233e-01
-5.44677138e-01 -5.68924606e-01 9.18093681e-01 1.82744980e+00
2.74455398e-01 -4.25383270e-01 -1.24917650e+00 8.35418701e-01
-1.11602783e+00 -5.57952404e-01 2.65513331e-01 2.36663938e+00
9.84788299e-01 1.32678568e-01 6.05844818e-02 -1.39422774e-01
6.91812754e-01 -1.29029587e-01 -2.64970422e-01 -1.15030527e+00
-2.07922772e-01 5.67039251e-01 6.91890121e-01 1.10070264e+00
-9.65783596e-01 1.61166382e+00 6.73445988e+00 1.19988024e+00
-1.08187091e+00 5.39689541e-01 4.38075125e-01 1.99174643e-01
-4.14926678e-01 -1.69830814e-01 -1.31136298e+00 4.61021394e-01
1.66021323e+00 3.70247886e-02 5.60812056e-01 6.44985497e-01
-3.30593973e-01 2.74585813e-01 -1.38119709e+00 9.60598648e-01
4.43886191e-01 -1.04938924e+00 2.71926343e-01 1.92694515e-01
6.89303398e-01 5.64142704e-01 1.41409770e-01 5.51836252e-01
4.01028454e-01 -1.31018054e+00 5.87225139e-01 2.38074616e-01
1.52905500e+00 -9.03820693e-01 4.46054339e-01 2.94516206e-01
-1.35832691e+00 2.98096806e-01 -2.50534713e-01 4.29458804e-02
3.17326039e-01 4.79946360e-02 -1.28592265e+00 4.43489641e-01
3.71718526e-01 5.79951465e-01 -4.40569669e-01 6.41264856e-01
-1.26266286e-01 7.07261443e-01 -4.55459446e-01 -1.19433003e-02
8.12141821e-02 -1.55682668e-01 2.59555429e-01 1.77977085e+00
5.94170511e-01 -5.33960283e-01 1.31521985e-01 2.77004957e-01
-1.68072000e-01 4.95191723e-01 -8.39645326e-01 -5.50536066e-02
8.78751218e-01 9.29057360e-01 -3.33594888e-01 -6.25575960e-01
-3.46708298e-01 1.59340370e+00 5.36207259e-01 2.75975555e-01
-4.58149999e-01 -7.93833196e-01 5.47141016e-01 -2.99559593e-01
4.82654363e-01 -2.85481662e-01 -3.76130134e-01 -1.06369638e+00
1.03877718e-02 -1.05289710e+00 1.71294242e-01 -2.67094702e-01
-1.35592210e+00 7.95905888e-01 -1.50861755e-01 -7.51047313e-01
-6.37625635e-01 -8.52045894e-01 -5.47411799e-01 1.46061134e+00
-1.23450148e+00 -1.42555952e+00 3.92603904e-01 3.31182718e-01
6.56754196e-01 -6.28738344e-01 1.51173365e+00 5.83764911e-01
-2.83481389e-01 1.31632733e+00 2.96185344e-01 2.59587824e-01
8.91851306e-01 -1.47485626e+00 1.08970964e+00 7.94422030e-01
7.16707468e-01 3.23920399e-01 2.07489282e-01 -3.97440284e-01
-1.02984464e+00 -1.16939759e+00 1.57105315e+00 -1.15894842e+00
5.56694627e-01 -9.56001341e-01 -1.09176791e+00 1.10341704e+00
5.80131888e-01 -3.89845580e-01 8.02517712e-01 4.70118552e-01
-6.17661595e-01 -3.20231080e-01 -8.85931373e-01 3.80732983e-01
9.97940958e-01 -1.26779258e+00 -8.07511806e-01 1.77306488e-01
7.59972095e-01 1.73687693e-02 -1.05422306e+00 1.61974400e-01
7.79221475e-01 -4.33041841e-01 8.91708553e-01 -3.35396200e-01
-1.26860991e-01 1.00646973e-01 -4.01889563e-01 -1.76714873e+00
-2.34277755e-01 -3.63462955e-01 2.53498733e-01 1.50409567e+00
9.35080886e-01 -9.02952671e-01 4.02021557e-01 -1.82403997e-01
-7.41175771e-01 -2.43307546e-01 -1.17503178e+00 -1.26706815e+00
7.48112142e-01 -3.25883538e-01 2.28097171e-01 1.06703925e+00
-4.10221331e-02 7.21689403e-01 -4.23132747e-01 9.92232189e-02
4.06221598e-01 -3.76992762e-01 4.71827656e-01 -9.23166156e-01
-7.21244037e-01 -3.91642928e-01 -1.29603148e-01 -1.00294387e+00
4.74751115e-01 -1.49945128e+00 3.05109918e-01 -1.31321406e+00
-9.96525511e-02 -7.10196018e-01 -4.74415183e-01 8.10208738e-01
-2.94892769e-03 3.77195030e-01 1.52799502e-01 1.34632125e-01
-1.23572789e-01 4.07014996e-01 6.51165962e-01 2.52536591e-02
-1.41074628e-01 -3.06477875e-01 -2.67178357e-01 4.86366183e-01
9.85800803e-01 -5.81794322e-01 -3.01617742e-01 -8.64671707e-01
-2.24296406e-01 -1.50603682e-01 -2.43850902e-01 -1.18790579e+00
-9.55136791e-02 4.52241063e-01 1.69939607e-01 -3.93379629e-01
7.93364704e-01 -5.19593060e-01 8.23359415e-02 4.17962611e-01
-8.99401903e-02 3.96316081e-01 8.32464397e-01 9.43537951e-02
-2.62795985e-01 3.66594978e-02 6.36694789e-01 -4.69479002e-02
-8.94886732e-01 7.45384842e-02 -5.72815597e-01 2.40467995e-01
6.19037390e-01 -1.92352176e-01 -1.67092204e-01 -7.99227580e-02
-6.40832424e-01 -9.92034823e-02 4.80856687e-01 6.28401697e-01
3.25230151e-01 -1.54286408e+00 -7.26174593e-01 3.86660904e-01
2.90234149e-01 -6.75392389e-01 -2.93944150e-01 4.34389859e-01
-5.01571357e-01 8.18174303e-01 -3.86746764e-01 -4.49509591e-01
-1.04902124e+00 2.51035184e-01 3.79566580e-01 -1.29235834e-01
-2.75679410e-01 9.53470409e-01 9.74747315e-02 -1.04697943e+00
2.36333206e-01 -2.65252560e-01 1.06034882e-01 2.08243057e-01
1.29399091e-01 1.99323267e-01 2.88533062e-01 -7.65332580e-01
-6.41475022e-01 7.38454938e-01 -3.03286731e-01 -7.79872835e-01
9.35339391e-01 -9.77082402e-02 2.08344117e-01 1.17893362e+00
1.58483648e+00 5.21546841e-01 -9.75423694e-01 -1.46095678e-01
4.17787403e-01 -8.58571827e-02 -1.27560854e-01 -1.19177425e+00
-4.54986662e-01 1.27822435e+00 6.31842911e-01 -3.75563174e-01
7.36124516e-01 -2.30122749e-02 1.03356600e+00 5.08798778e-01
5.15065372e-01 -1.16176295e+00 -1.23908624e-01 9.38170195e-01
7.50308156e-01 -1.20310485e+00 -6.85860455e-01 -2.90652275e-01
-6.70982838e-01 8.21473241e-01 4.56306994e-01 2.89737452e-02
4.89120096e-01 3.41730118e-01 4.21318561e-01 3.13623279e-01
-6.68442905e-01 -1.69990864e-02 4.90229219e-01 7.05957055e-01
6.62960172e-01 3.35076332e-01 2.27139235e-01 2.04928875e-01
-4.50413555e-01 -3.65356356e-01 1.63571537e-01 3.57255161e-01
-5.06894529e-01 -1.46057427e+00 -3.02326437e-02 2.81285703e-01
-4.45323735e-01 -8.19352329e-01 -2.02987820e-01 8.60068262e-01
1.63706720e-01 7.53703535e-01 5.83167017e-01 -3.90344739e-01
2.97481716e-01 7.89899528e-01 5.15176475e-01 -1.11031830e+00
-7.41662323e-01 4.24193479e-02 6.43185139e-01 -2.03040540e-01
2.02506613e-02 -7.30720937e-01 -9.40635085e-01 -3.62650678e-02
-2.79254019e-02 1.82843983e-01 6.33870006e-01 8.41419816e-01
2.01419488e-01 3.16564143e-01 3.40175956e-01 -5.93260646e-01
-4.65932280e-01 -1.08029056e+00 -4.90032405e-01 1.84521545e-02
2.88181663e-01 -2.41021842e-01 -3.32709014e-01 1.15561383e-02] | [14.254584312438965, 7.007551193237305] |
5dc798b7-067b-46c8-b429-4a6906848d77 | adaptive-human-matting-for-dynamic-videos | 2304.06018 | null | https://arxiv.org/abs/2304.06018v1 | https://arxiv.org/pdf/2304.06018v1.pdf | Adaptive Human Matting for Dynamic Videos | The most recent efforts in video matting have focused on eliminating trimap dependency since trimap annotations are expensive and trimap-based methods are less adaptable for real-time applications. Despite the latest tripmap-free methods showing promising results, their performance often degrades when dealing with highly diverse and unstructured videos. We address this limitation by introducing Adaptive Matting for Dynamic Videos, termed AdaM, which is a framework designed for simultaneously differentiating foregrounds from backgrounds and capturing alpha matte details of human subjects in the foreground. Two interconnected network designs are employed to achieve this goal: (1) an encoder-decoder network that produces alpha mattes and intermediate masks which are used to guide the transformer in adaptively decoding foregrounds and backgrounds, and (2) a transformer network in which long- and short-term attention combine to retain spatial and temporal contexts, facilitating the decoding of foreground details. We benchmark and study our methods on recently introduced datasets, showing that our model notably improves matting realism and temporal coherence in complex real-world videos and achieves new best-in-class generalizability. Further details and examples are available at https://github.com/microsoft/AdaM. | ['Zicheng Liu', 'Lijuan Wang', 'Linjie Li', 'Kevin Lin', 'Kun Luo', 'Jiang Wang', 'Chung-Ching Lin'] | 2023-04-12 | null | http://openaccess.thecvf.com//content/CVPR2023/html/Lin_Adaptive_Human_Matting_for_Dynamic_Videos_CVPR_2023_paper.html | http://openaccess.thecvf.com//content/CVPR2023/papers/Lin_Adaptive_Human_Matting_for_Dynamic_Videos_CVPR_2023_paper.pdf | cvpr-2023-1 | ['image-matting', 'video-matting'] | ['computer-vision', 'computer-vision'] | [ 3.89994979e-01 -1.61723256e-01 -4.61571291e-03 -2.80503631e-01
-5.10918081e-01 -4.14761633e-01 4.71263021e-01 -5.48399746e-01
-8.01744163e-02 4.74290997e-01 4.51702476e-01 -1.43106878e-01
2.67045170e-01 -5.09584427e-01 -9.41020250e-01 -6.86248362e-01
-8.42675865e-02 2.72830725e-01 6.40119255e-01 5.44209033e-02
-2.34702155e-02 2.17205182e-01 -1.47396564e+00 8.88776183e-01
8.38128746e-01 9.26096797e-01 3.25465053e-01 9.18842494e-01
-7.93675706e-02 1.09425056e+00 -4.51249272e-01 -6.58504665e-01
5.37097991e-01 -5.75234890e-01 -5.44980586e-01 2.23953053e-01
9.73439157e-01 -6.01701319e-01 -8.16272318e-01 7.96323001e-01
4.36758667e-01 -4.34502885e-02 1.85172752e-01 -1.22766578e+00
-5.79445183e-01 8.04428220e-01 -7.46053994e-01 4.50514227e-01
3.32675517e-01 6.21818006e-01 7.52949476e-01 -8.28568697e-01
5.00791848e-01 1.31146574e+00 7.10455716e-01 6.86542690e-01
-1.18772399e+00 -5.77894688e-01 4.91366923e-01 3.93644720e-01
-1.15838802e+00 -8.21911573e-01 5.63069046e-01 -4.15216297e-01
6.75129652e-01 4.17380482e-01 8.75124574e-01 1.49306703e+00
3.22448134e-01 9.90810633e-01 9.18283105e-01 4.65258844e-02
-7.98265487e-02 -2.95487791e-01 -2.44335502e-01 6.33641481e-01
3.36824730e-02 -9.51490477e-02 -9.85457420e-01 1.06348127e-01
1.05139923e+00 2.71927398e-02 -4.95710403e-01 -2.85184652e-01
-1.61112881e+00 3.33807409e-01 3.70682031e-01 4.89941873e-02
-4.02530313e-01 5.13961971e-01 3.62664759e-01 1.53817996e-01
6.19572401e-01 1.75281793e-01 -2.32715309e-01 -3.49450171e-01
-1.39978385e+00 9.86390710e-02 5.78707516e-01 1.09422874e+00
4.33109492e-01 2.73548007e-01 -5.42752802e-01 7.01396644e-01
1.26015291e-01 5.99952340e-01 1.65670320e-01 -1.35091102e+00
5.03551006e-01 4.14726257e-01 3.55936736e-02 -8.85373592e-01
-3.96563970e-02 -3.42575073e-01 -8.77246022e-01 1.74295366e-01
5.16808569e-01 7.17123076e-02 -1.24251723e+00 1.71596849e+00
3.17683935e-01 7.88155138e-01 -3.75385493e-01 1.13704360e+00
8.80723774e-01 7.75358438e-01 3.06005869e-02 -5.81304394e-02
1.29992914e+00 -1.37859905e+00 -7.89381742e-01 -4.02159542e-01
-4.83751902e-03 -8.25097740e-01 1.15901947e+00 4.62556124e-01
-1.63669729e+00 -5.86407840e-01 -9.19652581e-01 -2.99202442e-01
-1.07043020e-01 -6.15480822e-03 5.28796017e-01 4.22168046e-01
-1.34604049e+00 5.58193445e-01 -1.14251447e+00 -9.29188877e-02
7.00330555e-01 3.05215031e-01 -2.10326642e-01 -1.78144544e-01
-8.71248841e-01 5.51615059e-01 9.51249450e-02 4.41859961e-01
-1.40575254e+00 -8.55228066e-01 -8.13115716e-01 1.66833997e-02
5.57374477e-01 -1.10989738e+00 1.18643069e+00 -1.41019404e+00
-1.53861916e+00 7.77506828e-01 -2.94728488e-01 -4.80996728e-01
8.44240725e-01 -5.55727601e-01 -2.31355622e-01 3.25324595e-01
7.56466165e-02 9.15360808e-01 1.11328459e+00 -1.26725483e+00
-6.76013649e-01 3.22167687e-02 2.50668257e-01 2.87591189e-01
-2.12001979e-01 -8.78953636e-02 -9.95435417e-01 -9.91522729e-01
3.80947092e-03 -7.92414725e-01 1.41467052e-02 2.79628128e-01
-4.47961658e-01 4.28215176e-01 1.03842723e+00 -1.00166464e+00
1.35544229e+00 -2.11470747e+00 5.43754816e-01 -1.36420950e-01
6.91644013e-01 3.55436772e-01 -2.53290594e-01 1.73870385e-01
5.05177528e-02 -1.86820671e-01 -1.46518722e-01 -6.53115928e-01
-1.07515186e-01 3.30408961e-01 -3.59117329e-01 3.54553163e-01
2.45495752e-01 9.78303432e-01 -9.98681128e-01 -5.26678860e-01
4.04531121e-01 6.05268657e-01 -7.42123604e-01 4.15989667e-01
-4.22766775e-01 6.22134924e-01 -3.75012271e-02 7.97437072e-01
7.43012428e-01 -4.71560419e-01 1.52108848e-01 -4.58310306e-01
1.98928546e-02 2.95992553e-01 -1.03820860e+00 1.64453173e+00
-2.18688428e-01 9.92584109e-01 4.85573411e-01 -6.28576040e-01
2.31855124e-01 2.45175749e-01 6.19588435e-01 -6.82647049e-01
5.82830943e-02 1.43744675e-02 -9.34035629e-02 -4.85535681e-01
5.79046786e-01 3.03587049e-01 3.33340466e-01 1.12854779e-01
3.19676287e-02 2.18215570e-01 3.36772710e-01 5.24016500e-01
1.23646557e+00 4.47871834e-01 -1.16226882e-01 -1.84237957e-01
2.50669688e-01 -2.19227910e-01 7.76512265e-01 5.63564301e-01
-2.70064026e-01 1.06992579e+00 4.92901862e-01 -5.81960738e-01
-1.17560279e+00 -1.37910521e+00 2.24768281e-01 1.27685416e+00
4.25267756e-01 -6.74365938e-01 -8.45351279e-01 -4.82185274e-01
-1.56638145e-01 3.81977856e-01 -8.96928608e-01 8.91130120e-02
-8.90547514e-01 -5.03191710e-01 4.65653300e-01 6.18067503e-01
7.07180142e-01 -9.05169129e-01 -6.36460125e-01 2.05235276e-02
-6.46325529e-01 -1.26367056e+00 -9.05462444e-01 -5.12507074e-02
-6.14960611e-01 -1.08656347e+00 -8.20922971e-01 -5.07865131e-01
5.29335439e-01 5.61177909e-01 1.46613812e+00 3.00593942e-01
-9.52021703e-02 3.96935016e-01 -2.69848496e-01 -3.26615684e-02
-2.92158097e-01 -8.38573426e-02 -2.24391535e-01 3.11642468e-01
-6.41882196e-02 -6.53307080e-01 -9.29053783e-01 4.62779611e-01
-1.03299999e+00 7.72187948e-01 5.73543608e-01 6.75459266e-01
4.03897911e-01 -4.28075016e-01 9.58704427e-02 -9.27843690e-01
-5.10478951e-02 -5.21740556e-01 -3.50650609e-01 1.64173856e-01
-1.00684807e-01 -2.98270315e-01 4.09637332e-01 -5.84871411e-01
-1.03117609e+00 -3.59168500e-02 -1.19110651e-01 -7.20407784e-01
1.84720531e-01 -5.36506735e-02 -2.59643346e-01 -8.60959440e-02
4.21115130e-01 2.51016259e-01 -1.18847139e-01 -3.72251004e-01
3.14830005e-01 1.56338736e-01 7.49369204e-01 -5.74031413e-01
8.28799665e-01 6.88720942e-01 -2.03969091e-01 -5.98312199e-01
-9.56262171e-01 -2.43633255e-01 -6.13612413e-01 -5.34697771e-01
1.02811062e+00 -1.12841284e+00 -5.65365732e-01 5.98690391e-01
-9.80081201e-01 -9.67825711e-01 -2.48972654e-01 8.82581398e-02
-6.06261969e-01 3.53759378e-01 -9.67918634e-01 -3.95285487e-01
-1.85266599e-01 -1.40755856e+00 1.26375782e+00 2.26699084e-01
-1.04762986e-02 -8.01947951e-01 -9.76969525e-02 4.85801756e-01
6.81228518e-01 2.91246623e-01 3.78032148e-01 1.00134715e-01
-1.16739106e+00 4.99062985e-01 -3.82121950e-01 2.29173794e-01
7.72498548e-02 2.64421284e-01 -1.07875144e+00 -3.42193276e-01
-3.07080954e-01 2.13217828e-02 1.08214939e+00 5.89067936e-01
1.31463552e+00 -4.45278019e-01 -2.42197618e-01 1.09181833e+00
1.08708787e+00 -3.50445770e-02 9.40863907e-01 2.04322562e-01
1.10266161e+00 2.14958042e-01 4.07670587e-01 2.98673421e-01
4.55398679e-01 8.15780580e-01 5.27382255e-01 -2.67487019e-01
-7.62915909e-01 -1.78695098e-01 6.13993943e-01 8.44818890e-01
-2.92917341e-01 -4.96658325e-01 -7.52482414e-01 6.10363960e-01
-2.12771654e+00 -1.14243412e+00 -7.57060573e-02 1.88013303e+00
8.91930223e-01 1.77874878e-01 3.12344134e-01 -1.89801663e-01
6.14074051e-01 3.82922411e-01 -5.51711857e-01 9.60023403e-02
-4.16677445e-01 2.37075370e-02 3.00759435e-01 4.45034683e-01
-1.16467404e+00 9.14306343e-01 6.70304632e+00 7.20417440e-01
-1.05211866e+00 2.56378949e-01 9.07078683e-01 -5.37267327e-01
-2.30699137e-01 -7.67187029e-02 -3.98279637e-01 8.18727374e-01
7.73624837e-01 2.24817201e-01 5.46138763e-01 5.57071090e-01
3.83666724e-01 -1.21887878e-01 -1.09600580e+00 1.01241267e+00
7.30693936e-02 -1.60952318e+00 1.84056014e-01 -1.22258097e-01
8.68301809e-01 -5.34909852e-02 1.40807882e-01 9.44698527e-02
1.30643263e-01 -9.63625848e-01 1.13032794e+00 6.62907541e-01
8.82398546e-01 -3.52749199e-01 4.56159145e-01 -1.65920496e-01
-1.48554611e+00 1.83279961e-02 -1.85754418e-01 4.10175547e-02
4.14625734e-01 6.45569980e-01 -3.83593202e-01 3.51643205e-01
9.02425826e-01 9.76240814e-01 -7.64021218e-01 1.11123133e+00
1.64899305e-02 7.06176102e-01 -1.63096562e-01 4.85086292e-01
2.68294066e-01 -1.34287179e-01 6.27398968e-01 1.50246787e+00
1.82055905e-01 -5.34173883e-02 1.79254159e-01 8.60701978e-01
-1.88175943e-02 -4.25934464e-01 -3.45208853e-01 6.35377467e-02
3.02589417e-01 1.24244308e+00 -9.56587553e-01 -6.44776046e-01
-4.10524875e-01 1.30585194e+00 1.30999103e-01 5.02553761e-01
-1.41233456e+00 7.47982040e-02 9.69397783e-01 4.52827305e-01
5.14642775e-01 -4.94661838e-01 -3.43216121e-01 -1.40059984e+00
4.11451012e-02 -1.18179715e+00 3.12654585e-01 -1.00525367e+00
-1.13890648e+00 6.00345373e-01 6.92220703e-02 -1.13490713e+00
1.62806943e-01 -5.89543164e-01 -5.04554868e-01 4.69205618e-01
-1.22747672e+00 -1.35871363e+00 -8.12782526e-01 7.03921378e-01
8.84883881e-01 1.44156575e-01 1.43822804e-01 7.91477084e-01
-7.73398340e-01 5.12875617e-01 -1.54474601e-01 2.98634525e-02
1.01170981e+00 -1.23687029e+00 5.51260293e-01 1.24529719e+00
6.60619587e-02 4.58151132e-01 7.19979942e-01 -7.63853967e-01
-1.55993652e+00 -1.18436408e+00 4.28381562e-01 -6.65020049e-01
5.44195592e-01 -6.84918046e-01 -8.79095256e-01 8.81661475e-01
5.10931313e-01 1.09115625e-02 2.29251623e-01 -2.21499249e-01
-4.65614855e-01 -1.53787106e-01 -7.98508942e-01 9.56672311e-01
1.46294022e+00 -3.44056010e-01 -6.28805235e-02 2.80875951e-01
8.72134149e-01 -8.29145133e-01 -5.98649263e-01 3.85385364e-01
6.59743667e-01 -1.38664675e+00 1.02264750e+00 -2.37602815e-01
6.95856273e-01 -6.98114991e-01 -8.27716291e-02 -1.00872672e+00
-4.73052919e-01 -1.02869117e+00 -6.28317058e-01 1.06416023e+00
9.73319560e-02 -2.43849277e-01 8.74583125e-01 3.99993628e-01
-4.27461177e-01 -7.79450536e-01 -7.16793299e-01 -4.69034493e-01
-4.38259631e-01 -3.45463157e-01 3.52286637e-01 8.30573797e-01
-4.91193295e-01 1.55307919e-01 -8.81839633e-01 9.32571292e-02
5.72558045e-01 -1.09043587e-02 8.98581922e-01 -4.58293140e-01
-4.03606623e-01 -4.34291512e-01 -3.04968536e-01 -1.49079931e+00
-1.88227400e-01 -4.65495139e-01 1.90453887e-01 -1.33693612e+00
4.92943197e-01 -2.36849159e-01 7.49921724e-02 4.79768753e-01
-3.50761294e-01 6.89295530e-01 4.21843380e-01 1.88875690e-01
-8.99918258e-01 4.90459353e-01 1.44513261e+00 -1.11569054e-01
3.52548845e-02 -1.76206261e-01 -5.16238272e-01 6.47739232e-01
5.81240654e-01 -1.57556072e-01 -4.62855965e-01 -8.05927873e-01
1.60491273e-01 -3.79336774e-02 6.69524431e-01 -1.12493789e+00
1.39551431e-01 -3.11189145e-01 5.77059329e-01 -4.71252054e-01
6.37426019e-01 -7.06343770e-01 5.11197865e-01 2.44861752e-01
-1.72591537e-01 4.33097214e-01 2.89541364e-01 5.12940645e-01
-4.18404527e-02 3.65459502e-01 7.75449991e-01 -1.21782675e-01
-7.62049973e-01 5.81278980e-01 -3.83897603e-01 1.58282936e-01
9.11158085e-01 -4.29052621e-01 -6.07735097e-01 -6.00225806e-01
-6.54284894e-01 1.83538035e-01 7.16773212e-01 3.45159322e-01
6.35180593e-01 -1.35579169e+00 -7.92838752e-01 1.64345369e-01
-2.41324529e-01 3.82946767e-02 5.04224658e-01 1.17607009e+00
-9.04513478e-01 4.37220791e-03 -3.66072655e-01 -8.03417623e-01
-1.35045731e+00 4.24306899e-01 4.30428535e-01 -6.57803714e-02
-8.85961711e-01 1.00872111e+00 7.78687537e-01 2.59947568e-01
3.93265218e-01 -4.19105887e-01 3.64769459e-01 -2.18208089e-01
7.22631335e-01 4.15718943e-01 -2.12752357e-01 -6.56744897e-01
-2.46922016e-01 3.51233244e-01 1.08891670e-02 2.76232813e-03
1.20598090e+00 -4.44735199e-01 -1.25368953e-01 4.09624934e-01
7.46392071e-01 4.87133861e-03 -1.92559993e+00 -1.62325218e-01
-3.47445965e-01 -8.82335961e-01 -2.66993016e-01 -6.52820051e-01
-1.39034998e+00 8.23210001e-01 3.99837673e-01 1.55320928e-01
1.45302975e+00 -1.09194987e-01 1.09946680e+00 -1.91309184e-01
1.48465797e-01 -8.35832477e-01 4.72557098e-01 4.47932094e-01
8.24143589e-01 -1.04819739e+00 -6.10103831e-02 -5.19302130e-01
-7.24526107e-01 9.82771099e-01 9.04187202e-01 -1.37160838e-01
3.06976616e-01 6.39999807e-01 1.55234113e-01 -1.26887545e-01
-1.07541037e+00 -5.18737510e-02 4.85720128e-01 5.85497022e-01
4.87787038e-01 -1.15120158e-01 2.53116369e-01 2.33457014e-01
-2.84524187e-02 -2.10007161e-01 4.60504115e-01 8.00593019e-01
-3.02409470e-01 -7.84500420e-01 -3.76702458e-01 4.62448418e-01
-4.95361120e-01 -1.97039410e-01 -3.11299741e-01 5.62645137e-01
2.99026161e-01 7.58120060e-01 8.72888267e-02 -4.27945793e-01
2.07240973e-02 -1.15447037e-01 6.24892056e-01 -4.62943822e-01
-7.04440475e-01 2.30885863e-01 1.91462025e-01 -1.13538110e+00
-5.94036043e-01 -5.26838601e-01 -6.58312142e-01 -7.21048892e-01
-3.88249792e-02 -2.89375812e-01 1.71848759e-01 7.33925164e-01
5.62583387e-01 9.20042634e-01 1.99505165e-01 -1.38689899e+00
5.14543504e-02 -7.72789299e-01 -2.10910812e-01 5.42639911e-01
5.42469978e-01 -6.54966831e-01 -1.89513132e-01 5.93315244e-01] | [10.648574829101562, -0.8793579339981079] |
9cc224c2-4bf2-471f-9a7a-d3f65966215e | event-transition-planning-for-open-ended-text | 2204.09453 | null | https://arxiv.org/abs/2204.09453v1 | https://arxiv.org/pdf/2204.09453v1.pdf | Event Transition Planning for Open-ended Text Generation | Open-ended text generation tasks, such as dialogue generation and story completion, require models to generate a coherent continuation given limited preceding context. The open-ended nature of these tasks brings new challenges to the neural auto-regressive text generators nowadays. Despite these neural models are good at producing human-like text, it is difficult for them to arrange causalities and relations between given facts and possible ensuing events. To bridge this gap, we propose a novel two-stage method which explicitly arranges the ensuing events in open-ended text generation. Our approach can be understood as a specially-trained coarse-to-fine algorithm, where an event transition planner provides a "coarse" plot skeleton and a text generator in the second stage refines the skeleton. Experiments on two open-ended text generation tasks demonstrate that our proposed method effectively improves the quality of the generated text, especially in coherence and diversity. The code is available at: \url{https://github.com/qtli/EventPlanforTextGen}. | ['Lingpeng Kong', 'Yuxuan Lai', 'Zhaochun Ren', 'Wei Bi', 'Piji Li', 'Qintong Li'] | 2022-04-20 | null | https://aclanthology.org/2022.findings-acl.269 | https://aclanthology.org/2022.findings-acl.269.pdf | findings-acl-2022-5 | ['story-completion'] | ['natural-language-processing'] | [ 2.77900934e-01 6.68938577e-01 -6.86142519e-02 -2.26368636e-01
-6.79512262e-01 -5.61511278e-01 1.11794174e+00 1.04158446e-01
4.99719866e-02 1.10699475e+00 8.99723530e-01 -2.31078893e-01
2.86052767e-02 -9.49033618e-01 -6.33868277e-01 -3.22648138e-01
2.50260562e-01 6.37852073e-01 -1.52345508e-01 -5.17444670e-01
4.21098232e-01 -8.47848579e-02 -1.32545066e+00 4.65022832e-01
1.15471745e+00 3.35075140e-01 4.65952426e-01 8.55952144e-01
-3.24626356e-01 9.13881123e-01 -7.33467340e-01 -4.95350033e-01
-1.81810215e-01 -1.14245033e+00 -9.65851605e-01 8.30650479e-02
-3.17449212e-01 -4.18350875e-01 -3.92504424e-01 6.30293250e-01
5.18522441e-01 4.23695028e-01 9.85731959e-01 -1.15450561e+00
-7.41539598e-01 1.30486262e+00 -4.27759707e-01 4.56771106e-02
6.84331596e-01 1.29151300e-01 1.25730205e+00 -9.09965694e-01
8.71543705e-01 1.12540221e+00 3.23765427e-01 7.92656720e-01
-1.13206291e+00 -3.65039676e-01 1.76997110e-01 -7.41797015e-02
-1.03365552e+00 -5.45721233e-01 8.01307559e-01 -4.47733521e-01
8.09740365e-01 2.34115884e-01 7.17540026e-01 1.54747450e+00
3.33208144e-01 8.33873391e-01 6.62147939e-01 -6.14727199e-01
9.20098722e-02 -1.92915946e-01 -3.06612700e-01 4.52833503e-01
-2.50121728e-02 1.35871515e-01 -8.76932621e-01 4.74930555e-02
9.81441438e-01 -2.94904441e-01 -1.67103693e-01 3.25589806e-01
-1.56744373e+00 9.38246727e-01 3.19345057e-01 3.64936858e-01
-5.22978961e-01 1.25520542e-01 2.82854378e-01 -3.11466330e-03
6.18203759e-01 6.49126232e-01 -1.21230058e-01 -2.62567222e-01
-1.05007994e+00 7.03238785e-01 8.87483895e-01 9.95458186e-01
4.46478248e-01 1.40466884e-01 -6.45019233e-01 8.58890593e-01
1.77810952e-01 6.63375529e-03 6.75974548e-01 -5.63006699e-01
7.70090938e-01 4.23188686e-01 2.37599581e-01 -6.96189046e-01
-3.05935681e-01 -2.67031491e-01 -1.03295875e+00 -1.45486565e-02
4.93752003e-01 -7.09176958e-01 -6.49235427e-01 1.74354398e+00
3.41941714e-01 1.55024966e-02 6.51203617e-02 6.38801515e-01
9.09191072e-01 1.18099701e+00 -5.63790947e-02 -4.23568368e-01
1.26118779e+00 -1.04199421e+00 -1.04539156e+00 -2.22511500e-01
3.32337201e-01 -7.78590798e-01 1.21604097e+00 1.30105004e-01
-1.37509823e+00 -4.73299980e-01 -9.45677578e-01 -2.89338827e-01
-6.95809796e-02 3.43370676e-01 5.37402093e-01 -5.80801107e-02
-8.21404457e-01 7.21683383e-01 -6.31831288e-01 -1.28960565e-01
3.84174436e-01 -4.77077961e-02 9.32264179e-02 6.13012254e-01
-1.35840213e+00 7.23052263e-01 6.10767543e-01 1.37345985e-01
-8.98942947e-01 -5.07735610e-01 -6.86643481e-01 8.75004008e-02
5.86795866e-01 -9.92347121e-01 1.68802381e+00 -6.76377654e-01
-1.80154550e+00 5.12720287e-01 -2.51497000e-01 -3.80387068e-01
6.31066859e-01 -4.02101755e-01 3.90438512e-02 -1.47391856e-01
1.77759513e-01 9.16001856e-01 7.55425513e-01 -1.13348079e+00
-6.48096800e-01 1.18886381e-02 -6.34536669e-02 6.71382129e-01
-2.96556242e-02 -3.33119333e-02 -1.25973881e-03 -1.12587142e+00
-1.84376389e-01 -7.37865925e-01 -3.82768303e-01 -4.52102840e-01
-8.38487506e-01 -4.99037623e-01 3.25948298e-01 -6.72798336e-01
1.42870593e+00 -1.65364683e+00 3.75954181e-01 -2.90306568e-01
8.48040134e-02 -2.48377338e-01 1.49101177e-02 9.56011534e-01
-9.91440639e-02 1.96106747e-01 -2.18449056e-01 -3.46346706e-01
1.78372458e-01 -2.20508769e-01 -8.31343651e-01 -1.38116598e-01
3.59373271e-01 1.11180937e+00 -1.05019617e+00 -4.90044564e-01
3.08092590e-02 2.39740610e-01 -3.42028201e-01 5.52989244e-01
-9.60776627e-01 6.72087491e-01 -5.47710717e-01 1.51464120e-01
-3.42863612e-03 -3.08486164e-01 8.67153928e-02 3.24734926e-01
-1.64254457e-01 6.64196551e-01 -1.03416622e+00 1.98083234e+00
-3.59724283e-01 7.47248411e-01 -4.86772388e-01 -5.26242137e-01
1.06877172e+00 6.89487278e-01 -1.36894351e-02 -2.51524419e-01
3.56348246e-01 -3.29782777e-02 -1.05161726e-01 -4.48248178e-01
1.10670960e+00 -2.53061086e-01 -2.52692133e-01 9.56225336e-01
5.15554622e-02 -6.25566363e-01 5.32350481e-01 4.28423375e-01
7.98687279e-01 5.63926518e-01 7.08935499e-01 1.30647272e-01
1.77626520e-01 6.56564087e-02 2.76735872e-01 6.09687746e-01
4.16386604e-01 8.55785310e-01 8.12120438e-01 -3.11316758e-01
-1.35509384e+00 -9.12353218e-01 3.01842332e-01 1.03316975e+00
-8.09938833e-02 -6.24729931e-01 -8.65577996e-01 -4.23757911e-01
-6.29335344e-01 1.18693340e+00 -6.02033675e-01 1.35855660e-01
-5.75972557e-01 -6.39073610e-01 6.06216073e-01 4.23313349e-01
2.21883073e-01 -1.65643048e+00 -5.52453101e-01 4.73512113e-01
-8.66427660e-01 -7.05971718e-01 -6.44478500e-01 4.95421812e-02
-9.16996539e-01 -6.07243359e-01 -7.99330831e-01 -7.80596972e-01
5.85819662e-01 -1.45130008e-01 1.10793471e+00 2.40939762e-02
4.79659215e-02 -4.63257879e-01 -5.15236139e-01 -5.34603953e-01
-8.60667050e-01 3.52745414e-01 -3.81705850e-01 -1.30581245e-01
-2.83963650e-01 -7.34412670e-01 -4.13930446e-01 3.40947397e-02
-9.49822962e-01 9.96693671e-01 4.32938159e-01 1.06447029e+00
3.77527773e-01 -2.88751069e-02 9.76411641e-01 -8.90136123e-01
1.26522815e+00 -5.71696401e-01 -2.55485088e-01 1.27956763e-01
-4.06808048e-01 2.33531341e-01 8.01457107e-01 -5.53795695e-01
-1.54314697e+00 -1.92832183e-02 -1.83983997e-01 1.56275630e-01
-2.72806972e-01 5.81225693e-01 1.79351098e-03 1.01910269e+00
9.82508063e-01 2.75551409e-01 -3.24756950e-01 -1.05859526e-01
8.24424088e-01 4.47681397e-01 6.64087415e-01 -6.63942456e-01
8.11807394e-01 1.52148142e-01 -3.76206696e-01 -4.71852720e-01
-7.66892493e-01 2.60793805e-01 -5.76228380e-01 -4.10205066e-01
8.47996116e-01 -8.05625975e-01 -3.75793308e-01 4.04615581e-01
-1.61477685e+00 -7.84283757e-01 -6.19577110e-01 1.09099738e-01
-8.78142595e-01 3.81603539e-02 -6.57433331e-01 -7.07240403e-01
-5.47826231e-01 -7.08477557e-01 9.62539256e-01 5.63080549e-01
-8.12725246e-01 -9.83130038e-01 2.72860557e-01 1.99499562e-01
1.96943916e-02 5.55244863e-01 8.87637436e-01 -5.10966539e-01
-4.68274713e-01 8.22139457e-02 1.02482431e-01 -2.79415846e-01
1.00268126e-01 2.29718760e-01 -7.18711197e-01 2.84556329e-01
-1.91866294e-01 -5.57723701e-01 6.53729498e-01 4.42411095e-01
8.77772272e-01 -6.61048949e-01 -2.48025909e-01 2.77688533e-01
8.39258254e-01 3.01694632e-01 7.61836946e-01 1.14739932e-01
4.95359480e-01 7.71293700e-01 6.14815295e-01 8.69253576e-01
4.81183678e-01 5.01707375e-01 9.65719298e-02 -1.78741012e-02
-3.24345469e-01 -9.56730664e-01 3.05330366e-01 8.49897087e-01
-2.04708576e-01 -8.12406719e-01 -7.42277324e-01 6.13621831e-01
-2.01538110e+00 -1.32132316e+00 -2.87602097e-01 1.65077817e+00
1.36411703e+00 2.00365454e-01 2.06929892e-02 2.32601866e-01
8.02797318e-01 5.26177227e-01 -3.76905590e-01 -2.96803951e-01
-6.13092072e-02 1.72436923e-01 -3.81916016e-01 6.50930047e-01
-6.97454154e-01 1.15078080e+00 5.49522305e+00 1.01380694e+00
-7.70787656e-01 -6.98530599e-02 7.81538010e-01 -2.80746669e-01
-5.39623737e-01 1.35753557e-01 -7.29693711e-01 3.79623413e-01
8.27367425e-01 -5.95140398e-01 4.68415439e-01 4.91214275e-01
7.75333107e-01 -2.12300092e-01 -1.19334435e+00 5.49328208e-01
-1.91676896e-02 -1.75474238e+00 2.34207213e-01 -1.71134695e-01
9.69611526e-01 -6.46089315e-01 -2.37540051e-01 2.24000275e-01
6.73384964e-01 -1.06800389e+00 1.04379213e+00 7.01698482e-01
9.12041008e-01 -6.36409223e-01 1.12182334e-01 6.39358759e-01
-1.13498592e+00 1.92672104e-01 9.85890161e-03 -4.42615926e-01
6.60726368e-01 4.65822965e-01 -1.29850209e+00 6.00627244e-01
4.21821289e-02 5.38202286e-01 -3.23296636e-01 6.44246161e-01
-9.33674395e-01 5.91771960e-01 1.45323172e-01 -3.97198051e-01
-4.69757356e-02 -1.54593006e-01 7.67163157e-01 1.09598064e+00
4.50635284e-01 4.34576809e-01 -1.60578191e-01 1.21620655e+00
-1.40424162e-01 7.61090294e-02 -6.90748453e-01 -2.03793108e-01
4.93312210e-01 1.21208346e+00 -1.01472890e+00 -2.27132156e-01
1.40838057e-01 1.07052088e+00 3.75964552e-01 4.14423913e-01
-9.66028333e-01 -6.04959965e-01 -4.20373008e-02 8.89269412e-02
1.35543253e-02 -1.57800347e-01 -6.86492085e-01 -1.16871858e+00
-4.96946350e-02 -9.64197874e-01 1.89962775e-01 -1.21290183e+00
-9.03274179e-01 8.45673203e-01 -1.02106752e-02 -1.02106142e+00
-8.57547104e-01 1.81117028e-01 -1.12617075e+00 7.90424347e-01
-7.58636773e-01 -1.03043604e+00 -2.81182498e-01 3.41541260e-01
1.18441498e+00 -2.05155984e-02 7.74897158e-01 -2.65130460e-01
-5.49517393e-01 2.90917248e-01 -2.26619363e-01 1.92860477e-02
4.97517616e-01 -1.23434293e+00 8.05553734e-01 1.01882601e+00
3.87994409e-01 3.76971036e-01 9.56733048e-01 -1.07325006e+00
-7.74587214e-01 -9.00973022e-01 1.23780644e+00 -1.90769389e-01
6.72316790e-01 -5.99619329e-01 -7.32401252e-01 6.82067156e-01
8.11855137e-01 -8.68593156e-01 3.66268039e-01 6.22218773e-02
1.47608414e-01 3.44639093e-01 -5.46076655e-01 1.15102339e+00
1.13611388e+00 -1.24475881e-01 -9.01257992e-01 4.90664124e-01
9.92043793e-01 -8.06098342e-01 -4.06196296e-01 -4.26455252e-02
3.94280761e-01 -7.32059836e-01 5.80242515e-01 -5.08329749e-01
1.28339279e+00 -1.79248124e-01 5.05167663e-01 -1.65772665e+00
-8.03030208e-02 -1.35700059e+00 -1.23125769e-01 1.41923475e+00
7.68510461e-01 -3.22202295e-01 5.47486365e-01 2.47409180e-01
-2.91946530e-01 -8.43724489e-01 -5.03189683e-01 -2.82163620e-01
-1.41427908e-02 -2.15760276e-01 6.30591333e-01 7.34925628e-01
3.93588066e-01 9.28540945e-01 -6.10468328e-01 -2.56347775e-01
1.93344399e-01 1.58560306e-01 8.88593376e-01 -9.64599252e-01
-3.94736528e-01 -5.87942362e-01 5.34658492e-01 -1.16292846e+00
6.92768469e-02 -8.87895703e-01 3.94840866e-01 -1.99729323e+00
1.41523764e-01 -2.41411373e-01 6.10352695e-01 4.45708841e-01
-4.81606185e-01 -2.58473277e-01 2.36437589e-01 2.64498442e-01
-2.43466124e-01 9.84898865e-01 1.55170965e+00 1.05093457e-01
-6.46105528e-01 1.71302602e-01 -8.67174149e-01 5.92036128e-01
8.71034980e-01 -4.91760671e-01 -6.14596963e-01 -2.82190740e-01
5.85392118e-01 7.77142465e-01 2.42523298e-01 -7.49005675e-01
3.05439115e-01 -4.77590650e-01 3.19116831e-01 -7.57549584e-01
2.15210348e-01 1.46003827e-01 3.70427012e-01 2.61000752e-01
-8.33032310e-01 1.49535298e-01 1.14670955e-02 3.71897131e-01
-1.56212449e-01 -3.95354718e-01 3.94036174e-01 -2.58616537e-01
-1.15131415e-01 1.15127169e-01 -6.80728793e-01 3.17954183e-01
8.40094924e-01 -6.68769479e-02 -4.43254709e-01 -8.15496027e-01
-6.92389846e-01 1.81590661e-01 9.73587856e-02 4.84379321e-01
5.77986538e-01 -1.28467536e+00 -1.09135211e+00 -1.98611945e-01
-2.68338829e-01 4.19987649e-01 2.61539370e-01 3.77410889e-01
-4.49114442e-01 3.74548256e-01 -1.47020727e-01 -1.17056541e-01
-8.64296079e-01 1.22664548e-01 3.97301689e-02 -6.66697264e-01
-6.38091743e-01 8.48894119e-01 3.13121468e-01 -1.29118398e-01
1.29254729e-01 -3.01529437e-01 -3.11394125e-01 2.79270321e-01
6.13961399e-01 2.84734935e-01 -3.85583580e-01 -2.27058515e-01
3.68955046e-01 -2.88021490e-02 -5.41447662e-02 -7.81532049e-01
1.34768116e+00 -1.80758372e-01 7.71695226e-02 6.53763592e-01
3.38786513e-01 -4.10943441e-02 -1.45817339e+00 3.79636399e-02
-6.98690712e-02 -1.41700646e-02 -3.71312886e-01 -8.44333172e-01
-5.18820703e-01 7.45786071e-01 -4.43643987e-01 4.63317573e-01
9.77257907e-01 -6.01437427e-02 9.00130987e-01 1.91397667e-01
4.67484333e-02 -9.73781884e-01 5.13054490e-01 7.36481488e-01
1.53007233e+00 -8.05504978e-01 -3.62751931e-02 -2.99996793e-01
-1.00293946e+00 1.15213561e+00 7.05891073e-01 -1.32933542e-01
3.33150700e-02 2.22510919e-01 -2.31615990e-01 -6.25560507e-02
-1.28012156e+00 -9.12713446e-03 1.44940853e-01 3.28982860e-01
6.97222412e-01 1.32782251e-01 -6.56252265e-01 7.42168128e-01
-8.75354767e-01 4.08634506e-02 9.60150898e-01 6.81863129e-01
-3.99520397e-01 -1.12223065e+00 -3.88222277e-01 3.73001426e-01
-2.60472327e-01 -1.70948327e-01 -5.21736324e-01 6.17792666e-01
-6.53208941e-02 1.00327802e+00 -4.99262773e-02 -1.78057715e-01
1.27600268e-01 1.64016724e-01 2.90873915e-01 -8.85355890e-01
-7.58993924e-01 2.70766497e-01 3.61570507e-01 -2.04476029e-01
-1.20601943e-02 -7.89608240e-01 -1.55743814e+00 -2.80205369e-01
-3.03803086e-01 1.55252308e-01 4.27046150e-01 8.57268274e-01
2.64276206e-01 9.38312829e-01 6.00207627e-01 -1.05842757e+00
-3.59255195e-01 -1.35097742e+00 -2.09712476e-01 2.68895596e-01
7.06411675e-02 -3.86981517e-01 -9.88019332e-02 5.48114955e-01] | [11.72531795501709, 8.928329467773438] |
5cc4c94f-6a11-4817-8de1-0e35ca8cae8c | sensenet-neural-keyphrase-generation-with | 2012.06754 | null | https://arxiv.org/abs/2012.06754v1 | https://arxiv.org/pdf/2012.06754v1.pdf | SenSeNet: Neural Keyphrase Generation with Document Structure | Keyphrase Generation (KG) is the task of generating central topics from a given document or literary work, which captures the crucial information necessary to understand the content. Documents such as scientific literature contain rich meta-sentence information, which represents the logical-semantic structure of the documents. However, previous approaches ignore the constraints of document logical structure, and hence they mistakenly generate keyphrases from unimportant sentences. To address this problem, we propose a new method called Sentence Selective Network (SenSeNet) to incorporate the meta-sentence inductive bias into KG. In SenSeNet, we use a straight-through estimator for end-to-end training and incorporate weak supervision in the training of the sentence selection module. Experimental results show that SenSeNet can consistently improve the performance of major KG models based on seq2seq framework, which demonstrate the effectiveness of capturing structural information and distinguishing the significance of sentences in KG task. | ['Xuanjing Huang', 'Qi Zhang', 'Xiaoyu Xing', 'Bingning Wang', 'Zhengyan Li', 'Yichao Luo'] | 2020-12-12 | null | null | null | null | ['keyphrase-generation'] | ['natural-language-processing'] | [ 4.67514366e-01 4.28602785e-01 -2.59050906e-01 -3.85525703e-01
-1.03618622e+00 -4.89544094e-01 6.71092093e-01 2.12276220e-01
-4.53340262e-01 1.08276558e+00 1.05989277e+00 -2.00015351e-01
2.30981022e-01 -8.83011758e-01 -8.89814794e-01 -4.15513784e-01
4.45888042e-01 7.80381933e-02 3.67176645e-02 -4.09882575e-01
7.01698780e-01 -2.29028940e-01 -1.27990210e+00 6.52743578e-01
1.15069842e+00 5.38981557e-01 6.02629364e-01 7.93038249e-01
-5.79181850e-01 1.03874147e+00 -8.80053341e-01 -4.41995502e-01
-1.94988146e-01 -8.25796306e-01 -9.62796628e-01 -2.10639611e-01
5.17618120e-01 -1.92708716e-01 -1.58155501e-01 1.23175049e+00
7.85918951e-01 9.83273312e-02 3.78971130e-01 -9.18780506e-01
-6.12761557e-01 1.46530449e+00 -2.73459405e-01 3.03819776e-01
2.80278563e-01 -1.06424756e-01 1.50474072e+00 -9.55117106e-01
8.23893845e-01 1.35164833e+00 3.99024934e-01 6.40080810e-01
-9.01837289e-01 -4.84880239e-01 2.73417741e-01 2.71368604e-02
-1.03227377e+00 -6.52997136e-01 8.87335658e-01 -7.26791248e-02
8.46609533e-01 2.80063987e-01 4.01071161e-01 1.39188588e+00
3.59518111e-01 1.31081450e+00 6.92060232e-01 -4.47711319e-01
1.52728051e-01 7.01856390e-02 1.89580798e-01 5.76715171e-01
2.28189111e-01 -3.52942288e-01 -1.01393378e+00 -1.47304043e-01
2.74548441e-01 -3.41183573e-01 -2.83802360e-01 2.23703116e-01
-1.41204846e+00 7.98814595e-01 1.04788631e-01 1.24363974e-01
-2.92875290e-01 3.55918147e-02 7.41105020e-01 1.40970603e-01
7.73448110e-01 8.15189779e-01 -5.72776616e-01 -2.74901927e-01
-1.07029164e+00 5.60814083e-01 7.51397610e-01 9.81036901e-01
4.86357898e-01 -4.39988002e-02 -8.86535645e-01 6.40524983e-01
8.73542652e-02 5.47074795e-01 7.36375630e-01 -6.46022439e-01
8.56388032e-01 5.65399408e-01 -1.58181444e-01 -7.59448290e-01
-1.15651257e-01 -6.88875914e-01 -9.23129916e-01 -5.94426990e-01
-2.15889215e-01 -4.67048526e-01 -8.89645517e-01 1.64874983e+00
2.01025441e-01 -1.55729055e-01 3.09429944e-01 6.01408958e-01
1.16670084e+00 8.34912121e-01 1.09677181e-01 -2.03712091e-01
1.28769195e+00 -1.10407364e+00 -7.18183875e-01 -3.59722227e-01
6.06704295e-01 -6.87440693e-01 1.28510153e+00 1.53623775e-01
-1.17158830e+00 -4.78998035e-01 -9.35109675e-01 -3.38057846e-01
-1.81159914e-01 3.27680171e-01 4.33764040e-01 3.71431895e-02
-9.16106701e-01 6.20970130e-01 -3.68831217e-01 -4.78646904e-02
3.32789361e-01 -2.35675111e-01 5.97175136e-02 1.75932571e-02
-1.72540379e+00 4.84949827e-01 7.20803022e-01 1.30447760e-01
-8.17279279e-01 -1.06622219e+00 -9.58048522e-01 2.04649091e-01
6.47908568e-01 -1.12947714e+00 1.48189545e+00 -7.61658549e-01
-1.35649884e+00 6.32149339e-01 -4.39753026e-01 -5.01524270e-01
3.09353948e-01 -4.87938046e-01 -1.83071598e-01 2.31970802e-01
5.46152234e-01 6.66780591e-01 7.80445755e-01 -8.39617312e-01
-7.05672383e-01 -9.65916514e-02 2.32463628e-01 4.60875064e-01
-2.57945716e-01 1.37770161e-01 -4.04871970e-01 -1.08316410e+00
-1.28452018e-01 -5.49900234e-01 -3.25444728e-01 -6.81697249e-01
-1.11554551e+00 -4.06681210e-01 3.53405714e-01 -6.56253338e-01
1.37376606e+00 -1.97967076e+00 1.28299385e-01 -1.42748192e-01
1.21102199e-01 -6.15487900e-03 -2.06082672e-01 6.67051256e-01
2.44895324e-01 3.22847992e-01 -2.29635149e-01 -2.71281570e-01
4.73325253e-02 -1.50772497e-01 -7.92799056e-01 -2.54872978e-01
3.25801343e-01 1.09881806e+00 -1.25378287e+00 -5.95676124e-01
-4.32861775e-01 4.62876037e-02 -4.75074798e-01 2.00558156e-01
-7.37971902e-01 1.34514645e-01 -7.51988232e-01 1.85173601e-01
3.69812250e-01 -2.74537474e-01 1.13043264e-02 -1.63032666e-01
-4.28944901e-02 1.20851016e+00 -6.98712170e-01 1.83485734e+00
-5.23412883e-01 4.29205328e-01 -1.27187222e-01 -6.88096344e-01
6.65588140e-01 2.83122718e-01 1.95908159e-01 -5.09986281e-01
-1.30056173e-01 -5.00967093e-02 -2.34573990e-01 -3.71665597e-01
9.87347603e-01 -2.09114313e-01 -2.45695859e-01 6.18945479e-01
-6.35322556e-02 -1.97873369e-01 6.12177491e-01 8.24181199e-01
1.09800410e+00 -6.34362847e-02 1.30287915e-01 -3.24846536e-01
4.35586601e-01 4.83581759e-02 5.44015825e-01 9.96674955e-01
3.75290066e-01 7.11268127e-01 7.45191753e-01 7.73451254e-02
-8.95622730e-01 -9.08146501e-01 2.98676699e-01 1.05164587e+00
-8.04587454e-02 -8.67568076e-01 -6.99092746e-01 -1.00805676e+00
-1.10202715e-01 1.06654286e+00 -6.14902139e-01 -4.20882940e-01
-6.13935411e-01 -6.90336347e-01 5.89892805e-01 5.56344032e-01
4.58639055e-01 -1.37112117e+00 -1.59306332e-01 3.23546469e-01
-5.00744343e-01 -1.15386927e+00 -7.40811765e-01 -7.43949972e-03
-6.95231318e-01 -7.61141419e-01 -6.01444125e-01 -5.39599657e-01
8.16642165e-01 2.88502574e-01 1.32869422e+00 -2.04573646e-01
-8.80093407e-03 -9.88553371e-03 -6.07455432e-01 -5.43553293e-01
-5.87193489e-01 6.96350276e-01 -2.59720951e-01 -2.83227921e-01
1.06829800e-01 -2.72016644e-01 -4.04681116e-01 -4.58363652e-01
-8.51089656e-01 4.69678909e-01 9.21809733e-01 8.41198623e-01
4.46510971e-01 2.12952152e-01 7.74481893e-01 -1.42334068e+00
1.14850259e+00 -3.26028824e-01 -8.53648484e-02 3.51785511e-01
-6.39576316e-01 4.24143463e-01 8.74497712e-01 1.01613976e-01
-1.21998227e+00 -4.96157229e-01 -3.00962567e-01 1.30555466e-01
2.38067001e-01 9.18547273e-01 -3.28209192e-01 6.38140023e-01
3.51521701e-01 7.44375467e-01 -1.72622517e-01 -4.30809140e-01
3.89055133e-01 5.23886144e-01 5.25195956e-01 -6.33372009e-01
6.94647014e-01 1.83285609e-01 -1.44607157e-01 -7.17940450e-01
-1.67866004e+00 -4.79370862e-01 -3.30172807e-01 1.18641816e-01
5.21702826e-01 -1.01773608e+00 -2.11646765e-01 2.17356920e-01
-1.36024344e+00 -3.62020382e-03 -4.13311869e-01 1.88712373e-01
-1.28105626e-01 3.48678112e-01 -6.12936497e-01 -5.17321348e-01
-9.63163435e-01 -7.49492943e-01 1.42991352e+00 1.42124936e-01
-4.01261181e-01 -8.92678261e-01 -1.25175551e-01 3.36136997e-01
1.44391254e-01 -7.18229339e-02 1.02810216e+00 -5.38273275e-01
-4.72867370e-01 -1.03286253e-02 -9.32802632e-02 5.35295427e-01
1.74611315e-01 -4.53785174e-02 -8.02553713e-01 -7.03981891e-02
-2.35453933e-01 -3.30299377e-01 1.42825902e+00 2.30245054e-01
1.17546761e+00 -7.20960915e-01 -1.13161832e-01 1.96899951e-01
1.10537755e+00 -3.47002327e-01 4.75147784e-01 1.03853315e-01
8.87276888e-01 6.45934343e-01 5.93020141e-01 5.66974998e-01
6.51224136e-01 1.87727407e-01 -6.94171339e-02 -8.20904672e-02
-2.01944768e-01 -8.10435474e-01 8.15058589e-01 1.11840415e+00
6.04943097e-01 -3.94857079e-01 -6.02280736e-01 6.59026861e-01
-1.67514479e+00 -1.17188680e+00 -7.01260716e-02 1.68750167e+00
1.48492491e+00 4.54479188e-01 -1.99505851e-01 -6.21802174e-02
6.07532799e-01 5.93137264e-01 -3.88890624e-01 -2.12155670e-01
-3.11681122e-01 4.78777550e-02 3.51489753e-01 4.71978337e-01
-9.03636098e-01 1.21827567e+00 6.11053562e+00 9.91826177e-01
-1.04827929e+00 -1.38029009e-01 4.29901451e-01 -1.78810120e-01
-8.72760892e-01 -2.02047359e-02 -1.32330799e+00 6.39416456e-01
8.94506872e-01 -6.51543260e-01 -4.25709262e-02 7.53215909e-01
5.56464314e-01 -1.29422054e-01 -9.51568782e-01 4.05301273e-01
2.29638651e-01 -1.56998384e+00 5.49608350e-01 -3.50215286e-01
8.08065474e-01 -4.13299128e-02 -5.41644879e-02 3.44306082e-01
5.11641383e-01 -7.11341977e-01 8.65456402e-01 4.74103808e-01
5.70109010e-01 -7.45530784e-01 7.15529680e-01 5.16148806e-01
-7.68206418e-01 2.12863818e-01 -4.75073993e-01 -1.96963362e-02
2.67552108e-01 1.16235757e+00 -1.27540135e+00 6.48689330e-01
3.62951607e-01 8.78377318e-01 -5.98784089e-01 6.21298790e-01
-8.26451242e-01 9.80790257e-01 9.04036313e-02 -4.08008188e-01
3.77202600e-01 2.68160850e-01 6.12895966e-01 1.34978580e+00
2.29527086e-01 -1.21717297e-01 2.02591017e-01 1.02889693e+00
-4.79839712e-01 1.36982620e-01 -4.04249310e-01 -4.90450025e-01
5.20785749e-01 1.23540938e+00 -6.47905827e-01 -5.71201622e-01
-1.22929983e-01 9.68408763e-01 2.15356976e-01 2.56062806e-01
-3.20810288e-01 -6.62460566e-01 5.25331974e-01 -8.91544446e-02
3.97252053e-01 3.21214460e-02 -4.65355605e-01 -1.29301393e+00
3.60566080e-01 -8.72935712e-01 3.17900836e-01 -8.33100736e-01
-1.24626005e+00 2.90068239e-01 -1.45670459e-01 -7.92302608e-01
-3.93379569e-01 -1.97054431e-01 -7.29083002e-01 8.98540378e-01
-1.64254260e+00 -1.07037699e+00 1.61382020e-01 -4.23262864e-02
8.73823225e-01 2.68302509e-03 4.91242111e-01 -2.39563912e-01
-4.87118483e-01 4.52537984e-01 1.10927463e-01 2.07878396e-01
7.86172807e-01 -1.54435790e+00 8.71627390e-01 9.84239280e-01
1.48620568e-02 8.85776758e-01 7.54239798e-01 -9.44306374e-01
-1.30794835e+00 -1.34501016e+00 1.56464899e+00 -4.03778046e-01
5.38793206e-01 -6.42041624e-01 -5.24411261e-01 2.96408504e-01
3.76013905e-01 -5.70135951e-01 6.50091708e-01 3.60687166e-01
-1.96650401e-01 -1.44315019e-01 -5.67543805e-01 8.20891500e-01
1.02767301e+00 -6.82756543e-01 -7.51325786e-01 3.56368214e-01
1.42654729e+00 -3.27721447e-01 -3.79150063e-01 3.04336548e-01
2.12867782e-01 -5.44437408e-01 7.38058567e-01 -7.99527884e-01
1.17661750e+00 -1.03591621e-01 2.23166108e-01 -1.63430130e+00
-2.97603607e-01 -6.94410026e-01 -1.84464753e-01 1.48572302e+00
7.65106678e-01 -1.44781783e-01 7.90507734e-01 1.96074665e-01
-4.15886581e-01 -8.03892016e-01 -4.55711722e-01 -5.03667355e-01
-1.52367884e-02 -3.58634144e-01 7.71978557e-01 8.54834020e-01
1.68846831e-01 1.06284153e+00 -2.79563457e-01 -1.32639527e-01
4.69849080e-01 2.98430115e-01 5.85165858e-01 -9.78302717e-01
-1.62022904e-01 -3.89990181e-01 2.13623971e-01 -1.13388455e+00
5.79904377e-01 -1.07870054e+00 4.14213538e-01 -1.77920938e+00
5.08679628e-01 1.50675449e-04 -2.89544404e-01 3.50463539e-01
-9.44217265e-01 -2.20570236e-01 -2.14866418e-02 -7.16180876e-02
-7.43058980e-01 9.95230198e-01 1.57448196e+00 -3.06925386e-01
1.67959277e-02 4.28557061e-02 -1.41237795e+00 4.75893080e-01
6.87800586e-01 -3.98362905e-01 -7.62892187e-01 -5.27050972e-01
8.00960422e-01 -1.08836353e-01 2.74045229e-01 -6.14505649e-01
2.71002203e-01 -2.48978764e-01 2.21204609e-01 -7.55795479e-01
-1.66477427e-01 -1.63821846e-01 -6.22791231e-01 1.52197450e-01
-1.00321841e+00 2.53881719e-02 6.85270056e-02 5.00391603e-01
-3.64985585e-01 -4.30405527e-01 2.02559575e-01 -5.00133812e-01
-6.35870576e-01 1.90538749e-01 -3.19766164e-01 6.79454088e-01
3.05791557e-01 1.55142233e-01 -3.97917807e-01 -3.79444540e-01
-1.09673485e-01 3.05241883e-01 8.80114436e-02 5.66882074e-01
8.03257227e-01 -1.11113477e+00 -1.11311531e+00 9.29470956e-02
1.24664895e-01 3.71999472e-01 9.57902521e-02 4.95913327e-01
-9.84884873e-02 6.32675886e-01 3.72208059e-01 -4.66778548e-03
-1.08645439e+00 1.83796555e-01 -1.77142709e-01 -4.44483131e-01
-5.93717456e-01 1.11387622e+00 2.70804554e-01 -3.82188022e-01
5.27191758e-02 -5.30922651e-01 -1.93584070e-01 1.26662806e-01
7.35745430e-01 2.94955093e-02 1.33534178e-01 -1.97906122e-01
-4.23330665e-02 -1.12594709e-01 -6.17386878e-01 -2.85973340e-01
1.26991105e+00 -5.75231425e-02 -4.57156837e-01 5.44733942e-01
1.03845620e+00 1.97477981e-01 -8.61257076e-01 -3.58391881e-01
1.79236159e-01 -1.06096461e-01 2.58215994e-01 -9.78904605e-01
-6.26284122e-01 7.23604321e-01 -4.80381399e-01 -7.91415125e-02
9.12254214e-01 2.11321320e-02 1.20797455e+00 5.31201065e-01
9.97647494e-02 -1.35583103e+00 1.23355068e-01 9.34869766e-01
9.81126845e-01 -9.28917110e-01 9.66253728e-02 -4.65987414e-01
-8.23783815e-01 8.66351962e-01 7.76690125e-01 2.67257720e-01
2.87878811e-01 1.66040063e-01 -7.45713785e-02 -1.94350481e-01
-1.22756195e+00 -5.44209294e-02 3.28273058e-01 1.24123342e-01
6.80210650e-01 -1.78778425e-01 -4.53501850e-01 8.31030190e-01
-6.91525400e-01 -1.61364451e-01 5.53433001e-01 9.06941533e-01
-5.71060002e-01 -1.00940204e+00 2.14713681e-02 6.10249877e-01
-7.94024765e-01 -7.93644190e-01 -7.03895926e-01 1.54085711e-01
-1.70227945e-01 6.36203587e-01 -1.31501123e-01 -2.74419248e-01
1.58650920e-01 1.53266340e-01 2.04345271e-01 -1.02899396e+00
-6.79118335e-01 -1.42247960e-01 4.24811214e-01 -2.12953255e-01
-1.74920127e-01 -5.69094419e-01 -1.28212500e+00 -2.44532809e-01
-2.04902723e-01 6.23399615e-01 4.12700266e-01 1.11833751e+00
7.05520034e-01 9.09645796e-01 6.30919576e-01 -2.80599952e-01
-9.15275037e-01 -1.33384168e+00 -4.67797518e-01 3.11087966e-01
3.77107829e-01 4.08238582e-02 -1.18868761e-01 2.21111566e-01] | [12.242025375366211, 9.068913459777832] |
cfcd2be5-93e7-4ae5-a809-cce413ff2044 | decodingtrust-a-comprehensive-assessment-of | 2306.11698 | null | https://arxiv.org/abs/2306.11698v1 | https://arxiv.org/pdf/2306.11698v1.pdf | DecodingTrust: A Comprehensive Assessment of Trustworthiness in GPT Models | Generative Pre-trained Transformer (GPT) models have exhibited exciting progress in capabilities, capturing the interest of practitioners and the public alike. Yet, while the literature on the trustworthiness of GPT models remains limited, practitioners have proposed employing capable GPT models for sensitive applications to healthcare and finance - where mistakes can be costly. To this end, this work proposes a comprehensive trustworthiness evaluation for large language models with a focus on GPT-4 and GPT-3.5, considering diverse perspectives - including toxicity, stereotype bias, adversarial robustness, out-of-distribution robustness, robustness on adversarial demonstrations, privacy, machine ethics, and fairness. Based on our evaluations, we discover previously unpublished vulnerabilities to trustworthiness threats. For instance, we find that GPT models can be easily misled to generate toxic and biased outputs and leak private information in both training data and conversation history. We also find that although GPT-4 is usually more trustworthy than GPT-3.5 on standard benchmarks, GPT-4 is more vulnerable given jailbreaking system or user prompts, potentially due to the reason that GPT-4 follows the (misleading) instructions more precisely. Our work illustrates a comprehensive trustworthiness evaluation of GPT models and sheds light on the trustworthiness gaps. Our benchmark is publicly available at https://decodingtrust.github.io/. | ['Bo Li', 'Dawn Song', 'Sanmi Koyejo', 'Yu Cheng', 'Zinan Lin', 'Dan Hendrycks', 'Mantas Mazeika', 'Simran Arora', 'Sang T. Truong', 'Rylan Schaeffer', 'Ritik Dutta', 'Zidi Xiong', 'Chejian Xu', 'Chenhui Zhang', 'Mintong Kang', 'Chulin Xie', 'Hengzhi Pei', 'Weixin Chen', 'Boxin Wang'] | 2023-06-20 | null | null | null | null | ['adversarial-robustness', 'ethics'] | ['adversarial', 'miscellaneous'] | [-1.23950854e-01 5.02372205e-01 -6.44508079e-02 -3.66201282e-01
-9.95347738e-01 -1.08279455e+00 7.17866242e-01 4.67331707e-02
1.07914330e-02 8.18495810e-01 2.02263042e-01 -8.12479258e-01
2.20960066e-01 -5.05748570e-01 -9.42700028e-01 -5.02580881e-01
-7.59161934e-02 2.67564297e-01 -3.53861302e-01 -3.01277667e-01
1.11356759e-02 8.54518116e-02 -4.37702000e-01 2.35718757e-01
6.42249167e-01 7.99122691e-01 -9.11293805e-01 5.07228076e-01
7.82664061e-01 1.05193675e+00 -7.23015189e-01 -1.61731696e+00
3.46703202e-01 -2.40181178e-01 -7.89712369e-01 -6.46830976e-01
1.90188289e-01 -6.78373754e-01 -3.31941932e-01 1.14500165e+00
8.29465151e-01 -5.44862866e-01 3.33139896e-01 -1.88172150e+00
-1.00852358e+00 1.21456814e+00 -1.10205896e-01 -6.52515665e-02
4.06341404e-01 6.96491778e-01 9.92288530e-01 -2.71852136e-01
4.64620650e-01 1.28153324e+00 1.07514703e+00 9.41370010e-01
-9.50528562e-01 -1.22751009e+00 -2.43046775e-01 -2.93176621e-01
-1.18395460e+00 -7.53673434e-01 3.43413681e-01 -2.39156321e-01
9.14479852e-01 4.61224586e-01 4.14962173e-01 2.34770632e+00
6.30355656e-01 5.80742478e-01 1.31473112e+00 1.89648673e-01
2.78976858e-01 6.57090545e-01 5.99898212e-02 4.67322528e-01
4.97252077e-01 5.58002889e-01 -4.81995523e-01 -9.81016815e-01
2.20755577e-01 -1.20111287e-01 -2.96997845e-01 2.08078548e-01
-8.98938954e-01 1.00722742e+00 1.01162210e-01 2.19439417e-01
-8.72740746e-02 3.95795494e-01 7.27090418e-01 4.87262726e-01
5.67161620e-01 4.39914435e-01 -4.18969393e-01 -3.73716116e-01
-6.17329597e-01 3.96676779e-01 1.08049273e+00 1.04896522e+00
2.30792649e-02 -3.90681773e-02 -3.23206604e-01 1.73479751e-01
4.24587458e-01 7.24595666e-01 2.07469925e-01 -8.05274665e-01
5.42895496e-01 3.00023351e-02 1.29402682e-01 -1.16480267e+00
-7.12865368e-02 -4.16150928e-01 -6.45636499e-01 -1.43327743e-01
3.30776721e-01 -3.53081495e-01 -3.82056892e-01 1.85685241e+00
-7.39850029e-02 1.14156105e-01 2.44366556e-01 5.23991704e-01
7.91428983e-01 3.53702307e-01 3.03314537e-01 4.73996140e-02
1.33136010e+00 -5.02398968e-01 -5.20693600e-01 -1.30843297e-01
7.55569518e-01 -5.98703206e-01 1.03137159e+00 3.25950712e-01
-1.06248450e+00 2.80561596e-01 -8.92098486e-01 1.13128103e-01
-1.61337882e-01 -5.66405892e-01 6.50439024e-01 1.45209873e+00
-1.17953384e+00 6.18095458e-01 -5.28018415e-01 -3.20053577e-01
7.94169545e-01 1.82798102e-01 -5.04871249e-01 8.60482976e-02
-1.77277839e+00 1.13412440e+00 -2.13312626e-01 -1.16135560e-01
-1.40128577e+00 -6.68465137e-01 -6.64448142e-01 -1.47694394e-01
1.34453354e-02 -7.45552182e-01 1.46007156e+00 -6.25727236e-01
-1.50175214e+00 7.19341397e-01 2.54950285e-01 -8.11930358e-01
9.51681435e-01 -4.69368771e-02 -4.48240072e-01 -1.00037977e-01
-1.85661595e-02 1.29608259e-01 8.18856597e-01 -1.00842154e+00
9.59257707e-02 -1.95832625e-01 1.26100942e-01 -1.71227306e-01
-4.15111482e-01 5.54186165e-01 2.75470704e-01 -7.33100057e-01
-6.86139882e-01 -9.94812548e-01 -1.01671610e-02 -3.33278239e-01
-9.20092642e-01 -3.55433254e-03 7.36398399e-01 -7.51573205e-01
1.17700315e+00 -1.89644289e+00 -4.93310064e-01 2.92827576e-01
4.49920326e-01 3.19370568e-01 3.18158977e-02 5.73424041e-01
6.78598285e-02 9.54152167e-01 -5.29182218e-02 -6.05176628e-01
2.93580055e-01 -5.28004542e-02 -6.43764913e-01 7.39404559e-01
-6.03040755e-02 1.26122117e+00 -9.26407993e-01 -3.10150951e-01
-2.83445895e-01 6.11957908e-01 -5.76396406e-01 9.00102332e-02
3.46293412e-02 4.61710751e-01 -5.07841587e-01 8.97601485e-01
5.36755621e-01 -2.92637378e-01 6.19643889e-02 2.03466386e-01
4.58528250e-01 5.27494550e-01 -2.05019861e-01 1.10848832e+00
-2.88727999e-01 4.81333762e-01 -7.80571997e-02 -3.00069660e-01
5.98801255e-01 7.55369961e-01 -1.60248712e-01 -5.87938905e-01
6.37640536e-01 2.09972709e-01 -4.64592874e-02 -3.07956129e-01
4.20930982e-01 -4.46691006e-01 -4.78209168e-01 1.11135423e+00
-3.01007628e-02 -1.36448920e-01 -6.51031733e-01 5.27093530e-01
1.20552063e+00 -2.98190385e-01 3.16042006e-02 -1.24850228e-01
-1.50458306e-01 -3.99980068e-01 3.66889119e-01 8.93822014e-01
-6.47691548e-01 3.81383479e-01 7.39842474e-01 -1.90764323e-01
-1.11819303e+00 -7.59510577e-01 1.07625360e-02 6.83679760e-01
-2.01326773e-01 -5.90056717e-01 -1.05694783e+00 -1.05738807e+00
3.90631296e-02 1.03109002e+00 -7.41375029e-01 -5.46394825e-01
-1.04721054e-01 -8.01306725e-01 1.56092584e+00 1.97306171e-01
4.43378359e-01 -7.31995821e-01 -3.31406444e-01 -4.41207886e-02
-3.78995508e-01 -1.07872629e+00 -6.24287724e-01 -2.46984601e-01
-5.56650579e-01 -9.40171063e-01 -3.63875449e-01 -6.78656697e-02
4.33537543e-01 -1.39181241e-01 1.08032930e+00 1.87680990e-01
2.46016026e-01 4.22240287e-01 -3.07273835e-01 -7.45692074e-01
-1.05657196e+00 -1.31566063e-01 2.52644360e-01 -2.42465660e-01
2.93919057e-01 -5.27090788e-01 -4.50881213e-01 4.93524432e-01
-6.78322017e-01 -3.76018018e-01 9.48124900e-02 6.74602389e-01
-2.08597198e-01 -7.96150416e-02 6.17310226e-01 -1.18524933e+00
1.10543060e+00 -8.43821228e-01 -2.30747536e-01 3.51402104e-01
-8.61508131e-01 -2.62070566e-01 5.97131729e-01 -4.69494104e-01
-7.51666427e-01 -8.86888802e-01 -2.79804409e-01 -4.43788826e-01
2.69366711e-01 1.26200229e-01 -3.05336177e-01 -3.40118319e-01
8.02264273e-01 8.04578513e-02 -1.65392132e-03 -6.19934425e-02
2.73760378e-01 8.15667629e-01 2.23949820e-01 -7.17163980e-01
9.40784395e-01 2.86946952e-01 -6.08772814e-01 -1.45300671e-01
-5.25161207e-01 3.97651106e-01 3.13845694e-01 -1.06378179e-02
4.36996400e-01 -9.78649199e-01 -1.09133172e+00 7.09054768e-01
-1.15816116e+00 -3.54046434e-01 1.58910930e-01 7.38301799e-02
-2.15022147e-01 5.63428402e-01 -1.04335713e+00 -1.00481522e+00
-1.02289367e+00 -1.26834857e+00 7.95758724e-01 -1.98074028e-01
-7.43040621e-01 -1.21615911e+00 4.78976266e-03 7.94772506e-01
6.34195864e-01 4.48275089e-01 7.32411087e-01 -1.13633215e+00
-2.73335904e-01 -6.68530643e-01 8.44418630e-02 6.41571879e-01
-1.74116164e-01 1.39785051e-01 -1.34782040e+00 -4.84359413e-01
4.33384120e-01 -5.77130079e-01 2.15138897e-01 -7.52856135e-02
6.91645622e-01 -1.21671987e+00 -2.35232890e-01 5.12629569e-01
9.00405705e-01 2.53935531e-02 6.66456580e-01 2.71273911e-01
4.99717265e-01 4.43900824e-01 2.68091708e-01 5.42264402e-01
6.25092745e-01 3.17178875e-01 5.08891702e-01 1.34953514e-01
4.09852982e-01 -7.82672107e-01 8.52847934e-01 3.79638135e-01
6.08206242e-02 -4.50191796e-01 -8.02698731e-01 2.66634673e-01
-1.39585578e+00 -1.18818665e+00 6.11271225e-02 2.14813852e+00
1.01457119e+00 3.57534915e-01 1.91002563e-01 7.52382576e-02
5.80730140e-01 8.42352677e-03 -3.63569885e-01 -8.34717274e-01
-2.02724561e-01 6.47076732e-03 6.81997359e-01 3.57782900e-01
-7.21753418e-01 8.22754443e-01 7.18726254e+00 8.61798346e-01
-9.97319341e-01 5.53416133e-01 1.23934901e+00 -1.93777695e-01
-8.74397516e-01 1.14954509e-01 -5.26159942e-01 8.12617719e-01
1.21638060e+00 -4.66883808e-01 3.90999794e-01 7.42593825e-01
1.60400689e-01 3.38419348e-01 -1.34274101e+00 6.15645111e-01
1.14716746e-01 -1.14981472e+00 -7.01826438e-02 2.75222331e-01
4.56742197e-01 -1.92469209e-02 7.08422244e-01 3.37056190e-01
8.36330175e-01 -1.48908293e+00 1.20484078e+00 9.14972574e-02
7.42309332e-01 -8.01557183e-01 8.95562053e-01 3.19878042e-01
-1.71937764e-01 -4.22798581e-02 -1.15371183e-01 -1.16934143e-02
4.02773991e-02 6.37804091e-01 -9.80792224e-01 3.95088851e-01
8.76436412e-01 5.85168421e-01 -3.67866635e-01 2.98426211e-01
-4.94708449e-01 9.98180449e-01 -2.53135473e-01 -1.50845677e-01
2.00015187e-01 1.60962313e-01 5.96168339e-01 1.07331240e+00
3.54748875e-01 -4.16849963e-02 -5.62564611e-01 1.14449537e+00
-3.48157138e-01 -2.19935834e-01 -9.59154844e-01 -2.90563405e-01
6.52487576e-01 1.10410321e+00 -6.76971748e-02 -2.01801106e-01
8.23321342e-02 8.25776935e-01 4.37246598e-02 1.56181261e-01
-1.14753318e+00 6.12315610e-02 7.85414934e-01 1.16347201e-01
-3.39549690e-01 2.98269391e-01 -4.24382180e-01 -1.12545657e+00
7.86788017e-02 -1.45090330e+00 2.98747897e-01 -7.30737925e-01
-1.53292596e+00 7.97404230e-01 -1.28229782e-01 -8.93718421e-01
-1.11823998e-01 -1.27656981e-01 -7.42745697e-01 8.05618405e-01
-1.14921772e+00 -1.43892598e+00 4.13803726e-01 6.38218999e-01
-2.98393130e-01 -2.81335711e-01 9.95759666e-01 1.38051867e-01
-7.39687920e-01 1.46020758e+00 -1.61599621e-01 2.92714804e-01
6.96813285e-01 -6.66618466e-01 9.83552217e-01 8.64084423e-01
-2.63846099e-01 1.06506324e+00 9.16229546e-01 -6.88797712e-01
-1.30885279e+00 -9.60630178e-01 1.22679508e+00 -1.33293259e+00
8.96060646e-01 -7.02749193e-01 -5.60640752e-01 9.86691594e-01
2.25782976e-01 -1.96868345e-01 9.56615090e-01 -5.62987244e-03
-1.08781731e+00 2.30628863e-01 -1.78399515e+00 6.40671909e-01
8.67907345e-01 -1.03161275e+00 -2.10847542e-01 4.34078991e-01
8.57956350e-01 -3.58832479e-01 -9.81909692e-01 -5.34634218e-02
7.39709258e-01 -1.15925348e+00 7.86846876e-01 -5.74932337e-01
3.86615515e-01 2.13842273e-01 -8.53182748e-02 -1.23740339e+00
3.52006918e-03 -1.37963200e+00 5.86335845e-02 1.45156300e+00
6.69088721e-01 -1.15115702e+00 4.21494395e-01 1.25219941e+00
3.49535316e-01 -5.43889940e-01 -1.04208052e+00 -8.06184590e-01
5.91125369e-01 -6.70406759e-01 9.62155879e-01 1.22928715e+00
5.29714108e-01 1.28033772e-01 -9.56295311e-01 1.49084464e-01
7.38062918e-01 -4.01257545e-01 6.56115294e-01 -6.59385979e-01
-4.48620200e-01 -2.59460926e-01 -1.05909012e-01 -2.78118640e-01
2.78139472e-01 -8.21307242e-01 -3.82399470e-01 -8.06450367e-01
5.06550312e-01 -6.34783149e-01 8.76320351e-04 1.01216161e+00
-1.45872504e-01 4.09491986e-01 2.89356440e-01 1.25525877e-01
-3.79976660e-01 3.43291432e-01 9.84275997e-01 -2.19021931e-01
2.24504799e-01 1.94395810e-01 -1.44463897e+00 2.72343814e-01
1.04766119e+00 -8.18159699e-01 -4.20027733e-01 -3.02866220e-01
6.47044241e-01 1.89811941e-02 7.48754144e-01 -5.29972970e-01
-1.02385730e-01 5.70673915e-03 -1.97055265e-01 2.94894338e-01
6.34956881e-02 -7.62880206e-01 5.40035367e-01 4.33508217e-01
-3.13149214e-01 7.29755908e-02 1.52094439e-01 4.43682104e-01
3.09394896e-01 3.35753709e-02 5.17504036e-01 -2.51723617e-01
3.58833611e-01 4.03300107e-01 -3.77323210e-01 1.92140579e-01
8.35327983e-01 -9.27897245e-02 -8.71324301e-01 -8.31266284e-01
-2.62177825e-01 1.66074485e-01 8.16190600e-01 3.85796934e-01
5.58754086e-01 -1.10778511e+00 -9.35008109e-01 6.26668260e-02
2.47247726e-01 -6.34479702e-01 1.99984938e-01 9.64348435e-01
-1.29882783e-01 2.24612638e-01 -9.68845852e-04 -1.19328916e-01
-1.28377879e+00 5.07711709e-01 4.67380583e-01 -2.12382272e-01
-4.23776805e-01 1.05257487e+00 1.27605841e-01 -4.46710140e-01
2.09105164e-01 -2.38605067e-01 4.04245496e-01 -5.08274913e-01
5.02192080e-01 3.14128041e-01 8.67656618e-02 -6.89548075e-01
-4.93930191e-01 -9.87510849e-03 -1.37205318e-01 -1.31110489e-01
9.62386608e-01 5.93034774e-02 -1.86409071e-01 3.25388350e-02
1.20058703e+00 1.15906850e-01 -8.03194880e-01 8.87605250e-02
-2.75431156e-01 -3.66871297e-01 -1.92756936e-01 -1.22393131e+00
-1.00008225e+00 8.29361558e-01 1.57636151e-01 2.48417184e-01
6.36018574e-01 -1.24618888e-01 1.07005012e+00 3.44594717e-02
7.93122709e-01 -6.59155726e-01 -1.57472998e-01 3.72651309e-01
7.80817389e-01 -1.06088197e+00 -1.54477343e-01 -7.41094127e-02
-1.04556048e+00 3.44642878e-01 1.88676834e-01 3.16965878e-01
6.68023825e-01 3.63330513e-01 2.68430918e-01 -1.33273199e-01
-9.33884442e-01 9.18315589e-01 -3.94944996e-01 7.59177506e-01
2.96105742e-01 3.89250368e-01 -3.50928009e-02 1.17503631e+00
-6.36587560e-01 -1.14471354e-01 7.38489449e-01 6.85867786e-01
3.80606174e-01 -1.22393799e+00 -3.66235435e-01 1.46218255e-01
-1.10679436e+00 -5.13363242e-01 -6.57399595e-01 3.98766488e-01
-1.24373622e-01 1.33179140e+00 -6.05540216e-01 -8.73183548e-01
1.14778660e-01 -1.11577712e-01 1.86968207e-01 -2.42397830e-01
-1.46580648e+00 -3.21988642e-01 5.29080272e-01 -6.11041248e-01
-1.12915235e-02 -5.73904634e-01 -6.63580835e-01 -1.23348963e+00
-2.40851909e-01 3.23277801e-01 4.47426707e-01 6.96083188e-01
5.13361037e-01 -2.49089465e-01 7.33314991e-01 -2.96463013e-01
-9.18801367e-01 -9.01044130e-01 -4.94650126e-01 3.60754639e-01
3.11013520e-01 -1.66062057e-01 -6.95497274e-01 -3.28432232e-01] | [6.1702985763549805, 7.975152015686035] |
dfdb67be-35c0-4eaf-b4f2-510092700a2e | sequential-point-clouds-a-survey | 2204.09337 | null | https://arxiv.org/abs/2204.09337v2 | https://arxiv.org/pdf/2204.09337v2.pdf | Sequential Point Clouds: A Survey | Point cloud has drawn more and more research attention as well as real-world applications. However, many of these applications (e.g. autonomous driving and robotic manipulation) are actually based on sequential point clouds (i.e. four dimensions) because the information of the static point cloud data could provide is still limited. Recently, researchers put more and more effort into sequential point clouds. This paper presents an extensive review of the deep learning-based methods for sequential point cloud research including dynamic flow estimation, object detection \& tracking, point cloud segmentation, and point cloud forecasting. This paper further summarizes and compares the quantitative results of the reviewed methods over the public benchmark datasets. Finally, this paper is concluded by discussing the challenges in the current sequential point cloud research and pointing out insightful potential future research directions. | ['YingLi Tian', 'HaiYan Wang'] | 2022-04-20 | null | null | null | null | ['point-cloud-segmentation'] | ['computer-vision'] | [-4.42254692e-01 -6.96575701e-01 -3.20567787e-01 -2.39044651e-01
7.02748299e-02 -6.62344635e-01 5.35449147e-01 1.84443429e-01
-2.54179418e-01 2.89613515e-01 -6.91958070e-01 -5.95531523e-01
8.02410617e-02 -8.74411941e-01 -7.22008526e-01 -5.92888653e-01
-2.90486634e-01 7.66785204e-01 5.32553136e-01 -2.03036204e-01
7.05724776e-01 1.25984168e+00 -1.90703726e+00 -3.92196812e-02
8.41884375e-01 1.06564236e+00 4.70118850e-01 7.04629958e-01
-5.93344510e-01 1.82051077e-01 -5.32930791e-01 -2.21065551e-01
5.94126880e-01 3.41051310e-01 -4.36677188e-01 5.83518222e-02
7.67190456e-01 -5.08504450e-01 -3.63103390e-01 1.04674387e+00
2.21001655e-01 3.39258403e-01 3.36299449e-01 -1.79667294e+00
-4.31339949e-01 -1.53542310e-01 -8.34635735e-01 5.48319578e-01
-3.87292318e-02 5.14270961e-01 5.23789883e-01 -1.13525712e+00
5.73429585e-01 1.32665205e+00 6.89834654e-01 2.97755390e-01
-5.19321859e-01 -1.12322736e+00 4.65525478e-01 5.95444262e-01
-1.11582017e+00 -9.39590037e-02 8.61874044e-01 -7.34251797e-01
1.11047316e+00 5.44967875e-02 1.01590061e+00 5.67590177e-01
3.49701822e-01 9.28880394e-01 6.85570002e-01 -7.84126371e-02
1.63536042e-01 -8.57206509e-02 2.52088934e-01 4.95472342e-01
3.82131577e-01 4.10635829e-01 -3.05992395e-01 -1.43932607e-02
9.12575662e-01 1.52249828e-01 3.09171885e-01 -7.14236319e-01
-1.39237702e+00 7.25139678e-01 6.25540674e-01 1.99650392e-01
-2.37512320e-01 3.05530280e-01 6.02869809e-01 7.09862635e-02
4.72305775e-01 1.59882858e-01 -5.24831951e-01 -1.47189021e-01
-9.57038581e-01 8.54522824e-01 3.68985295e-01 1.59258139e+00
7.07247853e-01 2.73254126e-01 2.56999671e-01 3.03179979e-01
4.62117940e-01 7.04477429e-01 -7.35777915e-02 -1.15386629e+00
6.09088361e-01 5.92776239e-01 4.54399168e-01 -1.35222888e+00
-3.95747095e-01 -3.83759677e-01 -7.12422252e-01 6.61112309e-01
1.21288814e-01 -1.91636235e-01 -7.43933737e-01 7.19394624e-01
5.45293272e-01 8.01184535e-01 -2.80718058e-01 1.07071602e+00
1.08541036e+00 8.18078041e-01 -1.49869742e-02 1.72594041e-01
1.00996971e+00 -8.34600627e-01 -5.88729024e-01 -1.25062346e-01
3.41968089e-01 -6.95994258e-01 6.42197847e-01 2.86094129e-01
-1.03228438e+00 -8.23080420e-01 -9.84243214e-01 -1.73901439e-01
-4.36943233e-01 -1.21907489e-02 1.00875854e+00 3.21029097e-01
-8.86373162e-01 6.01335704e-01 -1.38190079e+00 -2.72885650e-01
7.16285110e-01 5.32970071e-01 7.67746419e-02 -2.48219520e-02
-7.75519788e-01 8.62811685e-01 1.15500420e-01 4.74319071e-01
-6.17966473e-01 -1.04691005e+00 -5.98580003e-01 -1.66854769e-01
6.43861592e-02 -8.76162112e-01 1.41157031e+00 -2.63008386e-01
-1.46850288e+00 8.27313542e-01 -4.64778364e-01 -7.08967030e-01
6.62182927e-01 -4.00375545e-01 -1.88535497e-01 1.90608371e-02
2.41986006e-01 9.42763090e-01 5.83315730e-01 -1.33446252e+00
-1.33418560e+00 -4.53769982e-01 9.88021214e-03 2.14986235e-01
2.98503071e-01 1.25712156e-01 -6.21918917e-01 -5.27405972e-03
2.63551056e-01 -1.20234442e+00 -4.58566487e-01 4.45994705e-01
-2.09566504e-01 -5.27970612e-01 1.40264428e+00 -1.28423691e-01
6.91738665e-01 -1.97242200e+00 -2.01227441e-02 4.53617461e-02
3.39019597e-01 3.43351126e-01 1.86862737e-01 3.90049458e-01
7.02621937e-02 -5.65030016e-02 3.61645930e-02 -4.15812999e-01
-2.28059694e-01 1.56749681e-01 -6.78279459e-01 8.45766664e-01
-4.12925370e-02 1.02784228e+00 -9.86591935e-01 -3.98363084e-01
1.03540540e+00 2.64236510e-01 -3.52414548e-01 -2.63363510e-01
-3.39555770e-01 8.09940100e-01 -6.76925182e-01 8.11599851e-01
1.18040574e+00 -2.15872273e-01 -5.53804398e-01 -1.65325403e-02
-8.40069890e-01 -2.48623669e-01 -1.03250742e+00 1.71760416e+00
-2.79513866e-01 1.09249067e+00 -9.84631777e-02 -7.89451361e-01
1.00454259e+00 -6.19488396e-03 1.11397171e+00 -4.45798963e-01
1.09396063e-01 2.56324708e-01 3.51457186e-02 -4.17574227e-01
9.20761585e-01 5.86193763e-02 1.68949947e-01 -1.71442434e-01
-4.84037727e-01 -5.02245486e-01 -8.71873423e-02 2.75338124e-02
5.68846643e-01 9.54155922e-02 -1.76710889e-01 -8.33311956e-03
5.98944664e-01 9.71763015e-01 4.96348381e-01 5.29215157e-01
-6.94088817e-01 3.64679515e-01 -1.47844866e-01 -6.30368590e-01
-1.14589906e+00 -8.72745812e-01 -3.37499321e-01 5.42429090e-01
1.04752314e+00 -1.25869289e-01 -1.51755556e-01 -2.65001208e-01
7.71739304e-01 5.63366294e-01 -3.12846094e-01 1.72350585e-01
-1.02486730e+00 -4.02647883e-01 5.41588366e-02 6.18942142e-01
6.96327090e-01 -9.36181188e-01 -8.31501961e-01 1.54187098e-01
6.13342486e-02 -1.32080340e+00 2.11791664e-01 -3.78815383e-01
-1.50199509e+00 -1.02265692e+00 -4.79488343e-01 -7.12985456e-01
3.29640716e-01 1.05459118e+00 1.14651227e+00 1.04528181e-01
-1.26255423e-01 3.96283567e-01 -2.78913915e-01 -9.99870420e-01
9.17770416e-02 1.63133219e-02 1.62883461e-01 -5.71468890e-01
9.02388752e-01 -2.25342900e-01 -8.29230309e-01 4.05812651e-01
-3.96076888e-01 -1.38384670e-01 2.98499167e-01 3.10687840e-01
7.46311963e-01 1.43470183e-01 1.71730071e-01 -3.56558204e-01
3.73760700e-01 -5.45433223e-01 -1.24177170e+00 -4.06899542e-01
-3.75981241e-01 -6.83701575e-01 3.13790053e-01 -5.60287163e-02
-8.55368137e-01 -2.74471976e-02 -1.77272335e-01 -1.12872970e+00
-3.64020228e-01 1.42730594e-01 2.85071105e-01 -5.46374083e-01
4.62247133e-01 3.56252640e-02 1.23967648e-01 -4.61981803e-01
5.03974855e-01 4.67550695e-01 3.64245534e-01 -3.17041963e-01
1.00095844e+00 1.14024556e+00 1.22119226e-01 -9.89147067e-01
-4.38180178e-01 -1.01766121e+00 -1.00380135e+00 -6.68075085e-01
8.33972216e-01 -8.65411103e-01 -1.03784370e+00 5.59154928e-01
-1.55857480e+00 -1.01876475e-01 -1.82978809e-01 4.71542835e-01
-6.07976973e-01 4.49951231e-01 -4.88191187e-01 -7.18115270e-01
-2.45800704e-01 -1.48392308e+00 1.39214957e+00 2.55788922e-01
1.11556165e-01 -9.05953169e-01 1.09858364e-01 9.99382809e-02
2.29050249e-01 3.18914115e-01 4.32811022e-01 -2.69959550e-02
-1.41081142e+00 -3.84435326e-01 -3.68985176e-01 -6.61713108e-02
-1.15974411e-01 5.10471106e-01 -7.15527952e-01 -4.06561673e-01
6.12833798e-02 3.13380271e-01 4.75908071e-01 8.41309547e-01
1.40344000e+00 3.01292241e-01 -9.23743904e-01 8.81396174e-01
1.49488819e+00 5.75650454e-01 4.15806681e-01 6.46410584e-01
9.04877186e-01 4.10299569e-01 1.20413363e+00 3.16659600e-01
4.18802381e-01 6.95985079e-01 8.48256290e-01 1.30085260e-01
7.56015927e-02 7.85911679e-02 -1.51403829e-01 7.44330287e-01
-1.94696665e-01 -5.03213666e-02 -1.31214881e+00 6.75278008e-01
-1.88459408e+00 -1.01454306e+00 -8.22983623e-01 1.64768016e+00
-3.94334607e-02 1.49246855e-02 5.81119508e-02 -4.27712910e-02
8.55625451e-01 1.40712827e-01 -1.13257599e+00 -1.38170347e-01
1.49235964e-01 -6.87160194e-02 8.24661553e-01 2.38869652e-01
-1.21922112e+00 1.29654610e+00 6.44620275e+00 3.72024387e-01
-1.37942576e+00 1.38433315e-02 8.83821100e-02 1.68998837e-02
1.32062510e-01 -5.69390841e-02 -1.19984221e+00 6.10898733e-01
5.85339248e-01 -2.91318119e-01 -1.40190998e-03 1.16095436e+00
4.19031858e-01 -8.98807496e-02 -9.21962976e-01 1.41915035e+00
-5.05576015e-01 -1.90256727e+00 -8.19908902e-02 1.70354337e-01
7.72264421e-01 8.98008823e-01 3.33247691e-01 2.15864584e-01
2.73656398e-01 -6.62547588e-01 7.57984459e-01 5.28555632e-01
6.73101664e-01 -7.06926703e-01 6.36218309e-01 5.48972428e-01
-1.33312595e+00 -7.84425884e-02 -7.46663630e-01 -2.02972531e-01
3.51410151e-01 6.59635484e-01 -6.34053290e-01 4.81529295e-01
1.05464733e+00 1.26571798e+00 -2.36002326e-01 1.64814019e+00
4.08469081e-01 1.77212223e-01 -5.02214193e-01 -1.17544979e-01
6.29045486e-01 -4.81532365e-01 9.21222687e-01 1.06373227e+00
3.48998517e-01 1.70320287e-01 3.66155416e-01 9.46771920e-01
3.89919430e-01 -2.40886390e-01 -8.51006806e-01 3.51465464e-01
6.40176415e-01 1.01467562e+00 -7.94111192e-01 -4.29263532e-01
-7.23829925e-01 3.78477216e-01 -1.00186087e-01 4.03250396e-01
-7.82507718e-01 -3.50305438e-01 1.29564929e+00 1.05663933e-01
1.92050770e-01 -1.17846835e+00 -8.11164975e-01 -1.06683540e+00
-4.41372022e-02 -2.48410746e-01 -1.72041103e-01 -8.25175643e-01
-1.24691522e+00 2.89222926e-01 3.64431590e-01 -1.85575545e+00
2.08275057e-02 -8.92145991e-01 -6.43222094e-01 9.61092532e-01
-1.97014141e+00 -7.24511743e-01 -7.13545620e-01 4.08398271e-01
8.83634627e-01 -2.51097709e-01 6.10606484e-02 4.38551456e-01
-3.85131359e-01 -7.15973601e-02 2.74826288e-01 3.92083004e-02
1.82472080e-01 -1.13302553e+00 1.26158571e+00 7.79086411e-01
-2.08374158e-01 7.03771412e-01 7.89300859e-01 -9.36569095e-01
-1.77757740e+00 -1.26828420e+00 2.95640767e-01 -7.43620217e-01
6.68973386e-01 -2.79608160e-01 -9.90114570e-01 7.02401400e-01
1.39345946e-02 2.18700290e-01 1.06368318e-01 -2.58555263e-01
4.63619620e-01 -1.14482760e-01 -1.10654843e+00 5.43202400e-01
1.14860547e+00 -5.75773558e-03 -1.15130000e-01 6.83819056e-01
7.91674018e-01 -1.02459085e+00 -6.07998013e-01 5.71414709e-01
2.88004309e-01 -9.16120112e-01 1.14299250e+00 -4.52405363e-01
1.64787754e-01 -5.37963986e-01 1.71929747e-01 -1.06304252e+00
-4.13388669e-01 -2.42195874e-01 -3.52562875e-01 4.83535022e-01
-2.71730572e-01 -5.14988005e-01 1.52016282e+00 3.57552946e-01
-6.51806414e-01 -6.92487538e-01 -8.75228584e-01 -8.58612835e-01
2.71469593e-01 -7.56209135e-01 9.70496893e-01 1.05002713e+00
-5.23836017e-01 -7.15945289e-02 1.48003846e-01 4.41894144e-01
8.11170518e-01 5.99387586e-01 1.17415845e+00 -1.53730714e+00
5.37879229e-01 -5.66132605e-01 -7.27513552e-01 -1.64024508e+00
3.27364385e-01 -9.13012147e-01 -8.26400220e-02 -1.80911744e+00
-5.57128072e-01 -1.08462834e+00 2.62872458e-01 -1.43778190e-01
1.53987065e-01 -2.35106811e-01 2.96598434e-01 7.17408955e-01
-3.03538889e-01 5.31817317e-01 1.56411862e+00 -2.73542911e-01
-3.87680382e-01 4.36579734e-01 -4.64367904e-02 7.50703692e-01
1.09799290e+00 -1.05544671e-01 -3.52160275e-01 -9.94571030e-01
1.08560905e-01 1.07987620e-01 5.27393281e-01 -1.15167046e+00
6.82404757e-01 -4.79890972e-01 3.37545693e-01 -1.60182571e+00
4.45083350e-01 -1.27966082e+00 -2.28976961e-02 4.22105938e-01
3.11177433e-01 5.73987007e-01 6.17562413e-01 8.08911204e-01
-2.87666053e-01 5.59337772e-02 7.37967491e-01 -4.03943956e-01
-1.29458332e+00 9.23376143e-01 -5.22484295e-02 -5.23597002e-01
1.40169561e+00 -6.88464165e-01 -2.66951948e-01 1.22697443e-01
-5.32742858e-01 6.07792735e-01 4.28042442e-01 8.39697897e-01
9.46894526e-01 -1.27888536e+00 -5.50109565e-01 1.13689139e-01
-2.90975068e-02 6.98930383e-01 2.49294534e-01 6.24715984e-01
-1.05344319e+00 9.79438066e-01 -3.46679777e-01 -1.48650360e+00
-1.13009298e+00 7.05915868e-01 4.73755926e-01 5.07842362e-01
-1.14484692e+00 8.64971340e-01 -4.78447601e-03 -4.20908868e-01
1.54079720e-01 -6.70635879e-01 -2.33752951e-01 -3.07972014e-01
3.80782560e-02 7.05978692e-01 2.37908199e-01 -7.86704898e-01
-5.63650012e-01 9.39250529e-01 -5.45878261e-02 1.98898032e-01
1.09654951e+00 -1.03268489e-01 -3.36557813e-02 4.89333630e-01
1.05626976e+00 -4.27272409e-01 -1.32433248e+00 -5.73773347e-02
1.82410982e-03 -9.28201318e-01 2.44400963e-01 -1.93087250e-01
-1.23953259e+00 1.31632125e+00 7.26362944e-01 -2.17697071e-03
4.51206267e-01 -9.99712646e-02 1.03742325e+00 4.55167800e-01
8.75037253e-01 -8.40168595e-01 -2.72686929e-01 8.11452687e-01
7.14234114e-01 -1.36989081e+00 2.15108946e-01 -6.63016140e-01
-3.23569775e-01 1.16230464e+00 8.19796681e-01 -6.28411591e-01
9.08833802e-01 1.30108997e-01 -1.37187541e-02 -6.42569542e-01
-4.99335527e-01 1.47849381e-01 1.07419126e-01 7.23860979e-01
-1.83831137e-02 -2.63045784e-02 1.80458799e-01 -2.07222730e-01
-5.00766218e-01 1.45495132e-01 3.19335520e-01 1.06810141e+00
-6.11432195e-01 -6.41038477e-01 -5.05668163e-01 6.54073775e-01
8.95395726e-02 2.77359009e-01 -6.85278326e-02 9.36563492e-01
2.06060335e-01 7.74181962e-01 7.59071410e-01 -2.03067005e-01
4.94021505e-01 -5.18964171e-01 3.37698907e-01 -5.48855841e-01
-3.83945823e-01 -4.04921412e-01 -5.39030254e-01 -7.12822020e-01
-4.01768535e-01 -8.85157406e-01 -1.37059867e+00 -8.23787212e-01
-3.34986031e-01 3.00634243e-02 1.23758805e+00 6.27159715e-01
5.54196060e-01 4.35191989e-01 3.92150402e-01 -1.43822169e+00
-2.21791696e-02 -4.49172139e-01 -2.82052517e-01 -1.03565909e-01
5.65951765e-01 -1.07284737e+00 -2.28716075e-01 -2.13192716e-01] | [8.055304527282715, -3.0829920768737793] |
de360762-7ed4-46e5-a3ac-46c25f936ef2 | protagonists-tagger-in-literary-domain-new | 2110.01349 | null | https://arxiv.org/abs/2110.01349v1 | https://arxiv.org/pdf/2110.01349v1.pdf | Protagonists' Tagger in Literary Domain -- New Datasets and a Method for Person Entity Linkage | Semantic annotation of long texts, such as novels, remains an open challenge in Natural Language Processing (NLP). This research investigates the problem of detecting person entities and assigning them unique identities, i.e., recognizing people (especially main characters) in novels. We prepared a method for person entity linkage (named entity recognition and disambiguation) and new testing datasets. The datasets comprise 1,300 sentences from 13 classic novels of different genres that a novel reader had manually annotated. Our process of identifying literary characters in a text, implemented in protagonistTagger, comprises two stages: (1) named entity recognition (NER) of persons, (2) named entity disambiguation (NED) - matching each recognized person with the literary character's full name, based on approximate text matching. The protagonistTagger achieves both precision and recall of above 83% on the prepared testing sets. Finally, we gathered a corpus of 13 full-text novels tagged with protagonistTagger that comprises more than 35,000 mentions of literary characters. | ['Anna Wróblewska', 'Weronika Łajewska'] | 2021-10-04 | null | null | null | null | ['entity-disambiguation'] | ['natural-language-processing'] | [-4.57401387e-02 1.63279489e-01 1.40642017e-01 -3.88870060e-01
-8.02287519e-01 -8.42690349e-01 1.01631129e+00 5.19949019e-01
-1.04955661e+00 1.28973055e+00 5.66835880e-01 2.85834104e-01
3.77387479e-02 -1.06652844e+00 -5.84019125e-01 -2.87157893e-01
3.32367718e-01 1.20921075e+00 3.17235380e-01 -1.80030331e-01
4.07174438e-01 5.07303178e-01 -1.17424655e+00 1.20503247e-01
8.33245695e-01 4.18286771e-01 -6.65788651e-02 6.36622667e-01
-5.41953027e-01 4.47049260e-01 -1.02476490e+00 -1.26288760e+00
5.56326434e-02 -1.81735158e-01 -1.26203907e+00 -3.54228497e-01
2.59763032e-01 3.16911221e-01 -2.88876384e-01 9.66941535e-01
7.43874848e-01 5.14197350e-01 7.52136171e-01 -1.14550698e+00
-7.24240959e-01 1.28396213e+00 -4.11370575e-01 4.10976887e-01
5.95935881e-01 -5.41817605e-01 1.02968287e+00 -8.56462836e-01
1.29589331e+00 1.19786489e+00 7.61319518e-01 6.31167471e-01
-9.19929087e-01 -7.53071547e-01 -4.69235718e-01 1.88242778e-01
-1.92495143e+00 -5.35994709e-01 3.67396742e-01 -5.83516955e-01
9.42876339e-01 1.57347456e-01 3.31831545e-01 1.09018314e+00
-2.90129006e-01 5.17629027e-01 4.80633616e-01 -6.59655094e-01
5.28466254e-02 4.14588630e-01 7.25884795e-01 2.26116911e-01
3.98651272e-01 -3.88402283e-01 -7.61079907e-01 -4.67679530e-01
4.30079848e-01 -4.15801436e-01 1.25176817e-01 2.82424361e-01
-1.47495925e+00 7.47932971e-01 -2.08522841e-01 6.70727134e-01
-2.93614119e-01 -3.12768459e-01 9.63479042e-01 1.03450246e-01
4.11483169e-01 8.70119333e-01 -5.24493217e-01 -3.10103595e-01
-8.22060943e-01 4.51686680e-01 1.14026022e+00 1.47901809e+00
7.59048820e-01 -5.72442710e-01 -1.65480182e-01 9.86915588e-01
-1.32332399e-01 6.80195630e-01 6.82940960e-01 -3.26268524e-02
6.61115468e-01 9.29103851e-01 4.00343716e-01 -1.34454203e+00
-6.83460534e-01 -1.46809191e-01 -6.20643914e-01 -6.89284861e-01
5.22817492e-01 -4.20806676e-01 -2.87991703e-01 1.55748641e+00
5.44893801e-01 6.53395578e-02 5.08974016e-01 5.86385548e-01
1.50581610e+00 6.09139740e-01 4.47928548e-01 -3.56302053e-01
2.09192443e+00 -6.18631482e-01 -8.54959249e-01 -2.28600926e-03
3.93132299e-01 -1.03782165e+00 5.21441579e-01 -4.69894111e-01
-8.82664084e-01 -5.65632463e-01 -7.37743318e-01 -3.30116004e-01
-9.09615159e-01 2.23436698e-01 3.46889436e-01 7.51584351e-01
-3.00525039e-01 4.65066731e-01 -4.55894381e-01 -9.22258675e-01
4.68545407e-02 2.55125076e-01 -6.77512705e-01 4.97275621e-01
-1.52561176e+00 9.20424700e-01 9.65810537e-01 -4.16074395e-01
-5.42479903e-02 -8.19741964e-01 -9.55614686e-01 -2.92917162e-01
3.30596238e-01 -8.19190145e-01 8.76039565e-01 -5.72996855e-01
-6.94914758e-01 1.84088707e+00 -2.88785875e-01 -7.21849740e-01
5.50099432e-01 -2.50960290e-01 -1.25026608e+00 1.17748059e-01
1.03212070e+00 3.02310109e-01 3.23513240e-01 -8.58935118e-01
-9.50141728e-01 -5.22923112e-01 -2.54129678e-01 2.72790849e-01
-3.87966931e-01 8.08460236e-01 -2.78555512e-01 -8.15507531e-01
3.67370620e-02 -6.02852285e-01 1.66041628e-01 -8.36947620e-01
-7.50612855e-01 -6.18851960e-01 2.88876832e-01 -1.01073015e+00
1.27784729e+00 -1.99362099e+00 -3.40742409e-01 2.61752665e-01
1.82729065e-01 6.09585196e-02 2.76513189e-01 6.50830090e-01
1.28809974e-01 1.37502000e-01 1.51204407e-01 -2.84834087e-01
3.29325318e-01 2.31042653e-02 -2.88782060e-01 2.31560841e-01
-1.42434195e-01 1.12138391e+00 -9.97830689e-01 -9.41833079e-01
-2.44139567e-01 4.45665345e-02 2.04906806e-01 -1.46152690e-01
2.20763236e-02 1.48965850e-01 -6.29719317e-01 5.17638028e-01
5.26509106e-01 2.24440798e-01 1.60746396e-01 -1.71694055e-01
-3.76651198e-01 3.14982474e-01 -1.41625655e+00 1.38389003e+00
7.27767497e-03 8.37454379e-01 -5.51844954e-01 -4.49449360e-01
1.37828255e+00 3.55870605e-01 4.11834419e-01 -4.36982512e-01
2.89477855e-01 2.33700022e-01 -6.21383309e-01 -6.91741943e-01
1.28788090e+00 -1.06158786e-01 -8.10079038e-01 5.62440753e-01
1.56080887e-01 6.73085511e-01 8.12810659e-01 2.49761671e-01
1.03677869e+00 -1.57783255e-01 7.53582001e-01 -2.32003406e-01
7.32065678e-01 5.23178577e-01 6.41406238e-01 9.03209507e-01
-1.09706528e-01 2.43099973e-01 1.51800230e-01 -7.45391369e-01
-1.46065640e+00 -1.15213597e+00 -3.13863784e-01 1.25487399e+00
1.13731854e-01 -6.52074575e-01 -6.94000363e-01 -5.78298748e-01
-7.39635751e-02 7.19444215e-01 -4.25965458e-01 3.93557638e-01
-7.86018848e-01 -7.60118842e-01 1.33219707e+00 4.04200464e-01
8.16271842e-01 -1.25588870e+00 -3.81649494e-01 3.91910315e-01
-6.85519218e-01 -1.47065008e+00 -4.73211557e-01 -3.05422485e-01
6.25810251e-02 -1.25935805e+00 -6.07715786e-01 -1.22489655e+00
5.85628033e-01 -4.24507409e-01 1.14769447e+00 -1.52947888e-01
-2.15153649e-01 1.23773485e-01 -5.97559988e-01 -5.39169788e-01
-4.93881792e-01 5.01636326e-01 2.91734338e-01 -1.26470685e-01
1.03613627e+00 -4.27477896e-01 5.27568087e-02 3.47945929e-01
-4.17640775e-01 -5.53369969e-02 1.16915986e-01 6.54290199e-01
3.22818786e-01 1.69288561e-01 6.38164401e-01 -1.43546939e+00
4.39063966e-01 -3.55954707e-01 -1.80500448e-01 5.42280257e-01
-1.12075403e-01 -3.18739653e-01 5.35261214e-01 -5.19448638e-01
-1.31774318e+00 5.53025715e-02 -3.24846864e-01 6.21549129e-01
-5.04885197e-01 3.29713374e-01 -3.35712433e-01 3.28151703e-01
9.50128019e-01 2.53351569e-01 -6.62689209e-01 -4.24442917e-01
3.34163696e-01 9.91054356e-01 1.27190220e+00 -8.01789224e-01
9.23932850e-01 1.55660585e-01 -4.34944719e-01 -9.22808588e-01
-8.99390280e-01 -9.05242801e-01 -1.24293935e+00 -1.77187473e-01
9.21858370e-01 -1.07723093e+00 -8.39109898e-01 4.67970967e-01
-1.32503915e+00 4.02789235e-01 -4.71386522e-01 5.71559310e-01
-1.69087619e-01 2.48941630e-01 -5.46945870e-01 -6.52554512e-01
-6.81754291e-01 -6.56929761e-02 7.93817699e-01 5.97624779e-01
-7.01014042e-01 -8.87700856e-01 1.38240248e-01 5.69268167e-01
-2.55246133e-01 6.45572126e-01 7.83595264e-01 -1.66435063e+00
2.37035200e-01 -4.27299291e-01 -3.31528544e-01 -4.53684658e-01
-1.34304389e-01 -2.30484143e-01 -6.05290711e-01 1.57028094e-01
-4.31315869e-01 1.63072124e-01 2.81843245e-01 -2.02011213e-01
-1.29075661e-01 -4.56867784e-01 -6.36276722e-01 2.56003857e-01
1.13105917e+00 1.62446588e-01 7.08263338e-01 9.80066955e-01
6.78099632e-01 4.85131621e-01 5.85286617e-01 6.06071889e-01
6.92559242e-01 4.91577774e-01 -7.49709129e-01 2.66467124e-01
9.87027138e-02 -5.45416415e-01 3.09118181e-02 3.84467512e-01
-2.18544945e-01 -3.13523442e-01 -1.13974452e+00 7.78202832e-01
-1.92966723e+00 -1.35371292e+00 -2.92050958e-01 1.74958241e+00
1.13266253e+00 1.20093077e-02 3.12131047e-01 6.83317259e-02
1.55903685e+00 -2.36757874e-01 -2.77793527e-01 -6.24083988e-02
-6.16056561e-01 1.00715801e-01 5.01304448e-01 6.88770190e-02
-1.34121811e+00 1.36924148e+00 5.59990215e+00 8.73391509e-01
-3.24359000e-01 1.24647073e-01 1.46038443e-01 2.70845979e-01
1.36695012e-01 -4.87120748e-02 -1.58598363e+00 5.90892315e-01
7.65974700e-01 -8.89758885e-01 2.91881780e-03 7.69970417e-01
-2.13283990e-02 1.27412841e-01 -8.88421953e-01 1.00132346e+00
4.69018668e-01 -1.46514034e+00 8.32477584e-02 -3.26579422e-01
8.71954262e-01 -3.73517364e-01 -9.07362223e-01 4.07077104e-01
3.21871698e-01 -4.78508472e-01 9.77739096e-01 7.61859298e-01
7.94535875e-01 -1.01528239e+00 1.07095742e+00 3.19589049e-01
-1.19494796e+00 2.54892409e-01 -5.79550087e-01 9.32130814e-02
4.67689037e-01 4.25584704e-01 -1.08654726e+00 6.61492348e-01
6.07375562e-01 5.35262883e-01 -5.85298598e-01 9.36741710e-01
-4.53849584e-01 2.66151011e-01 -2.72232264e-01 -4.32171136e-01
-1.66434094e-01 1.73205584e-02 8.00293088e-01 1.57383537e+00
-2.89118439e-02 4.38612282e-01 1.84108526e-01 6.26311302e-01
-4.10924286e-01 6.92528129e-01 -1.09053038e-01 -1.39843941e-01
1.04915679e+00 1.28842521e+00 -1.07312655e+00 -6.25253558e-01
1.93882361e-02 9.03173387e-01 3.93283576e-01 -2.46030334e-02
-7.01313496e-01 -8.46335232e-01 2.23273024e-01 2.07651898e-01
1.92739144e-02 -4.95070182e-02 -3.30023497e-01 -8.78876030e-01
5.16408309e-02 -3.06482613e-01 9.55630362e-01 -7.68819511e-01
-1.68045616e+00 7.40714073e-01 -1.61636621e-02 -7.43046701e-01
-2.68606216e-01 -1.83281481e-01 -4.55123514e-01 7.79080033e-01
-7.77213037e-01 -1.59601521e+00 -2.67657518e-01 6.40917480e-01
2.75781155e-01 -5.05827069e-01 9.37990785e-01 5.57651579e-01
-5.93619168e-01 9.55091596e-01 9.29867476e-02 1.09420931e+00
1.00778055e+00 -1.07892275e+00 7.66680121e-01 8.80708635e-01
2.10051894e-01 8.61059904e-01 8.37740839e-01 -1.09845912e+00
-7.07686663e-01 -1.13399255e+00 2.11107945e+00 -5.79659104e-01
9.30116534e-01 -4.78521109e-01 -5.90401828e-01 8.62160206e-01
1.59670115e-02 -6.90353334e-01 9.56162632e-01 3.42614442e-01
-1.97261572e-01 4.08827871e-01 -1.40349734e+00 6.11584544e-01
1.27962351e+00 -5.71803868e-01 -1.24981332e+00 5.43378234e-01
5.72264671e-01 -5.56438804e-01 -9.77314115e-01 -1.32059753e-01
4.34185714e-01 -7.20638856e-02 1.03366637e+00 -8.24106097e-01
1.21486112e-01 -4.75369692e-01 5.92320450e-02 -7.95227885e-01
-1.72589719e-01 -7.19767094e-01 3.69811952e-01 2.18823719e+00
5.75567722e-01 -6.46348238e-01 5.32962978e-01 1.09193456e+00
-5.52703673e-03 3.02365005e-01 -9.60272491e-01 -8.84094656e-01
-2.47178480e-01 -2.10190684e-01 8.57850134e-01 1.42056382e+00
3.26548278e-01 8.77096117e-01 -2.28347570e-01 2.40929067e-01
3.50460976e-01 -9.73637924e-02 8.82519782e-01 -1.47467077e+00
3.88884455e-01 -9.73093957e-02 -8.82625282e-01 -5.79936206e-01
5.33962131e-01 -1.02071667e+00 -1.87877998e-01 -1.45189929e+00
5.24596155e-01 -4.09473687e-01 4.35069352e-01 6.39370143e-01
-5.19463383e-02 2.88729966e-01 -1.29055455e-01 3.23992074e-01
-8.36524427e-01 1.81034401e-01 5.63141644e-01 -8.60344395e-02
-3.45075548e-01 -1.41049519e-01 -5.97346902e-01 7.95531452e-01
6.69560313e-01 -7.46297657e-01 4.45538759e-01 -1.80160567e-01
5.16235292e-01 -4.22642231e-01 3.08235943e-01 -1.03099906e+00
7.55579531e-01 -3.60174738e-02 6.94434285e-01 -7.98874438e-01
-3.08314003e-02 -4.11004603e-01 4.65537935e-01 4.14058007e-02
-3.47608805e-01 1.36535719e-01 -2.43683942e-02 2.15647265e-01
1.18379993e-02 -6.85316682e-01 6.36317849e-01 -1.45436376e-01
-1.15985763e+00 4.87891398e-02 -3.28153998e-01 5.54818690e-01
1.20347953e+00 -3.27035099e-01 -5.66119134e-01 3.22399348e-01
-9.81185377e-01 1.25034198e-01 4.33391571e-01 4.39847589e-01
1.37651250e-01 -1.33183384e+00 -1.07030296e+00 -9.28549692e-02
3.63588244e-01 -3.67490858e-01 2.21518591e-01 1.29286259e-01
-5.89148521e-01 3.56276669e-02 -2.56959826e-01 2.54894309e-02
-1.54184985e+00 5.42430043e-01 -1.70017689e-01 -2.16558307e-01
-8.77349317e-01 7.13945031e-01 -4.04355139e-01 -5.22128761e-01
3.02503202e-02 5.84011137e-01 -7.25089252e-01 5.47767341e-01
8.43705535e-01 5.87531209e-01 -8.35152641e-02 -1.41856670e+00
-6.26282454e-01 4.54435945e-01 -1.92178935e-01 -1.91692173e-01
1.33134377e+00 -3.71055126e-01 -3.22970688e-01 3.42019409e-01
8.95945191e-01 3.50261539e-01 -1.53024048e-02 -6.37148261e-01
5.90338826e-01 -3.24084640e-01 -7.21939206e-01 -7.60673404e-01
-3.69064540e-01 -1.17737979e-01 4.68711816e-02 1.63676649e-01
5.19020677e-01 2.55088091e-01 1.20829523e+00 6.78781688e-01
4.22522485e-01 -1.60274148e+00 -6.33539915e-01 8.96159351e-01
5.63708901e-01 -9.43136573e-01 3.53813395e-02 -4.46040750e-01
-7.52888024e-01 1.17617023e+00 4.86623734e-01 1.36216164e-01
4.41738844e-01 1.45942554e-01 7.26723997e-03 -2.84612566e-01
-1.66484520e-01 -4.00107116e-01 2.91730702e-01 6.47784173e-01
1.80547789e-01 1.77390084e-01 -8.39442849e-01 1.29683018e+00
-1.08783078e+00 -4.91570622e-01 3.92012626e-01 7.87330806e-01
-4.05986965e-01 -7.41737306e-01 -4.71716434e-01 2.93657750e-01
-6.26120269e-01 -3.05785984e-01 -6.13377810e-01 8.93079400e-01
5.24404228e-01 1.06059492e+00 3.34328502e-01 -2.15100534e-02
6.09360337e-01 1.14811964e-01 7.86592290e-02 -6.32261217e-01
-1.04375696e+00 -4.23645705e-01 6.42053843e-01 3.87818187e-01
-5.57955980e-01 -1.04434538e+00 -1.73635066e+00 -8.08667839e-01
-3.27524006e-01 8.71212304e-01 5.33011854e-01 1.19596171e+00
-4.53673527e-02 2.33660005e-02 3.52468431e-01 -1.38275608e-01
1.97143778e-01 -9.23983574e-01 -8.41892600e-01 8.20385337e-01
-5.14812231e-01 -4.57714021e-01 7.49773998e-03 4.52288479e-01] | [9.571850776672363, 9.320758819580078] |
3d46e332-1bb1-4a73-aa61-42cb50e05f32 | deep-dual-stream-residual-network-with | 2207.12004 | null | https://arxiv.org/abs/2207.12004v1 | https://arxiv.org/pdf/2207.12004v1.pdf | Deep dual stream residual network with contextual attention for pansharpening of remote sensing images | Pansharpening enhances spatial details of high spectral resolution multispectral images using features of high spatial resolution panchromatic image. There are a number of traditional pansharpening approaches but producing an image exhibiting high spectral and spatial fidelity is still an open problem. Recently, deep learning has been used to produce promising pansharpened images; however, most of these approaches apply similar treatment to both multispectral and panchromatic images by using the same network for feature extraction. In this work, we present present a novel dual attention-based two-stream network. It starts with feature extraction using two separate networks for both images, an encoder with attention mechanism to recalibrate the extracted features. This is followed by fusion of the features forming a compact representation fed into an image reconstruction network to produce a pansharpened image. The experimental results on the Pl\'{e}iades dataset using standard quantitative evaluation metrics and visual inspection demonstrates that the proposed approach performs better than other approaches in terms of pansharpened image quality. | ['Muhammad Shahzad', 'Anis Ur Rahman', 'Syeda Roshana Ali'] | 2022-07-25 | null | null | null | null | ['pansharpening'] | ['computer-vision'] | [ 8.65052760e-01 -5.80323398e-01 -5.15767485e-02 -2.67060786e-01
-9.13985848e-01 -3.49225134e-01 4.82096016e-01 -2.59031981e-01
-4.68331009e-01 6.67102695e-01 9.99401063e-02 -3.34665366e-02
-6.22971237e-01 -1.15256691e+00 -4.69648749e-01 -1.07174599e+00
4.88675497e-02 -1.63357690e-01 2.27568537e-01 -5.47652245e-01
1.84052750e-01 8.30011725e-01 -1.58688974e+00 3.12970370e-01
9.65850234e-01 1.06581485e+00 5.56075454e-01 7.55478978e-01
4.94939953e-01 6.80481315e-01 -3.12981039e-01 -4.84679528e-02
7.81371713e-01 -2.92708993e-01 -7.69032001e-01 4.42421973e-01
5.23373008e-01 -5.11672080e-01 -3.45565259e-01 1.44823337e+00
4.81569052e-01 2.31935516e-01 3.47423196e-01 -8.04185867e-01
-1.12868738e+00 5.64924002e-01 -1.29492164e+00 4.37618345e-01
-2.13872641e-03 -1.24516793e-01 9.51815546e-01 -6.07906699e-01
1.64228991e-01 9.21906769e-01 6.57319844e-01 -1.80317208e-01
-1.08890629e+00 -6.31407201e-01 -3.76552433e-01 3.61730278e-01
-1.18475699e+00 -7.36700594e-02 1.07883430e+00 -1.04239948e-01
8.05015624e-01 2.91227520e-01 6.62996531e-01 3.31244677e-01
2.18502998e-01 4.48952049e-01 1.52052140e+00 -5.17857254e-01
-3.25434178e-01 -1.30981967e-01 2.54683107e-01 3.46546322e-01
2.35026717e-01 5.70425272e-01 -5.47580980e-02 1.78828269e-01
8.71569574e-01 2.78471828e-01 -7.01173365e-01 -2.87169248e-01
-9.44030046e-01 9.27709997e-01 1.16702843e+00 5.83528221e-01
-8.83956134e-01 -1.51299909e-01 1.12903506e-01 3.94191951e-01
4.67589259e-01 4.04624194e-01 -3.83429587e-01 4.77353096e-01
-1.26487958e+00 3.03669423e-01 6.79989606e-02 4.15829688e-01
1.11610103e+00 8.90120193e-02 3.03532779e-01 1.17537618e+00
1.29575357e-01 5.21340907e-01 4.77472156e-01 -7.44937420e-01
2.88146794e-01 5.00067770e-01 5.31266071e-02 -1.25391459e+00
-3.66312534e-01 -4.89186198e-01 -1.14272285e+00 5.77796876e-01
-3.61102790e-01 -2.46804014e-01 -1.13190329e+00 1.34711039e+00
3.48036699e-02 -1.30879149e-01 2.02182442e-01 1.27515030e+00
6.31670594e-01 1.25594544e+00 -1.55284628e-01 -1.44273326e-01
1.18150210e+00 -1.18157029e+00 -6.69763565e-01 -2.22655088e-01
-1.35888144e-01 -8.38362515e-01 6.50638223e-01 4.81032372e-01
-8.45318675e-01 -7.87473440e-01 -1.35679126e+00 -1.60850845e-02
-6.19728863e-01 3.53624016e-01 7.37563312e-01 7.13550806e-01
-1.01764584e+00 7.07362771e-01 -4.90431070e-01 -2.78025359e-01
4.96599942e-01 2.78337121e-01 -3.99938285e-01 -1.32733211e-01
-1.13670051e+00 9.06985879e-01 9.95635033e-01 2.61587143e-01
-6.28768623e-01 -5.37772238e-01 -7.99102902e-01 2.28675351e-01
5.74534461e-02 -2.48430550e-01 9.11333263e-01 -1.43477595e+00
-1.48482931e+00 6.26035273e-01 4.87951487e-01 -4.22635227e-01
1.37796283e-01 -4.43411291e-01 -8.72406662e-01 4.09745306e-01
1.61160707e-01 6.22045279e-01 9.60748672e-01 -1.39426136e+00
-8.95047009e-01 -3.64865214e-01 8.18358269e-03 5.06138444e-01
2.23704856e-02 2.89971054e-01 -7.98491836e-02 -7.06020534e-01
3.01205337e-01 -4.44067180e-01 -2.81242937e-01 -1.07799836e-01
-2.42822334e-01 3.10265243e-01 1.28495431e+00 -1.03429782e+00
6.56756878e-01 -2.08809972e+00 1.18665494e-01 2.39580482e-01
-5.76104075e-02 5.84777057e-01 -3.93838346e-01 3.05224657e-01
-6.25944793e-01 -1.30753547e-01 -8.26556265e-01 1.72237292e-01
-4.32974428e-01 -1.66922793e-01 -3.14118147e-01 7.87491143e-01
2.95872837e-01 6.71931982e-01 -6.26347423e-01 -2.74720401e-01
6.08976007e-01 6.18167400e-01 -1.19924195e-01 1.22784331e-01
6.16959035e-02 -3.55178118e-02 -3.26952040e-01 6.55908585e-01
1.26541126e+00 4.14656028e-02 -2.79584110e-01 -4.10959512e-01
-4.30221498e-01 -5.49363434e-01 -1.09694481e+00 1.46519387e+00
-4.25469995e-01 6.52166307e-01 2.67706364e-01 -1.10847580e+00
1.05409491e+00 8.71618316e-02 4.41906840e-01 -8.21838021e-01
1.78300589e-01 2.67328680e-01 -1.31314278e-01 -4.10431474e-01
9.03281569e-01 -4.33792770e-01 3.51135075e-01 4.40867722e-01
2.22522821e-02 -6.33390963e-01 3.74695472e-02 -2.72336543e-01
2.10014194e-01 1.51477039e-01 3.90709817e-01 -1.27781659e-01
7.38837063e-01 1.72982857e-01 3.50782841e-01 5.30671775e-01
-7.19165802e-02 7.82618940e-01 -1.22408494e-01 -6.01035833e-01
-1.32754695e+00 -7.84176350e-01 -2.65952170e-01 8.72249007e-01
2.39508584e-01 2.15627000e-01 -5.21708727e-01 -3.30937535e-01
-3.65404785e-01 5.25192678e-01 -6.17184103e-01 2.50466261e-02
-3.44030082e-01 -1.37706232e+00 1.78453371e-01 2.70780414e-01
1.37257135e+00 -1.28977466e+00 -8.79561126e-01 1.64620638e-01
-1.29924431e-01 -7.41551280e-01 -4.98707220e-02 2.18353957e-01
-7.34901547e-01 -1.03226340e+00 -9.68052924e-01 -8.18340838e-01
1.77416578e-01 8.45237255e-01 5.14846921e-01 -2.63900399e-01
-3.81585211e-01 -6.34030486e-03 -6.26577675e-01 -2.23930582e-01
-2.36011192e-01 -2.32435972e-03 -4.86829340e-01 4.34593886e-01
2.41175830e-01 -7.64004946e-01 -4.89456743e-01 -9.29242298e-02
-1.37635207e+00 3.01714778e-01 1.26397359e+00 9.73643363e-01
6.96520627e-01 8.29415798e-01 4.72038656e-01 -5.84479272e-01
5.18542230e-01 -2.93307453e-01 -8.99584055e-01 1.85442701e-01
-4.86541957e-01 -2.71827817e-01 6.15845442e-01 -1.05614506e-01
-1.56814778e+00 1.66777283e-01 -2.10061535e-01 -7.03108162e-02
-2.85961777e-01 6.97685719e-01 -3.72861736e-02 -3.84654701e-01
7.80065179e-01 6.90799952e-01 -2.38349915e-01 -5.86040258e-01
4.04023290e-01 1.07849717e+00 9.26704288e-01 5.82774021e-02
9.25336957e-01 6.36238217e-01 -2.50147700e-01 -1.25086594e+00
-8.99231255e-01 -5.59994876e-01 -5.31854331e-01 -6.55245930e-02
1.07674563e+00 -9.27090526e-01 -4.80405800e-02 8.53621840e-01
-9.46181595e-01 -1.73709854e-01 -1.24523669e-01 4.37331349e-01
-5.91896832e-01 6.68668032e-01 -4.50049728e-01 -5.70563853e-01
-6.72122896e-01 -9.63997304e-01 1.06405079e+00 5.24775088e-01
4.84991997e-01 -5.55193722e-01 3.39509040e-01 4.92726535e-01
6.68055832e-01 3.47018480e-01 8.48870814e-01 -1.03026874e-01
-4.70102549e-01 -2.16232210e-01 -8.65827203e-01 5.91238678e-01
2.72630125e-01 -1.26254812e-01 -1.04037142e+00 -3.00382465e-01
3.94267440e-01 -4.30492669e-01 1.17701292e+00 6.48657560e-01
1.37074137e+00 -1.83281422e-01 -4.44327220e-02 1.06556189e+00
2.02625299e+00 2.69213706e-01 9.72585976e-01 6.39024317e-01
5.39436579e-01 3.40655178e-01 4.82110828e-01 5.24814762e-02
-1.76581576e-01 3.20464343e-01 6.70539021e-01 -5.82537234e-01
-9.20542553e-02 2.79063545e-02 1.28971875e-01 3.17033619e-01
-4.05192405e-01 -9.76086631e-02 -6.25794053e-01 7.15468705e-01
-1.57847548e+00 -1.18696773e+00 -1.73684269e-01 1.83339858e+00
6.79735065e-01 -3.26035202e-01 -3.50065440e-01 4.71568406e-01
8.66671324e-01 7.55708396e-01 -3.71089637e-01 -1.89146936e-01
-6.77493691e-01 5.10024488e-01 8.46447289e-01 4.74473536e-01
-1.50222087e+00 7.74118483e-01 5.77524614e+00 7.62944818e-01
-1.41400814e+00 7.04464316e-02 5.32407582e-01 3.38692248e-01
1.67120174e-02 -6.65834323e-02 -5.24097718e-02 8.23008642e-02
5.85556269e-01 -6.97141588e-02 5.49165487e-01 5.52311420e-01
9.42840129e-02 -2.49100327e-01 -2.22590312e-01 1.16413033e+00
1.68152273e-01 -1.12674749e+00 2.33948484e-01 -1.47944838e-01
1.09848881e+00 4.36022133e-01 1.12518981e-01 -1.96797237e-01
3.60420614e-01 -1.04971528e+00 3.36307645e-01 5.84431589e-01
7.02517331e-01 -1.01639462e+00 9.53287005e-01 1.89142272e-01
-1.09331667e+00 -4.36547309e-01 -6.27174258e-01 2.38367200e-01
7.83075616e-02 6.35171890e-01 -1.54920384e-01 1.20116043e+00
8.39323878e-01 8.95056844e-01 -5.40040553e-01 1.22350073e+00
-1.69325337e-01 3.61648053e-01 -1.35491148e-01 5.47025144e-01
4.75186884e-01 -4.98275608e-01 5.01626015e-01 1.17431831e+00
4.11031216e-01 3.96921009e-01 -1.33466721e-03 9.68386829e-01
1.56407937e-01 8.56087953e-02 -6.03945851e-01 -1.05656408e-01
-1.03507198e-01 1.58509254e+00 -4.71484214e-01 -3.34400713e-01
-4.90384132e-01 9.86852467e-01 -1.27113596e-01 4.42410916e-01
-7.52816856e-01 -6.50144339e-01 9.69364867e-02 -3.22405189e-01
4.80489463e-01 3.84442247e-02 -1.09940790e-01 -1.09825718e+00
-3.56533259e-01 -1.04060793e+00 3.77358824e-01 -1.29596162e+00
-9.06425178e-01 9.23596263e-01 -3.49795930e-02 -1.04696119e+00
2.64547110e-01 -6.21959388e-01 -5.47433138e-01 1.25586629e+00
-1.97929919e+00 -1.51524234e+00 -8.24868858e-01 6.47034109e-01
5.34872055e-01 -1.63919672e-01 7.18279958e-01 2.22233891e-01
-4.42898691e-01 -2.29908258e-01 3.38623941e-01 -9.94596165e-03
3.34468037e-01 -1.05420196e+00 1.06624998e-01 1.34431767e+00
3.41054201e-02 -8.57310966e-02 6.35845602e-01 -4.85049278e-01
-9.67868745e-01 -1.34062219e+00 4.60494161e-01 4.96932119e-01
3.77278924e-01 4.26747501e-01 -9.52121079e-01 6.13945127e-01
6.49304986e-01 -9.27065238e-02 3.48980665e-01 -6.09635413e-01
-5.51190227e-02 -3.25886816e-01 -1.19289303e+00 1.99103057e-01
4.12927419e-01 -3.65857452e-01 -7.01655686e-01 1.50083438e-01
3.99985641e-01 -9.27034542e-02 -6.65147841e-01 4.73759234e-01
3.20565283e-01 -1.26890349e+00 9.20440972e-01 -1.58846527e-01
7.77492881e-01 -4.65484262e-01 -4.15794551e-01 -1.59481859e+00
-7.45253801e-01 -3.70069951e-01 5.64215481e-01 7.22284496e-01
1.98601633e-01 -5.31390309e-01 3.98931831e-01 -2.99979985e-01
-1.28438503e-01 -3.40680569e-01 -3.32657307e-01 -4.17688221e-01
4.97707613e-02 -7.39674643e-02 8.13259900e-01 1.07460928e+00
-5.88571370e-01 1.89760506e-01 -5.32673359e-01 5.70196807e-01
8.33073795e-01 6.61365509e-01 3.44234318e-01 -1.10224223e+00
-2.77833611e-01 -4.44022596e-01 -2.49295264e-01 -7.20856726e-01
-7.53301159e-02 -7.41538286e-01 -9.94005706e-03 -1.65275252e+00
4.40827906e-01 -2.16684535e-01 -2.84574449e-01 4.56467837e-01
-2.66456902e-02 5.80390871e-01 2.68340614e-02 2.89069535e-03
5.20011224e-02 6.53404951e-01 1.17438507e+00 -3.38721544e-01
-2.07654551e-01 -1.07688010e-01 -7.48071611e-01 5.77924848e-01
1.00946391e+00 -2.14437678e-01 -1.99676886e-01 -6.35296762e-01
3.26226316e-02 2.13101506e-01 6.35187924e-01 -1.37600362e+00
7.26912245e-02 -2.31825843e-01 5.75319529e-01 -8.68021429e-01
4.14260209e-01 -1.03334355e+00 3.52718651e-01 3.68353665e-01
-5.01219667e-02 -2.00969219e-01 3.68979275e-01 3.78578365e-01
-5.43283045e-01 -2.30690166e-01 1.40030837e+00 -1.93751261e-01
-1.10968602e+00 3.72888833e-01 -2.07918361e-01 -6.57798290e-01
1.01394391e+00 -3.56336683e-01 -2.75170267e-01 -3.38092387e-01
-4.84301627e-01 -1.26453444e-01 2.41437599e-01 2.36239433e-01
7.26203501e-01 -1.18058085e+00 -1.03484929e+00 4.46571589e-01
-6.96926042e-02 -1.50655687e-01 5.91688097e-01 5.47220290e-01
-9.77959394e-01 2.89188683e-01 -9.85360384e-01 -3.40867043e-01
-1.17697132e+00 5.82104087e-01 8.68576050e-01 -1.74555972e-01
-6.33278847e-01 6.24953270e-01 1.10674456e-01 -4.06953454e-01
-4.40000862e-01 -2.10664362e-01 -5.03929257e-01 1.13435937e-02
5.95370412e-01 3.16887736e-01 1.38138756e-01 -1.06239355e+00
4.29535359e-02 7.47139037e-01 -7.75235817e-02 -1.31672755e-01
1.97163606e+00 -1.73180208e-01 -4.22453761e-01 -1.70736104e-01
1.21633089e+00 -1.02681339e-01 -1.26892078e+00 -4.78687942e-01
-3.18605095e-01 -7.34500349e-01 5.85194588e-01 -9.74439859e-01
-1.52294970e+00 9.12868261e-01 1.05024278e+00 3.08754921e-01
1.85990000e+00 -3.49062949e-01 6.77144408e-01 3.62278223e-01
3.64395007e-02 -1.02524686e+00 -2.84377813e-01 2.45692894e-01
1.14965391e+00 -1.32662976e+00 2.89701045e-01 -2.53710777e-01
-4.34557080e-01 1.24535060e+00 3.52303028e-01 -3.59634280e-01
5.57608128e-01 -3.90159455e-03 1.62650898e-01 -3.69354457e-01
-3.98842506e-02 -2.30840206e-01 2.41207361e-01 5.87384284e-01
2.27526948e-01 1.86490893e-01 -2.41836652e-01 2.59290874e-01
-3.60007197e-01 8.10925439e-02 6.78794146e-01 6.08208776e-01
-8.19248557e-01 -7.03503668e-01 -6.46075487e-01 5.35018981e-01
-5.81216156e-01 -1.15043983e-01 -2.82790005e-01 7.67420888e-01
2.95605361e-01 8.98550153e-01 4.45178375e-02 -1.29432559e-01
1.37502298e-01 -2.81552076e-01 2.56244183e-01 -2.95883328e-01
-4.66403544e-01 1.17825218e-01 -7.92708173e-02 -3.17040980e-01
-9.53835428e-01 -4.06680584e-01 -6.25998855e-01 -1.83759928e-01
-5.28119385e-01 3.63553464e-02 5.19340813e-01 6.11156762e-01
-3.21273804e-02 4.11802620e-01 8.38741660e-01 -1.13774574e+00
-4.38085049e-01 -1.09863341e+00 -1.08540070e+00 3.20199907e-01
6.38503551e-01 -4.17595297e-01 -1.22862384e-01 7.17210919e-02] | [10.138443946838379, -1.9282076358795166] |
129247ac-a2bf-4fd9-a6d8-53403fb8fec6 | radiff-controllable-diffusion-models-for | 2307.02392 | null | https://arxiv.org/abs/2307.02392v1 | https://arxiv.org/pdf/2307.02392v1.pdf | RADiff: Controllable Diffusion Models for Radio Astronomical Maps Generation | Along with the nearing completion of the Square Kilometre Array (SKA), comes an increasing demand for accurate and reliable automated solutions to extract valuable information from the vast amount of data it will allow acquiring. Automated source finding is a particularly important task in this context, as it enables the detection and classification of astronomical objects. Deep-learning-based object detection and semantic segmentation models have proven to be suitable for this purpose. However, training such deep networks requires a high volume of labeled data, which is not trivial to obtain in the context of radio astronomy. Since data needs to be manually labeled by experts, this process is not scalable to large dataset sizes, limiting the possibilities of leveraging deep networks to address several tasks. In this work, we propose RADiff, a generative approach based on conditional diffusion models trained over an annotated radio dataset to generate synthetic images, containing radio sources of different morphologies, to augment existing datasets and reduce the problems caused by class imbalances. We also show that it is possible to generate fully-synthetic image-annotation pairs to automatically augment any annotated dataset. We evaluate the effectiveness of this approach by training a semantic segmentation model on a real dataset augmented in two ways: 1) using synthetic images obtained from real masks, and 2) generating images from synthetic semantic masks. We show an improvement in performance when applying augmentation, gaining up to 18% in performance when using real masks and 4% when augmenting with synthetic masks. Finally, we employ this model to generate large-scale radio maps with the objective of simulating Data Challenges. | ['Concetto Spampinato', 'Filomena Bufano', 'Cristobal Bordiu', 'Adriano Ingallinera', 'Eva Sciacca', 'Simone Riggi', 'Daniel Magro', 'Andrew M. Hopkins', 'Andrea Pilzer', 'Giuseppe Fiameni', 'Andrea DeMarco', 'Thomas Cecconello', 'Renato Sortino'] | 2023-07-05 | null | null | null | null | ['object-detection', 'astronomy'] | ['computer-vision', 'miscellaneous'] | [ 5.35714447e-01 2.91250497e-01 3.20869952e-01 -2.72709668e-01
-9.96538579e-01 -6.71354175e-01 7.19855309e-01 -3.81163247e-02
-5.74372172e-01 7.78393269e-01 -1.76084042e-01 -2.50910312e-01
-1.32698938e-01 -9.42158580e-01 -8.92560720e-01 -5.45010746e-01
1.35636941e-01 9.90546107e-01 3.31150830e-01 -4.33596484e-02
1.83880746e-01 7.85302877e-01 -1.56454229e+00 5.76250860e-03
7.44464099e-01 1.03855217e+00 6.59475505e-01 6.06080651e-01
-1.92658752e-01 6.61148608e-01 -7.74580359e-01 -3.38610560e-02
5.71239471e-01 -6.42463684e-01 -6.69697881e-01 2.88037747e-01
3.90235372e-02 3.56329395e-03 3.50127034e-02 7.81188667e-01
3.37587386e-01 7.94178322e-02 6.93843186e-01 -1.08212566e+00
4.16749232e-02 2.88135231e-01 -4.72286373e-01 2.00993299e-01
2.61282381e-02 1.44996256e-01 5.79659641e-01 -5.75825691e-01
5.71051955e-01 7.71089017e-01 5.33787966e-01 2.01812923e-01
-1.12891841e+00 -4.14447784e-01 -4.90925461e-01 -1.74138859e-01
-1.22822392e+00 -3.69595200e-01 7.62961864e-01 -4.59046870e-01
6.29801571e-01 2.17664957e-01 5.19651592e-01 8.91030431e-01
-4.27172452e-01 4.10584509e-01 1.33632302e+00 -6.42354250e-01
3.97564769e-01 4.82496679e-01 -4.07812536e-01 4.50780123e-01
2.58220375e-01 7.49250595e-03 -3.02602321e-01 -4.10735942e-02
7.98537552e-01 -3.24608296e-01 -2.92021245e-01 -3.29682916e-01
-1.37667072e+00 8.64471257e-01 6.60301983e-01 5.18740535e-01
-4.92385775e-01 1.77011311e-01 -7.78604820e-02 2.89279055e-02
6.55548573e-01 1.15248573e+00 -2.97652572e-01 1.99119613e-01
-1.28575933e+00 2.88215995e-01 5.77288091e-01 7.15426683e-01
9.24402535e-01 3.67649734e-01 2.57531166e-01 7.78364718e-01
-7.96034839e-03 6.06155694e-01 5.72575927e-01 -9.10084665e-01
2.14221835e-01 5.73757112e-01 1.30716354e-01 -7.72390723e-01
-5.53940713e-01 -8.24479699e-01 -6.65369511e-01 3.10751051e-01
6.18647277e-01 -6.38253614e-02 -1.23355472e+00 1.54014957e+00
3.30347478e-01 1.93075854e-02 3.03596854e-01 9.12322402e-01
3.66223454e-01 5.88530481e-01 -1.05617858e-01 6.57647997e-02
1.23017848e+00 -8.27539742e-01 -6.13856390e-02 -5.94275177e-01
6.28863633e-01 -7.73901463e-01 9.79068637e-01 3.08926314e-01
-6.17981732e-01 -4.94990438e-01 -1.17781806e+00 1.96014553e-01
-4.69377697e-01 1.86073571e-01 7.00280666e-01 6.43425882e-01
-8.36404741e-01 3.93694758e-01 -6.88152194e-01 -2.30221152e-01
5.86257637e-01 3.43677759e-01 -1.52073413e-01 -1.53613180e-01
-8.79960954e-01 6.37731433e-01 6.55808568e-01 -1.97104156e-01
-9.67004716e-01 -5.97251296e-01 -7.39998579e-01 1.76185369e-01
5.22946239e-01 -4.99763966e-01 1.04070389e+00 -1.25868380e+00
-9.41460729e-01 5.83184421e-01 2.09096447e-01 -6.79953635e-01
5.85495830e-01 1.64147988e-01 -2.18993217e-01 2.71921247e-01
2.01849401e-01 9.91417408e-01 9.57469702e-01 -1.39371026e+00
-4.15847480e-01 -3.34056616e-01 -1.16660081e-01 1.70544490e-01
-9.55791622e-02 -8.05894211e-02 -3.28340471e-01 -7.94565916e-01
9.98250842e-02 -1.01654899e+00 -4.52743351e-01 -2.34999061e-01
-3.54823023e-01 3.65895540e-01 8.71322036e-01 -9.22453880e-01
3.89931917e-01 -1.92875695e+00 -1.28235221e-01 5.15213251e-01
-4.45998907e-02 1.61568582e-01 -9.56254229e-02 1.74085815e-02
8.38824734e-02 3.66037935e-02 -9.34252024e-01 -1.87731251e-01
-3.01440239e-01 1.62635326e-01 -2.71072507e-01 1.04949854e-01
4.09288049e-01 7.52582550e-01 -6.25157535e-01 -2.12486729e-01
1.26512125e-01 4.17231679e-01 -4.28912669e-01 6.20964766e-02
-7.15031564e-01 8.70521724e-01 -2.66636848e-01 4.05986845e-01
5.22208750e-01 -1.94187954e-01 6.29520789e-02 1.54473886e-01
1.16588227e-01 7.50608668e-02 -1.11321950e+00 1.62435937e+00
-6.81456983e-01 7.25988626e-01 -1.72023773e-01 -1.09786248e+00
1.13627565e+00 8.12741295e-02 4.62366223e-01 -9.08147514e-01
2.08140284e-01 4.00853336e-01 1.13800988e-01 -2.00861588e-01
6.76056921e-01 -2.87969410e-01 -1.83291689e-01 6.10092044e-01
4.72733863e-02 -5.63132584e-01 1.93863913e-01 2.26191938e-01
1.13193119e+00 7.15496242e-02 -1.77470848e-01 -8.93411636e-02
2.74687260e-01 4.48611349e-01 2.34208703e-01 5.95540762e-01
4.70520586e-01 1.03583634e+00 4.34763074e-01 -3.13549280e-01
-1.52467918e+00 -7.14721143e-01 5.07634096e-02 3.90907228e-01
-8.04182813e-02 3.16673964e-01 -8.49294543e-01 -8.31918657e-01
-2.86852896e-01 7.79476643e-01 -3.48858327e-01 5.97502328e-02
-4.01762128e-01 -1.25236845e+00 4.61749405e-01 3.59974474e-01
7.66260386e-01 -1.10935950e+00 -8.60251009e-01 1.01067215e-01
-3.06491435e-01 -1.41379404e+00 3.13905329e-01 1.99981287e-01
-5.75767398e-01 -9.85613286e-01 -7.93768585e-01 -4.37431246e-01
7.46595562e-01 2.16698900e-01 1.08590138e+00 1.20920666e-01
-6.90196335e-01 2.15555742e-01 -3.88488352e-01 -5.80262125e-01
-7.55165339e-01 2.82861203e-01 -2.51622707e-01 1.81859151e-01
-1.97248802e-01 -4.76662159e-01 -4.63730395e-01 4.47076678e-01
-1.35616446e+00 2.56953329e-01 8.38413477e-01 5.42397559e-01
6.32153928e-01 3.76907647e-01 9.93235350e-01 -9.48201597e-01
7.15887621e-02 -6.15511835e-01 -9.63037014e-01 -1.58074088e-02
-3.44547361e-01 2.12107942e-01 5.19807398e-01 -1.40882716e-01
-1.23685348e+00 4.32045281e-01 -2.61540234e-01 -2.39424020e-01
-3.38498473e-01 3.11586827e-01 -8.55050012e-02 -2.55372405e-01
9.53316987e-01 7.42127225e-02 -3.09978984e-02 -2.89154828e-01
4.07583296e-01 7.37691879e-01 5.83068669e-01 -2.53859341e-01
1.04514182e+00 6.50262177e-01 1.47075683e-01 -1.02305877e+00
-8.82030606e-01 -5.53361297e-01 -4.79416370e-01 -1.79231524e-01
9.68725085e-01 -7.71278501e-01 2.89180189e-01 2.68916309e-01
-8.03074718e-01 -6.72266245e-01 -3.99133056e-01 6.12335324e-01
-5.38882017e-01 9.28812996e-02 1.15705572e-01 -6.06580734e-01
-2.48662475e-03 -1.05642319e+00 1.01883781e+00 1.74664110e-01
1.31380662e-01 -6.82727456e-01 -6.04532510e-02 7.71073282e-01
5.34647763e-01 3.78366411e-01 7.42608607e-01 -7.13252723e-01
-9.25441682e-01 -2.50553817e-01 -3.70485634e-01 4.05775636e-01
-5.30400462e-02 -4.79268909e-01 -1.07739949e+00 -2.11802050e-02
1.58580229e-01 -4.11904693e-01 7.72497654e-01 1.61699485e-02
1.25711644e+00 7.79766217e-02 -2.57278383e-01 3.40186119e-01
1.44392824e+00 7.77301565e-02 7.41995692e-01 2.44724661e-01
6.45345926e-01 7.84311891e-01 6.21681094e-01 1.30295292e-01
1.17708230e-02 6.59646213e-01 5.12792110e-01 -3.47380936e-01
-3.73029500e-01 5.64833842e-02 -2.27118045e-01 2.09920466e-01
3.30905430e-02 -3.33198339e-01 -1.04131413e+00 7.19876468e-01
-1.39116192e+00 -7.23013580e-01 -1.99375808e-01 2.27061439e+00
3.82730603e-01 1.93904564e-01 1.30428597e-01 3.37669045e-01
5.05659103e-01 -6.16401285e-02 -4.35863048e-01 1.16118824e-03
-1.40448675e-01 4.31847095e-01 7.50641823e-01 2.70565033e-01
-9.47104514e-01 7.61268139e-01 5.05932331e+00 7.88864136e-01
-1.21876514e+00 1.54504150e-01 9.60968375e-01 5.24463430e-02
-4.48506862e-01 1.69195782e-03 -4.56487477e-01 4.75331992e-01
9.84950006e-01 3.71465504e-01 4.15169626e-01 8.14363122e-01
-4.76328395e-02 -7.13547587e-01 -5.69634557e-01 8.61913919e-01
2.64522612e-01 -1.38748991e+00 -1.52755514e-01 1.34308249e-01
9.13651288e-01 2.57030249e-01 -1.78855777e-01 1.41409665e-01
1.43609583e-01 -8.72941613e-01 6.18326366e-01 4.71950918e-01
5.78417718e-01 -8.63929749e-01 7.31499970e-01 5.43509305e-01
-6.92327201e-01 7.79949352e-02 -2.27619529e-01 2.60334134e-01
1.52343139e-01 8.62674356e-01 -1.50709903e+00 7.98890531e-01
4.69843239e-01 -9.07891914e-02 -8.04515839e-01 1.19341874e+00
-1.50744587e-01 5.32868803e-01 -6.55707896e-01 1.90634310e-01
1.26704440e-01 -1.01504721e-01 4.04826164e-01 7.83153653e-01
7.13321030e-01 -2.37563968e-01 -4.18848768e-02 1.03837287e+00
-2.79661894e-01 -5.29708751e-02 -7.13911057e-01 -8.92387554e-02
1.50637850e-01 1.50324917e+00 -1.48149693e+00 -2.08115980e-01
-1.87448189e-01 9.01113570e-01 1.10583477e-01 1.44180268e-01
-8.11035156e-01 -4.04945731e-01 -1.00544825e-01 4.11552876e-01
2.08288670e-01 -3.65483284e-01 -2.97889918e-01 -6.61903679e-01
-5.68936132e-02 -7.65506983e-01 9.09308866e-02 -9.96260941e-01
-7.71129489e-01 7.94620693e-01 -3.20058465e-02 -9.67894137e-01
-4.27859545e-01 -3.79483163e-01 -3.34678084e-01 7.91777670e-01
-1.39178288e+00 -1.15205967e+00 -7.31385410e-01 4.57237549e-02
5.64742208e-01 -1.92859828e-01 5.12389243e-01 4.06550527e-01
-8.75168890e-02 1.41325872e-02 -4.12916429e-02 -3.85064408e-02
4.22117203e-01 -1.18140554e+00 4.16077614e-01 9.49034214e-01
5.77273250e-01 -2.71938652e-01 6.32923007e-01 -5.27084470e-01
-8.88792574e-01 -1.31708634e+00 4.06871736e-01 -3.67518425e-01
2.88673848e-01 -4.35478777e-01 -9.58245575e-01 4.57647502e-01
-1.10978842e-01 3.16708684e-02 3.17130476e-01 -5.37100077e-01
2.70545203e-02 6.97507411e-02 -1.30356979e+00 1.76923424e-01
7.53554344e-01 -2.88828731e-01 -3.56216490e-01 4.60650921e-01
5.99621892e-01 -1.94781646e-01 -4.85226214e-01 6.75674558e-01
7.03801960e-02 -1.03012979e+00 9.00404811e-01 2.99245920e-02
4.46758896e-01 -5.19589841e-01 -4.66654822e-02 -1.37885332e+00
3.74855727e-01 -1.79058954e-01 6.43827498e-01 1.08625674e+00
6.83310688e-01 -5.05028784e-01 1.02063704e+00 2.76117384e-01
-2.41078004e-01 -3.31855386e-01 -7.51114726e-01 -8.76533151e-01
-2.21730947e-01 -6.94225848e-01 6.25740647e-01 1.08410859e+00
-8.03204596e-01 2.40135819e-01 -1.40429154e-01 2.66349226e-01
4.20354158e-01 7.75206536e-02 1.02196693e+00 -1.15020382e+00
-6.92154825e-01 -1.85139760e-01 -3.52013707e-01 -5.48155308e-01
-1.43760219e-02 -1.03857005e+00 1.58247411e-01 -1.67763197e+00
-9.52670425e-02 -1.13791788e+00 1.76174328e-01 2.14784622e-01
9.22737494e-02 9.04733002e-01 3.07072029e-02 2.18637079e-01
-2.06144303e-01 3.72529358e-01 9.18837249e-01 -4.24081869e-02
-1.15128241e-01 3.00084613e-02 -3.61153513e-01 7.70474732e-01
1.14300406e+00 -6.22633815e-01 -5.13559639e-01 -3.87916505e-01
5.04314482e-01 6.29495308e-02 6.94287241e-01 -1.52595556e+00
-1.69571191e-01 2.80802906e-01 5.57144523e-01 -4.82952356e-01
4.55022365e-01 -6.54510200e-01 3.27371389e-01 2.67278612e-01
-6.40882775e-02 -2.94360429e-01 2.42942467e-01 5.35428107e-01
-2.64814585e-01 -5.64026177e-01 7.45727718e-01 -2.86058903e-01
-6.83102012e-01 -3.40068229e-02 -4.22525525e-01 2.88387369e-02
1.09951651e+00 1.00878000e-01 -4.01763842e-02 -3.86449993e-01
-6.18779242e-01 -9.66466367e-02 5.89831948e-01 3.04514050e-01
3.25068831e-01 -9.51958776e-01 -5.33091366e-01 2.45056152e-01
1.18096657e-01 4.92083162e-01 2.56459534e-01 5.11181891e-01
-8.43713582e-01 1.63077101e-01 -1.92613512e-01 -6.16634429e-01
-9.67091799e-01 5.27361214e-01 3.02225232e-01 -3.35731030e-01
-3.34485620e-01 5.84985852e-01 2.37665251e-01 -6.00565732e-01
-1.98201180e-01 -1.09400414e-01 -1.18169896e-01 4.38088039e-03
2.27827340e-01 8.42743367e-02 4.81309861e-01 -4.87067878e-01
5.13821747e-03 2.33480230e-01 3.10985386e-01 -4.81312245e-01
1.28607464e+00 1.70440406e-01 3.23695615e-02 -2.36315783e-02
8.30851674e-01 1.34550884e-01 -1.08836579e+00 -1.65947750e-01
2.45461166e-01 -3.91241223e-01 1.01243876e-01 -9.56679642e-01
-1.11915958e+00 7.83366919e-01 5.85024297e-01 2.97794521e-01
1.09494233e+00 3.13339472e-01 6.55218661e-01 3.46858978e-01
4.44941461e-01 -8.82055938e-01 2.79388875e-01 2.04232465e-02
8.37141812e-01 -1.39196765e+00 -1.43552482e-01 -4.03707981e-01
-4.87100780e-01 8.99500608e-01 3.88720512e-01 -4.03777845e-02
2.45233700e-01 2.49338120e-01 1.58778355e-01 -3.52790296e-01
-1.12682730e-01 -4.30882066e-01 2.03012303e-01 5.12465239e-01
-1.68448240e-01 3.50560411e-03 5.19444309e-02 1.15504906e-01
-3.34272325e-01 -2.02711031e-01 7.27686346e-01 9.19560134e-01
-5.22595346e-01 -1.18107355e+00 -7.14422762e-01 6.82947278e-01
-3.85883242e-01 3.59496661e-02 -3.68712902e-01 8.47971261e-01
1.76125258e-01 7.80856848e-01 2.29713589e-01 -2.51087695e-02
-1.43827245e-01 2.44117659e-02 3.64792556e-01 -6.77651405e-01
-2.37382069e-01 1.00014217e-01 3.07516038e-01 -8.96058902e-02
-5.26018441e-01 -5.82388937e-01 -1.24629116e+00 3.06835622e-01
-2.93141037e-01 2.09950611e-01 1.35378659e+00 1.09094322e+00
2.17997134e-01 8.13362896e-01 6.81734681e-01 -1.06624532e+00
-1.48871005e-01 -8.95681918e-01 -1.91820055e-01 2.61960536e-01
-1.21260183e-02 -5.92228591e-01 -2.64488250e-01 -5.27619272e-02] | [9.7783784866333, 0.8905373215675354] |
c3f4ad1c-7b71-45f0-91a5-c3213cda1d8b | graph-construction-using-principal-axis-trees | 2302.12000 | null | https://arxiv.org/abs/2302.12000v2 | https://arxiv.org/pdf/2302.12000v2.pdf | Graph Construction using Principal Axis Trees for Simple Graph Convolution | Graph Neural Networks (GNNs) are increasingly becoming the favorite method for graph learning. They exploit the semi-supervised nature of deep learning, and they bypass computational bottlenecks associated with traditional graph learning methods. In addition to the feature matrix $X$, GNNs need an adjacency matrix $A$ to perform feature propagation. In many cases the adjacency matrix $A$ is missing. We introduce a graph construction scheme that construct the adjacency matrix $A$ using unsupervised and supervised information. Unsupervised information characterize the neighborhood around points. We used Principal Axis trees (PA-trees) as a source of unsupervised information, where we create edges between points falling onto the same leaf node. For supervised information, we used the concept of penalty and intrinsic graphs. A penalty graph connects points with different class labels, whereas intrinsic graph connects points with the same class label. We used the penalty and intrinsic graphs to remove or add edges to the graph constructed via PA-tree. This graph construction scheme was tested on two well-known GNNs: 1) Graph Convolutional Network (GCN) and 2) Simple Graph Convolution (SGC). The experiments show that it is better to use SGC because it is faster and delivers better or the same results as GCN. We also test the effect of oversmoothing on both GCN and SGC. We found out that the level of smoothing has to be selected carefully for SGC to avoid oversmoothing. | ['Masahiro Takatsuka', 'Adel F. Ahmed', 'John Stavrakakis', 'Mashaan Alshammari'] | 2023-02-22 | null | null | null | null | ['graph-partitioning'] | ['graphs'] | [-1.39366016e-01 4.16855484e-01 2.32237905e-01 -4.70189691e-01
1.59425437e-01 -4.33780611e-01 4.32673305e-01 4.88242298e-01
-4.22274083e-01 4.19459671e-01 -1.40231445e-01 -4.35664177e-01
-2.63267338e-01 -1.35979354e+00 -8.17703724e-01 -7.79687405e-01
-7.46565402e-01 2.41843998e-01 3.59809577e-01 -7.08331838e-02
-1.21822130e-04 7.40171790e-01 -1.33740449e+00 3.59391682e-02
7.70243466e-01 7.87455261e-01 7.83917978e-02 4.95116144e-01
-5.54182112e-01 6.50516272e-01 -3.50798905e-01 -2.90071458e-01
5.42573929e-01 -4.59563166e-01 -7.28450119e-01 1.67431936e-01
3.81578296e-01 3.04459751e-01 -4.61258411e-01 1.38619089e+00
1.88630298e-01 2.46090680e-01 6.53202057e-01 -1.33673203e+00
-4.85898167e-01 8.85988533e-01 -6.70039594e-01 9.99984983e-03
-5.81631437e-02 6.52425550e-03 1.07786834e+00 -5.34114063e-01
7.26660311e-01 1.16728795e+00 9.70339417e-01 2.63763279e-01
-1.32260227e+00 -3.95982146e-01 1.85796529e-01 -4.33858335e-02
-1.39711380e+00 1.41855806e-01 1.10868657e+00 -4.12770510e-01
9.70866859e-01 2.72014476e-02 8.25110197e-01 4.58572298e-01
1.42304689e-01 3.34120840e-01 9.56582665e-01 -6.34162247e-01
2.67950594e-01 -1.16131350e-01 5.19217432e-01 1.31831682e+00
3.56871426e-01 -5.01758456e-02 -1.53226539e-01 -1.33954994e-02
9.29846048e-01 2.02764533e-02 -2.18181416e-01 -8.73458147e-01
-9.14248943e-01 9.92558062e-01 1.09037399e+00 2.94154316e-01
-3.09763879e-01 4.90715981e-01 3.54775697e-01 3.38436097e-01
1.99751511e-01 3.54734540e-01 -1.73798099e-01 2.83216804e-01
-5.85609913e-01 -3.21644962e-01 8.60391498e-01 9.84237492e-01
1.39372170e+00 1.70386299e-01 2.39465714e-01 8.50653470e-01
2.69328028e-01 2.19381884e-01 2.55159378e-01 -7.21382022e-01
3.28426987e-01 1.28920984e+00 -5.21377385e-01 -1.43306422e+00
-6.76678538e-01 -5.97012162e-01 -1.22714698e+00 4.30438757e-01
5.43372929e-01 -1.71658754e-01 -1.32852161e+00 1.62967718e+00
1.55194364e-02 4.71797325e-02 -1.57568604e-01 6.24180377e-01
1.01057470e+00 4.68484938e-01 -1.09313056e-01 1.89052120e-01
9.62027371e-01 -8.61884773e-01 -4.50010329e-01 -9.48410258e-02
1.02361000e+00 -4.48134750e-01 1.07518315e+00 1.65885046e-01
-8.31898332e-01 -4.44815516e-01 -1.01625228e+00 1.76392823e-01
-9.09753680e-01 5.30696586e-02 9.64070082e-01 5.80572963e-01
-1.55544174e+00 1.00157464e+00 -9.84200656e-01 -5.08054376e-01
4.12114471e-01 4.97543424e-01 -6.26618981e-01 -1.43978298e-02
-1.01602268e+00 6.21868551e-01 4.99086410e-01 2.42962152e-01
-5.46051800e-01 -2.73742586e-01 -1.23874199e+00 2.75362015e-01
2.32323974e-01 -3.34200054e-01 3.65385562e-01 -1.12341619e+00
-1.17006898e+00 9.60628808e-01 3.07754397e-01 -6.49904013e-01
1.13326065e-01 1.99934483e-01 -2.66386420e-01 1.77809581e-01
-1.22430533e-01 7.87921250e-01 8.05079043e-01 -1.16039789e+00
-2.64226079e-01 -2.34460354e-01 4.27657366e-02 -3.87986340e-02
-1.51748523e-01 -4.20029700e-01 -4.57601964e-01 -5.83913028e-01
5.61533451e-01 -8.95570517e-01 -3.19313824e-01 -1.63904652e-01
-6.48697436e-01 -1.05577916e-01 1.06218648e+00 -3.58434677e-01
1.21713376e+00 -2.21027589e+00 1.14880865e-02 9.27146494e-01
7.15637326e-01 3.09476525e-01 -2.15450346e-01 5.82414150e-01
-4.70672041e-01 1.21268474e-01 -5.41818142e-01 -8.88126716e-02
-2.01393560e-01 4.41760689e-01 3.13595921e-01 4.81957763e-01
2.74981827e-01 8.75130594e-01 -8.77542734e-01 -3.33158702e-01
1.29995152e-01 4.70385134e-01 -6.30443811e-01 -2.00898856e-01
-1.57599986e-01 -6.43416867e-02 -1.69505641e-01 3.33539009e-01
6.15549147e-01 -5.42654216e-01 2.24648118e-01 -2.24343568e-01
3.86611931e-02 1.54283613e-01 -1.42189276e+00 1.45932341e+00
-7.92379677e-02 6.69316292e-01 1.28191724e-01 -1.41821706e+00
1.34677923e+00 -1.45601317e-01 4.62461859e-01 -3.58358532e-01
1.27316773e-01 -4.70373929e-02 3.21651876e-01 -3.28425653e-02
1.02760084e-01 1.73804298e-01 2.07491547e-01 3.74994576e-01
3.06330144e-01 8.30581710e-02 4.19993162e-01 6.23977840e-01
1.43841577e+00 -1.42614156e-01 1.23093978e-01 -7.35874176e-01
4.83330727e-01 -8.57720897e-02 4.30762500e-01 6.51973188e-01
-1.32650500e-02 6.07749224e-01 9.02569354e-01 -5.82502782e-01
-6.18207514e-01 -1.10055947e+00 2.81269401e-01 7.45960891e-01
-4.92713451e-02 -7.43944705e-01 -9.07505929e-01 -9.19808447e-01
-8.98675248e-02 3.45574141e-01 -5.91388881e-01 -1.41894892e-01
-6.12079740e-01 -5.99806547e-01 2.75113910e-01 4.44303125e-01
6.00110650e-01 -1.25652397e+00 -1.81278691e-01 1.67468935e-01
2.89595634e-01 -8.28142524e-01 -4.47704107e-01 5.78141212e-01
-1.01616919e+00 -1.34157956e+00 -4.60804909e-01 -1.16039145e+00
1.29432857e+00 2.36056924e-01 1.24694538e+00 4.65884000e-01
-2.35511497e-01 4.65822399e-01 -4.54377890e-01 -1.14432417e-01
-3.26407403e-01 1.52109459e-01 -2.28284404e-01 7.63476416e-02
2.62181282e-01 -8.50368977e-01 -3.70522350e-01 1.34454966e-01
-8.25255811e-01 1.54080177e-02 3.60647619e-01 6.85429454e-01
6.37451053e-01 4.21917081e-01 9.13687646e-02 -1.29378259e+00
7.06836402e-01 -6.32064119e-02 -8.78148079e-01 5.31431735e-02
-6.68900013e-01 3.47340465e-01 8.23047757e-01 -1.83745831e-01
-3.54177207e-01 3.44568729e-01 -8.09726771e-03 -5.23327231e-01
-8.78176540e-02 8.79484236e-01 -1.45797268e-01 -3.40905279e-01
7.84441769e-01 -1.23605698e-01 4.27885711e-01 -4.30594951e-01
4.86112684e-01 5.37996441e-02 3.30853820e-01 -2.89287180e-01
7.34170020e-01 4.18945819e-01 3.40373874e-01 -9.82588112e-01
-2.84176290e-01 -4.15442079e-01 -8.84295285e-01 -2.73270786e-01
7.75880575e-01 -4.21713084e-01 -5.41545153e-01 5.49047291e-01
-9.55096900e-01 -6.81790531e-01 -4.46127355e-01 3.67060006e-01
-2.91758507e-01 4.59866256e-01 -6.68761551e-01 -4.21991050e-01
-1.71513796e-01 -9.65773880e-01 5.78512609e-01 2.08897278e-01
1.60815552e-01 -1.48101926e+00 -7.78542235e-02 -4.15460140e-01
3.49102646e-01 4.69954193e-01 1.19857025e+00 -5.56536555e-01
-4.81505424e-01 -3.38141114e-01 -4.39061463e-01 5.22980690e-01
2.09871501e-01 2.31308401e-01 -5.84850430e-01 -4.45366234e-01
-3.87464941e-01 1.51550606e-01 1.04122710e+00 4.87010956e-01
1.25137925e+00 -2.12487891e-01 -3.27508450e-01 7.22405970e-01
1.56138253e+00 1.31802320e-01 9.46446955e-01 1.05980873e-01
1.13033652e+00 6.09118462e-01 -2.37029821e-01 -1.01566494e-01
1.49573922e-01 2.34296098e-01 4.67016578e-01 -4.83190387e-01
-3.25751513e-01 -3.00810426e-01 2.36752748e-01 1.02061677e+00
-2.54037738e-01 -1.44444883e-01 -1.29998982e+00 3.79368752e-01
-1.74637556e+00 -6.17574155e-01 -5.64174652e-01 2.25858545e+00
3.26673657e-01 4.99936879e-01 7.19193742e-02 3.12652618e-01
8.47180367e-01 1.40911669e-01 -8.42407942e-02 -3.97706330e-01
-1.06776059e-01 5.90304852e-01 7.61485040e-01 6.34878218e-01
-1.09066057e+00 1.07144094e+00 6.05104780e+00 5.42918503e-01
-1.15962327e+00 -2.96077371e-01 4.63939041e-01 4.50684100e-01
-1.95547506e-01 1.22641906e-01 -5.53578734e-01 1.86801553e-01
5.97431898e-01 3.68642211e-01 4.28718865e-01 8.87234449e-01
-4.23083566e-02 1.68757383e-02 -9.58434463e-01 8.94032359e-01
-2.97570378e-01 -1.41409481e+00 3.30910203e-03 6.30216077e-02
5.14266193e-01 2.25263163e-01 -3.47944766e-01 2.61326462e-01
8.33812118e-01 -9.83822227e-01 1.21372677e-01 3.70916367e-01
5.87742805e-01 -7.34032750e-01 6.38985515e-01 2.31783822e-01
-1.53501856e+00 2.81784296e-01 -4.76537615e-01 -1.17023818e-01
-2.17295900e-01 8.52575600e-01 -6.66190863e-01 4.83294755e-01
7.27031291e-01 9.02320445e-01 -9.01068687e-01 9.74817693e-01
-3.77730548e-01 6.16733253e-01 -4.55088943e-01 -5.32334447e-02
6.82494998e-01 -7.81326890e-01 4.02750760e-01 1.12666273e+00
1.13642022e-01 -1.32523298e-01 1.33381695e-01 9.25340235e-01
-1.08455107e-01 1.43880844e-01 -9.70889330e-01 -2.87772447e-01
1.20434105e-01 1.36367357e+00 -1.34283805e+00 -2.53023207e-01
-4.88140434e-01 8.06532264e-01 7.33883500e-01 4.80077654e-01
-5.19728839e-01 -7.53771067e-01 3.00064087e-01 3.41684312e-01
3.66356224e-01 -5.31436682e-01 -8.68784785e-02 -8.02165687e-01
-1.97985679e-01 -4.88828063e-01 5.81307888e-01 -5.62581837e-01
-1.38021088e+00 6.53936267e-01 -1.49184495e-01 -1.06301332e+00
5.21371253e-02 -8.05751741e-01 -9.04066503e-01 8.47679377e-01
-1.26580846e+00 -7.72164226e-01 -3.76995772e-01 7.60223508e-01
-9.14458111e-02 -1.36140406e-01 8.05287004e-01 2.02945933e-01
-5.42903364e-01 4.93581921e-01 -3.52891982e-02 6.66718960e-01
2.09032595e-01 -1.44994164e+00 5.22278309e-01 8.98634374e-01
4.42053258e-01 8.60263109e-01 2.34626204e-01 -7.47703016e-01
-1.15938282e+00 -1.24062657e+00 7.12168634e-01 2.80590355e-02
6.27035916e-01 -5.92299938e-01 -1.08852720e+00 7.70144403e-01
4.36050035e-02 4.00714338e-01 4.50566322e-01 3.10812086e-01
-4.33258325e-01 -1.64807037e-01 -1.02632165e+00 5.22796214e-01
1.07683456e+00 -4.06549573e-01 -9.60168317e-02 2.17999861e-01
6.70810401e-01 -1.77204907e-01 -7.05603778e-01 2.68980414e-01
1.50695652e-01 -1.04784656e+00 8.11261356e-01 -4.03910547e-01
1.50526077e-01 -4.22052592e-01 1.78683937e-01 -1.52322209e+00
-4.74099845e-01 -5.98383546e-01 2.13223323e-01 9.27959979e-01
6.65396035e-01 -9.23812091e-01 1.11845458e+00 3.33939224e-01
-1.99032903e-01 -5.98943532e-01 -5.40495038e-01 -9.19932485e-01
-6.20913841e-02 -2.52332211e-01 4.43384111e-01 1.21427989e+00
-3.11435927e-02 4.33169723e-01 1.05923206e-01 1.81748554e-01
6.27743125e-01 -5.63371405e-02 6.91156387e-01 -1.43998468e+00
-1.94567114e-01 -6.95978999e-01 -7.82321334e-01 -7.33353138e-01
4.61087413e-02 -1.28173530e+00 -7.56835863e-02 -1.75598764e+00
-2.25925088e-01 -6.77872479e-01 -3.06374758e-01 6.50526404e-01
6.03021607e-02 1.08786874e-01 8.86325613e-02 -1.00647934e-01
-3.55957299e-01 2.85367072e-01 1.22943413e+00 -2.10994836e-02
-4.90015030e-01 -8.74619111e-02 -3.18917871e-01 9.77274895e-01
9.04491007e-01 -4.88571227e-01 -5.01264751e-01 -3.46324712e-01
2.60992229e-01 -1.34504318e-01 2.87123919e-01 -9.94370162e-01
2.99064934e-01 3.09314817e-01 9.39780399e-02 -5.64147949e-01
-1.19478673e-01 -9.27570939e-01 1.75035998e-01 5.13511062e-01
-9.66645554e-02 1.84536859e-01 8.09549317e-02 5.57319522e-01
-2.93828011e-01 -2.48548329e-01 8.91404927e-01 -2.92517573e-01
-7.07065761e-01 4.26661432e-01 -2.04542607e-01 -1.62194699e-01
7.02916503e-01 -3.26697171e-01 -1.29249111e-01 -4.63064045e-01
-9.40508246e-01 2.25994885e-01 3.71346295e-01 6.78433701e-02
6.80118978e-01 -1.32558942e+00 -2.76594251e-01 5.55573404e-01
-8.00901465e-03 3.06879938e-01 -2.38816395e-01 7.57975340e-01
-9.91508186e-01 4.12537977e-02 -2.54892260e-01 -6.89578116e-01
-1.13780034e+00 5.73546827e-01 3.88035387e-01 -2.84754515e-01
-9.66919541e-01 8.95388246e-01 2.10083276e-01 -6.61291778e-01
4.04535502e-01 -5.45886993e-01 -3.33858430e-01 -1.98611647e-01
1.28442617e-02 2.47230500e-01 9.90133435e-02 -5.44210911e-01
-2.20789939e-01 4.75972563e-01 -3.80547568e-02 2.79456049e-01
1.38409293e+00 2.01287717e-01 -5.00433862e-01 2.85052836e-01
1.37346709e+00 -1.76968858e-01 -1.06885016e+00 -1.46924451e-01
2.57876903e-01 -1.26348838e-01 7.59515241e-02 -3.07413399e-01
-1.57743287e+00 9.19465244e-01 4.19519097e-01 7.81871676e-01
1.05114400e+00 -1.67847902e-03 3.79996032e-01 3.32947940e-01
2.76252627e-01 -9.78532791e-01 9.57134366e-03 7.41856277e-01
6.28029406e-01 -1.05912375e+00 1.03737824e-02 -7.70758510e-01
-2.80038118e-01 1.15617478e+00 5.49267530e-01 -6.35529697e-01
1.16046143e+00 1.87552020e-01 2.05929410e-02 -8.33309650e-01
-1.82112396e-01 -5.09889781e-01 3.13383490e-01 7.63311386e-01
3.42580229e-01 2.26107240e-01 -3.18321735e-01 1.73221335e-01
-3.52328509e-01 -3.68729979e-01 4.28425372e-01 8.24445248e-01
-4.24598515e-01 -1.09540355e+00 -4.75705490e-02 7.53607035e-01
-2.93499716e-02 -1.99910492e-01 -6.27984822e-01 1.13219821e+00
7.26749152e-02 6.68572009e-01 2.34319374e-01 -5.02106130e-01
2.66375631e-01 2.90449802e-03 3.48577738e-01 -7.61339307e-01
-4.84577268e-01 4.87005860e-02 -1.14063211e-02 -7.05045223e-01
-3.99547786e-01 -2.34545082e-01 -1.66363108e+00 -3.25056642e-01
-3.75666171e-01 2.65170008e-01 6.10877454e-01 5.73622227e-01
3.40294063e-01 4.47347999e-01 4.52069759e-01 -5.43889403e-01
1.50773346e-01 -7.80374050e-01 -9.86269772e-01 5.51319540e-01
5.09925112e-02 -5.87071121e-01 -5.87889910e-01 3.24394181e-02] | [7.024289608001709, 6.043178081512451] |
5e514ee3-8640-4d2b-91e0-e2c1800ed91f | a-neural-network-trained-to-predict-future | 1805.10734 | null | http://arxiv.org/abs/1805.10734v2 | http://arxiv.org/pdf/1805.10734v2.pdf | A neural network trained to predict future video frames mimics critical properties of biological neuronal responses and perception | While deep neural networks take loose inspiration from neuroscience, it is an
open question how seriously to take the analogies between artificial deep
networks and biological neuronal systems. Interestingly, recent work has shown
that deep convolutional neural networks (CNNs) trained on large-scale image
recognition tasks can serve as strikingly good models for predicting the
responses of neurons in visual cortex to visual stimuli, suggesting that
analogies between artificial and biological neural networks may be more than
superficial. However, while CNNs capture key properties of the average
responses of cortical neurons, they fail to explain other properties of these
neurons. For one, CNNs typically require large quantities of labeled input data
for training. Our own brains, in contrast, rarely have access to this kind of
supervision, so to the extent that representations are similar between CNNs and
brains, this similarity must arise via different training paths. In addition,
neurons in visual cortex produce complex time-varying responses even to static
inputs, and they dynamically tune themselves to temporal regularities in the
visual environment. We argue that these differences are clues to fundamental
differences between the computations performed in the brain and in deep
networks. To begin to close the gap, here we study the emergent properties of a
previously-described recurrent generative network that is trained to predict
future video frames in a self-supervised manner. Remarkably, the model is able
to capture a wide variety of seemingly disparate phenomena observed in visual
cortex, ranging from single unit response dynamics to complex perceptual motion
illusions. These results suggest potentially deep connections between recurrent
predictive neural network models and the brain, providing new leads that can
enrich both fields. | ['William Lotter', 'David Cox', 'Gabriel Kreiman'] | 2018-05-28 | null | null | null | null | ['predict-future-video-frames'] | ['computer-vision'] | [ 4.13207054e-01 9.92854238e-02 1.85201824e-01 -2.69775480e-01
1.63768977e-01 -6.63235903e-01 8.26894760e-01 -1.96271315e-01
-1.36723965e-01 5.65226734e-01 2.13688284e-01 -1.83619305e-01
-8.61213543e-03 -7.95155346e-01 -8.20733428e-01 -9.85709548e-01
-5.98061793e-02 1.29482418e-01 2.86108315e-01 -4.04337406e-01
1.47740781e-01 5.47568917e-01 -1.50783384e+00 5.20331860e-01
2.62032688e-01 9.52488303e-01 3.98342192e-01 9.14073348e-01
2.71418422e-01 1.17935371e+00 -3.07711661e-01 1.19893350e-01
8.24741423e-02 -6.83626652e-01 -8.03781629e-01 7.20083565e-02
1.04367830e-01 1.96763545e-01 -8.13220382e-01 8.36250424e-01
1.55976683e-01 -4.19588163e-02 8.72543454e-01 -8.58581245e-01
-9.16548729e-01 1.19267628e-01 -2.76321117e-02 5.99743247e-01
-1.38237745e-01 6.34319007e-01 9.29726422e-01 -5.50792336e-01
7.10217357e-01 1.09560955e+00 7.02319622e-01 7.65882015e-01
-1.75296462e+00 -2.23238438e-01 8.59445482e-02 4.88995314e-02
-9.63787079e-01 -5.37378311e-01 5.49702942e-01 -7.90019155e-01
1.14566636e+00 -7.00937957e-02 1.09138083e+00 1.44000351e+00
6.82044685e-01 3.62437576e-01 1.05188239e+00 -1.10412195e-01
2.30732962e-01 -1.50234669e-01 -2.54820883e-02 5.60064375e-01
9.44094881e-02 3.24134648e-01 -4.37289536e-01 1.30369691e-02
1.04143488e+00 2.09382176e-01 -4.45361614e-01 5.14267571e-02
-1.41792035e+00 6.47578418e-01 6.41054153e-01 5.10914922e-01
-4.51663017e-01 5.54653287e-01 3.05159926e-01 4.54126835e-01
1.05855010e-01 5.54085135e-01 -5.94918609e-01 5.50417304e-02
-5.02908826e-01 1.55651376e-01 7.81588674e-01 4.59611356e-01
8.40557933e-01 3.24882209e-01 2.43477494e-01 5.35873294e-01
3.97202373e-02 3.36511612e-01 7.53995061e-01 -1.07340467e+00
-2.88682044e-01 4.73236799e-01 -3.57934356e-01 -1.22992074e+00
-4.13890928e-01 -3.57027054e-01 -1.22433555e+00 3.42138648e-01
7.22295165e-01 -4.23273593e-02 -8.72926593e-01 2.01386595e+00
-3.23941261e-01 1.22201838e-01 1.97700471e-01 8.94278705e-01
5.13546586e-01 9.16180611e-01 -6.52876049e-02 -1.61115453e-01
1.25642276e+00 -5.25854766e-01 -2.36237615e-01 -5.84595203e-01
3.47053856e-01 -4.05165046e-01 8.27178836e-01 1.42544627e-01
-1.14160788e+00 -6.27182484e-01 -7.83318818e-01 9.42482054e-02
-3.64202797e-01 -4.24910128e-01 7.81945407e-01 -4.34584916e-02
-1.27967238e+00 7.20233500e-01 -9.93130207e-01 -7.79965520e-01
4.00730044e-01 3.64038765e-01 -2.05301404e-01 3.41375887e-01
-9.28532600e-01 8.08653653e-01 2.29267925e-01 1.44543216e-01
-1.03302193e+00 -5.54159760e-01 -3.89597237e-01 1.37011513e-01
-1.24347210e-01 -9.32867348e-01 1.35724092e+00 -1.63332200e+00
-1.28226912e+00 1.02561450e+00 -4.01607275e-01 -5.67290008e-01
1.41806398e-02 4.30474281e-01 -2.40737677e-01 1.11403801e-01
-2.86986381e-01 7.51853943e-01 6.70952439e-01 -1.02844501e+00
-3.34366173e-01 -2.53419310e-01 -1.12639710e-01 -1.90661028e-01
6.99902303e-04 -1.81362867e-01 3.27997394e-02 -6.88278854e-01
1.99504450e-01 -1.15581059e+00 -3.83218259e-01 4.24596574e-03
-9.50293690e-02 -1.73634499e-01 7.12165117e-01 -1.39828231e-02
6.49653733e-01 -2.14053392e+00 2.35535070e-01 1.35994079e-02
4.25692469e-01 1.53136104e-01 -2.62626410e-01 4.13917691e-01
-3.38659763e-01 1.99522644e-01 -1.70473143e-01 1.68413728e-01
-4.21413988e-01 5.11481166e-01 -7.72544742e-01 4.11750138e-01
6.19524002e-01 1.44268775e+00 -8.18933010e-01 4.41924185e-02
-2.00930163e-01 5.97532868e-01 -5.01854599e-01 6.12475388e-02
-5.20229816e-01 7.32103467e-01 -3.13312322e-01 2.66979754e-01
-5.82880154e-02 -8.49799514e-01 2.28810400e-01 5.77972308e-02
-2.32456182e-03 4.35729980e-01 -5.47313452e-01 1.30569863e+00
-2.36293241e-01 1.42827964e+00 -3.35181236e-01 -1.56079865e+00
7.03529596e-01 5.41095853e-01 3.44576895e-01 -8.17237675e-01
2.42745131e-01 2.35142186e-01 6.17344916e-01 -5.00410438e-01
1.51554439e-02 -4.00729477e-01 1.70242220e-01 7.64226437e-01
2.48083442e-01 -1.49803564e-01 -2.50825677e-02 8.47335085e-02
1.35390818e+00 -2.13365361e-01 2.12621301e-01 -2.51716316e-01
1.04948238e-01 6.75213188e-02 5.81763387e-01 8.27345252e-01
-3.07941698e-02 6.75452530e-01 7.46190727e-01 -9.38720047e-01
-1.45712495e+00 -9.96093392e-01 -2.73928761e-01 8.30451608e-01
-1.65469050e-01 -8.22551996e-02 -5.35156131e-01 1.64638638e-01
-3.20468098e-01 -5.76144829e-02 -1.00533319e+00 -4.37816709e-01
-5.62319875e-01 -1.00753081e+00 6.17064297e-01 4.97201532e-01
8.26509520e-02 -1.65859377e+00 -1.03818345e+00 3.68959457e-01
9.76218805e-02 -1.26905704e+00 1.06842026e-01 5.68784893e-01
-9.71345901e-01 -1.00162625e+00 -5.76394141e-01 -1.01847708e+00
6.83647275e-01 1.81053743e-01 1.27375257e+00 3.33979428e-01
-4.62195009e-01 3.78968656e-01 -3.15440074e-02 -3.54746550e-01
-6.57898605e-01 2.08126940e-02 1.97950140e-01 -6.52230084e-02
2.77690858e-01 -1.17602956e+00 -6.30930305e-01 3.05319786e-01
-1.03965211e+00 2.15225548e-01 5.39300561e-01 9.85542119e-01
4.58943933e-01 -2.33246803e-01 5.96292317e-01 -7.55365670e-01
5.22671402e-01 -7.23634064e-01 -5.05675375e-01 1.02365635e-01
-3.18846315e-01 3.59601438e-01 9.95644450e-01 -8.72238278e-01
-6.36890173e-01 -8.63564238e-02 1.58720940e-01 -1.97522715e-01
-4.23927218e-01 4.95987266e-01 4.57872093e-01 -5.36568277e-02
8.57386708e-01 5.78979254e-01 1.44756986e-02 -1.98484138e-02
-2.67998073e-02 1.34788364e-01 7.03776658e-01 -4.59081262e-01
6.49040818e-01 6.46912813e-01 1.93715572e-01 -9.79670405e-01
-6.43443704e-01 2.10299224e-01 -5.85465789e-01 -3.08849700e-02
9.99508560e-01 -6.59066260e-01 -9.85943317e-01 5.11609912e-01
-1.44144225e+00 -8.05151939e-01 -6.01720691e-01 1.71503514e-01
-8.43520641e-01 -2.49371290e-01 -9.26672816e-01 -7.17770040e-01
1.84147969e-01 -8.98942590e-01 5.66945553e-01 3.95857513e-01
-3.00661266e-01 -1.17783332e+00 3.13741446e-01 -3.14938784e-01
6.12935960e-01 3.34417969e-01 1.23497891e+00 -4.67195123e-01
-7.97106862e-01 2.49228184e-03 -2.07787797e-01 2.19988659e-01
1.35673165e-01 3.19641411e-01 -1.16847670e+00 -6.94809109e-03
1.53386101e-01 -5.59118867e-01 1.07262063e+00 5.48217177e-01
1.14248490e+00 -3.08439910e-01 -3.07600915e-01 8.27920914e-01
1.34885406e+00 4.40271050e-01 7.32663751e-01 1.46085352e-01
3.87788624e-01 7.69122064e-01 -4.71374899e-01 1.65686190e-01
9.88936797e-02 3.83449703e-01 4.54593956e-01 -1.31435633e-01
-3.92326619e-03 -1.36961281e-01 4.71438408e-01 9.91119981e-01
-4.50337112e-01 -1.91894263e-01 -1.04575920e+00 4.16317761e-01
-1.85252988e+00 -1.40731943e+00 -6.90849274e-02 1.96809900e+00
7.89438367e-01 2.79438496e-01 -2.15002690e-02 -9.41816717e-04
4.18390453e-01 2.14433521e-01 -8.79544258e-01 -4.88003433e-01
-7.44985878e-01 2.48036474e-01 7.86163583e-02 1.62291199e-01
-6.26357615e-01 9.56664443e-01 7.50296164e+00 2.49225378e-01
-1.67908251e+00 -1.06438078e-01 9.12035823e-01 -8.97718221e-02
-2.96249956e-01 2.50197381e-01 -3.27462792e-01 2.47529954e-01
1.34935534e+00 -1.97168976e-01 8.32786858e-01 3.58402401e-01
2.58900344e-01 5.48726805e-02 -1.29295516e+00 8.09439063e-01
-2.63246536e-01 -1.81420302e+00 -2.36680005e-02 3.04699093e-01
7.67602086e-01 5.77415526e-01 2.97675461e-01 -5.62657118e-02
5.96348524e-01 -1.55247056e+00 7.11078525e-01 8.32849860e-01
4.51035261e-01 -1.73323721e-01 3.28062534e-01 5.24135947e-01
-9.15323079e-01 -1.80267543e-01 -7.05543756e-01 -5.33285141e-01
-2.05837190e-02 3.88722599e-01 -4.85259712e-01 -3.32490116e-01
6.88630939e-01 9.56444263e-01 -6.15523100e-01 6.65218234e-01
8.90500173e-02 6.61641955e-01 -7.33136758e-02 -1.65268466e-01
2.80743241e-01 -3.54261100e-02 4.40485537e-01 1.10311675e+00
1.82246238e-01 4.57938999e-01 -3.85131657e-01 1.24405897e+00
-2.05465294e-02 -4.31688398e-01 -1.00649536e+00 -5.52430868e-01
1.49638802e-02 1.18822801e+00 -8.45712483e-01 -2.08877236e-01
-4.87650871e-01 7.16062844e-01 5.07171273e-01 8.54661763e-01
-5.98836780e-01 1.38251856e-01 9.48725879e-01 2.18015909e-01
2.44621232e-01 -4.82131302e-01 -2.41862535e-01 -1.30834484e+00
-1.84298947e-01 -7.47391582e-01 -2.17564151e-01 -1.09149623e+00
-1.27025557e+00 7.19884396e-01 -6.12852693e-01 -1.02024889e+00
-5.74557602e-01 -9.10587668e-01 -8.19553196e-01 6.60081983e-01
-1.15043020e+00 -7.31426477e-01 -1.33634210e-01 7.45086014e-01
4.45123106e-01 -1.52284861e-01 8.75601590e-01 -2.54227400e-01
-4.24684823e-01 2.48937886e-02 1.54282972e-01 2.72005469e-01
1.49833202e-01 -8.86963725e-01 6.19261742e-01 6.24698818e-01
6.07087016e-01 7.32691407e-01 8.86380076e-01 -5.79594448e-02
-1.36349666e+00 -9.02540803e-01 6.52323604e-01 -5.07302225e-01
9.24959958e-01 -5.27022839e-01 -1.27771437e+00 8.31599712e-01
3.45719188e-01 4.79592144e-01 5.34559846e-01 -8.20966810e-02
-5.63335538e-01 1.26186073e-01 -4.44710255e-01 6.81918442e-01
1.08785748e+00 -8.32120895e-01 -4.62796688e-01 3.12550366e-01
6.06724262e-01 1.22070931e-01 -5.76186299e-01 1.10577606e-01
7.06894040e-01 -1.04970717e+00 8.55251312e-01 -1.09880400e+00
8.32357407e-01 -6.58230633e-02 -2.22967744e-01 -1.33221006e+00
-5.49251735e-01 -5.64483345e-01 5.52915521e-02 7.18691647e-01
4.77541596e-01 -8.56635869e-01 4.88303483e-01 5.17298400e-01
5.49181998e-02 -8.95961583e-01 -6.10681295e-01 -5.97309768e-01
4.49138016e-01 -3.91587913e-01 4.19449098e-02 8.84861350e-01
5.31047508e-02 4.70444828e-01 -3.74204107e-02 -1.06489815e-01
1.67367324e-01 1.38419777e-01 5.14043987e-01 -1.46024263e+00
-4.57159847e-01 -8.75642419e-01 -7.20629811e-01 -9.60844696e-01
3.66811007e-01 -8.44250500e-01 3.76851261e-02 -1.02399838e+00
2.91536361e-01 -3.18641603e-01 -4.04300123e-01 4.73828793e-01
2.53473461e-01 4.06687498e-01 1.32139519e-01 6.58240438e-01
-1.80207059e-01 3.13050807e-01 1.20785153e+00 -1.98997892e-02
-7.88635388e-02 -9.84394029e-02 -6.67810261e-01 9.09440041e-01
7.28403032e-01 -4.69865561e-01 -2.79373407e-01 -5.42631507e-01
7.98597038e-01 4.24844697e-02 8.71894538e-01 -1.09748387e+00
4.18477863e-01 -4.22263533e-01 5.61508656e-01 2.12860301e-01
1.79445192e-01 -4.99663442e-01 1.69286087e-01 5.21805644e-01
-5.40066540e-01 2.97544807e-01 1.80088982e-01 6.81953430e-01
-3.10833752e-01 2.09842354e-01 9.89215493e-01 -5.14079273e-01
-6.53771758e-01 4.02184069e-01 -1.23542273e+00 2.57819593e-01
7.84078479e-01 -3.54273289e-01 -6.15053952e-01 -5.92455685e-01
-8.31332982e-01 -3.19959432e-01 6.16387069e-01 3.12485129e-01
5.96490562e-01 -1.05798995e+00 -3.38449210e-01 3.45914423e-01
-6.64236322e-02 -1.13845848e-01 -2.05910169e-02 8.82821262e-01
-3.12127054e-01 5.79916477e-01 -4.61409479e-01 -8.47230554e-01
-5.50797760e-01 5.99616408e-01 7.25861371e-01 1.15622818e-01
-5.77190876e-01 6.93858445e-01 7.08215117e-01 -7.68578276e-02
-2.54682094e-01 -4.69389588e-01 -1.22765023e-02 -2.16878384e-01
4.42224979e-01 -3.77010882e-01 -2.99963176e-01 -6.64777458e-01
-1.19785450e-01 6.74140930e-01 1.87919989e-01 -1.67316481e-01
1.60037518e+00 2.95154983e-03 -2.70451605e-01 9.99224484e-01
1.08029938e+00 -4.25770372e-01 -1.49584568e+00 -3.55405420e-01
-1.27476756e-03 1.06657371e-01 -3.24831665e-01 -4.23010349e-01
-1.19903529e+00 1.36130166e+00 1.94275245e-01 6.59285665e-01
1.24481165e+00 3.16270292e-01 6.93181872e-01 6.01797760e-01
2.16268063e-01 -7.15650380e-01 4.83120769e-01 8.09733868e-01
6.95882320e-01 -1.18819165e+00 -4.83041048e-01 2.43235067e-01
-4.44323361e-01 1.40519178e+00 4.22372997e-01 -6.64278090e-01
7.35947609e-01 3.72556746e-01 -9.75587368e-02 -2.41951987e-01
-1.59862518e+00 -6.89285323e-02 9.46833640e-02 4.77055699e-01
6.11716747e-01 -1.47804946e-01 2.00910836e-01 2.39315435e-01
-2.15434596e-01 -5.17528951e-02 6.83019400e-01 5.89488029e-01
-5.55394471e-01 -7.21803725e-01 6.62060827e-02 3.19239557e-01
-3.33902538e-01 -1.55347496e-01 -3.98564905e-01 6.02631927e-01
-2.28393823e-04 4.41532671e-01 4.48678672e-01 -5.21256208e-01
-1.52686119e-01 1.22154459e-01 5.09053111e-01 -6.82342291e-01
-5.27233541e-01 -1.34938493e-01 -5.89629173e-01 -4.84936237e-01
-5.19400239e-01 -6.76531672e-01 -1.21224666e+00 -4.21969891e-01
2.22301036e-01 -2.25392535e-01 3.59605640e-01 1.19902456e+00
3.54002386e-01 5.53799093e-01 3.88579220e-01 -1.01955760e+00
-1.75683111e-01 -6.83659554e-01 -4.88872856e-01 4.66279596e-01
7.64047444e-01 -1.77847385e-01 -5.29833138e-01 5.55814445e-01] | [9.504203796386719, 2.534649610519409] |
db890700-9224-4292-8abf-ac0c4b6b78ca | identity-deception-detection | null | null | https://aclanthology.org/I17-1089 | https://aclanthology.org/I17-1089.pdf | Identity Deception Detection | This paper addresses the task of detecting identity deception in language. Using a novel identity deception dataset, consisting of real and portrayed identities from 600 individuals, we show that we can build accurate identity detectors targeting both age and gender, with accuracies of up to 88. We also perform an analysis of the linguistic patterns used in identity deception, which lead to interesting insights into identity portrayers. | ['Quincy Davenport', "Ver{\\'o}nica P{\\'e}rez-Rosas", 'Anna Mengdan Dai', 'Mohamed Abouelenien', 'Rada Mihalcea'] | 2017-11-01 | identity-deception-detection-1 | https://aclanthology.org/I17-1089 | https://aclanthology.org/I17-1089.pdf | ijcnlp-2017-11 | ['deception-detection'] | ['miscellaneous'] | [ 2.92227864e-02 3.44462171e-02 -8.25948343e-02 -7.48921692e-01
-4.61741596e-01 -9.55305219e-01 1.30508399e+00 5.42083308e-02
-2.17404827e-01 7.71093607e-01 4.43172961e-01 -8.43572170e-02
5.99470794e-01 -6.57303393e-01 -4.49180514e-01 -2.24898309e-01
-2.04694510e-01 4.13263053e-01 -4.48235035e-01 -4.80323732e-01
6.39309704e-01 3.80719870e-01 -1.60559309e+00 5.13390124e-01
8.03509951e-01 1.00311756e+00 -1.09125865e+00 6.65560305e-01
-4.39916290e-02 1.05180657e+00 -1.11580193e+00 -1.38588595e+00
1.27881244e-01 -5.17767608e-01 -8.32319856e-01 -2.43155360e-02
1.38296664e+00 -3.06848556e-01 -4.73849922e-01 1.19840086e+00
3.84782195e-01 -3.16364735e-01 8.07748973e-01 -1.32496703e+00
-1.38027692e+00 5.83580494e-01 -4.44595248e-01 4.83047664e-01
1.23217440e+00 -3.16702485e-01 5.87085962e-01 -9.20367002e-01
7.80196607e-01 1.66594613e+00 1.15369844e+00 9.70656574e-01
-1.23322117e+00 -1.16685557e+00 -1.64732382e-01 1.71764225e-01
-1.77403545e+00 -1.13560963e+00 7.83419967e-01 -6.33190632e-01
5.05870283e-01 4.84035432e-01 3.79496217e-01 1.77241266e+00
-2.45521981e-02 5.48190415e-01 1.49246466e+00 -4.36196357e-01
-2.31523439e-01 3.45347047e-01 2.50285089e-01 9.44037914e-01
4.34508085e-01 2.57235259e-01 -8.80486012e-01 -5.96019208e-01
4.17789698e-01 -6.40121996e-01 -4.99203475e-03 1.58718303e-01
-7.41545439e-01 1.07822382e+00 -2.80866101e-02 3.05889577e-01
1.53649732e-01 -1.20372370e-01 7.27516949e-01 5.25598705e-01
9.28521037e-01 4.97226864e-01 3.43722969e-01 -3.67203951e-01
-7.92916179e-01 3.84142399e-01 1.17785180e+00 7.63201892e-01
2.78112590e-01 3.20596337e-01 2.32919291e-01 1.00901949e+00
-2.80504584e-01 5.81007898e-01 5.61243057e-01 -8.38076353e-01
2.82687068e-01 3.16232353e-01 2.42069244e-01 -1.64386213e+00
-2.79143542e-01 3.93758193e-02 -7.87056148e-01 7.72792473e-02
6.51936114e-01 -1.16631284e-01 -3.74183655e-01 1.59267902e+00
3.34788002e-02 5.05389161e-02 -4.48060967e-02 7.13498533e-01
9.25512791e-01 -2.57107355e-02 2.18235418e-01 3.26288901e-02
1.68332517e+00 -2.43687570e-01 -6.11341238e-01 -2.45159119e-01
5.56464612e-01 -7.41617203e-01 4.77578521e-01 1.54842973e-01
-1.12228334e+00 -3.40585083e-01 -1.16214955e+00 -2.31208876e-01
-5.98044574e-01 -4.31946777e-02 8.15839708e-01 1.45645964e+00
-8.25578094e-01 7.18084812e-01 -6.27245456e-02 -4.39223826e-01
8.55265677e-01 1.58047125e-01 -6.25124872e-01 1.26266614e-01
-1.37470663e+00 1.29738295e+00 3.99017036e-02 -1.37625948e-01
-3.90749246e-01 -6.15612984e-01 -1.26219559e+00 -6.07959986e-01
-1.48690358e-01 -5.20354450e-01 8.96188617e-01 -1.68059969e+00
-1.13604176e+00 2.12653995e+00 -3.71536076e-01 -6.07364297e-01
7.64545560e-01 -7.79482722e-02 -1.30173767e+00 2.56367251e-02
1.79252058e-01 1.38756052e-01 1.11102736e+00 -1.27789414e+00
-4.59237367e-01 -6.75613761e-01 -4.00430299e-02 1.46016240e-01
-2.82784343e-01 7.02386200e-01 7.30381846e-01 -8.04302335e-01
-6.22580834e-02 -5.86811006e-01 6.86764300e-01 -2.63398200e-01
-5.51882744e-01 -1.11521920e-02 4.86091882e-01 -1.23466790e+00
1.04405904e+00 -2.03427052e+00 -3.10448766e-01 1.83307469e-01
5.76635003e-01 4.84467447e-02 2.69019902e-01 3.71316671e-01
-2.04665646e-01 5.10797024e-01 2.16001868e-02 -7.07978606e-01
3.44877481e-01 1.09505311e-01 -5.80506861e-01 8.68330956e-01
7.83733837e-03 1.17179036e+00 -7.37206876e-01 -4.67604280e-01
-1.67113125e-01 1.57498226e-01 7.59243444e-02 -2.40048021e-01
5.76746166e-01 1.57626048e-01 3.28949653e-03 9.00710285e-01
7.10277319e-01 4.19739038e-01 1.62217915e-01 1.69785529e-01
-1.85355648e-01 4.19154704e-01 -5.23100495e-01 1.03320289e+00
-4.07626301e-01 9.76426184e-01 4.09988552e-01 -7.09709823e-01
1.08241367e+00 1.41376734e-01 5.77029167e-03 -5.17113268e-01
3.09025317e-01 2.80703396e-01 -1.00669146e-01 -2.33681053e-01
6.43910468e-01 -5.49777567e-01 -6.73048496e-01 6.29311085e-01
-2.60125816e-01 6.89114770e-03 -1.31071776e-01 9.69466940e-03
6.80008948e-01 -4.39298660e-01 5.09676158e-01 -6.13034725e-01
8.99326742e-01 8.61545578e-02 2.33941823e-01 8.03639531e-01
-4.67523754e-01 5.64336538e-01 3.86162758e-01 -9.11126196e-01
-1.11349821e+00 -1.23805106e+00 -3.07907194e-01 1.16429424e+00
1.55012667e-01 -1.33202612e-01 -5.77615559e-01 -7.41919637e-01
4.09593850e-01 7.61404037e-01 -1.04447019e+00 -4.76286322e-01
-6.50332212e-01 -6.84343040e-01 1.43262553e+00 1.95405066e-01
5.84522665e-01 -6.87211871e-01 1.19094048e-02 -2.40231648e-01
-1.60374537e-01 -1.27543831e+00 -6.39981568e-01 -9.01404560e-01
-3.07070553e-01 -1.10493982e+00 -4.27582592e-01 -1.07550204e+00
4.71434087e-01 -2.95169413e-01 1.44028556e+00 3.46284151e-01
-2.48871297e-01 3.30104828e-01 -9.76264402e-02 -4.39278603e-01
-1.06883109e+00 1.16749175e-01 4.71972436e-01 3.61887991e-01
6.96621716e-01 -7.10611999e-01 -1.75425872e-01 1.60587162e-01
-2.46497914e-01 -1.36395320e-01 -1.70292497e-01 6.30860209e-01
-5.34392297e-01 -4.47720081e-01 8.16677690e-01 -1.03335190e+00
1.11542010e+00 -4.24291164e-01 -2.20120788e-01 2.01271534e-01
-4.66146082e-01 -3.75925303e-01 6.75071239e-01 -6.99095786e-01
-8.56479704e-01 -2.17888519e-01 -3.01735967e-01 8.53652284e-02
-2.55012691e-01 -2.60254949e-01 8.03742334e-02 -5.95490277e-01
8.90715897e-01 6.37316167e-01 3.97470653e-01 -1.92365840e-01
3.22706282e-01 8.13072979e-01 1.08605659e+00 -6.28032982e-01
8.06884944e-01 7.38360107e-01 -2.99640954e-01 -8.94120753e-01
-7.34414458e-01 -2.19889134e-01 -6.88084900e-01 -1.46222532e-01
3.31912994e-01 -8.77119958e-01 -1.15043807e+00 8.58734012e-01
-1.10045612e+00 3.93411934e-01 1.77991744e-02 -7.11790919e-02
-3.63337338e-01 7.89716184e-01 -1.06585824e+00 -9.07338917e-01
-5.16828537e-01 -2.49344811e-01 8.43393385e-01 -9.99109223e-02
-9.51770425e-01 -1.26606727e+00 -1.55287996e-01 4.00780290e-01
2.82472789e-01 7.50434399e-01 6.20932400e-01 -1.12367606e+00
2.40737990e-01 -3.70284975e-01 -2.01322243e-01 -5.51926941e-02
1.62368655e-01 -1.19928561e-01 -9.75420713e-01 4.70763026e-03
-2.99507454e-02 -6.36167645e-01 7.77651429e-01 -1.25829503e-01
7.39431620e-01 -6.51067615e-01 -4.24579471e-01 5.56628406e-01
9.84838963e-01 -5.33885136e-02 5.95846772e-01 1.01929158e-01
8.34514856e-01 8.46794486e-01 1.28101677e-01 4.64885861e-01
5.81055045e-01 6.94443643e-01 -4.15780880e-02 2.03736857e-01
-9.78234690e-03 -4.36804026e-01 2.80810922e-01 3.78813595e-01
-1.59881979e-01 2.67706871e-01 -9.01967764e-01 5.29516220e-01
-1.42113256e+00 -1.48646939e+00 -3.27445656e-01 1.97637606e+00
9.42815721e-01 -7.23720938e-02 5.50250471e-01 8.55021775e-02
1.04685879e+00 2.72406459e-01 -3.10639501e-01 -1.14160323e+00
-5.80728889e-01 2.68544555e-01 4.27863568e-01 8.25516760e-01
-1.24071753e+00 1.09461951e+00 8.50349903e+00 6.72968268e-01
-8.80417049e-01 2.85194982e-02 5.79577327e-01 -5.01876995e-02
-1.64926454e-01 -5.18855929e-01 -5.90809405e-01 4.93376642e-01
7.23490775e-01 -7.53306448e-01 6.07891202e-01 6.05360210e-01
-2.11225912e-01 1.90550610e-02 -1.22172225e+00 1.39445245e+00
9.73172247e-01 -1.19085944e+00 -3.02665327e-02 9.32313576e-02
6.33786023e-01 -6.81148767e-01 2.03444794e-01 1.52140051e-01
5.25481641e-01 -1.41730165e+00 1.01071274e+00 3.45909685e-01
9.12773430e-01 -1.00319004e+00 5.66162527e-01 2.05978438e-01
-5.47486544e-01 -1.16355240e-01 -2.96971291e-01 -6.62979126e-01
1.37844905e-01 2.99006194e-01 -7.91597366e-01 4.19430494e-01
1.44670010e-01 8.22177649e-01 -6.25725806e-01 3.98103446e-01
-5.24004065e-02 2.71095514e-01 -8.59020501e-02 4.20695469e-02
-1.98261961e-01 -1.78427964e-01 4.63253081e-01 1.32543278e+00
2.31742218e-01 1.12308986e-01 -1.32849887e-01 1.07457674e+00
-3.68118554e-01 4.34667021e-02 -1.00520194e+00 -8.34455118e-02
6.39285922e-01 1.09631729e+00 -1.49196371e-01 -5.70476949e-01
-2.95013785e-02 1.48596609e+00 4.17945206e-01 -1.27228899e-02
-6.55858397e-01 -3.95479351e-02 1.25853920e+00 1.45556644e-01
-3.36365402e-01 -2.78880179e-01 -6.15526021e-01 -1.17453098e+00
-2.11497411e-01 -9.32943106e-01 3.93275648e-01 -4.25018251e-01
-1.89514196e+00 3.42524260e-01 -2.25081012e-01 -4.88662302e-01
-5.45271337e-01 -4.94554698e-01 -6.42672241e-01 1.06536961e+00
-6.84120715e-01 -1.51224136e+00 -2.01455995e-01 4.32188243e-01
1.08406514e-01 -4.83233035e-01 1.05167925e+00 3.09109062e-01
-4.93291229e-01 1.20173669e+00 -1.73482180e-01 6.72393560e-01
6.42647743e-01 -1.09386480e+00 1.12973654e+00 4.90760714e-01
3.72921437e-01 6.87172890e-01 8.53883803e-01 -5.82107425e-01
-8.97974014e-01 -5.53799570e-01 1.38955843e+00 -9.96004283e-01
8.70763779e-01 -8.84458005e-01 -7.70772278e-01 6.66683078e-01
-1.68597586e-02 -2.63520598e-01 8.12889099e-01 3.77167910e-01
-9.76835251e-01 4.25909251e-01 -1.58115602e+00 5.92946529e-01
1.84131551e+00 -1.20571756e+00 -8.84934247e-01 2.25271150e-01
3.56702879e-02 -4.11315173e-01 -8.96502852e-01 -1.06392242e-02
1.17173970e+00 -1.04041266e+00 1.25293946e+00 -8.34431410e-01
4.72794235e-01 3.64189982e-01 1.69951633e-01 -1.17229712e+00
-2.59782970e-01 -4.36729431e-01 -1.45916924e-01 1.57942951e+00
7.97318965e-02 -1.09204364e+00 7.66795576e-01 6.65836632e-01
2.60693192e-01 -1.56829461e-01 -1.12367225e+00 -9.64711964e-01
4.13019627e-01 -8.10165256e-02 6.64580524e-01 1.64489031e+00
3.12780231e-01 3.23669821e-01 -6.34213924e-01 -1.06651291e-01
7.03846753e-01 2.84587443e-01 4.88656819e-01 -1.29339528e+00
3.99677455e-01 -6.76482737e-01 -8.60004663e-01 -5.40886283e-01
1.06318641e+00 -8.87466550e-01 -5.04193366e-01 -7.63295054e-01
1.06842786e-01 -1.75848469e-01 5.65577805e-01 1.43291682e-01
9.16724652e-02 9.98289883e-01 -6.57308251e-02 2.20047846e-01
-2.69801319e-01 1.44142538e-01 7.27343559e-01 -3.26490611e-01
4.22937334e-01 6.47148117e-02 -1.09708238e+00 8.95767033e-01
9.59470749e-01 -3.20522875e-01 8.75938088e-02 7.29450062e-02
1.74912870e-01 -3.84634227e-01 6.67878747e-01 -6.16685092e-01
-5.28927743e-02 1.67746961e-01 6.73570395e-01 -8.57963413e-02
6.59210563e-01 -2.55540162e-01 1.05638374e-02 4.95875657e-01
-1.54647067e-01 2.61320472e-01 8.60653967e-02 1.27242520e-01
-1.61061242e-01 -2.09453866e-01 7.30309129e-01 -2.18390480e-01
-8.22375894e-01 -4.11626510e-02 -4.43403631e-01 4.99394923e-01
9.29710507e-01 -5.32253623e-01 -7.00970888e-01 -7.67053127e-01
-8.17717254e-01 -3.27260494e-02 1.08460748e+00 7.28970468e-01
3.83946240e-01 -1.66073287e+00 -1.20745718e+00 2.19964668e-01
2.97094345e-01 -1.27770257e+00 -1.46064818e-01 4.47241515e-01
-5.58173120e-01 1.31063551e-01 -4.91233259e-01 -6.99624196e-02
-1.82850170e+00 5.63492358e-01 6.07503891e-01 4.31681871e-01
-2.52577186e-01 8.84200871e-01 -1.31586775e-01 -2.71483749e-01
-3.36504728e-01 5.19537628e-01 -2.36125946e-01 2.78426647e-01
8.64854991e-01 6.39290214e-01 -2.62725949e-01 -1.54970515e+00
-6.69333816e-01 4.60302144e-01 -1.36244789e-01 -2.10604072e-01
5.21253169e-01 -3.07265520e-01 -3.42322797e-01 5.22241652e-01
1.26761544e+00 4.85166371e-01 -5.00431418e-01 1.20828487e-01
3.16176087e-01 -8.95475686e-01 -7.59769022e-01 -8.36238742e-01
-3.96103740e-01 3.71807367e-01 2.10867092e-01 5.31110704e-01
4.97804612e-01 5.04489578e-02 7.78331399e-01 -2.06682459e-01
5.76982379e-01 -9.84600961e-01 -3.82968515e-01 5.38751841e-01
1.10746300e+00 -1.38273489e+00 1.11924045e-01 -7.06444204e-01
-5.26281595e-01 7.20294714e-01 3.50212723e-01 -2.34396517e-01
2.05719411e-01 -1.26153082e-01 2.78963417e-01 -2.22159743e-01
-1.91611558e-01 5.02857678e-02 3.85103524e-01 1.17165065e+00
2.95241803e-01 3.54302168e-01 -5.97477019e-01 6.24009788e-01
-1.05489600e+00 -5.73091149e-01 4.51375514e-01 3.44795495e-01
-3.93606722e-02 -1.08368623e+00 -7.49470651e-01 4.22952473e-01
-8.87591541e-01 -1.42402738e-01 -1.59669113e+00 9.55356717e-01
2.71277010e-01 9.44449902e-01 2.89494485e-01 -5.65746248e-01
1.36602923e-01 6.20358169e-01 9.95899141e-01 -4.30735916e-01
-9.67690766e-01 -1.18533587e+00 1.02596462e+00 -2.86775470e-01
-1.42333329e-01 -9.17527735e-01 -8.55039239e-01 -1.27420461e+00
1.88778013e-01 -9.70254466e-02 3.20007563e-01 7.74454594e-01
6.56223968e-02 -4.50976253e-01 6.50106907e-01 -4.77076262e-01
-4.71874952e-01 -1.00518882e+00 -9.58066463e-01 1.04481721e+00
3.53692174e-01 -4.40922856e-01 -5.50423682e-01 5.84702790e-02] | [8.325241088867188, 10.42712688446045] |
5f2326f8-8ff2-4ac1-8e6b-22488cf33150 | balanced-energy-regularization-loss-for-out-1 | 2306.10485 | null | https://arxiv.org/abs/2306.10485v1 | https://arxiv.org/pdf/2306.10485v1.pdf | Balanced Energy Regularization Loss for Out-of-distribution Detection | In the field of out-of-distribution (OOD) detection, a previous method that use auxiliary data as OOD data has shown promising performance. However, the method provides an equal loss to all auxiliary data to differentiate them from inliers. However, based on our observation, in various tasks, there is a general imbalance in the distribution of the auxiliary OOD data across classes. We propose a balanced energy regularization loss that is simple but generally effective for a variety of tasks. Our balanced energy regularization loss utilizes class-wise different prior probabilities for auxiliary data to address the class imbalance in OOD data. The main concept is to regularize auxiliary samples from majority classes, more heavily than those from minority classes. Our approach performs better for OOD detection in semantic segmentation, long-tailed image classification, and image classification than the prior energy regularization loss. Furthermore, our approach achieves state-of-the-art performance in two tasks: OOD detection in semantic segmentation and long-tailed image classification. Code is available at https://github.com/hyunjunChhoi/Balanced_Energy. | ['Jin Young Choi', 'Hawook Jeong', 'Hyunjun Choi'] | 2023-06-18 | balanced-energy-regularization-loss-for-out | http://openaccess.thecvf.com//content/CVPR2023/html/Choi_Balanced_Energy_Regularization_Loss_for_Out-of-Distribution_Detection_CVPR_2023_paper.html | http://openaccess.thecvf.com//content/CVPR2023/papers/Choi_Balanced_Energy_Regularization_Loss_for_Out-of-Distribution_Detection_CVPR_2023_paper.pdf | cvpr-2023-1 | ['out-of-distribution-detection'] | ['computer-vision'] | [ 3.34143117e-02 1.65460929e-01 -4.10574526e-01 -4.30113941e-01
-1.18346786e+00 -2.53895283e-01 2.58214563e-01 2.04291835e-01
-2.20344499e-01 3.81303221e-01 -1.50106931e-02 9.00306851e-02
3.62857789e-01 -4.73917633e-01 -6.27792120e-01 -9.44499433e-01
4.98472989e-01 5.32831550e-01 3.42149228e-01 2.16728792e-01
3.03263843e-01 2.44816303e-01 -1.75094819e+00 -9.73929390e-02
1.16352141e+00 1.28112841e+00 2.87178516e-01 3.08886856e-01
-1.02718785e-01 3.00567031e-01 -5.75889528e-01 -7.19742104e-02
3.98756415e-01 -4.34636235e-01 -4.43804353e-01 2.01932520e-01
7.01859117e-01 -9.33272168e-02 -1.18228994e-01 1.31427872e+00
7.66755998e-01 1.07895061e-01 1.14151847e+00 -1.50077200e+00
-5.45938969e-01 -1.19587854e-01 -9.05951977e-01 7.92669356e-02
1.39324355e-03 -1.00583717e-01 9.07742977e-01 -1.01738954e+00
5.67594707e-01 1.27939785e+00 6.33130491e-01 4.41658139e-01
-1.19418180e+00 -7.37194955e-01 6.54191002e-02 -9.17937432e-04
-1.13129246e+00 -1.47297874e-01 8.82854939e-01 -5.39853811e-01
4.26242173e-01 1.07961237e-01 5.76407552e-01 9.75733459e-01
1.91719621e-01 1.40528905e+00 1.03495514e+00 -4.35498744e-01
1.64809987e-01 3.05240124e-01 4.06499654e-01 5.74359238e-01
4.46171612e-01 -1.20477922e-01 -5.21102428e-01 -2.50613779e-01
4.04187471e-01 -1.86273441e-01 -2.55091012e-01 -6.28381252e-01
-7.18313575e-01 9.81568396e-01 1.43981233e-01 -4.06799056e-02
-1.18872233e-01 -3.21649574e-02 3.64667624e-01 -1.07213981e-01
9.38985288e-01 4.40658145e-02 -3.63895416e-01 8.38853419e-02
-8.61041129e-01 2.49990344e-01 5.81905842e-01 8.21289897e-01
8.23536754e-01 -1.73851743e-01 -2.73514599e-01 1.24870968e+00
6.39088392e-01 5.37211359e-01 4.60588127e-01 -1.07666767e+00
4.03050721e-01 4.59756196e-01 -1.91417545e-01 -9.67686355e-01
-1.54817134e-01 -5.25723219e-01 -7.71017551e-01 4.05836672e-01
5.04440546e-01 1.51040152e-01 -1.36506116e+00 1.67933667e+00
6.91840112e-01 -5.28771728e-02 -2.46538281e-01 1.07967567e+00
8.33819628e-01 5.22988856e-01 -1.47268683e-01 1.19057901e-01
1.23113418e+00 -9.13551867e-01 -8.27519536e-01 -4.04687822e-01
4.47674662e-01 -9.45728064e-01 1.23846281e+00 4.07421052e-01
-7.61109829e-01 -4.82868165e-01 -8.49887908e-01 -3.99756789e-01
-1.60572067e-01 2.61452973e-01 6.62722588e-01 5.06762624e-01
-5.30442595e-01 2.33746409e-01 -9.13028598e-01 -1.90550432e-01
7.70081818e-01 6.95984997e-03 -1.11476667e-01 2.60238140e-03
-7.85419345e-01 5.19946277e-01 2.51092762e-01 -2.38137618e-01
-7.75591254e-01 -8.89322221e-01 -1.00453556e+00 -2.58521467e-01
3.14526469e-01 -4.02629137e-01 8.66401613e-01 -8.67344439e-01
-1.14786434e+00 1.46782029e+00 -1.03687756e-01 -2.18408465e-01
6.96456671e-01 -3.12520772e-01 1.68848574e-01 -2.82033775e-02
4.87671107e-01 8.05531561e-01 1.17269576e+00 -1.23847568e+00
-6.57838702e-01 -6.38167262e-01 -5.41210711e-01 1.79311961e-01
-1.59828588e-01 -3.60811174e-01 -7.79468596e-01 -1.09052479e+00
5.83848298e-01 -1.19567537e+00 2.09389850e-02 3.37063611e-01
-7.19717622e-01 -5.33110201e-01 8.73257160e-01 -5.42657733e-01
1.07859385e+00 -2.42693901e+00 -1.24038465e-01 9.63271186e-02
2.74580300e-01 6.33447394e-02 1.87326521e-02 -1.84121653e-01
-1.20732747e-02 -5.10050170e-02 -5.37060201e-01 -3.93782169e-01
2.84545660e-01 1.02773830e-01 -7.23830163e-02 6.49355769e-01
1.40426338e-01 5.21300733e-01 -6.84070885e-01 -6.25667214e-01
2.08310947e-01 5.71764588e-01 -5.73836505e-01 3.17415863e-01
-5.80040067e-02 4.49571341e-01 -5.54831028e-01 1.01114869e+00
9.94401455e-01 -2.44265154e-01 -5.16761899e-01 -3.43907177e-01
2.60266423e-01 1.56350687e-01 -1.24682987e+00 1.62999523e+00
-1.12267837e-01 8.40898573e-01 2.53756672e-01 -1.04746974e+00
7.95385599e-01 -8.30309838e-02 5.47661543e-01 -5.70489883e-01
1.81612700e-01 6.43660069e-01 -2.90346652e-01 -3.41790169e-01
2.92603135e-01 5.46359755e-02 6.29577935e-02 6.74731955e-02
9.14541110e-02 -5.62835038e-01 2.59791136e-01 4.30097803e-02
5.57823300e-01 2.15016976e-01 1.26474068e-01 -4.00839299e-01
2.63326585e-01 -5.01451641e-02 9.31908965e-01 6.50171041e-01
-3.92040074e-01 9.86315966e-01 6.05203629e-01 1.20585069e-01
-8.07198942e-01 -1.04647839e+00 -6.23268902e-01 7.83217847e-01
4.37121987e-01 6.59583136e-03 -8.64282370e-01 -7.93172956e-01
2.50493914e-01 7.45695472e-01 -4.73675042e-01 -1.44031972e-01
-2.45265275e-01 -1.18735111e+00 3.42393935e-01 3.55936795e-01
5.33136249e-01 -6.13616705e-01 -3.76646727e-01 -4.69355509e-02
-2.75589466e-01 -1.06191599e+00 -8.68853092e-01 5.27074873e-01
-9.05568659e-01 -1.21901929e+00 -1.03112304e+00 -8.17038357e-01
8.15760851e-01 2.22007647e-01 1.12458837e+00 -1.61354512e-01
-7.17247367e-01 3.82587403e-01 -1.26461849e-01 -6.62359476e-01
-3.12744766e-01 -2.28926893e-02 -2.55920976e-01 -1.40620209e-02
5.07704020e-01 -2.01895148e-01 -6.39929771e-01 4.70245034e-01
-9.03123856e-01 -3.57116044e-01 3.85135919e-01 9.35729265e-01
1.12993574e+00 -5.05640805e-02 8.11925903e-02 -8.01056027e-01
3.26707453e-01 -4.42659229e-01 -5.76628447e-01 -1.76912725e-01
-6.84575379e-01 -2.09235456e-02 4.45939563e-02 -3.60024333e-01
-1.02689683e+00 -5.08491956e-02 -2.99197257e-01 -5.61638236e-01
-3.42804343e-01 6.73479121e-03 -2.13571832e-01 3.08439862e-02
2.77289122e-01 -6.58562034e-02 4.18781601e-02 -7.09551752e-01
-3.17764543e-02 7.25955844e-01 2.10813075e-01 -4.33318734e-01
5.90564370e-01 6.40189767e-01 7.66999796e-02 -1.14811540e+00
-1.28609395e+00 -7.24041522e-01 -3.46792966e-01 1.37830302e-02
1.08568120e+00 -9.98093605e-01 -1.93817005e-01 1.01228917e+00
-7.61135340e-01 -4.52294797e-01 -4.40100849e-01 6.29851520e-01
-4.46988434e-01 5.26724935e-01 -4.60198790e-01 -7.04936028e-01
-9.82793644e-02 -1.19360852e+00 1.50377238e+00 2.79723763e-01
2.59315744e-02 -1.01611102e+00 1.64462551e-02 6.06643260e-01
-1.45385638e-01 3.70930344e-01 8.40197027e-01 -5.69944978e-01
-4.29875851e-01 -1.56046093e-01 -1.99740663e-01 7.67112553e-01
2.34478280e-01 -1.33420482e-01 -1.06036854e+00 -2.83387959e-01
1.40083373e-01 -6.05891943e-01 1.25751603e+00 8.14209938e-01
1.37837017e+00 2.89982796e-01 -4.09567028e-01 7.22763062e-01
1.23278677e+00 -7.57768145e-03 5.01371443e-01 1.90968052e-01
8.19288731e-01 7.34411299e-01 1.09750724e+00 2.49525264e-01
2.65033722e-01 7.39017189e-01 4.90856767e-01 -3.42469126e-01
-4.45367694e-01 -1.32373750e-01 3.22460145e-01 5.52668393e-01
3.94731909e-01 -5.23166001e-01 -7.42281973e-01 6.80923343e-01
-1.66942966e+00 -4.78972405e-01 -4.68883216e-01 2.25447106e+00
7.17470706e-01 2.14176446e-01 6.38788491e-02 5.16265146e-02
8.54290128e-01 2.14005306e-01 -9.17836845e-01 -4.65729535e-02
-2.13245884e-01 -9.69278738e-02 6.61833167e-01 3.62248302e-01
-1.38913834e+00 5.83777189e-01 5.46360731e+00 1.41038942e+00
-9.29222822e-01 2.64147729e-01 8.65877509e-01 1.16300881e-01
-2.99586415e-01 -2.58208394e-01 -1.11706614e+00 8.26296210e-01
1.42669708e-01 2.73066133e-01 -1.99792907e-01 9.33950663e-01
9.82521027e-02 -5.07086635e-01 -8.90792966e-01 1.24715114e+00
2.06205904e-01 -8.44797432e-01 -1.27501309e-01 2.06718206e-01
8.39448988e-01 1.55891851e-01 1.80955306e-01 3.95553745e-02
-5.28552420e-02 -6.87490106e-01 7.78400362e-01 1.02922700e-01
5.26939631e-01 -5.78474224e-01 7.64237523e-01 3.46152872e-01
-1.00355792e+00 2.80532509e-01 -3.96152198e-01 3.79776865e-01
-5.15811518e-02 1.29498959e+00 -2.86451131e-01 1.51685163e-01
9.47077096e-01 7.88026869e-01 -4.94944096e-01 9.24858451e-01
-3.76272440e-01 6.48203552e-01 -5.71714342e-01 3.16113800e-01
1.99471071e-01 -5.16246736e-01 8.32320631e-01 9.71341670e-01
2.60714680e-01 -2.37503782e-01 3.49684089e-01 8.26123953e-01
-7.95397535e-02 1.14584684e-01 -4.55269367e-01 1.51495442e-01
2.56727338e-01 9.93899286e-01 -9.18883622e-01 -1.37610942e-01
-3.36220145e-01 1.00035286e+00 9.38615587e-04 2.45181412e-01
-9.10632730e-01 -4.37590688e-01 7.81155169e-01 1.31937295e-01
2.66360104e-01 -6.41484186e-02 -2.45252520e-01 -1.31116283e+00
3.49356264e-01 -6.20009303e-01 5.56324124e-01 -4.56944436e-01
-1.62400198e+00 1.03762701e-01 -7.58511946e-02 -1.29301250e+00
2.23359779e-01 -7.73064673e-01 -4.99914825e-01 5.69980204e-01
-1.71059799e+00 -9.33212161e-01 -5.47068238e-01 3.09852064e-01
8.52235079e-01 -6.75900420e-03 2.67207563e-01 6.43145204e-01
-5.52206755e-01 5.76709390e-01 2.94176847e-01 1.13967314e-01
9.70906675e-01 -1.44209516e+00 -8.23461339e-02 7.17136264e-01
-1.12059057e-01 1.18880227e-01 7.82526970e-01 -6.80531502e-01
-9.82298195e-01 -1.10190260e+00 5.29412389e-01 -2.68228352e-01
2.90922374e-01 -3.29086810e-01 -1.01594830e+00 4.27926302e-01
-3.14645506e-02 1.78418174e-01 6.06752336e-01 -3.65563005e-01
5.87355113e-03 2.37489846e-02 -1.28508937e+00 2.18218818e-01
8.25341880e-01 -2.87696242e-01 -5.56569874e-01 4.84227389e-01
3.35097998e-01 -6.25527740e-01 -7.42998719e-01 5.81906497e-01
3.36211026e-01 -1.05979085e+00 1.05490458e+00 -8.00627172e-02
3.30358475e-01 -3.36549520e-01 -2.91695505e-01 -1.14630246e+00
1.05872281e-01 -2.13328153e-01 -1.94456086e-01 1.37098575e+00
1.02570727e-01 -9.00267601e-01 1.03711581e+00 3.62434506e-01
-2.76105881e-01 -8.42005074e-01 -8.86158407e-01 -9.73981321e-01
1.24261223e-01 -4.09836531e-01 -1.52187969e-03 7.38445818e-01
-7.89797306e-01 1.90078035e-01 -1.66530043e-01 1.70496240e-01
1.25157237e+00 1.62547141e-01 7.10358858e-01 -1.29645836e+00
-1.26459107e-01 -2.94928700e-01 -3.74791682e-01 -1.26303446e+00
3.89033765e-01 -1.10415018e+00 2.50876278e-01 -1.52710283e+00
2.83646435e-01 -7.08001137e-01 -1.79831490e-01 3.31032783e-01
-4.11499888e-01 6.14245057e-01 7.61784315e-02 2.43744239e-01
-2.88705677e-01 8.17880869e-01 1.30375803e+00 -2.94737011e-01
-2.10027024e-01 1.55836493e-01 -4.50416476e-01 1.14311767e+00
7.66446173e-01 -8.18214774e-01 -3.48755002e-01 -3.05489928e-01
-7.64604658e-02 -4.85997677e-01 5.58487415e-01 -7.30294645e-01
-1.82874694e-01 6.89042583e-02 4.01437432e-01 -9.83055592e-01
3.00625920e-01 -7.87657559e-01 -2.26041809e-01 5.12603223e-01
-1.95814446e-01 -6.45367563e-01 1.54024577e-02 6.47294343e-01
-4.12496686e-01 -3.87338072e-01 1.23742318e+00 1.99614018e-02
-6.73564374e-01 4.18363452e-01 -2.22269222e-01 7.95145631e-01
9.34940457e-01 -3.73621672e-01 -4.35461365e-02 -1.51693001e-01
-6.33545995e-01 4.00932729e-01 5.06770372e-01 4.71645862e-01
4.16360736e-01 -1.29919517e+00 -6.71890318e-01 2.85789162e-01
1.25974968e-01 2.71889776e-01 8.56315792e-02 1.05837321e+00
-3.14596832e-01 8.03918317e-02 8.70229006e-02 -1.05676711e+00
-1.35739338e+00 1.28651530e-01 3.74998450e-01 -9.24960524e-02
-5.25626123e-01 1.02776504e+00 6.46397054e-01 -6.56406283e-01
4.45118308e-01 -4.06121731e-01 1.10971935e-01 4.98406678e-01
4.15860815e-03 6.89950287e-01 3.47597562e-02 -4.36232716e-01
-4.33895946e-01 9.75547194e-01 2.15670452e-01 3.13752413e-01
1.25461245e+00 -2.89703488e-01 -3.17494920e-03 6.39184296e-01
1.52847791e+00 1.85726270e-01 -1.42110991e+00 4.88501489e-02
-1.26612350e-01 -7.23310530e-01 3.44668865e-01 -3.36957186e-01
-1.22393775e+00 1.02665627e+00 9.97334242e-01 1.10847153e-01
1.08092165e+00 2.72284508e-01 9.63032842e-01 -4.88680974e-02
1.88092843e-01 -1.52050173e+00 2.81434953e-01 3.08649093e-01
6.69914663e-01 -1.80705965e+00 1.01296589e-01 -7.48142958e-01
-5.30850291e-01 8.24543357e-01 6.24971628e-01 -2.55874753e-01
8.76985610e-01 1.12990923e-01 1.59318343e-01 -2.61066288e-01
-1.97250515e-01 -3.15912455e-01 5.01169562e-01 5.38981915e-01
3.71826708e-01 -1.78434327e-01 -4.13104057e-01 2.18610421e-01
1.65217027e-01 -3.87416214e-01 3.39688897e-01 7.36262143e-01
-3.64955127e-01 -9.84913170e-01 -5.28698921e-01 6.55250072e-01
-6.69783354e-01 1.07071266e-01 -1.96240038e-01 8.37803900e-01
3.02891463e-01 6.76505208e-01 1.96943402e-01 3.99026632e-01
3.29068005e-01 -4.13544141e-02 3.14122170e-01 -6.57651007e-01
-6.38462156e-02 4.86429632e-01 -1.80650130e-01 -6.76057160e-01
-5.13657212e-01 -7.49172986e-01 -1.32596731e+00 2.02845007e-01
-5.69508672e-01 7.97070190e-02 7.69212246e-01 5.93369305e-01
3.14584225e-01 5.49372792e-01 5.99328935e-01 -9.03729498e-01
-5.10924160e-01 -6.69136405e-01 -8.95147443e-01 5.82031786e-01
5.85994780e-01 -1.01101434e+00 -9.01766896e-01 -7.28632659e-02] | [9.63196086883545, 1.3219611644744873] |
77dc500f-0b3e-4946-9af8-a385ab7f8452 | serialized-interacting-mixed-membership | 2209.07813 | null | https://arxiv.org/abs/2209.07813v1 | https://arxiv.org/pdf/2209.07813v1.pdf | Serialized Interacting Mixed Membership Stochastic Block Model | Last years have seen a regain of interest for the use of stochastic block modeling (SBM) in recommender systems. These models are seen as a flexible alternative to tensor decomposition techniques that are able to handle labeled data. Recent works proposed to tackle discrete recommendation problems via SBMs by considering larger contexts as input data and by adding second order interactions between contexts' related elements. In this work, we show that these models are all special cases of a single global framework: the Serialized Interacting Mixed membership Stochastic Block Model (SIMSBM). It allows to model an arbitrarily large context as well as an arbitrarily high order of interactions. We demonstrate that SIMSBM generalizes several recent SBM-based baselines. Besides, we demonstrate that our formulation allows for an increased predictive power on six real-world datasets. | ['Sabine Loudcher', 'Julien Velcin', 'Gaël Poux-Médard'] | 2022-09-16 | null | null | null | null | ['stochastic-block-model'] | ['graphs'] | [-8.97913277e-02 -2.26897776e-01 -4.58979070e-01 -3.97181183e-01
-4.20054585e-01 -6.50295198e-01 1.08149981e+00 3.42767267e-03
-6.73575625e-02 4.17971164e-01 7.09205270e-01 -7.01275766e-01
-5.30228257e-01 -5.76699436e-01 -7.44738221e-01 -8.13557267e-01
-3.67718518e-01 7.07600474e-01 2.00214818e-01 -6.23152018e-01
2.27644462e-02 3.06271911e-01 -1.52427042e+00 7.81470299e-01
6.48714006e-01 4.84959126e-01 1.74778536e-01 3.53340089e-01
-2.29505464e-01 7.61184394e-01 -1.78844020e-01 -6.07787967e-01
3.23270380e-01 3.08989324e-02 -8.88994157e-01 -8.58733896e-03
5.22213101e-01 -3.74434255e-02 -2.45259717e-01 5.25916159e-01
1.14242826e-02 5.11943400e-01 5.72317064e-01 -1.15862310e+00
-5.30134261e-01 1.07993960e+00 -4.56381083e-01 1.86415032e-01
5.04459143e-01 -4.14887667e-01 1.63473272e+00 -9.76787746e-01
4.89616901e-01 1.42897916e+00 5.15243292e-01 4.57815915e-01
-1.78228223e+00 -1.52275592e-01 7.66445577e-01 2.40705013e-01
-9.55387354e-01 -1.05418168e-01 6.48810804e-01 -5.30980647e-01
9.28813100e-01 8.57424736e-01 4.94512022e-01 1.23007178e+00
-2.35305652e-01 1.09323621e+00 1.12534451e+00 -6.19853199e-01
1.27456576e-01 -1.12913232e-02 1.01892459e+00 2.48605117e-01
3.82775366e-01 5.80456704e-02 -4.67314154e-01 -7.56322324e-01
3.64013314e-01 3.90288234e-01 -7.74517506e-02 -4.67808247e-01
-1.47214603e+00 9.55959976e-01 1.47662982e-01 4.99535620e-01
-3.40106040e-01 3.00152600e-01 2.40603641e-01 2.68303901e-01
6.36237860e-01 2.20770404e-01 -3.60577077e-01 -3.18419784e-02
-9.19498503e-01 4.60571438e-01 9.80462849e-01 8.73933077e-01
4.30135041e-01 -2.06305400e-01 -3.68608564e-01 9.42312717e-01
5.49084544e-01 2.15189844e-01 2.39422277e-01 -7.96125174e-01
5.53631723e-01 4.68144745e-01 4.09549981e-01 -8.06707203e-01
-3.50809723e-01 -5.48125684e-01 -8.02254617e-01 -2.91870385e-01
4.26876843e-01 3.46413314e-01 -5.13839126e-01 1.71567738e+00
4.59860146e-01 4.04289812e-01 -2.74281919e-01 7.82003522e-01
4.75234896e-01 6.28310144e-01 -3.68686207e-02 -2.57633090e-01
1.19191980e+00 -1.20123029e+00 -6.27746701e-01 1.73777029e-01
6.18274450e-01 -6.74795151e-01 1.03263986e+00 8.60675812e-01
-1.11613154e+00 -4.55130249e-01 -8.79770339e-01 1.28598502e-02
-1.75992370e-01 -2.44344473e-02 1.20929611e+00 7.77268827e-01
-1.30192208e+00 7.80488372e-01 -9.72113431e-01 -1.86699122e-01
-2.73885727e-01 6.12389863e-01 -8.97113830e-02 -2.59492040e-01
-1.08100319e+00 6.35700583e-01 -2.03464806e-01 2.98919618e-01
-8.42068672e-01 -4.59271967e-01 -3.95442516e-01 2.43172124e-02
3.67174000e-01 -8.54319334e-01 1.13153553e+00 -6.03948951e-01
-1.20446372e+00 4.41534251e-01 -3.75129282e-01 -4.95185286e-01
2.05993101e-01 -2.16015771e-01 -3.69609684e-01 -2.82414526e-01
-2.61345893e-01 3.44835408e-02 7.49431968e-01 -1.31436038e+00
-3.19935918e-01 -3.45711172e-01 7.86806226e-01 3.98769490e-02
-4.35561657e-01 2.12034553e-01 -2.46364251e-01 -8.60408247e-01
1.93956867e-01 -1.26227450e+00 -6.44141257e-01 -8.39703619e-01
-2.05802739e-01 -3.32752585e-01 2.70617038e-01 -3.92914236e-01
1.60894847e+00 -1.95924067e+00 7.82878995e-01 2.35031173e-01
2.53499866e-01 1.78224295e-01 -3.20974171e-01 1.00830901e+00
-8.87598395e-02 2.64357954e-01 1.51373863e-01 -8.52393210e-01
3.78207982e-01 6.58354998e-01 -5.63780308e-01 2.20359966e-01
-4.35226917e-01 7.39366353e-01 -9.00195122e-01 -6.02388084e-02
6.65030479e-02 5.05604863e-01 -9.41552162e-01 -2.15466812e-01
-4.09483165e-01 5.19727290e-01 -1.46563172e-01 1.87389180e-01
6.60995364e-01 -3.59023392e-01 5.16245127e-01 -9.47907865e-02
2.48368122e-02 6.49397075e-01 -1.58022571e+00 1.49297690e+00
-6.25639498e-01 7.30436295e-02 1.44796044e-01 -9.26323354e-01
4.63662863e-01 4.13097918e-01 6.11981034e-01 1.13052160e-01
-1.48288637e-01 3.54015939e-02 -4.69549038e-02 -9.72816199e-02
6.85092390e-01 -2.59790868e-01 5.55787645e-02 5.09745479e-01
7.47710690e-02 4.29914683e-01 4.33375090e-01 6.33479059e-01
8.98244381e-01 6.18556961e-02 -1.24667704e-01 -3.84360760e-01
6.39808893e-01 -3.46484393e-01 4.49454188e-01 1.05780160e+00
4.69639808e-01 4.87291873e-01 2.99351275e-01 -4.78697568e-01
-7.66100943e-01 -7.97371626e-01 -7.81450644e-02 1.40834200e+00
-2.02492308e-02 -1.05601752e+00 -2.72615582e-01 -5.39220631e-01
1.49440691e-01 5.81029236e-01 -7.49009311e-01 2.42141083e-01
-5.48757434e-01 -1.15031731e+00 -9.48648155e-03 4.75229621e-01
-2.66137242e-01 -2.88096756e-01 2.45235279e-01 2.62845486e-01
-3.44774246e-01 -9.84809935e-01 -5.15513480e-01 2.31124237e-01
-1.20619273e+00 -7.19599009e-01 -4.92028892e-01 -3.15944225e-01
2.78885305e-01 7.45183170e-01 1.39247644e+00 1.06761746e-01
2.64561355e-01 5.31780720e-01 -8.36588144e-01 6.03392273e-02
-4.47510779e-01 5.66892046e-03 4.24223423e-01 4.65486467e-01
2.65297383e-01 -9.43308353e-01 -6.77527845e-01 6.30286515e-01
-1.04619896e+00 3.03917080e-01 1.91818386e-01 8.55485559e-01
2.48997316e-01 -3.77735972e-01 1.36633858e-01 -1.14761698e+00
5.68083346e-01 -7.29479790e-01 -4.31917489e-01 2.81946391e-01
-8.23993266e-01 1.24306440e-01 6.15924180e-01 -6.50816679e-01
-9.81011212e-01 -3.15486968e-01 -9.72918645e-02 -2.01823339e-01
5.46899214e-02 8.54422271e-01 -1.19931288e-02 6.28454462e-02
5.20888746e-01 4.64748144e-02 -3.99920881e-01 -9.80583608e-01
6.73827410e-01 5.15019298e-01 -1.61178634e-01 -1.11294413e+00
6.08923078e-01 8.36619437e-01 2.33573630e-01 -5.76514065e-01
-7.95691729e-01 -8.85838926e-01 -6.25737429e-01 3.19754938e-03
3.13932508e-01 -7.32263386e-01 -7.89956570e-01 -3.57804485e-02
-8.29490900e-01 -2.66516179e-01 -1.81320250e-01 6.39594138e-01
-2.44946823e-01 8.35450411e-01 -7.99424767e-01 -1.06193864e+00
1.92359630e-02 -1.07048750e+00 8.66044283e-01 -5.14044464e-01
-1.00541838e-01 -1.13696432e+00 2.25481212e-01 6.91977561e-01
2.50570089e-01 -1.93921119e-01 8.01704109e-01 -6.77124560e-01
-4.85844105e-01 -1.41657606e-01 3.28366041e-01 2.78931946e-01
-2.29444236e-01 1.89454462e-02 -6.94223046e-01 -4.84541595e-01
1.83113217e-02 2.85502940e-01 1.06718445e+00 2.95375943e-01
5.76434493e-01 -4.15193647e-01 -4.54930574e-01 5.00105679e-01
1.19952488e+00 3.25746462e-02 3.72217327e-01 1.13900714e-01
8.34763944e-01 4.39818084e-01 4.99091834e-01 3.69734794e-01
5.06496429e-01 1.11145329e+00 4.45410818e-01 2.00527817e-01
9.07885358e-02 -2.13821173e-01 4.54131424e-01 1.32114494e+00
-5.67659497e-01 -1.11809529e-01 -7.51527548e-01 5.00367224e-01
-2.37948895e+00 -1.07874095e+00 -8.41181517e-01 2.33483291e+00
5.63644230e-01 -3.96321975e-02 5.68606198e-01 1.57557145e-01
4.65312243e-01 1.14703581e-01 1.92408469e-02 -4.24395949e-01
-1.87138245e-01 9.23073590e-02 3.64604086e-01 6.62084758e-01
-1.03578687e+00 4.90371764e-01 7.17441416e+00 7.73728907e-01
-4.68147606e-01 5.09780049e-01 2.34461069e-01 -4.26082224e-01
-7.04952002e-01 4.98673230e-01 -9.72965479e-01 5.17601907e-01
1.04053271e+00 4.12897944e-01 7.49679804e-01 5.70805550e-01
2.17131972e-01 -4.62803915e-02 -1.29024303e+00 8.70663345e-01
-3.49838962e-03 -1.20532525e+00 2.95940876e-01 4.84532863e-01
1.05586183e+00 1.26999483e-01 9.20077115e-02 2.99102306e-01
7.21721470e-01 -5.05741894e-01 6.11124516e-01 6.14316523e-01
-3.98606956e-02 -4.67144907e-01 3.96218091e-01 5.44541895e-01
-1.00823677e+00 -4.67923194e-01 -3.04503024e-01 -5.40743530e-01
2.02040538e-01 6.91124916e-01 -3.77648324e-01 8.96075189e-01
4.37898755e-01 6.26885474e-01 -3.53182882e-01 9.93180692e-01
2.02557463e-02 1.04767859e+00 -3.95711720e-01 -1.11022200e-02
4.66222465e-01 -7.37280011e-01 7.56868780e-01 1.21474779e+00
4.96264435e-02 -2.58803368e-02 2.63169318e-01 3.23065788e-01
2.75799781e-01 3.01698804e-01 -2.84761131e-01 1.79330498e-01
9.14483815e-02 1.20843649e+00 -5.76173604e-01 -4.01154220e-01
-7.23815620e-01 7.76217818e-01 3.23737025e-01 5.66407084e-01
-6.70892656e-01 6.94634795e-01 7.61449754e-01 1.12685613e-01
4.39822674e-01 -5.85687041e-01 -1.54151723e-01 -1.74982762e+00
-7.64588416e-02 -1.03347731e+00 5.02517343e-01 -4.41020757e-01
-1.50706589e+00 3.89007211e-01 3.17948848e-01 -1.26331270e+00
-7.73182511e-02 -6.42729998e-01 -2.08573729e-01 7.28117943e-01
-1.14239991e+00 -1.49258804e+00 2.16808394e-01 6.34611189e-01
3.72505665e-01 2.57417019e-02 8.91114771e-01 5.41377008e-01
-5.05366087e-01 3.41294616e-01 7.63863027e-01 -3.53155434e-01
5.07069230e-01 -1.45713997e+00 3.57916802e-01 7.73873329e-01
8.59457493e-01 1.30821943e+00 1.05452478e+00 -3.18855911e-01
-1.60912645e+00 -7.56395280e-01 8.86890590e-01 -8.80648971e-01
7.84594536e-01 -6.66622996e-01 -6.29125416e-01 9.77698743e-01
7.99149349e-02 -2.07474813e-01 1.08582473e+00 9.92446601e-01
-6.46018028e-01 -2.91959345e-01 -5.85254014e-01 7.07616270e-01
1.20262825e+00 -4.12206709e-01 -5.45140207e-01 4.71308678e-01
6.39909863e-01 -8.59012753e-02 -9.86358643e-01 3.69600683e-01
6.29470110e-01 -1.06396306e+00 1.16357374e+00 -1.01659882e+00
1.81798041e-01 -3.29310149e-01 -6.38611436e-01 -1.09337938e+00
-7.40291357e-01 -8.72246563e-01 -6.62631810e-01 1.13220584e+00
3.17286879e-01 -5.22693634e-01 5.04023492e-01 7.28194654e-01
-4.93619926e-02 -8.08072746e-01 -7.59850144e-01 -8.89528215e-01
1.67772353e-01 -7.09818244e-01 6.60017192e-01 9.99810696e-01
4.35961783e-01 4.14065123e-01 -7.58719683e-01 1.27123773e-01
5.58402121e-01 5.49843907e-01 7.56796658e-01 -1.37254190e+00
-1.11320925e+00 -4.52910125e-01 -2.19101787e-01 -1.49424231e+00
1.14011914e-02 -1.10936606e+00 -7.19883561e-01 -1.50505853e+00
5.01039743e-01 -6.11949503e-01 -6.58814609e-01 1.83024228e-01
-8.11049491e-02 3.35476279e-01 3.71658266e-01 5.48189282e-01
-7.14112520e-01 1.83951482e-01 8.69952738e-01 -2.39706770e-01
-9.07744765e-02 4.73189443e-01 -8.05629134e-01 4.84992206e-01
3.46134454e-01 -2.89665282e-01 -6.16328299e-01 -3.98401022e-01
8.86327684e-01 1.43375143e-01 2.67253488e-01 -5.02232671e-01
5.78656867e-02 -2.34194294e-01 -3.24619830e-01 -7.83307552e-01
5.51368833e-01 -8.38240921e-01 5.66533446e-01 6.05056174e-02
-4.13053006e-01 -1.42870933e-01 -1.12131059e-01 8.38211358e-01
-8.15918073e-02 -3.80052149e-01 3.01360916e-02 -1.06860720e-01
-3.32055658e-01 1.52871534e-01 -4.97233063e-01 -4.97349054e-01
7.14663029e-01 4.27856259e-02 6.82903677e-02 -4.07969385e-01
-1.40752304e+00 1.68144718e-01 2.39186928e-01 4.01899397e-01
1.99797004e-01 -1.40504575e+00 -6.14253283e-01 -2.84445286e-01
-4.71487129e-03 -4.56270427e-01 3.30778539e-01 1.13600564e+00
9.25766006e-02 5.68358362e-01 4.26194906e-01 -5.59231222e-01
-1.45658696e+00 1.20962822e+00 -1.40008582e-02 -6.62488043e-01
-3.42970610e-01 8.39604020e-01 1.70816705e-01 -4.41738755e-01
2.43116066e-01 -5.49437046e-01 -2.82138169e-01 1.98128849e-01
4.95745331e-01 5.14782488e-01 1.55576289e-01 -6.49040163e-01
-2.51347721e-01 1.54125437e-01 -1.43596575e-01 -3.22199166e-01
1.52093732e+00 -3.97061050e-01 -4.75968152e-01 8.03696632e-01
8.36873472e-01 2.45948330e-01 -7.42417097e-01 -4.73870754e-01
2.09961951e-01 -4.07972574e-01 -2.42793523e-02 -7.51356125e-01
-6.55075431e-01 7.09012508e-01 9.93747488e-02 7.31121421e-01
8.64213526e-01 9.60088447e-02 3.94133359e-01 2.84689724e-01
7.41849005e-01 -5.05008042e-01 -3.09292704e-01 5.77139914e-01
7.12459862e-01 -8.09075713e-01 9.80977342e-02 -4.34816569e-01
-5.10837018e-01 8.21707904e-01 -7.37644266e-03 -1.18852787e-01
1.03270876e+00 1.00995719e-01 -4.18221086e-01 1.72498394e-02
-1.16154873e+00 -3.14207226e-01 5.46213865e-01 3.26327056e-01
6.91230655e-01 3.13430697e-01 -7.58188784e-01 9.23328400e-01
1.42639562e-01 -2.22415209e-01 5.05954742e-01 6.50194228e-01
-2.67351959e-02 -1.85564482e+00 -5.39984584e-01 5.65228999e-01
-6.47434890e-01 -3.67410034e-01 -2.05139041e-01 2.44659632e-01
4.72441576e-02 1.31074786e+00 -3.39587718e-01 -6.25659764e-01
6.71184808e-02 2.43043929e-01 6.62474334e-01 -8.07078063e-01
-8.83973300e-01 2.50684977e-01 2.10412294e-01 -4.52576339e-01
-7.09160805e-01 -9.64979768e-01 -4.86442626e-01 -2.14468703e-01
-6.03236437e-01 4.93605733e-01 6.63273454e-01 9.16280925e-01
4.54577267e-01 3.33138078e-01 7.24917352e-01 -8.79227519e-01
-7.85379648e-01 -1.15089738e+00 -7.27703094e-01 6.34113967e-01
3.17245334e-01 -8.92908335e-01 -2.83287257e-01 2.91961548e-03] | [9.611677169799805, 5.499703884124756] |
9c75a92f-d936-417a-a849-d1472992fb00 | clip-art-contrastive-pre-training-for-fine-1 | 2204.14244 | null | https://arxiv.org/abs/2204.14244v1 | https://arxiv.org/pdf/2204.14244v1.pdf | CLIP-Art: Contrastive Pre-training for Fine-Grained Art Classification | Existing computer vision research in artwork struggles with artwork's fine-grained attributes recognition and lack of curated annotated datasets due to their costly creation. To the best of our knowledge, we are one of the first methods to use CLIP (Contrastive Language-Image Pre-Training) to train a neural network on a variety of artwork images and text descriptions pairs. CLIP is able to learn directly from free-form art descriptions, or, if available, curated fine-grained labels. Model's zero-shot capability allows predicting accurate natural language description for a given image, without directly optimizing for the task. Our approach aims to solve 2 challenges: instance retrieval and fine-grained artwork attribute recognition. We use the iMet Dataset, which we consider the largest annotated artwork dataset. In this benchmark we achieved competitive results using only self-supervision. | ['Kerem Turgutlu', 'Marcos V. Conde'] | 2022-04-29 | clip-art-contrastive-pre-training-for-fine | https://openaccess.thecvf.com/content/CVPR2021W/CVFAD/html/Conde_CLIP-Art_Contrastive_Pre-Training_for_Fine-Grained_Art_Classification_CVPRW_2021_paper.html | https://openaccess.thecvf.com/content/CVPR2021W/CVFAD/papers/Conde_CLIP-Art_Contrastive_Pre-Training_for_Fine-Grained_Art_Classification_CVPRW_2021_paper.pdf | proceedings-of-the-ieee-cvf-conference-on | ['fine-grained-visual-recognition'] | ['computer-vision'] | [ 3.87619525e-01 -2.46269792e-01 -3.27925950e-01 -4.81320024e-01
-1.00210977e+00 -8.39837670e-01 1.01192760e+00 -1.08232170e-01
-2.59476125e-01 5.54232419e-01 9.62060317e-02 3.05261761e-01
-3.50919813e-01 -5.91061592e-01 -9.12240446e-01 -2.71915197e-01
4.43727702e-01 1.35477388e+00 -1.12856358e-01 7.95277059e-02
3.27604026e-01 4.50383216e-01 -1.86563826e+00 6.46243453e-01
4.24714714e-01 1.46318769e+00 3.28374058e-01 7.30536342e-01
-6.10184133e-01 1.08839428e+00 -3.13243777e-01 -7.39521086e-01
3.59601438e-01 1.03762671e-01 -1.02009475e+00 4.70764071e-01
1.41421866e+00 -1.98436141e-01 -1.52984113e-01 6.98163331e-01
2.28487357e-01 -4.82515283e-02 1.15785742e+00 -1.19290721e+00
-1.29199731e+00 5.42575181e-01 -2.54954576e-01 -3.97474468e-02
2.54159808e-01 2.81554282e-01 1.32092297e+00 -1.17316866e+00
8.33756149e-01 1.24766171e+00 7.15216637e-01 5.82275271e-01
-1.38757515e+00 -4.51722383e-01 -6.08130656e-02 6.97001070e-02
-1.70510387e+00 -4.88347232e-01 5.56473613e-01 -7.54411578e-01
1.11036205e+00 2.30311230e-02 5.17468870e-01 1.35033202e+00
-2.85749704e-01 8.49172652e-01 1.09829342e+00 -5.23705125e-01
-1.18958950e-03 2.13711679e-01 1.46914974e-01 8.19406629e-01
-1.67252451e-01 -2.20401421e-01 -5.47786772e-01 1.19050674e-01
8.25425208e-01 1.88191399e-01 2.00360909e-01 -4.57230449e-01
-1.38305795e+00 4.44867283e-01 2.81131655e-01 4.68238145e-01
-2.45203704e-01 3.65837097e-01 4.17900592e-01 4.01935548e-01
5.22005141e-01 8.90311241e-01 -6.19835317e-01 -1.64095834e-01
-9.44333732e-01 2.91226268e-01 8.37818980e-01 1.16892576e+00
9.62007821e-01 -2.66517788e-01 -4.36899692e-01 1.08480227e+00
-1.09395958e-01 5.84452212e-01 4.31577474e-01 -9.86606181e-01
4.76236969e-01 7.24376261e-01 -1.38263285e-01 -4.28300232e-01
5.92202507e-02 -1.78675592e-01 -9.26269710e-01 -2.18878128e-02
6.29422784e-01 5.39212227e-01 -1.09824681e+00 1.36751473e+00
-2.87717402e-01 1.43741593e-01 1.44226290e-03 7.63473272e-01
8.89489889e-01 4.35304224e-01 2.18941540e-01 2.95993418e-01
1.31277168e+00 -1.28700328e+00 -4.73099828e-01 -3.66411179e-01
2.47324735e-01 -9.26705837e-01 1.62361586e+00 2.34344020e-01
-1.00128245e+00 -6.40961170e-01 -7.20239103e-01 -2.47365817e-01
-7.38344669e-01 2.89023995e-01 7.17583716e-01 7.56977946e-02
-9.89444971e-01 6.20035648e-01 -3.11317176e-01 -5.04966378e-01
7.87524223e-01 2.45301098e-01 -7.05784857e-01 -3.63037944e-01
-7.46282816e-01 8.09918225e-01 2.59457320e-01 -3.97999316e-01
-1.08687270e+00 -1.00811315e+00 -8.02477837e-01 9.42517370e-02
5.70111275e-01 -8.35310698e-01 1.21610153e+00 -1.41035306e+00
-1.12597573e+00 1.65260601e+00 2.06019044e-01 -3.96536261e-01
2.65242517e-01 -1.77789941e-01 5.53912343e-03 1.05974875e-01
3.67740095e-01 9.32273030e-01 1.14890397e+00 -1.17601562e+00
-2.89214820e-01 -5.37535250e-01 1.80765152e-01 -1.43972620e-01
-5.89988351e-01 -6.20652102e-02 -4.94615346e-01 -7.39386857e-01
-2.64512837e-01 -1.03416896e+00 1.86046094e-01 1.48863807e-01
-5.30828416e-01 -6.14141405e-01 3.81672323e-01 -1.02797635e-01
6.06312454e-01 -2.10366273e+00 9.02006552e-02 -2.29582980e-01
3.22630890e-02 2.20089599e-01 -6.08093321e-01 4.18507040e-01
8.96434672e-03 2.84416705e-01 -1.41314551e-01 -7.12915361e-01
5.77816248e-01 3.62558752e-01 -4.33294028e-01 1.91721786e-03
5.37934363e-01 1.13786697e+00 -6.38689160e-01 -8.54662418e-01
3.89437616e-01 5.98377883e-01 -8.68081078e-02 5.21983743e-01
-6.12040401e-01 -1.78101081e-02 -4.29065824e-01 9.61217165e-01
2.84041405e-01 -5.19691825e-01 -3.13471645e-01 -3.46533448e-01
1.95598096e-01 -1.17149234e-01 -9.40997243e-01 2.09752202e+00
-8.14114213e-01 5.40042520e-01 -2.73850024e-01 -6.31265640e-01
1.00048804e+00 2.72130132e-01 2.38303125e-01 -5.97109258e-01
-7.02085570e-02 2.54550219e-01 -7.72770882e-01 -5.33789635e-01
2.92494684e-01 -1.56026393e-01 -2.47180223e-01 5.86384356e-01
3.97317678e-01 -4.43475932e-01 3.70991439e-01 1.03238605e-01
1.26872683e+00 2.49635011e-01 1.50876129e-02 -9.36894938e-02
4.65638191e-01 1.88687027e-01 -1.01909131e-01 1.05888879e+00
-2.58320966e-03 9.99267220e-01 1.75946653e-02 -1.09930110e+00
-1.40207791e+00 -1.16769385e+00 -8.67471769e-02 1.57737207e+00
-2.55332410e-01 -4.02474076e-01 -5.96708953e-01 -7.34096766e-01
1.07287489e-01 4.99428391e-01 -7.12197363e-01 3.23176682e-01
-2.09033772e-01 4.66076434e-02 7.63570547e-01 5.64647615e-01
5.39786220e-01 -1.47974563e+00 -1.88288942e-01 -2.96350978e-02
1.56480651e-02 -1.39688241e+00 -5.67222774e-01 1.66223317e-01
-3.74977916e-01 -1.15664661e+00 -8.60153615e-01 -9.14619863e-01
4.62693483e-01 -4.96129878e-02 1.86992097e+00 1.56085372e-01
-8.04601192e-01 8.31376314e-01 -2.93960690e-01 -3.65683913e-01
-2.40670040e-01 3.80388260e-01 -1.55158728e-01 8.58411714e-02
6.44119680e-01 -6.21141911e-01 -1.43732071e-01 1.42135814e-01
-8.35999906e-01 -8.16816464e-02 9.46762085e-01 8.21373641e-01
8.36451650e-01 -2.56883442e-01 1.30820543e-01 -8.09461117e-01
4.35372174e-01 -2.79992372e-02 -4.00445312e-01 7.31919527e-01
-5.01539111e-01 3.40240180e-01 6.24695897e-01 -5.40567756e-01
-1.00737381e+00 5.97994685e-01 1.64531022e-01 -9.79319930e-01
-8.86872292e-01 -2.09610667e-02 6.33115098e-02 2.99376808e-02
6.48463249e-01 1.87526241e-01 -3.72074455e-01 -7.36341238e-01
5.32743394e-01 7.49419332e-01 9.25052583e-01 -9.06249940e-01
6.09089077e-01 2.69977897e-01 4.46261875e-02 -5.87872088e-01
-1.66337383e+00 -6.36503160e-01 -1.10609198e+00 -4.51901183e-02
1.05093670e+00 -9.91484582e-01 -7.03733385e-01 2.49969617e-01
-1.25625098e+00 -2.94480830e-01 -5.64120293e-01 1.02335304e-01
-9.17903125e-01 -9.69301313e-02 -7.02809453e-01 -7.14116096e-01
-5.38175821e-01 -6.61317766e-01 1.75536585e+00 -1.67552933e-01
-1.11926824e-01 -8.05439413e-01 8.04928020e-02 6.94117188e-01
3.87201101e-01 1.67828843e-01 7.69637406e-01 -5.63654006e-01
-7.60458231e-01 -3.13287765e-01 -5.42316675e-01 3.05217773e-01
-8.74823928e-02 -1.03039844e-02 -1.27535605e+00 1.58994570e-01
-4.00053650e-01 -1.17385185e+00 1.06986833e+00 7.99357984e-03
1.35374534e+00 -4.16605502e-01 -7.86302239e-02 6.46847010e-01
1.60765958e+00 -5.19961655e-01 4.72012252e-01 5.02410173e-01
9.81478214e-01 6.16265178e-01 5.60672939e-01 4.42076713e-01
2.20046610e-01 8.16922903e-01 3.58676076e-01 7.74211064e-02
-4.77764636e-01 -3.54796201e-01 1.22599974e-02 3.30913484e-01
-1.74454495e-01 -2.91179687e-01 -1.16524541e+00 7.10099518e-01
-1.95148075e+00 -9.83740151e-01 7.06475377e-02 1.82014155e+00
9.41832542e-01 -1.74817275e-02 -1.02937467e-01 -2.68895566e-01
6.58044517e-01 6.07544323e-03 -4.27958727e-01 -2.28964955e-01
-2.09504083e-01 3.41169566e-01 2.68879205e-01 1.41497537e-01
-1.48366785e+00 1.26994419e+00 6.20047188e+00 1.06933391e+00
-5.91757357e-01 1.39562383e-01 5.33420980e-01 -1.82232797e-01
-4.03353311e-02 -1.81290388e-01 -7.51178801e-01 2.20579445e-01
7.17093229e-01 2.57925868e-01 6.75069749e-01 9.62442040e-01
-6.17515564e-01 3.61185402e-01 -1.68740845e+00 1.36995327e+00
4.75807279e-01 -1.63426256e+00 3.36006045e-01 -1.38590097e-01
7.10225165e-01 4.39065732e-02 3.48774865e-02 3.41873646e-01
3.82340878e-01 -1.43360710e+00 7.61823416e-01 8.84289026e-01
9.75596845e-01 -5.06417692e-01 7.91647315e-01 2.31960848e-01
-1.10139871e+00 4.62695397e-02 -4.28812921e-01 -1.66361973e-01
-1.77397922e-01 3.84475440e-01 -7.11677730e-01 9.69252177e-03
8.44265342e-01 1.08634663e+00 -8.44896436e-01 4.58791018e-01
-1.58577383e-01 2.93273181e-01 -1.69698864e-01 -1.63318198e-02
3.92131776e-01 1.60254836e-01 2.26158231e-01 1.23428690e+00
1.96431875e-01 -1.46650225e-01 5.24347544e-01 1.12059009e+00
-4.89453554e-01 8.73344839e-02 -7.56263673e-01 -5.61962068e-01
3.48282665e-01 1.37796628e+00 -3.68496269e-01 -4.29577649e-01
-2.56844401e-01 1.16706157e+00 7.39891708e-01 4.17111965e-04
-2.36260682e-01 -4.11915220e-02 5.04385233e-01 2.55403310e-01
3.16221774e-01 1.46207521e-02 -1.90204278e-01 -1.09475064e+00
-3.66703770e-03 -6.34883106e-01 4.90088642e-01 -1.29051125e+00
-2.14299297e+00 6.86146259e-01 -2.21538678e-01 -8.39854419e-01
-4.29176539e-01 -8.41906905e-01 -2.48702690e-01 6.37919545e-01
-1.38895655e+00 -1.97938097e+00 -4.87156332e-01 8.28333199e-01
9.92398143e-01 -6.45788312e-01 1.23223889e+00 2.59790570e-01
-2.39722699e-01 4.87273902e-01 -2.56445799e-02 2.90122002e-01
1.01622975e+00 -1.51266873e+00 3.11901003e-01 7.59638175e-02
7.25939095e-01 2.50153989e-01 5.76239347e-01 -3.78335059e-01
-1.50014496e+00 -1.06836545e+00 1.06062031e+00 -1.05576551e+00
9.83791411e-01 -6.09128475e-01 -8.02401721e-01 7.29400992e-01
1.05790585e-01 3.15873891e-01 4.22851473e-01 3.23727667e-01
-8.73886049e-01 -1.08655274e-01 -8.12197983e-01 9.88669470e-02
1.11412871e+00 -9.23998237e-01 -7.96122551e-01 8.34468246e-01
6.41976237e-01 -1.38078600e-01 -1.23740566e+00 1.50705189e-01
6.16859198e-01 -6.12170815e-01 1.23949838e+00 -5.96961796e-01
9.73345697e-01 -1.24521251e-03 -3.73053581e-01 -8.94431412e-01
-2.89755076e-01 -1.03674911e-01 1.13913510e-02 1.76603329e+00
3.39981169e-01 1.55879766e-01 7.72666395e-01 6.19061947e-01
2.87526054e-03 -4.64983106e-01 -5.29149294e-01 -9.66617823e-01
-1.28601968e-01 -4.30460274e-01 6.74662888e-01 9.73056853e-01
-6.38251901e-01 7.32239127e-01 -5.18385470e-01 -2.71995962e-01
7.24610150e-01 5.05530298e-01 8.91631424e-01 -1.51009941e+00
-3.60789448e-01 -4.26727712e-01 -5.02839923e-01 -3.55438441e-01
7.38968551e-01 -9.55981433e-01 2.16706380e-01 -1.59138083e+00
6.32659554e-01 -6.14527881e-01 -1.29899815e-01 8.87286544e-01
2.88565516e-01 9.68343019e-01 4.06352073e-01 5.65549195e-01
-1.18193710e+00 3.02049100e-01 1.12380433e+00 -7.96729624e-01
2.08265841e-01 -3.47017646e-01 -3.23098928e-01 6.59518540e-01
6.18934751e-01 -4.59175229e-01 -2.67391384e-01 -6.09195292e-01
3.51940334e-01 -4.19578284e-01 7.09500909e-01 -9.26171541e-01
7.37306029e-02 -1.31333619e-01 4.33412015e-01 -4.12526190e-01
5.13947785e-01 -9.92607117e-01 1.82340235e-01 -1.61399007e-01
-7.36985028e-01 -1.47215024e-01 9.17556956e-02 4.18327123e-01
-3.91873598e-01 -4.25518364e-01 4.56796348e-01 -6.04366064e-01
-1.07193339e+00 5.72436035e-01 2.88969260e-02 2.84937441e-01
7.90983558e-01 1.33224623e-02 -4.54450488e-01 -1.59503296e-01
-7.02109277e-01 -4.06372026e-02 7.34073639e-01 6.17824435e-01
4.42900091e-01 -1.48664665e+00 -8.26879740e-01 1.12042641e-02
7.41039097e-01 -1.33411855e-01 1.34913504e-01 2.87438363e-01
-3.33823413e-01 5.06974638e-01 -4.18009222e-01 -7.90934980e-01
-1.30468869e+00 9.54203188e-01 7.94022679e-02 -4.60827202e-01
-5.86992562e-01 8.90525281e-01 1.38899535e-01 -5.54994941e-01
3.26832622e-01 2.10671574e-01 -6.09027501e-03 -6.37862757e-02
6.31039917e-01 -7.49654248e-02 -2.72301994e-02 -7.32842684e-01
-3.25809211e-01 1.07978702e+00 -1.30470574e-01 1.25822797e-01
1.55084097e+00 -2.47127805e-02 -2.73794889e-01 7.03325987e-01
1.22856271e+00 -5.23569643e-01 -1.31703711e+00 -4.04605657e-01
1.55316025e-01 -5.96809566e-01 7.37414286e-02 -1.09437048e+00
-8.49932253e-01 1.07016063e+00 6.77836895e-01 1.55501366e-01
9.09370482e-01 6.46835327e-01 6.31987572e-01 1.03437448e+00
3.91450405e-01 -1.04096770e+00 5.63074946e-01 6.58284307e-01
9.80544865e-01 -1.52458870e+00 -1.20988943e-01 -2.23376632e-01
-6.79818988e-01 1.14702153e+00 7.43125916e-01 -2.43229911e-01
3.14333379e-01 3.13624591e-01 1.77443884e-02 -4.58008200e-01
-9.06513274e-01 -6.01175070e-01 6.60367250e-01 7.02317715e-01
3.50633949e-01 3.59002575e-02 4.18899357e-01 5.70321202e-01
-6.06617928e-02 8.33677500e-02 7.51120970e-02 5.38863540e-01
-3.67419481e-01 -1.11232793e+00 -2.81103402e-01 5.10451198e-01
-3.29750091e-01 -3.87789667e-01 -1.02571738e+00 7.19235480e-01
3.32973927e-01 5.11396229e-01 4.44678634e-01 -9.55756381e-02
4.19388592e-01 2.76773870e-01 7.56664097e-01 -7.09147215e-01
-7.20581889e-01 -3.07841271e-01 7.99345374e-02 -6.77143097e-01
-6.97420776e-01 -3.21135014e-01 -7.29042411e-01 -2.95583218e-01
-5.55324694e-03 -1.53293476e-01 6.92190111e-01 1.15888381e+00
2.58846611e-01 2.47323051e-01 2.08917275e-01 -1.06440544e+00
-2.36947417e-01 -8.97892773e-01 -7.23221600e-01 9.50944185e-01
1.87314138e-01 -5.91634870e-01 -3.03097188e-01 4.56708491e-01] | [11.033929824829102, 0.9021198153495789] |
965c0834-459a-4fe5-91ee-82df1489a944 | learning-deformable-kernels-for-image-and | 1904.06903 | null | http://arxiv.org/abs/1904.06903v1 | http://arxiv.org/pdf/1904.06903v1.pdf | Learning Deformable Kernels for Image and Video Denoising | Most of the classical denoising methods restore clear results by selecting
and averaging pixels in the noisy input. Instead of relying on hand-crafted
selecting and averaging strategies, we propose to explicitly learn this process
with deep neural networks. Specifically, we propose deformable 2D kernels for
image denoising where the sampling locations and kernel weights are both
learned. The proposed kernel naturally adapts to image structures and could
effectively reduce the oversmoothing artifacts. Furthermore, we develop 3D
deformable kernels for video denoising to more efficiently sample pixels across
the spatial-temporal space. Our method is able to solve the misalignment issues
of large motion from dynamic scenes. For better training our video denoising
model, we introduce the trilinear sampler and a new regularization term. We
demonstrate that the proposed method performs favorably against the
state-of-the-art image and video denoising approaches on both synthetic and
real-world data. | ['Muchen Li', 'Xiangyu Xu', 'Wenxiu Sun'] | 2019-04-15 | null | null | null | null | ['video-denoising'] | ['computer-vision'] | [ 2.77687043e-01 -5.40511072e-01 3.98082197e-01 -3.93631697e-01
-9.68565047e-01 -4.43115324e-01 5.54381490e-01 -3.22209656e-01
-7.02123761e-01 5.50362527e-01 1.34146705e-01 1.80605203e-01
-1.18001238e-01 -6.65762663e-01 -8.40974927e-01 -1.12581909e+00
-3.03655453e-02 -2.06839547e-01 2.20186129e-01 -8.42895657e-02
2.27292746e-01 3.81233603e-01 -1.33284581e+00 1.54773071e-01
1.10994232e+00 8.98286521e-01 2.49018863e-01 6.16988242e-01
1.80236727e-01 5.10902643e-01 -3.05935502e-01 -2.78675616e-01
4.77240831e-01 -4.27577436e-01 -2.10021809e-01 4.63965356e-01
8.12092900e-01 -4.75710601e-01 -5.52683294e-01 1.32140744e+00
4.24008369e-01 4.00498033e-01 4.95865077e-01 -6.01515710e-01
-6.38961256e-01 7.59907067e-02 -8.04270804e-01 2.24863991e-01
8.19120836e-03 3.27409297e-01 5.41820288e-01 -9.19567764e-01
4.63174433e-01 1.30352497e+00 9.57117617e-01 4.79833275e-01
-1.56793010e+00 -3.67026150e-01 2.46253878e-01 2.02815905e-01
-1.18023467e+00 -5.40263593e-01 9.16128576e-01 -4.12305385e-01
3.55692178e-01 2.38701418e-01 5.23077071e-01 1.12407708e+00
1.84905961e-01 6.58668458e-01 1.10130465e+00 -3.25451583e-01
2.68105924e-01 -3.74024391e-01 1.00930139e-01 5.23367226e-01
2.47629106e-01 1.66765526e-02 -3.98158818e-01 -2.44059011e-01
1.24277639e+00 2.20799461e-01 -6.08904958e-01 -5.30206203e-01
-1.17056465e+00 6.16384804e-01 9.41596180e-02 1.87565103e-01
-5.77283919e-01 4.87338573e-01 4.09547061e-01 1.83131799e-01
9.17711198e-01 1.21371970e-01 -3.23834985e-01 1.60321668e-02
-1.36142540e+00 3.74876589e-01 4.38383758e-01 5.14261603e-01
7.74162054e-01 3.11675876e-01 -3.73910040e-01 9.36375201e-01
1.56723469e-01 4.72603858e-01 8.04537609e-02 -1.56252193e+00
3.64162117e-01 -5.67077175e-02 3.81352603e-01 -1.03475940e+00
5.60583584e-02 -1.82401255e-01 -1.14774692e+00 4.48254317e-01
6.12768471e-01 1.66722741e-02 -1.20890534e+00 1.60570598e+00
2.57451892e-01 6.26714945e-01 -1.55414402e-01 1.08274436e+00
2.35848933e-01 6.93816066e-01 -2.22998224e-02 -3.98417622e-01
1.03241837e+00 -9.21157360e-01 -1.01101720e+00 -6.53419197e-02
3.99222150e-02 -7.62709200e-01 1.04801631e+00 6.26192749e-01
-1.35222137e+00 -5.82018912e-01 -8.53649914e-01 -1.85660332e-01
2.45289668e-01 2.50426412e-01 4.31528062e-01 5.14168441e-01
-1.06349885e+00 1.01850176e+00 -1.31413114e+00 -1.24446169e-01
4.47717786e-01 1.72320679e-01 -3.53301764e-01 -3.32833558e-01
-8.04480076e-01 6.20972455e-01 1.25551829e-02 5.60952842e-01
-1.08274877e+00 -6.37910843e-01 -9.06487286e-01 2.88618580e-02
4.47567910e-01 -8.16855490e-01 7.85825968e-01 -1.15278494e+00
-1.70172989e+00 7.26287365e-01 -2.93280631e-01 -3.40713829e-01
6.99009895e-01 -6.68200314e-01 -6.38456494e-02 3.45045447e-01
-7.87853301e-02 2.59452581e-01 1.61061990e+00 -1.44954813e+00
-1.52132079e-01 -3.00456315e-01 -1.95924595e-01 -4.96425852e-02
-3.86793464e-01 -2.32762516e-01 -6.93704069e-01 -1.28991330e+00
2.06702620e-01 -7.15063751e-01 -4.95162636e-01 2.62432933e-01
-1.41195282e-01 3.77546638e-01 8.46775591e-01 -1.02971625e+00
1.15761793e+00 -2.23670030e+00 4.57165807e-01 1.71097562e-01
2.40605950e-01 3.80667716e-01 -3.31411064e-01 1.65997684e-01
3.68103222e-03 -2.60524631e-01 -5.97099364e-01 -6.45950675e-01
-2.40056768e-01 4.41943735e-01 -1.98728248e-01 7.85128832e-01
1.23424999e-01 5.47927439e-01 -8.26889515e-01 -3.15502100e-02
4.86048967e-01 9.71963406e-01 -6.38817549e-01 1.98644951e-01
1.15601169e-02 7.40796626e-01 -4.92183894e-01 3.11889052e-01
1.16408324e+00 7.48501420e-02 3.35556343e-02 -4.70190287e-01
-9.02264118e-02 -3.15486751e-02 -1.40887988e+00 1.93602109e+00
-4.68912393e-01 4.75234896e-01 7.46973872e-01 -1.19357300e+00
6.35229588e-01 2.19633684e-01 3.72678995e-01 -3.89001667e-01
-5.91296293e-02 2.68646270e-01 -4.54881281e-01 -6.46788001e-01
3.29064101e-01 -1.99232921e-01 4.99336988e-01 1.13635063e-02
7.31147081e-02 -1.09494492e-01 1.12497225e-01 6.86711967e-02
1.12436914e+00 2.93181330e-01 -1.20340243e-01 -5.33590198e-01
6.81658208e-01 -4.95483637e-01 7.40788698e-01 7.30745435e-01
-1.53549254e-01 1.01282454e+00 4.56897289e-01 -5.23804665e-01
-1.12955999e+00 -1.04287314e+00 -5.20194247e-02 8.08277428e-01
2.10438043e-01 -1.21015012e-01 -1.03963602e+00 -4.52526480e-01
-4.75661568e-02 5.10340571e-01 -6.38973296e-01 2.07802150e-02
-7.66958356e-01 -7.88471282e-01 2.94674307e-01 4.65414822e-01
6.33384407e-01 -6.67980015e-01 -3.24022204e-01 3.28701466e-01
-2.52320558e-01 -1.05681503e+00 -8.81612599e-01 1.68070912e-01
-1.13922215e+00 -9.48614419e-01 -9.26440835e-01 -5.99490643e-01
7.84520924e-01 5.10218203e-01 9.10767615e-01 8.38098451e-02
-1.39244556e-01 5.78763664e-01 -1.80076644e-01 2.81859905e-01
-1.91889077e-01 -3.23526651e-01 -3.89752090e-02 4.52122420e-01
-1.40263394e-01 -7.42671907e-01 -8.87444317e-01 1.52330697e-01
-1.31055093e+00 -5.23929596e-02 3.13403636e-01 1.16934991e+00
6.91049457e-01 1.07091025e-01 1.23596840e-01 -8.25391829e-01
6.27845109e-01 -9.70223472e-02 -7.45567918e-01 9.53495950e-02
-3.40759039e-01 2.74671286e-01 5.37852943e-01 -6.63514972e-01
-1.19634795e+00 1.60341993e-01 -1.49159893e-01 -7.76954591e-01
-1.05998047e-01 1.60262540e-01 -1.36589989e-01 -3.24131906e-01
4.59736407e-01 1.98299155e-01 1.40375540e-01 -7.57365048e-01
3.77843082e-01 1.12025179e-01 6.46691203e-01 -6.85786843e-01
9.62165594e-01 9.35694456e-01 -1.32930383e-01 -9.21520948e-01
-5.94397128e-01 -3.30565393e-01 -6.87050104e-01 -1.48282543e-01
9.93322492e-01 -1.01283443e+00 -4.96984035e-01 8.58630419e-01
-1.20748329e+00 -5.20922005e-01 -2.94977099e-01 4.53077644e-01
-6.88331366e-01 7.51536608e-01 -1.06486940e+00 -7.64327586e-01
-2.27609783e-01 -1.33791912e+00 1.20201421e+00 1.53352283e-02
2.59505570e-01 -1.13839471e+00 5.36838770e-02 9.69891623e-02
5.15228927e-01 3.22313428e-01 5.26319206e-01 1.28156722e-01
-7.24464834e-01 -3.42334174e-02 -2.13726491e-01 9.01313007e-01
1.22968853e-01 -2.58041415e-02 -9.52056110e-01 -4.54597563e-01
4.29348528e-01 -1.08327083e-02 1.42171454e+00 9.27159071e-01
1.35485291e+00 -2.27244362e-01 -3.61534171e-02 1.01715493e+00
1.49378300e+00 -1.69100627e-01 9.35818911e-01 3.75189424e-01
8.67890060e-01 5.37041128e-01 3.08744878e-01 4.27316010e-01
2.89827120e-02 6.54954910e-01 4.25873727e-01 -1.75598666e-01
-7.11448910e-03 1.07807644e-01 3.99455726e-01 5.78417599e-01
-5.69912851e-01 -8.44061002e-02 -4.57818836e-01 5.18369794e-01
-1.95366681e+00 -1.07919872e+00 -1.26388088e-01 2.27809620e+00
9.44845319e-01 -4.29170169e-02 -2.71775901e-01 6.60818769e-03
6.64980292e-01 4.29917902e-01 -3.68311793e-01 1.77915487e-02
-2.31505945e-01 3.24811548e-01 6.77040040e-01 7.92298377e-01
-1.38602686e+00 8.28864396e-01 6.32310820e+00 1.06959450e+00
-1.00176454e+00 1.60431921e-01 6.76726222e-01 -8.72666463e-02
-4.48933899e-01 -1.21059075e-01 -4.48130667e-01 3.40021670e-01
5.88236690e-01 3.04351538e-01 7.05217540e-01 4.63694096e-01
7.02289343e-01 -1.09580763e-01 -8.00813258e-01 1.08392358e+00
-1.09219961e-01 -1.36908042e+00 -9.04493257e-02 -8.42597112e-02
7.92741656e-01 -2.73841977e-01 3.09691634e-02 -1.17520750e-01
4.25558388e-02 -8.87024999e-01 7.59581864e-01 8.83184731e-01
5.06737590e-01 -5.95727384e-01 5.62510848e-01 1.02244638e-01
-9.69607353e-01 1.36010975e-01 -3.86599183e-01 2.24482454e-02
4.03516024e-01 1.08644021e+00 1.51555747e-01 3.93978417e-01
9.22897816e-01 1.08952940e+00 -3.34446371e-01 1.00937521e+00
-2.28268281e-01 7.11483479e-01 -2.82823265e-01 6.89363241e-01
2.07957253e-01 -8.45033169e-01 7.19631493e-01 1.16963112e+00
4.72647458e-01 2.56500572e-01 5.22166453e-02 7.27142692e-01
4.00097445e-02 -3.42069864e-01 -4.09943432e-01 1.72052428e-01
-7.36507550e-02 1.26203716e+00 -5.71372151e-01 -3.27299833e-01
-4.79556829e-01 1.38044226e+00 9.53680426e-02 9.65549111e-01
-7.17641950e-01 -1.35992497e-01 9.94656742e-01 3.07184815e-01
6.63283408e-01 -6.05940104e-01 -3.05449516e-01 -1.51392853e+00
2.03796536e-01 -8.69457901e-01 6.90878704e-02 -5.92477024e-01
-1.46814573e+00 4.00787741e-01 -1.90183371e-01 -1.05947638e+00
2.06403673e-01 -5.23184717e-01 -7.10815251e-01 8.23781610e-01
-1.60600770e+00 -9.44741368e-01 -3.40363562e-01 7.20141053e-01
5.49861848e-01 3.07004452e-01 4.11533177e-01 5.15065134e-01
-5.05086064e-01 1.59210935e-01 5.29238224e-01 -2.46007107e-02
9.96834636e-01 -1.07364726e+00 4.60566252e-01 1.19124198e+00
-1.68866068e-01 7.11632013e-01 9.50969040e-01 -4.88750964e-01
-1.40102780e+00 -9.01915014e-01 1.68059573e-01 -1.20153472e-01
6.19189501e-01 -2.55357683e-01 -1.37144649e+00 6.35335743e-01
3.66058946e-01 4.27478403e-01 1.76924482e-01 -3.07852596e-01
-2.99744129e-01 -3.52525890e-01 -1.13654816e+00 5.38068056e-01
9.44071352e-01 -3.31562847e-01 -2.09934399e-01 1.03769593e-01
4.27066684e-01 -4.78459299e-01 -6.64062023e-01 3.97881985e-01
4.47870284e-01 -1.13164473e+00 1.28460932e+00 -3.06284487e-01
3.09012204e-01 -4.98382568e-01 -1.42492145e-01 -1.33360589e+00
-3.97570759e-01 -7.91680157e-01 -1.14138909e-01 1.12440825e+00
-3.58810052e-02 -4.67067927e-01 6.32932365e-01 6.56727076e-01
-1.98301926e-01 -4.84946609e-01 -9.57807600e-01 -5.38516521e-01
-1.42045155e-01 -3.68217796e-01 -1.54525071e-01 8.50300312e-01
-7.07730830e-01 -2.57585943e-01 -7.97260642e-01 3.82517815e-01
1.18702626e+00 -2.33618349e-01 6.83869064e-01 -9.47244525e-01
-3.64729673e-01 -1.14696011e-01 -1.94649294e-01 -1.31901371e+00
9.42948759e-02 -2.55669028e-01 2.41904870e-01 -1.31953681e+00
9.18424726e-02 -9.88382176e-02 -1.87067926e-01 2.60991395e-01
-4.81554806e-01 3.78140539e-01 1.04189999e-01 1.69533134e-01
-3.89342159e-01 7.75285423e-01 1.48351479e+00 -1.07349649e-01
-2.29198456e-01 4.21660068e-03 -3.74249190e-01 8.49110603e-01
4.45600957e-01 -3.60412925e-01 -2.31518254e-01 -7.89869547e-01
-1.05780981e-01 -4.22919467e-02 7.16505289e-01 -8.71992350e-01
7.76539668e-02 -2.20563784e-01 4.53901559e-01 -3.18411052e-01
3.24707627e-01 -8.54735076e-01 1.60880119e-01 1.93829447e-01
-2.35274762e-01 -2.70468622e-01 2.09293276e-01 9.07158315e-01
-3.78350019e-01 -1.42878264e-01 1.16771924e+00 -9.77052227e-02
-5.64015210e-01 3.62372667e-01 -5.08818865e-01 -7.29117095e-02
7.86480248e-01 -1.75311580e-01 -2.92670839e-02 -4.71571088e-01
-8.16842318e-01 5.49187399e-02 6.52513921e-01 8.23803246e-02
7.02043414e-01 -1.24548590e+00 -6.05000079e-01 3.63599330e-01
-3.81842315e-01 -2.15673391e-02 5.41334987e-01 1.03551829e+00
-7.96224296e-01 -2.48477921e-01 -4.60752249e-02 -5.80399156e-01
-1.12638688e+00 4.00985926e-01 4.57928091e-01 -2.26256847e-01
-8.51856589e-01 7.27708519e-01 2.12311506e-01 -1.91337287e-01
2.30289206e-01 -4.88594979e-01 1.15471266e-01 -1.17410578e-01
6.22377396e-01 4.80612546e-01 -6.09697811e-02 -3.98034811e-01
-9.55560505e-02 7.95183778e-01 5.18198647e-02 -1.04151517e-01
1.63593233e+00 -3.96965146e-01 -2.67529219e-01 1.51559383e-01
1.12585032e+00 1.54888421e-01 -2.02919626e+00 -1.31857365e-01
-2.07873747e-01 -7.46492803e-01 2.94667751e-01 -2.16672584e-01
-1.41666090e+00 8.58177006e-01 5.94243705e-01 1.32254720e-01
1.43107164e+00 -5.24887204e-01 9.35540617e-01 4.48736660e-02
1.44304931e-01 -1.03600323e+00 1.08017981e-01 4.31471765e-01
6.98711276e-01 -1.21329272e+00 1.39031962e-01 -5.47167122e-01
-4.28537488e-01 1.36718357e+00 2.25703716e-01 -5.10874867e-01
5.89177132e-01 3.87665540e-01 2.05918238e-01 1.16470680e-01
-4.15128887e-01 -1.98912472e-02 2.94833034e-01 5.90295255e-01
4.26596344e-01 -3.32433462e-01 -3.99856776e-01 2.93142736e-01
6.63791955e-01 7.57726803e-02 4.43115324e-01 7.34730005e-01
-4.26817000e-01 -1.23298550e+00 -6.81748867e-01 1.77963063e-01
-5.15129209e-01 -1.78739205e-01 3.34505677e-01 4.69019741e-01
1.10530043e-02 6.24763310e-01 -1.09313376e-01 4.58418056e-02
4.23722833e-01 -1.54203892e-01 6.32874310e-01 -2.21112326e-01
-4.65495646e-01 6.53377712e-01 -2.68203527e-01 -8.19412053e-01
-8.22508931e-01 -6.89310670e-01 -9.02863562e-01 -2.62776941e-01
-1.87206432e-01 -1.60113737e-01 3.32131028e-01 7.70982862e-01
2.96213925e-01 5.36268234e-01 4.01250392e-01 -1.52148509e+00
-5.90459287e-01 -8.29021096e-01 -8.32971454e-01 6.75709724e-01
6.39846802e-01 -5.84995627e-01 -6.52933419e-01 5.02560973e-01] | [11.473234176635742, -2.231491804122925] |
d116d8f1-58a2-4dca-803e-d1e4674da97c | automatic-grammatical-error-correction-for | null | null | https://aclanthology.org/P19-1609 | https://aclanthology.org/P19-1609.pdf | Automatic Grammatical Error Correction for Sequence-to-sequence Text Generation: An Empirical Study | Sequence-to-sequence (seq2seq) models have achieved tremendous success in text generation tasks. However, there is no guarantee that they can always generate sentences without grammatical errors. In this paper, we present a preliminary empirical study on whether and how much automatic grammatical error correction can help improve seq2seq text generation. We conduct experiments across various seq2seq text generation tasks including machine translation, formality style transfer, sentence compression and simplification. Experiments show the state-of-the-art grammatical error correction system can improve the grammaticality of generated text and can bring task-oriented improvements in the tasks where target sentences are in a formal style. | ['Furu Wei', 'Tao Ge', 'Ming Zhou', 'Xingxing Zhang'] | 2019-07-01 | null | null | null | acl-2019-7 | ['formality-style-transfer', 'sentence-compression'] | ['natural-language-processing', 'natural-language-processing'] | [ 7.06516743e-01 6.09223843e-01 1.96233034e-01 -6.47700310e-01
-1.04049933e+00 -4.83903706e-01 5.24081767e-01 1.08474284e-01
-2.49391466e-01 1.52047932e+00 6.00589991e-01 -5.69233775e-01
3.88158619e-01 -8.64300370e-01 -8.84948730e-01 4.72453516e-03
4.05078590e-01 7.57036030e-01 -2.45532319e-01 -8.78850758e-01
6.12038195e-01 -1.53177932e-01 -1.17642915e+00 7.13693440e-01
1.52610528e+00 1.11336887e-01 4.11501676e-01 1.20323968e+00
-4.53767359e-01 7.13581324e-01 -1.22621500e+00 -7.11662531e-01
-2.53265146e-02 -1.00018573e+00 -1.08190346e+00 -5.28666079e-01
6.80331588e-01 -1.50613636e-01 2.18103975e-02 9.89579618e-01
8.70288253e-01 5.22779673e-03 6.16359234e-01 -8.35363448e-01
-9.20573473e-01 1.19522023e+00 8.08729529e-02 2.83942640e-01
6.53888583e-01 2.44383037e-01 9.24881339e-01 -6.68030739e-01
1.00140262e+00 1.61395490e+00 6.36002779e-01 1.21711504e+00
-1.19260430e+00 -4.86603647e-01 -1.51365221e-01 -3.80487174e-01
-8.72724593e-01 -5.27990222e-01 1.78677782e-01 -1.47789356e-03
1.61795366e+00 4.55561221e-01 2.98656881e-01 1.30138958e+00
7.63353169e-01 7.47340322e-01 7.86861479e-01 -6.82770789e-01
-1.52541652e-01 -9.10934061e-02 -1.82316869e-01 4.57904577e-01
2.79232532e-01 8.33384171e-02 -6.18255258e-01 1.72153622e-01
3.15150261e-01 -8.70929122e-01 -1.05391316e-01 8.05223644e-01
-1.29263699e+00 9.71440852e-01 5.12802936e-02 3.42021912e-01
-3.34619880e-02 4.26751465e-01 7.95009911e-01 4.88028318e-01
7.11338460e-01 1.17930448e+00 -7.21162498e-01 -6.52439177e-01
-8.55428100e-01 7.58276284e-01 8.56064856e-01 1.44628763e+00
2.62765616e-01 5.27154803e-01 -8.50009263e-01 8.35017920e-01
-2.38110125e-01 7.89490283e-01 8.07631910e-01 -6.96366787e-01
1.07926106e+00 1.32974893e-01 -1.39434785e-01 -5.36452889e-01
-1.56569377e-01 -1.18693933e-01 -9.05887127e-01 -3.25670570e-01
1.24276362e-01 -7.56850481e-01 -7.36091018e-01 1.82017791e+00
-1.87275395e-01 -5.83720803e-01 3.07385474e-01 3.18737864e-01
8.43819439e-01 9.20267403e-01 2.00940713e-01 -1.83290407e-01
9.84744668e-01 -8.58309209e-01 -9.25851345e-01 -3.71465534e-01
1.32382286e+00 -1.10884106e+00 1.21469462e+00 -1.83110312e-02
-1.49773216e+00 -7.03057051e-01 -6.02627635e-01 -2.84333676e-01
-2.40131602e-01 -2.09465791e-02 5.07442355e-01 7.43329346e-01
-1.19362247e+00 1.00651729e+00 -3.37107033e-01 -3.73279244e-01
2.71071523e-01 1.51478544e-01 -2.29937315e-01 6.62374943e-02
-1.49985456e+00 1.09218132e+00 6.26346827e-01 -1.75731793e-01
-4.17582631e-01 -9.14524615e-01 -1.04117751e+00 -1.28258646e-01
-2.44299576e-01 -1.23466015e+00 1.67906117e+00 -9.26076114e-01
-1.46233654e+00 6.06919825e-01 -4.77486730e-01 -6.37087643e-01
4.85661238e-01 -2.76274115e-01 -2.81628221e-01 -4.30878222e-01
2.63349891e-01 1.27490973e+00 5.21904111e-01 -6.13178670e-01
-7.93284833e-01 -1.54582681e-02 -2.50588387e-01 4.45927203e-01
5.22717275e-02 2.57286370e-01 4.12416726e-01 -1.08500969e+00
-6.77524209e-01 -8.37898195e-01 -2.74838060e-01 -7.49993742e-01
-7.68696904e-01 -6.35127246e-01 1.91743612e-01 -8.63762975e-01
1.31406033e+00 -1.48100245e+00 2.30932906e-01 -4.80784446e-01
-4.38979596e-01 5.31452239e-01 -5.36770344e-01 7.26139069e-01
1.94595754e-02 7.05323100e-01 -3.30621570e-01 -4.22138125e-01
-2.20289584e-02 3.49003226e-02 -5.53525150e-01 -5.26616216e-01
6.21175468e-01 1.41031933e+00 -1.21426189e+00 -4.72844869e-01
-1.01894081e-01 1.33895427e-01 -8.06523621e-01 2.36373171e-01
-6.20882094e-01 3.91178250e-01 -1.98972940e-01 8.66309330e-02
3.85359049e-01 3.75837535e-01 -9.09055993e-02 3.88627648e-01
-1.14111088e-01 1.14310896e+00 -4.00075287e-01 1.83305395e+00
-6.82717681e-01 8.59990656e-01 -5.96218944e-01 -4.38001215e-01
1.02677202e+00 1.74724296e-01 -4.28002626e-01 -8.53325129e-01
-5.96963130e-02 3.73359978e-01 3.52694124e-01 -3.92675221e-01
1.16545546e+00 -4.29321170e-01 -2.58807003e-01 5.13867259e-01
1.11040086e-01 -8.76975775e-01 9.08445418e-01 2.69825339e-01
9.58853483e-01 1.98039994e-01 9.64693427e-02 -4.72698331e-01
3.34914982e-01 1.79337546e-01 2.42772251e-01 1.04660952e+00
3.74926656e-01 7.42414236e-01 4.45498347e-01 -1.91732496e-01
-1.60952818e+00 -6.66352272e-01 1.24047861e-01 9.88199174e-01
-5.99766791e-01 -6.95998192e-01 -1.23714840e+00 -8.71851027e-01
-1.70490965e-01 1.56001472e+00 -5.12385845e-01 -4.00095880e-01
-1.03002226e+00 -7.51930356e-01 1.13029075e+00 5.50399840e-01
2.09188715e-01 -1.67193389e+00 -5.84776364e-02 5.33025563e-01
-6.59302056e-01 -8.26578617e-01 -9.42052066e-01 -1.51639447e-01
-1.20443702e+00 -5.21870553e-01 -5.85283101e-01 -8.88167441e-01
7.10562527e-01 -1.20664455e-01 1.57623267e+00 1.70977935e-01
-1.64864987e-01 -3.60776395e-01 -5.61388850e-01 -9.28014219e-01
-1.29575348e+00 6.51413202e-01 -1.15820177e-01 -8.89464080e-01
1.86869964e-01 -1.88733220e-01 -1.01687908e-01 -2.98097670e-01
-8.71882141e-01 3.50541562e-01 5.60423970e-01 9.23011601e-01
1.90212592e-01 -3.28108162e-01 9.42078590e-01 -1.28507721e+00
1.26551175e+00 4.89451960e-02 -9.79457200e-02 2.39962041e-01
-5.27788579e-01 4.42848682e-01 1.12583578e+00 6.55115023e-03
-1.24495482e+00 -4.19223845e-01 -6.59661055e-01 5.27167737e-01
-2.50182331e-01 5.24692416e-01 8.48118141e-02 4.57537115e-01
8.69420230e-01 3.86996984e-01 3.50610204e-02 -2.01524794e-01
3.89127403e-01 6.41944349e-01 2.69940615e-01 -5.90774655e-01
6.44227564e-01 -3.75757098e-01 3.91189754e-02 -7.35246360e-01
-1.02532995e+00 2.90927529e-01 -5.52537858e-01 2.08053559e-01
7.12250233e-01 -7.30695426e-01 -1.99703932e-01 3.42903465e-01
-1.71901977e+00 -6.76593781e-01 -5.09680092e-01 -2.89029889e-02
-6.99805677e-01 3.07146400e-01 -6.64698958e-01 -6.00924313e-01
-1.09766614e+00 -7.22413063e-01 1.29057002e+00 1.43654048e-01
-8.86987031e-01 -1.05855179e+00 1.82160318e-01 1.71926618e-01
5.57532907e-01 -1.14302330e-01 1.10194027e+00 -4.82261866e-01
-2.26082399e-01 5.64967953e-02 5.94826117e-02 5.23881853e-01
1.05029643e-01 2.50184350e-02 -3.68753195e-01 -1.02984056e-01
-5.38409710e-01 -3.63087565e-01 8.02374780e-01 3.32951516e-01
1.09357083e+00 -6.53242052e-01 8.92908126e-03 4.83443707e-01
9.63376105e-01 1.19773693e-01 1.07731688e+00 -5.47418594e-02
6.83995008e-01 6.85940981e-01 8.14415693e-01 2.16278687e-01
3.81563425e-01 4.80455875e-01 -1.68775305e-01 6.42294288e-02
-5.54498851e-01 -8.04271340e-01 5.77121615e-01 9.83814240e-01
2.47915789e-01 -8.62311780e-01 -5.78882039e-01 6.24890864e-01
-1.51867867e+00 -1.08260763e+00 -6.99546933e-01 1.90620506e+00
1.43952990e+00 1.43100336e-01 -1.39689758e-01 -6.05637468e-02
7.12429166e-01 -1.63395256e-01 1.11797322e-02 -1.31376851e+00
-3.42578977e-01 5.56899488e-01 3.52777719e-01 8.04919958e-01
-7.35956967e-01 1.47587585e+00 6.99272108e+00 9.16583896e-01
-8.50697637e-01 -1.39283150e-01 7.93170691e-01 -5.74600510e-02
-7.23596573e-01 -1.69225454e-01 -1.32000923e+00 6.70799673e-01
1.20918989e+00 -5.38111687e-01 4.01649296e-01 5.08789301e-01
5.21482170e-01 1.41521215e-01 -1.25545263e+00 5.01682162e-01
1.93147510e-01 -1.31055057e+00 7.12800801e-01 -2.71545500e-01
1.07335949e+00 -3.00129801e-01 -1.82915702e-01 6.17034554e-01
5.84518552e-01 -1.42781460e+00 7.26729512e-01 5.59228718e-01
1.08058178e+00 -8.92557561e-01 9.57982063e-01 4.18511271e-01
-4.64211822e-01 2.58354098e-01 -6.83236420e-01 -2.76696742e-01
6.71432137e-01 7.28652537e-01 -1.13208961e+00 4.92455870e-01
2.68149853e-01 5.28233767e-01 -6.29940033e-01 5.49676955e-01
-5.94900131e-01 7.12529182e-01 7.40998164e-02 -6.34639382e-01
1.04975328e-01 5.31154610e-02 6.71880364e-01 1.68167114e+00
7.00798392e-01 1.78771600e-01 -2.68051147e-01 9.03777242e-01
-3.38394165e-01 3.67347836e-01 -7.74992883e-01 -3.25913399e-01
3.03984106e-01 7.79340208e-01 -1.84078366e-01 -5.15627444e-01
2.05191061e-01 1.20336044e+00 4.29465503e-01 -1.08758956e-01
-5.40850580e-01 -9.54069078e-01 7.29856789e-01 -4.16173553e-03
1.96693674e-01 -1.34760946e-01 -8.58038008e-01 -1.04953992e+00
-4.13221605e-02 -1.19372070e+00 -1.86548494e-02 -9.83963728e-01
-1.20495892e+00 6.94278061e-01 -2.45352954e-01 -7.29893267e-01
-7.22894549e-01 -3.93015146e-01 -8.96876276e-01 1.25917125e+00
-1.19416296e+00 -9.36361730e-01 1.62067100e-01 -9.14402381e-02
1.07392192e+00 -2.75621772e-01 1.02710092e+00 -2.24081520e-02
-3.37027460e-01 1.00657630e+00 5.47430180e-02 5.64474203e-02
8.33033502e-01 -1.48530233e+00 1.37684810e+00 7.89257944e-01
-1.87972590e-01 6.33286059e-01 9.39493597e-01 -1.26682699e+00
-1.08451772e+00 -1.56185496e+00 2.03057170e+00 -6.25078619e-01
2.54378796e-01 -4.53289032e-01 -5.85458219e-01 6.22919023e-01
4.89456743e-01 -9.00002003e-01 3.34140360e-01 7.01891854e-02
1.68479085e-01 3.09667498e-01 -1.06956160e+00 9.08976912e-01
1.39207292e+00 -1.16047345e-01 -6.98906124e-01 6.12725914e-01
1.18949687e+00 -6.20601654e-01 -6.18299007e-01 4.40536737e-01
1.51861101e-01 -4.36323315e-01 4.52779561e-01 -1.08802068e+00
1.33182693e+00 1.06367804e-01 2.30283126e-01 -2.13820267e+00
-2.65214235e-01 -9.81151938e-01 3.44715863e-01 1.55544245e+00
9.74418640e-01 -4.02435005e-01 5.40371537e-01 2.17392802e-01
-6.63879275e-01 -4.26107049e-01 -6.79955482e-01 -9.49891269e-01
8.02469790e-01 -2.05662966e-01 7.99290001e-01 5.13495803e-01
1.94627270e-01 8.99606109e-01 -3.44164163e-01 -7.23350406e-01
2.52510458e-01 -2.84707010e-01 7.39586532e-01 -7.76705265e-01
-1.45519599e-01 -5.00589669e-01 -1.59062799e-02 -1.02347231e+00
4.45157439e-01 -1.22511601e+00 5.14103293e-01 -1.72610998e+00
1.20468035e-01 -3.14623922e-01 6.19418740e-01 2.19059542e-01
-8.78476858e-01 5.98293617e-02 3.92710567e-01 -3.50714654e-01
-3.09555799e-01 9.33139205e-01 1.56690180e+00 -8.97039771e-02
-8.29119161e-02 -1.19391024e-01 -9.60648417e-01 1.07233174e-01
1.13627434e+00 -5.89157760e-01 -1.78571418e-01 -9.40677524e-01
5.50438523e-01 8.11576545e-02 -2.28960454e-01 -6.39788568e-01
-3.51029664e-01 -1.51472673e-01 1.80386648e-01 -4.80958849e-01
-3.02257329e-01 1.84245184e-01 -1.77180544e-01 4.72262442e-01
-9.06263769e-01 4.38004762e-01 4.92707461e-01 8.77783969e-02
-7.83713832e-02 -7.08543360e-01 6.00187421e-01 -3.92280579e-01
-3.12221814e-02 -5.18199131e-02 -7.42899120e-01 6.41047597e-01
4.73890275e-01 1.31171554e-01 -5.10588348e-01 -5.47158062e-01
-1.67884320e-01 1.47079632e-01 2.89439172e-01 6.44502938e-01
5.00439286e-01 -1.26875484e+00 -1.51767981e+00 -8.27915408e-03
-8.31943303e-02 -5.53343184e-02 4.01185565e-02 2.53904700e-01
-6.90262258e-01 1.01967061e+00 -9.26390439e-02 -1.69714093e-01
-1.40547907e+00 2.30810285e-01 2.71501720e-01 -5.06613433e-01
-1.79325372e-01 1.12095058e+00 -6.74438924e-02 -9.99770880e-01
-2.40472808e-01 -3.71021688e-01 1.07452385e-01 -3.89625788e-01
6.52534187e-01 4.08903539e-01 3.36478263e-01 -3.58584434e-01
1.95706189e-01 2.85470784e-02 -2.81482667e-01 -2.33605787e-01
1.01603699e+00 7.36312866e-02 -3.46350998e-01 1.90813467e-01
9.08667564e-01 -1.63519502e-01 -5.83367407e-01 4.85098302e-01
-1.13043658e-01 -3.15931439e-01 -3.80444318e-01 -1.21137905e+00
-4.04985964e-01 1.04459083e+00 -8.33091736e-02 1.12308502e-01
7.13742018e-01 -3.03257495e-01 1.42426288e+00 5.21876276e-01
2.49517679e-01 -1.24942219e+00 -1.41631767e-01 1.46339881e+00
1.22690034e+00 -1.02146077e+00 -4.48817939e-01 -5.08590996e-01
-7.21099496e-01 1.09203601e+00 8.32492590e-01 -3.29142250e-02
-4.09719534e-03 1.52805746e-01 -1.85387179e-01 3.07164282e-01
-1.18500161e+00 -2.82953437e-02 1.55558974e-01 8.31076741e-01
1.14167929e+00 2.36531198e-01 -8.18941474e-01 3.37783992e-01
-1.17816138e+00 -6.26303479e-02 8.64044189e-01 6.61712170e-01
-4.63229984e-01 -1.57611847e+00 -1.79697961e-01 7.20573783e-01
-6.84378803e-01 -8.89758229e-01 -8.03140819e-01 3.76911581e-01
-9.45493728e-02 1.14940917e+00 2.08464965e-01 -1.75149903e-01
5.15512109e-01 3.33712190e-01 8.61226201e-01 -1.15202463e+00
-1.01106036e+00 -4.25388038e-01 7.99068689e-01 -1.57568067e-01
4.21489149e-01 -8.83501470e-01 -1.35805893e+00 -6.79592371e-01
-2.68555313e-01 2.17980295e-01 7.16704667e-01 8.77956271e-01
6.22065902e-01 7.99215019e-01 4.73307759e-01 -5.56583464e-01
-7.25237310e-01 -1.60207689e+00 -1.43191621e-01 4.77131993e-01
3.66137549e-02 3.36519122e-01 -1.50236994e-01 2.89475769e-01] | [11.756550788879395, 9.265534400939941] |
ee4c7e56-8260-4dbd-8195-721f56e0b222 | radiology-text-analysis-system-radtext | 2204.09599 | null | https://arxiv.org/abs/2204.09599v1 | https://arxiv.org/pdf/2204.09599v1.pdf | Radiology Text Analysis System (RadText): Architecture and Evaluation | Analyzing radiology reports is a time-consuming and error-prone task, which raises the need for an efficient automated radiology report analysis system to alleviate the workloads of radiologists and encourage precise diagnosis. In this work, we present RadText, an open-source radiology text analysis system developed by Python. RadText offers an easy-to-use text analysis pipeline, including de-identification, section segmentation, sentence split and word tokenization, named entity recognition, parsing, and negation detection. RadText features a flexible modular design, provides a hybrid text processing schema, and supports raw text processing and local processing, which enables better usability and improved data privacy. RadText adopts BioC as the unified interface, and also standardizes the input / output into a structured representation compatible with Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM). This allows for a more systematic approach to observational research across multiple, disparate data sources. We evaluated RadText on the MIMIC-CXR dataset, with five new disease labels we annotated for this work. RadText demonstrates highly accurate classification performances, with an average precision of, a recall of 0.94, and an F-1 score of 0.92. We have made our code, documentation, examples, and the test set available at https://github.com/bionlplab/radtext . | ['Yifan Peng', 'Zhiyong Lu', 'George Shih', 'Ying Ding', 'Mingquan Lin', 'Song Wang'] | 2022-03-19 | null | null | null | null | ['negation-detection'] | ['natural-language-processing'] | [ 1.00133084e-01 1.45527527e-01 -4.41931993e-01 -5.04147649e-01
-1.39962530e+00 -5.95336854e-01 4.08122353e-02 1.21520174e+00
-6.77428544e-01 4.81207639e-01 7.31468678e-01 -8.87442112e-01
-3.63551974e-01 -5.04381359e-01 -2.15367779e-01 -4.97874826e-01
1.84756026e-01 4.84464347e-01 -2.28931289e-02 3.94698858e-01
7.27587044e-02 4.38008696e-01 -8.65921021e-01 7.47887015e-01
7.72593915e-01 5.84965765e-01 2.15988249e-01 8.88308346e-01
-1.56691179e-01 1.09656465e+00 -3.02429855e-01 -4.59571004e-01
-9.16286930e-02 -9.18685496e-02 -1.16874719e+00 -3.79308224e-01
8.78012925e-02 -3.01033854e-01 -3.16602796e-01 5.91840923e-01
8.11376095e-01 -3.08646590e-01 4.44219172e-01 -3.48906279e-01
-4.32399064e-01 8.34293425e-01 -3.22191805e-01 3.19797546e-01
4.71805364e-01 2.08829880e-01 7.64140368e-01 -4.86183375e-01
1.01186860e+00 5.70202172e-01 8.36481154e-01 3.95896971e-01
-1.19671261e+00 -6.27342045e-01 -4.57684249e-01 -3.08512986e-01
-1.35817230e+00 -2.41845414e-01 -1.89575657e-01 -6.01970375e-01
9.74946082e-01 7.15427995e-01 6.02985978e-01 8.91822398e-01
7.56031811e-01 3.84211451e-01 9.63737726e-01 -3.40334028e-01
1.39214203e-01 -9.21369810e-03 4.63895708e-01 6.81119084e-01
3.59531760e-01 -5.20856440e-01 -1.80845782e-01 -7.81542897e-01
2.78620452e-01 2.78605640e-01 -1.77406475e-01 1.54710189e-01
-1.31533110e+00 6.24988437e-01 9.88928080e-02 1.85457915e-01
-4.53528225e-01 -2.29065821e-01 9.40330863e-01 -1.52332317e-02
2.30803505e-01 3.04731995e-01 -3.46071273e-01 -2.13336498e-01
-6.91136062e-01 -2.56940983e-02 8.83831084e-01 9.74641681e-01
-2.43867293e-01 -7.41999209e-01 -4.43037003e-01 9.86431301e-01
1.95335418e-01 4.34468091e-01 7.84004688e-01 -7.95958936e-01
2.67959684e-01 7.29678631e-01 -1.19627371e-01 -5.72414875e-01
-1.09322298e+00 -3.55548292e-01 -8.97650719e-01 -4.56865668e-01
1.91370040e-01 -1.24741413e-01 -9.15336251e-01 1.33684766e+00
3.15542072e-01 -7.46794879e-01 2.13089541e-01 5.78311980e-01
1.14461017e+00 5.33012077e-02 6.96991980e-01 -1.40357912e-01
2.11867666e+00 -3.74979109e-01 -9.19260681e-01 1.92417860e-01
1.28634882e+00 -1.06881177e+00 9.74089026e-01 3.37229073e-01
-1.09180224e+00 2.66797930e-01 -6.27689123e-01 -4.42805290e-01
-3.06645274e-01 3.11767638e-01 5.12897015e-01 7.44681954e-01
-8.89374554e-01 3.18298340e-02 -1.35989296e+00 -8.03844571e-01
7.03360319e-01 4.21512276e-01 -6.31777525e-01 -1.14459470e-01
-7.56443679e-01 8.58780444e-01 5.17245173e-01 -2.95653343e-01
-2.49943331e-01 -8.81741464e-01 -7.42703080e-01 -1.44009739e-01
3.12071264e-01 -1.17936003e+00 1.52139628e+00 -1.04866236e-01
-9.99730229e-01 1.18099630e+00 -2.25114495e-01 -3.41226459e-01
3.97368997e-01 5.10092117e-02 -5.49023807e-01 3.57760042e-01
4.07716930e-01 1.87743336e-01 -5.63871004e-02 -4.23706055e-01
-6.04162037e-01 -4.31941658e-01 -6.66403115e-01 4.14209627e-02
-9.63522047e-02 4.97974843e-01 -3.12814087e-01 -8.35190475e-01
1.50925973e-02 -7.91442633e-01 -5.66220820e-01 -5.71373384e-03
-4.47033435e-01 -1.57055017e-02 -8.50928202e-02 -9.44752812e-01
1.63736272e+00 -2.34016824e+00 -7.28534758e-01 2.42220372e-01
7.36079097e-01 -9.09557194e-02 4.28575486e-01 5.86910069e-01
-4.84743685e-01 6.05407417e-01 -2.18273923e-01 -1.23133786e-01
-3.64188194e-01 7.46610463e-02 6.57041073e-02 5.87310433e-01
9.71155465e-02 9.36314464e-01 -7.43030667e-01 -8.63356411e-01
4.13005278e-02 6.81556389e-02 -6.65247738e-01 9.99591276e-02
2.98582435e-01 3.19459736e-01 -6.32276118e-01 6.44101679e-01
4.22924876e-01 -5.65368414e-01 6.69469535e-01 -1.03301732e-02
-5.01108348e-01 5.64121008e-01 -9.30574715e-01 1.70014381e+00
-2.35830367e-01 1.50030777e-01 1.73787206e-01 -2.54186481e-01
6.71261668e-01 4.32241350e-01 8.80208194e-01 -4.88734484e-01
3.33905220e-01 2.93331683e-01 -4.15848456e-02 -1.08522034e+00
4.94089663e-01 -1.27977952e-01 -2.43614033e-01 6.07543588e-01
-2.82207936e-01 5.42947464e-02 1.94759339e-01 5.01847863e-01
1.78955996e+00 -4.88427877e-01 9.40793455e-01 -1.90799579e-01
1.29291371e-01 4.55451548e-01 4.62743461e-01 8.66459072e-01
-3.46416719e-02 6.76525056e-01 5.15211046e-01 -1.58965975e-01
-9.08731699e-01 -9.39007759e-01 -9.14436996e-01 6.28541470e-01
-6.22036099e-01 -8.70276272e-01 -3.72264415e-01 -5.13870597e-01
-7.62547627e-02 7.63355672e-01 -6.05517387e-01 1.34739384e-01
-5.08712649e-01 -1.03228593e+00 9.05830860e-01 4.19395238e-01
-9.53433197e-03 -7.72779167e-01 -6.82674766e-01 4.42063272e-01
-5.25324225e-01 -1.04259789e+00 -5.77755511e-01 4.33190703e-01
-7.94266105e-01 -1.19368029e+00 -4.43710834e-01 -7.88181841e-01
6.73573136e-01 -2.42412403e-01 9.19263542e-01 -8.77418369e-02
-8.76050174e-01 4.79283661e-01 -3.69128466e-01 -6.00842476e-01
-5.78752041e-01 2.03006357e-01 -2.54392922e-01 -7.32311428e-01
4.05665398e-01 1.12477124e-01 -7.90127993e-01 -1.00769289e-02
-1.11356616e+00 6.34369301e-03 7.87219286e-01 8.90471756e-01
9.60530043e-01 -4.98734355e-01 3.83535475e-01 -1.23985958e+00
6.43856168e-01 -7.08469689e-01 -1.81777656e-01 2.97812581e-01
-8.81485879e-01 -1.32963270e-01 5.46180069e-01 1.80957019e-01
-9.58860636e-01 9.75250825e-02 -4.76834625e-01 3.00626606e-01
-3.72878462e-01 7.78199673e-01 4.24839884e-01 3.47009808e-01
7.94287264e-01 2.15877313e-02 2.60136604e-01 -3.80561382e-01
7.71066174e-02 1.05829215e+00 4.72382158e-01 -1.79413483e-01
6.76073804e-02 5.47493815e-01 -2.81407446e-01 -6.81586802e-01
-6.76611304e-01 -9.11224008e-01 -4.08731997e-01 1.78825960e-01
1.08749020e+00 -8.30444694e-01 -9.19457018e-01 -8.12724531e-02
-7.76679993e-01 -2.39738207e-02 -4.62606430e-01 8.55682254e-01
-1.94348112e-01 3.54770631e-01 -8.10220897e-01 -4.22220349e-01
-9.65886235e-01 -1.10910523e+00 8.03569317e-01 -7.55962953e-02
-9.61528599e-01 -6.66992426e-01 2.16354847e-01 4.02023286e-01
1.03965111e-01 3.91260386e-01 1.16553819e+00 -1.16603637e+00
-1.04864657e-01 -4.12449181e-01 -2.98169464e-01 -9.02330428e-02
1.96181461e-01 2.17045859e-01 -5.78710377e-01 -4.00553942e-02
4.56749052e-02 -1.27839461e-01 5.05301714e-01 5.52695751e-01
1.54397476e+00 -3.19626808e-01 -4.80907828e-01 6.56468511e-01
1.19406509e+00 2.41778940e-01 4.65327382e-01 5.15861392e-01
3.20406973e-01 4.04218972e-01 5.22687912e-01 6.82478011e-01
7.64506817e-01 2.51947083e-02 -9.11315531e-03 -1.51514560e-01
1.31585330e-01 8.67226794e-02 -3.05868059e-01 9.00743544e-01
2.84055740e-01 -1.63932115e-01 -1.57537878e+00 4.68367875e-01
-1.51792216e+00 -5.58204710e-01 -5.46708047e-01 1.97034526e+00
1.13289988e+00 4.76607122e-02 -7.26068541e-02 -3.14043760e-01
4.07979429e-01 -3.26822847e-01 -2.15191707e-01 -5.31274796e-01
1.64557308e-01 5.68677068e-01 9.31110084e-01 -2.21108142e-02
-9.42170322e-01 4.58739907e-01 6.64792347e+00 5.07820249e-01
-1.08851004e+00 3.14345717e-01 5.51149011e-01 -3.69142711e-01
-9.69324633e-02 -4.10689592e-01 -5.28153896e-01 3.04515272e-01
1.18182898e+00 -3.63989204e-01 -2.80847698e-01 7.40528464e-01
6.07946515e-01 -4.18634504e-01 -7.58880079e-01 8.18013370e-01
-2.06125811e-01 -1.74833286e+00 -2.07552120e-01 1.20317653e-01
7.25621954e-02 5.02380431e-01 -7.56017864e-02 6.47880808e-02
3.92952502e-01 -8.94372225e-01 4.29495037e-01 4.99998569e-01
1.25838220e+00 -3.68343979e-01 1.00654531e+00 -1.23516798e-01
-8.82847130e-01 -6.39264584e-02 2.37154146e-03 4.03644383e-01
2.06569135e-02 5.53032517e-01 -1.44691002e+00 8.67585659e-01
9.05623496e-01 5.02011895e-01 -5.97541809e-01 1.19424081e+00
1.65491790e-01 7.50301301e-01 -2.21076876e-01 -2.30049845e-02
-9.54830647e-02 2.29794592e-01 4.13245112e-01 1.60788798e+00
1.88444257e-02 6.04221404e-01 2.97190905e-01 2.26502642e-01
-1.82984114e-01 8.89371932e-01 -2.09709823e-01 -1.64870188e-01
4.23893273e-01 1.38868904e+00 -1.04754508e+00 -3.59172046e-01
-3.74782115e-01 2.62819976e-01 8.73708278e-02 -9.61782560e-02
-6.49557412e-01 -4.68762606e-01 2.95879543e-01 2.82492459e-01
-1.06707036e-01 -3.09536867e-02 -8.04535747e-01 -8.68265569e-01
1.01884138e-02 -9.75427628e-01 1.19331813e+00 -5.59237599e-01
-1.10885346e+00 5.94368875e-01 -1.81176081e-01 -1.29795039e+00
-1.36116832e-01 -4.73691404e-01 -9.88593027e-02 7.09729970e-01
-1.04029036e+00 -9.20023143e-01 -2.63675511e-01 4.32925314e-01
5.19364215e-02 2.18643129e-01 1.33880508e+00 4.09340113e-01
-8.08861375e-01 7.33774602e-01 3.00649077e-01 4.67322588e-01
1.10926831e+00 -1.17984641e+00 -1.11905925e-01 3.68634552e-01
-7.25487530e-01 1.02295220e+00 3.09073031e-01 -8.88276160e-01
-1.35200071e+00 -1.22590172e+00 8.88889611e-01 -5.56981862e-01
8.91033292e-01 -2.80856360e-02 -9.06054735e-01 7.69250095e-01
3.81733999e-02 -4.89182502e-01 1.63981259e+00 8.20548385e-02
-1.52491689e-01 1.35401264e-01 -1.28696179e+00 5.48747361e-01
6.47955537e-01 -4.27123994e-01 -6.77742898e-01 5.13340354e-01
5.56134641e-01 -6.95450068e-01 -1.67794085e+00 1.62499800e-01
6.61042154e-01 -3.01063538e-01 6.16762698e-01 -5.74622571e-01
4.01387572e-01 -6.73276931e-02 2.13078588e-01 -6.54514134e-01
-4.37047392e-01 -4.53993469e-01 5.13936698e-01 9.22086716e-01
7.50585139e-01 -8.92247856e-01 3.55408877e-01 9.31465507e-01
-4.93509442e-01 -8.15614104e-01 -8.47728848e-01 -1.25343069e-01
-1.35129482e-01 -7.80214787e-01 3.47899020e-01 1.06969047e+00
4.87093002e-01 -6.89080060e-02 4.64272439e-01 1.48490578e-01
2.60687083e-01 -4.33444269e-02 3.90161783e-01 -8.89486492e-01
5.97026162e-02 -4.11401063e-01 -1.91013172e-01 -2.32356936e-01
-4.43939865e-01 -1.41160691e+00 -2.88475603e-01 -1.93314898e+00
6.38666391e-01 -5.35805404e-01 -1.19936764e-01 9.78731036e-01
-5.74815571e-02 5.92101738e-03 -2.84980029e-01 5.10752499e-01
-5.58643758e-01 -4.12692949e-02 9.66116965e-01 8.03043693e-02
-2.38937348e-01 -1.28947541e-01 -1.06689191e+00 5.90156436e-01
9.17488217e-01 -1.10085821e+00 1.63136944e-01 -2.13770941e-01
2.58786023e-01 -8.41289293e-05 1.89493924e-01 -5.68036258e-01
3.54627907e-01 -6.44416511e-02 3.83423060e-01 -8.04559708e-01
-2.58264065e-01 -5.88967979e-01 2.76429802e-01 9.36671376e-01
-4.59550709e-01 1.70521647e-01 4.73495305e-01 3.30155522e-01
-5.73274568e-02 -2.52673596e-01 5.79329729e-01 -2.33112171e-01
-1.26909614e-01 1.56424537e-01 -9.32938159e-01 1.84247419e-01
9.49014068e-01 -8.35328996e-02 -6.09173179e-01 1.90281123e-01
-1.02609634e+00 5.40683091e-01 4.72825646e-01 2.26797059e-01
3.87194276e-01 -6.76935196e-01 -9.33179677e-01 -9.09638256e-02
5.52948236e-01 2.00881079e-01 6.77039862e-01 1.44545090e+00
-9.36360657e-01 4.27535057e-01 1.65327340e-01 -6.50346160e-01
-1.55005610e+00 4.50631857e-01 1.66372791e-01 -6.04179144e-01
-1.02774072e+00 3.39980632e-01 -2.22909283e-02 -4.63412613e-01
3.24764177e-02 -7.34548151e-01 -9.07520056e-02 1.00918315e-01
6.83293223e-01 1.92625955e-01 5.79921007e-01 -1.80502802e-01
-5.64110696e-01 1.42006837e-02 -6.20722592e-01 7.79363140e-02
1.38374102e+00 -1.67905584e-01 -4.25707012e-01 3.68589729e-01
1.00887549e+00 3.61198097e-01 4.27953005e-02 -3.60592343e-02
2.82413423e-01 2.03653611e-03 -2.22804733e-02 -1.02703202e+00
-3.90604168e-01 1.43235564e-01 5.42298079e-01 2.47358814e-01
1.10704684e+00 2.06213355e-01 5.07087231e-01 2.53916383e-01
-1.81617185e-01 -9.92933869e-01 -4.65210229e-01 5.09616375e-01
7.20220685e-01 -9.68420029e-01 3.40047032e-01 -3.86624724e-01
-7.77303755e-01 1.01248217e+00 1.67620257e-01 5.92767537e-01
6.88946187e-01 6.32782638e-01 3.26849878e-01 -5.30317843e-01
-8.84914696e-01 2.24902540e-01 -2.01512873e-02 2.21603051e-01
9.00406361e-01 2.67388344e-01 -7.43938267e-01 1.04812956e+00
-3.99640471e-01 2.57742256e-01 6.07547700e-01 1.26941562e+00
-2.34791879e-02 -1.09454346e+00 -5.53378463e-01 1.11977923e+00
-1.23615921e+00 -3.24361145e-01 -1.69263750e-01 8.45411181e-01
-2.82811582e-01 6.99734330e-01 -9.38814282e-02 5.51605485e-02
5.79434514e-01 1.43024191e-01 -6.08281530e-02 -8.28370690e-01
-1.18609810e+00 2.44677886e-01 4.63744938e-01 -4.21725065e-01
-1.59387976e-01 -9.60619509e-01 -1.76057744e+00 -1.90535024e-01
-1.39564723e-01 2.06075072e-01 8.44856739e-01 5.89955986e-01
7.54143000e-01 1.02558649e+00 2.32892796e-01 3.34941059e-01
-3.92203420e-01 -8.09789419e-01 -3.62877458e-01 1.79703802e-01
1.03970788e-01 -6.99413717e-02 5.59276082e-02 1.14706181e-01] | [8.402182579040527, 8.654760360717773] |
39d90ed2-b02f-4606-9224-3349d661e626 | the-steep-road-to-happily-ever-after-an | 1904.03366 | null | http://arxiv.org/abs/1904.03366v1 | http://arxiv.org/pdf/1904.03366v1.pdf | The Steep Road to Happily Ever After: An Analysis of Current Visual Storytelling Models | Visual storytelling is an intriguing and complex task that only recently
entered the research arena. In this work, we survey relevant work to date, and
conduct a thorough error analysis of three very recent approaches to visual
storytelling. We categorize and provide examples of common types of errors, and
identify key shortcomings in current work. Finally, we make recommendations for
addressing these limitations in the future. | ['Natalie Parde', 'Yatri Modi'] | 2019-04-06 | the-steep-road-to-happily-ever-after-an-1 | https://aclanthology.org/W19-1805 | https://aclanthology.org/W19-1805.pdf | ws-2019-6 | ['visual-storytelling'] | ['natural-language-processing'] | [ 1.22381926e-01 2.36078352e-01 -2.99349949e-02 -8.37228298e-02
-2.75893092e-01 -7.97333777e-01 6.66265965e-01 2.89859921e-01
9.01777819e-02 5.76101065e-01 7.15985835e-01 -6.75838768e-01
-1.19779864e-02 -3.34048092e-01 -5.31620741e-01 5.83915645e-03
-1.63334593e-01 -1.78804733e-02 3.85704309e-01 -2.79897511e-01
8.82807493e-01 2.70241112e-01 -1.76379097e+00 5.01045406e-01
5.88707149e-01 3.52315068e-01 1.06379718e-01 8.19616258e-01
-3.76073003e-01 1.30741131e+00 -1.13421369e+00 -3.45621318e-01
-1.90382332e-01 -6.23791814e-01 -9.26544368e-01 3.39236557e-01
4.78208512e-01 -3.79500270e-01 -3.48591238e-01 7.04231262e-01
5.13875782e-01 1.78312749e-01 3.04328978e-01 -1.59813845e+00
-7.91095197e-01 4.15221661e-01 -3.63723189e-01 5.39641798e-01
1.14832592e+00 3.56996357e-01 7.00508833e-01 -1.00497413e+00
1.12149632e+00 8.70965719e-01 8.11666012e-01 5.25965631e-01
-7.78415322e-01 -5.84463298e-01 6.28179073e-01 4.18990910e-01
-1.58607292e+00 -6.02619708e-01 8.23783517e-01 -8.10972452e-01
1.42919540e+00 3.49483252e-01 1.36539972e+00 9.34394479e-01
2.38299891e-02 7.19933987e-01 1.11650074e+00 -6.69289589e-01
2.29339555e-01 1.01396628e-02 1.09087482e-01 7.51908660e-01
4.86229032e-01 1.54017610e-02 -9.54487741e-01 -1.61283165e-01
9.97274518e-01 -5.59492052e-01 -1.78381458e-01 -7.33353615e-01
-1.21216881e+00 6.09122694e-01 7.73572624e-02 5.95720291e-01
1.01134405e-01 4.69824016e-01 4.16603893e-01 2.61175841e-01
3.82740915e-01 4.05626684e-01 3.08313757e-01 -9.71496582e-01
-8.61967325e-01 6.32701755e-01 5.97907245e-01 1.27557051e+00
2.98030436e-01 3.29173923e-01 -4.74089235e-02 4.32028323e-01
5.60592830e-01 -1.20524466e-01 -1.49232060e-01 -8.27944160e-01
3.44495505e-01 5.05933583e-01 4.88615811e-01 -9.53528881e-01
-3.08057606e-01 -3.56617160e-02 1.09723303e-02 8.68064761e-01
2.91647255e-01 -8.45421255e-02 -4.69698131e-01 9.65461433e-01
1.65169463e-01 1.64632984e-02 -3.64770710e-01 7.53950000e-01
1.51464748e+00 5.08517802e-01 1.45898417e-01 -1.48328662e-01
1.26844454e+00 -1.15020525e+00 -1.20025051e+00 -3.31192851e-01
5.82633317e-01 -1.03009391e+00 1.47630274e+00 2.79358000e-01
-1.50793338e+00 -1.00350462e-01 -1.50361872e+00 -1.80295020e-01
-3.27997893e-01 -1.13659635e-01 8.35454702e-01 8.03343415e-01
-1.15782249e+00 3.81595701e-01 -7.82510221e-01 -8.50444376e-01
3.94748956e-01 -2.43923143e-01 1.31095082e-01 1.52376771e-01
-7.24906802e-01 1.13255060e+00 1.34507269e-01 -2.39477724e-01
-6.71064675e-01 -8.18176448e-01 -8.21552217e-01 -4.04500037e-01
4.57819164e-01 -6.06748700e-01 1.95100272e+00 -5.84506929e-01
-1.40448201e+00 8.98681760e-01 -2.61425018e-01 -6.89053386e-02
6.37219250e-01 -2.09049389e-01 -5.73655307e-01 1.31185455e-02
1.10512428e-01 3.94005537e-01 1.74456239e-01 -1.56882167e+00
-6.31533682e-01 3.08471601e-02 4.12465215e-01 5.53907633e-01
-1.17599651e-01 6.38718545e-01 -4.67633575e-01 -9.98219430e-01
-2.92108387e-01 -4.12674695e-01 -2.68796414e-01 3.39095503e-01
-1.59767017e-01 -1.38893321e-01 6.67016983e-01 -4.02669370e-01
1.93324411e+00 -1.95210564e+00 -8.71443823e-02 -1.27402946e-01
6.24841034e-01 -7.20663294e-02 4.20354247e-01 1.15446317e+00
-1.09536663e-01 2.78524011e-01 -2.59648580e-02 -5.38612187e-01
6.64196238e-02 -3.10883641e-01 -1.72646374e-01 4.43954796e-01
-2.81063259e-01 1.11579370e+00 -1.02550757e+00 -6.88641191e-01
4.84787822e-01 4.92460847e-01 -6.59757201e-03 -6.33515045e-02
-1.83229238e-01 1.75732970e-01 -1.28659397e-01 9.02977824e-01
2.44042575e-01 -2.55634815e-01 1.35641828e-01 3.18438917e-01
-8.01101685e-01 5.09168386e-01 -1.23435891e+00 1.77390862e+00
-1.39228627e-01 1.34864962e+00 -2.18302950e-01 -4.19831365e-01
7.17939973e-01 5.05898774e-01 1.52367622e-01 -5.15504897e-01
4.93513905e-02 5.25353290e-02 -3.20688128e-01 -7.22051442e-01
7.32982576e-01 -3.63168657e-01 -7.32854828e-02 7.60817707e-01
-3.01838368e-01 -4.55304980e-01 2.85893112e-01 3.49343598e-01
1.04871213e+00 1.94717839e-01 1.02797246e+00 1.00463174e-01
4.94467430e-02 6.34157836e-01 -1.29915595e-01 9.85051095e-01
-5.52256405e-01 7.18397796e-01 4.27991033e-01 -7.04190969e-01
-1.07904696e+00 -9.57581878e-01 1.51199222e-01 8.73206139e-01
4.05717343e-01 -1.25084579e+00 -5.66564202e-01 -7.74953485e-01
-3.82044017e-01 8.68979871e-01 -8.16651225e-01 5.43031216e-01
-5.34759820e-01 -1.96744010e-01 4.27286416e-01 7.50277400e-01
1.21340960e-01 -1.30064714e+00 -1.27787232e+00 -1.68572336e-01
-8.17693174e-02 -8.19487691e-01 4.73833978e-02 -4.82709259e-01
-9.12777483e-01 -1.06005764e+00 -6.35998070e-01 -7.51099944e-01
5.59201479e-01 8.74232888e-01 1.32294536e+00 5.04339576e-01
-2.77080894e-01 7.98038065e-01 -8.01727176e-01 -4.86470252e-01
-2.72001326e-01 -3.81930798e-01 -5.16970038e-01 -8.27368915e-01
2.78886527e-01 -4.70972031e-01 -2.95041919e-01 1.70475647e-01
-7.45817900e-01 6.83298111e-01 -6.02411106e-02 2.77741134e-01
1.68306604e-01 -1.91862788e-02 3.59088592e-02 -7.93536365e-01
1.00389552e+00 -3.15921605e-01 -4.14026797e-01 7.72528201e-02
-5.17310798e-01 -6.62685215e-01 1.19025387e-01 -2.06717074e-01
-1.05219221e+00 -2.59014010e-01 -6.93479851e-02 1.80424660e-01
-6.08579032e-02 5.49459159e-01 1.95543721e-01 -4.20848459e-01
8.17664802e-01 -1.99883848e-01 -4.00578529e-01 -2.97072560e-01
3.09254169e-01 2.51710355e-01 3.50027770e-01 -1.95300728e-01
7.87180960e-01 6.08093917e-01 -4.50480580e-01 -8.41842473e-01
-1.42031074e-01 -2.00259641e-01 -3.58455271e-01 -1.03871083e+00
3.93430680e-01 -6.47015035e-01 -5.54474235e-01 1.69960991e-01
-1.25436139e+00 -5.92108190e-01 -6.68880761e-01 1.83679506e-01
-7.19485223e-01 3.29089731e-01 -3.26154858e-01 -9.52723384e-01
1.30058974e-01 -8.45662057e-01 5.78511417e-01 4.00249630e-01
-1.12890959e+00 -1.07242966e+00 3.12120825e-01 3.51872236e-01
5.20538449e-01 6.00549877e-01 5.00578642e-01 1.01303667e-01
-5.73767960e-01 -8.86567757e-02 -1.60222769e-01 -7.95245707e-01
-2.18589187e-01 5.60773015e-01 -5.47128081e-01 -1.03211202e-01
-1.42577037e-01 -2.37282008e-01 2.88065612e-01 4.31529820e-01
6.42689109e-01 -5.68043031e-02 -7.20805049e-01 2.05549315e-01
1.27817512e+00 6.51796043e-01 6.38548851e-01 8.59931648e-01
7.65745819e-01 7.41120875e-01 1.04037225e+00 7.81104088e-01
7.24270225e-01 6.92367375e-01 3.40481311e-01 5.34990504e-02
-4.52377260e-01 -5.91003895e-01 1.06179237e-01 6.74733400e-01
-4.18144792e-01 -4.86514539e-01 -1.24627757e+00 8.09839964e-01
-1.91327560e+00 -9.63582814e-01 -4.05958951e-01 1.69900179e+00
1.91098318e-01 1.18243679e-01 4.86765265e-01 4.35859680e-01
6.68414712e-01 6.27164960e-01 -1.68054253e-01 -3.91040772e-01
-6.96734712e-02 -9.18429121e-02 7.53917620e-02 5.62224150e-01
-8.50384831e-01 1.09565890e+00 9.14340115e+00 2.55357802e-01
-6.10782146e-01 1.28469676e-01 -1.36315236e-02 -3.12524110e-01
-4.94411707e-01 4.39115912e-01 -2.88246423e-01 6.55675381e-02
4.42828089e-01 -4.62172896e-01 3.06867093e-01 7.75180280e-01
3.39457810e-01 -4.38437223e-01 -8.86752069e-01 1.09060383e+00
3.95747751e-01 -1.72879064e+00 -1.83262870e-01 -3.62074196e-01
6.22800529e-01 -4.15570110e-01 1.99995637e-02 -7.21128955e-02
5.80983341e-01 -1.16061139e+00 1.19163024e+00 3.00612181e-01
7.98493385e-01 -6.50431633e-01 1.68857887e-01 -8.70962813e-02
-1.36546683e+00 3.62958312e-02 2.22973004e-01 -9.27279651e-01
6.96355939e-01 7.73013681e-02 -5.40568113e-01 3.22716415e-01
1.15722764e+00 9.33393598e-01 -6.15084231e-01 1.48947442e+00
-4.90416974e-01 5.09117186e-01 2.17336744e-01 -2.85686672e-01
-8.30045938e-02 2.43388474e-01 8.45204115e-01 1.24384546e+00
3.73764247e-01 3.59445393e-01 -6.66150451e-02 6.16994143e-01
4.67296988e-01 2.82602757e-01 -1.03285384e+00 -4.03016329e-01
6.96536005e-01 7.78263032e-01 -1.16717124e+00 -4.03837651e-01
-6.07350409e-01 7.39517748e-01 1.28547832e-01 3.00742447e-01
-8.24870348e-01 -5.75066268e-01 5.01542091e-01 3.94641399e-01
-2.07567797e-03 -6.82321250e-01 -1.02073145e+00 -9.87339139e-01
1.01074927e-01 -8.75392854e-01 3.53438079e-01 -1.34449339e+00
-5.84923804e-01 2.56778568e-01 3.25758487e-01 -1.57507706e+00
-1.79369226e-01 -6.13128580e-02 -8.42107534e-01 2.40827680e-01
-9.39743400e-01 -9.94882464e-01 -6.37911320e-01 4.72302884e-02
7.33241916e-01 6.15758672e-02 7.00305820e-01 5.48790991e-02
-5.20058036e-01 4.04545158e-01 -3.16459566e-01 -3.83938879e-01
7.14948773e-01 -1.00732970e+00 1.11332917e+00 8.55256438e-01
-2.36012079e-02 6.66950643e-01 1.24745059e+00 -9.87350345e-01
-1.16864300e+00 -3.82179081e-01 1.24082589e+00 -6.21863961e-01
7.43970096e-01 -5.98712504e-01 -7.45383084e-01 1.01860714e+00
6.25404239e-01 -4.40986544e-01 8.77545297e-01 -1.22320496e-01
1.25504134e-03 6.59964263e-01 -1.04759669e+00 1.19163573e+00
1.37291384e+00 -3.86822730e-01 -6.91283166e-01 7.44714662e-02
6.93944097e-01 -7.88652420e-01 -4.89786446e-01 -1.09119460e-01
1.00183499e+00 -1.37896860e+00 8.57753336e-01 -3.42672855e-01
6.21312737e-01 -5.61525762e-01 2.27693304e-01 -1.13779855e+00
-2.73006260e-01 -1.05662537e+00 -2.32514605e-01 1.25810981e+00
2.92818341e-02 -2.76273727e-01 9.82016206e-01 5.08824646e-01
-4.28239882e-01 -5.84170580e-01 -6.06543601e-01 -5.63269675e-01
-1.62392274e-01 -7.22052038e-01 5.57826340e-01 1.06794322e+00
9.89681304e-01 1.21808559e-01 -5.22665143e-01 -4.69035864e-01
2.92012066e-01 -1.38432443e-01 1.13404155e+00 -1.01530516e+00
4.06442769e-03 -5.90615928e-01 -3.82283688e-01 -1.17948043e+00
-3.05961877e-01 -3.67918313e-01 -2.26870790e-01 -2.21256781e+00
1.57814205e-01 2.06470247e-02 3.10136974e-01 3.37081432e-01
1.28679663e-01 6.20710790e-01 4.75233287e-01 4.85057943e-02
-8.71308625e-01 1.70759782e-01 1.33642638e+00 5.20963892e-02
-3.06611359e-01 -2.80588508e-01 -1.18008959e+00 9.38506722e-01
7.62180388e-01 -2.86630273e-01 -6.33438110e-01 -4.50252473e-01
6.92673385e-01 1.37776971e-01 2.80614555e-01 -1.10156155e+00
3.54669839e-01 -5.10825574e-01 3.00958008e-01 -9.27625000e-01
2.68498868e-01 -8.00235987e-01 4.58336294e-01 1.98456183e-01
-7.10462406e-02 6.34022892e-01 4.94323254e-01 3.14097703e-01
-1.05041280e-01 -1.85851455e-01 3.45157951e-01 -1.30864263e-01
-1.11741889e+00 -4.39912856e-01 -1.19581532e+00 -1.99008942e-01
1.50806046e+00 -1.03509259e+00 -5.05339921e-01 -7.68392622e-01
-5.97114205e-01 3.32359910e-01 9.15719867e-01 6.39260113e-01
8.60125124e-01 -1.57916498e+00 -2.58369833e-01 -2.49562293e-01
4.95077640e-01 -3.16903293e-01 4.47792113e-01 5.11413753e-01
-8.48929822e-01 3.18368554e-01 -5.15662491e-01 -1.95851594e-01
-1.69390810e+00 5.21906435e-01 -3.44585180e-02 2.48395026e-01
-8.88713896e-01 6.81458831e-01 -1.36824727e-01 2.03037143e-01
4.76693332e-01 -8.31851363e-02 -7.25367308e-01 -1.74109921e-01
8.34565878e-01 9.05169368e-01 -1.22527897e-01 -7.89929390e-01
-5.75524330e-01 6.82745397e-01 2.13187441e-01 -5.77672243e-01
1.08645558e+00 -6.13580823e-01 1.37788236e-01 1.10170269e+00
4.26794767e-01 -5.12856757e-04 -1.01442420e+00 1.67080909e-01
6.70903772e-02 -8.14884782e-01 -2.35253394e-01 -8.38194549e-01
-4.16359752e-01 8.34138274e-01 3.83191615e-01 5.36823273e-01
1.02352023e+00 2.21046567e-01 3.48703504e-01 -2.61554867e-01
3.06979716e-01 -9.67944503e-01 2.00811788e-01 5.44073045e-01
1.18597841e+00 -7.78053761e-01 3.63720655e-01 -6.23088956e-01
-9.07575250e-01 1.03368306e+00 7.37261176e-01 -8.96550491e-02
5.75433254e-01 6.80139959e-01 3.07366550e-01 -7.53150284e-01
-6.72423542e-01 4.79950085e-02 3.42520028e-02 1.04855132e+00
8.45749080e-01 -1.44683182e-01 -6.03533149e-01 3.01793545e-01
-5.45264781e-01 2.70596981e-01 7.92347848e-01 1.69493973e+00
-5.06938517e-01 -1.06767333e+00 -8.16250741e-01 1.01565294e-01
-1.17675759e-01 1.59007937e-01 -8.57716322e-01 1.00027442e+00
-6.43287972e-02 1.14010322e+00 1.72619760e-01 -5.43574870e-01
6.95894480e-01 -7.43205547e-02 6.81554139e-01 -5.80059826e-01
-9.27969873e-01 -1.62448809e-01 4.67760146e-01 -5.06943464e-01
-3.83977711e-01 -7.80181348e-01 -9.98886466e-01 -7.89984167e-01
-9.70482901e-02 -2.06855282e-01 5.11912882e-01 6.95969701e-01
1.80705786e-01 5.52252293e-01 -1.96739733e-01 -9.92784679e-01
5.01455307e-01 -6.01351023e-01 -3.85599315e-01 2.76271142e-02
2.61486351e-01 -1.03864574e+00 -1.86278373e-02 2.38588780e-01] | [11.195836067199707, 0.8555691838264465] |
eb1414b0-ee0e-4bdc-ac7e-e968f7a0a966 | perceptual-generative-adversarial-networks | 1706.05274 | null | http://arxiv.org/abs/1706.05274v2 | http://arxiv.org/pdf/1706.05274v2.pdf | Perceptual Generative Adversarial Networks for Small Object Detection | Detecting small objects is notoriously challenging due to their low
resolution and noisy representation. Existing object detection pipelines
usually detect small objects through learning representations of all the
objects at multiple scales. However, the performance gain of such ad hoc
architectures is usually limited to pay off the computational cost. In this
work, we address the small object detection problem by developing a single
architecture that internally lifts representations of small objects to
"super-resolved" ones, achieving similar characteristics as large objects and
thus more discriminative for detection. For this purpose, we propose a new
Perceptual Generative Adversarial Network (Perceptual GAN) model that improves
small object detection through narrowing representation difference of small
objects from the large ones. Specifically, its generator learns to transfer
perceived poor representations of the small objects to super-resolved ones that
are similar enough to real large objects to fool a competing discriminator.
Meanwhile its discriminator competes with the generator to identify the
generated representation and imposes an additional perceptual requirement -
generated representations of small objects must be beneficial for detection
purpose - on the generator. Extensive evaluations on the challenging
Tsinghua-Tencent 100K and the Caltech benchmark well demonstrate the
superiority of Perceptual GAN in detecting small objects, including traffic
signs and pedestrians, over well-established state-of-the-arts. | ['Xiaodan Liang', 'Yunchao Wei', 'Jiashi Feng', 'Tingfa Xu', 'Shuicheng Yan', 'Jianan Li'] | 2017-06-16 | perceptual-generative-adversarial-networks-1 | http://openaccess.thecvf.com/content_cvpr_2017/html/Li_Perceptual_Generative_Adversarial_CVPR_2017_paper.html | http://openaccess.thecvf.com/content_cvpr_2017/papers/Li_Perceptual_Generative_Adversarial_CVPR_2017_paper.pdf | cvpr-2017-7 | ['small-object-detection'] | ['computer-vision'] | [ 3.47217888e-01 1.65639430e-01 9.75429565e-02 -1.57910854e-01
-1.00206435e+00 -4.43428934e-01 4.60597098e-01 -7.68960565e-02
-2.39345372e-01 5.44185340e-01 -2.29554743e-01 1.67169925e-02
4.69944894e-01 -9.93321836e-01 -9.02572989e-01 -9.03883576e-01
-6.40242696e-02 5.36618173e-01 7.96895981e-01 -2.44903713e-01
-8.38534459e-02 3.66368949e-01 -1.47894990e+00 6.80719018e-01
8.57841611e-01 1.08960283e+00 4.07469273e-01 8.15059483e-01
3.91300797e-01 8.63202393e-01 -1.11554825e+00 -3.67682308e-01
5.82218528e-01 -5.24476051e-01 -1.80571988e-01 -4.82321382e-02
9.95548427e-01 -4.88384247e-01 -4.39477921e-01 1.25928462e+00
6.83668137e-01 1.50438789e-02 5.94455063e-01 -1.39072895e+00
-1.16014886e+00 5.10849714e-01 -7.99552202e-01 6.00004077e-01
-1.07141234e-01 6.29881024e-01 8.72232199e-01 -8.80859077e-01
8.77664834e-02 1.58107138e+00 4.76205140e-01 8.76121998e-01
-1.28689456e+00 -9.63402033e-01 1.60256162e-01 2.94016421e-01
-1.49476457e+00 -3.09612870e-01 6.47542775e-01 -3.23516607e-01
7.22016096e-01 3.72891009e-01 4.37334120e-01 1.29931831e+00
-1.60974972e-02 8.30306292e-01 1.01479089e+00 -6.07344396e-02
9.26064253e-02 2.81955093e-01 -3.48220393e-02 3.93659204e-01
4.51102436e-01 5.11510313e-01 -2.66616158e-02 2.54509598e-01
6.49387956e-01 2.81545408e-02 -1.77917734e-01 -1.14930816e-01
-8.79022062e-01 7.34491527e-01 1.00781059e+00 4.13541719e-02
-3.72978866e-01 3.16592455e-01 4.75759842e-02 1.21946454e-01
2.48030186e-01 2.54120708e-01 -1.77820653e-01 2.62630373e-01
-6.57045484e-01 2.41700143e-01 2.23117292e-01 8.77394676e-01
5.19078493e-01 4.90315259e-01 -7.44611800e-01 7.33625233e-01
1.40003815e-01 7.12050319e-01 4.10630435e-01 -5.59612393e-01
5.71251333e-01 6.87374234e-01 2.75369622e-02 -8.20058048e-01
-1.10923581e-01 -8.89203787e-01 -9.49365854e-01 6.81408882e-01
5.06479383e-01 2.75641140e-02 -1.32858026e+00 1.87635517e+00
3.32778543e-01 4.19425398e-01 2.92634100e-01 1.20048189e+00
1.07786858e+00 7.82640755e-01 4.06051040e-01 3.17264676e-01
1.60304451e+00 -1.04041255e+00 -4.17407379e-02 -7.14685798e-01
6.68773726e-02 -6.03279114e-01 1.14083970e+00 1.04513690e-01
-1.06918025e+00 -1.17196000e+00 -1.02970624e+00 1.36812240e-01
-3.12924653e-01 3.82170439e-01 3.53931487e-01 7.79586017e-01
-8.37723196e-01 1.76271915e-01 -4.22948360e-01 -2.20146760e-01
9.53423619e-01 1.29473612e-01 1.38410414e-02 -9.99149606e-02
-9.25560594e-01 8.27316225e-01 6.81989491e-01 8.82043839e-02
-1.57793903e+00 -7.65175223e-01 -7.04295456e-01 4.43782836e-01
3.75435859e-01 -7.14470088e-01 1.01795852e+00 -1.32223642e+00
-9.58514810e-01 7.90647507e-01 3.89986783e-01 -7.21275568e-01
6.36146724e-01 -2.38385405e-02 -5.56318879e-01 1.55577615e-01
2.68590271e-01 9.38724518e-01 1.33900487e+00 -1.50129104e+00
-9.91955340e-01 -2.18211979e-01 2.91378945e-01 5.75367026e-02
-2.27466106e-01 4.60763797e-02 -2.16062769e-01 -9.50280547e-01
-2.63918430e-01 -8.25612962e-01 -2.52333641e-01 -7.96545595e-02
-5.71446121e-01 -2.95608163e-01 1.10345411e+00 -2.74707019e-01
5.45336187e-01 -2.15612316e+00 -1.49765462e-01 -1.94493949e-01
4.77028996e-01 5.49677074e-01 -6.00378275e-01 -2.79818535e-01
-1.06883250e-01 -1.21651858e-01 1.82959631e-01 -1.78344816e-01
-1.38951421e-01 9.75131765e-02 -4.36209291e-01 3.39851737e-01
8.19607913e-01 1.17955792e+00 -9.65502322e-01 -2.74881691e-01
2.39956841e-01 4.25151318e-01 -3.00781935e-01 3.20254356e-01
-4.44414131e-02 2.02850819e-01 -4.81609255e-01 8.25050771e-01
1.02761388e+00 -2.27818370e-01 -4.37254846e-01 -2.71410912e-01
2.83225983e-01 -1.10463403e-01 -1.10232902e+00 8.14714611e-01
-6.36558235e-02 5.29131055e-01 1.90135986e-02 -9.43244517e-01
8.82368445e-01 -1.28832996e-01 -5.29056787e-02 -9.25645649e-01
2.95949746e-02 5.78256287e-02 4.40978467e-01 -2.24797234e-01
4.74892318e-01 -2.63784736e-01 -5.70653640e-02 -5.46734827e-03
-1.80898048e-02 3.01536061e-02 1.39021978e-01 3.53561223e-01
9.48595703e-01 -2.85950363e-01 1.36959165e-01 1.30800068e-01
3.49292129e-01 -2.04966024e-01 6.90748274e-01 1.14923620e+00
-3.52802515e-01 9.67694700e-01 3.85621011e-01 -2.59083956e-01
-9.72438157e-01 -1.51831782e+00 1.98287256e-02 1.36235201e+00
4.18823093e-01 5.50068617e-02 -8.25674891e-01 -1.11274505e+00
2.18063936e-01 6.62545919e-01 -8.91642988e-01 -5.35127819e-01
-6.99974298e-01 -8.57061327e-01 7.02984333e-01 1.03379869e+00
3.52544159e-01 -1.40310669e+00 -8.61196220e-01 5.88777699e-02
6.41274378e-02 -1.09035420e+00 -3.96060228e-01 1.73356339e-01
-3.64915133e-01 -1.07794094e+00 -9.03457403e-01 -8.44807208e-01
8.36018860e-01 5.88612616e-01 1.23063529e+00 1.39148071e-01
-6.17510438e-01 2.62060743e-02 -3.52706820e-01 -8.81320298e-01
-7.63432562e-01 -3.19763720e-01 3.03262230e-02 2.65146703e-01
2.20079690e-01 -1.69898957e-01 -8.28515530e-01 4.81170654e-01
-7.61889994e-01 -1.56548426e-01 1.21460533e+00 8.42022479e-01
5.58365822e-01 2.37495676e-01 8.87642443e-01 -6.16199255e-01
3.20292205e-01 -4.54648644e-01 -4.90248770e-01 1.63169503e-01
-2.51028210e-01 -2.79510200e-01 9.00501192e-01 -9.24935102e-01
-9.32858407e-01 -1.41469613e-01 5.59336990e-02 -7.28207529e-01
-2.74500340e-01 -2.91049302e-01 -3.42698723e-01 -1.08796202e-01
8.43194366e-01 4.30123091e-01 -3.75260890e-01 -3.61599922e-01
4.17657375e-01 4.22722638e-01 7.40362406e-01 -4.60956424e-01
1.17967117e+00 4.39580947e-01 -5.82268722e-02 -5.20695090e-01
-8.88243258e-01 -3.25609505e-01 -2.57472813e-01 -1.74184263e-01
7.88149774e-01 -1.04125392e+00 -3.70723486e-01 4.50865060e-01
-1.03803265e+00 -2.25798562e-01 -9.14050221e-01 1.36793315e-01
-2.15786129e-01 1.20513037e-01 -4.44624633e-01 -6.76608682e-01
-3.79534572e-01 -1.06275749e+00 1.28238499e+00 6.45331025e-01
2.98432559e-01 -3.41528922e-01 -3.60776633e-01 3.79473686e-01
5.84875941e-01 2.76016831e-01 7.35719979e-01 -6.16759121e-01
-7.48835623e-01 -4.12635863e-01 -7.08627701e-01 7.06785798e-01
-1.88795090e-01 -1.61008835e-01 -1.15783596e+00 -6.82276726e-01
-1.96222827e-01 -4.93155539e-01 1.29353964e+00 4.21362579e-01
1.31251478e+00 -3.07979047e-01 -3.63686144e-01 4.37783778e-01
1.35007155e+00 8.56275186e-02 7.32259452e-01 8.72184634e-02
8.59771430e-01 3.63234937e-01 4.93008941e-01 1.72287121e-01
3.31761651e-02 5.67701995e-01 6.44492686e-01 -5.62012672e-01
-8.39311481e-01 -2.78781593e-01 4.58444446e-01 -5.44157028e-02
-1.40880153e-01 -5.00609756e-01 -6.22810721e-01 4.60090876e-01
-1.60718834e+00 -1.16254365e+00 -1.43585473e-01 2.11232066e+00
4.86397743e-01 6.09867215e-01 2.79057324e-01 -5.06109893e-02
7.75017858e-01 2.11872235e-02 -8.40139389e-01 7.99657106e-02
-4.49117512e-01 1.89770505e-01 5.09373486e-01 -1.68025210e-01
-1.14817762e+00 9.66183007e-01 5.72158575e+00 1.20115519e+00
-1.09475291e+00 3.40651929e-01 9.00722265e-01 -2.05258235e-01
1.88589215e-01 -3.67112219e-01 -1.01005948e+00 6.26767218e-01
7.06316113e-01 2.34670527e-02 7.23201409e-02 1.22606874e+00
1.14490623e-02 9.02760848e-02 -1.17109728e+00 8.97326231e-01
4.06996123e-02 -1.07605970e+00 4.36882794e-01 -1.91507954e-02
8.53182852e-01 7.93339536e-02 5.91579974e-01 7.21540630e-01
3.71396750e-01 -1.31411636e+00 1.18432641e+00 1.96721449e-01
7.58662283e-01 -6.04408741e-01 7.57415175e-01 3.80317450e-01
-1.40214467e+00 -6.37717962e-01 -9.12016034e-01 8.90836492e-02
-3.54053341e-02 3.19788754e-01 -8.63986552e-01 1.44217953e-01
7.29484320e-01 3.22648972e-01 -1.10004270e+00 1.09725809e+00
-3.90535802e-01 6.99786246e-01 -6.16061725e-02 2.72639453e-01
2.87783027e-01 1.26816437e-01 7.03863382e-01 1.28716052e+00
1.90431714e-01 5.97443655e-02 5.02587199e-01 1.31219590e+00
-2.57384658e-01 -2.53737032e-01 -3.78535509e-01 1.92165673e-01
4.12456989e-01 1.37806141e+00 -7.44270802e-01 -6.71762824e-01
-3.09472024e-01 8.83655190e-01 3.00993621e-01 3.68558258e-01
-1.16802430e+00 -3.05217892e-01 6.80973351e-01 2.94315577e-01
7.34391689e-01 3.38706851e-01 -1.76954910e-01 -9.19127584e-01
5.43811955e-02 -1.09863615e+00 6.45632684e-01 -8.23842824e-01
-1.45558381e+00 7.68625140e-01 -2.88127482e-01 -1.38740373e+00
-3.41085494e-02 -6.15858793e-01 -8.82617474e-01 9.31406796e-01
-1.48748600e+00 -1.70434046e+00 -6.43890202e-01 5.54665148e-01
8.44402909e-01 -1.93848655e-01 3.94857228e-01 3.20666283e-01
-5.14716029e-01 9.17248905e-01 -8.14362615e-02 2.88197547e-01
5.03584981e-01 -1.36129177e+00 5.24651945e-01 1.18342209e+00
1.99815765e-01 1.76525772e-01 5.47312379e-01 -5.15048325e-01
-9.73328471e-01 -1.57756722e+00 8.58373791e-02 -6.64229512e-01
3.85029197e-01 -5.37777364e-01 -1.05809820e+00 3.78984004e-01
-5.89399189e-02 5.64433753e-01 1.32462755e-01 -3.12428743e-01
-5.81617177e-01 -4.18558747e-01 -1.24508190e+00 2.49655589e-01
8.26494336e-01 -3.12452108e-01 -4.92503136e-01 1.17835052e-01
6.88024104e-01 -1.97122663e-01 -3.14479947e-01 4.89277005e-01
3.93568426e-01 -9.24433947e-01 1.61699569e+00 -8.37384582e-01
2.90693760e-01 -4.85987782e-01 -1.31121323e-01 -1.27009833e+00
-5.83255112e-01 -1.68422028e-01 -3.09061110e-01 1.29757249e+00
5.82161397e-02 -4.14947480e-01 7.58608520e-01 7.34161735e-02
-2.28585109e-01 -5.32534599e-01 -9.70235407e-01 -1.01977122e+00
5.65752387e-02 -1.29499286e-01 5.40931284e-01 6.14572287e-01
-8.51180494e-01 4.51312065e-01 -3.42818499e-01 5.53044856e-01
9.28820193e-01 2.22747773e-01 8.20057094e-01 -1.19409776e+00
-5.99439800e-01 -5.71250439e-01 -7.06712365e-01 -1.10233080e+00
-1.59512043e-01 -6.77197754e-01 2.78316975e-01 -1.24609327e+00
5.44243813e-01 -5.76872706e-01 -7.36341357e-01 4.59697604e-01
-5.80769002e-01 8.23781431e-01 4.34435964e-01 3.58202569e-02
-7.89038658e-01 5.00467718e-01 1.36241245e+00 -6.15567505e-01
2.27740593e-02 2.29200453e-01 -1.00076485e+00 6.80263937e-01
6.54553533e-01 -5.49040973e-01 -2.93217361e-01 -2.60719270e-01
-3.65413457e-01 -3.57509553e-01 1.02903533e+00 -1.28155529e+00
-2.56760240e-01 -8.39373544e-02 9.09979403e-01 -6.02262020e-01
3.40108871e-01 -4.86074001e-01 -2.34121889e-01 6.88736916e-01
-2.74705678e-01 -4.19068605e-01 3.88917118e-01 8.84889245e-01
8.41218047e-03 -8.56585130e-02 1.42059696e+00 -1.46396875e-01
-1.01698840e+00 2.84484804e-01 -1.43492058e-01 3.06515574e-01
1.38528872e+00 -2.75540918e-01 -6.24100327e-01 -5.38673662e-02
-4.92076159e-01 2.49177646e-02 1.97383389e-01 6.74390793e-01
9.09046233e-01 -1.20396423e+00 -1.18107319e+00 4.41300154e-01
2.84413129e-01 8.93336535e-02 3.53591442e-01 4.90322560e-01
-3.97155546e-02 8.96301046e-02 -4.44021106e-01 -6.58342898e-01
-1.41997850e+00 8.59443903e-01 4.66582596e-01 -4.64060195e-02
-5.82229555e-01 1.21674943e+00 1.09755087e+00 7.34763220e-02
1.03808329e-01 -5.93439281e-01 -1.36183470e-01 -9.07947123e-02
7.41492629e-01 3.95200998e-01 -1.35058478e-01 -7.78474867e-01
-3.11122537e-01 3.06095481e-01 -1.88267455e-01 7.45666862e-01
1.14087784e+00 5.23527153e-02 3.33404571e-01 -1.23343393e-01
9.01062727e-01 -1.31463781e-01 -1.58616829e+00 -2.58524269e-01
-4.37445074e-01 -6.60423040e-01 -4.91121002e-02 -9.22825992e-01
-1.29341519e+00 9.36358988e-01 1.11330307e+00 2.75155723e-01
1.12604475e+00 4.77770686e-01 7.61904895e-01 9.53390151e-02
1.68763787e-01 -8.41732144e-01 5.59862375e-01 1.51124388e-01
8.80435348e-01 -1.50257659e+00 -3.60452980e-01 -3.75160456e-01
-6.64646924e-01 8.98975909e-01 1.07699776e+00 -3.02897304e-01
-1.57448146e-02 2.09182397e-01 -3.24419811e-02 -1.20732002e-01
-5.21384060e-01 -5.36788702e-01 7.18004584e-01 1.04260409e+00
-1.24347232e-01 3.66552740e-01 3.78810585e-01 7.84092963e-01
3.28701623e-02 -4.15199935e-01 4.06762809e-01 4.52229917e-01
-6.23118103e-01 -6.26176834e-01 -6.52445614e-01 5.34761131e-01
-3.07745904e-01 -1.75473303e-01 -3.52565050e-01 6.86973453e-01
6.75028980e-01 9.00203168e-01 2.79619604e-01 -2.76951581e-01
4.79079902e-01 -6.10349834e-01 3.51142079e-01 -7.09226966e-01
-5.73321640e-01 1.86172258e-02 -2.14136243e-01 -4.65717316e-01
-2.96278689e-02 -4.36889529e-01 -1.08843946e+00 7.07186162e-02
-3.63642842e-01 -7.45652914e-02 1.55596346e-01 4.04625505e-01
2.83573747e-01 9.30054247e-01 5.69060802e-01 -1.01448131e+00
-1.02792192e+00 -1.04928923e+00 -6.29476666e-01 8.35606158e-01
4.20127004e-01 -7.60165155e-01 -1.09623164e-01 -3.49537805e-02] | [9.522294998168945, 1.6255810260772705] |
2fee74cf-6ead-4e40-9ee3-f506ee427d74 | ihs_rd-lexical-normalization-for-english | null | null | https://aclanthology.org/W15-4311 | https://aclanthology.org/W15-4311.pdf | IHS\_RD: Lexical Normalization for English Tweets | null | ['Viachaslau Patsepnia', 'Dmitry Supranovich'] | 2015-07-01 | null | null | null | ws-2015-7 | ['lexical-normalization'] | ['natural-language-processing'] | [-8.63703638e-02 1.71006292e-01 -6.22772932e-01 -4.08054382e-01
-8.41685571e-03 -9.08429027e-01 6.55310392e-01 -6.53472245e-01
-2.85945535e-01 1.06888819e+00 -4.63127941e-02 -1.01159286e+00
-3.91567826e-01 -9.63214397e-01 -4.95059669e-01 -6.31337762e-01
-9.79754329e-01 7.25764990e-01 3.30370307e-01 -6.93831444e-01
7.03166842e-01 7.88774848e-01 -1.68942046e+00 7.18545914e-01
7.04417467e-01 8.52217197e-01 2.49141872e-01 1.14950800e+00
-1.95044339e-01 1.55633950e+00 -7.48382092e-01 -5.46825826e-01
3.13719302e-01 -1.23176083e-01 -7.22945035e-01 -1.01074085e-01
9.28529128e-02 -8.59008506e-02 -2.09758401e-01 9.22211111e-01
5.37373662e-01 4.49454933e-02 1.08379531e+00 -1.42548037e+00
-5.91619551e-01 6.10313773e-01 -4.01565880e-02 1.21627934e-01
1.03678203e+00 -5.39447069e-01 1.19919395e+00 -1.13026452e+00
7.20913768e-01 1.26888943e+00 8.66221786e-01 5.44149756e-01
-1.22286928e+00 -1.94712028e-01 -3.26822817e-01 -9.51717794e-02
-1.46558487e+00 -3.25250506e-01 4.25783843e-02 -2.08119690e-01
1.66093647e+00 1.26596653e+00 1.20609856e+00 1.01401424e+00
1.26658809e+00 8.34431887e-01 1.04267764e+00 -5.13792276e-01
3.35295945e-01 3.66983831e-01 1.54683650e-01 6.33519173e-01
8.40953708e-01 5.26628852e-01 -7.06372619e-01 -9.13127720e-01
9.33553874e-01 -2.94925272e-01 1.71355158e-01 -5.05680561e-01
-9.05919552e-01 6.91228509e-01 1.78732842e-01 3.83959889e-01
-1.39880210e-01 9.89067405e-02 1.26390755e-01 5.30987144e-01
-2.58292928e-02 6.47037446e-01 -9.11868811e-01 -1.33165747e-01
-8.71728659e-01 5.10332465e-01 1.25398111e+00 1.52653182e+00
1.24482810e-01 2.94908643e-01 -9.34252143e-02 3.17179203e-01
8.92314315e-01 1.01808000e+00 4.28362608e-01 -1.36146402e+00
-6.87414408e-02 1.72361732e-01 5.01781464e-01 -8.52631688e-01
-6.33224547e-01 -9.64177120e-03 -8.93263519e-01 4.49267089e-01
3.49161088e-01 4.57367361e-01 -8.02827001e-01 5.07305264e-01
4.33481112e-02 -2.34125629e-01 4.53833073e-01 5.55570945e-02
4.99930978e-01 3.76208365e-01 -1.34477139e-01 -5.73289394e-01
1.06082785e+00 -1.36716676e+00 -1.35299087e+00 2.33215362e-01
9.05734658e-01 -1.07320261e+00 4.35900748e-01 5.33875942e-01
-1.55548143e+00 -1.37560293e-01 -1.08699942e+00 1.78573877e-01
-7.27255583e-01 -3.14239264e-01 8.57801437e-01 1.43120694e+00
-1.60129595e+00 9.73287821e-01 -4.91727620e-01 6.59165755e-02
1.20568443e-02 8.24621081e-01 -2.64718989e-03 4.62812334e-01
-1.33193445e+00 1.08501506e+00 2.22979754e-01 -1.21242590e-01
-1.65216476e-01 -2.13068098e-01 -8.23704481e-01 -5.63443303e-01
-4.78693932e-01 -5.29636025e-01 1.44139910e+00 -2.59346128e-01
-1.65295815e+00 9.71794367e-01 -1.42069459e-01 -1.97814897e-01
6.14786744e-01 -1.28011424e-02 -8.31891418e-01 2.42498964e-01
-1.89849049e-01 5.76383233e-01 9.28263724e-01 -1.35132408e+00
-7.59897232e-01 -1.67359829e-01 -1.23336017e-01 2.66287565e-01
-1.25510961e-01 1.89734384e-01 2.11616129e-01 -1.12999000e-01
3.27147305e-01 -7.20919967e-01 -2.53068686e-01 -5.32041907e-01
-1.46512717e-01 -7.10518599e-01 7.70373225e-01 -4.51523662e-01
1.83705616e+00 -1.67618537e+00 -2.06720144e-01 3.98590982e-01
3.57815564e-01 -1.24705513e-03 2.40583986e-01 1.08380008e+00
-2.76906848e-01 7.32199550e-01 4.11965609e-01 -1.10722095e-01
2.24991128e-01 4.85861301e-01 -4.16602850e-01 3.05609167e-01
-1.29282743e-01 1.15307164e+00 -1.16605783e+00 -5.23096442e-01
4.11106765e-01 9.42391157e-02 -4.58732933e-01 4.79237735e-01
2.99364805e-01 1.47170946e-01 -3.56553018e-01 1.39399457e+00
1.15709066e+00 -1.31984919e-01 1.45911396e-01 5.30878425e-01
-3.79135728e-01 3.55090618e-01 -6.96863770e-01 1.05554795e+00
7.08333924e-02 5.00173986e-01 1.02364108e-01 -7.94621468e-01
3.33247900e-01 8.61540735e-01 4.37155962e-01 -9.67555881e-01
-2.26398129e-02 6.92409754e-01 1.12803578e-01 -6.07703328e-01
7.58228302e-01 3.94563079e-02 -3.64872098e-01 6.40070081e-01
-2.37588286e-01 -6.59476995e-01 9.64643434e-02 3.08100313e-01
6.22585893e-01 -5.18246442e-02 5.62923312e-01 -1.05613089e+00
7.86340594e-01 -1.82965681e-01 -1.81299388e-01 1.03415680e+00
-3.09923887e-01 3.19085121e-01 2.99841821e-01 -6.65102363e-01
-6.45341039e-01 -1.12307119e+00 -4.89381433e-01 1.30636716e+00
3.24267983e-01 -4.39044595e-01 -9.54439282e-01 -2.49762803e-01
1.77620783e-01 6.89606130e-01 -5.90509653e-01 3.84124845e-01
-5.03739953e-01 -8.32535863e-01 7.39044368e-01 3.45434904e-01
-5.07752821e-02 -1.33414865e+00 -6.58416986e-01 1.25490099e-01
-2.20292807e-01 -6.63697243e-01 -6.23428151e-02 4.48765576e-01
-1.35989368e+00 -5.18594682e-01 -6.66252747e-02 -8.20914626e-01
5.87345481e-01 2.46782884e-01 1.27047324e+00 5.39230824e-01
-2.31483161e-01 4.26904231e-01 -1.21292919e-01 -4.95818377e-01
-4.59671497e-01 -8.00336525e-02 5.28869390e-01 -5.87835789e-01
5.19427478e-01 -2.50617653e-01 -7.29350567e-01 5.37953973e-01
-6.88540697e-01 1.62748516e-01 1.79803044e-01 1.04410267e+00
1.35816500e-01 -9.34035778e-02 1.22507080e-01 -6.38007045e-01
8.72274399e-01 -1.69219792e-01 -3.78732830e-01 5.77745810e-02
-6.77108407e-01 -3.74140263e-01 3.21430594e-01 -3.25342178e-01
-1.01981449e+00 -4.87835288e-01 -9.82677937e-02 2.45538145e-01
1.11353043e-02 -1.46784872e-01 6.47139177e-02 -5.24923325e-01
8.02199244e-01 9.25758183e-02 1.99174434e-02 -6.80815242e-03
3.01039815e-01 7.09525108e-01 -6.82967342e-03 -6.68678164e-01
8.44880998e-01 4.91470337e-01 7.98524171e-02 -9.57177758e-01
-1.52186140e-01 -2.60129690e-01 -9.51962709e-01 -6.54426932e-01
6.56643391e-01 -6.78531289e-01 -9.10833478e-01 3.91110867e-01
-9.38691139e-01 -3.38627815e-01 -3.91645581e-01 4.25431967e-01
-1.01278400e+00 2.75717527e-02 -3.90154392e-01 -1.27895141e+00
-5.10977268e-01 -1.02017939e+00 9.43384409e-01 5.30070923e-02
-5.10597289e-01 -1.26927447e+00 5.87685481e-02 2.71537274e-01
1.81734428e-01 -1.73075795e-01 6.90226793e-01 -2.38256708e-01
-4.24233019e-01 -1.53791070e-01 2.34436691e-02 -1.39755070e-01
1.70832314e-02 4.95917559e-01 -9.81751978e-01 -5.31145096e-01
6.65065646e-02 -1.92070693e-01 -1.08835101e-01 6.52520418e-01
5.91872573e-01 -2.29931593e-01 -8.56000841e-01 5.40386558e-01
1.38545322e+00 3.85070026e-01 5.32770038e-01 7.28214979e-01
1.41836226e-01 5.53460240e-01 9.17806149e-01 4.63203549e-01
1.30579369e-02 3.28798652e-01 2.40537539e-01 1.49327129e-01
1.11720070e-01 -1.54819340e-01 3.77893507e-01 1.16112018e+00
-8.18235934e-01 -2.69281328e-01 -5.07867396e-01 4.42987174e-01
-1.72482407e+00 -1.40330648e+00 -4.32368398e-01 6.90478683e-01
6.25676990e-01 1.56016424e-01 -1.48347050e-01 3.35214496e-01
4.99015123e-01 -2.03574806e-01 -1.19133167e-01 -1.06291151e+00
-1.43546045e-01 3.15233678e-01 7.37729073e-01 1.00061214e+00
-7.20721722e-01 1.03317809e+00 1.29781246e+01 1.02230716e+00
2.21112028e-01 1.03134915e-01 5.16071796e-01 3.48020852e-01
-4.36954498e-01 -4.56139445e-02 -1.04416132e+00 2.72933897e-02
1.38140702e+00 -4.30666685e-01 6.85999811e-01 5.44219851e-01
3.44648361e-01 -4.23268199e-01 -1.26188684e+00 5.26221812e-01
9.73738134e-02 -1.40886843e+00 -2.83300440e-04 6.85225725e-01
7.73699820e-01 -5.08050561e-01 6.22419357e-01 3.24184299e-01
6.09259963e-01 -1.14389277e+00 8.60300779e-01 2.53660440e-01
1.03040910e+00 -6.05088234e-01 5.67372203e-01 1.68872893e-01
-1.14389896e+00 -2.20873043e-01 -8.77727985e-01 -1.00755692e+00
3.93533185e-02 -1.81779593e-01 -4.29956943e-01 3.48861217e-01
9.58353162e-01 2.99398601e-01 -3.93658698e-01 9.95779395e-01
-4.78694476e-02 1.04875881e-02 -2.71853864e-01 -4.48467314e-01
4.83122796e-01 -3.54241252e-01 4.66730654e-01 1.00164843e+00
2.48499006e-01 3.51035744e-01 -9.84472036e-02 4.01770771e-01
5.45058846e-01 3.29446048e-02 -1.19659424e+00 -1.78908288e-01
2.83276141e-01 9.16795909e-01 -4.83487815e-01 -4.22520459e-01
-2.00212970e-01 8.62069130e-01 -3.55488248e-02 5.01107454e-01
-6.11489356e-01 -4.35615242e-01 9.72222984e-01 -1.27327025e-01
-1.14700586e-01 -3.48497719e-01 -6.23769283e-01 -7.30352640e-01
-5.89872956e-01 -4.54965204e-01 5.93606755e-02 -5.53365827e-01
-1.39813089e+00 5.79277515e-01 -2.27688253e-02 -1.40553558e+00
-6.99901402e-01 -1.27676582e+00 -4.76714373e-01 4.92853165e-01
-1.11898029e+00 -1.10984349e+00 2.50124663e-01 4.52870727e-01
1.64141744e-01 -5.34416080e-01 1.39563632e+00 3.57715860e-02
1.00637585e-01 9.24474537e-01 6.69434488e-01 -7.37814724e-01
5.56605101e-01 -1.27867436e+00 5.68737745e-01 -1.37897313e-01
-4.31265175e-01 9.05828118e-01 6.28349900e-01 -5.39804697e-01
-1.41196322e+00 -3.66917729e-01 1.08350635e+00 -9.83769417e-01
6.55218959e-01 -3.86345625e-01 4.23767231e-02 7.88592756e-01
7.15902448e-01 -6.18741751e-01 8.21781039e-01 -1.83753878e-01
1.80774391e-01 5.75296998e-01 -1.39248300e+00 6.12354755e-01
1.66275799e+00 -4.63594139e-01 -6.25784039e-01 7.60327101e-01
8.13696027e-01 -6.94087505e-01 -1.30082703e+00 3.34633321e-01
8.65424156e-01 -8.75409484e-01 1.61978090e+00 -1.32660246e+00
-4.43697497e-02 2.81152606e-01 -2.61993498e-01 -9.32519078e-01
-5.96193194e-01 -1.23518765e+00 -5.33532679e-01 -5.83747849e-02
5.96577883e-01 -1.13057327e+00 3.42365682e-01 8.74560475e-01
-2.82833427e-01 -6.42737269e-01 -1.06996536e+00 -1.32016802e+00
-3.35779637e-02 -1.45572275e-01 4.90409225e-01 7.63798356e-01
6.83744550e-01 1.09839931e-01 -6.36873543e-02 -1.00294888e-01
5.33176839e-01 9.55312885e-03 4.41501856e-01 -1.34294486e+00
3.86843324e-01 -5.75816095e-01 -3.07655483e-01 -9.45992947e-01
-8.85957032e-02 -8.12076271e-01 -6.53862000e-01 -1.28511906e+00
-8.32044985e-03 -1.91056758e-01 -1.11109078e-01 -1.65725678e-01
3.67937148e-01 2.13746816e-01 1.20859891e-02 1.03788137e-01
-3.71160030e-01 6.18435517e-02 1.29639816e+00 6.91750320e-05
-1.62315920e-01 4.85058486e-01 -4.81304944e-01 7.84440815e-01
8.58408585e-02 -2.99253196e-01 -6.78878546e-01 6.11881316e-02
6.69384480e-01 4.61409837e-02 3.24159935e-02 -7.42885649e-01
5.37211418e-01 -3.75702560e-01 4.78586555e-01 -1.32223868e+00
1.30741090e-01 -9.61415648e-01 6.95283338e-02 9.40189242e-01
2.74610907e-01 1.20424610e-02 8.66204947e-02 5.39500564e-02
-1.44871444e-01 -5.70943117e-01 9.21121240e-01 -4.07591403e-01
-4.92852688e-01 -5.20386267e-03 -1.03226590e+00 8.97834301e-02
9.92593169e-01 -7.84614205e-01 -3.59281451e-01 -4.20183957e-01
-8.29068601e-01 -1.95836127e-02 6.50830388e-01 3.03609259e-02
7.30431557e-01 -1.51530886e+00 -2.30721906e-01 7.18729138e-01
-3.22939813e-01 -3.74400020e-01 -1.70157343e-01 6.58265352e-01
-1.32361674e+00 1.02442718e+00 -5.41665435e-01 -4.55340147e-01
-1.14228773e+00 4.78126436e-01 4.28307921e-01 -2.41845414e-01
-2.15481281e-01 1.11954463e+00 2.71224789e-02 -8.23025763e-01
1.85185194e-01 -9.21545625e-02 -7.54407048e-01 3.55081353e-03
6.88606799e-01 1.05194807e+00 -2.91290224e-01 -6.04341030e-01
-4.56784427e-01 6.65885091e-01 2.32151806e-01 -2.87484169e-01
9.17833567e-01 -2.19243199e-01 -9.89108324e-01 4.28274393e-01
8.38715494e-01 -1.36269778e-01 -3.69319022e-02 4.16855574e-01
1.25943512e-01 -8.02164078e-01 -4.32406247e-01 -3.55811834e-01
-1.85641110e-01 5.54822803e-01 5.34874737e-01 8.99602413e-01
8.57008278e-01 -3.02566767e-01 8.18335712e-01 9.66778398e-01
5.72402716e-01 -1.68019545e+00 -2.13140488e-01 6.89524531e-01
9.12339568e-01 -9.28350806e-01 5.44190466e-01 -7.27165341e-01
-4.14997995e-01 1.32979155e+00 4.68304873e-01 -1.55325383e-01
1.27306652e+00 5.74917436e-01 1.14069022e-02 -3.70670199e-01
-9.44949508e-01 1.12705544e-01 3.75366658e-01 1.11147714e+00
5.06513238e-01 5.07374525e-01 -9.66500878e-01 3.21953118e-01
-7.28706717e-01 -2.34555230e-01 4.90474731e-01 1.41972518e+00
-6.43810987e-01 -1.20391917e+00 -7.23931909e-01 4.61561680e-01
-5.49773455e-01 -1.16372630e-01 -5.28106689e-01 8.46754074e-01
-5.76629937e-02 1.49448860e+00 -1.97535474e-03 -5.03491640e-01
4.11356747e-01 1.41089618e-01 7.21762300e-01 -1.23501487e-01
-9.04846430e-01 4.15413082e-01 3.84890139e-01 -1.23056793e+00
-8.58632207e-01 -1.05834293e+00 -1.40667629e+00 -1.19437599e+00
-5.12782812e-01 1.89310342e-01 3.83317530e-01 3.90289724e-01
-2.06836104e-01 2.85260603e-02 9.80917513e-01 -1.07949340e+00
-3.90341938e-01 -9.39418614e-01 -1.00026262e+00 -7.84516707e-02
2.89751232e-01 -8.00943017e-01 -7.83523321e-01 2.83909619e-01] | [-7.3938212394714355, 3.7356112003326416] |
074b9416-ea4d-4fe4-b5d7-d4e09c255487 | on-the-use-of-different-feature-extraction | 1406.7314 | null | http://arxiv.org/abs/1406.7314v1 | http://arxiv.org/pdf/1406.7314v1.pdf | On the Use of Different Feature Extraction Methods for Linear and Non Linear kernels | The speech feature extraction has been a key focus in robust speech
recognition research; it significantly affects the recognition performance. In
this paper, we first study a set of different features extraction methods such
as linear predictive coding (LPC), mel frequency cepstral coefficient (MFCC)
and perceptual linear prediction (PLP) with several features normalization
techniques like rasta filtering and cepstral mean subtraction (CMS). Based on
this, a comparative evaluation of these features is performed on the task of
text independent speaker identification using a combination between gaussian
mixture models (GMM) and linear and non-linear kernels based on support vector
machine (SVM). | ['Imen Trabelsi', 'Dorra Ben Ayed'] | 2014-06-27 | null | null | null | null | ['robust-speech-recognition'] | ['speech'] | [ 1.06248178e-01 -4.47244406e-01 4.44777645e-02 -3.14487547e-01
-5.83157778e-01 -4.66718018e-01 9.62333500e-01 2.77549654e-01
-4.26404208e-01 6.21277750e-01 4.38402206e-01 -3.94649982e-01
-1.94763750e-01 -1.93699613e-01 1.62019148e-01 -9.44181561e-01
-2.00062633e-01 -2.03543261e-01 2.67179042e-01 -1.37864873e-01
6.25094652e-01 8.70253444e-01 -1.89718270e+00 3.14649791e-01
5.88069558e-01 1.01105261e+00 1.53717309e-01 1.21092761e+00
-1.23512156e-01 7.20940292e-01 -8.58920217e-01 -1.54516071e-01
-1.12347327e-01 -1.58274069e-01 -5.56099832e-01 -6.27986714e-02
-1.45274594e-01 6.40168637e-02 -1.80843815e-01 1.05902803e+00
6.79488540e-01 7.42533743e-01 1.10303497e+00 -1.12630630e+00
-5.68154395e-01 4.64360386e-01 -2.91924700e-02 7.07424104e-01
4.99219090e-01 -3.70246530e-01 2.60587960e-01 -1.02961111e+00
-1.39330626e-01 1.37908542e+00 6.54110193e-01 2.24927887e-01
-1.00755417e+00 -4.05103385e-01 -2.53642231e-01 7.25368440e-01
-1.47926056e+00 -8.37800622e-01 8.50930631e-01 -4.70619857e-01
1.43500793e+00 6.42026305e-01 1.54375792e-01 6.79302156e-01
2.80501932e-01 3.90652269e-01 1.10313344e+00 -1.07827449e+00
5.00721335e-01 5.15315711e-01 4.54556614e-01 3.60950977e-01
-4.40483838e-01 2.93696731e-01 -5.26683152e-01 -4.14090186e-01
5.35246372e-01 -3.09441894e-01 -3.99078697e-01 1.33371070e-01
-9.81087506e-01 8.45273137e-01 -2.85555393e-01 7.37689376e-01
-3.71899962e-01 -4.22510654e-01 4.79013532e-01 4.34847742e-01
3.48541975e-01 -1.38952047e-01 -5.93196690e-01 -4.46810722e-01
-1.26451218e+00 -2.63961732e-01 1.09866190e+00 5.34684181e-01
3.66856664e-01 6.30376875e-01 3.97643559e-02 1.13868356e+00
5.88523209e-01 7.12178051e-01 1.29097891e+00 -4.63697284e-01
-1.20908665e-02 1.11216210e-01 -6.21208958e-02 -8.63087714e-01
-8.58029202e-02 -1.21846400e-01 -5.89408934e-01 2.78188705e-01
-7.42195845e-02 -1.56637192e-01 -7.05276549e-01 1.02760684e+00
1.78653091e-01 3.42540592e-01 3.92599046e-01 4.55334514e-01
8.47867966e-01 1.13815486e+00 -2.03009434e-02 -6.85215414e-01
1.14592302e+00 -8.97902250e-01 -1.13508809e+00 3.58306468e-01
1.11320786e-01 -1.39105296e+00 5.96709132e-01 7.36144245e-01
-7.30442107e-01 -8.86170685e-01 -1.10258520e+00 3.35508466e-01
-9.04532015e-01 4.82330412e-01 2.18582630e-01 1.46602499e+00
-9.72902238e-01 4.11565691e-01 -7.90608704e-01 -1.85987607e-01
-2.72748470e-01 4.47400659e-01 -6.30267262e-01 4.51178849e-01
-8.48889709e-01 1.14541841e+00 4.35065687e-01 -2.94561982e-01
-5.28852865e-02 -1.25378311e-01 -8.82153392e-01 2.42308810e-01
-4.09406900e-01 1.41479552e-01 1.20132446e+00 -1.02749968e+00
-2.24799991e+00 2.51605481e-01 -5.09836376e-01 -6.46242499e-01
-1.38839036e-01 -1.07615255e-01 -1.14435530e+00 3.07520479e-01
-6.87053800e-01 6.63309544e-02 1.62601185e+00 -6.86892748e-01
-5.93207717e-01 -3.25387985e-01 -7.87981927e-01 1.94987103e-01
-3.09514731e-01 7.92843997e-01 2.37172142e-01 -7.02551305e-01
2.73667723e-01 -5.44732511e-01 3.46954525e-01 -9.28493202e-01
-1.82641760e-01 -3.97987962e-01 1.14388013e+00 -1.27621758e+00
1.53470457e+00 -2.43521547e+00 -3.03756464e-02 1.57144591e-01
-7.68810511e-01 6.07641816e-01 3.89993846e-01 5.92122853e-01
-3.01659852e-01 -2.13702574e-01 -8.08629841e-02 -3.57038558e-01
-4.55779657e-02 -1.80632323e-02 -4.02310848e-01 5.69270074e-01
6.50879443e-02 3.34200025e-01 -2.50320017e-01 -5.04194498e-01
9.09019530e-01 9.27809477e-01 -9.29397494e-02 4.75792326e-02
5.49805760e-01 4.58796211e-02 2.32221559e-01 4.57155168e-01
8.12418282e-01 7.44414210e-01 -3.07334483e-01 -2.40221292e-01
-4.38655227e-01 3.43467653e-01 -1.52897072e+00 9.14656043e-01
-3.99089605e-01 9.35487688e-01 8.32025856e-02 -1.16808069e+00
1.02487564e+00 7.66013324e-01 4.59006913e-02 1.73075214e-01
2.37784028e-01 1.12972900e-01 2.18836609e-02 -4.73412752e-01
3.35671127e-01 -1.02839798e-01 5.35542727e-01 -1.95624143e-01
6.20885432e-01 -1.67331040e-01 -4.45963703e-02 -1.43116817e-01
4.81439143e-01 -4.44072694e-01 8.44734848e-01 -2.68600225e-01
1.37623334e+00 -4.65970278e-01 7.99762458e-03 1.82801008e-01
-5.52454770e-01 4.37280089e-01 2.14930959e-02 2.39844441e-01
-7.88934886e-01 -9.95232880e-01 -3.96130532e-01 1.17521143e+00
-6.69992208e-01 -2.52422661e-01 -7.92213500e-01 -2.55178630e-01
-1.80199727e-01 1.04275692e+00 -1.12217516e-01 2.83679999e-02
-3.84211570e-01 -6.90564096e-01 5.42746007e-01 3.63501400e-01
3.03163439e-01 -7.91558921e-01 -5.72195277e-02 1.63195610e-01
3.19348752e-01 -1.00963140e+00 -4.01859909e-01 5.05034149e-01
-7.75440395e-01 -6.19100988e-01 -6.98541403e-01 -9.64015603e-01
1.27138034e-01 1.46775305e-01 3.87417465e-01 -5.93224108e-01
-8.69970247e-02 5.99718451e-01 -7.17106760e-01 -5.60547590e-01
-7.92898118e-01 -3.38948905e-01 4.93303359e-01 2.49209821e-01
6.94780231e-01 -5.11475921e-01 -7.56896585e-02 2.50983417e-01
-7.11821556e-01 -5.84458590e-01 5.69145977e-01 7.48360217e-01
2.53565192e-01 6.51152313e-01 6.70755088e-01 -1.46260232e-01
9.51912880e-01 -2.25214601e-01 -4.56626803e-01 2.26238415e-01
-3.20927829e-01 -3.38294864e-01 7.47894645e-01 -6.77009284e-01
-1.27248549e+00 2.12145925e-01 -4.05387491e-01 -3.33211809e-01
-7.10311532e-01 4.74404097e-01 -2.74753213e-01 -3.69082272e-01
6.91628098e-01 1.06360054e+00 1.28801793e-01 -5.44015050e-01
4.18719918e-01 1.55431366e+00 5.82219481e-01 1.54513806e-01
6.23110294e-01 8.63167495e-02 -4.54047203e-01 -1.83913946e+00
2.12323461e-02 -1.00890362e+00 -9.87062454e-01 -1.06265642e-01
7.47645080e-01 -7.34306276e-01 -5.00006139e-01 7.58949757e-01
-9.86735284e-01 3.58123839e-01 1.04250833e-02 1.20986831e+00
-5.02486229e-01 8.10905874e-01 -6.54016078e-01 -1.53786194e+00
-4.45628017e-01 -1.06501710e+00 5.25437117e-01 4.10122126e-01
-2.40990967e-01 -9.69217300e-01 -4.19333726e-02 3.10413122e-01
7.53553689e-01 -3.61716688e-01 7.27162302e-01 -1.30731511e+00
3.01549166e-01 -5.07230520e-01 2.04696894e-01 1.25006855e+00
5.08330405e-01 5.51627398e-01 -1.22930717e+00 -2.11114988e-01
5.87879181e-01 3.85683209e-01 6.12316847e-01 6.41833544e-01
5.53450227e-01 -4.30750519e-01 3.18738222e-02 2.20760196e-01
1.03067803e+00 7.19570696e-01 5.20195484e-01 -1.09732121e-01
1.99703574e-01 2.66196787e-01 2.73940444e-01 3.15713704e-01
-1.01759486e-01 5.62110364e-01 -1.86287537e-01 5.61121643e-01
-1.09464794e-01 6.15342520e-02 7.59740293e-01 1.25040150e+00
-9.61505845e-02 1.33493051e-01 -6.46066308e-01 1.37933642e-01
-1.33316612e+00 -1.17477167e+00 -4.16419692e-02 2.42644358e+00
5.16608179e-01 3.28296423e-03 1.92798615e-01 9.98648345e-01
1.00507414e+00 -4.07385118e-02 1.39962479e-01 -9.39856946e-01
-2.47231692e-01 5.54700136e-01 4.56532091e-01 8.19653749e-01
-1.53894174e+00 7.01795697e-01 6.74862671e+00 1.28375614e+00
-1.48866951e+00 1.78052574e-01 1.87828958e-01 3.28361273e-01
5.47217190e-01 -3.48942161e-01 -7.39616275e-01 7.53332794e-01
1.56237674e+00 -1.55633658e-01 6.70122981e-01 1.18164778e+00
2.78584093e-01 -3.38643759e-01 -5.68220079e-01 1.46186936e+00
5.06097972e-01 -8.10302258e-01 -2.55889483e-02 -1.42401591e-01
3.75167906e-01 -8.54651928e-02 2.29875162e-01 4.62956876e-01
-1.98229566e-01 -9.65969324e-01 6.06496394e-01 3.26082408e-01
2.49180347e-01 -9.33710396e-01 7.72702992e-01 3.01556379e-01
-1.09985125e+00 -2.48210371e-01 -5.47733307e-01 -1.24386206e-01
-1.19877569e-02 5.46298802e-01 -1.03180158e+00 3.18747580e-01
2.99680293e-01 8.17026049e-02 -1.89563751e-01 1.29104662e+00
5.16818799e-02 9.77625191e-01 -3.84935200e-01 -1.52004510e-01
-3.22113484e-02 -3.20083648e-02 7.90985465e-01 1.68671727e+00
4.78032410e-01 9.42598432e-02 -2.37554342e-01 2.54038095e-01
5.52376151e-01 7.85872757e-01 -1.69147268e-01 -2.64765590e-01
6.44533396e-01 1.14383852e+00 -7.80658782e-01 -3.95088971e-01
-5.51627815e-01 1.01581144e+00 -3.27326447e-01 2.14166120e-01
-5.49569190e-01 -5.88454127e-01 6.79641962e-01 -2.90753335e-01
4.32440072e-01 -6.11089408e-01 -1.21335655e-01 -1.07482672e+00
-3.88762832e-01 -5.57141066e-01 1.93937153e-01 -4.12993729e-01
-1.20732009e+00 5.68567216e-01 -1.55826462e-02 -1.24368930e+00
-3.88135225e-01 -7.77161956e-01 -8.18917453e-01 1.45954359e+00
-1.38399136e+00 -8.36515307e-01 3.74690205e-01 7.40916729e-01
9.67060506e-01 -7.71118760e-01 1.05973756e+00 3.07516456e-01
-4.79694933e-01 5.40850997e-01 4.65745091e-01 -1.21402770e-01
4.79721576e-01 -1.27108896e+00 1.11610837e-01 9.24335539e-01
3.19783837e-01 7.03063905e-01 6.63615167e-01 -3.07848901e-01
-1.15375865e+00 -5.88038146e-01 1.06989574e+00 -1.48166090e-01
3.69093567e-01 1.05669968e-01 -9.17772174e-01 3.40881586e-01
2.14061230e-01 -2.18832925e-01 1.16813946e+00 -3.24051082e-01
-1.17373377e-01 1.63679764e-01 -1.47976398e+00 -1.33327639e-03
-2.58578300e-01 -8.00261915e-01 -9.43205893e-01 3.12452838e-02
4.33627576e-01 -1.18039019e-01 -8.64589870e-01 1.77290082e-01
3.13908577e-01 -1.11005974e+00 1.14598083e+00 -3.68763536e-01
-4.25542384e-01 -4.88251388e-01 -6.22251511e-01 -1.44612658e+00
-4.68080640e-01 -5.59199393e-01 -3.10694426e-01 1.47078359e+00
2.83330768e-01 -8.85164142e-01 3.34631920e-01 3.83256376e-01
-1.16228476e-01 -1.33541048e-01 -1.28361499e+00 -9.86308694e-01
-1.37935832e-01 -6.17865145e-01 2.03404531e-01 8.17403257e-01
5.94039083e-01 1.88421652e-01 -3.31197351e-01 4.62848395e-01
2.10345715e-01 -4.17929679e-01 3.34744245e-01 -1.14252019e+00
-2.94198155e-01 -6.07215464e-01 -1.03502703e+00 -7.42409766e-01
8.67149755e-02 -4.64629412e-01 -1.60055414e-01 -1.03199124e+00
-3.70498270e-01 2.30027482e-01 -4.45625335e-01 -1.10738002e-01
-5.44751361e-02 -2.26081908e-01 1.30019993e-01 5.64244837e-02
1.31582573e-01 4.60503519e-01 2.40574881e-01 -3.08420379e-02
-4.85589385e-01 6.35720313e-01 5.66181056e-02 8.23909104e-01
8.25247228e-01 -1.32269487e-01 -4.08104807e-01 5.62034905e-01
-7.57161558e-01 6.97264597e-02 -2.55639851e-02 -1.37691736e+00
4.13520098e-01 5.18271141e-02 4.99612272e-01 -7.24588275e-01
8.58638108e-01 -6.55994833e-01 -9.97706726e-02 5.14421105e-01
-1.31246895e-01 -4.20381427e-02 2.73775518e-01 4.39661562e-01
-7.14533508e-01 -6.49954736e-01 9.20376062e-01 1.34992987e-01
-9.19085026e-01 -4.81088340e-01 -1.05624223e+00 -8.26228797e-01
9.82366621e-01 -4.53314781e-01 -5.92428036e-02 -5.33220887e-01
-8.30220699e-01 -7.47282267e-01 1.47291468e-02 3.40112984e-01
7.52307892e-01 -1.00656784e+00 -5.53186357e-01 5.83194494e-01
-3.02632779e-01 -8.85112405e-01 4.26185519e-01 1.01372206e+00
-5.02020121e-01 8.91731799e-01 -1.90928102e-01 -2.37279698e-01
-1.92094660e+00 6.76318884e-01 1.34120747e-01 3.27460885e-01
9.72477645e-02 9.77405727e-01 -4.64047343e-01 -3.00408900e-01
4.24601316e-01 -4.75831091e-01 -8.96077096e-01 1.95583791e-01
9.91224110e-01 7.99474359e-01 4.18155849e-01 -1.28945386e+00
-4.14587885e-01 1.98410213e-01 1.71949849e-01 -4.25836563e-01
9.48101759e-01 -2.88109541e-01 -2.07723722e-01 5.94089389e-01
1.27780497e+00 3.18199366e-01 -5.60046017e-01 -1.10276125e-01
7.92438239e-02 -4.54461157e-01 4.65097696e-01 -7.20849931e-01
-3.44745427e-01 8.26298296e-01 9.95609939e-01 7.48877764e-01
1.05875075e+00 -4.73225474e-01 4.85213041e-01 4.11683828e-01
9.63120684e-02 -1.21365690e+00 -5.65494955e-01 5.09807348e-01
7.49729335e-01 -1.05388236e+00 -3.03952277e-01 -7.02371538e-01
-6.50429249e-01 1.57814229e+00 -1.51125237e-01 5.07614687e-02
1.37378478e+00 3.93757969e-01 1.13696672e-01 6.39859438e-01
-5.74298918e-01 -3.83994341e-01 5.13816833e-01 9.32930052e-01
6.76816940e-01 3.47259581e-01 -4.51687127e-01 7.10942686e-01
-5.27596831e-01 -3.51254970e-01 3.75918657e-01 8.82840395e-01
-9.64007676e-01 -1.00210869e+00 -1.00252390e+00 4.33692396e-01
-6.22622013e-01 -3.11743468e-01 -2.01836586e-01 4.95200567e-02
-4.95780744e-02 1.46100378e+00 -1.93268046e-01 -5.80320835e-01
6.69231936e-02 7.05307007e-01 3.05865437e-01 -4.36159134e-01
-4.69383061e-01 3.50666434e-01 -1.91856921e-01 1.39382049e-01
-4.42073256e-01 -9.29805338e-01 -1.08407414e+00 -1.90444514e-01
-6.86732113e-01 3.47815216e-01 1.54670393e+00 9.30153072e-01
-5.13731614e-02 1.77799582e-01 6.57111347e-01 -8.48741889e-01
-6.70072436e-01 -1.50087392e+00 -7.95595527e-01 3.35754193e-02
3.47784460e-01 -4.55265701e-01 -6.97282493e-01 5.52840114e-01] | [14.601326942443848, 5.972989082336426] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.