paperID
stringlengths
36
36
pwc_id
stringlengths
8
47
arxiv_id
stringlengths
6
16
nips_id
float64
url_abs
stringlengths
18
329
url_pdf
stringlengths
18
742
title
stringlengths
8
325
abstract
stringlengths
1
7.27k
authors
stringlengths
2
7.06k
published
stringlengths
10
10
conference
stringlengths
12
47
conference_url_abs
stringlengths
16
198
conference_url_pdf
stringlengths
27
199
proceeding
stringlengths
6
47
taskID
stringlengths
7
1.44k
areaID
stringclasses
688 values
embedding
stringlengths
9.26k
12.5k
umap_embedding
stringlengths
29
44
ccd7c7b3-bcb4-4d4a-ab85-4164f819e396
arrhythmia-classification-using-cgan
2202.00569
null
https://arxiv.org/abs/2202.00569v4
https://arxiv.org/pdf/2202.00569v4.pdf
Arrhythmia Classification using CGAN-augmented ECG Signals
ECG databases are usually highly imbalanced due to the abundance of Normal ECG and scarcity of abnormal cases. As such, deep learning classifiers trained on imbalanced datasets usually perform poorly, especially on minor classes. One solution is to generate realistic synthetic ECG signals using Generative Adversarial Networks (GAN) to augment imbalanced datasets. In this study, we combined conditional GAN with WGAN-GP and developed AC-WGAN-GP in 1D form for the first time to be applied on MIT-BIH Arrhythmia dataset. We investigated the impact of data augmentation on arrhythmia classification. We employed two models for ECG generation: (i) unconditional GAN; Wasserstein GAN with gradient penalty (WGAN-GP) is trained on each class individually; (ii) conditional GAN; one Auxiliary Classifier WGAN-GP (AC-WGAN-GP) model is trained on all classes and then used to generate synthetic beats in all classes. Two scenarios are defined for each case: (a) unscreened; all the generated synthetic beats were used, and (b) screened; only a portion of generated beats are selected and used, based on their Dynamic Time Warping (DTW) distance to a designated template. A state-of-the-art ResNet classifier (EcgResNet34) is trained on each of the augmented datasets and the performance metrics (precision/recall/F1-Score micro- and macro-averaged, confusion matrices, multiclass precision-recall curves) were compared with those of the unaugmented imbalanced case. We also used a simple metric Net Improvement. All the three metrics show consistently that net improvement (total and minor-class), unconditional GAN with raw generated data (not screened) creates the best improvements.
['John J. Prevost', 'Fatemeh Afghah', 'Edmond Adib']
2022-01-26
null
null
null
null
['arrhythmia-detection']
['medical']
[ 5.82353830e-01 2.73082405e-01 2.15592161e-01 -8.33806321e-02 -1.14943409e+00 -5.79942107e-01 3.27740967e-01 -7.71575943e-02 -1.50427386e-01 1.16550779e+00 1.31179824e-01 -1.98720500e-01 -8.17873776e-02 -8.12690020e-01 -3.57427895e-01 -9.76655185e-01 -1.85504347e-01 6.51166916e-01 -6.34133667e-02 -6.25727251e-02 -1.62908554e-01 3.46552461e-01 -1.05835795e+00 4.27679211e-01 9.82714415e-01 8.54772091e-01 -5.16993463e-01 9.21125710e-01 4.32618052e-01 7.21173763e-01 -1.12415195e+00 -3.72842818e-01 5.14340401e-01 -1.17906535e+00 -5.05837798e-01 -2.52083898e-01 -8.39527473e-02 -1.33251801e-01 -8.77789780e-02 5.84736526e-01 1.18640625e+00 -3.16037476e-01 7.19476283e-01 -1.32596874e+00 -1.54706165e-01 4.33619857e-01 -5.62357128e-01 3.05695295e-01 2.17614710e-01 5.51636159e-01 3.57381552e-01 -4.71107036e-01 7.01494157e-01 6.05087996e-01 1.00352728e+00 7.46343791e-01 -1.42477274e+00 -7.04180777e-01 -5.66860259e-01 -2.84463644e-01 -1.19085515e+00 2.70636678e-02 8.26703131e-01 -4.45061952e-01 6.64468586e-01 4.55527246e-01 9.41978812e-01 1.22395182e+00 4.89054173e-01 3.22110772e-01 1.40294302e+00 -3.13843042e-01 3.01982492e-01 -1.22920498e-02 -1.25807062e-01 2.41875798e-01 1.90024137e-01 3.03574502e-01 -3.09634596e-01 -3.44163328e-01 5.77431083e-01 -1.36199638e-01 -2.57056445e-01 5.19883148e-02 -1.26169252e+00 7.25676298e-01 1.98421836e-01 4.08647239e-01 -7.50604570e-01 -5.49212433e-02 6.52038753e-01 5.35018444e-01 4.15994257e-01 7.17487097e-01 -4.42565829e-01 -3.66997570e-01 -9.57251728e-01 4.28839415e-01 6.30691588e-01 3.98690343e-01 3.89388770e-01 4.26523060e-01 -6.73401654e-01 8.57054889e-01 -3.42463672e-01 3.71601820e-01 9.04827416e-01 -4.40479606e-01 4.37297821e-01 6.32722855e-01 -1.23528734e-01 -7.52150416e-01 -4.22078818e-01 -8.97197962e-01 -1.24320900e+00 2.19636217e-01 2.85798192e-01 -6.23995543e-01 -1.26537633e+00 1.79945147e+00 9.92214233e-02 1.26055256e-01 3.78527582e-01 6.69366956e-01 7.96698630e-01 5.96474349e-01 1.92939579e-01 -4.29542601e-01 1.00635588e+00 -4.17599857e-01 -6.17443740e-01 4.86236438e-02 7.05640256e-01 -6.90842330e-01 8.74645472e-01 3.76495481e-01 -1.20310152e+00 -7.32030392e-01 -1.18088651e+00 5.99275351e-01 -1.51754364e-01 1.91690594e-01 1.75562665e-01 9.68794584e-01 -9.71635699e-01 7.05728352e-01 -7.76852429e-01 -1.18575022e-01 7.10419416e-01 4.03884858e-01 -1.42686963e-01 8.38698968e-02 -1.37003195e+00 7.84577370e-01 2.09974706e-01 7.20327049e-02 -1.10113919e+00 -8.01580906e-01 -5.69899201e-01 -2.34635994e-01 -3.43824804e-01 -9.14513528e-01 6.28444552e-01 -1.35101068e+00 -1.42551529e+00 8.65905344e-01 4.40782249e-01 -6.29496634e-01 9.50661302e-01 1.31114135e-02 -4.65988547e-01 -6.40946701e-02 2.18965895e-02 5.14254451e-01 7.29288220e-01 -1.25341833e+00 -1.25492811e-02 -4.55316305e-01 -3.55359554e-01 2.37637967e-01 4.80897278e-02 -2.61533916e-01 2.18779176e-01 -1.02743936e+00 4.83983345e-02 -1.09635007e+00 -1.24696918e-01 -5.05294442e-01 -7.08245814e-01 3.34580362e-01 8.40362549e-01 -9.52290058e-01 1.22719049e+00 -2.05127430e+00 1.00982256e-01 4.32390809e-01 1.81003571e-01 6.35223746e-01 -1.39791563e-01 4.14777040e-01 -5.39166868e-01 3.46427649e-01 -6.73156381e-01 -5.17685339e-03 -5.15941978e-01 1.01774931e-01 -1.21773466e-01 3.74619097e-01 2.77331680e-01 9.60626781e-01 -7.97951043e-01 -1.97824791e-01 1.82515591e-01 5.47033370e-01 -4.37604338e-01 4.27693695e-01 2.62097657e-01 8.45056295e-01 -2.75820345e-01 4.98703480e-01 6.15002155e-01 2.16545597e-01 1.29291818e-01 -3.64015102e-01 4.19474393e-01 -1.34631157e-01 -1.07571363e+00 1.44395411e+00 -3.71845663e-01 3.79350275e-01 -6.04443789e-01 -9.60444868e-01 1.19053292e+00 6.29638314e-01 6.01890743e-01 -4.13955897e-01 4.81006540e-02 2.97198743e-01 5.51616609e-01 -3.97231758e-01 -2.22647339e-01 -4.53093261e-01 -9.50531214e-02 4.91600841e-01 1.73637226e-01 -4.02306437e-01 -2.03675851e-02 -1.64201539e-02 1.37398422e+00 2.62261122e-01 2.42694870e-01 -2.03885958e-01 3.08366776e-01 -1.27034113e-01 6.63371146e-01 7.84337699e-01 -1.38319284e-01 1.17913783e+00 8.64752650e-01 -6.88785255e-01 -1.03717375e+00 -1.11387229e+00 4.49103594e-04 2.84875900e-01 -3.41239572e-01 -1.54192716e-01 -9.99256313e-01 -7.61506319e-01 -3.68688732e-01 7.26381838e-01 -7.13990152e-01 -5.67977667e-01 -5.07365644e-01 -1.47705424e+00 1.05595958e+00 5.18595099e-01 5.51279664e-01 -1.40563416e+00 -8.91966581e-01 4.15675968e-01 -9.61100757e-02 -5.66755891e-01 -8.10887963e-02 2.70126611e-01 -9.53521490e-01 -1.11156964e+00 -8.31560254e-01 -4.17485952e-01 5.77686787e-01 -8.06358635e-01 1.24562311e+00 1.02366343e-01 -5.76196432e-01 -5.06888051e-03 -3.74079376e-01 -7.18527973e-01 -7.39321589e-01 -2.40609869e-02 -8.63083825e-02 2.54668891e-01 -6.51274109e-03 -8.66503596e-01 -9.45823252e-01 2.82101393e-01 -7.53929615e-01 3.74800786e-02 6.28352106e-01 1.17349422e+00 6.54042006e-01 -1.84310183e-01 1.16125882e+00 -1.27143884e+00 7.02798128e-01 -3.18233401e-01 -5.08761220e-02 -5.98195158e-02 -6.08672500e-01 -4.57208037e-01 6.54246390e-01 -5.24831653e-01 -6.48941159e-01 -3.51841934e-02 -3.96651626e-01 -3.77541184e-01 -1.76300146e-02 3.25713664e-01 -1.73920676e-01 2.33643264e-01 1.06495368e+00 2.93202996e-01 -2.03431826e-02 4.11421023e-02 -1.27249226e-01 5.53874493e-01 4.63880509e-01 -4.50160563e-01 6.58133209e-01 1.41518936e-01 7.71186203e-02 -5.26141703e-01 -4.28041160e-01 1.76377743e-01 -5.40184319e-01 -1.98394731e-01 1.02937400e+00 -7.24110901e-01 2.33867615e-02 7.93850899e-01 -7.49938428e-01 -5.57157099e-01 -8.72134209e-01 4.66689497e-01 -5.66249192e-01 -1.21299401e-01 -5.64428806e-01 -8.22738409e-01 -9.60705817e-01 -9.93230820e-01 8.75999033e-01 1.48320228e-01 -4.69022751e-01 -7.01290250e-01 3.45838517e-01 2.21595317e-01 5.93624294e-01 1.35670042e+00 9.68209386e-01 -9.33664143e-01 1.77878123e-02 -5.89102030e-01 1.92760155e-01 7.53603518e-01 2.35923916e-01 -1.38543993e-01 -1.06397915e+00 -3.10394078e-01 1.55802131e-01 -2.62126714e-01 3.95057261e-01 5.73488832e-01 1.30849004e+00 -2.17986926e-01 -2.39704877e-01 5.69487214e-01 1.41242254e+00 6.91260815e-01 1.19120741e+00 -9.65850651e-02 6.46575630e-01 1.74778402e-02 2.40676969e-01 1.49976373e-01 -1.73267201e-01 4.61044133e-01 1.48555979e-01 -6.38309121e-01 -2.92343736e-01 -2.12679490e-01 7.94113129e-02 6.55274391e-01 -4.72650617e-01 -4.30543363e-01 -9.66862142e-01 4.78812933e-01 -1.35830927e+00 -9.34482992e-01 -4.24045362e-02 2.43099141e+00 8.84747922e-01 4.28934127e-01 2.85192877e-01 7.21845865e-01 7.06452131e-01 -9.81682837e-02 -5.50737858e-01 -4.31262612e-01 -3.53038728e-01 8.12527657e-01 1.01938687e-01 -2.50114575e-02 -9.02192652e-01 3.10135365e-01 5.50032330e+00 5.98809421e-01 -1.31597674e+00 3.34838301e-01 1.42737806e+00 -2.23616492e-02 -7.14780688e-02 -1.77628681e-01 -7.71609545e-02 6.42961860e-01 1.03170824e+00 2.49948911e-03 1.93589732e-01 4.67307389e-01 4.82394509e-02 6.18668534e-02 -9.63947594e-01 8.74822259e-01 -4.49438915e-02 -1.07467127e+00 2.48914305e-03 -8.81245136e-02 1.03013110e+00 -1.82614177e-01 -1.21661440e-01 4.16254401e-01 4.98471372e-02 -1.19264030e+00 2.76216120e-01 5.84246218e-01 1.48792148e+00 -8.91734362e-01 1.29382050e+00 1.86937258e-01 -6.86666965e-01 9.16403979e-02 7.20363855e-02 2.17828140e-01 1.11713126e-01 8.32115471e-01 -7.53203571e-01 7.76277006e-01 5.15508413e-01 3.58699352e-01 -4.66839403e-01 7.66104996e-01 -1.62365809e-02 1.06102240e+00 -2.14010045e-01 3.41906279e-01 -1.26108184e-01 -1.61317378e-01 6.81365192e-01 1.01042867e+00 4.86834824e-01 9.97936875e-02 -7.48097450e-02 6.99201822e-01 7.86621938e-04 5.59982061e-02 -5.92633188e-01 2.85732359e-01 2.90092647e-01 1.23370790e+00 -8.27439964e-01 -3.72414380e-01 6.65650591e-02 8.76332581e-01 -2.59635419e-01 2.23063573e-01 -9.59908009e-01 -5.56913793e-01 1.43920824e-01 3.76739323e-01 -1.78441808e-01 5.55240989e-01 -6.30560040e-01 -7.33961523e-01 -6.24077655e-02 -1.14062452e+00 6.42882109e-01 -7.67504632e-01 -1.34770834e+00 1.12612736e+00 -1.32149279e-01 -1.48011625e+00 -3.50268006e-01 1.34781469e-02 -9.53234971e-01 1.18242478e+00 -8.33496153e-01 -1.11744404e+00 -5.48708975e-01 3.57599586e-01 4.22960311e-01 -3.49319786e-01 1.19182384e+00 3.80763590e-01 -3.21478814e-01 8.26711357e-01 -3.22373509e-01 3.53172451e-01 4.73789901e-01 -1.25120330e+00 1.85326725e-01 7.23752737e-01 -1.42894998e-01 2.66187191e-01 5.84981203e-01 -6.96637213e-01 -8.50637138e-01 -1.43440092e+00 5.42557478e-01 -4.11268830e-01 -6.10865429e-02 -2.20317096e-01 -7.83256054e-01 4.91164327e-01 7.35835582e-02 1.81790963e-01 6.78564250e-01 -4.00882363e-01 1.72083765e-01 -3.11915398e-01 -1.64776349e+00 4.09634352e-01 7.25295544e-01 -1.47202820e-01 -4.54739243e-01 3.33712846e-01 3.22434932e-01 -7.32260406e-01 -1.17008924e+00 8.36138844e-01 5.57194889e-01 -1.04754996e+00 7.37483323e-01 -5.46391845e-01 5.41347444e-01 -4.06711996e-01 7.69046843e-02 -1.64369369e+00 1.22518703e-01 -6.92900121e-01 2.02151075e-01 1.22359383e+00 5.90694249e-01 -8.92154694e-01 6.44549072e-01 2.21929833e-01 -2.54909664e-01 -1.22467887e+00 -9.36930537e-01 -5.19065976e-01 1.38539672e-01 -6.05605245e-02 6.54489160e-01 9.68415618e-01 -3.47689509e-01 1.78380370e-01 -3.95869195e-01 -2.11905465e-01 3.17137063e-01 -1.46453843e-01 6.51568115e-01 -9.58055556e-01 -3.41952890e-01 -9.79915783e-02 -6.96046650e-01 1.14939690e-01 -3.39304924e-01 -8.68190169e-01 -2.85145402e-01 -1.36747360e+00 6.78713620e-02 -7.09416091e-01 -4.71974522e-01 4.94537175e-01 -3.57121050e-01 8.84375811e-01 9.88208577e-02 8.03921968e-02 2.82895952e-01 1.50805622e-01 1.12252104e+00 -2.48261690e-02 -5.37276387e-01 3.45819890e-01 -6.58306897e-01 3.65752012e-01 9.78328824e-01 -6.37133718e-01 -5.09992361e-01 2.62669295e-01 -5.18658571e-02 4.58048791e-01 2.97025114e-01 -1.55457270e+00 -4.27798003e-01 3.67645085e-01 9.10957575e-01 -4.16489810e-01 1.28747180e-01 -4.10577565e-01 8.84442151e-01 8.27302933e-01 -3.16466928e-01 2.66838700e-01 2.74772793e-01 1.64426088e-01 -2.60205328e-01 6.32762387e-02 9.99047816e-01 -7.37445205e-02 2.34648734e-01 2.67941386e-01 -2.37094149e-01 2.97255129e-01 1.12217522e+00 -3.19782764e-01 -1.34606883e-01 -4.56996411e-01 -1.06356645e+00 -2.49108016e-01 2.16265753e-01 1.21073993e-02 4.45996195e-01 -1.28350246e+00 -1.11443734e+00 3.05127293e-01 -7.59160668e-02 -4.47669160e-03 5.68228960e-01 9.37013447e-01 -7.14518487e-01 -2.33267814e-01 -4.30982590e-01 -7.27044404e-01 -1.07936680e+00 3.39510381e-01 7.64655948e-01 -7.67852843e-01 -5.70997119e-01 6.74495697e-01 1.26995429e-01 -3.70784461e-01 -1.58528700e-01 -1.05690263e-01 -1.30377427e-01 4.35429215e-02 2.01084688e-01 3.76283675e-01 4.56800431e-01 -3.44491810e-01 -2.05009133e-01 5.15559554e-01 3.49200428e-01 6.82113618e-02 1.40160596e+00 4.94370490e-01 -2.37696953e-02 3.60202223e-01 9.32309926e-01 -1.10264398e-01 -1.06344712e+00 4.16579425e-01 -4.91295218e-01 -1.26155019e-01 -2.30913639e-01 -1.28319228e+00 -1.46860027e+00 7.71331191e-01 1.19609380e+00 2.20479473e-01 1.64617729e+00 -5.27343810e-01 5.94071865e-01 -3.93305629e-01 1.73985571e-01 -6.61160707e-01 -9.48641300e-02 -1.47099048e-01 9.25544381e-01 -6.68561578e-01 4.33208309e-02 -1.35099784e-01 -9.90828812e-01 9.11946595e-01 5.17629147e-01 -3.18396389e-01 5.29911399e-01 3.37642074e-01 3.76346737e-01 -1.89166754e-01 -4.40598130e-01 3.90163511e-01 1.70043886e-01 9.04824555e-01 4.64533567e-01 7.94087350e-02 -5.55933654e-01 7.39794850e-01 -4.44547474e-01 2.48403147e-01 4.98147070e-01 8.10818315e-01 5.31525493e-01 -9.63106930e-01 -1.37276188e-01 1.18494415e+00 -7.73686826e-01 -6.07895553e-02 -7.76845515e-02 7.70251930e-01 4.96699035e-01 5.75033724e-01 -2.83907447e-02 -4.85260516e-01 4.28102314e-01 3.14392060e-01 3.00705701e-01 -5.16787767e-01 -1.20951259e+00 -3.17375027e-02 9.63435695e-02 -2.60512948e-01 -2.14413241e-01 -7.76374042e-01 -9.29417253e-01 2.22666800e-01 -2.32645825e-01 1.68382958e-01 5.11050880e-01 5.98552167e-01 4.17029977e-01 9.67271328e-01 7.12715566e-01 -6.15752816e-01 -4.66820210e-01 -1.34284222e+00 -5.76748490e-01 5.99993289e-01 1.37191072e-01 -3.80053639e-01 -5.95106959e-01 2.10777536e-01]
[14.278203010559082, 3.129563093185425]
cbb8707c-39b4-4a61-bda6-caf98f96f894
nature-language-reasoning-a-survey
2303.14725
null
https://arxiv.org/abs/2303.14725v2
https://arxiv.org/pdf/2303.14725v2.pdf
Natural Language Reasoning, A Survey
This survey paper proposes a clearer view of natural language reasoning in the field of Natural Language Processing (NLP), both conceptually and practically. Conceptually, we provide a distinct definition for natural language reasoning in NLP, based on both philosophy and NLP scenarios, discuss what types of tasks require reasoning, and introduce a taxonomy of reasoning. Practically, we conduct a comprehensive literature review on natural language reasoning in NLP, mainly covering classical logical reasoning, natural language inference, multi-hop question answering, and commonsense reasoning. The paper also identifies and views backward reasoning, a powerful paradigm for multi-step reasoning, and introduces defeasible reasoning as one of the most important future directions in natural language reasoning research. We focus on single-modality unstructured natural language text, excluding neuro-symbolic techniques and mathematical reasoning.
['Benyou Wang', 'Prayag Tiwari', 'Hongbo Zhang', 'Fei Yu']
2023-03-26
null
null
null
null
['multi-hop-question-answering', 'philosophy', 'mathematical-reasoning', 'logical-reasoning']
['knowledge-base', 'miscellaneous', 'natural-language-processing', 'reasoning']
[ 2.05752671e-01 1.09973335e+00 -3.98677528e-01 -5.90374887e-01 -9.02146846e-02 -9.42222297e-01 7.58863628e-01 5.42381525e-01 -4.91200507e-01 9.95268106e-01 5.53930700e-01 -8.72233272e-01 -7.03220248e-01 -1.12038398e+00 -3.89342844e-01 -2.03282475e-01 1.85445994e-01 6.98429763e-01 1.77659437e-01 -6.41484857e-01 5.35554945e-01 6.19558871e-01 -1.01594126e+00 6.34160161e-01 9.54659283e-01 5.77572346e-01 -2.47785270e-01 4.43130493e-01 -8.47596169e-01 2.07374215e+00 -3.47944587e-01 -1.08243775e+00 -2.05624864e-01 -3.64872664e-01 -1.87504900e+00 -4.57219630e-01 -9.09670740e-02 -3.20339948e-01 -1.07279748e-01 1.28815937e+00 6.47174120e-02 3.19304049e-01 4.58787560e-01 -1.46514046e+00 -9.83890533e-01 1.23169231e+00 8.44781771e-02 2.03265116e-01 1.27205443e+00 2.12196317e-02 9.99935389e-01 -4.32527363e-01 7.48838484e-01 1.83051288e+00 5.58612585e-01 8.89237225e-01 -8.20047975e-01 -2.14522243e-01 3.41955066e-01 6.79831922e-01 -9.75749373e-01 -9.08700228e-02 5.66442788e-01 -4.23730999e-01 1.42267847e+00 4.38305914e-01 6.58144534e-01 6.82358265e-01 5.81520021e-01 9.63965416e-01 1.12994313e+00 -8.91566813e-01 5.14867961e-01 1.56295463e-01 7.71704853e-01 8.50929499e-01 3.15460712e-01 -8.94707739e-02 -6.09437466e-01 -4.65053499e-01 4.94482696e-01 -4.94825542e-01 -3.09162550e-02 -8.47798064e-02 -1.20907950e+00 8.20159733e-01 -5.74106956e-03 5.31507552e-01 -4.14946258e-01 8.60713869e-02 6.04001284e-01 3.60276759e-01 -3.08528692e-01 4.87206578e-01 -5.92339814e-01 2.91319098e-02 -6.40702307e-01 5.39554060e-01 1.23708606e+00 6.50543690e-01 7.37433508e-02 -3.24461311e-01 -2.31947094e-01 3.67589951e-01 6.77234650e-01 5.88532150e-01 3.01070839e-01 -1.68752992e+00 4.20825601e-01 5.65587163e-01 1.80225775e-01 -1.06162357e+00 -4.86208439e-01 4.37422872e-01 -5.24630308e-01 1.96290046e-01 4.86270130e-01 -1.00014322e-01 -9.60302912e-03 1.58186650e+00 3.66276383e-01 -6.56951427e-01 7.63686955e-01 6.87435210e-01 1.06462181e+00 4.38107580e-01 4.78808552e-01 -4.97604847e-01 1.98744965e+00 -9.07523692e-01 -1.11739457e+00 -2.16059864e-01 4.31124449e-01 -1.70229971e-01 9.70390856e-01 5.69028556e-01 -1.55683482e+00 2.70747632e-01 -4.62689787e-01 -8.15539241e-01 -7.89895833e-01 -2.84858525e-01 1.02012050e+00 3.19886059e-01 -1.10311782e+00 1.02269486e-01 -3.45172882e-01 -4.99508828e-01 4.47988182e-01 4.67289574e-02 -6.99410588e-02 -3.74866366e-01 -1.63218939e+00 1.38938963e+00 9.06403720e-01 4.95396145e-02 -2.26098448e-01 -5.93820393e-01 -1.02666080e+00 5.27273305e-02 8.52656662e-01 -1.21917212e+00 1.29980206e+00 -4.87044901e-01 -1.51080024e+00 1.41619503e+00 -4.41080660e-01 -9.24767494e-01 5.08584797e-01 -4.10259217e-02 -6.50017321e-01 7.66938925e-01 1.60227582e-01 5.22254407e-01 -3.29121202e-03 -8.51624668e-01 -4.42136049e-01 -4.10108328e-01 8.90057921e-01 2.42770135e-01 4.06323284e-01 5.12877226e-01 1.04104385e-01 -3.02479476e-01 8.62941146e-02 -2.52922624e-01 -2.20617801e-01 6.53912604e-01 -2.71901131e-01 -7.62926280e-01 7.22822994e-02 -5.14983535e-01 9.51604545e-01 -1.69621789e+00 -6.58951476e-02 1.08269371e-01 4.23812449e-01 -1.99351966e-01 1.82853818e-01 6.10253632e-01 -4.53251451e-02 1.21825188e-01 -2.92905599e-01 7.25936115e-01 4.99591112e-01 6.93389595e-01 -1.00325429e+00 -1.19712278e-01 3.33312303e-02 1.37962306e+00 -1.31748724e+00 -1.07265246e+00 2.88528651e-01 9.35800225e-02 -4.52757806e-01 -3.93769860e-01 -5.84436178e-01 1.08262442e-01 -7.85969734e-01 7.21058786e-01 4.76966262e-01 -2.80196816e-01 4.98423487e-01 1.17293475e-02 -4.18251641e-02 4.75250155e-01 -8.56325686e-01 1.43647563e+00 -3.00654024e-01 4.27061200e-01 -1.01204306e-01 -1.00689864e+00 5.05923688e-01 7.27046967e-01 -4.17256430e-02 -6.30236268e-01 6.53203279e-02 3.61955538e-02 -8.74337405e-02 -1.19529486e+00 -4.21044081e-02 -8.64044964e-01 -2.34549269e-02 7.24050701e-01 -1.64035112e-01 -5.89718699e-01 6.23442829e-01 3.53248328e-01 9.01044428e-01 1.83094114e-01 1.28117585e+00 -5.16556442e-01 1.25388741e+00 5.88572383e-01 2.78665006e-01 9.30806935e-01 -4.86641645e-01 -4.26338702e-01 6.92683935e-01 -7.68883944e-01 -2.35139713e-01 -1.42338717e+00 -6.64979219e-02 1.07138526e+00 1.71391845e-01 -1.95829406e-01 -6.15246832e-01 -3.21080178e-01 -8.45577717e-02 1.45874894e+00 -4.07331407e-01 5.34771197e-03 -3.19990128e-01 -5.49899817e-01 9.86962259e-01 4.79496598e-01 7.10232675e-01 -1.70526814e+00 -8.51922035e-01 -6.72783032e-02 -6.32933736e-01 -1.51613712e+00 6.99514091e-01 -1.02912880e-01 -1.10367167e+00 -1.44713557e+00 -1.17857575e-01 -7.32371867e-01 7.13857114e-01 -2.70883381e-01 1.16993082e+00 3.09333861e-01 8.07063505e-02 6.96871579e-01 -2.53514290e-01 -6.10774100e-01 -4.56722230e-01 -9.05068219e-01 1.36524975e-01 -8.57158005e-01 9.63175833e-01 -4.09198046e-01 -2.90756747e-02 -3.72853011e-01 -8.19557965e-01 -6.53252282e-05 1.83451101e-01 4.81387466e-01 2.72458613e-01 6.71017528e-01 2.85965890e-01 -8.15601170e-01 1.30563247e+00 -3.44296783e-01 -2.14035735e-01 8.61395597e-01 -3.85019898e-01 2.56663859e-01 8.33992243e-01 1.00203201e-01 -1.65334630e+00 -8.00140202e-01 -1.51749521e-01 5.41805446e-01 -4.42760736e-01 6.49275064e-01 -4.16513458e-02 5.72199747e-02 6.89979136e-01 4.30543393e-01 -2.06983536e-01 4.43994142e-02 7.07665026e-01 9.18519199e-02 6.71234608e-01 -1.30545700e+00 6.59225702e-01 8.37732792e-01 1.54746696e-01 -5.84360898e-01 -1.24343383e+00 -3.37206502e-03 -4.95412588e-01 -3.07342317e-03 1.00147069e+00 -5.35902441e-01 -1.52302575e+00 -1.91183329e-01 -1.39745438e+00 -4.38923180e-01 -7.69396305e-01 4.89525437e-01 -1.01494980e+00 7.34627604e-01 -9.73565996e-01 -1.28739393e+00 -6.66930676e-01 -5.66446304e-01 6.94358766e-01 1.11069195e-01 -7.71948516e-01 -1.32731843e+00 -6.52468130e-02 9.50128496e-01 -5.62600084e-02 9.18913558e-02 1.66090024e+00 -7.51862347e-01 6.70205150e-03 3.08064908e-01 -3.48867387e-01 -4.21206541e-02 -2.37235531e-01 -1.32940471e-01 -5.86724699e-01 6.68793678e-01 4.53098327e-01 -6.23878896e-01 8.41575637e-02 3.17699790e-01 9.77883339e-01 -5.48116386e-01 -1.24443136e-01 -3.09533864e-01 1.29266727e+00 3.77760530e-01 6.81209445e-01 4.85680610e-01 -1.99371859e-01 1.19011426e+00 7.43086576e-01 1.62195504e-01 8.50613654e-01 -2.59655267e-01 -1.21083945e-01 5.94650090e-01 2.29396373e-01 -1.56591594e-01 6.92540333e-02 4.25354481e-01 -4.87444162e-01 6.33975416e-02 -1.35580552e+00 2.68096298e-01 -1.92897189e+00 -1.44997871e+00 -1.02210604e-01 1.23266339e+00 1.20743656e+00 5.23796305e-02 -2.74061620e-01 3.42074871e-01 4.39990461e-01 -2.51028836e-01 -3.76164109e-01 -9.98050630e-01 -3.10074151e-01 7.38514289e-02 -3.73678386e-01 7.35165536e-01 -5.41797101e-01 1.16294754e+00 8.03025246e+00 5.33018768e-01 -3.65324408e-01 -9.97897685e-02 -1.79304089e-02 1.82814449e-01 -4.74764198e-01 9.69526619e-02 -2.47741237e-01 -1.38990879e-01 7.24016368e-01 -4.20016944e-01 6.93927467e-01 5.08452356e-01 3.24704438e-01 -4.33785200e-01 -1.34323084e+00 8.35366070e-01 1.23040721e-01 -1.52648234e+00 5.85576773e-01 -4.55756813e-01 2.44365931e-01 -3.98096293e-01 -6.10930085e-01 3.35687310e-01 7.21616030e-01 -8.18798482e-01 8.90341163e-01 6.85620368e-01 -9.51569304e-02 -4.02553350e-01 7.25997031e-01 8.00413728e-01 -7.80649006e-01 -4.83796239e-01 -2.86222249e-01 -7.73628712e-01 4.26603526e-01 8.73290062e-01 -2.15013117e-01 7.01163292e-01 7.18974769e-01 2.38991633e-01 -1.09855369e-01 4.98354524e-01 -9.59554076e-01 9.51487385e-03 -3.20891500e-01 -4.03857082e-01 1.00069031e-01 -2.66541213e-01 3.95052493e-01 1.12465417e+00 -4.45672452e-01 8.87642443e-01 -1.98480010e-01 1.21169710e+00 4.07486141e-01 -2.40697339e-02 -4.88381654e-01 -2.15077102e-01 4.21885759e-01 5.64876556e-01 -7.28773832e-01 -7.90303707e-01 -4.39265817e-01 6.31739318e-01 2.67988145e-01 4.86230254e-01 -7.67232776e-01 -1.50565907e-01 2.24796504e-01 -4.41014677e-01 -4.31127340e-01 -1.26466826e-01 -5.48487544e-01 -1.33855045e+00 -1.86483823e-02 -8.26950073e-01 9.45891798e-01 -1.44283402e+00 -1.51772058e+00 1.99990600e-01 5.70695937e-01 -4.83809590e-01 -2.63077199e-01 -1.12348747e+00 -5.18721998e-01 5.11556566e-01 -1.61865664e+00 -9.43886042e-01 1.80885449e-01 6.98242962e-01 2.41434768e-01 1.56914353e-01 1.26379430e+00 -2.02101678e-01 -5.52087314e-02 -1.29967004e-01 -6.79637790e-01 2.90025175e-01 6.99371919e-02 -1.03474557e+00 -3.74751836e-02 6.29203975e-01 -2.79072940e-01 1.24206078e+00 7.56062508e-01 -5.08299649e-01 -1.54709363e+00 -5.04461825e-01 1.44187212e+00 -4.32322681e-01 1.01415813e+00 1.85734451e-01 -5.18316984e-01 1.02692139e+00 2.13674143e-01 -3.53058934e-01 1.08054864e+00 -4.74803858e-02 -4.30690795e-01 4.00457472e-01 -1.85525799e+00 1.19545746e+00 1.07939720e+00 -8.16500127e-01 -1.79608905e+00 6.50234640e-01 8.73600960e-01 -1.64942667e-01 -9.12546277e-01 5.52491322e-02 6.79359794e-01 -6.57520831e-01 1.22118616e+00 -1.08468568e+00 5.30693352e-01 -4.41992223e-01 -2.16372624e-01 -4.01785254e-01 -2.63666630e-01 -3.29095453e-01 -4.03843611e-01 7.62175322e-01 3.26813877e-01 -1.02148116e+00 3.58400643e-01 1.52556503e+00 4.79010075e-01 -6.96622550e-01 -7.63377190e-01 -4.61798906e-01 5.02386928e-01 -8.26395035e-01 4.88060087e-01 1.16280735e+00 1.13221920e+00 4.15747702e-01 3.93902361e-01 -1.69126485e-02 6.48862302e-01 4.23920602e-01 1.14802375e-01 -1.27600002e+00 -1.53438464e-01 -5.75505257e-01 -1.70580700e-01 -7.45034635e-01 6.79449558e-01 -1.07104743e+00 -1.90660492e-01 -2.27336407e+00 2.11050048e-01 4.18172598e-01 2.78971553e-01 9.23905611e-01 4.03509021e-01 -2.71838039e-01 8.05776417e-02 -1.13992982e-01 -4.47799772e-01 8.66427571e-02 1.60561931e+00 -2.39536285e-01 1.81629553e-01 -4.28498715e-01 -1.05966973e+00 1.38786602e+00 8.46412539e-01 -1.79889053e-01 -7.00277030e-01 -4.26230490e-01 1.10728848e+00 2.27831274e-01 6.30735755e-01 -3.75436157e-01 4.90604252e-01 -1.02180541e+00 2.86502931e-02 -4.77412134e-01 9.73137021e-02 -1.04364860e+00 -4.70405430e-01 8.31996441e-01 -7.09717751e-01 -2.43384629e-01 1.67901769e-01 5.00853360e-02 -8.75117555e-02 -7.36766040e-01 4.91784453e-01 -5.74090421e-01 -1.08493125e+00 -5.03246963e-01 -8.30032825e-01 5.47876716e-01 1.05999756e+00 -5.21752872e-02 -5.55432916e-01 -9.00586247e-02 -1.12765944e+00 6.31498933e-01 -2.33228385e-01 -3.96452062e-02 7.30238676e-01 -8.70556712e-01 -3.40400636e-01 -6.61060572e-01 -1.47774443e-01 -1.60386384e-01 2.61591941e-01 1.01190877e+00 -9.81637955e-01 8.37100744e-01 -9.53546464e-02 1.57379642e-01 -9.03175056e-01 9.50438440e-01 4.88627434e-01 -2.73623168e-01 -9.89582062e-01 5.58519959e-01 4.84226421e-02 -7.54657865e-01 1.84034079e-01 -7.44000375e-01 -4.96273100e-01 -3.82778287e-01 9.69537437e-01 2.40567356e-01 -4.48150456e-01 -2.95244336e-01 -9.43855166e-01 5.76094925e-01 3.71260971e-01 -3.29897970e-01 8.13452601e-01 -3.38182986e-01 -1.10445237e+00 7.34514117e-01 3.75394106e-01 -3.97482365e-01 2.18524933e-01 -2.58904159e-01 3.04727554e-01 1.52588978e-01 -3.53959918e-01 -1.25663829e+00 -1.93651289e-01 6.46017671e-01 -3.57012510e-01 1.61176488e-01 9.87841070e-01 3.62566650e-01 5.64434946e-01 1.41501677e+00 7.62044072e-01 -1.41323173e+00 -4.30734366e-01 6.56887174e-01 1.12836170e+00 -9.31865275e-01 4.46656585e-01 -7.68667936e-01 -6.38156950e-01 1.39377904e+00 2.88287312e-01 5.44200279e-02 7.67166913e-01 5.88676870e-01 1.67292971e-02 -6.49565160e-01 -7.35623002e-01 3.45315635e-02 -1.41112596e-01 6.62086427e-01 4.22495782e-01 3.65600698e-02 -7.69780457e-01 7.39063263e-01 -7.67970800e-01 7.44879484e-01 3.82042438e-01 1.37611008e+00 -2.98051327e-01 -7.86594689e-01 -7.44279802e-01 8.14593490e-03 -4.38352257e-01 -2.47669503e-01 -7.40248203e-01 7.38475144e-01 7.54672587e-02 1.30964005e+00 -1.86485320e-01 4.37279254e-01 1.33821547e-01 3.86230707e-01 9.98994410e-01 -3.00293028e-01 -4.82446313e-01 -9.57616866e-01 3.69954616e-01 -5.74418962e-01 -1.07823229e+00 -3.69082958e-01 -2.21787310e+00 -5.08093536e-01 2.45070055e-01 3.45131278e-01 9.71808732e-02 1.74047291e+00 -3.26019347e-01 3.70533466e-01 -6.16789818e-01 1.02673560e-01 -3.92993152e-01 -1.72346041e-01 -3.33585203e-01 4.75040674e-02 1.45624995e-01 -3.06995600e-01 -2.10636631e-01 2.83675104e-01]
[9.180093765258789, 7.12153434753418]
f1cb92e4-ec87-49c6-9faf-bf1eac56b115
utility-oriented-underwater-image-quality
2205.03574
null
https://arxiv.org/abs/2205.03574v1
https://arxiv.org/pdf/2205.03574v1.pdf
Utility-Oriented Underwater Image Quality Assessment Based on Transfer Learning
The widespread image applications have greatly promoted the vision-based tasks, in which the Image Quality Assessment (IQA) technique has become an increasingly significant issue. For user enjoyment in multimedia systems, the IQA exploits image fidelity and aesthetics to characterize user experience; while for other tasks such as popular object recognition, there exists a low correlation between utilities and perceptions. In such cases, the fidelity-based and aesthetics-based IQA methods cannot be directly applied. To address this issue, this paper proposes a utility-oriented IQA in object recognition. In particular, we initialize our research in the scenario of underwater fish detection, which is a critical task that has not yet been perfectly addressed. Based on this task, we build an Underwater Image Utility Database (UIUD) and a learning-based Underwater Image Utility Measure (UIUM). Inspired by the top-down design of fidelity-based IQA, we exploit the deep models of object recognition and transfer their features to our UIUM. Experiments validate that the proposed transfer-learning-based UIUM achieves promising performance in the recognition task. We envision our research provides insights to bridge the researches of IQA and computer vision.
['Patrick Le Callet', 'Ke Gu', 'Tiesong Zhao', 'Honggang Liao', 'Rongfu Lin', 'Weiling Chen']
2022-05-07
null
null
null
null
['fish-detection']
['computer-vision']
[ 1.20024905e-01 -2.30033368e-01 4.04252827e-01 -4.82484519e-01 -5.79557121e-01 -1.37736484e-01 2.95012444e-01 1.24693848e-01 -4.96136874e-01 2.59193987e-01 2.07833722e-01 3.08228843e-02 -3.66629392e-01 -1.06929207e+00 -6.20164633e-01 -7.45866060e-01 -1.73058376e-01 -3.33022743e-01 1.31899148e-01 -2.45520741e-01 5.37873983e-01 2.59666145e-02 -1.86202896e+00 4.55157757e-02 1.02715552e+00 1.54541850e+00 5.31200230e-01 5.45183420e-01 -1.66863918e-01 5.47660828e-01 -4.21998292e-01 -5.52760482e-01 1.78036958e-01 -5.56485355e-01 -5.47231495e-01 -5.28100394e-02 1.77084729e-01 -6.25656009e-01 -2.98106968e-01 1.30298150e+00 7.10974514e-01 2.46910974e-01 7.40844190e-01 -1.34579539e+00 -1.12324703e+00 3.23313266e-01 -3.08140814e-01 1.80720109e-02 2.53472030e-01 1.15719162e-01 1.18005872e+00 -1.00457621e+00 1.23017021e-01 1.39074528e+00 5.38375795e-01 4.31249887e-01 -5.22751689e-01 -4.44888949e-01 1.29376790e-02 5.73049664e-01 -1.08793306e+00 -1.54015332e-01 6.14695668e-01 -4.13689256e-01 3.03909510e-01 2.52574146e-01 1.03772020e+00 4.99833107e-01 -1.34053864e-02 1.06865895e+00 1.21327293e+00 -2.16677383e-01 5.19134760e-01 2.55067367e-02 -1.46522909e-01 4.56371635e-01 1.91636741e-01 -1.21246334e-02 -5.15109301e-01 2.48233005e-01 8.52522910e-01 1.88044101e-01 -4.89231616e-01 -1.41244635e-01 -7.00044513e-01 8.05790603e-01 7.91681051e-01 -1.18060812e-01 -2.51280874e-01 -2.65630446e-02 2.99900472e-01 4.17699963e-01 2.28728101e-01 3.03366750e-01 -1.05494363e-02 -3.29134285e-01 -5.85134149e-01 -8.21103081e-02 6.83261514e-01 7.19173491e-01 8.48675847e-01 1.68896735e-01 -6.61050081e-02 9.64255929e-01 6.81900561e-01 6.28594279e-01 6.51023448e-01 -1.02146041e+00 -1.70432508e-01 7.08257556e-01 7.43818358e-02 -1.06507361e+00 -2.46463925e-01 -3.91700238e-01 -5.80048263e-01 5.20915449e-01 6.65109605e-02 2.70628422e-01 -6.18302286e-01 1.50350404e+00 6.88078851e-02 1.35630757e-01 4.65422601e-01 1.35866773e+00 1.21903014e+00 8.39701116e-01 9.44223404e-02 -1.67558730e-01 1.30436575e+00 -7.81019032e-01 -5.79689443e-01 1.91419408e-01 2.41481096e-01 -6.01028085e-01 1.48261583e+00 5.08894920e-01 -9.15629208e-01 -5.32332003e-01 -1.27411580e+00 -1.22666854e-04 -2.27055073e-01 -6.75585717e-02 5.65354049e-01 7.77457535e-01 -1.06682551e+00 5.31517565e-01 -5.26412904e-01 -5.25151849e-01 4.33819264e-01 -1.19012287e-02 -3.30777854e-01 -2.45764539e-01 -1.10375440e+00 9.14421082e-01 2.08292559e-01 3.05198222e-01 -1.26303840e+00 -2.63967335e-01 -9.16763425e-01 1.09144993e-01 -6.37716055e-03 -4.37074393e-01 1.30056977e+00 -1.16502583e+00 -1.62349653e+00 5.91370165e-01 3.94240767e-01 -2.24354655e-01 4.59530503e-01 -2.58526832e-01 -2.81442374e-01 1.82022721e-01 -3.73037308e-02 3.41139704e-01 5.59737027e-01 -1.54512739e+00 -8.46031427e-01 -3.20383579e-01 4.76339787e-01 6.12343669e-01 -9.88255799e-01 -2.15346947e-01 -5.56527317e-01 -3.02162826e-01 5.89266084e-02 -2.96319366e-01 1.70676127e-01 7.89004266e-01 1.60223931e-01 -3.74435037e-02 7.66759634e-01 -4.45179790e-01 9.91407454e-01 -2.22390246e+00 1.28299877e-01 -3.24036777e-02 -1.15765691e-01 2.45359316e-01 -3.36767137e-01 2.99745530e-01 5.54387510e-01 6.84897229e-02 -4.85343307e-01 -2.78991759e-01 1.61241472e-01 4.07771111e-01 4.80270013e-02 4.29351121e-01 1.53967291e-01 6.65969968e-01 -1.27600121e+00 -6.42905533e-01 1.73614293e-01 2.55647212e-01 -6.41767502e-01 8.01560819e-01 6.65039429e-03 3.03164333e-01 -5.45956671e-01 1.06646883e+00 8.06509137e-01 1.36392355e-01 -1.66154712e-01 -4.94320095e-01 -3.18428636e-01 -4.30051953e-01 -9.63696182e-01 1.77522445e+00 -8.40574205e-01 6.21205926e-01 1.00669339e-01 -9.52963889e-01 1.06530249e+00 -2.07081214e-02 3.89189601e-01 -1.04837298e+00 9.67001468e-02 3.25932950e-01 -1.42828748e-01 -1.08525550e+00 6.28421366e-01 -3.68108243e-01 1.64317593e-01 1.17385879e-01 1.40165947e-02 -1.12746924e-01 -1.14391848e-01 -4.40572090e-02 8.63009632e-01 3.91564697e-01 3.55678052e-01 -4.30835545e-01 3.80212277e-01 -3.18980038e-01 4.24561709e-01 3.86572093e-01 -4.26666379e-01 7.12335348e-01 1.01309821e-01 -2.65399843e-01 -8.68365228e-01 -1.21791410e+00 -4.26644146e-01 1.02118754e+00 9.65508461e-01 7.10596936e-03 -7.88624227e-01 -2.26402417e-01 -6.76369593e-02 2.35675305e-01 -6.71193898e-01 -3.91040415e-01 1.30351841e-01 -7.10978210e-01 5.37627816e-01 3.76075178e-01 8.38036478e-01 -1.11485517e+00 -8.17180753e-01 5.05665392e-02 -1.26182601e-01 -8.05044293e-01 -2.69740552e-01 -1.60040155e-01 -6.78248107e-01 -8.80722702e-01 -1.05664396e+00 -8.69883716e-01 5.12068212e-01 5.00679314e-01 8.38105798e-01 2.67919272e-01 -7.27719143e-02 5.47616363e-01 -9.18932021e-01 -4.31509793e-01 -8.49788412e-02 -5.41663885e-01 7.20134154e-02 3.11582416e-01 8.03735405e-02 -6.37868345e-01 -1.12003684e+00 3.62261027e-01 -1.34680808e+00 -1.11961409e-01 9.67971683e-01 9.56586599e-01 2.31147021e-01 -1.57481760e-01 7.68386424e-01 -1.37841672e-01 6.36268377e-01 -6.74689591e-01 -3.45070571e-01 2.04746053e-01 -5.29152930e-01 -1.09652646e-01 3.02600175e-01 -3.47023517e-01 -9.70529437e-01 -3.09347481e-01 -4.84860569e-01 -3.14899355e-01 2.98753113e-01 9.89742517e-01 -5.63162506e-01 -3.26971263e-01 3.88512433e-01 4.11891073e-01 1.99276865e-01 -3.99799556e-01 2.00402170e-01 1.11249399e+00 5.39968848e-01 -5.59484065e-01 5.32685161e-01 3.88763696e-01 -2.27954850e-01 -9.99848664e-01 -6.45124316e-01 -5.26679456e-01 -1.93031859e-02 -7.11688161e-01 8.93765509e-01 -1.01081276e+00 -1.00648868e+00 5.98938525e-01 -1.17386806e+00 -1.07539773e-01 -1.02856077e-01 5.16374171e-01 -5.24367750e-01 8.56097937e-01 -4.22122151e-01 -1.29279506e+00 -3.71615022e-01 -1.36603940e+00 1.08740568e+00 6.97741747e-01 5.06896555e-01 -6.84965968e-01 -8.09590369e-02 1.43225372e-01 5.31597674e-01 1.65807188e-01 4.65969086e-01 -1.50981560e-01 -6.41928494e-01 6.30481914e-02 -5.73678315e-01 6.12349510e-01 8.48623961e-02 -1.31795064e-01 -1.10750377e+00 -1.95183948e-01 -1.13448396e-01 -6.76843107e-01 9.65227246e-01 6.44322261e-02 1.06159520e+00 -1.94708481e-01 3.25798869e-01 7.73986757e-01 1.52625418e+00 3.38811576e-01 1.03487039e+00 6.09220445e-01 4.05737877e-01 8.25856090e-01 9.52318013e-01 7.77716577e-01 5.94481170e-01 5.79133868e-01 1.10285199e+00 -1.54163301e-01 1.26591027e-01 -2.99414724e-01 6.22965872e-01 9.16784048e-01 -3.78032118e-01 -3.22213739e-01 -5.31065166e-01 5.67240894e-01 -1.85978961e+00 -7.81954944e-01 8.13632756e-02 2.08627629e+00 6.80287421e-01 -1.74427181e-01 -1.76463470e-01 8.95070359e-02 5.34627676e-01 -1.32704094e-01 -5.40588677e-01 -2.88442552e-01 -1.66447490e-01 -2.41696700e-01 2.06144795e-01 1.92606762e-01 -1.01635063e+00 5.10940611e-01 5.23223209e+00 8.55693698e-01 -9.52465415e-01 1.05613075e-01 4.67810571e-01 4.86207753e-01 -6.77694976e-01 -1.29010901e-01 -2.57535815e-01 4.83766645e-01 4.65207219e-01 -1.51368514e-01 1.62183747e-01 1.10846877e+00 3.23545307e-01 -1.33969421e-02 -9.84647632e-01 1.29006445e+00 9.28501859e-02 -8.20481360e-01 3.39709163e-01 4.42656614e-02 4.43678588e-01 -4.63059902e-01 2.80151755e-01 3.77017587e-01 -4.33828086e-02 -1.03030646e+00 9.81183052e-01 6.00344956e-01 7.56145775e-01 -4.36932892e-01 9.40777004e-01 1.47185072e-01 -1.29711425e+00 -2.14604825e-01 -8.92688751e-01 -3.27777475e-01 8.75237770e-03 4.49037731e-01 -2.93782085e-01 5.80250084e-01 9.82055426e-01 7.19146192e-01 -2.00663567e-01 1.54662383e+00 8.68814066e-02 3.29383969e-01 -6.13962524e-02 -3.50259751e-01 2.52943307e-01 -4.27937120e-01 2.93838233e-01 1.19034362e+00 7.97131002e-01 3.74721259e-01 -8.23179409e-02 8.42138052e-01 -1.98151141e-01 5.69159806e-01 -5.63033044e-01 2.18314484e-01 2.90549338e-01 1.35268092e+00 -4.03832406e-01 8.92855506e-03 -5.42498648e-01 1.05725980e+00 -4.70688343e-02 2.36620731e-03 -6.80904388e-01 -3.51474315e-01 8.23280871e-01 -1.88876480e-01 2.13699546e-02 -1.58862136e-02 -1.58201605e-01 -1.21117353e+00 1.72025505e-02 -5.51365495e-01 1.53573707e-01 -8.84348571e-01 -1.44109380e+00 6.92907155e-01 -1.98592961e-01 -1.95104301e+00 4.00107890e-01 -6.83204770e-01 -7.30591357e-01 5.84877551e-01 -2.02142262e+00 -1.25403261e+00 -8.27743411e-01 3.39558482e-01 7.01237857e-01 2.44446397e-02 7.57544756e-01 5.84831953e-01 -2.64985919e-01 5.97595453e-01 2.71135837e-01 9.93259624e-02 4.68061954e-01 -1.15470707e+00 -1.43532306e-01 7.20968604e-01 -1.97752550e-01 2.85388678e-01 6.95529401e-01 -2.70826995e-01 -1.67183864e+00 -9.20225143e-01 -1.96821205e-02 -2.21238621e-02 5.07645667e-01 1.75677851e-01 -1.00116575e+00 -1.70523394e-02 1.56036407e-01 7.06988573e-03 6.68826938e-01 -4.10706311e-01 -2.22256735e-01 -3.39404285e-01 -1.11947381e+00 4.85474259e-01 1.10526836e+00 -3.00193399e-01 -4.32336420e-01 -5.73548600e-02 6.26049042e-01 -5.30471606e-03 -1.12705719e+00 5.40486634e-01 1.03103089e+00 -1.11232197e+00 9.00182486e-01 -8.62722248e-02 7.34894574e-01 -4.69552517e-01 -5.94864249e-01 -1.26652527e+00 -1.04341954e-01 -2.37704515e-02 2.10926294e-01 1.21341598e+00 1.79327205e-01 -2.86530018e-01 4.99268502e-01 3.49211305e-01 -5.51306367e-01 -6.43491626e-01 -9.55500364e-01 -7.15492904e-01 -4.56803711e-03 -4.25991565e-01 4.99432296e-01 5.92334986e-01 1.47912830e-01 -5.22776842e-02 -6.24810457e-01 3.64043057e-01 6.91665530e-01 2.60879010e-01 6.27724051e-01 -1.35062206e+00 -3.30843300e-01 -6.07741654e-01 -8.79454195e-01 -1.23795521e+00 -3.45384568e-01 -4.66256231e-01 4.85759169e-01 -1.81060004e+00 4.47816074e-01 -2.51308680e-01 -4.86773878e-01 2.33911201e-01 -2.08378375e-01 4.47609514e-01 2.37950355e-01 3.78192037e-01 -8.20423126e-01 1.18376648e+00 1.39675772e+00 -3.51036578e-01 1.82574362e-01 -2.31243983e-01 -7.58263707e-01 7.21257329e-01 5.59810519e-01 -1.84762366e-02 -4.02096391e-01 -5.40953457e-01 1.67867288e-01 2.58681566e-01 2.21889660e-01 -1.14082718e+00 2.20282212e-01 -3.48169684e-01 7.87500814e-02 8.28023851e-02 5.61253965e-01 -8.26072335e-01 -2.44632691e-01 5.87395966e-01 -1.46221891e-01 -1.91231668e-01 -1.67013139e-01 7.68007815e-01 -5.74044585e-01 -3.51020247e-01 9.50189710e-01 -1.92022964e-01 -1.46218801e+00 3.40350211e-01 -1.25251874e-01 -2.45883569e-01 9.00475264e-01 -4.95797426e-01 -2.52607942e-01 -7.26628482e-01 -3.26030612e-01 3.22997898e-01 5.49764514e-01 3.32191855e-01 1.37133861e+00 -1.17940307e+00 -7.98521042e-01 -1.05018549e-01 6.44185364e-01 -9.90922451e-02 4.71643984e-01 6.01060629e-01 -7.76582420e-01 -5.45139909e-01 -5.50496161e-01 -5.66099703e-01 -9.45680499e-01 2.27650598e-01 3.40506613e-01 4.14182842e-01 -2.65425682e-01 7.52451301e-01 6.05175734e-01 -1.43357858e-01 3.50655407e-01 -2.05683753e-01 -6.66599393e-01 -8.92008767e-02 5.94066501e-01 2.77404845e-01 -1.95352584e-01 -6.42972112e-01 -7.92348385e-02 8.08346570e-01 4.89878833e-01 -1.04156002e-01 1.38387656e+00 -4.25663054e-01 -6.14323243e-02 3.59303743e-01 1.20581663e+00 -4.99859303e-01 -1.48720503e+00 -1.16413146e-01 -1.75210565e-01 -6.84975326e-01 1.61830708e-01 -5.93551099e-01 -1.09128726e+00 1.13216019e+00 9.86095965e-01 2.51285344e-01 1.50501716e+00 -9.75708291e-02 8.67523313e-01 4.18317288e-01 5.85981965e-01 -9.86442864e-01 5.40941477e-01 2.69360483e-01 1.02791595e+00 -1.64224041e+00 -1.56499192e-01 -1.35128722e-01 -7.31012106e-01 1.15509188e+00 7.49262273e-01 1.59953117e-01 5.98731577e-01 6.22916073e-02 3.69517326e-01 6.20229132e-02 -2.49891013e-01 -6.40820682e-01 1.76455721e-01 7.87069619e-01 2.37885132e-01 -7.03875208e-03 -4.63916838e-01 9.76290166e-01 1.88082457e-02 -1.12482756e-01 7.03590274e-01 8.78271759e-01 -9.75202322e-01 -7.57950664e-01 -2.96024024e-01 2.12860674e-01 -3.05276096e-01 -8.70510265e-02 1.48279607e-01 3.95917326e-01 1.73798397e-01 9.42650855e-01 -1.73142493e-01 -8.35485458e-01 4.79575753e-01 -5.58598816e-01 2.14427099e-01 -3.10578167e-01 -6.68094009e-02 -2.10997134e-01 -1.33563668e-01 -2.39219099e-01 -8.20444345e-01 -2.89886653e-01 -1.25130808e+00 -9.04389694e-02 -3.53673935e-01 3.10494751e-01 8.96216094e-01 7.29992867e-01 -1.65471002e-01 2.34892458e-01 8.35028052e-01 -1.01115012e+00 -6.37875378e-01 -1.03688014e+00 -8.90610397e-01 5.65431058e-01 1.86887965e-01 -8.53299439e-01 -3.56227487e-01 8.87662545e-02]
[10.702264785766602, -3.5378506183624268]
d0e87ae7-c19f-4e3e-ae8d-defc87147839
learning-lightness-from-human-judgement-on
null
null
http://openaccess.thecvf.com/content_cvpr_2015/html/Narihira_Learning_Lightness_From_2015_CVPR_paper.html
http://openaccess.thecvf.com/content_cvpr_2015/papers/Narihira_Learning_Lightness_From_2015_CVPR_paper.pdf
Learning Lightness From Human Judgement on Relative Reflectance
We develop a new approach to inferring lightness, the perceived reflectance of surfaces, from a single image. Classic methods view this problem from the perspective of intrinsic image decomposition, where an image is separated into reflectance and shading components. Rather than reason about reflectance and shading together, we learn to directly predict lightness differences between pixels. Large-scale training from human judgement data on relative reflectance, and patch representations built using deep networks, provide the foundation for our model. Benchmarked on the Intrinsic Images in the Wild dataset, our local lightness model achieves on-par performance with the state-of-the-art global lightness model, which incorporates multiple shading/reflectance priors and simultaneous reasoning between pairs of pixels in a dense conditional random field formulation.
['Takuya Narihira', 'Stella X. Yu', 'Michael Maire']
2015-06-01
null
null
null
cvpr-2015-6
['intrinsic-image-decomposition']
['computer-vision']
[ 1.01311815e+00 8.75925869e-02 3.49117905e-01 -8.66308749e-01 -6.52106941e-01 -3.52612823e-01 4.94080305e-01 -3.58714253e-01 1.08094625e-02 2.95953929e-01 2.11380899e-01 -2.29293182e-02 1.88662112e-01 -1.09645998e+00 -8.60421002e-01 -8.44708145e-01 6.61036551e-01 1.57283887e-01 5.84973358e-02 -3.13585848e-02 2.94619977e-01 4.97366995e-01 -1.75141430e+00 6.30195022e-01 6.65756524e-01 1.16396809e+00 2.64613867e-01 9.98947263e-01 -9.50318649e-02 9.22079146e-01 -8.00374225e-02 -4.08884697e-02 4.69650507e-01 -7.52609000e-02 -6.95100307e-01 3.84232759e-01 1.27406740e+00 -7.96512306e-01 -9.11326930e-02 9.17394161e-01 6.69505671e-02 5.62135428e-02 6.11332417e-01 -7.02470481e-01 -1.00579488e+00 5.15970290e-02 -8.49538863e-01 -3.11695665e-01 4.51626152e-01 4.12948906e-01 1.38807571e+00 -7.36439109e-01 1.40107080e-01 1.34498847e+00 7.95459151e-01 3.25123757e-01 -1.83403182e+00 -9.07955766e-02 3.12786341e-01 -1.92415655e-01 -1.08426201e+00 -5.99547505e-01 6.90238476e-01 -5.66987276e-01 1.15659499e+00 3.13142270e-01 5.04875124e-01 7.10967541e-01 3.11140157e-02 6.50908232e-01 1.50898707e+00 -5.35644412e-01 -2.40501370e-02 -2.42985308e-01 8.76580328e-02 7.39320993e-01 -1.53549467e-04 3.59972417e-01 -6.02623463e-01 -1.38435271e-02 1.07332432e+00 1.08983196e-01 -4.95464146e-01 -1.32052034e-01 -1.01890564e+00 3.83611649e-01 6.02371931e-01 -5.57480276e-01 -4.50024933e-01 4.86437976e-01 -4.02034789e-01 -3.25790383e-02 6.84981883e-01 1.88658044e-01 -6.80403173e-01 3.71533185e-01 -7.98088133e-01 -1.14235226e-02 6.34704590e-01 4.83713210e-01 1.55340588e+00 -2.19414920e-01 1.07354522e-01 7.57574320e-01 6.49551928e-01 1.00840068e+00 -4.40464497e-01 -1.55275893e+00 6.93539158e-02 4.67939019e-01 4.52582955e-01 -9.74404514e-01 -2.49238327e-01 1.26583382e-01 -4.76385117e-01 7.24584818e-01 4.36998487e-01 5.65881841e-02 -1.13715899e+00 1.80433953e+00 1.79866493e-01 1.60830662e-01 -2.08732873e-01 9.41482663e-01 6.16729617e-01 6.29337728e-01 -1.52051717e-01 1.89812824e-01 1.09114456e+00 -8.73034656e-01 -1.91675588e-01 -5.81027925e-01 -1.04842328e-01 -9.11734879e-01 1.17291176e+00 6.68331265e-01 -1.27500582e+00 -6.59056008e-01 -8.30230713e-01 -6.94904685e-01 -1.28403246e-01 2.42113858e-01 8.93063247e-01 5.59451044e-01 -1.40423989e+00 4.97386694e-01 -8.42137694e-01 -2.30087176e-01 3.61843139e-01 1.40956238e-01 1.37808779e-02 -3.96844923e-01 -5.83295286e-01 6.87330186e-01 -4.83880311e-01 3.73671204e-01 -9.67429578e-01 -9.51976836e-01 -7.82286882e-01 -2.02472061e-02 -4.02638130e-03 -9.84678149e-01 1.08423781e+00 -1.43251896e+00 -1.75688386e+00 1.31235790e+00 -5.47451675e-01 1.03315279e-01 1.29840598e-01 -3.84043723e-01 -1.14574455e-01 1.95904955e-01 -1.69973597e-01 8.12164009e-01 9.67194438e-01 -1.90930903e+00 -2.85164446e-01 -4.49893266e-01 4.22948122e-01 3.41623425e-01 3.54348421e-01 -1.39775425e-01 -2.68219978e-01 1.13047741e-01 2.93553740e-01 -5.71086168e-01 -1.25314137e-02 4.80426699e-01 -3.96841705e-01 1.14353582e-01 2.46532917e-01 -6.85592651e-01 4.14609492e-01 -1.99888241e+00 -1.97541947e-03 1.82009175e-01 3.79039764e-01 -2.73235232e-01 -3.71891081e-01 9.89598259e-02 -1.99685305e-01 -2.37749308e-01 -2.97210425e-01 -4.08187002e-01 2.46814024e-02 2.01389670e-01 -5.69977045e-01 6.86249197e-01 3.30929786e-01 7.70419896e-01 -8.23413253e-01 -2.95852795e-02 5.00397861e-01 9.46640909e-01 -5.18201113e-01 3.85906219e-01 -5.40710032e-01 2.83818185e-01 -1.12248212e-01 5.06743550e-01 1.13234246e+00 -3.14165294e-01 1.49831101e-01 -6.12377524e-01 -1.31603524e-01 3.32168162e-01 -9.70388174e-01 1.68764246e+00 -8.01062584e-01 6.99463546e-01 3.88716817e-01 -3.96752328e-01 8.83967996e-01 1.17656505e-02 5.13921142e-01 -6.69909477e-01 -7.82236978e-02 -1.68934748e-01 -4.74736035e-01 -2.70937741e-01 3.95996571e-01 -2.75733531e-01 6.22949541e-01 6.55896842e-01 -2.20691100e-01 -5.84127843e-01 -4.78568166e-01 -6.68240413e-02 8.98303926e-01 8.74326408e-01 -2.02931106e-01 -2.12066367e-01 4.02922422e-01 -4.47639316e-01 3.35488528e-01 5.56708157e-01 8.05759653e-02 1.06011868e+00 1.79617241e-01 -6.87358379e-01 -8.96982133e-01 -1.67633271e+00 -1.19733825e-01 1.23872602e+00 3.24529439e-01 -8.23971108e-02 -5.76819062e-01 1.74617823e-02 2.03432277e-01 7.05048442e-01 -8.56173098e-01 3.46672624e-01 -1.33004248e-01 -7.06883371e-01 6.86807334e-02 4.52829063e-01 5.38855910e-01 -8.41751814e-01 -7.35839605e-01 -3.09552580e-01 -1.42883033e-01 -1.16811907e+00 -2.28055060e-01 4.65259291e-02 -6.40437543e-01 -1.19159925e+00 -2.57196426e-01 -3.79838318e-01 8.14560711e-01 8.18409562e-01 1.81960821e+00 2.89975911e-01 -7.09058225e-01 8.40920210e-01 1.69167772e-01 -2.22381264e-01 -6.33534044e-02 -7.09744692e-01 -4.58426565e-01 2.64086396e-01 4.48826671e-01 -6.22451067e-01 -1.06441832e+00 3.79255354e-01 -8.55640769e-01 4.73315209e-01 3.97027463e-01 5.73752165e-01 8.37244809e-01 -9.85192358e-02 -3.34854007e-01 -1.04889822e+00 -3.54932509e-02 -8.00072029e-02 -6.90800726e-01 4.73442018e-01 -4.93835300e-01 -1.15543038e-01 2.35552073e-01 9.42379460e-02 -1.84792340e+00 1.06637314e-01 1.14791669e-01 -1.57617852e-01 -5.81849754e-01 -1.49419054e-01 -2.76593119e-01 -1.88091427e-01 8.48576248e-01 -4.58998010e-02 -1.14456445e-01 -3.53654534e-01 8.33489954e-01 3.20137173e-01 6.69758677e-01 -8.59640181e-01 6.27546728e-01 1.12533128e+00 1.84871957e-01 -8.57261896e-01 -1.27212286e+00 -4.96942729e-01 -8.65093708e-01 -4.10203747e-02 1.10038471e+00 -1.25380802e+00 -1.00863349e+00 6.91894829e-01 -1.15692306e+00 -1.03202629e+00 -3.81064147e-01 -5.76670282e-03 -8.53070378e-01 3.88031185e-01 -5.48007190e-01 -9.43622112e-01 7.77157024e-02 -8.48150492e-01 1.74188721e+00 2.09191442e-01 2.13115409e-01 -1.25273764e+00 1.46702096e-01 6.59233928e-01 4.57024276e-01 1.80050135e-01 7.15554535e-01 7.84033060e-01 -1.10969400e+00 2.43741527e-01 -9.75223899e-01 6.06383085e-01 3.92849684e-01 3.83682668e-01 -1.65672255e+00 7.14440346e-02 2.13871479e-01 -5.55266201e-01 1.34801280e+00 7.31184602e-01 1.32309592e+00 1.11407503e-01 7.18819648e-02 1.06902575e+00 1.98168385e+00 -5.72196841e-01 9.71076131e-01 -8.27714726e-02 1.06074858e+00 8.63070667e-01 1.16052993e-01 4.19074953e-01 6.80396855e-01 1.91721126e-01 6.17253184e-01 -5.62477946e-01 -5.55825770e-01 -6.16075806e-02 2.58384496e-01 1.88369572e-01 -2.25831166e-01 -1.83333844e-01 -7.48818099e-01 2.68525213e-01 -1.50851154e+00 -1.01392293e+00 -3.45150143e-01 2.16493034e+00 8.88831317e-01 -2.66210556e-01 -3.27497900e-01 -2.92148411e-01 4.55107063e-01 3.65509957e-01 -7.06415117e-01 -3.13843220e-01 -4.98588711e-01 2.21445903e-01 7.20735073e-01 1.26198447e+00 -7.03753769e-01 9.36467528e-01 7.78507519e+00 1.70309484e-01 -1.02239335e+00 -1.29925504e-01 1.03473163e+00 6.61714673e-02 -1.04252720e+00 3.23775679e-01 -6.53636396e-01 -1.49588943e-01 5.97768843e-01 7.77865887e-01 1.24996090e+00 1.86890349e-01 2.65932590e-01 -7.24331677e-01 -1.21700215e+00 9.84450996e-01 3.73369038e-01 -8.91888559e-01 -1.60383433e-01 -9.25759003e-02 9.94665921e-01 5.13886213e-01 3.27861339e-01 -4.82285649e-01 9.20124471e-01 -1.22722208e+00 4.50932473e-01 1.15450621e+00 8.62457871e-01 -1.75272822e-02 5.32276519e-02 -4.35499176e-02 -9.00325119e-01 1.22085802e-01 -6.56086087e-01 -4.01008040e-01 1.17974527e-01 9.20069396e-01 -4.42674249e-01 2.09456891e-01 7.97149003e-01 9.19011593e-01 -5.09059250e-01 3.53251010e-01 -5.93971729e-01 4.34043735e-01 -4.84874606e-01 7.41614640e-01 -3.87353897e-01 -6.54873848e-01 3.33819946e-04 9.11951125e-01 -2.19627172e-01 2.17387453e-01 6.31755069e-02 1.60420454e+00 1.18964165e-01 -3.95390660e-01 -3.88438106e-01 3.14075142e-01 -4.51681092e-02 1.53400528e+00 -4.05396998e-01 -7.85382316e-02 -8.16471338e-01 1.04057348e+00 3.53453785e-01 9.15496826e-01 -5.40566266e-01 1.22330144e-01 9.92894888e-01 1.59514472e-01 1.95821345e-01 -3.47856313e-01 -8.86525869e-01 -1.15362120e+00 -1.59851998e-01 -3.73714626e-01 -2.38568872e-01 -1.65637469e+00 -1.72363162e+00 1.53336182e-01 -2.92687476e-01 -6.95853829e-01 4.05756623e-01 -1.11354291e+00 -6.99943066e-01 1.42466629e+00 -2.22911835e+00 -1.43283534e+00 -8.87935400e-01 7.29402840e-01 1.80961177e-01 5.30345201e-01 9.17790294e-01 -2.96626091e-01 -2.19492406e-01 -3.82961258e-02 1.72172990e-02 -1.08427428e-01 8.18922758e-01 -1.56083977e+00 5.95566332e-01 7.16732204e-01 1.37056261e-01 8.02554250e-01 5.71240664e-01 -3.30528647e-01 -1.58013153e+00 -7.19412923e-01 3.83438259e-01 -8.97874355e-01 5.28525770e-01 -2.71711051e-01 -6.58995688e-01 7.14512885e-01 3.56046379e-01 1.47285998e-01 7.06400573e-01 4.89346176e-01 -9.04802740e-01 -3.79190147e-01 -1.05794907e+00 4.90160316e-01 9.96296346e-01 -1.08856106e+00 -3.09951305e-01 5.54580867e-01 5.38108170e-01 -2.70305216e-01 -9.04668331e-01 1.44755006e-01 7.01698124e-01 -1.58127451e+00 1.27532053e+00 -1.40218526e-01 5.63740313e-01 -3.56247753e-01 -7.50078797e-01 -1.09328496e+00 -5.01402080e-01 -4.68147188e-01 2.91636348e-01 9.68120754e-01 3.30480456e-01 -5.62148452e-01 7.54456639e-01 1.11563802e+00 2.27574483e-02 -2.54812777e-01 -2.84320295e-01 -1.55047998e-01 -1.71948913e-02 -4.48919684e-01 5.26550472e-01 4.79963988e-01 -6.52127922e-01 3.19121480e-01 -2.37068385e-01 4.41644847e-01 1.00311124e+00 5.63919246e-01 8.50395739e-01 -1.41941094e+00 -7.10977972e-01 -4.57999438e-01 3.57315131e-02 -1.50585473e+00 3.16888750e-01 -5.38808584e-01 6.38585150e-01 -1.89676273e+00 4.42757159e-01 -3.99617881e-01 -1.36757851e-01 5.10546744e-01 -3.50992560e-01 4.25617963e-01 -8.82809833e-02 1.36397794e-01 -4.92978036e-01 4.82576877e-01 1.27986228e+00 -2.24829614e-01 -1.13731153e-01 -2.46394932e-01 -8.13767552e-01 8.78656030e-01 5.71177125e-01 2.06553653e-01 -5.08519650e-01 -1.18818450e+00 8.01786900e-01 -1.83124796e-01 6.53418660e-01 -6.91644430e-01 2.93156113e-02 -5.83167553e-01 6.83815241e-01 -3.91289592e-01 6.73190892e-01 -7.58578360e-01 -3.18294279e-02 -2.83937633e-01 -3.51803094e-01 -3.49833935e-01 -3.02355941e-02 6.38102651e-01 1.45650700e-01 3.03033233e-01 7.95904875e-01 -2.36903444e-01 -6.59904897e-01 3.04653466e-01 1.38151988e-01 -3.92047688e-02 2.69633472e-01 -3.84466171e-01 -7.70125508e-01 -2.52104759e-01 -4.98875707e-01 -1.11817732e-01 1.02285385e+00 4.11225930e-02 6.15707874e-01 -8.56821418e-01 -6.52728796e-01 3.88692230e-01 4.51397039e-02 2.50249028e-01 4.54394758e-01 5.80780864e-01 -7.21501410e-01 -9.51641053e-02 -1.16131395e-01 -9.57295477e-01 -8.95350158e-01 3.70310992e-01 7.37493694e-01 3.45775694e-01 -5.09069383e-01 1.10141003e+00 1.06593513e+00 -4.94755834e-01 -1.83525458e-01 -5.75753927e-01 4.35054749e-01 -5.87571383e-01 4.73784387e-01 2.82755971e-01 -1.03802107e-01 -5.55319071e-01 -1.42974496e-01 1.12044621e+00 4.12905663e-01 -1.91208258e-01 1.38375998e+00 -6.79851890e-01 -6.08171463e-01 7.02845693e-01 1.06237888e+00 1.89915910e-01 -2.17501450e+00 -3.20100874e-01 -7.43650496e-01 -9.75464344e-01 5.29409468e-01 -1.15214360e+00 -1.09848571e+00 1.09047830e+00 4.23169464e-01 -6.40838966e-03 1.41246545e+00 -9.43468735e-02 4.50456470e-01 3.43899846e-01 1.60512611e-01 -1.04061210e+00 9.73659828e-02 4.03126121e-01 7.14628398e-01 -1.69457507e+00 3.83528352e-01 -6.70251906e-01 -5.45646489e-01 1.16336060e+00 5.38907707e-01 -3.38919938e-01 9.21609819e-01 4.28897470e-01 4.51169968e-01 -3.24605942e-01 -8.43293130e-01 -2.20280230e-01 4.21464890e-01 9.05407250e-01 7.30170369e-01 1.85444683e-01 6.30917430e-01 -1.22099735e-01 1.37442425e-01 -1.37526020e-01 3.88739765e-01 3.46483767e-01 -6.70344174e-01 -8.46771896e-01 -3.27374816e-01 1.77967533e-01 2.67645437e-02 -4.24371690e-01 -3.34852546e-01 -4.26504128e-02 2.40883172e-01 1.16826010e+00 2.93741673e-01 -9.36516300e-02 1.86657123e-02 -2.07058236e-01 9.72128987e-01 -7.53807664e-01 -1.73736587e-01 1.95976391e-01 -1.21895872e-01 -1.04895401e+00 -8.66187513e-01 -6.90782487e-01 -9.62965012e-01 -2.72228211e-01 -8.97142515e-02 -7.07786500e-01 6.56281471e-01 7.99764693e-01 9.65709388e-02 3.54940206e-01 7.67198622e-01 -1.20855653e+00 -1.79033190e-01 -6.83658421e-01 -9.26291287e-01 6.03611231e-01 6.91513777e-01 -4.10098255e-01 -5.27460694e-01 3.98514897e-01]
[9.861172676086426, -2.9681179523468018]
6a592448-4e97-4310-b332-6de73646d882
eegminer-discovering-interpretable-features
2110.10009
null
https://arxiv.org/abs/2110.10009v2
https://arxiv.org/pdf/2110.10009v2.pdf
EEGminer: Discovering Interpretable Features of Brain Activity with Learnable Filters
Patterns of brain activity are associated with different brain processes and can be used to identify different brain states and make behavioral predictions. However, the relevant features are not readily apparent and accessible. To mine informative latent representations from multichannel recordings of ongoing EEG activity, we propose a novel differentiable decoding pipeline consisting of learnable filters and a pre-determined feature extraction module. Specifically, we introduce filters parameterized by generalized Gaussian functions that offer a smooth derivative for stable end-to-end model training and allow for learning interpretable features. For the feature module, we use signal magnitude and functional connectivity estimates. We demonstrate the utility of our model towards emotion recognition from EEG signals on the SEED dataset, as well as on a new EEG dataset of unprecedented size (i.e., 761 subjects), where we identify consistent trends of music perception and related individual differences. The discovered features align with previous neuroscience studies and offer new insights, such as marked differences in the functional connectivity profile between left and right temporal areas during music listening. This agrees with the respective specialisation of the temporal lobes regarding music perception proposed in the literature.
['Stefanos Zafeiriou', 'Yannis Panagakis', 'Nikolaos Laskaris', 'Dimitrios A. Adamos', 'Stylianos Bakas', 'Siegfried Ludwig']
2021-10-19
null
null
null
null
['eeg-decoding', 'eeg-decoding']
['medical', 'time-series']
[ 4.35327679e-01 9.85038802e-02 1.10966310e-01 -5.40536284e-01 -6.04051530e-01 -7.35230565e-01 7.12990761e-01 1.58603072e-01 -5.41436136e-01 5.40002048e-01 6.26360774e-01 3.18941295e-01 -7.68380165e-01 -2.59571642e-01 -4.01173294e-01 -5.89479566e-01 -5.94297826e-01 1.58038258e-03 -3.49599302e-01 1.83292821e-01 4.55641478e-01 3.35501581e-01 -1.44350731e+00 5.27415156e-01 7.12475836e-01 1.16394126e+00 2.61401951e-01 2.68475950e-01 4.13999110e-01 1.80705890e-01 -4.36336011e-01 -1.95297942e-01 -8.09506401e-02 -5.02385259e-01 -5.55976927e-01 -2.21873317e-02 3.07740033e-01 1.50028452e-01 -3.68653327e-01 7.89985955e-01 6.89506829e-01 2.26866156e-01 6.53834641e-01 -9.06494260e-01 -3.06593359e-01 7.65353858e-01 -2.63886929e-01 7.32147753e-01 2.63196766e-01 2.03459397e-01 1.23157179e+00 -8.15332294e-01 5.80043435e-01 9.08615887e-01 5.43191314e-01 3.45253438e-01 -1.60716522e+00 -8.02393258e-01 3.10022682e-01 3.18042308e-01 -1.29371667e+00 -8.08624268e-01 6.41567409e-01 -6.50474906e-01 9.36360419e-01 2.40690604e-01 1.10416615e+00 1.52255523e+00 4.04667407e-01 4.37960625e-01 1.44585347e+00 1.15933232e-01 2.00431958e-01 1.42170920e-03 6.70255572e-02 2.20155731e-01 -2.79190484e-02 -1.14168867e-01 -1.13513267e+00 -2.65856683e-01 6.14071906e-01 -6.81559816e-02 -5.14935672e-01 4.71067354e-02 -1.74553692e+00 4.52830970e-01 3.24195355e-01 4.25148398e-01 -8.48485291e-01 2.13845477e-01 4.12280232e-01 1.84702963e-01 4.72816467e-01 6.49999619e-01 -6.77095234e-01 -5.04141748e-01 -1.37587821e+00 -2.12563246e-01 4.23118383e-01 1.74058482e-01 4.88585055e-01 1.56896457e-01 -4.16806966e-01 8.43591273e-01 3.09963614e-01 2.61880457e-02 6.40255928e-01 -7.78582692e-01 1.14775315e-01 3.32157671e-01 -4.19879764e-01 -1.04965270e+00 -7.00823128e-01 -8.04707527e-01 -7.46730804e-01 -3.05704353e-03 3.35186213e-01 -8.95556994e-03 -2.01046675e-01 2.07415557e+00 -2.56891310e-01 4.37428027e-01 -3.70367587e-01 9.93487716e-01 4.05343950e-01 4.30059060e-02 1.17248647e-01 -3.85898560e-01 1.56116879e+00 -2.29303405e-01 -3.81943703e-01 -4.25354540e-01 -3.17542143e-02 -3.25888097e-01 9.85548556e-01 8.26964378e-01 -1.05923975e+00 -5.65087020e-01 -8.98125947e-01 1.74831226e-01 -2.13771135e-01 3.04931104e-01 9.42333221e-01 5.13093174e-01 -9.48752522e-01 9.28003371e-01 -1.00383329e+00 -3.02502483e-01 7.37187803e-01 6.19450450e-01 -4.37536269e-01 5.51127315e-01 -8.77730072e-01 7.45283544e-01 3.67877215e-01 4.99522954e-01 -1.04921734e+00 -8.60470355e-01 -3.71746331e-01 2.13221699e-01 -1.07426755e-01 -6.73029065e-01 6.12094283e-01 -1.13379884e+00 -1.61066949e+00 8.19357455e-01 -1.70229301e-01 -2.52224267e-01 2.85192002e-02 -1.70419857e-01 -4.34370100e-01 3.31962109e-01 -1.57774180e-01 6.23591065e-01 9.47655559e-01 -4.87983733e-01 -5.47985174e-02 -5.74779212e-01 -3.83592755e-01 1.17327169e-01 -4.08957899e-01 2.31994629e-01 1.32073566e-01 -9.00564849e-01 3.48636597e-01 -6.63849294e-01 2.60923505e-02 -9.10768509e-02 -2.05133066e-01 8.86362940e-02 6.56610653e-02 -8.49171698e-01 1.07104659e+00 -2.43535876e+00 4.13186312e-01 5.18282950e-01 5.59193075e-01 -5.92054844e-01 -2.36139670e-01 1.73332095e-01 -5.23199499e-01 -4.86432947e-02 -3.77717674e-01 1.16478734e-01 3.72774750e-01 -2.81091601e-01 -2.62589037e-01 9.09011006e-01 4.35868084e-01 1.19867325e+00 -7.39136100e-01 2.41192147e-01 -1.79882973e-01 5.73744655e-01 -6.26272857e-01 3.47838514e-02 -3.72262262e-02 8.41473997e-01 -1.46648407e-01 4.75080907e-01 2.51106471e-01 -4.55529206e-02 1.92207605e-01 -2.77633190e-01 -2.06771776e-01 9.12489235e-01 -8.78476024e-01 2.12740517e+00 -2.55536556e-01 1.11177933e+00 1.77570894e-01 -1.18720877e+00 8.60484898e-01 5.65899968e-01 4.77814823e-01 -4.80636835e-01 5.18737257e-01 4.85496894e-02 6.56330526e-01 -3.96229208e-01 -1.85552731e-01 -1.35509253e-01 3.17181610e-02 4.99017268e-01 5.72039604e-01 1.43146247e-01 -3.67672183e-02 -1.59556419e-01 1.18834090e+00 7.88447335e-02 1.95285663e-01 -5.76029301e-01 2.68361717e-01 -5.45847237e-01 3.92375529e-01 5.26548326e-01 -5.40400622e-03 4.42770004e-01 8.15252364e-01 3.34852226e-02 -4.08996552e-01 -1.12327731e+00 -3.90443176e-01 1.16981292e+00 -3.29387575e-01 -6.75261438e-01 -5.02335429e-01 -1.22098073e-01 -2.21889898e-01 5.21051347e-01 -8.19238126e-01 -5.47218144e-01 -1.37644306e-01 -8.71991038e-01 4.67403650e-01 3.54157060e-01 7.76018873e-02 -1.20820034e+00 -7.33270347e-01 2.91523308e-01 -2.38829833e-02 -1.01802754e+00 -1.34402424e-01 5.54110408e-01 -9.80108321e-01 -8.91479075e-01 -3.79085541e-01 -4.17988569e-01 4.04109925e-01 -2.32854351e-01 1.03874493e+00 -4.23625618e-01 -5.90686142e-01 6.01567209e-01 -2.23757327e-03 -2.82098949e-01 2.30831161e-01 4.12122980e-02 3.41304541e-01 1.89990252e-01 2.61125475e-01 -1.25528145e+00 -8.94644797e-01 7.28283599e-02 -6.50484741e-01 -8.59206095e-02 8.35759342e-01 7.47238934e-01 4.96677190e-01 -2.57272035e-01 8.83238614e-01 -2.70932853e-01 9.58175242e-01 -6.83125615e-01 -2.47925594e-01 -1.26304096e-02 -5.93621373e-01 -5.87973036e-02 3.31227362e-01 -5.56287348e-01 -7.38845408e-01 -8.61785263e-02 1.38933733e-01 -8.33470374e-02 -5.18913925e-01 6.41883314e-01 -9.56184119e-02 2.33376883e-02 5.67923725e-01 2.27361679e-01 -1.07960649e-01 -4.26895529e-01 2.77744383e-01 5.66686332e-01 7.04178512e-01 -5.71177125e-01 3.24983060e-01 3.76993746e-01 -1.98818341e-01 -8.67022455e-01 -6.22145534e-01 -3.13230664e-01 -1.00397253e+00 -2.24048778e-01 8.83060634e-01 -9.55738902e-01 -9.74094808e-01 1.49163336e-01 -8.54160726e-01 -3.50051135e-01 -3.29553276e-01 9.87297058e-01 -7.64536738e-01 9.23578888e-02 -5.52882671e-01 -7.02562392e-01 -5.00582635e-01 -8.71525466e-01 1.03079534e+00 -8.90542641e-02 -8.11358511e-01 -7.31550336e-01 2.95668602e-01 -6.08672686e-02 2.51496732e-01 1.44219488e-01 9.80033398e-01 -6.05874062e-01 -2.85122603e-01 4.66540530e-02 3.37968804e-02 1.21724434e-01 -2.92285774e-02 -3.08697373e-01 -1.35384190e+00 -1.31726950e-01 9.73478612e-03 -2.82739580e-01 9.99774396e-01 4.72988129e-01 1.26106966e+00 -2.60115433e-02 -1.16181850e-01 7.22031236e-01 8.70631516e-01 -1.52436152e-01 5.43525755e-01 8.51924419e-02 1.36370271e-01 6.49675667e-01 -1.75627947e-01 3.78957301e-01 -1.06448699e-02 5.32756865e-01 5.24647720e-02 2.67541617e-01 1.71889231e-01 -1.43032297e-02 6.92358851e-01 7.66512215e-01 -1.72967985e-01 4.79448736e-01 -5.69410205e-01 3.15230191e-01 -1.60502756e+00 -1.09159946e+00 1.22476116e-01 2.34230256e+00 6.75862730e-01 9.24883932e-02 2.15617627e-01 4.60503362e-02 2.73926198e-01 6.28141835e-02 -7.08417535e-01 -1.78843856e-01 -1.81748182e-01 7.07267880e-01 -1.06991515e-01 -5.04045859e-02 -8.47009957e-01 7.76550174e-01 7.16651249e+00 2.97208518e-01 -1.35776627e+00 2.18195185e-01 3.80279213e-01 -6.68652236e-01 -2.94055551e-01 -1.42184511e-01 -4.60759290e-02 2.56391943e-01 1.30319321e+00 -1.67368174e-01 1.01958311e+00 2.40004748e-01 5.51608682e-01 4.68647182e-02 -1.15461767e+00 1.17838728e+00 5.11669330e-02 -1.03290355e+00 -5.35143375e-01 3.63956168e-02 2.08795398e-01 3.72478396e-01 1.80406809e-01 1.48205355e-01 -4.54339087e-01 -1.20522058e+00 8.26185346e-01 1.13978100e+00 7.83472657e-01 -5.01942515e-01 1.18140243e-01 2.64818579e-01 -9.33551788e-01 -2.83375412e-01 -3.35327893e-01 -2.73618430e-01 -1.43802806e-03 6.41408026e-01 -5.41140497e-01 1.46848589e-01 6.55377388e-01 1.16223717e+00 -7.18376040e-01 1.20138299e+00 -2.83609450e-01 8.11548412e-01 -2.28586599e-01 9.56226066e-02 -1.82562023e-01 -3.02592337e-01 6.65881157e-01 1.17327023e+00 4.92329359e-01 1.58822183e-02 -3.53246897e-01 1.46745038e+00 1.01753771e-01 1.57505348e-01 -2.31482908e-01 -4.87427920e-01 8.27275515e-02 1.76712608e+00 -1.01849139e+00 -7.18586966e-02 -2.38138676e-01 1.15466940e+00 4.28333074e-01 5.26170790e-01 -5.90376556e-01 -2.10531086e-01 7.93577850e-01 -1.86532527e-01 6.40912428e-02 -5.42014062e-01 -2.68885016e-01 -1.41486454e+00 2.82150004e-02 -8.34613681e-01 2.00101703e-01 -7.85576165e-01 -1.36693692e+00 6.38854682e-01 -1.08211443e-01 -8.68021011e-01 -1.57985613e-01 -6.51472688e-01 -6.15497172e-01 1.10587466e+00 -1.12423801e+00 -6.47684753e-01 -2.85518706e-01 6.21832252e-01 2.83010066e-01 -9.21951085e-02 1.14576030e+00 2.84410387e-01 -6.36152744e-01 2.44443372e-01 -5.38394786e-02 -1.91484645e-01 6.93251312e-01 -1.06190014e+00 5.61139062e-02 5.43709695e-01 8.04838240e-01 9.66767728e-01 4.46867466e-01 -3.65679890e-01 -1.28551030e+00 -5.54681301e-01 3.51830006e-01 -5.00849545e-01 9.38085675e-01 -8.99023354e-01 -7.46977806e-01 5.21735072e-01 2.16204062e-01 -1.88838214e-01 1.14833140e+00 5.12213230e-01 -3.20307165e-01 4.59468784e-03 -7.44606853e-01 3.50244254e-01 1.27849746e+00 -8.23416531e-01 -8.17821205e-01 1.58523917e-01 1.58120901e-03 1.20409414e-01 -9.61093366e-01 1.40794799e-01 1.00608516e+00 -8.19516718e-01 8.96581769e-01 -7.02070236e-01 1.16762809e-01 2.34257430e-02 -6.60738796e-02 -1.56861484e+00 -8.03171635e-01 -6.01972461e-01 -1.26348689e-01 1.01118982e+00 5.25384784e-01 -5.72835147e-01 3.66671294e-01 5.97484052e-01 -1.17648728e-01 -6.33963108e-01 -9.98380542e-01 -4.20012385e-01 -2.06946284e-01 -7.11287618e-01 1.68284968e-01 8.79220426e-01 6.10752404e-01 2.72070706e-01 -4.26862910e-02 4.35502194e-02 2.56497324e-01 1.93224877e-01 1.05112083e-01 -1.56802487e+00 -5.34375429e-01 -8.50549579e-01 -6.33536458e-01 -6.78613245e-01 6.11859739e-01 -1.50172746e+00 -1.57665402e-01 -1.35216880e+00 4.23875630e-01 9.47165489e-02 -9.03286815e-01 6.19574249e-01 6.94521144e-02 3.50221068e-01 -1.45338640e-01 2.48101521e-02 -3.33220750e-01 6.20033562e-01 6.80488646e-01 -7.87846837e-03 -2.62351930e-01 -9.86895636e-02 -1.09954548e+00 6.73813164e-01 9.29017425e-01 -4.13275272e-01 -3.41348022e-01 -8.60083625e-02 4.07659918e-01 -2.77860045e-01 5.94111800e-01 -1.06959713e+00 -6.96455389e-02 2.30607584e-01 8.95981371e-01 2.84655541e-02 4.73963201e-01 -6.25696480e-01 5.77716157e-02 3.02496374e-01 -5.42491734e-01 -9.72229168e-02 2.20917821e-01 6.10296905e-01 -2.50280444e-02 1.10531107e-01 3.79011959e-01 2.28529759e-02 -6.07101083e-01 2.30924264e-01 -7.12391198e-01 -1.17863782e-01 6.80479407e-01 -2.65758336e-01 -1.85368508e-01 -3.08184206e-01 -1.07777691e+00 -2.15207070e-01 -2.42833376e-01 5.26106238e-01 5.34622967e-01 -1.18428981e+00 -7.46899307e-01 5.00943959e-01 -3.22310477e-02 -8.56449425e-01 3.11777264e-01 1.55690980e+00 2.67162144e-01 2.91888714e-01 -5.65007269e-01 -5.96984982e-01 -9.19497073e-01 2.33846977e-01 3.67749512e-01 3.97580564e-01 -7.47669518e-01 8.84830058e-01 1.14129938e-01 -9.77657884e-02 8.31606332e-03 -5.00465870e-01 -4.11114782e-01 7.40132868e-01 5.58600008e-01 1.21863060e-01 1.11396618e-01 -5.16263247e-01 -3.91035825e-01 1.28959849e-01 3.14871788e-01 -3.18864733e-01 1.89032066e+00 -4.90844576e-03 -5.44880092e-01 9.81078982e-01 8.82410109e-01 2.47785091e-01 -1.19392478e+00 7.09558204e-02 1.47697642e-01 -3.44443798e-01 1.43727884e-01 -8.85570705e-01 -1.10175323e+00 1.01173043e+00 7.66751111e-01 -2.05327775e-02 1.16790652e+00 1.92612857e-01 2.33380601e-01 2.27620974e-01 3.63754183e-01 -9.97999609e-01 -1.06257655e-01 1.27504945e-01 1.05925345e+00 -7.28036880e-01 2.95194774e-03 1.60222977e-01 -4.42767590e-01 1.22390163e+00 2.59559065e-01 -2.17973098e-01 8.21737945e-01 2.90009584e-02 -2.75362223e-01 -5.08819520e-01 -1.00715566e+00 -1.58783063e-01 8.65871489e-01 2.97042817e-01 8.37148011e-01 3.04117091e-02 -4.83642846e-01 1.33408165e+00 -5.95537305e-01 -1.90229774e-01 1.61530390e-01 2.68963188e-01 -3.52777690e-01 -8.11054349e-01 -1.33655876e-01 9.56546426e-01 -5.48538804e-01 -2.78230876e-01 -4.13902134e-01 3.32698822e-01 3.76116075e-02 8.15359414e-01 1.67706147e-01 -2.97456890e-01 2.37530336e-01 7.42809951e-01 7.02608764e-01 -7.13468075e-01 -6.10746980e-01 2.85557151e-01 1.52243720e-02 -8.70726109e-01 -4.72358674e-01 -1.06926942e+00 -1.06883168e+00 4.00285572e-01 -6.41598627e-02 -3.20755355e-02 5.66846490e-01 9.95031059e-01 5.96968055e-01 7.82056689e-01 2.37897068e-01 -1.03408217e+00 -1.68335155e-01 -1.25960803e+00 -9.15211678e-01 3.35852832e-01 1.48527011e-01 -7.08248317e-01 -3.11675578e-01 1.26598001e-01]
[12.886730194091797, 3.4430789947509766]
428d797f-d045-4f45-9d53-80a859dfbf88
learning-jpeg-compression-artifacts-for-image
2108.12947
null
https://arxiv.org/abs/2108.12947v2
https://arxiv.org/pdf/2108.12947v2.pdf
Learning JPEG Compression Artifacts for Image Manipulation Detection and Localization
Detecting and localizing image manipulation are necessary to counter malicious use of image editing techniques. Accordingly, it is essential to distinguish between authentic and tampered regions by analyzing intrinsic statistics in an image. We focus on JPEG compression artifacts left during image acquisition and editing. We propose a convolutional neural network (CNN) that uses discrete cosine transform (DCT) coefficients, where compression artifacts remain, to localize image manipulation. Standard CNNs cannot learn the distribution of DCT coefficients because the convolution throws away the spatial coordinates, which are essential for DCT coefficients. We illustrate how to design and train a neural network that can learn the distribution of DCT coefficients. Furthermore, we introduce Compression Artifact Tracing Network (CAT-Net) that jointly uses image acquisition artifacts and compression artifacts. It significantly outperforms traditional and deep neural network-based methods in detecting and localizing tampered regions.
['Changick Kim', 'Heung-Kyu Lee', 'In-Jae Yu', 'Seung-Hun Nam', 'Myung-Joon Kwon']
2021-08-30
null
null
null
null
['image-manipulation-detection']
['computer-vision']
[ 6.04035914e-01 -6.54309392e-01 -2.12680712e-01 -1.33651614e-01 -5.66408098e-01 -5.07124722e-01 3.64326805e-01 -1.01779982e-01 -4.67197925e-01 1.46770775e-01 3.30523471e-03 -5.07873356e-01 3.86158288e-01 -6.97877526e-01 -9.80398178e-01 -6.26242638e-01 -2.96010554e-01 -4.33627933e-01 9.26026553e-02 8.32003132e-02 7.47167468e-01 5.48497856e-01 -8.67932975e-01 8.03368270e-01 6.30789161e-01 1.04449201e+00 1.74141496e-01 1.13145137e+00 1.95092857e-01 1.28786111e+00 -1.08415604e+00 -4.50631753e-02 3.45226169e-01 -5.07844806e-01 -5.37469089e-01 -9.17844251e-02 5.64501584e-01 -1.05820203e+00 -1.11093497e+00 1.60907519e+00 2.13030860e-01 -2.87751704e-01 4.95261163e-01 -1.06760192e+00 -1.27977145e+00 6.34312510e-01 -7.57690072e-01 6.68499410e-01 3.10432762e-02 3.37693542e-01 2.33483806e-01 -6.84893012e-01 3.63851041e-01 8.42795730e-01 1.01022184e+00 3.22429985e-01 -7.14723647e-01 -6.46265328e-01 -3.91401768e-01 5.64507723e-01 -1.41187072e+00 -2.27083012e-01 9.82672274e-01 -8.04961920e-02 7.82457829e-01 2.62673676e-01 3.61027449e-01 1.21732748e+00 5.61228812e-01 8.91177893e-01 7.00340211e-01 -4.75706637e-01 6.12581102e-03 -2.45838493e-01 -2.15613604e-01 6.46515489e-01 9.95470360e-02 1.39276505e-01 -4.40047503e-01 7.05460086e-02 1.18278658e+00 3.12321007e-01 -7.35397041e-01 -2.94418950e-02 -1.29869294e+00 6.89091504e-01 4.31601465e-01 3.74338210e-01 -2.17293054e-01 8.77691269e-01 5.12152612e-01 4.51387912e-01 -5.43004535e-02 3.28906685e-01 -2.68927693e-01 -2.15480626e-01 -1.28270578e+00 -2.56649047e-01 3.18900645e-01 9.93327737e-01 4.89234179e-01 2.93608069e-01 -5.23946211e-02 5.72258949e-01 -2.19633654e-02 5.60335875e-01 6.42952204e-01 -1.13890493e+00 5.46102941e-01 1.95822507e-01 -1.67461365e-01 -1.58509052e+00 1.86743781e-01 -2.22174749e-01 -1.26423454e+00 3.43236864e-01 3.52904707e-01 7.85880387e-02 -9.65402961e-01 1.19188511e+00 -4.02282178e-01 5.04732788e-01 -1.83957741e-01 8.45403314e-01 2.90391624e-01 3.94703478e-01 -2.83845514e-01 2.28642941e-01 1.24800622e+00 -8.98209751e-01 -9.26518142e-01 -1.45868003e-01 6.78384900e-01 -7.01796591e-01 9.19257820e-01 5.11800826e-01 -1.05776978e+00 -7.26146340e-01 -1.53435802e+00 -3.82328808e-01 -6.88051105e-01 3.49275500e-01 2.63609916e-01 8.34111154e-01 -8.95573318e-01 9.14607644e-01 -7.95891285e-01 2.65711010e-01 8.55012596e-01 3.70908946e-01 -3.51579010e-01 -2.10423674e-02 -1.40167892e+00 7.16592789e-01 2.27177978e-01 3.47956359e-01 -1.09015107e+00 -6.06582761e-01 -9.24886346e-01 4.46654916e-01 5.27705625e-03 1.74845442e-01 9.57720280e-01 -1.17131996e+00 -1.10276163e+00 6.88336611e-01 1.87933445e-01 -7.74665534e-01 6.89751804e-01 -1.47922337e-01 -6.95082963e-01 6.99693024e-01 -1.30551919e-01 4.10210758e-01 1.46531343e+00 -1.25342190e+00 -3.72471958e-01 -1.17506124e-01 -2.45220631e-01 -4.50227290e-01 -5.37460625e-01 1.58269569e-01 -6.70464516e-01 -1.05046356e+00 -6.02571480e-02 -4.40165341e-01 1.12602301e-01 2.83156008e-01 -5.73876262e-01 4.89863157e-01 1.58740318e+00 -1.23466444e+00 1.36495245e+00 -2.31708813e+00 -5.01541138e-01 3.40533286e-01 4.56164896e-01 5.93654990e-01 -3.55739236e-01 2.59835124e-01 -3.18959653e-01 3.57581526e-01 -4.06264812e-01 -1.26192778e-01 -2.12961927e-01 -1.61443815e-01 -5.65979958e-01 9.56782579e-01 3.28712851e-01 1.00678897e+00 -7.92853832e-01 -4.65184838e-01 5.37706912e-01 7.77331769e-01 -3.40501249e-01 -2.09243685e-01 -8.99016708e-02 2.42592931e-01 -2.38989130e-01 7.43272245e-01 1.34627414e+00 -2.24169433e-01 3.25229406e-01 -5.66628575e-01 6.17436878e-02 -5.91656975e-02 -6.05037630e-01 1.58820367e+00 -4.88043815e-01 1.43472588e+00 2.23313555e-01 -1.08973503e+00 6.09976411e-01 1.76776841e-01 4.51923877e-01 -9.30469811e-01 5.38713396e-01 5.59942573e-02 -2.53991425e-01 -8.08804870e-01 6.46823823e-01 6.69003427e-01 6.46213489e-03 6.62882030e-01 -1.18304960e-01 1.93838984e-01 -3.34001422e-01 2.79520392e-01 1.25637960e+00 -2.14313239e-01 1.07387297e-01 4.15883586e-03 6.10421360e-01 -4.03427005e-01 2.73161918e-01 1.04344594e+00 -4.91797030e-01 9.81685877e-01 7.41697133e-01 -7.91645169e-01 -1.29410183e+00 -8.28171492e-01 1.22546516e-01 7.08273113e-01 4.42129344e-01 -2.84325451e-01 -9.70489681e-01 -8.64923656e-01 -1.00914679e-01 3.07899356e-01 -8.42868030e-01 -4.23474759e-01 -1.07986641e+00 -1.40485466e-01 1.08395505e+00 6.36116087e-01 1.17553425e+00 -1.05562854e+00 -6.78732991e-01 -3.11377961e-02 -4.18400139e-01 -1.32555175e+00 -8.89637709e-01 1.90311015e-01 -5.71810067e-01 -1.41942596e+00 -5.51492095e-01 -9.31809187e-01 6.72295034e-01 4.32319343e-01 7.76903391e-01 7.04290926e-01 -4.85879362e-01 5.50980382e-02 -2.79253870e-01 -1.10431157e-01 -5.59097230e-01 -1.19877264e-01 -2.31551409e-01 -1.98044330e-02 4.93533403e-01 -5.54628909e-01 -8.40620100e-01 1.21588781e-01 -1.27496123e+00 -3.17167550e-01 5.40845573e-01 7.48726487e-01 1.73178554e-01 5.56259871e-01 -1.38667226e-01 -7.43813038e-01 6.64093554e-01 -2.52947003e-01 -4.82782543e-01 3.80289346e-01 -7.39904791e-02 -9.69010592e-02 1.03142536e+00 -6.35941148e-01 -5.77216566e-01 -2.92615425e-02 -2.72589643e-02 -9.94809866e-01 -9.37639996e-02 1.42453238e-01 5.03145978e-02 -6.13752484e-01 6.77630663e-01 6.60196602e-01 1.58136383e-01 -3.12006533e-01 1.74889341e-01 9.21945214e-01 1.09487009e+00 -2.45473757e-01 9.39058542e-01 7.85563409e-01 -2.32848659e-01 -7.71649301e-01 -1.65696144e-01 -1.59000546e-01 -6.32939041e-01 -9.26108435e-02 8.23403776e-01 -7.21934378e-01 -9.70330298e-01 8.96761537e-01 -1.40951979e+00 -3.52572113e-01 1.07402978e-02 1.75646484e-01 -5.46617389e-01 1.07968938e+00 -9.13022339e-01 -4.80917692e-01 -1.49006203e-01 -1.32880402e+00 9.93274271e-01 -3.38454507e-02 8.78965780e-02 -1.01159346e+00 -4.21851307e-01 3.32146063e-02 8.41398180e-01 3.50995511e-01 8.23383510e-01 -3.02099615e-01 -8.20620358e-01 -5.12042642e-01 -5.68185389e-01 5.83756030e-01 2.98359483e-01 3.54594104e-02 -1.04942572e+00 -2.69290626e-01 3.65834057e-01 -1.59830168e-01 1.09065008e+00 5.15979052e-01 2.14948988e+00 -5.17720819e-01 -1.89699367e-01 1.19647264e+00 1.43562508e+00 2.32127637e-01 1.34611583e+00 5.48241317e-01 7.23388910e-01 9.73899812e-02 8.25022254e-03 3.64235282e-01 -2.48178959e-01 3.08870763e-01 6.58459604e-01 -3.08476210e-01 -2.30192438e-01 -2.96794206e-01 3.22733253e-01 3.99540901e-01 2.15058640e-01 -3.14721793e-01 -5.30371308e-01 4.49133903e-01 -1.36205649e+00 -1.21069050e+00 -8.94191768e-03 1.93863571e+00 7.92530775e-01 2.31459644e-02 -4.31311905e-01 2.65139848e-01 1.03577387e+00 4.73260939e-01 -5.57844341e-01 -2.97535598e-01 -2.00895771e-01 3.42286676e-01 1.05264938e+00 4.46416050e-01 -1.43391156e+00 7.82208025e-01 6.71472645e+00 1.03313196e+00 -1.40202570e+00 -1.78720169e-02 7.51041412e-01 4.05577451e-01 9.89008546e-02 -3.39467406e-01 -1.03492707e-01 9.16642725e-01 7.09414363e-01 5.78721344e-01 7.34858215e-01 7.94059277e-01 3.20537776e-01 -1.92140900e-02 -7.92543471e-01 1.12424791e+00 3.40036422e-01 -1.61804235e+00 6.27010837e-02 2.89099757e-02 5.94133615e-01 -1.21781878e-01 6.10260725e-01 -1.15308337e-01 1.31614164e-01 -1.23768353e+00 6.40398860e-01 9.36024338e-02 1.23723209e+00 -5.13222516e-01 8.99432600e-01 -8.54786369e-04 -1.10488701e+00 -2.48744428e-01 -5.15775740e-01 3.97021413e-01 -1.18671529e-01 2.92133212e-01 -4.86430198e-01 -2.72204690e-02 7.93661296e-01 7.87247419e-01 -5.25301397e-01 7.65599847e-01 -1.95477873e-01 4.94211197e-01 -1.36492671e-02 4.69781339e-01 2.77601629e-01 1.08567150e-02 8.09192806e-02 1.31466055e+00 4.75720227e-01 -3.57086152e-01 -2.91637421e-01 1.14824140e+00 -6.16359234e-01 -5.51437438e-01 -6.72887683e-01 -1.96874514e-01 4.87135500e-01 9.49921727e-01 -8.45373750e-01 -2.98512995e-01 -4.05354381e-01 1.55446768e+00 -1.69840436e-02 5.87231934e-01 -1.03090703e+00 -8.64878356e-01 7.36705840e-01 -1.66034371e-01 6.84771955e-01 -4.12037462e-01 -3.97328883e-01 -1.20754635e+00 5.61560988e-02 -1.14668989e+00 2.00178474e-03 -6.63736761e-01 -9.29740310e-01 2.36597925e-01 -5.39303422e-01 -1.54206872e+00 2.32022017e-01 -8.71466398e-01 -8.46753240e-01 6.48957908e-01 -1.76486015e+00 -1.00742912e+00 -5.83162189e-01 8.48457754e-01 7.12370396e-01 -1.44388586e-01 4.70579416e-01 3.89719099e-01 -3.15762162e-01 9.22378182e-01 3.24727386e-01 1.16004038e+00 6.60923898e-01 -9.89917576e-01 7.21867442e-01 1.10894763e+00 -7.60720149e-02 9.29178178e-01 4.11898166e-01 -7.06181347e-01 -1.45700145e+00 -1.19752884e+00 4.57340717e-01 -1.99908182e-01 4.74227011e-01 -3.40191901e-01 -9.56751704e-01 7.87427127e-01 5.20949006e-01 3.28165263e-01 2.68520623e-01 -7.74945796e-01 -8.25218439e-01 1.17446132e-01 -1.31145084e+00 3.77627730e-01 5.71961462e-01 -1.09087050e+00 1.88465286e-02 3.56011897e-01 4.86721992e-01 -3.49107295e-01 -5.36355019e-01 8.83593559e-02 6.57978356e-01 -1.08681178e+00 1.24574530e+00 -3.04682493e-01 8.33500922e-01 -2.96743304e-01 -7.21657053e-02 -9.82116103e-01 -1.50865704e-01 -6.79718971e-01 -3.59385341e-01 5.90955138e-01 2.42049731e-02 -3.20749015e-01 9.38420355e-01 6.40465990e-02 1.19124152e-01 -3.50113571e-01 -7.10553348e-01 -6.74084306e-01 6.24699853e-02 -4.67252851e-01 7.23851979e-01 1.30624819e+00 -1.55597091e-01 -7.63275325e-01 -8.38136613e-01 5.60930431e-01 7.00034142e-01 -3.56488198e-01 4.43548381e-01 -3.79458517e-01 -1.57974303e-01 -4.14687723e-01 -5.76179802e-01 -1.30244064e+00 -8.37160274e-02 -4.17641342e-01 -2.56763250e-02 -8.61212492e-01 8.84697363e-02 -1.32989302e-01 -2.80067146e-01 2.80628324e-01 3.58386971e-02 6.82463467e-01 1.44868657e-01 2.93964356e-01 -4.08331633e-01 2.43538663e-01 1.09071898e+00 -6.17424488e-01 2.36974970e-01 -2.93710530e-01 -4.51518327e-01 6.79399550e-01 9.90968585e-01 -4.57053423e-01 -1.93557158e-01 -8.87045801e-01 2.86998805e-02 -2.65738722e-02 5.87629735e-01 -1.29746377e+00 4.83532995e-01 7.85818622e-02 9.48544085e-01 -7.55383611e-01 8.57964978e-02 -1.10323560e+00 -2.88542509e-01 7.14790583e-01 -6.81042314e-01 2.24898875e-01 -1.09440319e-01 6.31295502e-01 -3.89877230e-01 -3.33888263e-01 9.71435189e-01 -3.53761762e-01 -5.74933171e-01 2.33925000e-01 -7.53420830e-01 -4.05255049e-01 8.69225681e-01 -5.36847889e-01 -4.93751407e-01 -6.76841259e-01 -4.13848698e-01 -2.82729894e-01 5.59899688e-01 3.37198257e-01 1.12223768e+00 -1.27875268e+00 -2.95541942e-01 7.12899745e-01 -2.27300316e-01 -4.31628585e-01 4.04366553e-01 6.75766408e-01 -1.48229802e+00 2.89754987e-01 -4.07610625e-01 -4.55025643e-01 -1.24585903e+00 8.39484155e-01 5.57588220e-01 -2.21812576e-02 -6.62935853e-01 5.56324184e-01 -1.63429067e-01 3.41066010e-02 3.41296643e-01 -5.56715369e-01 1.02837123e-01 -6.42892957e-01 9.33717847e-01 3.44240457e-01 -3.87679599e-02 -4.43625659e-01 -1.13917358e-01 5.39919496e-01 -2.31130451e-01 2.83456445e-01 9.59846199e-01 -2.69709945e-01 -2.38666385e-01 -4.18416291e-01 1.89669073e+00 -5.91484644e-03 -1.34706569e+00 -1.01040959e-01 -1.45868719e-01 -9.20159757e-01 2.53317416e-01 -5.12683749e-01 -1.64009869e+00 1.26188719e+00 7.81549990e-01 3.44654649e-01 1.24680293e+00 -6.74435198e-01 1.18097651e+00 2.63201296e-01 1.45984560e-01 -1.21876991e+00 2.96432674e-01 4.06995445e-01 6.47338510e-01 -1.21792555e+00 4.11541425e-02 -2.76124060e-01 -2.76570618e-01 1.63152313e+00 4.53650713e-01 -4.32750851e-01 6.73872471e-01 7.17603385e-01 2.28800684e-01 -1.53916776e-01 -1.01834290e-01 4.75354820e-01 -2.37385795e-01 9.31892455e-01 1.43870473e-01 -2.85082906e-01 3.06772500e-01 -9.63787064e-02 3.33861932e-02 -4.25497927e-02 7.06313550e-01 1.10395825e+00 -3.64821225e-01 -8.39360714e-01 -6.02554202e-01 3.11965436e-01 -7.87397981e-01 -2.97549188e-01 -3.89283329e-01 7.38441229e-01 3.24296683e-01 8.02762210e-01 2.20023870e-01 -6.65862501e-01 -3.64901751e-01 -4.26046133e-01 2.70321369e-01 1.34074673e-01 -5.70941150e-01 -2.38608196e-01 -5.57341576e-01 -8.00246954e-01 -1.91710427e-01 -1.15293384e-01 -9.82433200e-01 -6.63132966e-01 -3.50843012e-01 -1.83399171e-01 8.74925554e-01 6.43513978e-01 2.80661136e-01 5.55231810e-01 8.97531807e-01 -8.30754876e-01 -5.57139516e-01 -8.70527685e-01 -6.31534100e-01 4.42544132e-01 9.81169164e-01 -3.04322932e-02 -5.79565942e-01 5.01336277e-01]
[12.303071022033691, 0.9517441391944885]
1aff20ea-6cf6-481f-ad26-d6ea756028a4
non-decreasing-quantile-function-network-with-1
2105.06696
null
https://arxiv.org/abs/2105.06696v1
https://arxiv.org/pdf/2105.06696v1.pdf
Non-decreasing Quantile Function Network with Efficient Exploration for Distributional Reinforcement Learning
Although distributional reinforcement learning (DRL) has been widely examined in the past few years, there are two open questions people are still trying to address. One is how to ensure the validity of the learned quantile function, the other is how to efficiently utilize the distribution information. This paper attempts to provide some new perspectives to encourage the future in-depth studies in these two fields. We first propose a non-decreasing quantile function network (NDQFN) to guarantee the monotonicity of the obtained quantile estimates and then design a general exploration framework called distributional prediction error (DPE) for DRL which utilizes the entire distribution of the quantile function. In this paper, we not only discuss the theoretical necessity of our method but also show the performance gain it achieves in practice by comparing with some competitors on Atari 2600 Games especially in some hard-explored games.
['Liwen Zhang', 'Qi Kuang', 'Zhoufan Zhu', 'Fan Zhou']
2021-05-14
non-decreasing-quantile-function-network-with
https://openreview.net/forum?id=f_GA2IU9-K-
https://openreview.net/pdf?id=f_GA2IU9-K-
null
['distributional-reinforcement-learning']
['methodology']
[-4.16535228e-01 3.92912365e-02 -3.67440015e-01 -3.25551331e-01 -1.01162219e+00 -5.55849731e-01 1.23168588e-01 1.61772761e-02 -5.14632940e-01 1.21963036e+00 -1.30429240e-02 -4.85704213e-01 -5.62372029e-01 -9.53033626e-01 -6.01943552e-01 -8.03546846e-01 -4.13605094e-01 4.96481329e-01 2.33933538e-01 -4.31611478e-01 4.18479830e-01 2.97503680e-01 -1.50501978e+00 -2.86190152e-01 1.14577687e+00 1.22614896e+00 1.56932056e-01 3.33166003e-01 -4.18917127e-02 7.33180761e-01 -6.66141093e-01 -4.03689802e-01 3.36551994e-01 -6.04953468e-01 -5.76964915e-01 -3.63013536e-01 -1.13143757e-01 -6.15013301e-01 -7.16189444e-02 1.39416790e+00 7.04256117e-01 3.29140365e-01 5.39494455e-01 -1.45301676e+00 -4.25406039e-01 9.31978703e-01 -1.04167211e+00 4.51743007e-01 4.05524150e-02 -6.66853972e-04 9.88680482e-01 -3.71550173e-01 1.50523320e-01 1.10692132e+00 5.03893375e-01 4.13307160e-01 -5.61400533e-01 -9.22760725e-01 8.03275630e-02 4.63122487e-01 -1.36823559e+00 1.04808167e-01 6.22120440e-01 -6.57456219e-02 4.47700232e-01 -1.23141862e-01 5.08966029e-01 7.16291845e-01 2.61765093e-01 7.39865959e-01 1.28840029e+00 -2.32531309e-01 6.35874033e-01 -7.45442286e-02 2.03010477e-02 3.94162238e-01 2.12204427e-01 4.87112969e-01 -4.64697063e-01 -1.43592894e-01 9.15032685e-01 -4.34516460e-01 -1.64525628e-01 -5.39422631e-01 -5.73999763e-01 1.14568698e+00 1.29334450e-01 -8.27938616e-02 -3.09291542e-01 3.05489719e-01 4.89619046e-01 4.48456198e-01 5.35480976e-01 2.15809062e-01 -3.76832992e-01 -7.52342999e-01 -9.34657454e-01 4.65052396e-01 7.13567138e-01 9.24200296e-01 5.66778839e-01 2.33395427e-01 -1.47748008e-01 6.06145918e-01 2.36584678e-01 5.54165900e-01 3.98211628e-01 -8.98223519e-01 6.63375139e-01 1.09920368e-01 4.21662450e-01 -5.66465974e-01 -2.94668853e-01 -2.63416708e-01 -5.68345428e-01 3.63626480e-01 7.13379145e-01 -6.08497202e-01 -3.87997031e-01 1.94904029e+00 3.95452708e-01 1.94816723e-01 4.03045155e-02 1.03015506e+00 3.91600013e-01 5.72001457e-01 -4.27983254e-02 -1.17815837e-01 9.42554414e-01 -5.48197389e-01 -5.21336854e-01 1.36658773e-01 3.07163417e-01 -4.20291007e-01 1.19249868e+00 6.55787349e-01 -1.14453673e+00 -3.68133247e-01 -1.05180669e+00 2.55428284e-01 -5.60124405e-02 -4.55221161e-02 6.95548236e-01 9.58423197e-01 -7.93871701e-01 6.70757651e-01 -8.60815346e-01 -1.73364133e-02 3.11865449e-01 4.60294724e-01 1.23775557e-01 2.55580872e-01 -1.57827175e+00 6.82593405e-01 5.77735126e-01 -4.05118726e-02 -1.05181229e+00 -4.62233067e-01 -6.85167015e-01 3.84361982e-01 8.06853533e-01 -4.57805255e-03 1.31901896e+00 -4.92258042e-01 -1.88602495e+00 1.78961083e-01 4.68847901e-01 -6.34938776e-01 8.15753520e-01 -3.83082628e-01 -1.48023367e-01 3.95075828e-02 -2.29264703e-03 3.61477375e-01 3.28636467e-01 -6.88428402e-01 -9.85152662e-01 -4.29472178e-01 3.66586506e-01 3.67308557e-01 -3.79842848e-01 -2.95558959e-01 -1.28566936e-01 -6.10950291e-01 -2.45904908e-01 -6.11101985e-01 -3.08560848e-01 -1.99539229e-01 -2.38813460e-01 -6.79471791e-01 2.86071032e-01 -3.20149571e-01 1.43981445e+00 -2.26200628e+00 -1.73549373e-02 3.59570891e-01 -1.18832543e-01 3.27779427e-02 -2.49998234e-02 6.73261881e-01 1.75098315e-01 -1.23494700e-01 -1.43678397e-01 -2.58139474e-03 2.48975843e-01 2.67503709e-01 -8.39101374e-01 6.53099239e-01 -3.25382262e-01 6.10738695e-01 -9.68155444e-01 -3.15464348e-01 -7.47646298e-03 3.26003693e-02 -6.00312769e-01 2.79818714e-01 -3.71459007e-01 1.56398416e-01 -6.19403780e-01 4.34787482e-01 8.78187597e-01 1.62212685e-01 1.30987018e-01 2.22604260e-01 -2.78826118e-01 8.59863311e-02 -1.39363992e+00 1.38491535e+00 -6.68353066e-02 1.72537178e-01 -1.63600653e-01 -1.16589689e+00 1.14081979e+00 -2.01456044e-02 4.86098260e-01 -7.59507716e-01 2.14045674e-01 3.06518942e-01 -3.52754556e-02 -4.77176964e-01 6.57122314e-01 -3.91568482e-01 -2.77975559e-01 5.03593266e-01 -6.25582933e-02 1.60775244e-01 3.22577864e-01 -1.06549352e-01 5.45981228e-01 3.49955857e-01 3.42736423e-01 -6.71021640e-01 3.90962809e-01 -7.94075355e-02 5.69615424e-01 9.53209102e-01 -4.78550136e-01 2.28199005e-01 1.14806449e+00 -3.29030305e-01 -8.89745951e-01 -1.26086414e+00 -1.38673142e-01 1.23826599e+00 5.37320077e-01 -2.31690720e-01 -7.62594104e-01 -8.76782954e-01 1.22633137e-01 8.31812143e-01 -7.30736315e-01 -9.92381275e-02 -2.52477348e-01 -6.20609641e-01 8.32700312e-01 8.05798888e-01 8.04355025e-01 -1.06315875e+00 -7.80435443e-01 1.32367715e-01 6.38282020e-03 -5.91564059e-01 -4.77281183e-01 3.99326295e-01 -7.88143158e-01 -1.07767081e+00 -6.42937660e-01 -3.37443173e-01 4.26309630e-02 2.35175639e-02 9.62207794e-01 -2.93674499e-01 3.74027163e-01 8.80052298e-02 -4.10314590e-01 -5.41967809e-01 1.60153195e-01 2.24401474e-01 -5.54841161e-02 -4.98226613e-01 4.85204041e-01 -6.12729371e-01 -5.14879465e-01 4.58023965e-01 -8.50374281e-01 -5.01404345e-01 4.26239818e-01 8.85273039e-01 6.42423749e-01 3.54772538e-01 1.18574202e+00 -9.22729313e-01 1.05699968e+00 -7.30708301e-01 -1.17035854e+00 2.27814361e-01 -6.05995953e-01 2.37707511e-01 8.58832717e-01 -2.92347252e-01 -1.01870334e+00 -4.27553892e-01 -4.78807926e-01 -1.43367186e-01 1.76628664e-01 7.65513957e-01 -5.92765678e-03 2.88077503e-01 4.87081498e-01 3.10957491e-01 1.11638501e-01 -3.52903813e-01 3.30330223e-01 7.05843449e-01 6.15696192e-01 -1.11472023e+00 5.83848476e-01 2.14617580e-01 -1.46190468e-02 -5.49130738e-01 -1.03683460e+00 -2.95682847e-01 -1.07510164e-01 -1.63052365e-01 5.48689127e-01 -6.39106214e-01 -1.36279488e+00 1.41477823e-01 -5.02798498e-01 -5.67135632e-01 -4.66325283e-01 5.87083459e-01 -1.12254667e+00 4.76114720e-01 -6.04997337e-01 -1.17709315e+00 -4.17998195e-01 -1.02807987e+00 6.85585260e-01 4.29764062e-01 2.90228486e-01 -8.68067563e-01 4.27132368e-01 -8.62487108e-02 3.57320756e-01 1.10774748e-01 9.76742208e-01 -5.58674037e-01 -2.36065716e-01 2.60650426e-01 -3.32433343e-01 3.97255152e-01 -8.43523964e-02 -3.97868395e-01 -5.38086236e-01 -5.68648875e-01 7.01484531e-02 -6.98349714e-01 7.45923936e-01 6.45030260e-01 1.51292241e+00 4.01052088e-02 1.09118760e-01 5.55966198e-01 1.45415854e+00 3.75786811e-01 7.68695891e-01 5.58991432e-01 4.88874763e-02 3.21776956e-01 1.07617080e+00 9.26815987e-01 3.25084686e-01 4.23622757e-01 6.39716387e-01 3.14331383e-01 4.62251931e-01 -5.51780343e-01 3.77962738e-01 4.36279029e-01 -1.77885726e-01 -3.07426244e-01 -6.51609898e-01 3.78343552e-01 -2.00130749e+00 -8.86360168e-01 3.29005271e-01 2.36797428e+00 9.17637825e-01 3.23336571e-01 5.75554311e-01 -4.44895402e-02 7.04693258e-01 -6.33168221e-02 -8.89814258e-01 -5.68666101e-01 1.95503950e-01 4.80488002e-01 5.88891745e-01 4.71049547e-01 -7.98558056e-01 8.57486188e-01 6.70898247e+00 1.34838021e+00 -9.51092720e-01 -1.59475267e-01 6.93952262e-01 9.97295678e-02 -3.20735365e-01 -5.38419448e-02 -8.33745897e-01 5.65083325e-01 7.09553897e-01 -4.23732311e-01 5.57403505e-01 1.35883629e+00 1.44424200e-01 -3.54201615e-01 -6.56540453e-01 7.93471396e-01 -3.62202525e-01 -9.59867179e-01 -2.57757425e-01 2.54433841e-01 5.86743653e-01 -1.12105785e-02 3.11811745e-01 8.63800764e-01 5.18251181e-01 -1.14061654e+00 5.84768236e-01 4.46734726e-01 7.90227592e-01 -1.69997668e+00 9.89075065e-01 6.31809473e-01 -1.01803398e+00 -1.57798856e-01 -1.06511378e+00 -2.69505769e-01 -1.67223781e-01 3.76104146e-01 -4.49113876e-01 5.74457705e-01 7.58745790e-01 3.57921571e-01 -3.15965623e-01 1.36568999e+00 -3.99278075e-01 8.69313955e-01 -3.15239310e-01 -3.48545521e-01 6.77127123e-01 -4.28267628e-01 2.69269854e-01 7.49102771e-01 4.95911628e-01 2.85641546e-03 2.38512710e-01 6.88601315e-01 -2.10437495e-02 1.75979003e-01 -2.80502081e-01 2.34503578e-02 5.43003321e-01 1.01837909e+00 -5.88516951e-01 -3.98583673e-02 -3.00483078e-01 3.87027562e-01 6.35091543e-01 1.60183176e-01 -1.16540158e+00 -5.76805711e-01 5.90692282e-01 -9.26757604e-02 4.71909106e-01 -2.38752633e-01 -9.83596593e-02 -8.71143758e-01 -1.08677894e-01 -7.94319212e-01 7.20615566e-01 -4.39748973e-01 -1.49050725e+00 6.00278914e-01 1.79792866e-01 -1.13941205e+00 -4.59084183e-01 -5.31169653e-01 -5.84805787e-01 7.03987360e-01 -1.64524364e+00 -4.82162029e-01 -4.92242612e-02 5.41235268e-01 4.26523030e-01 -2.44953781e-01 5.28348446e-01 2.12392002e-01 -3.26634496e-01 8.46507967e-01 6.07131541e-01 3.07498649e-02 6.34202182e-01 -1.58492172e+00 6.34174272e-02 3.75043780e-01 -2.75100116e-02 2.76244104e-01 7.41371810e-01 -5.21210790e-01 -1.09303713e+00 -7.24703074e-01 1.73482552e-01 4.55618389e-02 7.43285656e-01 -1.41437069e-01 -7.39169180e-01 4.77233142e-01 3.28264892e-01 -2.27333561e-01 6.27809823e-01 1.06552213e-01 -5.35054877e-02 -1.69612914e-01 -1.14524579e+00 4.91147608e-01 6.39853001e-01 1.20156854e-02 -4.09423709e-01 -1.15795664e-01 4.31783885e-01 -5.69972813e-01 -7.34247983e-01 4.54638869e-01 5.69593370e-01 -1.32058239e+00 6.29992545e-01 -6.72138631e-01 4.29564536e-01 -1.97769344e-01 -2.21834466e-01 -1.42807996e+00 9.48139876e-02 -5.43153167e-01 -7.68886358e-02 1.12976062e+00 3.82631458e-02 -7.06717253e-01 1.10900509e+00 1.92406595e-01 6.98082969e-02 -1.48514676e+00 -1.02428651e+00 -1.09898317e+00 7.52174377e-01 -5.77268481e-01 8.97393882e-01 5.10153234e-01 2.65588164e-01 -1.03620172e-01 -6.82279706e-01 -2.02598162e-02 6.74233198e-01 4.00536388e-01 6.14351332e-01 -8.80081534e-01 -4.65677530e-01 -3.48978490e-01 -2.56145358e-01 -1.45022464e+00 5.25914915e-02 -4.91387755e-01 1.05011195e-01 -1.15192378e+00 1.91002354e-01 -5.41619599e-01 -5.08927226e-01 1.26359582e-01 -1.08800225e-01 -6.03685267e-02 -3.91855799e-02 -8.93420205e-02 -9.19341326e-01 1.03074837e+00 1.29065561e+00 2.70436078e-01 -1.74335659e-01 3.26028436e-01 -9.79024410e-01 5.32725692e-01 1.00118291e+00 -5.05088031e-01 -8.16624999e-01 -1.66326407e-02 3.79922509e-01 5.18146276e-01 1.28378011e-02 -9.00841892e-01 2.19683498e-01 -6.24893546e-01 3.46995652e-01 -8.66672575e-01 -6.98927715e-02 -5.25768042e-01 -4.41803604e-01 2.36022681e-01 -3.70591104e-01 3.69246244e-01 2.66686231e-01 6.71602726e-01 -3.76351655e-01 -5.18729329e-01 8.42051327e-01 8.04676563e-02 -6.54550672e-01 3.78120065e-01 -3.44164819e-01 5.05345821e-01 1.08365262e+00 1.85207091e-02 -2.63966352e-01 -7.62168646e-01 -4.79345351e-01 5.76715291e-01 1.57494053e-01 1.12662045e-02 5.30355096e-01 -1.30741429e+00 -5.43771982e-01 -5.21266013e-02 -9.80195776e-02 -2.37119406e-01 3.20082217e-01 5.63343048e-01 -4.63361084e-01 1.87438816e-01 -3.31244946e-01 -3.07077706e-01 -6.12669170e-01 5.29600978e-01 4.43059713e-01 -5.70200086e-01 -4.63137329e-01 6.18383110e-01 4.73397821e-02 -3.01587582e-01 4.76582646e-01 -7.50044882e-02 -2.14327857e-01 -1.78644270e-01 5.17961800e-01 5.68515003e-01 -2.59640276e-01 -5.89633435e-02 -1.05381846e-01 3.21781963e-01 3.81990932e-02 -1.30750135e-01 1.43271792e+00 -1.33798137e-01 1.38740912e-01 3.03950429e-01 7.14636803e-01 -4.85334657e-02 -1.65504277e+00 1.25332351e-03 1.67039305e-01 -5.17617881e-01 -8.20480585e-02 -7.86753476e-01 -1.21313322e+00 8.73631418e-01 6.01828039e-01 5.00021040e-01 1.26011813e+00 -2.31240287e-01 7.54494429e-01 4.06062603e-01 7.15471148e-01 -1.36397123e+00 -2.02765930e-02 7.13995576e-01 6.31913424e-01 -9.21785057e-01 -5.74641079e-02 -1.33572951e-01 -8.24987292e-01 1.41608417e+00 7.68063307e-01 -5.43716013e-01 6.79555118e-01 3.13427448e-01 -9.78729799e-02 -1.24337249e-01 -5.65948486e-01 -4.45860922e-01 -5.65562360e-02 6.23462260e-01 3.45144629e-01 -3.07386089e-02 -5.80327451e-01 8.27880442e-01 -5.83977938e-01 2.43618079e-02 5.83147168e-01 6.46505415e-01 -7.00685918e-01 -1.27791762e+00 -1.46639556e-01 4.26523596e-01 -4.94837105e-01 6.95769265e-02 1.48635790e-01 1.09385002e+00 -4.27061878e-02 8.36666286e-01 -1.49891004e-01 -2.59788245e-01 2.31305987e-01 -2.85198957e-01 5.47217369e-01 -3.82226408e-01 -2.29833007e-01 9.72554609e-02 -1.09760970e-01 -4.23619062e-01 -7.37890378e-02 -4.24625218e-01 -1.24506998e+00 -5.28778851e-01 -5.16947210e-01 6.83396459e-01 4.29566950e-01 1.00988007e+00 4.64874227e-03 2.49425799e-01 5.80379784e-01 -2.71646500e-01 -1.38747418e+00 -8.22031498e-01 -1.26694381e+00 -8.45429376e-02 -7.20323101e-02 -1.07147300e+00 -2.27655634e-01 -7.71660209e-01]
[4.045472621917725, 2.571512460708618]
8f99f9cf-3f75-486f-8cfe-a086a14bb378
profilesr-gan-a-gan-based-super-resolution
2107.09523
null
https://arxiv.org/abs/2107.09523v2
https://arxiv.org/pdf/2107.09523v2.pdf
ProfileSR-GAN: A GAN based Super-Resolution Method for Generating High-Resolution Load Profiles
It is a common practice for utilities to down-sample smart meter measurements from high resolution (e.g. 1-min or 1-sec) to low resolution (e.g. 15-, 30- or 60-min) to lower the data transmission and storage cost. However, down-sampling can remove high-frequency components from time-series load profiles, making them unsuitable for in-depth studies such as quasi-static power flow analysis or non-intrusive load monitoring (NILM). Thus, in this paper, we propose ProfileSR-GAN: a Generative Adversarial Network (GAN) based load profile super-resolution (LPSR) framework for restoring high-frequency components lost through the smoothing effect of the down-sampling process. The LPSR problem is formulated as a Maximum-a-Prior problem. When training the ProfileSR-GAN generator network, to make the generated profiles more realistic, we introduce two new shape-related losses in addition to conventionally used content loss: adversarial loss and feature-matching loss. Moreover, a new set of shape-based evaluation metrics are proposed to evaluate the realisticness of the generated profiles. Simulation results show that ProfileSR-GAN outperforms Mean-Square Loss based methods in all shape-based metrics. The successful application in NILM further demonstrates that ProfileSR-GAN is effective in recovering high-resolution realistic waveforms.
['Ning Lu', 'Yiyan Li', 'Lidong Song']
2021-07-18
null
null
null
null
['non-intrusive-load-monitoring', 'non-intrusive-load-monitoring', 'non-intrusive-load-monitoring']
['knowledge-base', 'miscellaneous', 'time-series']
[ 1.72906682e-01 -3.07935953e-01 5.15834056e-03 -2.84185886e-01 -1.17459357e+00 -4.56722498e-01 2.66148597e-01 -8.80383700e-02 2.47360885e-01 1.00569367e+00 2.63337761e-01 -1.66208699e-01 -2.03434899e-01 -1.21212709e+00 -3.02496344e-01 -8.75187337e-01 -2.70007700e-01 6.07476942e-03 -2.07403481e-01 -2.25304976e-01 -2.30906606e-01 6.94468021e-01 -1.09031832e+00 9.77562591e-02 1.27461350e+00 1.00150931e+00 1.05312347e-01 3.60394835e-01 3.73187214e-01 8.57319057e-01 -1.25931513e+00 -3.57228577e-01 2.80615479e-01 -8.56904805e-01 -1.85365751e-01 -2.84155399e-01 -4.12145585e-01 -6.79029822e-01 -4.18403447e-01 1.21729040e+00 9.24117565e-01 2.79605091e-01 6.56463265e-01 -1.63306189e+00 -4.88944650e-01 6.59454465e-01 -6.75770581e-01 3.86089623e-01 5.17108023e-01 2.11329415e-01 6.95630372e-01 -3.52563918e-01 -1.80167288e-01 8.88028145e-01 1.07539690e+00 8.63764733e-02 -1.45316803e+00 -7.14950383e-01 -2.96256393e-01 4.26940560e-01 -1.35513365e+00 -2.71310270e-01 1.32754636e+00 -1.48084611e-01 8.16971481e-01 5.11362374e-01 4.39450473e-01 8.76886666e-01 1.38705699e-02 5.60305655e-01 1.15541375e+00 -1.68042615e-01 2.95987427e-01 -8.84575620e-02 -5.91864526e-01 -1.63055182e-01 1.03272587e-01 7.35451952e-02 -2.15282857e-01 -2.54173428e-01 7.53585875e-01 -2.04436272e-01 -5.85824251e-01 2.76419908e-01 -4.60870057e-01 9.03744936e-01 3.58123422e-01 3.13989103e-01 -5.53548098e-01 -1.05577990e-01 5.21785736e-01 2.84301311e-01 7.42862880e-01 2.07577512e-01 -1.64407462e-01 -4.21850413e-01 -1.25638223e+00 -6.84983358e-02 4.06777054e-01 8.78179729e-01 3.37602526e-01 1.06223607e+00 -3.14379722e-01 9.28141177e-01 1.57500684e-01 8.44786167e-01 6.45981312e-01 -7.50717163e-01 5.89308262e-01 4.88908850e-02 1.91833362e-01 -8.88383448e-01 -4.91526097e-01 -2.71749884e-01 -1.30993760e+00 1.81259587e-01 3.08057457e-01 -3.04157943e-01 -3.65964293e-01 1.82061696e+00 5.51412851e-02 3.14149588e-01 5.09754382e-02 8.20750356e-01 5.19531131e-01 9.84369218e-01 1.92175191e-02 -5.65163612e-01 1.22138155e+00 -5.09132802e-01 -1.03636670e+00 2.85327315e-01 4.91846688e-02 -7.78320849e-01 1.27848649e+00 3.89514357e-01 -1.34594095e+00 -4.88021731e-01 -1.08779323e+00 3.20793122e-01 -3.54046039e-02 -4.86294888e-02 1.07856363e-01 9.17726576e-01 -5.40961981e-01 9.21740413e-01 -6.02951646e-01 1.76907450e-01 5.86523950e-01 -4.06983227e-01 8.13649818e-02 2.31597736e-01 -1.44964099e+00 8.01484406e-01 5.88910393e-02 3.78761888e-02 -7.57293701e-01 -1.31683481e+00 -7.77365267e-01 3.69765550e-01 -1.10261977e-01 -2.88690686e-01 9.55586195e-01 -6.08338714e-01 -1.77256560e+00 1.22860104e-01 1.38142988e-01 -6.94044888e-01 6.19183898e-01 -7.25174770e-02 -9.70823109e-01 4.26965177e-01 -7.67727271e-02 -2.82857031e-01 9.59130764e-01 -1.14839542e+00 -3.14173549e-01 -1.84670120e-01 -1.73348486e-01 -2.48859003e-02 -4.14135568e-02 -1.76346779e-01 5.09692967e-01 -1.23434353e+00 -2.47882068e-01 -1.87702075e-01 1.06565602e-01 -4.38061833e-01 -4.88929242e-01 2.51278520e-01 9.38643515e-01 -1.27603841e+00 1.06667018e+00 -1.97635746e+00 -4.83098269e-01 2.75044858e-01 -2.48813912e-01 5.04053056e-01 -3.80803719e-02 6.21970117e-01 -3.33591074e-01 7.91682303e-02 -4.72000331e-01 -2.87289590e-01 1.93324491e-01 2.07034722e-02 -5.58102250e-01 6.23050809e-01 1.32210389e-01 8.05040658e-01 -8.57317209e-01 9.47021842e-02 6.25291824e-01 8.04508746e-01 -1.08631514e-01 2.60363251e-01 2.22568080e-01 5.09256959e-01 -1.90200046e-01 4.09633636e-01 9.55359817e-01 8.79569948e-02 -2.06727207e-01 -7.65036404e-01 2.19814450e-01 3.60997200e-01 -1.00611985e+00 1.38073146e+00 -9.78151798e-01 5.89148402e-01 8.33715424e-02 -1.21048093e+00 1.15167332e+00 3.72310847e-01 7.61819899e-01 -1.22942984e+00 -2.50170827e-02 -4.65917774e-02 -3.08701605e-01 -3.61332536e-01 3.19398820e-01 -4.44361567e-01 -7.37273619e-02 4.79054838e-01 -1.50733501e-01 -2.80271262e-01 1.64959922e-01 -7.24934340e-02 9.34008479e-01 -3.02185379e-02 2.27698535e-01 -3.27462256e-01 5.70936739e-01 -5.18927872e-01 9.53793108e-01 1.25080511e-01 -1.25443131e-01 5.06403744e-01 3.13727379e-01 -3.88469063e-02 -1.22567689e+00 -1.16906106e+00 -2.85173625e-01 3.77929479e-01 7.60105392e-03 -2.42684230e-01 -7.28675961e-01 -3.82240444e-01 8.24810565e-02 1.50194216e+00 -2.25541100e-01 -4.54955965e-01 -6.12518072e-01 -1.18225646e+00 8.21266413e-01 7.32574165e-01 6.39972329e-01 -9.66296673e-01 -6.52127206e-01 5.37682950e-01 -3.50728691e-01 -1.02435851e+00 -5.38170338e-01 5.34535944e-02 -6.52421832e-01 -8.37216198e-01 -7.53484368e-01 -1.00998633e-01 4.90786195e-01 -1.18642695e-01 1.23249030e+00 -3.91459405e-01 -3.07147950e-01 2.04109296e-01 -5.29928386e-01 -3.59971106e-01 -5.03025651e-01 -2.99323022e-01 -1.13173120e-01 8.63575414e-02 8.73446465e-02 -1.29010653e+00 -6.66679740e-01 2.96413481e-01 -7.23559380e-01 -2.86595911e-01 3.40239942e-01 7.24915147e-01 4.20954019e-01 7.11067796e-01 1.46378136e+00 -4.88311321e-01 9.33133245e-01 -4.58644271e-01 -7.67754197e-01 -5.14084250e-02 -6.47811532e-01 -4.25210327e-01 1.40324891e+00 -5.17152011e-01 -1.13305819e+00 -5.42749465e-01 -4.61006999e-01 -4.61068749e-01 1.15979679e-01 2.32454836e-01 -6.96863770e-01 1.84658453e-01 3.00671726e-01 3.69322658e-01 -1.07030727e-01 -5.44797421e-01 2.99084097e-01 5.49587488e-01 7.82116652e-01 -4.56482410e-01 1.23649514e+00 2.93486565e-01 1.75342798e-01 -9.00008678e-01 -5.81732750e-01 -8.31980035e-02 6.20909296e-02 -6.73490539e-02 5.80093563e-01 -9.60902333e-01 -8.15087378e-01 8.87727737e-01 -7.52784252e-01 -5.97395837e-01 -9.87426221e-01 4.45437521e-01 -7.80179739e-01 4.40672606e-01 -7.77352810e-01 -9.77583170e-01 -8.82898092e-01 -1.06914735e+00 7.76274025e-01 4.25603926e-01 -3.69437486e-02 -1.13592529e+00 -1.07059620e-01 1.33395955e-01 8.81169677e-01 7.76384115e-01 9.24064636e-01 -3.62256527e-01 -1.51456431e-01 -1.51926011e-01 -9.45896506e-02 7.12183475e-01 2.39882067e-01 -4.01168227e-01 -1.10757089e+00 -5.56755602e-01 4.52464312e-01 7.66499620e-03 1.38669461e-01 4.65504497e-01 1.28674841e+00 -5.33859730e-01 1.52759761e-01 8.20284605e-01 1.66454768e+00 4.69234854e-01 1.32788754e+00 4.17475067e-02 2.98698902e-01 6.60140906e-03 2.98374653e-01 8.84009123e-01 2.71071732e-01 5.66959441e-01 2.01717153e-01 -2.24346906e-01 -1.50143474e-01 -3.39853317e-01 2.16110721e-01 8.66816759e-01 9.11243558e-02 -3.79552394e-01 -8.84720758e-02 4.85315502e-01 -1.32351995e+00 -1.21928895e+00 -1.01790823e-01 2.40302253e+00 1.01897931e+00 5.89307062e-02 3.24391156e-01 7.76073635e-01 6.88711226e-01 2.42390558e-01 -7.81952202e-01 -3.81847918e-01 -3.59452546e-01 4.20478672e-01 5.52743495e-01 4.51323181e-01 -7.40780532e-01 -1.64172605e-01 5.15150642e+00 1.24612200e+00 -1.00025415e+00 3.06056708e-01 5.83377659e-01 1.70841604e-01 -6.31455362e-01 -3.99796724e-01 -4.42546040e-01 1.00847304e+00 1.11459208e+00 -7.78271198e-01 6.24928594e-01 6.71837449e-01 5.79779446e-01 -1.19449876e-01 -8.33502471e-01 1.07699096e+00 -3.53210345e-02 -8.63498211e-01 -1.87170446e-01 -2.05612406e-01 6.57991171e-01 -3.95919472e-01 -1.73615336e-01 3.50302577e-01 1.65208161e-01 -1.03229129e+00 5.71683049e-01 7.23598659e-01 1.07526290e+00 -1.06435478e+00 7.73950219e-01 2.25307971e-01 -1.58035588e+00 -1.06293850e-01 -2.40094826e-01 2.91363209e-01 7.85502255e-01 1.29090154e+00 -4.31607962e-01 9.95424509e-01 6.09057963e-01 3.97080421e-01 -4.34840322e-02 1.08351290e+00 -4.01131272e-01 9.41978455e-01 -4.91539568e-01 5.18435776e-01 -2.72255242e-01 -3.50753397e-01 5.73138773e-01 9.62401927e-01 5.20368040e-01 5.57460710e-02 -2.57326523e-03 1.15180874e+00 -1.09094098e-01 -2.59168297e-01 -2.24532068e-01 3.91574889e-01 9.86406744e-01 1.25703943e+00 -2.91113317e-01 -1.86763078e-01 -3.45439434e-01 8.21096420e-01 -4.37100977e-01 4.92405802e-01 -1.10797811e+00 -9.15417790e-01 6.87508941e-01 2.59769827e-01 2.03751266e-01 2.19773576e-01 -2.97944158e-01 -9.26071107e-01 2.94529885e-01 -7.54304528e-01 2.09983259e-01 -8.29049110e-01 -1.73922455e+00 3.38461339e-01 7.18652606e-02 -1.41702938e+00 -5.69004416e-01 3.14394265e-01 -1.19601047e+00 1.39709461e+00 -1.87784362e+00 -8.87762427e-01 -4.76243973e-01 6.09396994e-01 3.91534269e-01 -7.77763575e-02 9.01314735e-01 7.45444179e-01 -4.21183974e-01 7.96018243e-01 2.80567467e-01 1.76042035e-01 1.09953642e-01 -1.28202593e+00 4.01056647e-01 9.36621428e-01 -4.08881634e-01 -1.31812558e-01 8.38648021e-01 -3.58944058e-01 -1.10960567e+00 -1.31768906e+00 2.61052310e-01 2.53777444e-01 4.47907478e-01 -2.81379730e-01 -1.19931173e+00 2.91951329e-01 3.09038550e-01 2.62704752e-02 6.08573079e-01 -8.01705897e-01 -7.27283508e-02 -6.30619824e-01 -1.96636546e+00 1.16027534e-01 3.69109958e-01 -6.45018756e-01 -5.13882816e-01 9.87430960e-02 4.65736568e-01 -1.15335837e-01 -1.55550659e+00 5.57833731e-01 4.85546812e-02 -8.67194533e-01 1.14454317e+00 1.65720694e-02 5.41317351e-02 -4.98034388e-01 -2.65075237e-01 -1.92110479e+00 -1.19975716e-01 -1.21818268e+00 -2.96630144e-01 1.86268044e+00 6.03749417e-02 -9.92329359e-01 4.61501807e-01 2.22076431e-01 -2.04339892e-01 -4.95736778e-01 -1.07509542e+00 -9.99532759e-01 1.33346558e-01 -3.08817297e-01 1.22152388e+00 8.60303998e-01 1.45733193e-01 4.47573476e-02 -2.99076676e-01 4.25240725e-01 1.14079547e+00 9.87659916e-02 4.42903787e-01 -8.81734729e-01 -2.75612265e-01 -4.81189162e-01 -2.88884223e-01 -6.91916168e-01 -3.94067653e-02 -5.83668351e-01 -5.58155254e-02 -1.51900446e+00 -2.79990077e-01 -5.19814789e-01 -1.90129772e-01 1.68593079e-01 -1.64172173e-01 3.18808824e-01 3.19268018e-01 -1.27874598e-01 1.58666775e-01 1.10439515e+00 9.69666302e-01 -1.93349436e-01 -6.42460212e-02 2.85404295e-01 -2.79459298e-01 6.49544358e-01 1.10829341e+00 -2.57687241e-01 -7.52484083e-01 1.03609025e-01 -3.56579162e-02 4.34657365e-01 2.69890577e-01 -1.06744277e+00 -2.54487902e-01 9.49145481e-02 4.05586869e-01 -8.15193594e-01 2.84000099e-01 -7.76840985e-01 4.65467125e-01 3.10041338e-01 1.19662590e-01 1.13148563e-01 3.67638469e-01 1.34722456e-01 -2.12639481e-01 -2.30902016e-01 9.89059925e-01 1.37214065e-01 -1.95826679e-01 3.50955389e-02 -2.19699651e-01 4.75520134e-01 9.44795966e-01 -3.32184113e-03 -4.56734657e-01 -7.66488850e-01 -4.22202110e-01 7.64352828e-02 1.53900817e-01 4.16734777e-02 4.73342031e-01 -1.60239899e+00 -8.56998742e-01 2.77790070e-01 -4.60771561e-01 1.02807924e-01 5.70491374e-01 8.03297162e-01 -1.65098965e-01 -3.06395404e-02 -9.92865637e-02 -2.96245158e-01 -5.79211831e-01 4.16956931e-01 4.55429465e-01 -4.52368706e-01 -1.05205107e+00 7.36173093e-02 -7.20512718e-02 1.59244444e-02 1.01067401e-01 -3.79946440e-01 -4.10472304e-02 1.37371644e-01 7.84019887e-01 8.35813940e-01 3.89394790e-01 -4.80324745e-01 -1.45533364e-02 4.17523950e-01 5.91866016e-01 2.81204373e-01 1.52383530e+00 -2.88128108e-01 1.56633407e-01 3.51172239e-01 1.19358599e+00 6.91597387e-02 -1.39413512e+00 1.04837641e-01 -3.76870632e-01 -4.72179472e-01 1.12058982e-01 -8.29504669e-01 -1.66559505e+00 7.22025096e-01 4.19532150e-01 7.33360410e-01 1.79132652e+00 -5.91920078e-01 1.32333541e+00 -4.17962462e-01 4.76316452e-01 -1.02500057e+00 -1.59865186e-01 -8.27733725e-02 9.45956945e-01 -3.87909830e-01 1.29426956e-01 -1.15443058e-01 -4.23284948e-01 7.99955308e-01 1.25254586e-01 -1.06053188e-01 5.78810751e-01 8.16207528e-01 -1.30170569e-01 3.37253898e-01 -2.85356969e-01 1.74984753e-01 2.68642791e-02 1.07738709e+00 6.88070506e-02 2.54828453e-01 -1.55698434e-01 1.06407475e+00 -4.14868385e-01 -9.33582801e-03 8.18926692e-01 6.47060633e-01 1.18651338e-01 -7.77906597e-01 -5.07143617e-01 6.36383951e-01 -6.83041155e-01 8.52417946e-02 7.41000235e-01 5.45330882e-01 -1.88008323e-01 1.10985291e+00 9.07466188e-02 -6.21526055e-02 8.50836396e-01 -1.36358151e-02 3.65964770e-01 1.47553176e-01 -4.90694702e-01 1.99071348e-01 2.25199796e-02 -5.43211341e-01 -3.11855584e-01 -7.81941712e-01 -1.13041556e+00 -6.29204988e-01 -5.50245285e-01 1.56614795e-01 5.27786791e-01 6.70717478e-01 8.11002851e-02 9.56596375e-01 1.18305278e+00 -7.07135081e-01 -1.00888312e+00 -1.13219368e+00 -1.11843669e+00 8.69586766e-01 2.52696306e-01 -4.30685878e-01 -6.79423928e-01 -9.38682444e-03]
[15.222539901733398, 6.038623332977295]
016922ae-5035-420f-bae7-6c44487f4a07
piano-skills-assessment
2101.04884
null
https://arxiv.org/abs/2101.04884v2
https://arxiv.org/pdf/2101.04884v2.pdf
Piano Skills Assessment
Can a computer determine a piano player's skill level? Is it preferable to base this assessment on visual analysis of the player's performance or should we trust our ears over our eyes? Since current CNNs have difficulty processing long video videos, how can shorter clips be sampled to best reflect the players skill level? In this work, we collect and release a first-of-its-kind dataset for multimodal skill assessment focusing on assessing piano player's skill level, answer the asked questions, initiate work in automated evaluation of piano playing skills and provide baselines for future work. Dataset is available from: https://github.com/ParitoshParmar/Piano-Skills-Assessment.
['Brendan Morris', 'Jaiden Reddy', 'Paritosh Parmar']
2021-01-13
null
null
null
null
['action-quality-assessment', 'skills-evaluation', 'skills-assessment']
['computer-vision', 'computer-vision', 'computer-vision']
[-5.16523719e-02 -1.53410971e-01 -1.28170013e-01 -1.36781812e-01 -1.06901073e+00 -1.03751242e+00 -3.43631580e-02 -1.13489203e-01 -5.85085094e-01 1.06363259e-01 5.41832745e-01 3.51117589e-02 -2.24265441e-01 -4.79622871e-01 -2.02211410e-01 -3.22781622e-01 1.18517026e-01 3.13064128e-01 4.70071375e-01 -3.84109408e-01 4.31765199e-01 2.02371329e-01 -1.73280084e+00 5.64360738e-01 1.99478835e-01 1.01682866e+00 -5.36721013e-02 1.25028038e+00 4.96656895e-01 1.22155142e+00 -5.17931581e-01 -5.00066638e-01 4.79262382e-01 -6.96454108e-01 -9.34487581e-01 -1.58464655e-01 8.27918589e-01 -5.17033339e-01 -6.12533212e-01 9.06640053e-01 7.11683095e-01 3.40351641e-01 1.39329731e-01 -1.15088117e+00 -2.12736905e-01 5.71614861e-01 -3.00851822e-01 8.71066928e-01 5.60755253e-01 6.59573495e-01 9.57536399e-01 -2.50179380e-01 3.77032131e-01 8.60812068e-01 6.79524064e-01 5.18966496e-01 -8.56445909e-01 -1.01230061e+00 -1.41893074e-01 4.50805247e-01 -1.14795256e+00 -6.16032422e-01 7.25585639e-01 -4.38339025e-01 6.26109064e-01 2.78644294e-01 1.14726770e+00 1.12655067e+00 -2.36166269e-01 8.22170675e-01 1.20736158e+00 -1.76929504e-01 -2.95954347e-01 -3.16241980e-01 -1.09891228e-01 5.83475471e-01 -6.72188327e-02 2.13343620e-01 -1.18063927e+00 1.80540029e-02 9.63321328e-01 -4.92085546e-01 -1.30238846e-01 1.64441109e-01 -1.19049954e+00 3.72108161e-01 -9.97052267e-02 2.57208496e-01 -4.22335207e-01 3.99193168e-01 6.59574151e-01 6.59516692e-01 2.34691817e-02 7.80691981e-01 -2.81415701e-01 -1.42281997e+00 -9.98362303e-01 6.09561324e-01 6.77661240e-01 5.23488700e-01 1.15793213e-01 -7.51060024e-02 -1.74188867e-01 6.90230906e-01 -1.48326308e-01 2.18418017e-01 5.38683593e-01 -1.88197112e+00 3.12223047e-01 3.71763706e-01 8.78289789e-02 -9.25288439e-01 -3.62506896e-01 -3.61697301e-02 1.28661975e-01 7.69323707e-01 1.31808734e+00 -3.94087106e-01 -3.73715609e-01 1.68867469e+00 -8.58337879e-02 1.07546479e-01 -2.99764395e-01 1.33318770e+00 1.12566984e+00 1.52588293e-01 1.80299673e-02 1.24304920e-01 1.63990974e+00 -5.57051003e-01 -4.46350813e-01 -2.54812986e-01 4.60550457e-01 -8.21878552e-01 1.39650667e+00 1.13403952e+00 -1.63475287e+00 -9.58729386e-01 -7.98625052e-01 -5.00534428e-03 1.90621465e-01 3.78356278e-01 5.39646983e-01 7.23431468e-01 -9.82587576e-01 8.13522935e-01 -8.90767336e-01 -2.73937851e-01 2.88577408e-01 3.81368279e-01 -6.58063412e-01 4.79210347e-01 -1.14160812e+00 8.47109437e-01 2.58157909e-01 1.16502993e-01 -8.23087990e-01 -5.39860249e-01 -5.58331251e-01 -4.05046381e-02 6.25878990e-01 -2.83387363e-01 1.71510637e+00 -1.40621471e+00 -1.62802303e+00 1.20722055e+00 1.90158978e-01 -1.26639187e-01 4.17362124e-01 -3.62168998e-01 -3.43012005e-01 5.78189194e-01 -2.64912307e-01 6.39898956e-01 4.02763277e-01 -7.40023136e-01 -1.06741858e+00 -3.45865905e-01 6.09034777e-01 3.88156980e-01 -1.58482105e-01 3.30534726e-01 -6.68890119e-01 -4.23438877e-01 -1.06293067e-01 -1.13143647e+00 1.38974831e-01 -2.09558502e-01 -4.27798219e-02 -2.89124250e-01 2.23314628e-01 -1.10531449e+00 1.42706180e+00 -2.19595933e+00 1.09857135e-01 1.22213565e-01 5.41855335e-01 4.84865546e-01 -1.75044239e-01 4.27279115e-01 4.48132642e-02 -1.84219226e-01 4.98729318e-01 -6.40552416e-02 1.13806985e-01 -2.61949867e-01 2.08290413e-01 3.75699133e-01 -1.61719456e-01 8.56693447e-01 -8.25034022e-01 -7.04828739e-01 4.74950951e-03 2.42442191e-01 -4.58266407e-01 8.88030529e-02 2.00936705e-01 4.94470745e-01 -2.73732364e-01 7.87844956e-01 1.38144761e-01 1.59188718e-01 1.42091721e-01 -2.06423715e-01 -1.64217949e-01 2.51936585e-01 -1.14633322e+00 1.63286221e+00 -1.87180713e-01 1.33259451e+00 2.76616484e-01 -6.71665549e-01 6.85766220e-01 3.70767385e-01 5.82812846e-01 -6.46860838e-01 5.75601816e-01 -1.74738064e-01 6.87365413e-01 -8.26726794e-01 7.16655672e-01 -7.01233372e-02 -2.24522665e-01 3.92254621e-01 1.25740230e-01 -1.16041668e-01 5.50777674e-01 2.77329683e-02 1.39014721e+00 3.43518853e-01 -1.90838445e-02 1.50899962e-01 3.35456282e-02 3.42375726e-01 3.79709393e-01 8.46165419e-01 -7.76511252e-01 7.84110487e-01 8.97694409e-01 -2.06217498e-01 -8.59254897e-01 -9.42017734e-01 4.41258430e-01 1.58517039e+00 -1.60292640e-01 -6.32070065e-01 -8.67979527e-01 -3.66805404e-01 -3.81656557e-01 1.02002807e-01 -6.11076176e-01 4.26628031e-02 -4.59586948e-01 2.02773526e-01 1.04158008e+00 8.70098829e-01 3.26927781e-01 -1.50661254e+00 -7.81083763e-01 -5.15834503e-02 -4.89538521e-01 -8.06104183e-01 -4.75337297e-01 -1.90170139e-01 -4.36944425e-01 -1.42896974e+00 -7.66124666e-01 -7.70381749e-01 5.39664254e-02 -9.78081487e-03 1.11740100e+00 -1.20997958e-01 -2.48736143e-02 8.37453544e-01 -5.83955646e-01 -4.40106392e-01 -1.90547436e-01 7.69043788e-02 1.46694511e-01 -5.19353271e-01 7.94855535e-01 -7.51734495e-01 -9.89668250e-01 3.54039133e-01 -5.02617002e-01 -1.18566617e-01 6.65646255e-01 2.95274973e-01 4.95608747e-01 1.39279440e-01 -3.51565145e-02 -5.50629556e-01 9.96278465e-01 -1.31977305e-01 -2.67016470e-01 -1.17378719e-01 1.63517874e-02 -6.60501063e-01 1.13728620e-01 -8.69514406e-01 -7.60999322e-01 4.82951961e-02 -3.81996095e-01 -6.56601727e-01 -3.72298092e-01 3.28529924e-01 2.00786904e-01 4.74738330e-02 8.05030286e-01 -1.51388109e-01 1.02538131e-01 -3.27774674e-01 8.52942020e-02 6.24936581e-01 1.18357348e+00 -6.04538023e-01 5.40266216e-01 5.15797675e-01 -2.10467771e-01 -6.01973236e-01 -9.44226384e-01 -7.33274817e-01 -4.82253820e-01 -1.05312932e+00 7.53893495e-01 -9.91725862e-01 -1.76287806e+00 5.39466619e-01 -6.58798218e-01 -7.63507664e-01 -3.03865582e-01 6.50353730e-01 -7.76549995e-01 3.15871239e-01 -5.38851202e-01 -6.56940520e-01 -3.12109411e-01 -9.01221156e-01 6.96585298e-01 6.03398979e-01 -1.00432575e+00 -6.64650023e-01 3.66507560e-01 9.26810443e-01 1.49313778e-01 1.55713959e-02 6.53955191e-02 -4.19469684e-01 -9.94030293e-03 -5.31485736e-01 1.29229173e-01 6.00821972e-01 -3.05172712e-01 7.27670779e-03 -8.91555250e-01 -1.47902533e-01 -4.50465918e-01 -8.74068916e-01 5.38294494e-01 6.06870532e-01 1.28208303e+00 1.44455299e-01 4.80713665e-01 3.28219593e-01 7.57419348e-01 -1.17415741e-01 8.70341659e-01 3.23596865e-01 4.39009696e-01 7.69728005e-01 8.73542011e-01 3.72507274e-01 4.25637692e-01 7.97008932e-01 6.65415898e-02 2.38902360e-01 -4.01454598e-01 -3.64409119e-01 5.40329278e-01 6.97414100e-01 -9.64499474e-01 -2.07472429e-01 -8.55780840e-01 4.56146657e-01 -1.79570448e+00 -1.33955026e+00 -2.23578304e-01 2.03048778e+00 6.55164540e-01 3.95882279e-01 9.93449688e-01 2.98956603e-01 4.78844881e-01 6.44896831e-03 -3.33106786e-01 -5.23655415e-01 2.12580234e-01 4.63110894e-01 4.15474176e-01 2.92216718e-01 -8.92288506e-01 1.01249313e+00 6.37825394e+00 1.07273650e+00 -1.24892604e+00 1.55194998e-01 3.79643798e-01 -7.45616198e-01 2.85490781e-01 5.19995987e-02 -5.05415559e-01 5.49377918e-01 8.03091168e-01 3.44350487e-02 3.64456087e-01 5.38480759e-01 4.53475952e-01 -4.85083342e-01 -9.18162704e-01 1.23195958e+00 1.06453441e-01 -8.81872296e-01 -7.50444114e-01 1.41551554e-01 1.77044570e-01 3.79244313e-02 1.52419761e-01 4.43901569e-01 4.67864722e-01 -1.17319822e+00 8.46130073e-01 1.06448603e+00 8.90956163e-01 -6.74593329e-01 6.41482174e-01 -2.63317265e-02 -1.07019079e+00 -1.20951772e-01 4.59984206e-02 -6.82618499e-01 -3.00110523e-02 -4.00119394e-01 -3.35453123e-01 -2.33889431e-01 1.02370167e+00 3.40393931e-01 -6.42806470e-01 1.12303150e+00 -1.75869673e-01 1.07207203e+00 -2.81621695e-01 -1.80098101e-01 1.13392442e-01 5.04713431e-02 7.08927214e-01 9.18347836e-01 4.40076590e-01 4.56145227e-01 1.85612589e-01 2.74239361e-01 1.51665121e-01 7.05473423e-02 -2.78614312e-01 -4.68893468e-01 5.00770628e-01 1.36249495e+00 -7.50611126e-01 -1.08807199e-01 -2.43732274e-01 6.80979490e-01 1.99796975e-01 6.30954206e-02 -4.52298224e-01 -4.62701797e-01 8.73292863e-01 5.60879588e-01 3.44971195e-02 -3.04902285e-01 -2.30192885e-01 -7.17718780e-01 6.31234050e-02 -1.16986215e+00 6.54714823e-01 -1.21451485e+00 -8.30738902e-01 2.74070323e-01 -2.47023150e-01 -1.54995763e+00 -3.19630295e-01 -8.40586543e-01 -9.18495119e-01 5.54718971e-01 -6.16738319e-01 -1.02803659e+00 -5.70917130e-01 5.03887415e-01 4.56060618e-01 -2.74708390e-01 5.24560332e-01 2.00339794e-01 -1.52771890e-01 6.78535581e-01 -5.40802717e-01 5.07282257e-01 9.20532823e-01 -1.20916498e+00 -4.38669249e-02 4.15809005e-01 3.01775396e-01 1.26074612e-01 1.10489142e+00 -3.08137894e-01 -1.08074760e+00 5.68523491e-03 4.29269910e-01 -1.08532858e+00 9.47930872e-01 7.73784295e-02 -5.33363044e-01 5.28207481e-01 2.61838377e-01 -4.44576502e-01 9.10883129e-01 5.50542831e-01 -4.42182869e-02 -6.31117895e-02 -6.54831350e-01 5.84483206e-01 1.24935138e+00 -5.52568674e-01 -5.76100886e-01 4.93840836e-02 -1.88657075e-01 -7.44287550e-01 -9.81228113e-01 1.01936705e-01 1.28767228e+00 -1.08123732e+00 8.46024573e-01 -6.31480098e-01 8.39878559e-01 -1.89593270e-01 1.67705521e-01 -1.22023654e+00 -4.52442855e-01 -5.96783400e-01 1.54606640e-01 1.15903544e+00 1.74245358e-01 8.01187679e-02 1.18275702e+00 5.43702185e-01 -9.31229384e-04 -5.37534058e-01 -7.85737574e-01 -4.19276625e-01 1.81937531e-01 -9.25612509e-01 1.01599313e-01 7.11158216e-01 6.62363589e-01 -1.43691733e-01 -5.89450479e-01 -4.66453508e-02 1.40427962e-01 -1.54334798e-01 1.13433444e+00 -1.04336071e+00 -7.08377004e-01 -7.77373672e-01 -9.38736498e-01 -5.69126964e-01 -2.84337997e-02 -5.40746808e-01 -1.69605657e-01 -1.24862850e+00 2.55723178e-01 1.58709049e-01 -3.08319986e-01 6.25191987e-01 1.31573871e-01 1.10067773e+00 5.16050935e-01 2.32080556e-02 -1.09110510e+00 -2.12169081e-01 1.43989778e+00 2.89617777e-01 -1.80361167e-01 2.48111680e-01 -1.00633872e+00 9.01296318e-01 9.16743934e-01 -1.03893824e-01 -1.96695313e-01 -1.67083457e-01 6.54338837e-01 3.48838001e-01 5.46934962e-01 -1.47087944e+00 1.63584694e-01 -2.41235688e-01 2.78375745e-01 -2.05986306e-01 6.98593736e-01 -2.79020786e-01 4.05475423e-02 1.76898062e-01 -5.07385075e-01 1.54014034e-02 3.95634800e-01 -4.06402759e-02 -3.65652621e-01 -2.65709549e-01 4.61591899e-01 -3.45841467e-01 -1.01789677e+00 3.55321132e-02 -9.84103739e-01 1.92869946e-01 6.32788777e-01 -4.38805193e-01 -2.14451969e-01 -1.05119038e+00 -1.17523849e+00 3.11770022e-01 3.32403332e-01 4.45501298e-01 2.71233231e-01 -1.35662806e+00 -7.49463916e-01 -3.86406213e-01 2.55073637e-01 -6.48799956e-01 6.66211963e-01 9.62599814e-01 -8.40606093e-01 -1.53382467e-02 -6.35440111e-01 -1.82716418e-02 -1.85289359e+00 -1.00596160e-01 2.84560889e-01 -2.77706701e-02 -4.13792312e-01 1.00872386e+00 -2.26875126e-01 -1.72451526e-01 2.26218402e-01 4.37025949e-02 -5.56893587e-01 2.31167406e-01 6.30909979e-01 6.15612745e-01 -3.02135706e-01 -8.70645523e-01 -1.21232346e-01 3.40087622e-01 2.48267531e-01 -4.61138368e-01 1.01020122e+00 -2.51817647e-02 4.33161139e-01 5.60408354e-01 5.15973687e-01 3.44456524e-01 -1.36614716e+00 1.31331161e-01 -4.64102834e-01 -7.68785954e-01 1.34394705e-01 -9.19194460e-01 -9.76991355e-01 8.95512521e-01 8.16593349e-01 2.86812812e-01 1.18805909e+00 2.35465184e-01 7.93034196e-01 3.43676120e-01 1.48344308e-01 -1.59750044e+00 3.57156634e-01 3.69723320e-01 7.83241808e-01 -1.24717915e+00 -1.45790458e-01 1.69017389e-02 -1.18775606e+00 1.00797522e+00 8.60395193e-01 -2.73835123e-01 4.68966603e-01 2.43779019e-01 6.00403666e-01 -4.72024918e-01 -6.91651642e-01 -8.61994922e-01 5.59650660e-01 6.27065420e-01 7.26122141e-01 2.18168557e-01 -3.24510634e-01 8.98279309e-01 -1.07950151e+00 3.60373110e-01 4.14668500e-01 7.42317736e-01 -4.04425234e-01 -9.49142158e-01 -3.77369940e-01 6.15634680e-01 -7.05290854e-01 2.83270717e-01 -7.21381605e-01 6.25379026e-01 5.16964436e-01 1.16792476e+00 2.74546951e-01 -7.31816709e-01 6.79293871e-01 1.92133524e-02 9.35470700e-01 -3.74416620e-01 -7.97367156e-01 -4.47761156e-02 5.50633311e-01 -7.09971189e-01 -4.33806509e-01 -1.04684126e+00 -8.23219836e-01 -7.06793129e-01 1.79713100e-01 -1.77122012e-01 3.27651441e-01 9.68269527e-01 6.08103722e-02 3.83352906e-01 -4.26909961e-02 -1.10107040e+00 -1.86068509e-02 -1.22801220e+00 -7.04451621e-01 4.89194006e-01 -1.53474048e-01 -5.04489541e-01 -1.15896299e-01 -3.43345292e-02]
[7.73577356338501, 0.26029351353645325]
755d74c4-8202-40cb-b71c-98ef5b30ee59
joint-3d-localization-and-classification-of
1906.04749
null
https://arxiv.org/abs/1906.04749v1
https://arxiv.org/pdf/1906.04749v1.pdf
Joint 3D Localization and Classification of Space Debris using a Multispectral Rotating Point Spread Function
We consider the problem of joint three-dimensional (3D) localization and material classification of unresolved space debris using a multispectral rotating point spread function (RPSF). The use of RPSF allows one to estimate the 3D locations of point sources from their rotated images acquired by a single 2D sensor array, since the amount of rotation of each source image about its x, y location depends on its axial distance z. Using multi-spectral images, with one RPSF per spectral band, we are able not only to localize the 3D positions of the space debris but also classify their material composition. We propose a three-stage method for achieving joint localization and classification. In Stage 1, we adopt an optimization scheme for localization in which the spectral signature of each material is assumed to be uniform, which significantly improves efficiency and yields better localization results than possible with a single spectral band. In Stage 2, we estimate the spectral signature and refine the localization result via an alternating approach. We process classification in the final stage. Both Poisson noise and Gaussian noise models are considered, and the implementation of each is discussed. Numerical tests using multispectral data from NASA show the efficiency of our three-stage approach and illustrate the improvement of point source localization and spectral classification from using multiple bands over a single band.
['Sudhakar Prasad', 'Grey Ballard', 'Chao Wang', 'Robert Plemmons']
2019-06-11
null
null
null
null
['material-classification']
['computer-vision']
[ 1.98584393e-01 -6.68636680e-01 1.40647709e-01 3.41974854e-01 -1.08619499e+00 -8.78246307e-01 4.95215297e-01 -5.27823605e-02 -4.18337643e-01 7.17920661e-01 -1.32966086e-01 -7.08716959e-02 -6.22126579e-01 -6.83054686e-01 -5.40000498e-01 -1.00939631e+00 3.98941711e-03 4.72967714e-01 3.33322883e-01 2.37685874e-01 2.16567189e-01 1.15694642e+00 -1.62190235e+00 -3.02041888e-01 6.32814705e-01 1.16065753e+00 5.88788688e-01 8.04253221e-01 9.36379656e-03 1.99209243e-01 -8.49513710e-01 4.08670425e-01 5.96365869e-01 1.82017282e-01 -5.02512872e-01 5.40627539e-01 -1.11822695e-01 2.16490286e-03 -1.74305942e-02 1.16974103e+00 2.80757159e-01 2.63977051e-01 1.07047510e+00 -8.59457672e-01 -1.60541952e-01 -1.44828185e-01 -9.83589828e-01 7.34407306e-02 2.99147218e-01 -1.84920147e-01 5.66520810e-01 -8.97743881e-01 2.56908000e-01 9.15812194e-01 9.94941592e-01 -1.65610567e-01 -1.08941650e+00 -1.36078820e-01 -2.84801990e-01 2.15313192e-02 -1.94853151e+00 -2.06216678e-01 9.76857185e-01 -6.31668866e-01 5.55566728e-01 2.65889555e-01 4.82331663e-01 3.71405810e-01 1.20932586e-01 2.60681868e-01 1.16715991e+00 -6.79960430e-01 4.70066875e-01 -2.29884028e-01 7.88819641e-02 3.64691794e-01 6.73225701e-01 -6.67022318e-02 -2.77665406e-01 -5.68703473e-01 9.10692632e-01 -2.05740035e-02 -4.61077452e-01 -5.57721436e-01 -1.09234071e+00 6.89707577e-01 2.92290688e-01 3.08492959e-01 -7.71688640e-01 5.46666607e-02 -1.90047055e-01 -1.98721141e-01 7.33864129e-01 4.52421218e-01 -1.69894606e-01 2.02669010e-01 -9.36990440e-01 2.50317305e-01 4.60403889e-01 7.03771055e-01 8.98912549e-01 -3.17751952e-02 3.89317900e-01 1.09324622e+00 4.10771698e-01 1.42686260e+00 8.14378783e-02 -1.20525837e+00 1.20771766e-01 2.25436255e-01 6.71387076e-01 -8.91576469e-01 -5.24711728e-01 -5.59998870e-01 -4.79749799e-01 5.72441518e-01 4.61578906e-01 -1.35456935e-01 -8.99794877e-01 1.20099568e+00 3.72113198e-01 2.37194777e-01 1.18087105e-01 9.87249732e-01 -8.24397579e-02 8.12586904e-01 -2.89962709e-01 -3.94414157e-01 1.38407540e+00 -2.45066181e-01 -4.58379209e-01 -4.19766605e-01 2.75983125e-01 -8.64090979e-01 3.42405826e-01 3.76942873e-01 -8.40544105e-01 -2.39552349e-01 -1.00204408e+00 6.07533872e-01 -3.50006729e-01 5.49315453e-01 4.49189156e-01 5.82194805e-01 -8.17361057e-01 1.99102327e-01 -9.49930370e-01 -2.00295523e-01 2.38737434e-01 -4.62549701e-02 -2.76249796e-01 -1.04044322e-02 -5.77797055e-01 8.32319319e-01 2.71058865e-02 1.22567199e-01 -3.14747125e-01 -5.45298278e-01 -6.76284075e-01 -2.35672757e-01 1.93614662e-01 -4.68482286e-01 1.02554965e+00 -5.08706093e-01 -1.05240631e+00 5.71541488e-01 -4.29897696e-01 -1.21810384e-01 1.37432754e-01 -1.70587078e-01 -5.14568448e-01 5.91027737e-01 6.46194816e-01 2.14589876e-03 9.18720484e-01 -1.71021175e+00 -7.45692134e-01 -4.62127388e-01 -4.19695109e-01 2.55171031e-01 1.91928133e-01 -3.21885361e-03 -5.52398860e-02 -4.50043589e-01 7.25965977e-01 -1.03164995e+00 -2.17212394e-01 -7.06065819e-02 -2.75180459e-01 9.12882835e-02 7.09907949e-01 -6.98260188e-01 6.64725244e-01 -2.48299932e+00 -4.23857905e-02 4.81957525e-01 -4.57567833e-02 -1.30520627e-01 1.18388303e-01 1.98772281e-01 -1.51379555e-01 -1.69772774e-01 -7.11358547e-01 -3.34293842e-01 -3.82972747e-01 -9.49475095e-02 -2.70266593e-01 1.06703973e+00 2.63395440e-02 2.94356227e-01 -7.24535286e-01 -5.86628169e-02 3.12999636e-01 3.40623647e-01 -2.47800956e-03 -8.02160054e-02 1.38376057e-01 8.55453759e-02 -5.06373823e-01 8.36449742e-01 1.25892675e+00 -3.01750563e-02 -2.77636945e-01 -4.90796149e-01 -5.39866149e-01 -2.84172565e-01 -1.65332353e+00 1.43117642e+00 -5.05349815e-01 4.55848724e-01 6.69186354e-01 -8.33630085e-01 1.01259005e+00 2.27648422e-01 8.37176085e-01 -1.96218818e-01 -8.94366875e-02 3.29766691e-01 -5.28320074e-01 -3.67581040e-01 7.06512749e-01 -3.83696169e-01 -1.73157007e-01 3.90280724e-01 -1.78052038e-01 -4.65723574e-01 -1.85202733e-01 -2.35825643e-01 1.10223496e+00 -2.32515946e-01 2.08349705e-01 -3.27338547e-01 3.51009727e-01 3.26971740e-01 2.22717524e-01 8.65199506e-01 -5.18511720e-02 8.17157924e-01 -2.11550221e-02 4.50104102e-02 -8.97611439e-01 -1.45708227e+00 -2.19507977e-01 3.55998129e-01 4.37853754e-01 2.24557146e-01 -4.11288381e-01 -3.79854232e-01 2.89927691e-01 7.59625733e-01 -3.03336918e-01 1.42672643e-01 -4.26071525e-01 -1.24489951e+00 2.27447733e-01 2.73719102e-01 4.13581342e-01 -2.52264857e-01 -6.51673257e-01 7.50414953e-02 -2.70183623e-01 -1.05342948e+00 1.30290568e-01 3.47182095e-01 -6.89541638e-01 -1.26431572e+00 -7.55447686e-01 -3.90047044e-01 7.05809653e-01 1.13732827e+00 5.59046149e-01 -4.31105793e-01 -2.84013689e-01 1.00602078e+00 -4.89642888e-01 -3.98935765e-01 -1.47268146e-01 -3.15432906e-01 3.08936179e-01 2.24806771e-01 7.29834437e-02 -4.02776867e-01 -3.42974216e-01 4.75989908e-01 -7.91107774e-01 -4.41322893e-01 6.10280216e-01 4.52048182e-01 6.40465498e-01 7.55118906e-01 3.75656366e-01 -9.46727097e-02 4.14052039e-01 -6.27282083e-01 -7.85333514e-01 1.73805788e-01 -9.35311168e-02 -1.25713930e-01 2.04899669e-01 -1.21499188e-01 -1.17108500e+00 3.41124266e-01 2.25129932e-01 -5.00437915e-01 -5.34311056e-01 4.45433766e-01 6.89103231e-02 -5.03496528e-01 9.28019822e-01 2.03127429e-01 1.64341226e-01 -6.41952932e-01 3.11319977e-01 9.04636562e-01 8.74499679e-01 -5.85091472e-01 1.17062223e+00 7.70615458e-01 2.12871030e-01 -1.41303098e+00 -6.74689651e-01 -1.04680634e+00 -6.95427597e-01 -5.37397444e-01 7.63960958e-01 -1.03837001e+00 -4.15658325e-01 6.42632186e-01 -1.39947772e+00 3.91521938e-02 -3.36635172e-01 9.48575795e-01 -5.90499640e-01 3.99716675e-01 -2.22487794e-03 -1.30237985e+00 1.13736935e-01 -8.81137192e-01 1.49723673e+00 -9.11991969e-02 1.53342441e-01 -9.59140122e-01 5.07545024e-02 1.78196624e-01 2.57899314e-01 8.99512246e-02 5.72686672e-01 -3.93959880e-02 -4.96675819e-01 -5.05265832e-01 -2.64107317e-01 1.89637423e-01 4.87152845e-01 -3.21321160e-01 -8.34867060e-01 -2.36507803e-01 6.21454060e-01 3.31560403e-01 6.47890508e-01 9.07343745e-01 8.37899625e-01 2.92465895e-01 -5.24634421e-01 5.47124505e-01 1.75526941e+00 7.28400052e-02 3.05168241e-01 4.97753501e-01 4.37304497e-01 4.73451614e-01 9.35247540e-01 4.60525930e-01 1.89965963e-02 6.18688643e-01 5.77402771e-01 6.82757422e-02 -2.48765469e-01 4.25997972e-01 1.44191757e-01 2.55314559e-01 -4.88880545e-01 -1.31771088e-01 -9.77463543e-01 6.00362957e-01 -1.60347021e+00 -9.92422044e-01 -4.86142159e-01 2.41230273e+00 7.14485301e-03 -3.60528529e-01 5.42291626e-02 3.32857907e-01 1.11066020e+00 8.46004188e-02 -2.79208481e-01 4.66981322e-01 -3.89690816e-01 2.23868247e-02 1.40542638e+00 7.25247920e-01 -1.25482428e+00 2.34538108e-01 7.10925341e+00 8.04677665e-01 -9.60353792e-01 6.73152208e-02 3.63914436e-03 2.79710032e-02 -1.30577177e-01 -2.11744055e-01 -6.68712616e-01 4.18434411e-01 6.38481200e-01 -1.32923797e-01 7.14351118e-01 7.21803963e-01 2.97461420e-01 -8.23402226e-01 -2.87953049e-01 1.22717512e+00 6.72985539e-02 -1.13050807e+00 -3.04473430e-01 2.23127127e-01 4.54376578e-01 2.22436115e-01 -2.47016639e-01 -4.47643816e-01 7.36192092e-02 -3.79517257e-01 1.16456497e+00 7.89066076e-01 6.78938806e-01 -7.37524271e-01 6.64621890e-01 4.08005536e-01 -1.40839601e+00 -2.96647280e-01 -3.90963316e-01 5.46913818e-02 4.29115683e-01 1.05457163e+00 -9.31879282e-01 9.83783603e-01 7.05938697e-01 3.32743436e-01 -3.87583315e-01 1.45354187e+00 -1.20014481e-01 4.13152367e-01 -7.12568641e-01 1.89408571e-01 -3.76224369e-02 -6.10052347e-01 1.04792786e+00 1.03275836e+00 1.16710818e+00 2.47328371e-01 1.49353758e-01 7.19697654e-01 5.55547774e-01 -3.39650720e-01 -7.04250872e-01 3.73276114e-01 7.80813634e-01 1.23767889e+00 -9.27625239e-01 2.36626714e-02 -2.50605017e-01 6.57904923e-01 -2.92870849e-01 4.77371037e-01 -4.90195781e-01 -3.70882988e-01 6.69797778e-01 3.26757044e-01 3.54055882e-01 -8.73178184e-01 -6.05574012e-01 -6.84275389e-01 5.53328022e-02 -3.25484246e-01 1.24786198e-01 -1.16627657e+00 -1.26385963e+00 2.17145309e-01 3.77353549e-01 -1.59844291e+00 -1.59504294e-01 -8.48029017e-01 -2.96690851e-01 1.26692545e+00 -1.25028503e+00 -1.02226424e+00 -4.36099410e-01 4.44188952e-01 1.85631737e-01 -1.55910596e-01 7.52413929e-01 -4.99827489e-02 -1.02415703e-01 -4.03940767e-01 4.49138761e-01 -2.97142863e-01 4.12529260e-01 -1.20806801e+00 -6.40998185e-02 9.23378348e-01 -2.09538013e-01 1.81793943e-01 8.85726511e-01 -9.17523026e-01 -1.47243381e+00 -1.18435180e+00 2.75204569e-01 -4.40501004e-01 8.22364569e-01 -1.13917828e-01 -5.85585892e-01 3.53016108e-01 -3.29916120e-01 1.23267267e-02 6.19780779e-01 -1.21298142e-01 6.28336146e-02 -2.01878786e-01 -1.32825780e+00 8.60640705e-02 7.12169170e-01 -6.30041182e-01 -6.47257864e-01 5.70314825e-01 2.33488709e-01 -1.96639419e-01 -6.91730618e-01 4.38352197e-01 2.07904652e-01 -7.18812883e-01 1.29708195e+00 3.64885300e-01 -2.50929266e-01 -9.49927211e-01 -5.82391322e-01 -1.59240878e+00 -5.91580749e-01 -5.47671542e-02 2.92288512e-01 9.80899990e-01 2.60223448e-01 -7.62376428e-01 6.72989368e-01 2.27533486e-02 -3.70052010e-01 1.06996447e-01 -1.20951879e+00 -1.20838571e+00 -2.53277719e-01 -6.85388029e-01 3.96147102e-01 5.82612574e-01 -3.63148421e-01 -2.66970042e-02 2.31504701e-02 1.23520160e+00 1.11105323e+00 2.56469935e-01 5.11846900e-01 -1.53634620e+00 -1.95135117e-01 -1.16627768e-01 -4.17737275e-01 -8.44015241e-01 1.69547707e-01 -6.84785008e-01 3.63695353e-01 -1.56857181e+00 -1.05375394e-01 -7.42077947e-01 1.05368763e-01 3.44231762e-02 1.38171434e-01 1.92374676e-01 -2.06340738e-02 5.37033498e-01 -6.16815723e-02 2.81667650e-01 5.38608611e-01 -1.70106471e-01 -1.61319926e-01 2.14365780e-01 -2.37296596e-01 8.46237898e-01 6.46598041e-01 -3.91013294e-01 -9.13861468e-02 -6.34677529e-01 -5.19155525e-02 1.70240879e-01 8.53991508e-01 -1.50001287e+00 3.42950106e-01 -2.31723920e-01 5.42482018e-01 -9.10732985e-01 8.31582606e-01 -1.11059105e+00 5.38276196e-01 2.19662651e-01 4.68300074e-01 -2.90766925e-01 9.53925624e-02 7.56927073e-01 -5.75880446e-02 -7.12668955e-01 9.44252908e-01 -1.00956835e-01 -6.41721547e-01 -4.84812595e-02 -6.28618479e-01 -7.54707098e-01 1.07699430e+00 -1.73923269e-01 -3.96638155e-01 -2.30824679e-01 -7.36684978e-01 -2.73202032e-01 7.41719604e-01 -5.04392199e-02 4.70317334e-01 -1.39516914e+00 -5.56003153e-01 1.85951591e-01 6.49545863e-02 3.52269448e-02 2.41394937e-01 6.95979416e-01 -6.16971552e-01 2.49877691e-01 9.40448344e-02 -8.89919341e-01 -9.37594593e-01 3.97142321e-01 4.92084503e-01 2.16322616e-01 -2.28205010e-01 6.30614996e-01 -1.94247857e-01 -2.40545049e-01 -3.47225517e-01 5.13634905e-02 -9.42942426e-02 2.00992286e-01 5.81783831e-01 7.01959014e-01 2.92381853e-01 -9.64443862e-01 -3.68724048e-01 1.03603041e+00 6.36544228e-01 -3.73749197e-01 1.50574267e+00 -2.36662567e-01 -3.64155293e-01 5.32000840e-01 8.59612763e-01 4.64587867e-01 -1.18446624e+00 -1.10265993e-01 -1.57367229e-01 -7.28091836e-01 3.00950557e-01 -5.90373218e-01 -7.31745899e-01 3.50916773e-01 6.18586481e-01 7.08735049e-01 1.21092391e+00 1.33176178e-01 1.23789005e-01 2.66679794e-01 6.88335299e-01 -9.97396886e-01 -3.93940628e-01 4.55270410e-01 8.44821751e-01 -6.69077098e-01 7.37024248e-02 -8.47199500e-01 -8.32590237e-02 1.24582219e+00 -1.98795460e-02 -1.72487631e-01 7.27334797e-01 3.22160929e-01 -1.21114954e-01 -2.31968746e-01 1.03690520e-01 -3.64571899e-01 1.19630359e-02 8.42140734e-01 -2.21738741e-01 2.75390238e-01 -9.22049768e-03 2.68889606e-01 1.76726356e-02 -2.50909150e-01 5.64769506e-01 1.04051352e+00 -1.01263642e+00 -7.07108617e-01 -1.56495190e+00 4.11576062e-01 -9.96630732e-03 3.51393998e-01 -4.31373417e-02 4.37699407e-01 1.80071428e-01 1.07355940e+00 2.88180530e-01 -1.41746312e-01 4.46364611e-01 2.86770314e-02 4.54328805e-01 -4.09858614e-01 3.58970255e-01 3.39699328e-01 2.25622281e-01 -3.59260410e-01 -6.30309761e-01 -1.24889505e+00 -1.06821239e+00 7.06706122e-02 -4.60877746e-01 4.74322885e-01 1.33245838e+00 7.94583619e-01 1.64681599e-01 2.36699924e-01 1.14472520e+00 -1.37115896e+00 -5.30329466e-01 -7.30795085e-01 -1.30041480e+00 -3.79194975e-01 5.00167370e-01 -1.17416000e+00 -8.98491621e-01 2.02908497e-02]
[10.071433067321777, -2.079148530960083]
3f5e691d-b0b0-4948-ac85-22efc527b7b7
semi-supervised-3d-face-reconstruction-with
null
null
https://openreview.net/forum?id=H1lK5kBKvr
https://openreview.net/pdf?id=H1lK5kBKvr
Semi-supervised 3D Face Reconstruction with Nonlinear Disentangled Representations
Recovering 3D geometry shape, albedo and lighting from a single image has wide applications in many areas, which is also a typical ill-posed problem. In order to eliminate the ambiguity, face prior knowledge like linear 3D morphable models (3DMM) learned from limited scan data are often adopted to the reconstruction process. However, methods based on linear parametric models cannot generalize well for facial images in the wild with various ages, ethnicity, expressions, poses, and lightings. Recent methods aim to learn a nonlinear parametric model using convolutional neural networks (CNN) to regress the face shape and texture directly. However, the models were only trained on a dataset that is generated from a linear 3DMM. Moreover, the identity and expression representations are entangled in these models, which hurdles many facial editing applications. In this paper, we train our model with adversarial loss in a semi-supervised manner on hybrid batches of unlabeled and labeled face images to exploit the value of large amounts of unlabeled face images from unconstrained photo collections. A novel center loss is introduced to make sure that different facial images from the same person have the same identity shape and albedo. Besides, our proposed model disentangles identity, expression, pose, and lighting representations, which improves the overall reconstruction performance and facilitates facial editing applications, e.g., expression transfer. Comprehensive experiments demonstrate that our model produces high-quality reconstruction compared to state-of-the-art methods and is robust to various expression, pose, and lighting conditions.
['Xiaokang Yang', 'Guangtao Zhai', 'Chao Ma', 'Yudong Guo', 'Juyong Zhang', 'Zhongpai Gao']
2019-09-25
null
null
null
null
['3d-face-reconstruction', 'facial-editing', 'face-reconstruction']
['computer-vision', 'computer-vision', 'computer-vision']
[ 4.08606008e-02 -2.27733105e-02 -1.49001330e-01 -6.48539186e-01 -3.10391456e-01 -3.68372947e-01 3.86654764e-01 -8.35349143e-01 -5.93626276e-02 5.21172822e-01 -6.83724461e-03 3.57444495e-01 2.25641280e-01 -6.44883990e-01 -8.47588241e-01 -8.79491270e-01 4.05385822e-01 3.37922722e-01 -4.87980992e-01 -2.31070980e-01 -1.85981825e-01 8.83820295e-01 -1.44793046e+00 -1.65046364e-01 7.99499035e-01 1.10826838e+00 -1.99431956e-01 3.86834033e-02 -1.48141682e-01 4.06272411e-01 -3.63194704e-01 -6.83680892e-01 5.83392203e-01 -5.07918596e-01 -1.14282593e-01 5.14483809e-01 7.70845711e-01 -5.31243026e-01 -5.51251173e-01 1.16315758e+00 4.40099776e-01 -7.65056610e-02 7.18390644e-01 -1.30233335e+00 -9.85737026e-01 -2.37880602e-01 -8.28675508e-01 -6.97541475e-01 2.57146657e-01 1.22092098e-01 4.46954846e-01 -1.08211541e+00 4.68716055e-01 1.49862838e+00 6.61154568e-01 7.74924934e-01 -1.37209547e+00 -1.11650872e+00 4.15859781e-02 -9.21555459e-02 -1.63688815e+00 -6.76790714e-01 1.08488524e+00 -2.84268439e-01 9.10485387e-02 8.31571221e-02 6.60561681e-01 1.17221045e+00 -1.20048009e-01 4.48046029e-01 1.26184416e+00 -2.70840228e-01 -1.42955035e-01 1.97306931e-01 -7.47327626e-01 1.04952335e+00 2.36047432e-03 6.71572378e-03 -6.61615849e-01 5.91285452e-02 1.26224065e+00 1.68188229e-01 -3.21772009e-01 -5.81886232e-01 -8.64448786e-01 6.77675128e-01 3.62714529e-01 -2.32682750e-01 -2.55139202e-01 -9.07840505e-02 -4.84431768e-03 2.60289073e-01 5.62992573e-01 1.11790136e-01 -2.14029416e-01 3.21385980e-01 -7.31629670e-01 2.13237211e-01 6.40949190e-01 1.01029575e+00 1.20542502e+00 3.66779476e-01 1.24302618e-01 1.12690842e+00 4.39990610e-01 1.06409168e+00 1.78741276e-01 -1.09023178e+00 2.16856197e-01 5.86187065e-01 -3.91785577e-02 -1.18702328e+00 7.07906764e-03 -7.34013617e-02 -1.11536169e+00 3.96315515e-01 2.69334197e-01 -5.91092370e-02 -9.68519092e-01 2.01796842e+00 5.90333521e-01 1.42410398e-01 -1.41416624e-01 1.09166193e+00 8.39129567e-01 4.63258892e-01 -1.94315746e-01 -2.90318191e-01 1.09511316e+00 -6.45040274e-01 -7.57299662e-01 -2.50086397e-01 -4.10540812e-02 -9.57599580e-01 9.76052701e-01 1.68731913e-01 -9.80563641e-01 -4.73692268e-01 -9.05114055e-01 -2.83478320e-01 1.49414033e-01 2.41489917e-01 4.87832010e-01 6.40712857e-01 -7.35244632e-01 3.24734837e-01 -6.57039523e-01 -1.62871450e-01 6.03377879e-01 4.11489934e-01 -7.58540630e-01 -4.07550961e-01 -9.38028514e-01 7.03322172e-01 -3.46798778e-01 4.89570290e-01 -8.24195206e-01 -5.99768460e-01 -9.99096453e-01 -2.78014749e-01 2.05671802e-01 -5.82153201e-01 6.72104955e-01 -1.34886563e+00 -2.02860761e+00 1.19221902e+00 -2.27872357e-01 3.49567682e-01 6.50294840e-01 -1.16043374e-01 -3.10074836e-01 -5.02605829e-03 1.22445310e-02 5.77958703e-01 1.30972540e+00 -1.28369570e+00 9.03203636e-02 -7.24626720e-01 -1.16602011e-01 2.92402953e-01 -4.16284502e-01 5.92013039e-02 -7.67370164e-01 -6.03518188e-01 2.37947956e-01 -1.04032958e+00 1.41896918e-01 7.32705832e-01 -2.90093124e-01 3.26364547e-01 7.94183075e-01 -8.46416414e-01 4.36924130e-01 -2.19171667e+00 3.51762593e-01 2.25012824e-01 -6.70723766e-02 1.13291442e-01 -3.28623205e-01 2.35320833e-02 -4.72365208e-02 9.78534226e-04 -2.13374496e-01 -4.84045833e-01 1.70584563e-02 4.14939374e-01 -2.01918051e-01 7.50771642e-01 4.13471580e-01 8.24668765e-01 -5.20208538e-01 -5.58897138e-01 1.23274900e-01 8.89951050e-01 -5.08868933e-01 5.51389098e-01 -1.83590740e-01 1.07871449e+00 -4.46499258e-01 8.90182078e-01 1.01709366e+00 1.30203158e-01 4.02677655e-02 -4.01449680e-01 2.34441161e-01 -3.72830302e-01 -1.02437329e+00 1.91349733e+00 -6.01914704e-01 4.83229756e-01 3.78710032e-01 -9.26659882e-01 1.17856336e+00 3.07414770e-01 5.39262176e-01 -7.67345190e-01 2.25961193e-01 1.56119049e-01 -3.24030995e-01 -5.93864918e-01 -9.55026655e-04 -5.23615003e-01 1.48096427e-01 2.13551313e-01 1.32377133e-01 -4.27336663e-01 -3.67667794e-01 -3.80589753e-01 4.34942424e-01 3.99706542e-01 -3.72928642e-02 9.59041417e-02 4.76022512e-01 -6.35497272e-01 9.23607409e-01 -9.36312750e-02 1.06278397e-01 9.13893938e-01 3.99744958e-01 -4.90915805e-01 -1.11711287e+00 -1.00852823e+00 -1.77903131e-01 7.64132798e-01 2.54979461e-01 9.14408416e-02 -7.17981756e-01 -4.47827935e-01 -5.11696655e-03 1.34152532e-01 -6.18867338e-01 -2.61769384e-01 -5.28237104e-01 -6.22147799e-01 5.97063363e-01 1.72457471e-01 6.87950194e-01 -7.20918894e-01 3.67631987e-02 -2.47551262e-01 -1.75476283e-01 -1.31738007e+00 -7.30788827e-01 -6.57230377e-01 -5.97646415e-01 -9.94100273e-01 -7.70569265e-01 -6.76355839e-01 1.16748405e+00 9.50946957e-02 7.11339653e-01 4.11828235e-03 -2.52881676e-01 2.73463339e-01 -8.25312361e-02 -4.47992295e-01 -2.74486989e-01 -3.87136549e-01 2.87676513e-01 7.91149020e-01 3.52186039e-02 -8.73766720e-01 -6.41777813e-01 5.94234526e-01 -9.16617334e-01 1.83111548e-01 6.13845706e-01 8.05897653e-01 7.30722129e-01 -1.76452085e-01 3.48671108e-01 -8.35646868e-01 8.74752924e-02 -2.64306992e-01 -6.17207408e-01 2.74612218e-01 -5.26370108e-01 -3.77092287e-02 5.64174354e-01 -6.43941343e-01 -1.32750297e+00 2.26721272e-01 -1.40839040e-01 -9.07618105e-01 -7.05073848e-02 5.26439212e-02 -8.45704377e-01 -5.50842583e-01 5.02050579e-01 1.77878723e-01 5.51067054e-01 -3.79831433e-01 3.77308697e-01 4.19182003e-01 5.94133914e-01 -6.94228768e-01 1.23342073e+00 7.29459524e-01 2.90028960e-01 -8.79409432e-01 -8.40087116e-01 5.25825657e-02 -7.12276161e-01 -2.34596297e-01 5.99868894e-01 -1.16645646e+00 -5.29725194e-01 8.89964581e-01 -1.10354698e+00 -1.80635944e-01 1.86178908e-02 3.98065001e-01 -3.99909377e-01 2.58798033e-01 -4.32102114e-01 -6.52206659e-01 -2.81260908e-01 -1.05947649e+00 1.07503068e+00 4.45781708e-01 1.85234874e-01 -7.26427853e-01 -2.64865100e-01 5.45322120e-01 3.61903906e-01 6.19874537e-01 8.08344543e-01 1.98724315e-01 -6.99036300e-01 -2.13485911e-01 -2.18219370e-01 6.18576705e-01 4.50601846e-01 3.98410670e-02 -1.05127037e+00 -2.50510782e-01 -4.96875262e-03 -5.70210040e-01 4.10567790e-01 4.42843400e-02 1.20196950e+00 -4.54989672e-01 1.40503228e-01 1.23259306e+00 1.14138651e+00 -1.98522493e-01 6.33064687e-01 -1.74272105e-01 1.08841968e+00 8.04423630e-01 3.87403846e-01 4.57575947e-01 3.06387544e-01 6.86327636e-01 5.82970500e-01 -2.95899123e-01 -1.23487540e-01 -4.39005166e-01 4.24626201e-01 6.92675054e-01 -3.43198240e-01 1.19681112e-01 -4.33651835e-01 1.25501424e-01 -1.48578310e+00 -7.22284734e-01 3.76380891e-01 2.27997565e+00 1.03483248e+00 -4.31907535e-01 -3.51283520e-01 -3.34865808e-01 7.04473555e-01 1.85363501e-01 -9.22539592e-01 8.54860526e-03 -3.32986921e-01 4.25806433e-01 3.11486959e-01 1.84023649e-01 -7.81736016e-01 9.12563145e-01 5.32351637e+00 7.45419025e-01 -1.54087985e+00 3.67360376e-02 6.87991261e-01 -1.96076646e-01 -4.91368145e-01 -1.09580211e-01 -5.12740374e-01 3.21582556e-01 3.42393279e-01 2.26577446e-02 7.77895331e-01 6.67120397e-01 2.07632571e-01 3.90279979e-01 -9.71607089e-01 1.31354129e+00 4.89575446e-01 -8.60453546e-01 1.45263001e-01 2.29411080e-01 9.84987617e-01 -3.52689505e-01 2.88213402e-01 1.54892638e-01 1.04471261e-03 -1.34911478e+00 6.96883202e-01 7.23267794e-01 1.32427979e+00 -6.61679506e-01 4.00033504e-01 2.30334461e-01 -8.48083675e-01 3.04037511e-01 -3.84790897e-01 1.77086473e-01 8.02271217e-02 4.81919616e-01 -4.08949196e-01 5.36076009e-01 6.24231040e-01 6.55594289e-01 -2.10860714e-01 4.18529510e-01 -5.25385141e-01 3.17662269e-01 -2.85125256e-01 5.10559797e-01 -3.12434942e-01 -7.09410250e-01 3.53588760e-01 5.17726302e-01 5.22728503e-01 1.93621486e-01 8.56147334e-02 1.10582614e+00 -5.45071542e-01 2.24065855e-01 -6.33036017e-01 5.12231607e-03 3.50859195e-01 1.35617125e+00 -1.18004583e-01 2.95702368e-01 -5.54485440e-01 1.09339404e+00 3.53861123e-01 5.33579826e-01 -7.76298583e-01 4.15381528e-02 9.26777840e-01 3.08892488e-01 2.30019800e-02 -2.77896792e-01 -4.09145802e-02 -1.31534648e+00 1.04628906e-01 -9.16894078e-01 -2.35081807e-01 -7.59198546e-01 -1.49100053e+00 4.22777474e-01 -1.73557833e-01 -1.24771869e+00 -1.49529114e-01 -5.77382207e-01 -5.92564166e-01 1.04628956e+00 -1.68302202e+00 -1.60838699e+00 -6.02350354e-01 7.25724697e-01 1.69771612e-01 -2.75870562e-01 8.40998530e-01 3.75333101e-01 -7.43586600e-01 8.21703553e-01 -7.67999142e-02 4.10480291e-01 1.10798895e+00 -7.28249729e-01 -2.39596684e-02 6.61546469e-01 7.84146637e-02 6.05731368e-01 3.14890563e-01 -2.35065907e-01 -1.81790912e+00 -1.30291402e+00 2.64459372e-01 -1.53156653e-01 1.17686994e-01 -3.99158061e-01 -9.81857181e-01 6.67589009e-01 -2.10072070e-01 5.46845973e-01 7.33955681e-01 -5.56089133e-02 -6.23997211e-01 -5.07970095e-01 -1.11855280e+00 5.89662790e-01 1.11158526e+00 -7.35241652e-01 -5.65328859e-02 2.91082710e-01 4.07615066e-01 -7.27502227e-01 -9.70359981e-01 5.39050579e-01 8.81829262e-01 -9.42282736e-01 9.13353264e-01 -4.12064224e-01 4.16571915e-01 -2.58714914e-01 -2.31496930e-01 -1.28981626e+00 8.73819366e-02 -7.11351395e-01 5.26461080e-02 1.41819680e+00 3.50017585e-02 -6.95395768e-01 6.68697953e-01 8.56702924e-01 1.41822889e-01 -7.42317915e-01 -8.07432652e-01 -6.15524471e-01 1.00935385e-01 -7.78655931e-02 8.98671210e-01 1.09117520e+00 -7.76346207e-01 2.92480916e-01 -7.92964578e-01 2.91433066e-01 7.50248075e-01 3.67919892e-01 1.22484469e+00 -1.19770992e+00 2.76769660e-02 -2.15803847e-01 -4.19235080e-01 -9.22953546e-01 7.88631618e-01 -7.96495736e-01 -4.94850837e-02 -9.59737897e-01 1.34478778e-01 -5.12411833e-01 9.47043598e-02 6.25125527e-01 -3.58973891e-02 5.56372702e-01 8.47182646e-02 3.39687318e-01 -5.15263178e-04 1.06639624e+00 1.57009971e+00 -1.69167161e-01 2.34371610e-02 -1.08259633e-01 -6.71488583e-01 7.64830530e-01 5.97446263e-01 -2.73529381e-01 -4.97532845e-01 -7.74836302e-01 1.15678184e-01 4.59138453e-02 4.56433594e-01 -6.53590322e-01 3.40707935e-02 -4.95933563e-01 6.60950661e-01 7.65906796e-02 6.61671042e-01 -8.12896073e-01 4.44243789e-01 -1.03124194e-01 2.23480854e-02 -3.44523847e-01 2.93275639e-02 5.10839164e-01 -3.33344907e-01 1.81778669e-01 9.89636004e-01 -1.58658639e-01 -4.13720518e-01 1.06003499e+00 4.90602553e-01 3.37526575e-02 8.45396578e-01 -2.11635992e-01 6.70375153e-02 -5.99061251e-01 -3.53713930e-01 4.66619842e-02 9.05989349e-01 4.61325288e-01 6.58184171e-01 -1.65346026e+00 -8.31237376e-01 6.51486635e-01 2.15554535e-01 4.58679587e-01 3.30703676e-01 7.15966403e-01 -5.34639060e-01 -2.85727382e-01 -4.43925261e-01 -4.93873119e-01 -1.17704165e+00 2.59208739e-01 4.77356344e-01 2.82518178e-01 -3.01985085e-01 6.08854592e-01 4.42870796e-01 -8.17251325e-01 -1.71227902e-02 2.69425124e-01 1.33944646e-01 -1.83788285e-01 3.64918083e-01 -1.86524950e-02 -1.57752916e-01 -1.10267806e+00 -6.79055750e-02 1.04993367e+00 2.28395447e-01 4.54958677e-02 1.25605905e+00 -1.15864925e-01 -3.62913430e-01 2.17870370e-01 1.39938736e+00 2.79420137e-01 -1.58761787e+00 -4.74989653e-01 -7.94951320e-01 -8.03394914e-01 -3.57638299e-02 -2.93467909e-01 -1.60751152e+00 9.69121873e-01 4.23249722e-01 -6.21856511e-01 1.21400785e+00 -1.68267921e-01 7.76325762e-01 1.51109338e-01 4.00493890e-01 -9.10718799e-01 2.11889878e-01 2.96750575e-01 1.17077339e+00 -1.39288521e+00 1.21175088e-01 -5.43172657e-01 -5.19879580e-01 1.15556335e+00 6.93063319e-01 4.24719453e-02 6.86249077e-01 1.28614185e-02 2.75141567e-01 4.53520864e-02 -8.77777785e-02 1.34538531e-01 2.99944907e-01 6.36443317e-01 2.23545998e-01 6.05648570e-02 2.09983453e-01 4.83709306e-01 -2.62499571e-01 -1.08572468e-01 6.26645684e-02 5.86879134e-01 8.87105539e-02 -1.15693045e+00 -4.71020579e-01 1.11735560e-01 -3.40581834e-01 2.41680428e-01 -2.89023668e-01 7.55601943e-01 2.77700096e-01 4.96424735e-01 -3.84249315e-02 -2.99919635e-01 3.62451077e-01 -3.98196690e-02 8.05574298e-01 -5.12469351e-01 1.87211558e-01 6.14543930e-02 -3.71057481e-01 -5.16798973e-01 -5.16110599e-01 -5.21586359e-01 -1.08939612e+00 -4.42526758e-01 -1.54748201e-01 -3.10399890e-01 7.54436851e-01 7.40709722e-01 3.69370729e-01 2.86086220e-02 1.13798440e+00 -1.03820109e+00 -4.84022528e-01 -8.58729720e-01 -8.77885520e-01 7.46910393e-01 2.60799170e-01 -9.18830693e-01 -2.53550678e-01 3.51525992e-01]
[12.911275863647461, -0.03857969492673874]
adfe4088-191d-4163-9257-51d3ce1636dc
diffuse-map-guiding-unsupervised-generative
2205.11951
null
https://arxiv.org/abs/2205.11951v2
https://arxiv.org/pdf/2205.11951v2.pdf
Diffuse Map Guiding Unsupervised Generative Adversarial Network for SVBRDF Estimation
Reconstructing materials in the real world has always been a difficult problem in computer graphics. Accurately reconstructing the material in the real world is critical in the field of realistic rendering. Traditionally, materials in computer graphics are mapped by an artist, then mapped onto a geometric model by coordinate transformation, and finally rendered with a rendering engine to get realistic materials. For opaque objects, the industry commonly uses physical-based bidirectional reflectance distribution function (BRDF) rendering models for material modeling. The commonly used physical-based rendering models are Cook-Torrance BRDF, Disney BRDF. In this paper, we use the Cook-Torrance model to reconstruct the materials. The SVBRDF material parameters include Normal, Diffuse, Specular and Roughness. This paper presents a Diffuse map guiding material estimation method based on the Generative Adversarial Network(GAN). This method can predict plausible SVBRDF maps with global features using only a few pictures taken by the mobile phone. The main contributions of this paper are: 1) We preprocess a small number of input pictures to produce a large number of non-repeating pictures for training to reduce over-fitting. 2) We use a novel method to directly obtain the guessed diffuse map with global characteristics, which provides more prior information for the training process. 3) We improve the network architecture of the generator so that it can generate fine details of normal maps and reduce the possibility to generate over-flat normal maps. The method used in this paper can obtain prior knowledge without using dataset training, which greatly reduces the difficulty of material reconstruction and saves a lot of time to generate and calibrate datasets.
['Hongnan Chen', 'Zhiyao Luo']
2022-05-24
null
null
null
null
['svbrdf-estimation']
['computer-vision']
[ 5.78115940e-01 -2.99426932e-02 4.81465042e-01 -7.88305625e-02 -4.81150448e-01 -4.66345519e-01 5.39829433e-01 -5.91964483e-01 2.26395026e-01 8.09851706e-01 -1.34954631e-01 -2.79126853e-01 1.35653645e-01 -1.43265045e+00 -9.21310127e-01 -8.21327984e-01 4.62283820e-01 3.03787500e-01 3.43994379e-01 -2.37450778e-01 1.15611650e-01 8.11218739e-01 -1.68746197e+00 4.50742871e-01 1.01845598e+00 1.07724380e+00 4.40305859e-01 8.23571146e-01 -3.54160815e-01 5.51090956e-01 -6.94902658e-01 -5.99404871e-01 5.14076233e-01 -5.73300362e-01 -3.52941751e-01 -5.58650447e-03 2.65257806e-01 -7.40740061e-01 -7.54225105e-02 9.69520390e-01 3.85453254e-01 9.92482826e-02 1.12377965e+00 -9.21962023e-01 -6.13596320e-01 2.64014788e-02 -6.91270590e-01 -6.98634148e-01 3.15900117e-01 8.56506158e-05 3.36806148e-01 -5.27564406e-01 5.21884441e-01 1.38327515e+00 7.36076474e-01 6.88082755e-01 -1.09423828e+00 -7.43190587e-01 -2.01637700e-01 -8.65437833e-05 -1.30663514e+00 -1.35421595e-02 1.21142817e+00 -3.14182073e-01 1.60342038e-01 8.24099243e-01 8.67268085e-01 1.11096931e+00 2.37160787e-01 4.52147156e-01 1.28240252e+00 -5.71144283e-01 1.28177926e-01 2.02237979e-01 -4.43774313e-01 5.87948322e-01 9.89190415e-02 1.02739625e-01 6.09889291e-02 -2.19220296e-01 1.42718232e+00 -6.02014251e-02 -4.92833167e-01 -1.62960872e-01 -8.30574155e-01 6.03168905e-01 4.02479380e-01 -2.20135543e-02 -3.09936017e-01 5.79267442e-02 -8.79667029e-02 1.06133662e-01 6.98449016e-01 2.71690220e-01 -8.14867243e-02 2.38062870e-02 -6.81707561e-01 2.46880084e-01 7.30059922e-01 8.18495631e-01 8.22725892e-01 3.17811817e-01 1.34894639e-01 1.16312480e+00 4.54538733e-01 9.75652695e-01 1.04473196e-01 -1.02907658e+00 4.45106477e-01 2.79112786e-01 4.15416062e-01 -1.23919451e+00 6.78529218e-02 -1.88418347e-02 -1.07307518e+00 7.35929668e-01 2.96131283e-01 -1.30608594e-02 -9.27105427e-01 1.32896101e+00 4.49879438e-01 3.50607872e-01 -1.37170583e-01 8.18672359e-01 7.98448086e-01 1.04991460e+00 -4.16710466e-01 2.87144594e-02 1.01911044e+00 -8.51971328e-01 -5.23561060e-01 2.01139197e-01 -9.07652378e-02 -1.00372183e+00 1.45061338e+00 7.07253337e-01 -1.11086321e+00 -7.29139447e-01 -1.06870461e+00 -1.12809278e-01 -1.63194299e-01 6.34735823e-02 6.39297962e-01 9.12701309e-01 -9.12541866e-01 6.32171690e-01 -5.97990394e-01 2.77295589e-01 1.93251371e-01 1.36570528e-01 -4.46836725e-02 -2.52801239e-01 -1.07619226e+00 4.46888357e-01 -1.09492932e-02 3.10778856e-01 -6.63262010e-01 -7.70656407e-01 -5.63358486e-01 -1.25008181e-01 -2.72571873e-02 -9.93027508e-01 8.77099454e-01 -1.22664607e+00 -2.13838983e+00 5.51486552e-01 6.45730719e-02 2.38444790e-01 8.21639717e-01 7.33476970e-03 -4.13987905e-01 -2.48730183e-02 -4.00592178e-01 4.65508670e-01 1.09381807e+00 -1.92756414e+00 -5.44381253e-02 1.88165620e-01 4.59554084e-02 1.09668016e-01 9.90081429e-02 -2.86658853e-01 -4.02188033e-01 -8.05066824e-01 1.92724779e-01 -5.88312328e-01 -3.24336514e-02 1.84225485e-01 -5.28052151e-01 3.66113156e-01 7.06497133e-01 -1.00495732e+00 6.51249170e-01 -1.89230704e+00 -1.62230760e-01 3.76435488e-01 -7.43696559e-03 1.89077228e-01 -1.59682542e-01 2.73423821e-01 -5.04650846e-02 8.93233269e-02 -3.19788575e-01 -4.26070064e-01 -1.84442624e-01 1.39420545e-02 -5.78488052e-01 1.70414582e-01 -7.50228986e-02 6.37836933e-01 -5.13732076e-01 -1.68860853e-01 3.76335472e-01 9.96038437e-01 -5.33080935e-01 4.39121634e-01 -3.61402750e-01 7.31769562e-01 -2.89212227e-01 4.81344640e-01 1.29428756e+00 1.84198335e-01 -1.73121870e-01 -5.67271650e-01 -8.02552141e-03 -6.10193089e-02 -1.23231888e+00 1.22659862e+00 -9.67824876e-01 4.38877434e-01 2.71434218e-01 -4.85599905e-01 1.34676158e+00 8.58143568e-02 2.57181674e-01 -6.74736500e-01 1.78158179e-01 1.95552006e-01 -3.52794647e-01 -3.45989525e-01 4.12695557e-01 -2.79749483e-01 3.60791147e-01 3.98478746e-01 -7.60337174e-01 -7.83205807e-01 -4.68604594e-01 -2.85762697e-01 6.46059036e-01 4.39713389e-01 -2.69017935e-01 1.01684041e-01 5.63592851e-01 -2.34727591e-01 3.76988441e-01 3.38047743e-01 7.79633880e-01 1.11378658e+00 2.18042776e-01 -5.58269143e-01 -1.31208134e+00 -1.23962164e+00 -1.02876067e-01 3.76918316e-01 3.67079675e-01 1.15658984e-01 -1.01385701e+00 -1.62375465e-01 -1.64017633e-01 8.60989690e-01 -5.41241407e-01 -6.45129234e-02 -7.95664608e-01 -6.48077905e-01 2.68504173e-01 2.55751908e-01 7.68856227e-01 -1.13937426e+00 -1.34910718e-01 -1.26170486e-01 -7.52210245e-02 -7.49986291e-01 -2.00142547e-01 -6.30820990e-01 -8.89990389e-01 -8.20097327e-01 -1.02763855e+00 -5.38563311e-01 9.91549551e-01 2.54094422e-01 1.17356575e+00 7.31029958e-02 -2.45919108e-01 1.70778513e-01 -1.02426492e-01 -4.60979462e-01 -8.01286101e-01 -4.21443731e-01 -4.13555920e-01 3.81153256e-01 -3.48416328e-01 -6.51237547e-01 -7.51175046e-01 5.86553276e-01 -1.01743686e+00 7.95560598e-01 3.61639142e-01 5.12709916e-01 9.02083278e-01 2.70141333e-01 2.00883299e-01 -1.10981584e+00 5.62324822e-01 -2.22657174e-01 -8.08249831e-01 1.51317358e-01 -2.25989655e-01 -2.22924083e-01 9.76684391e-01 -6.70265198e-01 -1.54714978e+00 -3.53572965e-01 -3.40052068e-01 -6.12958670e-01 -1.15511663e-01 -5.25438227e-02 -5.57610393e-01 -2.54326761e-01 5.57125151e-01 1.87548175e-01 -1.23333499e-01 -6.62122130e-01 2.02907786e-01 5.87764204e-01 4.03726667e-01 -7.31945038e-01 9.91420567e-01 6.40453339e-01 2.96386451e-01 -8.91996562e-01 -3.63755733e-01 1.84686482e-01 -2.31130823e-01 -3.92277092e-01 6.21589005e-01 -6.31379485e-01 -7.76256204e-01 7.93925881e-01 -1.31314540e+00 -7.38536835e-01 -3.23998004e-01 2.44670376e-01 -6.37583315e-01 3.75012159e-01 -6.84525788e-01 -8.90631735e-01 -3.66494000e-01 -1.16772330e+00 1.09222817e+00 1.86298773e-01 1.74265146e-01 -1.00067687e+00 1.53017966e-02 4.65958595e-01 6.11641884e-01 5.93258440e-01 9.53863680e-01 6.70041025e-01 -1.00981045e+00 -8.54675099e-02 -4.14657533e-01 5.94201326e-01 4.94911224e-01 3.58230770e-01 -1.10915136e+00 2.06680261e-02 2.62485713e-01 1.73182011e-01 5.31451404e-01 4.20591056e-01 1.67833233e+00 -3.09583545e-01 -1.10088222e-01 9.25311327e-01 1.53571022e+00 3.92818749e-01 1.20633388e+00 2.06720933e-01 1.17003524e+00 6.08270347e-01 5.27051032e-01 2.41773114e-01 2.35803291e-01 7.60475338e-01 4.63634759e-01 -3.70920271e-01 -5.35452127e-01 -3.34750056e-01 2.28230968e-01 8.75927687e-01 -5.82551718e-01 -4.70960528e-01 -5.22886992e-01 -3.70658911e-03 -1.22771311e+00 -7.69549429e-01 -3.16942811e-01 2.30695009e+00 8.80527854e-01 -1.43577293e-01 -1.49276659e-01 1.01858385e-01 7.81427562e-01 -1.75786570e-01 -3.88643473e-01 -5.61609805e-01 -1.05374902e-01 3.54179412e-01 4.36153173e-01 8.33835959e-01 -4.47205752e-01 6.35644019e-01 5.55731344e+00 1.05807590e+00 -1.40473294e+00 -6.63875192e-02 8.26468945e-01 2.65934587e-01 -9.89625871e-01 -3.28830004e-01 -5.69699764e-01 7.49306858e-01 6.58416390e-01 3.07478487e-01 8.49100471e-01 6.17531240e-01 3.51377606e-01 -1.12126179e-01 -6.76227212e-01 1.22203708e+00 1.31567754e-02 -1.13934052e+00 3.07750463e-01 2.47682296e-02 9.89307046e-01 -5.44034541e-01 2.07340464e-01 -1.92442223e-01 1.85817093e-01 -1.13337052e+00 7.40000010e-01 1.07160997e+00 1.22711360e+00 -7.55930603e-01 4.96606648e-01 4.40669775e-01 -9.11327600e-01 4.32188153e-01 -6.13089502e-01 3.51895660e-01 2.54973233e-01 9.89359021e-01 -7.24115372e-01 5.89661658e-01 4.30355519e-01 2.17193022e-01 -1.83860719e-01 1.04195476e+00 -1.59588665e-01 5.91722488e-01 -3.99570256e-01 9.31823775e-02 -3.49795997e-01 -8.44315171e-01 3.07506979e-01 7.85086155e-01 6.63545907e-01 -4.09466475e-02 -1.76050872e-01 1.21316695e+00 1.15204733e-02 2.07206935e-01 -4.79085147e-01 3.30531001e-01 1.43849418e-01 1.12367880e+00 -6.99150383e-01 -1.03247233e-01 -9.78724658e-02 1.07088745e+00 -9.74819511e-02 4.46505636e-01 -9.40373242e-01 -4.25398111e-01 2.17663169e-01 5.82145751e-01 -1.94261856e-02 -1.20578088e-01 -5.22199988e-01 -9.65228975e-01 1.21972397e-01 -7.46206164e-01 -3.83711040e-01 -1.36692309e+00 -1.36323071e+00 6.89478576e-01 -8.14800784e-02 -1.40942442e+00 -4.94417213e-02 -7.47675180e-01 -6.84292614e-01 1.44896388e+00 -1.52643502e+00 -1.28845954e+00 -8.34995985e-01 4.76598591e-01 3.62926483e-01 4.19085026e-02 8.74699235e-01 3.05512130e-01 -1.10348612e-01 3.54168534e-01 2.19539419e-01 -2.09653825e-01 5.65784812e-01 -9.41110492e-01 5.47407627e-01 4.32614803e-01 -2.29353666e-01 4.31155056e-01 6.69796348e-01 -7.33908117e-01 -1.12298071e+00 -1.01026297e+00 8.03842675e-03 -1.63144782e-01 1.15233650e-02 -4.78295028e-01 -9.86745775e-01 2.59077728e-01 -6.94338828e-02 -1.79169998e-01 3.66875231e-01 -4.85382169e-01 -1.60512835e-01 -3.13242555e-01 -1.54642177e+00 7.88894534e-01 8.11635196e-01 -3.26586157e-01 2.27948222e-02 2.12377310e-01 6.33374453e-01 -6.90159082e-01 -7.06452727e-01 3.35908562e-01 6.99958444e-01 -1.27819514e+00 1.13656151e+00 1.26532912e-01 6.59459889e-01 -4.58786696e-01 -6.22831844e-02 -1.43872142e+00 -1.64993465e-01 -6.65797949e-01 -4.43984307e-02 1.29737854e+00 1.82492122e-01 -8.29535842e-01 8.95711482e-01 6.28285408e-01 -1.64019391e-01 -7.03173459e-01 -4.00130063e-01 -5.94535470e-01 -3.40367779e-02 -3.51487905e-01 1.09835672e+00 8.21777880e-01 -9.50093508e-01 -2.09482700e-01 -4.81194496e-01 9.39535871e-02 6.38092160e-01 3.87115926e-01 9.65380549e-01 -1.24011374e+00 -6.06507659e-01 -2.01942146e-01 -1.49291158e-02 -1.20153785e+00 -3.63574363e-03 -4.73505676e-01 7.00931847e-02 -1.49858236e+00 -1.59076735e-01 -1.15635288e+00 2.29419068e-01 -9.05193165e-02 -8.91078170e-03 4.10451502e-01 -1.17994972e-01 1.24823660e-01 4.05108303e-01 5.85060239e-01 1.97984695e+00 -5.54909185e-02 -2.52526551e-01 4.34640199e-01 -5.50022900e-01 7.03066707e-01 9.33507621e-01 -1.61365226e-01 -7.37984717e-01 -5.71020186e-01 3.91447306e-01 2.18265820e-02 4.33878273e-01 -9.04370427e-01 -4.73140836e-01 -3.12661588e-01 6.15044594e-01 -5.29697299e-01 7.58968234e-01 -1.04587042e+00 8.16224277e-01 -7.88799487e-03 1.12651303e-01 -2.14778244e-01 1.85494199e-01 2.92364568e-01 2.69287955e-02 -4.51250166e-01 9.35387373e-01 -1.43241599e-01 -4.18269560e-02 3.01772773e-01 6.46451116e-02 -3.42894852e-01 8.08118284e-01 -4.61289614e-01 -2.91842580e-01 -6.44955456e-01 -1.90467179e-01 -6.62773371e-01 9.07035708e-01 3.63421962e-02 6.19315326e-01 -1.49438095e+00 -4.30280834e-01 4.98941064e-01 -6.10249877e-01 4.27946806e-01 4.97530848e-01 1.49756953e-01 -1.33421123e+00 -5.66164292e-02 -2.27950767e-01 -3.47981155e-01 -1.04047632e+00 4.22165602e-01 3.63547564e-01 -5.15920408e-02 -7.62162924e-01 6.51050150e-01 6.99470818e-01 -4.66943204e-01 -2.72431493e-01 -3.61682326e-01 -3.67561281e-02 -4.33948398e-01 5.37801206e-01 5.63496292e-01 5.31583726e-02 -4.49021548e-01 3.01045597e-01 9.76682425e-01 2.81653196e-01 -1.16117738e-01 1.35491061e+00 8.10240582e-02 -2.76176721e-01 3.79527390e-01 1.08223081e+00 6.17190123e-01 -1.43124604e+00 4.09532666e-01 -9.94315267e-01 -7.94375062e-01 1.56697646e-01 -8.28711033e-01 -1.38773906e+00 1.00179088e+00 3.92764837e-01 3.77193600e-01 1.23156667e+00 -3.85831863e-01 1.03744817e+00 -2.12082371e-01 4.73410994e-01 -7.28962123e-01 -7.53947794e-02 6.39853254e-02 1.19683731e+00 -5.62096953e-01 -6.42914698e-02 -1.07843244e+00 -3.68732452e-01 1.23307765e+00 4.59015846e-01 -2.28134632e-01 6.22138500e-01 4.35984492e-01 1.44290432e-01 6.45657182e-02 -8.89589787e-02 6.23313308e-01 4.35440630e-01 7.50984728e-01 8.77880678e-02 1.39605030e-01 1.98432192e-01 4.95892674e-01 -4.37110126e-01 -1.46928757e-01 5.39048374e-01 4.00182158e-01 -1.44129619e-01 -1.30617261e+00 -7.69056380e-01 3.32765967e-01 -2.41449267e-01 -8.42247680e-02 -1.01635024e-01 3.84542286e-01 2.55331576e-01 5.95286548e-01 9.97146219e-02 -2.34877348e-01 3.45827371e-01 -3.27539712e-01 6.99217200e-01 -3.28130394e-01 -1.52688563e-01 1.23978481e-01 -4.55033332e-02 -2.41199777e-01 -2.80387223e-01 -3.52015972e-01 -9.69941080e-01 -5.29514849e-01 -3.12733531e-01 -1.59551889e-01 9.34474707e-01 4.19697046e-01 1.80392578e-01 5.94587207e-01 8.70664656e-01 -1.23325384e+00 -2.15832479e-02 -7.02390134e-01 -7.30224490e-01 4.74110961e-01 8.36639851e-02 -7.71552205e-01 -4.59091693e-01 1.85662672e-01]
[9.500858306884766, -3.17021107673645]
ad7ed517-629d-45e6-b239-cec40e7efea9
evolutionary-framework-for-two-stage
1903.01885
null
http://arxiv.org/abs/1903.01885v1
http://arxiv.org/pdf/1903.01885v1.pdf
Evolutionary framework for two-stage stochastic resource allocation problems
Resource allocation problems are a family of problems in which resources must be selected to satisfy given demands. This paper focuses on the two-stage stochastic generalization of resource allocation problems where future demands are expressed in a finite number of possible scenarios. The goal is to select cost effective resources to be acquired in the present time (first stage), and to implement a complete solution for each scenario (second stage), while minimizing the total expected cost of the choices in both stages. We propose an evolutionary framework for solving general two-stage stochastic resource allocation problems. In each iteration of our framework, a local search algorithm selects resources to be acquired in the first stage. A genetic metaheuristic then completes the solutions for each scenario and relevant information is passed onto the next iteration, thereby supporting the acquisition of promising resources in the following first stage. Experimentation on numerous instances of the two-stage stochastic Steiner tree problem suggests that our evolutionary framework is powerful enough to address large instances of a wide variety of two-stage stochastic resource allocation problems.
['Fábio L. Usberti', 'Evandro C. Bracht', 'Mário C. San Felice', 'Pedro H. D. B. Hokama']
2018-11-29
null
null
null
null
['steiner-tree-problem']
['graphs']
[ 6.79621816e-01 -1.12111308e-01 -5.52117467e-01 -2.01118171e-01 -3.21092784e-01 -4.06805217e-01 9.82011296e-03 -2.16775224e-01 -2.46493578e-01 1.19672227e+00 -1.44021779e-01 -3.04416746e-01 -9.62026536e-01 -9.43457723e-01 7.59128332e-02 -7.51278222e-01 -1.07068844e-01 1.11482990e+00 3.06311280e-01 -3.75255108e-01 5.70649147e-01 9.18836951e-01 -1.52491581e+00 -1.45193845e-01 7.76469707e-01 1.06109250e+00 8.25375736e-01 1.96727172e-01 -5.11747718e-01 1.03212856e-01 -6.59705579e-01 -4.51579802e-02 5.43177307e-01 -4.52848315e-01 -1.17851138e+00 6.74079001e-01 -8.39104950e-01 7.90993348e-02 3.81242633e-01 8.89355958e-01 5.26999414e-01 3.96620721e-01 4.58794624e-01 -1.49557495e+00 1.04065560e-01 8.09675097e-01 -7.78913736e-01 3.51100892e-01 4.01953816e-01 -6.29158989e-02 8.63492787e-01 -8.17159295e-01 5.95188200e-01 9.52580690e-01 4.79825810e-02 7.79596746e-01 -1.20327127e+00 -1.84361592e-01 3.20173174e-01 9.40138325e-02 -1.40967631e+00 -4.77216005e-01 8.43188584e-01 1.56311184e-01 1.05905676e+00 5.62257171e-01 7.85790265e-01 1.98906690e-01 -2.05006897e-01 6.99335873e-01 6.29867852e-01 -6.48656487e-01 7.03926563e-01 1.07628942e-01 -4.67366546e-01 1.63069859e-01 3.98119897e-01 -4.83752713e-02 -3.47604841e-01 -3.16023439e-01 4.95750338e-01 -1.15560561e-01 -3.81265096e-02 -6.31933331e-01 -8.08255196e-01 8.29215229e-01 4.72280104e-03 4.93600219e-01 -8.45790625e-01 1.80208739e-02 2.13746607e-01 3.99082184e-01 3.03804815e-01 7.83111572e-01 -7.35436261e-01 7.71439299e-02 -1.18113196e+00 1.74089298e-01 7.97688663e-01 1.15039313e+00 5.00272632e-01 1.43864006e-01 -6.35753665e-03 7.88069904e-01 1.03840999e-01 1.80012479e-01 -8.16574469e-02 -9.09604073e-01 7.07007766e-01 2.39093199e-01 5.78224838e-01 -6.48014367e-01 -4.05054182e-01 -5.54802477e-01 -2.95493364e-01 2.09996421e-02 2.63974220e-01 -4.18041795e-01 -5.53291798e-01 1.58894384e+00 4.56919760e-01 -2.25598618e-01 -8.65281224e-02 7.60112703e-01 -4.22285870e-02 7.84589946e-01 -1.93247706e-01 -1.13627696e+00 8.08478236e-01 -1.05620110e+00 -3.89188886e-01 -1.15887642e-01 2.40331143e-01 -7.59507120e-01 4.14062053e-01 2.41673484e-01 -1.66708195e+00 3.50283720e-02 -7.38381624e-01 8.93610716e-01 -8.32545906e-02 -2.05633387e-01 6.55148089e-01 7.63702631e-01 -1.25892115e+00 4.08964157e-01 -2.26770848e-01 -4.05654907e-01 1.75449789e-01 6.61522985e-01 3.60826671e-01 -1.94193453e-01 -1.03375244e+00 8.13879490e-01 4.03616846e-01 3.38263273e-01 -6.76395655e-01 -5.63320696e-01 -3.71288449e-01 4.64907616e-01 1.05507958e+00 -8.24885488e-01 1.04215837e+00 -9.36671853e-01 -1.24901175e+00 6.56172514e-01 -2.31529385e-01 -6.40249625e-02 5.69176376e-01 6.62493587e-01 -3.13893795e-01 1.22239694e-01 3.35687310e-01 3.61471802e-01 6.88765049e-01 -1.11538601e+00 -1.13467824e+00 -1.19385213e-01 2.59202719e-01 6.09754920e-01 -2.25007117e-01 4.38037723e-01 -5.49153328e-01 -3.78541052e-01 1.53043434e-01 -9.28642571e-01 -1.00897729e+00 -4.08760369e-01 -3.10722798e-01 -2.21893594e-01 3.38337570e-01 8.70674327e-02 1.36949849e+00 -1.65068698e+00 7.30577886e-01 6.32082224e-01 -3.87927175e-01 -9.85258445e-02 -2.68888354e-01 6.03077292e-01 -1.27325892e-01 3.74151707e-01 -1.75775439e-01 -1.97281569e-01 -1.43218234e-01 2.16557339e-01 -5.69125488e-02 5.58610186e-02 1.13822393e-01 3.69560063e-01 -7.43611038e-01 -3.12227696e-01 -4.51365449e-02 -5.02333164e-01 -4.99644846e-01 1.36700626e-02 -3.59759450e-01 1.30583763e-01 -9.42656100e-01 8.73731434e-01 5.20783544e-01 -5.62145114e-02 3.90760273e-01 4.05905187e-01 -2.57190943e-01 -4.56850678e-02 -1.35141945e+00 1.43110669e+00 -8.75913143e-01 6.02725893e-03 2.91605592e-01 -1.15951955e+00 7.20452607e-01 1.49320319e-01 1.13144851e+00 -4.53319281e-01 1.23907380e-01 5.41177750e-01 -1.01686545e-01 -3.38814408e-01 6.07702374e-01 -2.58577198e-01 -3.58871788e-01 7.61290252e-01 -5.25206268e-01 -4.72043544e-01 5.51655054e-01 4.11855280e-02 8.35088313e-01 -2.21477598e-02 3.54855061e-01 -4.21110481e-01 7.57370591e-01 2.68831819e-01 9.05334771e-01 6.60023689e-01 -2.23895505e-01 1.51269853e-01 3.23057324e-01 -5.60397625e-01 -1.00851631e+00 -6.47919655e-01 2.13059485e-01 8.57100964e-01 3.95845741e-01 3.77493382e-01 -2.78675944e-01 -6.65784359e-01 -2.37619970e-02 9.02810812e-01 -2.86234558e-01 2.80206025e-01 -5.64365029e-01 -7.12530255e-01 -5.10870457e-01 2.61371788e-02 2.27419764e-01 -1.13122559e+00 -1.11413515e+00 5.50863922e-01 -7.23368675e-02 -7.39799321e-01 -4.66753721e-01 4.51502770e-01 -8.62326205e-01 -9.99862075e-01 -8.17953050e-01 -6.53174579e-01 9.81703281e-01 5.62253177e-01 9.97963846e-01 3.35482806e-01 -5.79432487e-01 2.88161635e-01 -3.70262742e-01 -1.93649441e-01 9.36242491e-02 2.21539065e-01 1.83759019e-01 -2.27265745e-01 2.52109952e-03 -4.28757906e-01 -4.16324437e-01 6.05715513e-01 -7.15430140e-01 -1.77591056e-01 3.54060680e-01 8.02308559e-01 7.35357106e-01 1.03338337e+00 9.07919168e-01 -7.17971206e-01 5.52845299e-01 -8.71020913e-01 -8.23322833e-01 6.54927731e-01 -5.41592479e-01 -1.24210812e-01 7.11188495e-01 -3.02849650e-01 -1.27610004e+00 -2.82541141e-02 2.47028083e-01 -7.87654370e-02 2.60209620e-01 5.92461467e-01 -5.12580693e-01 -5.46870986e-03 -1.27680264e-02 8.65496993e-02 -4.58817154e-01 -2.46985018e-01 -1.58187456e-03 3.41604233e-01 -1.79414637e-02 -8.49420130e-01 6.74032331e-01 -1.97438914e-02 4.25829411e-01 -2.64764935e-01 -5.81235886e-01 -3.40302080e-01 -4.91915762e-01 -3.26210648e-01 1.51373997e-01 -1.72498330e-01 -5.50352216e-01 2.20028356e-01 -7.25899041e-01 -2.01086402e-01 -8.17109525e-01 -6.12546243e-02 -9.40260768e-01 -4.28578211e-03 3.01502943e-01 -1.25074160e+00 -1.06508538e-01 -1.26121700e+00 5.81051350e-01 5.37510872e-01 -1.00615859e-01 -9.38878834e-01 -3.67791116e-01 1.50162861e-01 5.73631942e-01 2.49569476e-01 1.05663931e+00 -4.96361196e-01 -6.74162447e-01 9.99671519e-02 3.42865825e-01 -4.33070451e-01 2.59367377e-01 4.51096445e-02 1.72942892e-01 -4.92178857e-01 2.43744418e-01 -1.10883772e-01 3.00568998e-01 6.12289906e-01 1.15779734e+00 -2.17015386e-01 -6.78929806e-01 3.15988421e-01 1.83623922e+00 9.12471414e-01 3.83402497e-01 5.70036471e-01 -2.10582241e-01 1.02593338e+00 1.28978968e+00 7.95721292e-01 8.42392743e-02 8.74348342e-01 5.93065202e-01 2.09519297e-01 5.08065343e-01 3.08518678e-01 -1.91670209e-01 1.71965018e-01 3.61263193e-02 -7.71038890e-01 -9.09547985e-01 9.80050087e-01 -1.84931052e+00 -1.07537031e+00 2.89120406e-01 2.14250827e+00 4.67286587e-01 2.22591057e-01 4.07172889e-01 3.56808096e-01 1.11103010e+00 8.08001235e-02 -8.25520694e-01 -9.65886354e-01 9.90241542e-02 1.11809991e-01 4.72330093e-01 1.97933197e-01 -5.29075563e-01 7.64112592e-01 6.93730974e+00 9.19177413e-01 -7.33368099e-01 -3.23845088e-01 1.01642740e+00 -6.60977840e-01 -8.22779953e-01 1.38859704e-01 -6.89253271e-01 6.24787211e-01 8.51382732e-01 -8.75310242e-01 8.35780621e-01 6.83539808e-01 3.99065107e-01 -5.24934888e-01 -9.08356905e-01 5.28560340e-01 -2.83459455e-01 -1.38056946e+00 -1.75010964e-01 1.17633037e-01 1.16327596e+00 -5.44045091e-01 2.62260795e-01 -1.42818853e-01 4.12769943e-01 -5.97208679e-01 6.88804984e-01 2.90132105e-01 9.68876421e-01 -1.47627473e+00 4.16077077e-01 6.71363175e-01 -1.17071867e+00 -6.73325181e-01 -3.49089146e-01 1.73299044e-01 8.82821679e-01 5.67141950e-01 -6.32509589e-01 8.88836384e-01 5.99435866e-01 -1.08169347e-01 4.31541324e-01 1.39431727e+00 -2.14829873e-02 -1.93072245e-01 -4.60454822e-01 -2.98606247e-01 4.52977657e-01 -3.19479972e-01 8.23408604e-01 5.02745926e-01 6.52511954e-01 5.91312408e-01 3.10504675e-01 5.46624124e-01 2.19096303e-01 2.03564778e-01 -4.42579001e-01 9.05686915e-02 8.66606832e-01 9.75229919e-01 -1.24812925e+00 -2.85553653e-02 -9.90022793e-02 7.18876183e-01 -4.57522161e-02 1.90059319e-01 -6.18638754e-01 -5.17421663e-01 3.67302626e-01 -7.40019679e-02 3.94150019e-01 -6.13776743e-02 -5.03730536e-01 -7.14279950e-01 -2.66359597e-01 -4.89827096e-01 5.75797677e-01 -5.40898740e-01 -8.61082613e-01 5.60728550e-01 2.83048064e-01 -9.50796664e-01 -5.21586776e-01 -6.27041310e-02 -8.26232612e-01 1.09477687e+00 -1.60359597e+00 -4.80863184e-01 2.77139902e-01 5.98642230e-01 1.26239133e+00 -3.94193232e-01 5.73309541e-01 -9.03595053e-03 -7.07162678e-01 9.12278295e-02 1.24327488e-01 -1.06889105e+00 -1.93726823e-01 -9.46066439e-01 -7.89656937e-02 1.02084124e+00 -5.32495618e-01 4.18661684e-01 8.76314998e-01 -7.45245159e-01 -1.14113963e+00 -7.42319286e-01 9.95900333e-01 4.14234310e-01 5.49149156e-01 2.68217564e-01 -1.87619086e-02 6.61782250e-02 -1.67236090e-01 -4.58179563e-01 7.94338226e-01 -2.32203841e-01 6.42012954e-01 -4.51201275e-02 -1.82928073e+00 6.70990288e-01 1.26052988e+00 2.77081817e-01 -5.73682897e-02 4.22382087e-01 5.15790224e-01 -2.86431126e-02 -5.62328100e-01 4.98120368e-01 2.98601717e-01 -5.36869168e-01 7.61670232e-01 -5.99190950e-01 2.81651020e-01 -6.41808435e-02 -1.92391396e-01 -1.46965146e+00 -4.60385352e-01 -1.08664930e+00 2.12296531e-01 1.05775237e+00 7.43276238e-01 -5.32047689e-01 1.00727332e+00 1.12525320e+00 1.23723187e-02 -1.11112618e+00 -1.08361006e+00 -8.21422398e-01 -2.53363818e-01 -1.35004325e-02 1.15146792e+00 6.36296213e-01 -1.75555423e-01 -1.94294438e-01 -5.53648293e-01 -1.79156840e-01 7.20941603e-01 7.80849278e-01 2.17550084e-01 -9.39837754e-01 -4.09274369e-01 -4.58857208e-01 2.51590014e-01 -9.27081823e-01 9.93220210e-02 -5.34633458e-01 1.10908531e-01 -1.69643462e+00 2.08447248e-01 -1.19745219e+00 -2.81361014e-01 3.56885940e-01 4.44666110e-02 -1.61089286e-01 3.78812313e-01 3.06229919e-01 -5.30160010e-01 3.51166666e-01 1.11406589e+00 1.10913582e-01 -5.07956982e-01 7.98201084e-01 -8.44357371e-01 5.39302349e-01 9.03523386e-01 -5.35542607e-01 -7.95612335e-01 -3.96184444e-01 2.49127701e-01 9.53466833e-01 -7.91426778e-01 -3.75650138e-01 3.63148272e-01 -1.18430793e+00 1.02917150e-01 -8.49860668e-01 2.80449033e-01 -1.47201610e+00 6.56897366e-01 6.03331566e-01 -1.79947436e-01 1.97611883e-01 -4.01359759e-02 5.09313107e-01 1.95143491e-01 -8.72125447e-01 5.32913566e-01 -1.40868366e-01 -8.81482065e-01 4.72221613e-01 -4.92537022e-01 -3.28314990e-01 1.80805397e+00 -6.35642707e-01 1.35206416e-01 -2.22599834e-01 -1.12853706e+00 9.17174995e-01 5.16846061e-01 1.65194824e-01 5.42746544e-01 -1.03117001e+00 -4.54167157e-01 -3.60107452e-01 -3.94683450e-01 -8.67683589e-02 2.48095125e-01 5.12869060e-01 -3.81617010e-01 5.73595226e-01 -5.23480654e-01 -1.24456413e-01 -1.12608504e+00 8.99766684e-01 1.57783344e-01 -6.55016422e-01 1.35254532e-01 1.10797751e+00 -4.37339932e-01 2.12985396e-01 -3.66362371e-02 6.07938290e-01 -3.76074076e-01 3.64100873e-01 2.21094131e-01 6.53997064e-01 -1.44394413e-01 -5.08175373e-01 -7.12767482e-01 5.24342120e-01 1.04460619e-01 -4.36470032e-01 1.73556554e+00 -6.58473432e-01 -3.38049352e-01 -1.84253842e-01 6.62476182e-01 -3.11454609e-02 -8.58859181e-01 -3.05144638e-01 2.91209728e-01 -1.00364757e+00 -2.44464129e-01 -8.33440721e-01 -1.57493353e+00 7.71018490e-02 -7.79281333e-02 5.07696092e-01 2.09269500e+00 -2.69920677e-01 5.51453948e-01 7.10532814e-02 1.27105868e+00 -1.18834651e+00 -1.34637997e-01 1.93605766e-01 7.78377295e-01 -4.35253769e-01 1.70741603e-01 -7.24111974e-01 -7.55725920e-01 1.20653963e+00 4.28629607e-01 -4.26204270e-03 3.89313281e-01 2.84745693e-01 -7.34944165e-01 -4.28751223e-02 -1.08536625e+00 -3.55035186e-01 -2.35756442e-01 4.36311692e-01 -2.96905607e-01 2.72888760e-03 -9.59832132e-01 1.55060560e-01 1.05030268e-01 -2.43554831e-01 6.96678758e-01 1.19612920e+00 -6.52796209e-01 -1.46192157e+00 -3.57950896e-01 4.79641646e-01 -4.70591187e-01 1.19310781e-01 -2.59393215e-01 4.32010651e-01 1.94912255e-01 1.33773029e+00 7.71887973e-02 4.97020744e-02 3.39608550e-01 -2.80917794e-01 5.01255870e-01 -9.38030720e-01 -5.92231631e-01 3.25980246e-01 5.74079812e-01 -5.27299464e-01 -5.31875789e-01 -1.02986944e+00 -9.69125032e-01 -2.06647187e-01 -6.62350953e-01 7.15695977e-01 8.10011148e-01 6.49581909e-01 9.82716158e-02 6.30581439e-01 1.42676830e+00 -7.53598809e-01 -5.41461051e-01 -2.15538163e-02 -8.00261259e-01 -4.52499300e-01 -3.16324115e-01 -8.34525883e-01 -8.46282765e-02 -4.69055295e-01]
[5.398467540740967, 3.2222445011138916]
dda04f99-ad93-4b60-b10b-3a340ce9f3a8
unleashing-the-power-of-user-reviews
2306.15541
null
https://arxiv.org/abs/2306.15541v1
https://arxiv.org/pdf/2306.15541v1.pdf
Unleashing the Power of User Reviews: Exploring Airline Choices at Catania Airport, Italy
This study aims to investigate the possible relationship between the mechanisms of social influence and the choice of airline, through the use of new tools, with the aim of understanding whether they can contribute to a better understanding of the factors influencing the decisions of consumers in the aviation sector. We have chosen to extract user reviews from well-known platforms: Trustpilot, Google, and Twitter. By combining web scraping techniques, we have been able to collect a comprehensive dataset comprising a wide range of user opinions, feedback, and ratings. We then refined the BERT model to focus on insightful sentiment in the context of airline reviews. Through our analysis, we observed an intriguing trend of average negative sentiment scores across various airlines, giving us deeper insight into the dynamics between airlines and helping us identify key partnerships, popular routes, and airlines that play a central role in the aeronautical ecosystem of Catania airport during the specified period. Our investigation led us to find that, despite an airline having received prestigious awards as a low-cost leader in Europe for two consecutive years 2021 and 2022, the "Catanese" user tends to suffer the dominant position of other companies. Understanding the impact of positive reviews and leveraging sentiment analysis can help airlines improve their reputation, attract more customers, and ultimately gain a competitive edge in the marketplace.
['Antonio Picone', 'Vincenzo Miracula']
2023-06-27
null
null
null
null
['sentiment-analysis']
['natural-language-processing']
[-4.48999465e-01 -8.39499198e-03 -3.08399856e-01 -7.06013963e-02 -2.86253184e-01 -7.30186641e-01 5.75674534e-01 7.66330004e-01 -5.37525773e-01 2.32502267e-01 4.43645507e-01 -6.03742838e-01 -2.54968762e-01 -9.26349759e-01 -3.54467630e-01 -3.88244092e-01 -2.31995359e-02 -1.83970705e-01 -1.56266406e-01 -7.48195529e-01 5.50260007e-01 5.30116558e-01 -1.13036752e+00 -6.08155429e-02 4.17984456e-01 9.55403984e-01 -2.01938033e-01 1.49776503e-01 3.69485110e-01 5.43396533e-01 -4.82417256e-01 -7.99674273e-01 4.81063902e-01 -8.38891417e-02 -1.78976312e-01 -9.19726714e-02 -1.28794596e-01 6.60997257e-02 1.91729143e-01 7.61498451e-01 2.25700736e-01 3.09245866e-02 1.03575237e-01 -9.70636129e-01 -1.51797488e-01 4.07571852e-01 -2.79208362e-01 2.17467576e-01 2.86408693e-01 1.66170001e-01 1.60243189e+00 -6.96720123e-01 6.35081351e-01 5.91507494e-01 4.62640107e-01 -2.84234732e-01 -7.88634300e-01 -6.35681570e-01 4.41557944e-01 -2.58282367e-02 -9.87268686e-01 -1.29385799e-01 5.35453796e-01 -6.55317545e-01 4.57354814e-01 3.80131751e-01 1.12152541e+00 6.59108639e-01 4.81718481e-01 3.21498722e-01 1.10299838e+00 -1.69224888e-01 1.86727941e-01 7.56706059e-01 5.09604365e-02 2.08627522e-01 4.81591851e-01 -8.44567567e-02 -5.88119686e-01 -2.52338946e-01 1.94628716e-01 2.40431830e-01 -3.38267922e-01 -1.70476079e-01 -1.10596347e+00 9.99199808e-01 5.81635714e-01 5.71905792e-01 -6.62282765e-01 -3.73329312e-01 3.10522139e-01 4.53841984e-01 5.39922297e-01 8.62669349e-01 -4.99319583e-01 -4.87583160e-01 -4.51723874e-01 6.90165833e-02 9.58268702e-01 3.22551169e-02 5.44345140e-01 -4.45305526e-01 4.79412436e-01 4.16166455e-01 4.08011645e-01 4.19105798e-01 1.71878666e-01 -5.01540780e-01 4.28697318e-01 8.25873435e-01 3.58039141e-01 -1.49343336e+00 -2.12234288e-01 -1.07301474e+00 -1.11335933e-01 1.70493573e-01 2.27803603e-01 -4.68005031e-01 8.06727856e-02 9.65476155e-01 4.09502722e-02 -6.71019793e-01 -3.64984989e-01 9.82760966e-01 8.09657499e-02 3.41898650e-01 -1.61440909e-01 -5.48674092e-02 1.00701952e+00 -6.43893659e-01 -3.16868752e-01 -4.38869223e-02 6.44021392e-01 -7.94724166e-01 9.21360612e-01 7.26217747e-01 -7.48307765e-01 -3.79027754e-01 -1.20648551e+00 6.68481171e-01 -6.49721384e-01 -1.89045101e-01 6.86172843e-01 7.68472195e-01 -6.07992947e-01 6.71052992e-01 -4.16046202e-01 -2.96322882e-01 1.48745760e-01 2.28471979e-01 -3.23894083e-01 1.41700711e-02 -1.13845706e+00 9.38996255e-01 -5.77022791e-01 1.66577607e-01 -2.93804795e-01 -4.66461569e-01 -3.95591259e-01 -6.38919547e-02 4.23298270e-01 -3.16888958e-01 8.30911219e-01 -1.15168238e+00 -9.38732147e-01 2.82091171e-01 2.49582842e-01 -2.98131168e-01 2.50018686e-01 -7.56397471e-02 -7.20943213e-01 -2.54040778e-01 7.66880587e-02 -1.41755059e-01 2.67989904e-01 -8.96122873e-01 -8.44306469e-01 -5.51444769e-01 4.67850387e-01 5.74587211e-02 -5.13642371e-01 4.35030274e-02 6.34127185e-02 -2.80363709e-01 -1.32336617e-01 -1.02274454e+00 -2.95110613e-01 -6.55006707e-01 5.10153286e-02 6.28607348e-02 1.59216195e-01 -3.01455200e-01 1.32682848e+00 -2.03542733e+00 -9.77150127e-02 6.06049359e-01 1.67525858e-01 1.66185558e-01 2.66286701e-01 9.63107765e-01 1.09484963e-01 5.53127825e-01 4.65448141e-01 5.98955676e-02 -7.17168078e-02 -3.26152623e-01 -1.91333130e-01 4.65957642e-01 7.79986084e-02 5.53197980e-01 -9.68788326e-01 3.59582901e-01 -7.04774959e-03 2.86978483e-01 -3.85155350e-01 -2.21541718e-01 7.19198957e-02 3.22308153e-01 -5.66202343e-01 7.75854528e-01 2.62542903e-01 -2.68704951e-01 2.28452653e-01 9.82633419e-03 -7.47271180e-01 5.79099357e-01 -6.20940864e-01 7.71381259e-01 -6.34447038e-01 9.58047152e-01 2.16235250e-01 -2.61917651e-01 9.75514114e-01 -4.43060026e-02 5.58699906e-01 -7.30826676e-01 4.41008598e-01 2.36185834e-01 2.51466602e-01 -2.40856096e-01 7.54274786e-01 -1.45709842e-01 -1.66740254e-01 5.91860771e-01 -6.20339274e-01 1.05539948e-01 2.05563858e-01 2.16043800e-01 8.60075116e-01 -4.28345770e-01 4.04820591e-02 -7.18969926e-02 3.44685644e-01 8.42859149e-02 2.22514510e-01 1.56531215e-01 -1.95714831e-01 9.10955295e-02 7.11531878e-01 -2.83873975e-01 -5.27850747e-01 -4.34832662e-01 6.12479262e-02 7.86642373e-01 4.90948185e-02 -6.08310938e-01 -1.43095762e-01 -5.99311471e-01 2.05404848e-01 7.13905573e-01 -6.30356491e-01 3.10581326e-02 5.98479733e-02 -7.48324692e-01 -3.10333788e-01 -1.79291293e-01 4.24825937e-01 -3.49120080e-01 -4.97231603e-01 -7.99043402e-02 -8.69673677e-03 -8.76311064e-01 -2.40113795e-01 8.43820162e-03 -5.38765669e-01 -1.12597549e+00 -3.79674852e-01 8.13362971e-02 6.28849387e-01 4.80959624e-01 9.33049738e-01 5.06650172e-02 1.46984056e-01 4.13706541e-01 -4.82779920e-01 -6.36397302e-01 -2.65167981e-01 4.48567152e-01 -1.22037726e-02 2.41398945e-01 3.37290794e-01 -3.07814032e-01 -6.98403597e-01 6.39867127e-01 -6.21709585e-01 -4.81633872e-01 4.54685926e-01 2.43129171e-02 -5.49633652e-02 3.60562086e-01 8.45331192e-01 -9.60690498e-01 9.10998762e-01 -9.48751390e-01 -5.39557159e-01 -3.42708498e-01 -1.23372757e+00 -6.03686154e-01 3.46203953e-01 3.36196512e-01 -6.89875901e-01 -5.99521935e-01 1.37455417e-02 3.48109454e-01 3.35129738e-01 1.00554812e+00 2.63145357e-01 -2.09095523e-01 3.89616847e-01 -4.08022344e-01 2.30215624e-01 -2.31723696e-01 1.49385810e-01 7.17345059e-01 -3.30341339e-01 2.79450685e-01 7.14283526e-01 5.95318496e-01 -3.78738612e-01 -6.57703698e-01 -7.36358285e-01 -7.14894176e-01 -2.42501706e-01 -7.74445117e-01 5.10158837e-01 -9.72307324e-01 -8.76288652e-01 9.82469395e-02 -4.86469746e-01 1.52649777e-02 -1.41871780e-01 5.93706787e-01 3.01877230e-01 5.29311411e-02 -3.65358263e-01 -7.26406097e-01 8.24880134e-03 -8.75865936e-01 9.91376024e-03 3.09070170e-01 -6.67049468e-01 -1.07961893e+00 2.46209487e-01 8.79715323e-01 7.47644663e-01 2.54417837e-01 6.49932444e-01 -9.16560173e-01 -7.82424212e-01 -6.89924777e-01 6.57668710e-03 6.87005877e-01 3.80445033e-01 3.63175035e-01 -5.25844395e-01 -2.71613240e-01 -1.20404735e-02 2.09588423e-01 3.32920611e-01 -9.09090266e-02 1.52586311e-01 -2.64747739e-02 -2.65611380e-01 -3.12422603e-01 1.29143381e+00 1.69652671e-01 2.78060406e-01 8.09820056e-01 1.22661740e-01 9.35554564e-01 1.20731723e+00 6.64264441e-01 5.79814255e-01 3.82080227e-01 7.68486261e-01 -1.02707006e-01 5.23780584e-01 -2.38791242e-01 5.82883477e-01 1.10312188e+00 -7.52992332e-02 -5.62515669e-02 -7.75917470e-01 6.70002162e-01 -1.49929488e+00 -4.26192790e-01 -1.45639822e-01 2.35937810e+00 2.13761888e-02 6.78321421e-01 3.87861729e-01 1.22955609e-02 4.08758074e-01 2.66055614e-01 -2.09305942e-01 -4.75881308e-01 4.67061810e-02 -1.60025030e-01 1.01119196e+00 2.40471184e-01 -2.98650086e-01 2.48822600e-01 6.32552433e+00 2.15105608e-01 -1.33178377e+00 -1.49989545e-01 7.79622972e-01 -4.56413180e-01 -7.11545885e-01 2.21093699e-01 -7.19147444e-01 2.63754666e-01 1.16380250e+00 -4.54938471e-01 2.94602424e-01 5.12429833e-01 7.98104525e-01 -4.94609743e-01 -4.71547812e-01 1.96700931e-01 1.04380831e-01 -1.33170688e+00 -4.31756139e-01 5.48589945e-01 7.77485073e-01 4.50453013e-01 2.75596470e-01 -3.06079127e-02 2.26667747e-02 -5.49905837e-01 5.19947708e-01 5.86486816e-01 -2.03479503e-04 -9.22360957e-01 9.91022766e-01 2.80420661e-01 -5.55435956e-01 -4.64745909e-01 1.62266418e-01 -7.03349769e-01 3.17490906e-01 9.39226151e-01 -9.37525094e-01 5.66278756e-01 5.45270681e-01 7.82142997e-01 -3.16502243e-01 6.43484175e-01 -4.19917814e-02 5.12876451e-01 1.84779149e-02 -4.38511938e-01 3.82961899e-01 -5.10200381e-01 4.91871983e-01 4.60818648e-01 1.37423486e-01 -2.17490822e-01 -3.48061502e-01 5.37285328e-01 1.01911812e-03 4.60365444e-01 -5.86100399e-01 -7.49140263e-01 1.69228181e-01 1.55972743e+00 -7.98331261e-01 1.22183144e-01 -5.32803535e-01 2.73271263e-01 -2.98886031e-01 1.67273000e-01 -6.39680803e-01 -3.69119912e-01 8.41078639e-01 8.00662100e-01 2.41298467e-01 -6.10835135e-01 -3.17116141e-01 -7.44316876e-01 -1.71749488e-01 -9.21704471e-01 -1.60149366e-01 -6.01535738e-01 -8.20766091e-01 5.44350326e-01 -5.21168768e-01 -1.02303612e+00 1.10935405e-01 -4.11322683e-01 -5.77596486e-01 8.70174706e-01 -1.65851009e+00 -6.16233885e-01 3.08183469e-02 5.90464063e-02 1.73891470e-01 -2.32179165e-01 3.72795850e-01 3.91018033e-01 -5.85824788e-01 -1.44387960e-01 7.71318302e-02 -1.96712568e-01 6.01553917e-01 -6.60367429e-01 4.22350824e-01 4.02081400e-01 8.10360536e-02 9.42671359e-01 5.73442042e-01 -7.98993170e-01 -1.24387312e+00 -4.40357924e-01 1.11920369e+00 -5.99558890e-01 1.28057361e+00 -1.60192907e-01 -1.79377809e-01 3.52719367e-01 3.75965714e-01 -7.76966155e-01 1.16513860e+00 5.28939843e-01 1.45593554e-01 -3.65795255e-01 -7.20272243e-01 5.86366415e-01 3.45010430e-01 -5.47868431e-01 -1.28116403e-02 3.28706056e-01 5.39359868e-01 2.49401167e-01 -1.10851622e+00 5.02364058e-03 7.13024437e-01 -1.34510791e+00 2.83915728e-01 -2.74764687e-01 3.62230569e-01 -1.54140025e-01 4.12894972e-02 -1.45452046e+00 -2.25951374e-01 -7.15477109e-01 8.48733068e-01 1.11471403e+00 9.21925366e-01 -1.09723186e+00 7.89204597e-01 1.00293648e+00 1.53962970e-01 -1.06689537e+00 -4.59879935e-01 -2.89105803e-01 -3.78022283e-01 -4.75582749e-01 4.67104256e-01 7.34968722e-01 2.38325119e-01 2.17389241e-01 2.91728899e-02 -4.93010096e-02 3.61300856e-02 2.55034864e-01 8.41848016e-01 -1.09013331e+00 -1.57663390e-01 -2.68196791e-01 -1.59062818e-01 -6.98114812e-01 -2.88071960e-01 -7.15658486e-01 -6.74606264e-01 -1.17534471e+00 -1.86205432e-01 -7.77051449e-01 -5.05008221e-01 -2.24236175e-02 3.77302080e-01 2.48163164e-01 3.87197882e-01 2.95499980e-01 -3.22907209e-01 1.28625944e-01 1.21567678e+00 1.21634692e-01 -1.18261926e-01 5.99110544e-01 -1.43403757e+00 6.22147083e-01 7.48082340e-01 -3.30287337e-01 -1.42521918e-01 5.98746277e-02 1.36752737e+00 -1.55454278e-01 9.70908478e-02 -5.86759031e-01 2.23629758e-01 -1.63332775e-01 -1.06890507e-01 -3.43320131e-01 1.81621566e-01 -1.11482191e+00 3.46545935e-01 3.15762311e-01 -3.23310226e-01 4.63302791e-01 -4.99284528e-02 3.81236613e-01 -5.01473010e-01 -2.01794893e-01 -1.14234742e-02 -8.95757824e-02 -1.21364467e-01 -2.74677221e-02 -7.91020989e-01 -3.97260189e-01 1.00732267e+00 -1.98284134e-01 -1.96793407e-01 -8.13465118e-01 -6.49836659e-01 1.57400861e-01 7.89293885e-01 6.82792664e-01 2.15826500e-02 -8.27092707e-01 -4.08266187e-01 1.78864822e-01 -6.62055518e-03 -7.68566668e-01 8.64452571e-02 1.04064238e+00 -2.20610365e-01 5.54925084e-01 -9.50936750e-02 -8.64071399e-02 -1.08885920e+00 1.43695055e-02 1.27175525e-01 -2.45409027e-01 2.48188168e-01 6.44790351e-01 -3.97088170e-01 -6.23885132e-02 -1.68213904e-01 -2.85051942e-01 -3.54056418e-01 7.80420184e-01 1.85763776e-01 6.74841046e-01 3.89451057e-01 -5.22608697e-01 -2.03901604e-01 2.11498916e-01 -1.21716194e-01 -1.13821790e-01 1.32464528e+00 -3.91674548e-01 -1.67689770e-01 8.22927117e-01 9.56324041e-01 7.85154641e-01 -7.30486929e-01 3.41828376e-01 -3.25850323e-02 -8.10503662e-01 2.59580374e-01 -9.14873421e-01 -1.15128231e+00 5.28609395e-01 1.72051772e-01 8.47135007e-01 6.96892679e-01 -2.90088356e-01 7.94295907e-01 -6.62776977e-02 4.27536786e-01 -9.71463740e-01 -2.33196858e-02 2.30840206e-01 6.80661321e-01 -9.78588223e-01 2.54980326e-01 -3.33045781e-01 -7.87911534e-01 8.51857126e-01 4.22502458e-02 7.16441870e-02 8.60581458e-01 -3.11277449e-01 2.08555028e-01 -3.29029322e-01 -8.95479500e-01 -8.62607826e-03 -1.80821232e-02 -2.24533919e-02 5.38976967e-01 2.54722923e-01 -4.81484354e-01 7.00506508e-01 -1.75253853e-01 3.85935903e-02 8.75618696e-01 5.71231246e-01 -4.53400165e-01 -1.46852338e+00 -6.56101704e-02 4.70302969e-01 -5.79634428e-01 -9.00658742e-02 -6.52040243e-01 8.91341984e-01 1.82522103e-01 1.01700258e+00 -1.47857308e-01 -5.87344766e-01 6.38593554e-01 -2.82714814e-01 -1.32325456e-01 -5.60747862e-01 -1.25698519e+00 -1.19487748e-01 6.69133067e-01 -2.86835283e-01 -4.09049451e-01 -1.00301957e+00 -7.05831230e-01 -4.93154138e-01 -6.45035505e-01 6.07491672e-01 1.32783163e+00 6.80833280e-01 6.15041435e-01 3.70718390e-01 1.12411535e+00 -2.89348572e-01 -3.23535413e-01 -6.77629173e-01 -8.04514349e-01 3.90250981e-02 8.17005783e-02 -3.15288156e-01 -7.77798116e-01 -6.27801776e-01]
[10.686920166015625, 6.8262410163879395]
2d2a7aa3-7d7a-4517-8c83-b8f3e07d6bdc
bayesian-persuasion-in-sequential-trials
2110.09594
null
https://arxiv.org/abs/2110.09594v3
https://arxiv.org/pdf/2110.09594v3.pdf
Bayesian Persuasion in Sequential Trials
We consider a Bayesian persuasion or information design problem where the sender tries to persuade the receiver to take a particular action via a sequence of signals. This we model by considering multi-phase trials with different experiments conducted based on the outcomes of prior experiments. In contrast to most of the literature, we consider the problem with constraints on signals imposed on the sender. This we achieve by fixing some of the experiments in an exogenous manner; these are called determined experiments. This modeling helps us understand real-world situations where this occurs: e.g., multi-phase drug trials where the FDA determines some of the experiments, funding of a startup by a venture capital firm, start-up acquisition by big firms where late-stage assessments are determined by the potential acquirer, multi-round job interviews where the candidates signal initially by presenting their qualifications but the rest of the screening procedures are determined by the interviewer. The non-determined experiments (signals) in the multi-phase trial are to be chosen by the sender in order to persuade the receiver best. With a binary state of the world, we start by deriving the optimal signaling policy in the only non-trivial configuration of a two-phase trial with binary-outcome experiments. We then generalize to multi-phase trials with binary-outcome experiments where the determined experiments can be placed at any chosen node in the trial tree. Here we present a dynamic programming algorithm to derive the optimal signaling policy that uses the two-phase trial solution's structural insights. We also contrast the optimal signaling policy structure with classical Bayesian persuasion strategies to highlight the impact of the signaling constraints on the sender.
['Grant Schoenebeck', 'Vijay G. Subramanian', 'Shih-Tang Su']
2021-10-18
null
null
null
null
['persuasion-strategies']
['computer-vision']
[ 7.54972458e-01 5.60713887e-01 -4.84785795e-01 -3.06759536e-01 -8.31122518e-01 -7.08229721e-01 5.78012109e-01 3.62400264e-01 -9.38134909e-01 8.93926442e-01 1.19599812e-01 -9.51202691e-01 -7.14060605e-01 -5.94838917e-01 -7.01633036e-01 -8.43855500e-01 2.81033576e-01 8.95196736e-01 -1.83405817e-01 3.08682323e-02 5.20075381e-01 3.05424273e-01 -7.89909244e-01 8.92196819e-02 3.01806748e-01 4.55811381e-01 1.87228382e-01 6.32316887e-01 2.68027782e-01 3.90331417e-01 -6.57435596e-01 -3.28269690e-01 4.20089811e-01 -5.00681698e-01 -5.45729518e-01 1.89198375e-01 -5.51204979e-01 -4.72670138e-01 3.20879549e-01 8.81950021e-01 7.26938009e-01 -1.35574952e-01 6.31304741e-01 -1.14664972e+00 -1.33537009e-01 1.00254965e+00 -7.03071117e-01 -9.58174653e-03 5.39351285e-01 3.08843434e-01 9.31557178e-01 -7.02236444e-02 5.52582443e-01 1.48086345e+00 3.64928730e-02 3.22546452e-01 -1.59438503e+00 -5.69587409e-01 1.81641817e-01 5.57694733e-02 -1.07717180e+00 -2.31068760e-01 6.66149199e-01 -6.88297570e-01 1.35756275e-02 2.29741827e-01 4.06285852e-01 1.28144419e+00 3.53430480e-01 2.29659706e-01 1.78518236e+00 -5.94817221e-01 8.41331601e-01 2.22879961e-01 3.73651117e-01 3.66725065e-02 6.70504093e-01 4.73522246e-01 -2.59772092e-01 -5.13756990e-01 3.68947238e-01 -1.84239358e-01 -2.57834911e-01 -3.03075641e-01 -8.24127316e-01 1.01943707e+00 -6.28857175e-03 2.98409760e-01 -8.91392350e-01 3.57276201e-02 -1.56235725e-01 4.35322762e-01 -3.84107828e-01 6.42971098e-01 -5.24780393e-01 3.24281082e-02 -6.77334845e-01 3.35180253e-01 7.42783606e-01 2.89279968e-01 6.33716464e-01 -5.35528362e-01 -5.07257104e-01 9.45835561e-02 6.16588354e-01 8.38170424e-02 -1.24706931e-01 -8.56743157e-01 4.39588696e-01 9.82423574e-02 7.70915270e-01 -4.51437622e-01 -3.35980117e-01 -4.83122408e-01 -2.17503697e-01 2.29472145e-01 7.54203439e-01 -7.84699798e-01 -8.67435515e-01 1.78441644e+00 3.93985152e-01 -3.99651192e-02 9.85396951e-02 8.91017139e-01 1.88336343e-01 5.84132373e-01 3.83605599e-01 -7.58921266e-01 1.59364450e+00 7.18005896e-02 -6.89862192e-01 -2.53064245e-01 4.82904196e-01 -6.49403572e-01 6.41530812e-01 5.57605505e-01 -8.29742968e-01 2.53534578e-02 -1.02787495e+00 6.69141173e-01 4.44812961e-02 -7.56633803e-02 3.03376108e-01 9.68024552e-01 -5.72505891e-01 3.95537049e-01 -4.66698259e-01 -9.52994078e-02 3.28466207e-01 5.45622885e-01 5.73601089e-02 -3.02405655e-01 -1.41013956e+00 7.63284445e-01 -6.96754688e-03 2.90207863e-01 -1.22072911e+00 -5.91848910e-01 -4.46172148e-01 1.79235414e-01 9.96863306e-01 -7.12205648e-01 1.34281182e+00 -8.92088115e-01 -1.45024610e+00 5.09624898e-01 1.16437271e-01 -2.39031091e-01 7.31298029e-01 3.46600533e-01 3.53434272e-02 -1.68183669e-01 3.68084788e-01 4.58332330e-01 4.71471578e-01 -1.22750664e+00 -4.96891081e-01 -5.44113636e-01 4.65156466e-01 1.60048261e-01 5.14725626e-01 3.64702165e-01 8.72471556e-02 -6.86976686e-02 -3.11371893e-01 -1.27179623e+00 -6.40148401e-01 -6.65796757e-01 -7.00113893e-01 -2.20885873e-02 4.74753827e-01 -9.66031328e-02 8.39878798e-01 -1.92457819e+00 -4.53801975e-02 3.53944719e-01 -1.40157729e-01 -2.17439443e-01 -8.68776962e-02 5.37143290e-01 -1.01705149e-01 3.07020426e-01 -2.49147695e-02 6.55853450e-02 1.78460404e-01 1.01133056e-01 4.41249423e-02 5.61408937e-01 4.72775288e-03 4.28054243e-01 -7.30818748e-01 -1.89695537e-01 -3.47566485e-01 -1.69303101e-02 -4.63498682e-01 1.11067578e-01 -6.64843991e-02 7.82279670e-01 -1.01595533e+00 2.87543893e-01 5.42505085e-01 -2.05167338e-01 8.34096909e-01 3.36195648e-01 -1.94502637e-01 3.53861809e-01 -1.44264221e+00 9.45946753e-01 1.39891617e-02 1.18378974e-01 4.47089583e-01 -1.14509010e+00 4.69309419e-01 4.43138719e-01 3.46646935e-01 -2.35406965e-01 5.07040322e-01 6.59141690e-02 6.56162322e-01 -2.32858911e-01 1.98606834e-01 -6.39086843e-01 -3.73486519e-01 5.99787533e-01 -5.01040280e-01 -4.69273776e-02 5.05514704e-02 3.06246787e-01 1.28025770e+00 -3.08408946e-01 3.24019730e-01 -3.09643567e-01 1.89638481e-01 1.16524838e-01 1.00907469e+00 1.25667727e+00 -1.10933810e-01 1.36687189e-01 1.21599329e+00 3.01721901e-01 -6.70440316e-01 -4.70175445e-01 -9.98434052e-02 6.39866889e-01 -9.63800028e-02 3.45126912e-02 -6.59099579e-01 -6.26349270e-01 4.54109833e-02 8.95057857e-01 -7.54752398e-01 4.12298515e-02 -8.39345977e-02 -8.75245631e-01 -9.55396593e-02 -4.20747995e-02 3.40722203e-01 -5.23420691e-01 -9.00294483e-01 3.84524941e-01 1.31402284e-01 -7.42529452e-01 -3.10417950e-01 5.67315578e-01 -4.71045524e-01 -1.11238372e+00 -6.10842168e-01 -1.03578985e-01 7.01280713e-01 -2.08528131e-01 3.30987662e-01 -4.21566844e-01 1.08175404e-01 5.04272640e-01 -1.08353764e-01 -7.83628047e-01 -6.03762865e-01 -3.96054924e-01 3.16797756e-03 1.86113074e-01 3.12588304e-01 -4.60633151e-02 -6.35770500e-01 4.53551084e-01 -9.08557415e-01 -4.16965723e-01 7.09515870e-01 7.98214018e-01 3.96711230e-01 3.91825765e-01 7.59319961e-01 -1.02710378e+00 8.27902555e-01 -6.47126079e-01 -1.09758914e+00 3.19653749e-01 -5.22077143e-01 1.31015867e-01 3.79012339e-02 -8.55759561e-01 -1.10843301e+00 2.25245878e-01 3.81619453e-01 2.64173746e-01 -2.47213587e-01 7.28296757e-01 -6.13084793e-01 5.26795201e-02 5.69452584e-01 -4.57809091e-01 9.53361113e-03 -3.71043980e-01 1.53748959e-03 7.41735697e-01 -1.48747295e-01 -9.99709368e-01 5.02589405e-01 7.34681860e-02 4.17914510e-01 -4.23253477e-01 -5.97645521e-01 1.44512638e-01 -8.76978189e-02 -2.28970200e-01 7.95589209e-01 -7.80707598e-01 -1.26010311e+00 1.33250535e-01 -1.06812108e+00 -4.29679781e-01 -1.12039953e-01 9.45019543e-01 -4.25328821e-01 8.10268819e-02 -2.13495344e-01 -1.19174933e+00 6.09070957e-01 -1.74679327e+00 6.31821871e-01 4.38385785e-01 -2.35325277e-01 -5.66276312e-01 -7.90979192e-02 6.26706302e-01 1.48852557e-01 4.54850718e-02 1.04679239e+00 -1.03272605e+00 -8.72724056e-01 2.21836083e-02 4.07007515e-01 -2.11886123e-01 -6.16592094e-02 -3.06243479e-01 -4.27138925e-01 -1.47220418e-01 2.09695175e-01 -9.71307904e-02 2.63034195e-01 1.04166734e+00 4.97323275e-01 -2.80747920e-01 -5.69428325e-01 -3.06838483e-01 1.04964030e+00 1.07696116e+00 4.87693518e-01 5.26217043e-01 -1.81287512e-01 1.10761404e+00 7.92955995e-01 5.07518888e-01 1.66763797e-01 9.01197135e-01 1.77321404e-01 9.56958830e-02 5.87043643e-01 -1.88914075e-01 3.67924154e-01 -4.30255622e-01 3.51993144e-01 -2.60274917e-01 -6.34589434e-01 3.96320581e-01 -1.80151141e+00 -5.64521909e-01 -1.72077507e-01 2.52218795e+00 9.66675341e-01 3.71212870e-01 3.35478365e-01 2.10465714e-01 9.98862326e-01 -3.15854877e-01 -4.43701267e-01 -5.36270440e-01 1.80216432e-01 2.62185242e-02 8.05778503e-01 6.78799272e-01 -4.76939499e-01 3.68767828e-01 6.42357588e+00 5.48283875e-01 -7.23507583e-01 1.71314061e-01 1.18404460e+00 -8.37314874e-03 -4.57414061e-01 8.65978360e-01 -1.09179139e+00 4.66315567e-01 1.08780932e+00 -2.35045463e-01 1.41189545e-01 2.14054987e-01 7.15773821e-01 -7.41505265e-01 -1.46018279e+00 3.84054214e-01 -6.20045245e-01 -9.81881499e-01 -6.06761038e-01 5.22141814e-01 4.73708004e-01 -7.01195240e-01 3.00940983e-02 8.96731298e-03 1.01550972e+00 -7.71416903e-01 6.86768591e-01 2.14423329e-01 4.81879741e-01 -5.12449861e-01 6.02565527e-01 6.51427090e-01 -3.66995990e-01 -5.70064247e-01 6.15059622e-02 -4.38418746e-01 4.32932943e-01 8.30279231e-01 -1.14873290e+00 5.66515803e-01 2.92126328e-01 -3.37668210e-01 9.67133045e-02 8.46574187e-01 -5.25094807e-01 8.79564226e-01 -2.65666306e-01 -3.72729242e-01 3.11516464e-01 -4.26201522e-01 5.75463533e-01 6.22992337e-01 3.01000535e-01 5.34431159e-01 8.46354663e-02 1.07015836e+00 2.33347520e-01 -1.29506484e-01 -5.82266092e-01 -1.65107623e-01 5.00228047e-01 9.53879118e-01 -7.46413887e-01 -1.41569212e-01 -2.02816669e-02 -1.10624775e-01 -4.42926198e-01 7.10232198e-01 -4.20184404e-01 -1.89406514e-01 3.47624391e-01 3.69707078e-01 2.22054258e-01 1.16415210e-01 -2.10134581e-01 -4.03399080e-01 -2.75525123e-01 -1.05532205e+00 4.68308449e-01 -7.12896049e-01 -8.08828354e-01 -2.34367847e-01 6.57280624e-01 -4.98419791e-01 -2.72565633e-01 -4.05629069e-01 -4.42549229e-01 1.11149108e+00 -1.33174992e+00 -3.39730650e-01 5.73585868e-01 1.84506983e-01 1.81774482e-01 1.26042068e-01 8.02843347e-02 -2.33058538e-02 -6.36134744e-01 1.81792781e-01 -1.74306661e-01 -9.15022120e-02 4.83631998e-01 -9.62282479e-01 -4.68933284e-01 7.14507937e-01 -3.68644327e-01 8.38805437e-01 9.49680209e-01 -9.78041708e-01 -1.41163051e+00 -3.81669790e-01 8.07813644e-01 -1.40964225e-01 6.60391629e-01 -3.32216918e-01 -3.80962461e-01 6.31554484e-01 1.36970475e-01 -7.00187147e-01 4.72818136e-01 2.01894298e-01 2.72283703e-01 -1.05710626e-01 -1.20437717e+00 8.11853349e-01 3.56629431e-01 -2.09928341e-02 -6.11359715e-01 3.25811207e-01 3.43788892e-01 -6.39627650e-02 -5.25863171e-01 2.40621537e-01 2.62328267e-01 -3.56243491e-01 5.55106997e-01 -7.53713310e-01 9.57837701e-02 -4.43028331e-01 -2.55317464e-02 -1.36536527e+00 -3.79005343e-01 -1.14777625e+00 8.93257439e-01 1.14372146e+00 7.42626905e-01 -8.73156607e-01 7.08397031e-01 1.00600898e+00 4.12581831e-01 -4.28300232e-01 -1.15318811e+00 -4.66844499e-01 8.09296146e-02 -1.45302247e-02 6.00169241e-01 6.14542902e-01 5.89515045e-02 6.56986713e-01 -3.02295506e-01 2.95642674e-01 7.98013508e-01 -1.22298207e-02 6.33797586e-01 -1.26491034e+00 -7.94202328e-01 -1.24777138e-01 9.74621847e-02 -1.07278752e+00 3.17173302e-02 -3.20307732e-01 3.23099285e-01 -1.23285222e+00 4.91560340e-01 -7.09595501e-01 -1.51338324e-01 4.94833648e-01 -1.57623962e-01 -7.65044630e-01 1.02088630e-01 -1.88474223e-01 -1.81637555e-02 -6.49004728e-02 1.05615234e+00 -2.92930841e-01 -3.38814020e-01 4.59601790e-01 -1.42638171e+00 3.31908345e-01 3.92766714e-01 -9.18314755e-01 -4.51104730e-01 1.50529280e-01 4.87733275e-01 9.36831355e-01 3.19198370e-01 -2.43058261e-02 2.87589312e-01 -6.19338930e-01 7.67679140e-02 -2.05118611e-01 8.45125616e-02 -8.47997904e-01 8.65634501e-01 7.19227076e-01 -6.69044614e-01 -1.97121650e-01 -1.46284059e-01 8.24276268e-01 3.04873049e-01 -7.94590414e-01 6.89365149e-01 -1.42760664e-01 2.85771161e-01 -3.10235620e-01 -9.79067326e-01 -3.87068450e-01 1.14142144e+00 -8.03550631e-02 -5.81358671e-01 -6.52648091e-01 -1.03023720e+00 4.57350433e-01 2.19537139e-01 -1.48140982e-01 1.56921640e-01 -7.55920529e-01 -7.53705144e-01 -4.40878540e-01 -3.55319738e-01 -2.04169810e-01 6.83418736e-02 1.11953759e+00 2.65579075e-01 3.60864252e-01 2.49439664e-02 -4.59616870e-01 -1.29390049e+00 4.85221803e-01 1.75539106e-01 -5.11164486e-01 9.22305062e-02 4.70680565e-01 4.62607771e-01 1.77753136e-01 4.36905846e-02 1.60234496e-02 -2.65084326e-01 1.58354729e-01 2.09479451e-01 1.32052094e-01 -9.72990021e-02 -2.42797211e-01 -4.02176768e-01 2.92529583e-01 -2.37496942e-01 -8.37416947e-01 1.22979677e+00 2.99714729e-02 1.04205556e-01 3.79879296e-01 5.89824617e-01 1.52073205e-01 -1.16979194e+00 -1.21139415e-01 3.65968086e-02 -4.54976737e-01 2.32664138e-01 -1.15272021e+00 -6.45815313e-01 3.50499779e-01 3.30900341e-01 7.75991455e-02 8.82509232e-01 -3.04510389e-02 -2.07901642e-01 2.61363208e-01 5.54165363e-01 -1.00983679e+00 -1.58555917e-02 -7.77313411e-02 5.74771821e-01 -8.78376245e-01 2.03176618e-01 -3.03417444e-01 -7.51386225e-01 4.17527288e-01 6.66474272e-03 4.10089612e-01 6.08107865e-01 1.83511451e-01 -1.15300141e-01 -2.73061514e-01 -8.17963183e-01 4.80648130e-02 -9.10597518e-02 4.08194125e-01 2.14822143e-02 2.99014896e-01 -1.20395911e+00 7.66047120e-01 2.64760613e-01 9.77442861e-02 1.10686696e+00 1.15117550e+00 -2.41242096e-01 -1.79695475e+00 -9.37059820e-01 3.87874156e-01 -7.71389425e-01 7.87173808e-02 -7.61517704e-01 7.59428442e-01 -1.41037963e-02 1.47080338e+00 -3.03539127e-01 8.78688321e-02 4.59377289e-01 1.10293940e-01 2.56336480e-01 -6.48261487e-01 -6.82002425e-01 6.34313226e-01 5.00756323e-01 -5.34248874e-02 -4.73056018e-01 -1.10756099e+00 -9.08701539e-01 5.96390851e-02 -4.79367733e-01 7.48548329e-01 9.10540462e-01 1.02340460e+00 4.31468040e-01 5.06324112e-01 9.25623357e-01 -5.22927463e-01 -9.56509769e-01 -9.20528531e-01 -8.39648604e-01 -8.98818597e-02 2.31960341e-01 -8.69923055e-01 -5.14399767e-01 -2.90963560e-01]
[7.912792682647705, 5.2510905265808105]
57d4f134-265c-46a0-ba15-f2822a5743e3
scale-invariant-adversarial-attack-for
2201.12527
null
https://arxiv.org/abs/2201.12527v1
https://arxiv.org/pdf/2201.12527v1.pdf
Scale-Invariant Adversarial Attack for Evaluating and Enhancing Adversarial Defenses
Efficient and effective attacks are crucial for reliable evaluation of defenses, and also for developing robust models. Projected Gradient Descent (PGD) attack has been demonstrated to be one of the most successful adversarial attacks. However, the effect of the standard PGD attack can be easily weakened by rescaling the logits, while the original decision of every input will not be changed. To mitigate this issue, in this paper, we propose Scale-Invariant Adversarial Attack (SI-PGD), which utilizes the angle between the features in the penultimate layer and the weights in the softmax layer to guide the generation of adversaries. The cosine angle matrix is used to learn angularly discriminative representation and will not be changed with the rescaling of logits, thus making SI-PGD attack to be stable and effective. We evaluate our attack against multiple defenses and show improved performance when compared with existing attacks. Further, we propose Scale-Invariant (SI) adversarial defense mechanism based on the cosine angle matrix, which can be embedded into the popular adversarial defenses. The experimental results show the defense method with our SI mechanism achieves state-of-the-art performance among multi-step and single-step defenses.
['Daoqiang Zhang', 'Zhongnian Li', 'Tao Zhang', 'Mengting Xu']
2022-01-29
null
null
null
null
['adversarial-defense']
['adversarial']
[ 1.83148175e-01 -3.88579905e-01 3.71335521e-02 -2.89435893e-01 -5.27046680e-01 -1.20689917e+00 7.94098318e-01 -3.79202098e-01 -4.95101035e-01 4.64483410e-01 1.87479798e-02 -5.69095910e-01 -1.19408913e-01 -8.12042832e-01 -5.89659870e-01 -9.01543260e-01 -1.89281836e-01 -3.00499558e-01 4.36422229e-01 -6.50782108e-01 2.74311781e-01 8.30799341e-01 -3.57976973e-01 9.33046490e-02 6.15499854e-01 9.16706324e-01 -2.50990778e-01 5.29655337e-01 2.47064486e-01 1.89044520e-01 -9.62056696e-01 -6.49203837e-01 9.29775178e-01 -2.00833544e-01 -2.62986630e-01 -7.75915444e-01 2.90230274e-01 -5.50009549e-01 -9.34525073e-01 1.33517385e+00 6.75202727e-01 2.04690434e-02 5.24727046e-01 -1.43426013e+00 -6.41547620e-01 4.25342888e-01 -7.52770185e-01 1.82687730e-01 7.98334181e-02 3.49358581e-02 6.02180123e-01 -5.90960026e-01 2.04291180e-01 1.56048095e+00 4.17162389e-01 8.70109499e-01 -9.22765195e-01 -1.27900171e+00 4.93232220e-01 2.14942962e-01 -1.25785458e+00 -1.11596093e-01 1.14450717e+00 7.72583038e-02 3.98189455e-01 5.19471586e-01 3.21993604e-02 1.43364537e+00 4.72231925e-01 5.20163953e-01 1.02357364e+00 -2.88786083e-01 2.56321102e-01 8.05114284e-02 -2.68132001e-01 7.31954157e-01 4.12714064e-01 5.62718332e-01 -1.08706973e-01 -5.33666849e-01 8.01732779e-01 1.89954117e-01 -2.17875898e-01 -3.15298289e-01 -6.14478946e-01 1.18777800e+00 7.73530662e-01 1.49868964e-03 -1.11800462e-01 1.12410195e-01 2.86582142e-01 4.64961201e-01 1.66325867e-01 4.95825917e-01 -3.84993583e-01 2.39376217e-01 -5.57288766e-01 3.10977101e-01 5.38061440e-01 4.99500185e-01 1.33248404e-01 5.11933208e-01 -2.00912446e-01 6.01957500e-01 4.28005785e-01 6.94402516e-01 3.59941363e-01 -5.58588505e-01 7.82650054e-01 4.38270599e-01 -2.00559884e-01 -1.40901828e+00 -2.01515600e-01 -4.72212881e-01 -9.53062356e-01 7.91317999e-01 2.82251805e-01 -7.42250383e-01 -8.63054037e-01 2.14532018e+00 3.91883910e-01 1.62762582e-01 6.90885931e-02 6.64853036e-01 2.49961257e-01 5.69917738e-01 -1.11848354e-01 3.25042605e-02 8.60726595e-01 -6.43718779e-01 -3.06416661e-01 -3.92834246e-01 7.22867623e-02 -8.21780384e-01 8.15440416e-01 2.05203041e-01 -7.00621068e-01 -4.00725514e-01 -1.49367559e+00 5.55299163e-01 -4.58110631e-01 -2.26287514e-01 5.44779778e-01 1.14121056e+00 -4.12124574e-01 5.63557923e-01 -7.99057424e-01 2.09515840e-01 3.55369270e-01 5.18323720e-01 -5.09149432e-01 7.07721934e-02 -1.57485843e+00 8.04921746e-01 2.02099353e-01 8.29085112e-02 -1.00796306e+00 -3.62128317e-01 -6.83745921e-01 -1.44045493e-02 2.33711645e-01 -2.81712890e-01 6.71009958e-01 -3.79478216e-01 -1.54754674e+00 2.14442730e-01 3.19980323e-01 -6.06998026e-01 5.11239350e-01 -1.19175777e-01 -5.82171679e-01 1.07356146e-01 -3.92904043e-01 2.30000585e-01 1.16631877e+00 -1.10818291e+00 -3.37720603e-01 -4.49789762e-01 5.73808789e-01 1.73310116e-01 -8.83021772e-01 1.42000675e-01 -2.46359020e-01 -1.11975515e+00 6.56457469e-02 -1.21420646e+00 -3.28387618e-01 2.78213322e-02 -5.91263473e-01 2.34639987e-01 1.40011311e+00 -6.29263282e-01 1.40271699e+00 -2.39073157e+00 1.08751498e-01 5.00618160e-01 2.43483987e-02 7.78708160e-01 -3.51977229e-01 4.75659221e-01 -2.48027146e-01 1.70283645e-01 -1.72385424e-01 3.98558415e-02 1.21696167e-01 9.34361368e-02 -8.67885768e-01 5.32501817e-01 7.31904656e-02 5.44754922e-01 -6.77387118e-01 1.60041042e-02 8.07461366e-02 4.71068114e-01 -5.08220375e-01 3.28588188e-01 3.51295292e-01 3.15643340e-01 -7.01041162e-01 4.65045631e-01 1.04810894e+00 5.56379855e-01 2.52177566e-02 -3.12124074e-01 3.48327607e-01 7.01827481e-02 -1.36688936e+00 1.06682467e+00 -4.14811790e-01 2.73983598e-01 1.09503396e-01 -9.33542490e-01 1.04067159e+00 2.33819082e-01 2.35872969e-01 -5.20820320e-01 6.47547916e-02 -7.21734622e-03 1.84675843e-01 1.13455951e-01 -2.37607583e-02 1.16037233e-02 -4.82633859e-01 3.08945686e-01 -2.99011648e-01 -2.24533781e-01 -1.55775592e-01 3.49212646e-01 1.10580432e+00 -1.75605208e-01 8.50325525e-02 -1.82921533e-02 8.58547986e-01 -7.08191037e-01 7.93601573e-01 8.11441541e-01 -3.00767094e-01 3.36615264e-01 6.62522376e-01 -4.45037007e-01 -6.74102187e-01 -1.31430745e+00 2.80567762e-02 8.68520737e-01 3.60018104e-01 -3.69353950e-01 -7.81229436e-01 -1.39494812e+00 1.67761728e-01 5.57145178e-01 -5.88254094e-01 -7.04530239e-01 -7.65114605e-01 -8.76937628e-01 1.12101293e+00 6.22227728e-01 7.97127664e-01 -6.01745009e-01 3.92881501e-03 -1.36555163e-02 3.40516239e-01 -9.43915009e-01 -6.39234483e-01 1.55420214e-01 -3.66090685e-01 -1.06890798e+00 -4.02415663e-01 -5.21932662e-01 8.89843822e-01 3.88552755e-01 2.01513037e-01 -1.01439707e-01 -3.98052931e-02 1.84335783e-02 -3.40591699e-01 -5.27455211e-01 -3.05567443e-01 -2.03664586e-01 5.16860187e-01 5.83467521e-02 8.31170566e-03 -6.88587129e-01 -5.95465541e-01 5.48237741e-01 -1.19903231e+00 -4.81211275e-01 6.23110831e-01 9.68889475e-01 1.23385362e-01 3.36651862e-01 5.80941617e-01 -7.81430066e-01 1.13393569e+00 -2.90637553e-01 -5.90949535e-01 2.00046092e-01 -4.92601424e-01 1.34672478e-01 1.29784763e+00 -7.64608562e-01 -8.84046078e-01 -2.69190580e-01 -4.43011433e-01 -4.80388701e-01 2.66149402e-01 3.29561047e-02 -4.29683536e-01 -8.59748721e-01 7.38648772e-01 6.79284781e-02 -4.43053037e-01 -3.59039605e-01 4.46639746e-01 5.38333833e-01 5.50580084e-01 -6.65311992e-01 1.76006460e+00 3.90383184e-01 3.76006544e-01 -4.02464092e-01 -5.56552470e-01 9.29065421e-02 -2.90956020e-01 2.43430421e-01 4.63610470e-01 -4.92567211e-01 -5.88940024e-01 6.75264060e-01 -9.27083910e-01 8.05902034e-02 2.13309839e-01 4.56789672e-01 8.72356743e-02 6.08897567e-01 -6.56368554e-01 -6.85311854e-01 -5.61433136e-01 -1.20397627e+00 5.12820780e-01 4.32318777e-01 1.75524950e-01 -9.53669965e-01 5.71316946e-03 -4.29006293e-02 6.61161363e-01 7.57506609e-01 9.13649201e-01 -9.35095191e-01 -7.49041811e-02 -8.28056037e-01 7.60331517e-03 8.42471659e-01 2.68341154e-01 -1.01983167e-01 -6.50838435e-01 -8.19699585e-01 2.75786817e-01 -2.81352192e-01 6.81974947e-01 -1.64328411e-01 1.23715138e+00 -6.84441566e-01 -2.37851262e-01 9.68055308e-01 1.17699981e+00 4.86801863e-01 4.93314594e-01 4.53267246e-01 7.31162250e-01 2.52043307e-01 5.17455637e-01 1.81720138e-01 -1.75408214e-01 8.54685247e-01 7.00474858e-01 -1.50765643e-01 2.10441291e-01 -4.08912987e-01 6.79054677e-01 4.28507209e-01 9.83931944e-02 -5.35957590e-02 -4.25780773e-01 -1.56742841e-01 -1.38871276e+00 -9.87991869e-01 3.06270152e-01 2.34266329e+00 8.19714069e-01 7.81206727e-01 -2.10900217e-01 2.36600667e-01 5.16199350e-01 5.87064087e-01 -6.36534214e-01 -7.84627616e-01 -6.04643449e-02 4.31513518e-01 7.00507760e-01 6.34045541e-01 -1.36875105e+00 9.59236681e-01 6.08293200e+00 1.23113608e+00 -1.31447458e+00 -1.06604263e-01 2.46463731e-01 -1.84516788e-01 -7.90520012e-02 9.48047191e-02 -8.79989028e-01 6.79388583e-01 5.41611969e-01 -3.68297130e-01 6.67246401e-01 8.95675600e-01 -1.14489347e-01 5.94244480e-01 -6.68671608e-01 5.23257017e-01 -8.28011800e-03 -8.40075314e-01 1.95598155e-01 1.02127828e-01 6.99292064e-01 -4.00760978e-01 6.35310173e-01 4.53015298e-01 5.73673010e-01 -7.90196598e-01 1.68435693e-01 -8.47698301e-02 7.49608219e-01 -1.14617765e+00 6.70449317e-01 2.40828753e-01 -1.16286325e+00 -3.42012107e-01 -4.70276743e-01 3.06785911e-01 -7.80003741e-02 1.59031749e-01 -6.85755372e-01 5.70635438e-01 3.30217689e-01 -5.23198508e-02 -5.12417674e-01 6.21050537e-01 -7.86704600e-01 6.75970018e-01 -3.53305191e-01 7.74107873e-02 5.62293231e-01 -2.93980818e-02 9.02893662e-01 1.06808710e+00 7.87761733e-02 -1.37811571e-01 2.47205019e-01 2.52844363e-01 -1.94979906e-01 -2.25159779e-01 -5.93740642e-01 8.83831754e-02 8.66587222e-01 1.27703893e+00 -1.47607014e-01 1.00453652e-01 -1.18238412e-01 1.05117130e+00 7.09310099e-02 3.00558031e-01 -1.19559407e+00 -1.03877950e+00 9.47415769e-01 -2.04958558e-01 1.23411171e-01 -4.37664151e-01 -1.01714116e-03 -9.77436185e-01 1.27603989e-02 -1.26303256e+00 4.61862624e-01 -2.05270499e-02 -1.38506007e+00 7.69369543e-01 7.36935204e-03 -1.27856553e+00 -3.50108415e-01 -7.48437583e-01 -1.16164601e+00 9.92725492e-01 -1.19918954e+00 -1.24705136e+00 8.06397758e-03 9.68797505e-01 3.12890410e-01 -6.24415398e-01 1.05568659e+00 2.60271698e-01 -7.95894086e-01 1.31074870e+00 2.13367820e-01 4.25331324e-01 8.74511480e-01 -1.07757914e+00 8.18646550e-01 1.32005000e+00 1.41093791e-01 1.15479112e+00 6.57708943e-01 -5.75676322e-01 -1.30453253e+00 -1.04763210e+00 1.45247262e-02 -2.21177012e-01 7.09424675e-01 -5.42632937e-01 -6.89698696e-01 4.05941278e-01 -1.11454971e-01 5.81009090e-02 7.22935855e-01 -2.83805221e-01 -8.44749033e-01 -3.43406230e-01 -1.45495868e+00 9.10744488e-01 8.19964409e-01 -5.39772689e-01 -4.61319625e-01 3.29651475e-01 7.98856080e-01 -4.67202485e-01 -4.99413490e-01 6.72469258e-01 6.66800976e-01 -7.49738932e-01 1.40684819e+00 -7.48068035e-01 1.33543164e-02 -3.57430935e-01 -3.23472589e-01 -1.45360196e+00 -5.36241889e-01 -7.88634300e-01 -3.96890104e-01 1.11041284e+00 2.17312694e-01 -9.67075944e-01 6.37324691e-01 3.27185035e-01 1.77026764e-01 -1.00055444e+00 -1.03082323e+00 -1.06682754e+00 3.36389720e-01 -7.48098269e-02 6.12798452e-01 8.45311224e-01 -2.64903247e-01 -6.01992421e-02 -7.56020963e-01 6.41652286e-01 6.82585001e-01 -3.34809572e-01 8.87850046e-01 -6.68562353e-01 -6.31474555e-01 -4.37355876e-01 -5.71020365e-01 -9.03292596e-01 1.43466191e-02 -6.79599345e-01 -5.14068127e-01 -8.69485438e-01 -3.54545116e-01 -3.47327590e-01 -6.59960270e-01 5.47649622e-01 -4.50305343e-01 3.83094877e-01 3.33403945e-01 -1.96423735e-02 -2.45771166e-02 4.23074126e-01 9.99175787e-01 -2.07378581e-01 -1.42093733e-01 3.05750132e-01 -9.74703968e-01 1.01685834e+00 9.39909279e-01 -6.18492842e-01 -4.91164297e-01 -3.04697126e-01 -1.96508840e-01 -3.55287343e-01 5.07685505e-02 -9.23405349e-01 2.43037879e-01 -4.29937392e-01 7.64899015e-01 -1.13383397e-01 4.49517548e-01 -7.12173164e-01 -2.77051777e-01 8.57958317e-01 -2.53146499e-01 2.18445554e-01 2.78904557e-01 5.58584273e-01 8.49419832e-03 -2.56706268e-01 9.82452810e-01 2.21130505e-01 -2.14487225e-01 5.32565594e-01 1.67785585e-01 -1.06917985e-01 1.18191099e+00 1.17600247e-01 -5.02533078e-01 -3.44408929e-01 -1.46671280e-01 5.54305315e-02 1.64084226e-01 6.65664732e-01 7.42662311e-01 -1.44557095e+00 -7.20603228e-01 5.22587538e-01 -3.26811671e-01 -5.21987617e-01 1.34165734e-01 1.97747096e-01 -4.06234890e-01 3.19516599e-01 -3.43008518e-01 2.38907427e-01 -1.46369886e+00 7.14141965e-01 1.35885373e-01 -4.91616428e-01 -2.62108415e-01 9.88344908e-01 2.55439013e-01 -3.47489238e-01 4.09449220e-01 4.10982013e-01 -3.09898853e-01 -4.52291459e-01 7.06369996e-01 2.61998951e-01 -2.15911061e-01 -3.78734648e-01 -4.82094526e-01 5.01176238e-01 -3.64032686e-01 -7.52106085e-02 1.21134615e+00 2.99673676e-01 8.76851752e-02 -3.92538399e-01 1.23427987e+00 7.65383005e-01 -1.31904221e+00 -1.03005163e-01 -5.98764598e-01 -8.15575957e-01 -1.66602120e-01 -8.19792569e-01 -1.16214776e+00 7.74177432e-01 6.60446167e-01 4.46704298e-01 1.20971096e+00 -7.97170460e-01 1.02542937e+00 4.23056126e-01 3.85648757e-01 -7.25202322e-01 2.38743812e-01 3.32042903e-01 9.76646543e-01 -8.50275159e-01 1.10198945e-01 -2.41263494e-01 -4.96041238e-01 1.02177465e+00 7.88976967e-01 -5.58584750e-01 5.79384625e-01 4.29021209e-01 1.34844529e-02 3.48765403e-01 -3.38409454e-01 4.94422585e-01 4.76605535e-01 6.93595648e-01 -1.33513734e-01 -1.86145902e-02 -5.74350238e-01 6.85149550e-01 -2.35479549e-01 -9.85446632e-01 8.63811970e-02 9.75991249e-01 -2.47181892e-01 -1.69085622e+00 -5.65118551e-01 9.19538084e-03 -8.01999867e-01 3.21769603e-02 -6.85742736e-01 5.56237102e-01 1.29568338e-01 9.97133434e-01 -6.19223416e-01 -9.99972522e-01 4.43039417e-01 -3.61515462e-01 3.36996704e-01 -2.57446647e-01 -5.01664340e-01 -3.25464904e-01 -2.43869796e-01 -5.71793020e-01 4.02754575e-01 -1.08600490e-01 -9.45765495e-01 -4.89355445e-01 -4.23553944e-01 2.23060578e-01 8.75268519e-01 7.05793977e-01 1.65313363e-01 4.87265736e-01 1.61040854e+00 -6.54697001e-01 -1.41482913e+00 -7.46624708e-01 -2.36769319e-01 4.75707322e-01 1.42014012e-01 -6.68327570e-01 -7.17322469e-01 -5.43232918e-01]
[5.558252334594727, 7.914463520050049]
b60f468d-ddd9-4e53-b384-bb0f51cab2f1
the-challenges-of-htr-model-training-feedback
2212.11146
null
https://arxiv.org/abs/2212.11146v3
https://arxiv.org/pdf/2212.11146v3.pdf
The Challenges of HTR Model Training: Feedback from the Project Donner le gout de l'archive a l'ere numerique
The arrival of handwriting recognition technologies offers new possibilities for research in heritage studies. However, it is now necessary to reflect on the experiences and the practices developed by research teams. Our use of the Transkribus platform since 2018 has led us to search for the most significant ways to improve the performance of our handwritten text recognition (HTR) models which are made to transcribe French handwriting dating from the 17th century. This article therefore reports on the impacts of creating transcribing protocols, using the language model at full scale and determining the best way to use base models in order to help increase the performance of HTR models. Combining all of these elements can indeed increase the performance of a single model by more than 20% (reaching a Character Error Rate below 5%). This article also discusses some challenges regarding the collaborative nature of HTR platforms such as Transkribus and the way researchers can share their data generated in the process of creating or training handwritten text recognition models.
['Deslandres Dominique', 'Gohier Maxime', 'Verret Farah', 'Couture Beatrice']
2022-12-13
null
null
null
null
['handwriting-recognition']
['computer-vision']
[ 8.81064832e-02 -6.04729168e-02 4.69099171e-02 -2.97032654e-01 -7.79006481e-01 -8.55535567e-01 6.24288261e-01 -1.60721093e-01 -5.69280267e-01 3.70705068e-01 5.64587831e-01 -5.86327493e-01 -3.32736969e-03 -6.00650072e-01 -4.87791061e-01 -2.93287188e-01 5.59535921e-01 5.99282146e-01 -9.96867567e-02 -3.99430990e-01 7.74887264e-01 8.08801711e-01 -1.39126527e+00 5.04331231e-01 5.44172823e-01 1.81062281e-01 2.35349447e-01 9.18200850e-01 -2.50603765e-01 8.33931267e-01 -7.47656226e-01 -5.23180783e-01 1.57774299e-01 -1.55934945e-01 -9.37739611e-01 -1.07814997e-01 3.91206205e-01 -7.41197944e-01 -2.41858184e-01 3.42841417e-01 6.70528114e-01 -5.04867174e-02 2.52140403e-01 -4.49924618e-01 -8.41941059e-01 9.55400527e-01 -1.11352652e-01 9.03603733e-02 5.88401020e-01 2.04121545e-01 5.49925864e-01 -8.24254692e-01 9.16142523e-01 8.42468739e-01 9.06904578e-01 4.12364244e-01 -8.67518902e-01 -5.60601473e-01 -2.22620741e-01 -1.00134924e-01 -1.27879477e+00 -8.41528177e-01 2.56374657e-01 -5.16448438e-01 1.29395664e+00 3.39582831e-01 8.43958378e-01 1.14880228e+00 -1.03902556e-01 5.42849362e-01 1.16408360e+00 -9.19987023e-01 -2.12538108e-01 4.67632972e-02 2.05917209e-01 5.37905812e-01 1.15532629e-01 -2.43323132e-01 -8.50582421e-01 3.02111059e-02 8.33503723e-01 -5.16532183e-01 -1.69999957e-01 6.34918034e-01 -1.33259058e+00 2.88268685e-01 -9.54213738e-02 8.73500228e-01 2.44624615e-02 2.65595559e-02 3.60898435e-01 2.11351007e-01 2.43729070e-01 7.94160783e-01 -2.31033131e-01 -1.04209149e+00 -1.22280192e+00 -9.93467495e-02 8.72970402e-01 8.66303325e-01 5.03034234e-01 -1.67848587e-01 7.95966685e-02 1.13736761e+00 5.47701061e-01 4.49748725e-01 4.98675853e-01 -7.34744251e-01 4.75193113e-01 5.94582498e-01 1.58954766e-02 -8.14260721e-01 -3.20542566e-02 -7.23395590e-03 -1.13448620e-01 -2.95704380e-02 7.77849674e-01 -1.25673011e-01 -1.21795011e+00 5.50626159e-01 -1.50741756e-01 -3.05755705e-01 -2.00605884e-01 9.04218376e-01 5.98238766e-01 5.76052964e-01 -9.64967310e-02 2.93440580e-01 8.04593027e-01 -5.82072854e-01 -5.12017608e-01 -9.55025479e-02 8.92066658e-01 -1.30370057e+00 1.17587674e+00 5.94507456e-01 -8.04302514e-01 -2.94216543e-01 -1.15308750e+00 -3.74600440e-01 -2.55507648e-01 4.69735265e-01 5.82584381e-01 1.19506836e+00 -1.03063512e+00 6.45459890e-01 -1.06645298e+00 -6.53933406e-01 1.69342577e-01 3.15517187e-01 -5.37769616e-01 -3.36807489e-01 -5.48905432e-01 1.17110324e+00 1.04145981e-01 6.15682602e-01 -6.46506071e-01 -6.12211704e-01 -1.93935737e-01 -4.91549194e-01 2.60858219e-02 1.14657000e-01 1.07108176e+00 -6.73683167e-01 -1.59305084e+00 9.58097398e-01 -2.40288880e-02 8.75837505e-02 1.00854659e+00 -3.39615524e-01 -3.53099912e-01 -1.17091045e-01 -1.91534951e-01 1.54165044e-01 2.35769883e-01 -9.47966456e-01 -5.71295857e-01 -3.71266246e-01 -4.18126971e-01 -2.35341694e-02 -3.92035246e-01 4.33661729e-01 -4.85115141e-01 -4.74252343e-01 9.10819992e-02 -1.04040682e+00 3.41685265e-01 -3.23691964e-01 -6.14930084e-03 2.06100658e-01 7.17721879e-01 -1.47215378e+00 9.95863974e-01 -2.15644526e+00 -9.94649678e-02 2.99681485e-01 -2.44430587e-01 4.57103997e-01 -1.41106471e-01 9.76813912e-01 5.40175080e-01 5.40512383e-01 6.10985085e-02 -1.23748712e-01 -8.92653689e-02 3.65773022e-01 -4.48401958e-01 2.86918133e-01 -1.22645684e-01 6.30203068e-01 -6.76640987e-01 -1.26654282e-01 5.20361997e-02 7.55365193e-01 3.90771925e-02 -9.77023542e-02 9.53578353e-02 3.27155530e-01 -1.67132422e-01 8.96338284e-01 3.88529420e-01 2.56166577e-01 5.65375090e-01 2.30565414e-01 -7.45955050e-01 3.49161178e-01 -1.01015902e+00 1.32019746e+00 -5.70559382e-01 1.12552023e+00 -4.67526615e-02 -8.79608914e-02 1.41141999e+00 2.40991056e-01 1.19315185e-01 -4.43975687e-01 -2.52246261e-02 8.74541163e-01 8.07952508e-02 -6.19270504e-01 9.90942538e-01 -1.64580755e-02 4.24293786e-01 7.38974214e-01 1.09633300e-02 -7.05167130e-02 9.23016965e-02 -7.90495425e-02 9.16610479e-01 4.17792231e-01 -4.35584784e-01 -1.51458859e-01 1.13567874e-01 2.52144426e-01 9.10209119e-02 7.62407601e-01 1.23015873e-01 7.26121962e-01 1.60037652e-02 -4.36067045e-01 -1.47016001e+00 -3.37554067e-01 -4.16420847e-02 1.03959727e+00 -5.26664793e-01 -3.41425806e-01 -4.72967923e-01 -2.83142209e-01 -4.98818643e-02 6.45822823e-01 -5.05699635e-01 1.88932002e-01 -6.07358515e-01 -5.93360782e-01 1.31794703e+00 5.72526395e-01 6.87158346e-01 -7.43479490e-01 -5.69654107e-01 3.24009776e-01 -2.37497211e-01 -9.36388016e-01 -1.23787783e-01 -1.10641785e-01 -8.13855588e-01 -6.52268350e-01 -1.08672297e+00 -5.37412405e-01 5.36296487e-01 -4.79326537e-03 4.37733829e-01 4.16212618e-01 -3.62528235e-01 5.09360552e-01 -8.53213668e-01 -2.45591894e-01 -7.62285590e-01 5.16006291e-01 -2.97125578e-01 -2.39833072e-01 3.39096308e-01 -1.78853422e-01 1.23626582e-01 3.17854494e-01 -8.47912848e-01 1.35758415e-01 6.48604572e-01 5.11263967e-01 -5.82527183e-03 -4.34530705e-01 3.39850783e-01 -6.83157206e-01 7.62832344e-01 7.82052502e-02 -2.45952412e-01 9.30921853e-01 -5.99442601e-01 -2.60449857e-01 1.36069283e-01 -4.50595498e-01 -1.17080426e+00 -6.41942248e-02 -1.02807149e-01 1.82476580e-01 -3.93211134e-02 7.66250432e-01 3.47908020e-01 -4.84797210e-01 6.72591984e-01 3.20522875e-01 2.24517435e-02 -5.84330857e-01 8.13706964e-02 1.38319540e+00 3.40546876e-01 -8.44300091e-01 2.46174887e-01 2.27326512e-01 -4.83421832e-01 -1.44078290e+00 1.09190539e-01 -2.01045603e-01 -9.16010141e-01 -7.41112947e-01 3.42624843e-01 -6.76422119e-01 -5.23334444e-01 1.01647425e+00 -8.35553348e-01 -8.86673748e-01 1.29874110e-01 5.72077096e-01 -1.49687812e-01 4.28123087e-01 -7.38720119e-01 -1.07340741e+00 -1.71525687e-01 -9.93821084e-01 1.01785505e+00 2.58152694e-01 -3.38858634e-01 -7.09364295e-01 1.99665964e-01 9.03104186e-01 5.63441336e-01 9.24090156e-04 7.00040460e-01 -3.24559718e-01 -4.54405516e-01 -4.15642291e-01 -9.48257670e-02 1.90946773e-01 1.37540698e-01 7.95766532e-01 -9.11511779e-01 -1.83211848e-01 -3.95705491e-01 -1.91803917e-01 4.47275698e-01 -3.31997424e-01 4.04714882e-01 -6.68316558e-02 -7.63165504e-02 2.25853533e-01 1.32798886e+00 3.41573715e-01 1.06928563e+00 7.23852873e-01 7.12301850e-01 5.13811052e-01 3.26822370e-01 1.94659308e-01 3.37768793e-01 4.47382122e-01 -3.72631609e-01 3.65848780e-01 -1.94534764e-01 -3.75620186e-01 4.91838366e-01 1.15336239e+00 -7.69514382e-01 4.17853966e-02 -1.81504214e+00 5.59606493e-01 -1.60309267e+00 -7.01928556e-01 -4.25907969e-01 2.09804845e+00 8.33914101e-01 -2.51485676e-01 3.64583619e-02 1.35799736e-01 5.07411659e-01 -2.73449391e-01 -3.97298224e-02 -6.74925923e-01 -2.32071579e-01 1.33477062e-01 6.82586908e-01 5.66849649e-01 -4.49773431e-01 1.15055585e+00 7.43061876e+00 2.82998025e-01 -1.52253199e+00 -2.98304379e-01 3.80263597e-01 -1.02506997e-03 -2.95136005e-01 1.97426111e-01 -9.60580349e-01 3.36722404e-01 1.05493164e+00 -6.63872734e-02 7.84914494e-01 3.70746851e-01 2.47089058e-01 -3.96748275e-01 -7.44520545e-01 7.14501023e-01 2.94404477e-01 -1.47191072e+00 3.58325280e-02 2.18613923e-01 4.90737379e-01 2.06581309e-01 -2.49902025e-01 -8.08559582e-02 4.16764677e-01 -1.24521875e+00 8.63650382e-01 9.94982123e-01 8.25902402e-01 -4.69496191e-01 6.81933463e-01 1.85606420e-01 -5.68950415e-01 7.60515705e-02 -2.47672230e-01 -2.31621176e-01 4.49690260e-02 2.71780550e-01 -1.41930842e+00 5.17081499e-01 6.29141748e-01 6.30519509e-01 -8.63762200e-01 9.92191374e-01 -8.48863125e-02 9.36947763e-01 -5.82741201e-01 -2.69381315e-01 1.19079553e-01 -1.94429621e-01 6.53369352e-02 1.39575720e+00 5.31250596e-01 1.44429535e-01 -3.68975997e-01 3.63981694e-01 8.68559480e-02 1.50409579e-01 -4.05282378e-01 -6.46065831e-01 5.19413769e-01 9.55523133e-01 -1.02797925e+00 3.24972831e-02 -1.45862356e-01 9.64752972e-01 1.34591982e-01 1.00917749e-01 -2.68378794e-01 -4.81384397e-01 5.66955432e-02 3.72729957e-01 7.41398633e-02 -8.88819337e-01 -5.52343667e-01 -1.02391303e+00 1.27531961e-01 -1.31202173e+00 -1.11119688e-01 -9.31445181e-01 -8.33675861e-01 2.66130596e-01 -3.71736616e-01 -4.70957160e-01 5.74446358e-02 -6.91116095e-01 -1.45146310e-01 1.01582754e+00 -8.73178720e-01 -1.59102905e+00 -3.24084669e-01 4.74283509e-02 2.23739892e-01 -1.48181304e-01 8.41035604e-01 3.49446565e-01 -4.64223951e-01 4.86044616e-01 3.96292418e-01 4.67187047e-01 7.90553868e-01 -7.24017501e-01 4.75749195e-01 7.51469731e-01 3.02485466e-01 9.64520335e-01 3.49722564e-01 -1.06178617e+00 -1.75286317e+00 -3.19149524e-01 1.03539348e+00 -7.25641310e-01 6.03876472e-01 -3.59822810e-01 -6.94016099e-01 9.79496598e-01 -3.70699391e-02 -8.35381031e-01 8.44396889e-01 2.72060543e-01 -2.33637810e-01 1.06880121e-01 -9.71851826e-01 7.41194367e-01 8.93497467e-01 -9.11281347e-01 -5.16052306e-01 8.97955224e-02 -1.40465915e-01 -4.51228499e-01 -1.18963778e+00 2.68173702e-02 1.26530492e+00 -6.58660054e-01 2.44768977e-01 -2.99154133e-01 6.35442913e-01 -2.95195013e-01 -1.68059498e-01 -9.86945331e-01 -3.59112248e-02 -7.50777125e-01 4.70180899e-01 1.68764639e+00 6.30671978e-01 -7.07128704e-01 7.58022010e-01 1.19139624e+00 -6.07409589e-02 -2.73760706e-01 -9.29543376e-01 -5.22835970e-01 1.71960711e-01 -5.65826952e-01 5.35406709e-01 1.04749537e+00 2.42918894e-01 -1.86262891e-01 -3.43554527e-01 -1.01913579e-01 8.91824812e-02 -4.56472695e-01 9.98559594e-01 -8.73078942e-01 -1.15547821e-01 -2.61164933e-01 -5.64527094e-01 -7.45447993e-01 -4.60659564e-01 -8.47849786e-01 -2.55776793e-02 -1.68768275e+00 -4.55931798e-02 -5.80070555e-01 5.05341232e-01 8.18783820e-01 3.74608755e-01 3.46375495e-01 6.84096396e-01 7.23834097e-01 2.09826216e-01 -1.01739027e-01 9.62554932e-01 5.74535318e-02 -2.24826261e-01 -4.97263998e-01 -6.38664842e-01 2.27466017e-01 7.36794889e-01 -1.35957941e-01 5.65372668e-02 -1.01904261e+00 5.36628127e-01 -3.30836177e-01 7.44844601e-02 -1.02087927e+00 5.60591459e-01 -9.59743280e-03 5.09595752e-01 -2.38917261e-01 8.28931257e-02 -5.87005317e-01 6.66860342e-01 2.07495645e-01 -4.10447389e-01 -6.15012459e-03 4.36592877e-01 -1.03683211e-01 5.88984601e-02 -5.16414523e-01 2.69592732e-01 -2.44035020e-01 -5.62346399e-01 -6.01827681e-01 -8.68086874e-01 -5.12698412e-01 7.92769790e-01 -5.90706885e-01 -6.25582635e-01 -2.45082989e-01 -6.85213625e-01 5.26800146e-03 7.42297232e-01 4.83366162e-01 3.62593889e-01 -6.55151367e-01 -6.59287572e-01 1.50630251e-01 -1.02735884e-01 -3.80824447e-01 1.09392121e-01 6.46787405e-01 -1.40208590e+00 4.27567750e-01 -6.13156676e-01 -1.99826121e-01 -1.38663304e+00 -3.37021858e-01 3.97090912e-01 -6.00552745e-02 -6.78672016e-01 5.47768652e-01 -1.15872598e+00 -4.65329587e-01 3.64858061e-02 -1.79962032e-02 -4.13355790e-02 1.59969822e-01 5.52715123e-01 8.35592210e-01 4.25424576e-01 -5.85345089e-01 -2.86534846e-01 5.04142284e-01 -3.58744442e-01 -8.51903617e-01 1.65468931e+00 1.90864146e-01 -3.31841320e-01 7.18782723e-01 6.90065682e-01 3.66336972e-01 -9.65573132e-01 4.98019874e-01 2.10207865e-01 -7.02364802e-01 -4.49762866e-02 -1.38237977e+00 -6.03964031e-01 6.09460533e-01 4.28670317e-01 -3.16221491e-02 6.45476103e-01 -3.46503019e-01 4.96045828e-01 6.61312461e-01 5.37211597e-01 -1.52124202e+00 -3.87316674e-01 7.37247288e-01 9.92567301e-01 -5.94425082e-01 1.30657539e-01 -1.38218001e-01 -5.82477927e-01 1.80728519e+00 1.60639808e-01 1.70738980e-01 3.87864202e-01 5.00669539e-01 6.05507612e-01 5.93525171e-03 -3.12004447e-01 2.09923446e-01 -1.81795076e-01 5.93019485e-01 8.49244058e-01 8.39301646e-02 -7.14128137e-01 1.24073774e-01 -3.77621114e-01 5.73042750e-01 1.01713085e+00 1.22334445e+00 -1.97169080e-01 -1.55806088e+00 -6.44530475e-01 4.92619246e-01 -4.45377946e-01 1.06445663e-01 -1.03591931e+00 6.87978029e-01 -1.47787482e-01 9.40205991e-01 -2.12366834e-01 -6.30210161e-01 2.57933378e-01 4.01591480e-01 5.51824927e-01 -4.38229680e-01 -1.05670094e+00 -1.73526421e-01 5.43464184e-01 9.51144695e-02 -3.44866395e-01 -8.85508955e-01 -8.60189378e-01 -7.08535433e-01 -3.31672639e-01 -4.38372232e-02 1.20803821e+00 9.29459631e-01 3.73979479e-01 2.11295933e-02 -3.39883030e-03 -7.83726335e-01 -3.98823351e-01 -1.04045963e+00 -4.40464109e-01 -2.38224417e-01 -1.39163077e-01 -2.00874154e-02 -3.04096080e-02 2.86396891e-01]
[11.838233947753906, 2.5776703357696533]
6ba718b7-df97-4427-b461-bb371b436660
from-unsupervised-to-few-shot-graph-anomaly
2202.05525
null
https://arxiv.org/abs/2202.05525v1
https://arxiv.org/pdf/2202.05525v1.pdf
From Unsupervised to Few-shot Graph Anomaly Detection: A Multi-scale Contrastive Learning Approach
Anomaly detection from graph data is an important data mining task in many applications such as social networks, finance, and e-commerce. Existing efforts in graph anomaly detection typically only consider the information in a single scale (view), thus inevitably limiting their capability in capturing anomalous patterns in complex graph data. To address this limitation, we propose a novel framework, graph ANomaly dEtection framework with Multi-scale cONtrastive lEarning (ANEMONE in short). By using a graph neural network as a backbone to encode the information from multiple graph scales (views), we learn better representation for nodes in a graph. In maximizing the agreements between instances at both the patch and context levels concurrently, we estimate the anomaly score of each node with a statistical anomaly estimator according to the degree of agreement from multiple perspectives. To further exploit a handful of ground-truth anomalies (few-shot anomalies) that may be collected in real-life applications, we further propose an extended algorithm, ANEMONE-FS, to integrate valuable information in our method. We conduct extensive experiments under purely unsupervised settings and few-shot anomaly detection settings, and we demonstrate that the proposed method ANEMONE and its variant ANEMONE-FS consistently outperform state-of-the-art algorithms on six benchmark datasets.
['Yi-Ping Phoebe Chen', 'Shirui Pan', 'Khoa T. Phan', 'Lianhua Chi', 'Yixin Liu', 'Ming Jin', 'Yu Zheng']
2022-02-11
null
null
null
null
['graph-anomaly-detection']
['graphs']
[ 1.14858367e-01 -5.43899238e-02 -2.94846799e-02 -3.93089920e-01 -2.39020914e-01 -3.03240627e-01 3.86457741e-01 7.41466939e-01 9.69241709e-02 1.91370174e-01 -5.76447807e-02 -1.85707286e-01 -2.56625891e-01 -1.10723984e+00 -5.09382367e-01 -5.54554462e-01 -4.32264626e-01 3.02537590e-01 3.87038767e-01 -2.76990950e-01 2.51935840e-01 5.51690757e-01 -1.19842696e+00 4.90395054e-02 1.16765881e+00 1.05944896e+00 -7.02526987e-01 4.17721152e-01 -3.49866271e-01 7.82553792e-01 -4.98751581e-01 -5.64000607e-01 4.50032920e-01 -3.58932704e-01 -5.11232615e-01 4.71410304e-01 5.65538883e-01 -1.77003026e-01 -4.30038422e-01 1.43767834e+00 9.12665501e-02 1.94603652e-01 5.63068569e-01 -1.70948958e+00 -4.78426158e-01 3.29121947e-01 -1.09457934e+00 7.09138870e-01 2.03389958e-01 1.98317945e-01 1.37166059e+00 -6.84373081e-01 3.68785709e-01 1.01917410e+00 6.37615025e-01 1.47935361e-01 -1.19744134e+00 -4.09147263e-01 7.91330040e-01 2.41308391e-01 -1.08964968e+00 -1.55744419e-01 1.21544504e+00 -3.35586965e-01 7.29880512e-01 2.82562196e-01 6.19500577e-01 9.09371436e-01 2.51242250e-01 7.19174027e-01 6.23341858e-01 -5.06219082e-02 3.47368896e-01 -4.23862725e-01 3.34816217e-01 9.79986250e-01 6.69867039e-01 -1.88279897e-01 -5.30411899e-01 -5.95050275e-01 4.72857893e-01 6.23249114e-01 7.76763633e-02 -6.37805164e-01 -8.26121628e-01 9.48339522e-01 6.00937426e-01 1.66488722e-01 -6.00852191e-01 -1.48237228e-01 7.16872752e-01 8.50024283e-01 8.54249597e-01 3.88534069e-01 -2.35932022e-01 1.76672846e-01 -4.83225852e-01 1.07423685e-01 7.55775094e-01 6.84180021e-01 8.05148363e-01 3.67485613e-01 3.38633992e-02 8.02128911e-01 3.71432245e-01 -1.84791838e-03 2.61559933e-01 -3.45162004e-01 4.15181071e-01 1.25599313e+00 -4.94411141e-01 -1.41389477e+00 -3.28308612e-01 -6.29082263e-01 -1.20524693e+00 -9.34888236e-03 2.90429682e-01 6.74181953e-02 -9.41834688e-01 1.46179295e+00 6.33871257e-01 6.20440304e-01 -2.79933542e-01 5.98300219e-01 5.88058472e-01 2.94906318e-01 -4.98352461e-02 -3.66237402e-01 9.14955854e-01 -8.92024875e-01 -5.67789853e-01 -3.55869412e-01 9.24202859e-01 -2.41480708e-01 9.99394417e-01 3.56014371e-01 -4.32708770e-01 -1.11951254e-01 -1.05626059e+00 6.05882227e-01 -5.02974331e-01 -6.24492228e-01 6.64598227e-01 3.22536260e-01 -6.88110292e-01 8.94352973e-01 -9.30446088e-01 -4.72103804e-01 6.48373604e-01 -2.48603038e-02 -5.16572714e-01 -1.35888964e-01 -9.13252652e-01 3.51692915e-01 2.87691265e-01 -3.90931815e-02 -7.09734619e-01 -4.32209611e-01 -1.08121765e+00 1.29813522e-01 1.05537224e+00 -3.19628894e-01 6.89760447e-01 -8.89743626e-01 -6.89026833e-01 7.40091205e-01 1.09342724e-01 -4.70778316e-01 2.28399739e-01 -1.14943832e-01 -1.08715570e+00 4.23048884e-02 2.39688247e-01 -3.11181456e-01 1.00313103e+00 -1.09481502e+00 -5.49680650e-01 -8.22775900e-01 -1.24489710e-01 -1.90712065e-02 -5.88891625e-01 -1.31284207e-01 -1.86285168e-01 -9.15391386e-01 5.21505773e-01 -6.11317694e-01 -4.20919418e-01 -6.38690516e-02 -6.40898824e-01 -3.26025039e-01 1.15113688e+00 -5.01827776e-01 1.54401565e+00 -2.17735863e+00 -1.94659736e-02 8.16380501e-01 8.98479223e-01 2.08253086e-01 -2.72745997e-01 4.78229910e-01 -1.83709249e-01 6.80793673e-02 -6.28534913e-01 -1.13203906e-01 -1.94281846e-01 5.43286562e-01 -1.75501987e-01 6.06292903e-01 3.93457711e-01 6.86940372e-01 -1.13654113e+00 -3.52880985e-01 2.21905543e-06 -2.51301527e-01 -5.74588060e-01 3.71770829e-01 -1.10300004e-01 3.02858263e-01 -6.55997574e-01 1.20165002e+00 5.34421086e-01 -5.11952460e-01 5.38664795e-02 2.04891309e-01 4.28558171e-01 -3.03114682e-01 -1.21034586e+00 1.54909647e+00 8.75839498e-03 1.78083941e-01 -1.49198487e-01 -1.51660037e+00 1.04647648e+00 3.71533483e-02 7.93055534e-01 -5.93997061e-01 -3.11846614e-01 2.75928944e-01 2.57794261e-01 -3.55251133e-01 2.19027579e-01 2.49176443e-01 -1.57741923e-02 6.38503850e-01 1.98415443e-01 4.84109491e-01 4.07957673e-01 6.67287469e-01 1.85059106e+00 -4.09804761e-01 6.25240922e-01 -2.30722930e-02 6.15510702e-01 -3.31335485e-01 7.06159890e-01 9.69545662e-01 -5.50910890e-01 4.12600070e-01 1.12832379e+00 -9.23269093e-01 -8.40355575e-01 -1.10899925e+00 2.40230992e-01 1.19712901e+00 2.33390518e-02 -8.06656778e-01 -3.01057637e-01 -1.48614395e+00 3.05515975e-01 4.18137819e-01 -5.64659476e-01 -5.10622501e-01 -4.61987913e-01 -8.39349091e-01 2.03075930e-01 3.34979296e-01 2.66270906e-01 -1.20828950e+00 1.37846068e-01 1.98630378e-01 5.62272780e-02 -1.15599072e+00 -4.50531006e-01 -4.41855118e-02 -1.07692850e+00 -1.35675037e+00 9.11696553e-02 -3.22990477e-01 8.52202654e-01 3.57596666e-01 1.38968718e+00 4.85346258e-01 -4.40906614e-01 4.40203905e-01 -5.21966338e-01 -2.79021263e-01 -3.87471586e-01 3.20938043e-02 2.07446814e-01 5.39026439e-01 5.95404625e-01 -1.05168676e+00 -5.57529032e-01 1.57607585e-01 -1.06304264e+00 -6.46670699e-01 6.14433169e-01 7.92931736e-01 6.29751980e-01 3.28097492e-02 8.71016979e-01 -1.35827816e+00 8.36089730e-01 -1.06311202e+00 -5.11622667e-01 1.45952031e-01 -1.11637032e+00 1.33569790e-02 7.71017075e-01 -8.81262347e-02 -4.35276449e-01 -3.90460193e-01 3.50871533e-02 -7.24341393e-01 -2.50769049e-01 7.37578154e-01 -5.46547733e-02 -9.89526361e-02 7.39577770e-01 2.11481169e-01 1.41172558e-01 -3.36065382e-01 1.66449159e-01 1.69251248e-01 5.23909390e-01 -4.36420441e-01 9.96840417e-01 3.06224197e-01 3.29126805e-01 -7.68626809e-01 -8.74387920e-01 -8.54180098e-01 -6.19717360e-01 -2.75355786e-01 2.87570626e-01 -6.96679473e-01 -2.65328258e-01 4.57672536e-01 -6.23472512e-01 2.68010408e-01 -3.52774888e-01 -8.15357640e-02 -6.72139227e-02 7.87582695e-01 -3.52843165e-01 -7.09171414e-01 -4.12614286e-01 -6.14740372e-01 9.43450570e-01 -2.65056472e-02 -1.15044750e-02 -1.16241169e+00 3.11073244e-01 -6.46893531e-02 2.35844135e-01 7.92952240e-01 9.00621235e-01 -1.50349581e+00 -4.66530174e-01 -6.11334026e-01 -2.75707752e-01 2.13215008e-01 4.62479293e-01 -4.14485447e-02 -7.06795692e-01 -5.63122392e-01 -1.88437879e-01 -1.01194561e-01 9.14515555e-01 2.40532774e-02 1.63328314e+00 -5.01920223e-01 -2.72042602e-01 5.15733004e-01 1.41508043e+00 -2.32199609e-01 3.95023316e-01 1.35096014e-01 1.25109053e+00 3.91691267e-01 4.76800472e-01 6.48826838e-01 1.93471074e-01 3.47605556e-01 8.69363368e-01 6.53573021e-04 4.27437276e-01 -2.76010543e-01 3.06279629e-01 9.11537766e-01 -1.69309005e-01 -2.37233520e-01 -9.60963488e-01 5.54129541e-01 -2.23073483e+00 -9.18554068e-01 -2.00737379e-02 2.13147068e+00 6.85360357e-02 4.60151076e-01 5.06994247e-01 1.03303872e-01 8.63940179e-01 6.45002186e-01 -8.25789750e-01 -3.51539224e-01 1.21363126e-01 -5.72126284e-02 1.31091729e-01 4.85091358e-02 -1.14494169e+00 6.27630770e-01 5.51792288e+00 6.14641726e-01 -8.16070080e-01 -1.56346723e-01 6.20761693e-01 1.21063441e-01 -3.40529203e-01 1.06336765e-01 -7.34531209e-02 4.65969622e-01 8.69819343e-01 -2.29782730e-01 4.54625100e-01 1.02621067e+00 -1.66435331e-01 2.74108678e-01 -1.11449981e+00 7.92503297e-01 1.38967991e-01 -1.02536583e+00 2.72288144e-01 3.08201760e-01 6.62900686e-01 2.06958905e-01 -1.76531270e-01 3.84602249e-01 2.67441869e-01 -7.75954664e-01 -1.52070582e-01 4.82994050e-01 3.54241878e-01 -7.39858985e-01 7.39373446e-01 2.87029266e-01 -1.40642011e+00 -2.35923290e-01 -1.95751294e-01 2.99468841e-02 -1.16291329e-01 9.73365605e-01 -6.69146895e-01 9.21867967e-01 6.98804677e-01 1.20750165e+00 -9.40792680e-01 8.69883776e-01 2.17671432e-02 7.20234513e-01 -2.48344392e-01 3.58216971e-01 2.93321699e-01 -5.18984914e-01 1.07385969e+00 7.42652655e-01 2.72554696e-01 -8.45328346e-02 5.67121744e-01 6.75994635e-01 -2.86401540e-01 2.72556126e-01 -1.13610411e+00 -2.24737942e-01 4.24481332e-01 1.54196692e+00 -8.64893973e-01 -1.95238009e-01 -8.29819500e-01 8.79155159e-01 6.02833331e-01 2.45223701e-01 -4.72896636e-01 -4.25010562e-01 7.00507998e-01 1.30212232e-01 4.51589860e-02 4.78662811e-02 3.03565077e-02 -1.51406276e+00 3.58162075e-01 -1.09429049e+00 1.14958107e+00 -7.97304288e-02 -2.00176501e+00 5.34465611e-01 -2.39413798e-01 -1.55397069e+00 -3.05074722e-01 -6.25777781e-01 -1.31117344e+00 2.65083283e-01 -1.20389962e+00 -1.12621808e+00 -5.59442878e-01 7.88764238e-01 4.26923215e-01 -6.36139512e-01 7.24111140e-01 1.86544746e-01 -9.07569885e-01 6.78036928e-01 -1.07886247e-01 3.83316994e-01 6.83673203e-01 -1.54838276e+00 8.61772835e-01 1.34633565e+00 5.86236835e-01 3.08042884e-01 5.29895842e-01 -8.58436644e-01 -1.18267763e+00 -1.25417697e+00 1.74105123e-01 -3.32410723e-01 9.96343851e-01 -1.71486020e-01 -1.47960961e+00 8.19043517e-01 -2.62883246e-01 9.02204454e-01 6.77657306e-01 5.46742380e-01 -4.86001641e-01 -3.14174086e-01 -1.24983466e+00 5.38558662e-01 1.40841281e+00 -4.72212434e-01 -2.60513693e-01 2.38893300e-01 7.03006923e-01 -1.52960733e-01 -8.50967050e-01 6.26819909e-01 1.04716286e-01 -1.17487741e+00 6.91176236e-01 -1.09318602e+00 2.95477390e-01 -1.58566639e-01 -9.69270915e-02 -1.62564611e+00 -2.80089468e-01 -5.36950946e-01 -9.17656898e-01 1.15130544e+00 1.73405215e-01 -1.08927715e+00 8.21134090e-01 2.69139498e-01 -1.91569671e-01 -8.51009011e-01 -8.22124422e-01 -6.47681117e-01 -4.91526455e-01 -3.05058241e-01 7.85301030e-01 1.27481759e+00 -8.13721865e-02 1.06553428e-01 -4.14025515e-01 4.80015755e-01 9.27045524e-01 1.45343170e-01 8.88820469e-01 -1.84352291e+00 -1.45016149e-01 -3.26432407e-01 -1.00637901e+00 -3.44150007e-01 1.26672596e-01 -1.04140794e+00 -3.88152480e-01 -1.12247574e+00 1.59714729e-01 -1.98357031e-01 -8.67781222e-01 3.82864684e-01 -5.50097406e-01 3.29249427e-02 -3.45208615e-01 2.43612185e-01 -1.00103664e+00 5.73636651e-01 8.92311096e-01 -1.17850877e-01 -4.95336130e-02 1.79893762e-01 -8.11604559e-01 9.99382854e-01 6.34023130e-01 -4.82540131e-01 -3.52437556e-01 1.37367368e-01 2.90842026e-01 -1.15816258e-01 3.03589374e-01 -9.77796018e-01 1.71861082e-01 -1.35891929e-01 3.31406713e-01 -3.97261947e-01 -3.55030924e-01 -8.34184170e-01 -2.46217728e-01 3.31419468e-01 -1.81408212e-01 4.75279868e-01 -1.31242767e-01 1.29124570e+00 -4.63735431e-01 8.12952667e-02 5.28200924e-01 -1.10912710e-01 -9.92849171e-01 1.14266145e+00 1.59956247e-01 3.34104121e-01 9.70484197e-01 5.03852777e-02 -4.81546015e-01 -4.31532651e-01 -7.66448796e-01 5.15010774e-01 3.65682930e-01 5.70057094e-01 8.06902468e-01 -1.69924641e+00 -6.57951772e-01 5.95543623e-01 8.19288135e-01 1.20268531e-01 3.61429363e-01 8.16326618e-01 -3.05141300e-01 -3.79107505e-01 -2.89436281e-01 -7.41992652e-01 -1.03513062e+00 6.19198918e-01 2.31038451e-01 -6.94794059e-01 -8.97841871e-01 3.71920288e-01 8.13734829e-02 -5.08783937e-01 1.92728601e-02 1.15336038e-01 -2.53750175e-01 -6.78017884e-02 3.14556956e-01 4.63299036e-01 1.90118462e-01 -3.90208572e-01 -2.59193778e-01 1.74328968e-01 -4.74275172e-01 5.06159425e-01 1.32196712e+00 -7.61538222e-02 -3.94169360e-01 5.58873713e-01 8.13431323e-01 5.68910316e-02 -9.38918233e-01 -7.17677414e-01 3.89669150e-01 -7.95803070e-01 -2.77744144e-01 -2.47961670e-01 -1.31430089e+00 4.74859148e-01 3.93592834e-01 8.40079725e-01 1.19910550e+00 1.60534345e-02 7.58219719e-01 5.89783609e-01 5.87281920e-02 -1.06657314e+00 5.78440726e-01 2.23408729e-01 7.27053761e-01 -1.71825612e+00 1.22567907e-01 -4.08210486e-01 -7.00816631e-01 9.99556720e-01 1.16501069e+00 -3.73558819e-01 7.19214439e-01 -2.41322890e-01 -1.29182324e-01 -7.86338031e-01 -6.97646677e-01 -1.00482635e-01 5.15643656e-01 5.02968848e-01 4.66706865e-02 7.60459155e-02 6.68275952e-02 3.73177707e-01 3.40068489e-01 -7.05258489e-01 5.34120381e-01 8.73389959e-01 -5.05336404e-01 -8.76600087e-01 -3.13778631e-02 1.25323606e+00 -5.55710733e-01 1.58941627e-01 -5.07978439e-01 5.88436246e-01 -3.10608864e-01 7.37174451e-01 2.13404536e-01 -4.69024420e-01 4.05326724e-01 1.34735316e-01 -6.46337867e-02 -6.49229646e-01 -2.03099474e-01 -1.90961152e-01 2.46241456e-03 -9.37819541e-01 -1.08583309e-01 -4.20825958e-01 -8.69407892e-01 -4.28716838e-01 -2.78968960e-01 1.93597283e-02 7.18102157e-02 1.06821907e+00 5.55861652e-01 7.82056987e-01 1.05098808e+00 -2.61654794e-01 -5.85959733e-01 -9.82875347e-01 -1.03812706e+00 8.69815946e-01 4.82649088e-01 -6.27914131e-01 -6.63303018e-01 -6.24578714e-01]
[6.618313312530518, 5.759117603302002]
2c79fd3b-87ec-4f55-9912-fd543194e776
image-provenance-analysis-at-scale
1801.06510
null
http://arxiv.org/abs/1801.06510v2
http://arxiv.org/pdf/1801.06510v2.pdf
Image Provenance Analysis at Scale
Prior art has shown it is possible to estimate, through image processing and computer vision techniques, the types and parameters of transformations that have been applied to the content of individual images to obtain new images. Given a large corpus of images and a query image, an interesting further step is to retrieve the set of original images whose content is present in the query image, as well as the detailed sequences of transformations that yield the query image given the original images. This is a problem that recently has received the name of image provenance analysis. In these times of public media manipulation ( e.g., fake news and meme sharing), obtaining the history of image transformations is relevant for fact checking and authorship verification, among many other applications. This article presents an end-to-end processing pipeline for image provenance analysis, which works at real-world scale. It employs a cutting-edge image filtering solution that is custom-tailored for the problem at hand, as well as novel techniques for obtaining the provenance graph that expresses how the images, as nodes, are ancestrally connected. A comprehensive set of experiments for each stage of the pipeline is provided, comparing the proposed solution with state-of-the-art results, employing previously published datasets. In addition, this work introduces a new dataset of real-world provenance cases from the social media site Reddit, along with baseline results.
['Michael Parowski', 'Walter J. Scheirer', 'Kevin W. Bowyer', 'Joel Brogan', 'Daniel Moreira', 'Anderson Rocha', 'Allan Pinto', 'Patrick J. Flynn', 'Aparna Bharati']
2018-01-19
null
null
null
null
['authorship-verification']
['natural-language-processing']
[ 6.52554214e-01 -5.36229461e-02 1.43359080e-01 -2.08300039e-01 -5.42555928e-01 -8.95952225e-01 9.50085342e-01 6.91469550e-01 -6.00423634e-01 3.33388776e-01 4.49254662e-02 -1.03342846e-01 1.40786514e-01 -7.93492377e-01 -1.00263453e+00 -5.34362853e-01 -1.59022987e-01 2.97011018e-01 5.88268936e-01 -1.01905540e-01 5.58975101e-01 4.53404218e-01 -1.75231123e+00 5.49215436e-01 4.05598313e-01 8.09796154e-01 -1.10147893e-01 8.79252791e-01 -7.36309821e-03 9.09066260e-01 -6.20759130e-01 -1.09092057e+00 2.43266508e-01 -3.59467775e-01 -1.06928062e+00 1.57689214e-01 9.09524620e-01 -3.49533945e-01 -3.36123914e-01 1.19102156e+00 1.17038257e-01 -1.76807344e-01 4.70261127e-01 -1.40710592e+00 -7.10520089e-01 6.56360686e-01 -6.42493844e-01 3.78038049e-01 3.57986450e-01 2.99274921e-01 6.89257264e-01 -6.92039251e-01 1.41610324e+00 9.35491025e-01 5.58386445e-01 4.55025546e-02 -1.00114930e+00 -3.08561057e-01 -4.04017061e-01 4.65402722e-01 -1.29783988e+00 -5.36597490e-01 4.13675278e-01 -7.07327724e-01 5.45251548e-01 2.48536140e-01 6.69842482e-01 7.97143042e-01 1.14171609e-01 5.67939878e-01 1.16625106e+00 -5.25553763e-01 2.38129571e-01 4.39755976e-01 1.43166542e-01 6.85918689e-01 2.78281063e-01 -7.07368478e-02 -8.37522149e-01 -3.37650061e-01 1.83412194e-01 -2.14078635e-01 -3.29025030e-01 -2.91587979e-01 -1.27260470e+00 3.80460531e-01 4.98833954e-01 1.11164689e-01 -5.77566445e-01 3.38332355e-01 4.33995634e-01 1.48412377e-01 5.07904410e-01 1.92878276e-01 -1.03818893e-01 4.92156669e-02 -1.38150883e+00 3.66307795e-01 6.54947579e-01 9.05510962e-01 1.03001821e+00 -4.95099336e-01 -1.79594189e-01 9.17718485e-02 1.58787787e-01 3.25174600e-01 -6.54686540e-02 -8.33357573e-01 3.42299819e-01 7.02666461e-01 1.45738810e-01 -1.30941010e+00 2.78278202e-01 -1.01484850e-01 -5.40449440e-01 3.86427730e-01 6.92805529e-01 5.27621090e-01 -8.81124318e-01 1.28624284e+00 7.79657483e-01 4.13231820e-01 -9.18770358e-02 8.29440534e-01 5.13963342e-01 4.64259595e-01 -4.89192791e-02 -2.70951260e-02 1.80318213e+00 -6.15075648e-01 -5.52569091e-01 -5.18642180e-02 2.49619320e-01 -9.03007925e-01 8.06502521e-01 3.82981449e-01 -9.84911382e-01 -2.70069152e-01 -1.04735851e+00 -2.44614303e-01 -6.23398244e-01 -1.55403614e-01 2.64780492e-01 7.89863229e-01 -1.02282739e+00 7.66325831e-01 -4.60440546e-01 -7.32209325e-01 7.76652277e-01 2.89145811e-03 -4.89276141e-01 -1.44861504e-01 -1.01811182e+00 6.32140875e-01 5.94765484e-01 -6.52410910e-02 -8.98704588e-01 -8.98266435e-01 -4.46914554e-01 -2.85061836e-01 6.61513805e-01 -5.73265016e-01 1.01530957e+00 -1.16454315e+00 -8.44392478e-01 1.46968567e+00 -9.12958458e-02 -6.67320549e-01 8.55571270e-01 -5.34595363e-02 -4.04267907e-01 5.55145264e-01 2.10070267e-01 4.97982651e-01 1.29566503e+00 -1.38296020e+00 -9.86048400e-01 -5.13417900e-01 -4.12419885e-02 -3.30171287e-01 -3.39834750e-01 4.01709408e-01 -9.03792560e-01 -6.05480134e-01 -2.19632477e-01 -1.01134181e+00 2.00954005e-01 4.58729088e-01 -3.23734194e-01 2.19573557e-01 7.67902315e-01 -1.17985284e+00 1.14420283e+00 -2.34375882e+00 -3.32592130e-02 4.29886490e-01 3.59537333e-01 2.56489456e-01 1.60007644e-02 6.59241736e-01 1.51692824e-02 5.42032480e-01 -6.64771318e-01 -3.74218076e-01 -2.89125085e-01 6.99924976e-02 -5.63595772e-01 8.08386445e-01 1.91264421e-01 8.10301781e-01 -1.13953125e+00 -7.37529635e-01 -4.24154140e-02 2.68651187e-01 -1.21206202e-01 1.47557169e-01 -3.86687815e-01 4.53183770e-01 5.68988780e-03 6.27700150e-01 8.29671741e-01 -1.75302878e-01 3.18772509e-03 -3.69734854e-01 -1.51696682e-01 -2.66674221e-01 -1.23324144e+00 1.63173807e+00 1.39397783e-02 8.50793958e-01 -4.88874428e-02 -3.48582655e-01 5.17457724e-01 2.62255907e-01 3.54335964e-01 -5.51130533e-01 1.83130875e-02 1.63501963e-01 -5.60217679e-01 -7.49478042e-01 1.10002673e+00 2.86739051e-01 -3.78408171e-02 8.94717455e-01 -4.99112532e-02 -2.03948412e-02 4.30505544e-01 7.28114307e-01 1.11605549e+00 4.83362049e-01 2.78049648e-01 9.52287465e-02 6.25371039e-01 5.76503575e-01 2.65202433e-01 6.81693316e-01 -1.90309286e-01 7.52528548e-01 5.85517287e-01 -5.91786325e-01 -1.43321896e+00 -7.32975900e-01 1.41100451e-01 6.20953560e-01 3.84871989e-01 -5.79040289e-01 -9.03068900e-01 -5.78805745e-01 -8.64666607e-03 8.15717101e-01 -9.09756541e-01 -7.96887800e-02 -5.76914966e-01 -4.14943814e-01 8.79553854e-01 -2.01912254e-01 5.48775017e-01 -9.66503322e-01 -9.57519889e-01 -4.83082347e-02 -3.62771690e-01 -1.24412858e+00 -3.20066154e-01 -5.85703433e-01 -5.46435118e-01 -1.43297565e+00 -2.91868567e-01 -2.75713533e-01 8.16479027e-01 2.48684287e-01 1.15763748e+00 5.21448970e-01 -6.42178714e-01 4.26059365e-01 -5.10083497e-01 -2.34100074e-01 -8.94490659e-01 -1.99247897e-01 -4.56222534e-01 6.68832898e-01 -2.58937720e-02 -3.65549535e-01 -5.23911119e-01 5.46239540e-02 -1.67421854e+00 -2.85079628e-02 2.88752615e-01 4.95531708e-01 7.16396391e-01 2.59913087e-01 -1.91066816e-01 -1.25502002e+00 3.96361440e-01 -5.70182800e-01 -6.51466310e-01 7.43701220e-01 -6.50687039e-01 2.69840807e-02 3.76013428e-01 -7.42023066e-02 -1.20577383e+00 1.84277967e-01 4.54815984e-01 -4.55953360e-01 -1.22861214e-01 5.46349823e-01 3.48020233e-02 9.48346108e-02 7.95442522e-01 1.66415676e-01 5.72789162e-02 -3.59150499e-01 8.46933305e-01 6.05586290e-01 1.07508981e+00 -2.05836669e-01 9.71707344e-01 1.09004271e+00 2.82215122e-02 -6.01761639e-01 -4.23546046e-01 -4.60607946e-01 -1.02750862e+00 -5.83398640e-01 6.69069886e-01 -6.30688310e-01 -4.36315596e-01 7.81066239e-01 -1.29715168e+00 -1.67410020e-02 -4.19812083e-01 -1.63425714e-01 -3.69880676e-01 6.84118330e-01 -3.06757659e-01 -6.43661559e-01 -4.13191110e-01 -9.99609888e-01 9.25053895e-01 4.47424017e-02 -6.87114373e-02 -6.38503790e-01 1.48403561e-02 5.58540940e-01 2.09660381e-01 5.96021593e-01 8.54283512e-01 -2.97547370e-01 -1.01806760e+00 -3.78713250e-01 -2.45678142e-01 1.50018498e-01 -2.43767500e-01 4.93770242e-01 -9.90345895e-01 -1.44074440e-01 -2.36538485e-01 1.10673465e-01 7.54924834e-01 -1.54741719e-01 5.77666700e-01 -4.55650508e-01 -2.42636755e-01 7.10976362e-01 1.67066026e+00 -3.23329568e-01 1.06627584e+00 6.35671794e-01 6.08625948e-01 8.12074840e-01 7.21423626e-01 5.02823651e-01 3.90151322e-01 6.34693444e-01 7.04374850e-01 2.40187123e-01 -4.50315803e-01 -3.12042743e-01 2.38706663e-01 2.00238287e-01 2.96923928e-02 -2.99815744e-01 -9.01498914e-01 6.93092406e-01 -1.98073006e+00 -1.13681006e+00 -6.99727476e-01 2.37846494e+00 5.39400637e-01 -1.89692929e-01 6.08061180e-02 1.07088629e-02 9.59161103e-01 1.40154347e-01 -5.53079069e-01 -1.29235983e-01 -2.87083864e-01 3.12592424e-02 7.95838237e-01 1.49363235e-01 -1.02782238e+00 9.42986012e-01 5.82214975e+00 7.32422829e-01 -9.65154171e-01 3.90578181e-01 4.46408093e-01 1.35992039e-02 -1.91234365e-01 6.03782833e-01 -4.18905258e-01 5.03657937e-01 9.49316680e-01 -2.13875517e-01 6.11293077e-01 4.57961708e-01 9.87374410e-02 -6.62780643e-01 -9.42912161e-01 7.67213285e-01 3.10379028e-01 -1.49802971e+00 3.15347388e-02 8.37725624e-02 4.83356506e-01 -1.45854250e-01 -1.06150843e-01 -5.42328060e-01 1.92956746e-01 -5.47969699e-01 1.49179840e+00 7.73897290e-01 8.30048144e-01 -4.52425659e-01 6.35383427e-01 9.03465524e-02 -7.91258097e-01 1.24311656e-01 -1.79339349e-01 2.86177903e-01 3.12350601e-01 9.02962983e-01 -1.11868238e+00 8.07620168e-01 1.01984143e+00 8.63399565e-01 -1.31976807e+00 1.03077340e+00 -6.42605007e-01 5.75602055e-01 -2.27768034e-01 3.77901763e-01 -2.77388960e-01 -1.41847417e-01 7.31075525e-01 1.15078938e+00 3.54776680e-01 -1.76737264e-01 -4.80431110e-01 1.02209544e+00 -3.16698372e-01 -7.38388747e-02 -4.14473176e-01 -2.10516602e-01 5.63128233e-01 1.49694908e+00 -1.11560071e+00 -5.55431426e-01 9.06846747e-02 1.40369594e+00 2.17763260e-01 1.22160546e-01 -8.31384480e-01 -1.66181713e-01 4.84748244e-01 4.81630683e-01 3.77755255e-01 -1.83102399e-01 -3.61609198e-02 -1.17272353e+00 3.18947166e-01 -9.22899842e-01 6.31505609e-01 -1.11029756e+00 -9.41954911e-01 5.75470209e-01 1.15703516e-01 -1.11455429e+00 -6.37262538e-02 -8.75234231e-02 -3.90858740e-01 6.29956782e-01 -1.45482361e+00 -1.48280406e+00 -5.11837959e-01 6.50200903e-01 -5.83944470e-02 7.26397783e-02 4.97585386e-01 3.55386138e-01 -4.90758061e-01 3.86535525e-01 1.37706339e-01 1.56172559e-01 9.12539959e-01 -9.19512272e-01 6.68796659e-01 1.72566020e+00 3.54713440e-01 5.14523387e-01 8.31271410e-01 -9.56780076e-01 -1.62619352e+00 -1.13411140e+00 7.76878059e-01 -5.84177554e-01 8.66042912e-01 -3.19281608e-01 -9.06525612e-01 4.87116307e-01 4.84530717e-01 1.25503138e-01 3.04752022e-01 -7.32796192e-01 -6.81355000e-01 -1.38886273e-01 -1.24081373e+00 4.63776022e-01 1.10566437e+00 -7.00890124e-01 -2.95056969e-01 2.46686682e-01 4.99005258e-01 -3.59113336e-01 -8.40823293e-01 -1.34541512e-01 5.23702562e-01 -1.17515528e+00 9.20961678e-01 -3.11273962e-01 6.34725809e-01 -8.43011141e-01 1.09088413e-01 -8.96610022e-01 8.70813280e-02 -8.36134136e-01 -1.01436079e-02 1.68686295e+00 4.18623798e-02 -3.92888457e-01 4.99196947e-01 7.54852474e-01 3.06996346e-01 1.86047852e-02 -8.43290925e-01 -4.38757747e-01 -5.57220280e-01 -4.26202118e-01 8.24364245e-01 8.90322983e-01 -5.47560811e-01 -9.82220694e-02 -4.68190640e-01 3.56650531e-01 9.14539814e-01 1.13439821e-01 1.09876955e+00 -1.00437081e+00 -5.76590523e-02 -2.27225438e-01 -6.95743680e-01 -1.85158163e-01 -2.34802246e-01 -9.27535653e-01 -8.36958811e-02 -1.41824961e+00 2.47678965e-01 -4.73608881e-01 2.30375275e-01 3.82319510e-01 -2.52749503e-01 4.93249893e-01 3.89774621e-01 8.07888329e-01 -4.27605510e-01 -1.36196300e-01 7.34646380e-01 -2.70456165e-01 1.76260561e-01 -3.94387126e-01 -3.85589451e-01 4.04170692e-01 5.67250252e-01 -1.04721415e+00 -4.01011817e-02 -4.10062104e-01 7.86809921e-01 -2.78679997e-01 7.45122671e-01 -9.16387379e-01 6.01606965e-01 -3.54730226e-02 6.36044815e-02 -6.34925127e-01 1.07065491e-01 -8.70559692e-01 9.01551306e-01 4.82370377e-01 -3.16344380e-01 1.92012087e-01 -9.89811346e-02 8.88083041e-01 -1.87842935e-01 -5.26320517e-01 6.17058635e-01 -3.72423410e-01 -1.20499337e+00 2.75597483e-01 -1.98694766e-01 -4.73770499e-02 1.32101238e+00 -5.30568421e-01 -6.41541243e-01 -1.65760592e-01 -3.40711653e-01 -9.94236022e-02 1.15973139e+00 4.28478867e-01 5.68910778e-01 -9.21992898e-01 -9.82237041e-01 6.35218620e-02 4.86086607e-01 -1.99419484e-01 2.84271747e-01 8.00903857e-01 -9.52708840e-01 -4.30843711e-01 -3.73781204e-01 -5.25435328e-01 -1.63806176e+00 8.82313490e-01 4.47030226e-03 -1.79915339e-01 -7.14399278e-01 4.47692513e-01 -5.07732689e-01 1.52677028e-02 -1.98825255e-01 9.13101956e-02 -1.39702568e-02 4.46480006e-01 8.49822581e-01 4.35708463e-01 3.07525188e-01 -1.11062288e+00 -3.83204013e-01 3.60414505e-01 2.23144829e-01 -3.47175747e-01 1.45480478e+00 -3.11241955e-01 -8.21579337e-01 5.46093509e-02 1.20384336e+00 8.47243369e-02 -1.01764119e+00 -3.55712503e-01 2.71761119e-01 -1.03461635e+00 -8.42960738e-03 -7.10628629e-01 -1.34818995e+00 7.53495336e-01 6.03327632e-01 2.40449473e-01 1.13451970e+00 8.78078938e-02 6.64530933e-01 -6.75157085e-02 4.28572088e-01 -9.26742792e-01 -1.16393395e-01 9.76824984e-02 7.31886744e-01 -9.99357820e-01 4.73906755e-01 -5.17523825e-01 -5.13140619e-01 1.17509592e+00 -4.23138402e-02 2.00994536e-01 5.33895910e-01 6.24238513e-02 -5.04057892e-02 -4.51124877e-01 -3.83080184e-01 -7.26590157e-02 5.17036915e-02 5.20091891e-01 -2.37228483e-01 -9.96902138e-02 -2.91424524e-02 -1.33351028e-01 -2.54784734e-03 1.99701741e-01 9.70307469e-01 1.10371351e+00 -1.24112819e-03 -1.18354988e+00 -7.32001185e-01 3.02567393e-01 -5.35374284e-01 -1.06468171e-01 -6.65047467e-01 4.95018780e-01 3.59362870e-01 8.82671416e-01 -1.93551052e-02 -3.20572883e-01 3.40147167e-01 -1.29318282e-01 3.78888696e-01 -3.31050515e-01 -1.10134757e+00 -5.05870223e-01 1.00821979e-01 -5.73322535e-01 -8.97389174e-01 -9.33206022e-01 -1.06337726e+00 -4.52567577e-01 -3.15163553e-01 -2.68389434e-01 1.06679797e+00 5.93664289e-01 6.61952972e-01 8.95571895e-03 3.26424271e-01 -7.22426891e-01 -5.67196449e-03 -4.73021299e-01 -4.07549798e-01 1.12827027e+00 1.00207284e-01 -1.45383984e-01 -2.43729383e-01 9.13301706e-01]
[12.366605758666992, 1.0184673070907593]
adb7b837-d019-4872-b003-df6920a9de57
humor-detection-in-english-hindi-code-mixed
1806.05513
null
http://arxiv.org/abs/1806.05513v1
http://arxiv.org/pdf/1806.05513v1.pdf
Humor Detection in English-Hindi Code-Mixed Social Media Content : Corpus and Baseline System
The tremendous amount of user generated data through social networking sites led to the gaining popularity of automatic text classification in the field of computational linguistics over the past decade. Within this domain, one problem that has drawn the attention of many researchers is automatic humor detection in texts. In depth semantic understanding of the text is required to detect humor which makes the problem difficult to automate. With increase in the number of social media users, many multilingual speakers often interchange between languages while posting on social media which is called code-mixing. It introduces some challenges in the field of linguistic analysis of social media content (Barman et al., 2014), like spelling variations and non-grammatical structures in a sentence. Past researches include detecting puns in texts (Kao et al., 2016) and humor in one-lines (Mihalcea et al., 2010) in a single language, but with the tremendous amount of code-mixed data available online, there is a need to develop techniques which detects humor in code-mixed tweets. In this paper, we analyze the task of humor detection in texts and describe a freely available corpus containing English-Hindi code-mixed tweets annotated with humorous(H) or non-humorous(N) tags. We also tagged the words in the tweets with Language tags (English/Hindi/Others). Moreover, we describe the experiments carried out on the corpus and provide a baseline classification system which distinguishes between humorous and non-humorous texts.
['Manish Shrivastava', 'Ankush Khandelwal', 'Syed S. Akhtar', 'Sahil Swami']
2018-06-14
humor-detection-in-english-hindi-code-mixed-1
https://aclanthology.org/L18-1193
https://aclanthology.org/L18-1193.pdf
lrec-2018-5
['humor-detection']
['natural-language-processing']
[-6.21427000e-01 -1.53074130e-01 1.20087698e-01 -7.01092631e-02 -2.10853472e-01 -5.34594655e-01 5.31304479e-01 5.09077191e-01 -1.74269423e-01 5.82100213e-01 6.42759204e-01 -3.21024060e-01 4.73946571e-01 -7.05574453e-01 4.51833084e-02 -2.87115097e-01 1.16659477e-01 -8.61721337e-02 2.06380367e-01 -7.20899343e-01 7.62089670e-01 -9.75676849e-02 -1.39748836e+00 6.08389676e-01 1.06985188e+00 2.73787230e-01 4.33030635e-01 5.91103494e-01 -6.29979789e-01 1.66750264e+00 -4.57589090e-01 -7.55338788e-01 -1.35058552e-01 -7.42557168e-01 -1.07378531e+00 1.02704823e-01 3.38081457e-02 1.89125508e-01 -3.22044045e-01 1.51166081e+00 4.43824589e-01 -7.18174502e-02 4.09691185e-01 -9.94353354e-01 -6.18175447e-01 1.11620545e+00 -6.83247149e-01 2.13091418e-01 7.42600203e-01 -7.74645135e-02 1.06250298e+00 -1.01473141e+00 6.13221407e-01 1.22976100e+00 6.54907346e-01 3.73385638e-01 -8.34392190e-01 -6.91512525e-01 -8.48125279e-01 6.21325254e-01 -1.33122802e+00 -8.05559680e-02 1.03279388e+00 -9.81350720e-01 7.58425057e-01 2.52223492e-01 4.20962900e-01 8.10575962e-01 2.43165091e-01 8.76555204e-01 1.23918152e+00 -7.01152027e-01 -1.99553538e-02 4.69345838e-01 2.78492540e-01 6.68702066e-01 -1.63675517e-01 -7.31958210e-01 -5.37346959e-01 -2.42548957e-01 -4.88793664e-02 -5.08473739e-02 -2.71912545e-01 3.30082834e-01 -6.49251580e-01 1.32161665e+00 2.38245040e-01 8.85538101e-01 -4.46733981e-02 -6.37600303e-01 1.05726838e+00 3.93574655e-01 3.57533991e-01 4.05941159e-01 1.54283777e-01 -3.65208328e-01 -1.23621726e+00 4.27861542e-01 9.69618022e-01 1.06562197e+00 7.00870931e-01 -1.90910295e-01 2.93583065e-01 1.26356375e+00 2.27653086e-01 3.31598788e-01 1.06635356e+00 -3.34428042e-01 5.62330484e-01 1.08531189e+00 -1.17297992e-01 -1.69724917e+00 -6.26080990e-01 -2.29422718e-01 -7.00817347e-01 -1.25896364e-01 3.79273415e-01 -7.50945881e-02 -4.61383909e-02 1.20760572e+00 8.38894844e-02 -5.71209848e-01 -1.60444230e-01 8.64896834e-01 1.14700556e+00 7.56062448e-01 -1.11508854e-01 -3.55381846e-01 1.35902238e+00 -1.06259739e+00 -7.95638621e-01 -1.11841664e-01 8.13399851e-01 -1.37872171e+00 1.41178930e+00 2.87715077e-01 -8.66410315e-01 -2.48456895e-01 -8.30598593e-01 -3.22722822e-01 -4.55619842e-01 -2.34973475e-01 1.38793528e-01 7.17651069e-01 -4.50850815e-01 3.70797604e-01 -1.88560560e-01 -5.96093178e-01 1.75546363e-01 -2.34827638e-01 -1.62981749e-01 1.45924821e-01 -1.36903799e+00 9.37884867e-01 3.88624907e-01 -6.09235168e-01 -3.47371340e-01 -2.22019404e-01 -7.15310693e-01 -2.29919732e-01 7.53216892e-02 2.61301458e-01 1.15211785e+00 -1.54579389e+00 -1.07484150e+00 1.43886495e+00 -1.97939714e-03 -3.69873464e-01 5.08716106e-01 3.59894074e-02 -7.77229548e-01 -1.10952936e-01 3.71561974e-01 -6.13901392e-02 6.87088668e-01 -8.02033067e-01 -5.37572145e-01 -2.42776483e-01 6.24714158e-02 -1.38571128e-01 -8.00483942e-01 8.22389543e-01 2.45017767e-01 -6.24129891e-01 -7.42927343e-02 -9.04922843e-01 3.05069566e-01 -7.75146425e-01 -5.52768350e-01 -4.12760407e-01 7.96918571e-01 -9.68124270e-01 1.97206676e+00 -2.24585891e+00 -2.99875308e-02 -1.84652299e-01 4.74379867e-01 2.00355992e-01 2.08446681e-01 9.13971722e-01 4.17324640e-02 1.83672994e-01 -3.33952665e-01 -1.43482521e-01 -1.11439414e-01 7.75598362e-02 -3.83539319e-01 5.86650193e-01 -3.95783216e-01 6.23907745e-01 -1.10118890e+00 -9.83531415e-01 -1.17782332e-01 -2.45065205e-02 -5.94522059e-01 2.69086182e-01 9.79177505e-02 3.24121296e-01 -1.84034884e-01 5.65053940e-01 5.75719595e-01 -6.68001845e-02 -9.30833817e-03 3.11740458e-01 -7.40529597e-01 6.25021577e-01 -7.39886940e-01 1.10889804e+00 -5.17763615e-01 1.10983074e+00 -4.51923274e-02 -5.42595267e-01 9.69926655e-01 3.19728166e-01 2.54059315e-01 -4.51102316e-01 5.16525805e-01 4.74763960e-01 2.40734279e-01 -9.15682375e-01 9.31945384e-01 -4.91692454e-01 -3.21138293e-01 3.62775296e-01 -1.57271042e-01 -6.87923729e-02 6.30142331e-01 3.63495678e-01 1.02804101e+00 -4.10516977e-01 8.54058862e-01 -6.05500817e-01 1.10356975e+00 1.89304113e-01 3.41712087e-01 3.00062299e-01 -3.97028923e-01 5.53077459e-01 5.97017467e-01 -3.22262436e-01 -1.22703731e+00 -3.38405907e-01 -4.96531934e-01 1.26581752e+00 -3.16280931e-01 -7.16230452e-01 -7.76659787e-01 -2.90829688e-01 -4.00124006e-02 6.86000645e-01 -2.97724396e-01 3.02178681e-01 -4.81721550e-01 -6.80608690e-01 6.74701631e-01 -2.09932193e-01 6.41121686e-01 -1.33881187e+00 -5.94619632e-01 3.77591550e-01 -5.92111707e-01 -9.86362636e-01 -3.95776391e-01 3.39606106e-02 -3.89748484e-01 -1.06161809e+00 -3.66362274e-01 -8.73555660e-01 3.98943365e-01 4.28665012e-01 1.09700203e+00 4.30310547e-01 -2.16015592e-01 -2.09969088e-01 -1.06122923e+00 -4.09886509e-01 -9.39478338e-01 1.62563652e-01 -1.79431170e-01 -1.84779972e-01 8.07361245e-01 -3.38545084e-01 -1.05431555e-02 1.28913656e-01 -9.11480367e-01 1.72073409e-01 -4.32612486e-02 6.73298001e-01 -6.19967937e-01 5.44490889e-02 4.71569061e-01 -9.97503757e-01 9.53182697e-01 -9.97714639e-01 -1.44051969e-01 -3.51194978e-01 -1.80719823e-01 -1.95625365e-01 1.17439771e+00 -2.64989674e-01 -7.55888522e-01 -3.28396410e-01 -2.08592117e-01 2.95336246e-01 2.16044374e-02 8.54551852e-01 1.02668740e-01 -1.93355093e-03 1.06719184e+00 8.60146731e-02 -1.41194165e-01 -4.09162968e-01 1.52903711e-02 1.53639758e+00 2.97840267e-01 -1.93552166e-01 8.09526086e-01 1.84636280e-01 -4.65606004e-01 -1.18737829e+00 -9.86128449e-01 -1.06097353e+00 -6.38041914e-01 -4.67940748e-01 8.01228404e-01 -7.77830958e-01 -4.88563269e-01 6.90645874e-01 -1.35801756e+00 6.99146762e-02 4.05088454e-01 1.32029623e-01 -2.46994406e-01 8.72612774e-01 -9.25680578e-01 -8.69574964e-01 -3.64560992e-01 -7.81187773e-01 9.50409025e-02 7.36760050e-02 -8.11033905e-01 -9.53262687e-01 3.32909316e-01 7.29550242e-01 2.37536520e-01 6.28461465e-02 1.07062232e+00 -6.70830727e-01 1.59358621e-01 -1.52667895e-01 -2.01428816e-01 2.90133864e-01 -7.28674559e-03 6.41902769e-03 -7.50384510e-01 6.78850412e-02 4.82136339e-01 -6.03211939e-01 4.78218257e-01 -3.28105152e-01 7.06162632e-01 -8.11366141e-01 3.40344578e-01 -4.42553014e-02 1.30069363e+00 -1.83634385e-02 7.47630000e-01 7.12380767e-01 6.95958972e-01 6.95503592e-01 3.17989886e-01 1.02481103e+00 3.76328290e-01 3.45358491e-01 3.23104858e-01 5.77033162e-01 1.23444080e-01 -2.85495192e-01 6.42649293e-01 1.53712666e+00 8.90393741e-03 -1.09865423e-03 -1.21748221e+00 6.63117826e-01 -1.73883903e+00 -1.42144501e+00 -1.05843318e+00 1.99090433e+00 1.31694007e+00 -8.99012759e-02 4.75394011e-01 6.03760540e-01 7.94287801e-01 2.44718745e-01 2.54020393e-01 -7.98832059e-01 -2.00619265e-01 -1.53642029e-01 1.69101521e-01 7.28341937e-01 -8.61037195e-01 8.42588246e-01 4.56653023e+00 8.23590517e-01 -1.17848802e+00 4.43673819e-01 1.07915960e-01 2.64609098e-01 -2.41793126e-01 -1.29855881e-02 -6.11045480e-01 9.36129928e-01 8.47212315e-01 -4.18816924e-01 6.24670804e-01 1.05534172e+00 4.26895082e-01 -2.47374490e-01 -5.35705149e-01 1.24727440e+00 6.29126012e-01 -7.78423429e-01 -4.06468332e-01 -2.36082569e-01 9.97857094e-01 1.16970710e-01 -4.28278893e-01 4.70848113e-01 -4.73605283e-02 -9.41852927e-01 9.62534845e-01 -5.65608181e-02 1.30824447e-01 -6.52801633e-01 9.23022330e-01 9.09416199e-01 -8.79331708e-01 -2.84447491e-01 -6.02455914e-01 -7.30657876e-01 1.88762881e-02 9.17947233e-01 -7.67953575e-01 -9.58490297e-02 5.22024810e-01 7.85609305e-01 -8.63840997e-01 1.06342435e+00 -3.44024897e-01 7.25947559e-01 9.81739089e-02 -6.91358566e-01 2.18803927e-01 -2.00687215e-01 6.44837201e-01 1.76511788e+00 1.63083062e-01 -1.32736355e-01 1.44720778e-01 9.48371530e-01 -1.34899348e-01 9.04180884e-01 -4.92380708e-01 -2.82797039e-01 1.23136297e-01 1.52749968e+00 -7.10191727e-01 -3.74965817e-02 -6.53982341e-01 9.45462525e-01 4.47341830e-01 -2.78255731e-01 -7.45126009e-01 -4.61420029e-01 2.26363353e-02 4.54559088e-01 -3.71381938e-01 -3.76621366e-01 -4.64193910e-01 -1.18973517e+00 -1.79356620e-01 -9.90903378e-01 3.13254535e-01 -5.63739717e-01 -1.50997734e+00 4.66685653e-01 -3.36441368e-01 -1.30094802e+00 2.00910005e-03 -5.26464820e-01 -6.06617987e-01 7.57910311e-01 -1.03328097e+00 -9.54887569e-01 -4.62361634e-01 4.93619561e-01 7.58367360e-01 -2.65243739e-01 4.47743565e-01 7.25178421e-01 -2.70293802e-01 2.57039934e-01 4.04115543e-02 5.42756379e-01 7.14150965e-01 -1.16150022e+00 -5.35794459e-02 7.20893204e-01 -1.77735552e-01 5.94475448e-01 1.17507493e+00 -7.63655186e-01 -1.02657115e+00 -7.35784709e-01 1.89000559e+00 -4.30520892e-01 1.39380395e+00 -2.34442040e-01 -9.59886074e-01 1.90861911e-01 6.45634353e-01 -5.16810775e-01 8.31896305e-01 -2.58677956e-02 -4.48616356e-01 4.75549191e-01 -1.07360756e+00 5.58056891e-01 5.47233284e-01 -8.19093406e-01 -7.56017089e-01 4.86726135e-01 6.26257733e-02 -7.22264126e-02 -3.58090639e-01 -2.86674142e-01 1.25369489e-01 -1.31799173e+00 6.98560625e-02 -4.18213874e-01 1.25708556e+00 -3.10010970e-01 -6.89352974e-02 -1.07263792e+00 -4.01354581e-01 -5.13849318e-01 4.52112228e-01 1.45277321e+00 1.42416731e-01 -6.37141988e-02 3.35056722e-01 3.99111181e-01 -1.65827945e-01 -9.51221064e-02 -6.51271880e-01 -4.13165659e-01 4.72401321e-01 -3.80647570e-01 -3.05848252e-02 1.36661541e+00 1.23139703e+00 6.22793734e-01 -6.51089787e-01 -5.35527289e-01 3.44949156e-01 2.74421591e-02 8.14580381e-01 -1.06689489e+00 -6.92768395e-02 -6.97165012e-01 -6.65232897e-01 -6.99596941e-01 3.39330792e-01 -1.34216702e+00 -6.54113516e-02 -1.11629236e+00 8.83756459e-01 1.14314213e-01 4.40808862e-01 3.81716430e-01 1.25393262e-02 3.01863998e-01 3.99435222e-01 5.16899407e-01 -5.23778379e-01 3.37723523e-01 9.64011431e-01 -9.40872729e-02 -2.29209855e-01 -3.77304316e-01 -4.22039062e-01 9.19936717e-01 8.13259423e-01 -5.90753138e-01 6.19358420e-02 2.55133957e-01 1.01806450e+00 -1.40245393e-01 1.36789441e-01 -1.03323948e+00 2.03031763e-01 -2.69215196e-01 -4.09337074e-01 -4.29383993e-01 -5.47909975e-01 -6.34000301e-01 -2.21020669e-01 4.54942465e-01 -2.12853208e-01 1.16220728e-01 -1.45167232e-01 -1.10481322e-01 -3.77286673e-01 -1.05774641e+00 1.29667878e+00 -3.42118442e-01 -4.36036825e-01 -4.28916067e-01 -9.18506861e-01 3.84085298e-01 9.05400634e-01 -3.83646153e-02 -3.76200527e-01 -4.38078642e-01 -1.49340823e-01 -7.82739222e-02 7.09247410e-01 5.07056057e-01 2.18394995e-01 -1.16524351e+00 -9.44142401e-01 -1.90890223e-01 3.48537743e-01 -6.40905440e-01 1.81704879e-01 1.04380047e+00 -9.66142178e-01 1.43915936e-01 -3.49740267e-01 -8.42904225e-02 -1.51045644e+00 6.30304694e-01 1.10816367e-01 -3.11204325e-03 -3.35791975e-01 3.08077514e-01 -2.97150284e-01 -4.05902803e-01 -2.38689587e-01 3.88004720e-01 -5.93026042e-01 5.74422717e-01 7.48382211e-01 7.31505692e-01 -9.80425179e-02 -1.26380980e+00 -1.07874855e-01 2.53608376e-02 2.51173042e-02 1.25047520e-01 1.03504694e+00 -2.83616692e-01 -9.85162199e-01 1.00038719e+00 1.45516717e+00 5.72884500e-01 -6.05225526e-02 -4.35724147e-02 4.39428777e-01 -6.61456645e-01 -7.88975284e-02 -3.64320338e-01 -5.56396842e-01 8.73509169e-01 7.29600340e-02 7.98109412e-01 6.08301103e-01 -5.94629496e-02 9.90909696e-01 1.02097370e-01 4.90947157e-01 -1.55782151e+00 1.21611297e-01 1.26466942e+00 9.41315949e-01 -1.30367911e+00 -9.02463049e-02 -2.79784322e-01 -7.18284011e-01 1.32506382e+00 3.47872674e-01 3.31603810e-02 6.32681787e-01 1.97622225e-01 1.46214992e-01 -1.86029181e-01 -1.90764934e-01 -2.30030373e-01 1.24635227e-01 -9.82369334e-02 1.31980801e+00 1.79599151e-01 -1.40002370e+00 7.59930253e-01 -8.50807130e-01 -1.83035523e-01 1.17343390e+00 7.05131710e-01 -1.07044971e+00 -9.64830816e-01 -6.75165772e-01 3.86974335e-01 -8.52224290e-01 -2.89812535e-01 -6.90751672e-01 3.95016700e-01 2.08688185e-01 1.38289618e+00 -3.84156406e-01 -5.92338026e-01 -2.29054838e-01 2.65379876e-01 -4.16176813e-03 -8.04157495e-01 -1.13196826e+00 -2.26453528e-01 1.49112865e-01 1.40451998e-01 -4.90849048e-01 -8.44451010e-01 -1.51315475e+00 -9.06947911e-01 -3.44381720e-01 4.02041972e-01 4.47547257e-01 9.93895888e-01 -2.19941854e-01 -1.61412448e-01 8.36402833e-01 -3.86534840e-01 -3.41120332e-01 -1.27748990e+00 -8.01369011e-01 9.18597043e-01 3.52463610e-02 -3.68217260e-01 -7.96191692e-01 2.22703576e-01]
[8.955350875854492, 10.8219633102417]
a53cb31b-a7ab-4bee-90cb-28cdd182604b
ndjir-neural-direct-and-joint-inverse
2302.00675
null
https://arxiv.org/abs/2302.00675v1
https://arxiv.org/pdf/2302.00675v1.pdf
NDJIR: Neural Direct and Joint Inverse Rendering for Geometry, Lights, and Materials of Real Object
The goal of inverse rendering is to decompose geometry, lights, and materials given pose multi-view images. To achieve this goal, we propose neural direct and joint inverse rendering, NDJIR. Different from prior works which relies on some approximations of the rendering equation, NDJIR directly addresses the integrals in the rendering equation and jointly decomposes geometry: signed distance function, lights: environment and implicit lights, materials: base color, roughness, specular reflectance using the powerful and flexible volume rendering framework, voxel grid feature, and Bayesian prior. Our method directly uses the physically-based rendering, so we can seamlessly export an extracted mesh with materials to DCC tools and show material conversion examples. We perform intensive experiments to show that our proposed method can decompose semantically well for real object in photogrammetric setting and what factors contribute towards accurate inverse rendering.
['Takuya Narihira', 'Kazuki Yoshiyama']
2023-02-02
null
null
null
null
['inverse-rendering']
['computer-vision']
[ 4.10735458e-01 -6.64689243e-02 7.60807991e-01 -3.51138711e-01 -5.26219785e-01 -4.74482119e-01 7.94573665e-01 -5.22958815e-01 2.51078457e-01 5.93421519e-01 1.22839585e-02 -1.41752616e-01 -3.14651608e-01 -1.27598965e+00 -5.82016528e-01 -4.56716985e-01 3.27703327e-01 9.46598291e-01 3.36161584e-01 -2.06947416e-01 3.08341801e-01 8.46493185e-01 -1.71014512e+00 1.05162352e-01 9.82406080e-01 7.48511314e-01 1.07020941e-02 7.97680795e-01 -3.21495712e-01 2.67602295e-01 -9.88540575e-02 -2.43450403e-01 4.74242449e-01 -1.64144695e-01 -6.54036045e-01 5.25606945e-02 5.11200726e-01 -7.44466007e-01 1.45169765e-01 9.41672564e-01 4.00524497e-01 2.70050347e-01 1.12712801e+00 -9.73081529e-01 -6.99053943e-01 -2.54298627e-01 -9.24875498e-01 -6.37165606e-01 6.84004426e-01 -7.46364817e-02 5.36275923e-01 -9.74532485e-01 5.21143615e-01 1.69221020e+00 7.02832580e-01 3.38886082e-01 -1.35928786e+00 -6.40525579e-01 4.02541310e-02 -3.34455729e-01 -1.29897761e+00 -7.03870654e-02 1.04957473e+00 -4.37215328e-01 5.52450418e-01 7.00021446e-01 9.17787433e-01 5.74943662e-01 1.34003326e-01 1.33160297e-02 1.63867188e+00 -3.43445212e-01 2.56734550e-01 6.75133243e-02 1.04195274e-01 6.84371710e-01 -1.01239689e-01 4.39696640e-01 -3.02164495e-01 -7.20076263e-01 1.25512421e+00 4.85783182e-02 -4.64099139e-01 -2.58899540e-01 -9.97173846e-01 3.93761694e-01 1.10522203e-01 -5.74717522e-01 -1.93987250e-01 2.46017605e-01 -2.37680748e-01 -1.05623193e-01 7.86932826e-01 -9.94296372e-02 -3.87409866e-01 1.21743672e-01 -4.75810558e-01 6.89941868e-02 8.44299912e-01 1.08514750e+00 1.05135024e+00 -9.85672348e-04 2.03898981e-01 8.87729406e-01 9.29403245e-01 1.13176191e+00 -5.39165556e-01 -1.52260435e+00 1.46133164e-02 4.08957541e-01 2.12939262e-01 -9.28584635e-01 -1.03783362e-01 -5.83287627e-02 -7.30145276e-01 8.37770164e-01 -1.27682239e-01 2.69757777e-01 -9.94686186e-01 1.16897357e+00 8.94565165e-01 3.86783332e-01 -2.30877236e-01 7.93311477e-01 9.18939650e-01 5.41250408e-01 -1.38646170e-01 -3.22347060e-02 1.30346966e+00 -3.61539632e-01 -6.25123322e-01 2.89094537e-01 -7.04874471e-02 -1.24334705e+00 1.11471570e+00 5.95872462e-01 -1.17366278e+00 -3.20194304e-01 -9.01110649e-01 -3.98445398e-01 1.15369350e-01 1.16246879e-01 7.44635284e-01 6.04516745e-01 -9.21110272e-01 7.69991696e-01 -7.04748034e-01 1.14094682e-01 7.36985207e-02 1.51633799e-01 2.68557239e-02 -2.66187280e-01 -6.22142076e-01 5.30707598e-01 -3.74199808e-01 1.96863949e-01 -5.74187636e-01 -9.89011347e-01 -5.53234577e-01 -2.35382125e-01 6.44565970e-02 -1.22359192e+00 6.80389524e-01 -5.16257644e-01 -2.13942218e+00 6.74189389e-01 -1.95752606e-02 6.75210297e-01 5.38480461e-01 -3.01618785e-01 -2.22439747e-02 -2.43798108e-03 -1.50189057e-01 7.38852471e-02 7.68799365e-01 -2.13138747e+00 -1.19304061e-01 -5.48410296e-01 1.69298232e-01 3.04934055e-01 3.08536649e-01 -3.69540930e-01 -4.25749898e-01 -3.69361073e-01 5.90198755e-01 -6.77857876e-01 -2.26515308e-01 4.73808020e-01 -4.33486670e-01 1.30156964e-01 9.03262854e-01 -9.55050826e-01 3.41096580e-01 -2.12789226e+00 -2.63488404e-02 4.73578781e-01 4.39922623e-02 -2.60722637e-01 -8.63814261e-03 2.54178166e-01 -2.61951014e-02 7.28752762e-02 -3.38583291e-01 -4.73721534e-01 1.36835784e-01 3.23875964e-01 -5.23551106e-01 7.22865283e-01 -3.12186092e-01 3.30666840e-01 -7.00805604e-01 -5.30210912e-01 6.59335017e-01 1.22798073e+00 -7.56357849e-01 2.62506753e-01 -2.43669868e-01 6.45121396e-01 -5.36459565e-01 6.26084507e-01 1.57257009e+00 1.48844764e-01 -1.44198656e-01 -6.93664610e-01 -1.63653269e-01 4.10063751e-02 -1.48781645e+00 1.66806221e+00 -8.54991496e-01 -2.07319986e-02 6.76582575e-01 -1.55628398e-01 1.00080645e+00 2.32209057e-01 3.57062966e-01 -4.52002734e-01 -7.59781227e-02 9.86241773e-02 -5.36922514e-01 -9.49012712e-02 4.64763999e-01 -4.54700828e-01 6.84812069e-01 5.09635985e-01 -5.23494124e-01 -1.14309990e+00 -8.30303192e-01 1.79342762e-01 6.95058167e-01 1.06838036e+00 -5.96105568e-02 -2.71201879e-01 4.50561434e-01 -1.07740693e-01 4.39297795e-01 1.73347071e-01 7.36382365e-01 9.48250711e-01 -1.91548262e-02 -2.27131933e-01 -7.65943468e-01 -1.61353672e+00 -2.92622894e-01 6.34504974e-01 4.24701065e-01 -6.91693425e-02 -4.26348537e-01 7.84315343e-04 5.37317134e-02 9.68734562e-01 -3.37505877e-01 3.01393479e-01 -7.08521545e-01 -7.56113827e-01 -1.23759300e-01 1.36198297e-01 4.38128799e-01 -4.07915592e-01 -3.69291484e-01 -1.59578651e-01 1.32903913e-02 -8.47485363e-01 -2.47331932e-01 -5.07732451e-01 -1.14936030e+00 -1.18607640e+00 -4.11421925e-01 -8.78996402e-02 7.88748264e-01 2.87533373e-01 1.51608634e+00 3.78827035e-01 -5.19731820e-01 1.06155789e+00 -4.17490378e-02 -2.14234799e-01 -3.96576375e-01 -7.91934371e-01 -4.94804204e-01 2.63200756e-02 -5.11941314e-01 -1.24898779e+00 -8.44274282e-01 3.92380297e-01 -8.47303092e-01 7.33308375e-01 3.18206064e-02 3.19853365e-01 1.01949263e+00 -1.96743876e-01 -3.28199476e-01 -9.20011938e-01 2.30082706e-01 -1.80936709e-01 -8.92493486e-01 2.25256369e-01 -4.94252324e-01 -1.87425837e-01 3.37926894e-01 -1.62672341e-01 -1.64853859e+00 -3.89158316e-02 -2.96085715e-01 -3.36562634e-01 -1.82626247e-01 -1.44164264e-01 -3.64133030e-01 -2.67160594e-01 3.00783068e-01 -2.26956904e-02 -2.03516677e-01 -8.52215767e-01 5.11487544e-01 3.25595558e-01 3.48954618e-01 -1.07521880e+00 1.05659473e+00 1.30795538e+00 5.51498652e-01 -8.55150104e-01 -3.70609850e-01 -9.06196833e-02 -4.78389025e-01 -4.07372952e-01 7.20157981e-01 -6.81297779e-01 -1.05814004e+00 1.66267931e-01 -1.40249479e+00 -2.54248738e-01 -3.69926661e-01 4.76004899e-01 -7.31101930e-01 6.00850463e-01 -5.06682396e-01 -1.21111870e+00 -1.47470459e-01 -1.15249360e+00 1.57437241e+00 -1.57813057e-01 2.17551187e-01 -1.03224576e+00 1.97220862e-01 2.82669097e-01 2.68814176e-01 6.81857347e-01 9.38915312e-01 6.34823442e-01 -1.24577844e+00 2.16259956e-01 -4.45888788e-01 3.25695395e-01 3.30963850e-01 4.71332103e-01 -1.19935453e+00 1.55240819e-01 2.75949121e-01 1.33576021e-01 4.49690700e-01 3.49968731e-01 1.11382043e+00 4.73605208e-02 -2.80697942e-01 1.21634817e+00 1.90984666e+00 -7.17235059e-02 9.54726279e-01 -9.16282758e-02 9.83990788e-01 6.07853115e-01 5.70044279e-01 6.78460300e-01 6.11149371e-01 6.74552739e-01 8.26976836e-01 -2.66759574e-01 -5.86772978e-01 -5.34924231e-02 4.35714349e-02 1.10083687e+00 -9.10691202e-01 4.09100205e-02 -6.83994055e-01 -7.50763342e-02 -1.40857422e+00 -5.53968012e-01 -8.79405558e-01 2.36738157e+00 5.50434053e-01 -5.69208741e-01 -6.49720848e-01 -2.92695791e-01 3.63599509e-01 -1.72979802e-01 -3.62409115e-01 -2.62616485e-01 2.29967777e-02 4.06393021e-01 5.50917506e-01 9.65600014e-01 -3.10140222e-01 4.95442897e-01 6.60807133e+00 7.89470434e-01 -7.23478436e-01 3.99735481e-01 2.84826279e-01 2.20750168e-01 -1.33595014e+00 4.26043451e-01 -4.93280202e-01 7.25434795e-02 4.46009696e-01 3.75928998e-01 9.44327533e-01 5.65916419e-01 3.05379808e-01 -4.38878447e-01 -9.20822322e-01 1.10063422e+00 -1.59912631e-02 -1.20041227e+00 2.60641634e-01 2.85877675e-01 6.12573385e-01 -1.29891291e-01 -4.53551151e-02 -1.56072989e-01 8.73912871e-01 -8.35514843e-01 7.70465136e-01 9.46534336e-01 9.51493204e-01 -5.06267786e-01 8.34933221e-02 4.10401285e-01 -1.17791450e+00 5.97934484e-01 -2.04813555e-01 -4.32984494e-02 6.39742255e-01 9.81742144e-01 -2.98241735e-01 9.68184650e-01 6.80454910e-01 3.63841116e-01 -8.98198783e-02 5.50834298e-01 -4.94141802e-02 3.45716506e-01 -7.25146711e-01 6.64528489e-01 -5.38638353e-01 -1.06406486e+00 5.81315219e-01 5.96040428e-01 5.23165941e-01 4.48507190e-01 2.57841557e-01 1.45127392e+00 4.76983994e-01 5.53042628e-02 -3.65259856e-01 6.52619362e-01 1.72819942e-01 1.28507578e+00 -8.47454309e-01 -2.49183431e-01 -1.29219159e-01 9.45511460e-01 -4.54312079e-02 7.86170065e-01 -9.44807708e-01 9.15111825e-02 4.53710258e-01 3.88927370e-01 -2.50833899e-01 -4.13055152e-01 -7.15967238e-01 -9.27579641e-01 4.55503948e-02 -3.47545475e-01 -2.43734032e-01 -1.28111303e+00 -1.36576343e+00 3.65381330e-01 2.31984779e-01 -1.27920318e+00 1.95159733e-01 -7.33195305e-01 -3.59930784e-01 1.32435632e+00 -1.77264905e+00 -1.47405541e+00 -4.86135304e-01 6.67853057e-01 2.83323258e-01 5.24831533e-01 8.91845345e-01 9.31166038e-02 9.78667364e-02 -2.66022831e-01 1.47639990e-01 -3.65481585e-01 5.29911935e-01 -1.05441022e+00 2.28575483e-01 3.14052343e-01 -3.09574336e-01 6.50766075e-01 7.71391392e-01 -9.30099845e-01 -1.78878069e+00 -7.46500134e-01 -2.39197537e-01 -5.06271303e-01 2.46013533e-02 -1.84906647e-01 -6.77652061e-01 4.99547303e-01 7.68882036e-03 3.26925665e-01 4.20852840e-01 -1.24234580e-01 -2.88660407e-01 1.21060394e-01 -1.52027285e+00 4.07578409e-01 1.37970412e+00 -4.40317899e-01 -2.51348048e-01 4.10566360e-01 5.38550854e-01 -8.39867353e-01 -1.11003292e+00 6.33545339e-01 6.53958261e-01 -1.49691308e+00 1.49019814e+00 2.29407772e-01 2.66381562e-01 -6.04765415e-01 -5.12632906e-01 -1.22574604e+00 -2.56381452e-01 -6.25591993e-01 8.51803571e-02 1.38595772e+00 -2.24205643e-01 -1.04400337e+00 3.48847896e-01 8.62687409e-01 -4.45995122e-01 -4.28820044e-01 -8.00698400e-01 -5.90510964e-01 -2.18557864e-01 -6.07259810e-01 9.63317692e-01 8.07214499e-01 -9.96085584e-01 -1.57043695e-01 -1.12605602e-01 6.57289565e-01 1.23305416e+00 5.42342782e-01 8.16292226e-01 -1.67813694e+00 -5.60986996e-01 7.74151608e-02 2.91445941e-01 -1.00013292e+00 1.99885778e-02 -6.36865199e-01 1.15661465e-01 -1.87542033e+00 2.00448081e-01 -1.22538185e+00 5.91017365e-01 -8.13058913e-02 1.96204513e-01 2.96363086e-01 -1.34565949e-01 1.43378943e-01 1.99380428e-01 7.50386596e-01 1.74589682e+00 9.33655351e-02 -4.58033346e-02 -1.02327392e-01 -2.51865268e-01 1.25671637e+00 2.72960633e-01 -3.57814759e-01 -5.31841040e-01 -7.51901746e-01 5.66739261e-01 7.43534341e-02 6.88286483e-01 -5.03008187e-01 -3.34789157e-01 -5.18267691e-01 2.43070319e-01 -8.75749469e-01 9.96199131e-01 -1.31144834e+00 9.74356115e-01 -2.26039952e-03 3.53061199e-01 -2.04770505e-01 2.99186092e-02 5.58552921e-01 4.05491412e-01 -1.11356050e-01 7.27414131e-01 -3.67440879e-01 -5.97891361e-02 3.83079439e-01 2.53711402e-01 -1.33678392e-01 5.07456660e-01 -5.12274623e-01 -1.65734112e-01 -2.18918845e-01 -5.68014801e-01 -2.82863140e-01 1.10826552e+00 -1.89325958e-01 8.16087782e-01 -1.46952200e+00 -5.54280400e-01 2.48634651e-01 -4.83387291e-01 4.32199448e-01 3.58156025e-01 7.26050615e-01 -9.22634184e-01 -4.48426366e-01 1.59002244e-01 -7.75137246e-01 -1.18160605e+00 6.09448291e-02 2.74222493e-01 1.71268076e-01 -9.80192125e-01 6.30082309e-01 6.42527759e-01 -9.52057779e-01 -3.22038293e-01 -5.09509623e-01 1.71699762e-01 -4.54561353e-01 2.93810546e-01 7.68410265e-01 2.76608653e-02 -6.77253544e-01 -2.71444708e-01 1.28238177e+00 7.86745310e-01 -4.45010126e-01 1.54492795e+00 -3.64962637e-01 -6.42754555e-01 3.97496074e-01 9.03203487e-01 5.55309832e-01 -1.25235355e+00 2.34344348e-01 -8.91212642e-01 -8.75855386e-01 2.97435015e-01 -6.42422616e-01 -1.01380408e+00 8.90297294e-01 5.33928156e-01 -6.84960932e-02 9.89959359e-01 -1.71114206e-01 6.19866490e-01 -2.02023327e-01 8.62261415e-01 -8.82273853e-01 -3.58892620e-01 4.37299937e-01 1.19710326e+00 -7.01692641e-01 7.13300169e-01 -1.37949562e+00 1.44654252e-02 1.14166880e+00 3.78774643e-01 -4.17325616e-01 1.14353693e+00 6.69150710e-01 -1.13788247e-01 -4.14354116e-01 -3.06478500e-01 2.12376356e-01 4.14265841e-01 7.93446541e-01 3.83451819e-01 1.15256861e-01 1.77899554e-01 1.04689375e-01 -1.79338872e-01 2.14707019e-04 3.66530180e-01 7.50174582e-01 -8.50958526e-02 -1.01340723e+00 -9.47732449e-01 2.59564847e-01 1.81791082e-01 -4.73181605e-02 -7.14100664e-03 6.74681664e-01 2.28556365e-01 4.25641388e-01 1.33042052e-01 -7.77231082e-02 3.85875225e-01 -2.80103773e-01 7.41345763e-01 -6.51461661e-01 -1.54728979e-01 4.54603314e-01 -4.96072322e-02 -7.91901350e-01 -6.47108316e-01 -5.36965013e-01 -1.34375834e+00 -1.73386708e-01 -5.26924551e-01 -2.34411255e-01 9.99344409e-01 6.79895341e-01 1.98123440e-01 5.59151590e-01 5.11907518e-01 -1.37703443e+00 -2.67622262e-01 -5.37709117e-01 -7.77747512e-01 3.24690819e-01 1.76863477e-01 -1.04379535e+00 -6.55068219e-01 1.07041247e-01]
[9.663744926452637, -3.1272757053375244]
60bd774c-df37-4680-a860-cb25b4d343ba
adaptive-multi-teacher-knowledge-distillation
2306.06634
null
https://arxiv.org/abs/2306.06634v1
https://arxiv.org/pdf/2306.06634v1.pdf
Adaptive Multi-Teacher Knowledge Distillation with Meta-Learning
Multi-Teacher knowledge distillation provides students with additional supervision from multiple pre-trained teachers with diverse information sources. Most existing methods explore different weighting strategies to obtain a powerful ensemble teacher, while ignoring the student with poor learning ability may not benefit from such specialized integrated knowledge. To address this problem, we propose Adaptive Multi-teacher Knowledge Distillation with Meta-Learning (MMKD) to supervise student with appropriate knowledge from a tailored ensemble teacher. With the help of a meta-weight network, the diverse yet compatible teacher knowledge in the output layer and intermediate layers is jointly leveraged to enhance the student performance. Extensive experiments on multiple benchmark datasets validate the effectiveness and flexibility of our methods. Code is available: https://github.com/Rorozhl/MMKD.
['Can Wang', 'Defang Chen', 'Hailin Zhang']
2023-06-11
null
null
null
null
['meta-learning']
['methodology']
[-1.59604460e-01 1.30485326e-01 -5.25774002e-01 -4.86405462e-01 -4.50689852e-01 -4.96193081e-01 2.54956782e-01 7.30289072e-02 -3.80525351e-01 9.19801056e-01 1.29492015e-01 -2.26508245e-01 -4.62257475e-01 -9.12717342e-01 -4.43649113e-01 -9.26714420e-01 7.08899617e-01 2.11514354e-01 2.32294336e-01 -2.89033204e-01 -8.90367031e-02 2.31717840e-01 -1.42423773e+00 1.10171326e-01 1.69487715e+00 6.16640568e-01 2.97632694e-01 4.52026844e-01 -2.08906800e-01 8.54001224e-01 -5.48624337e-01 -4.60909545e-01 1.89596117e-02 -2.84518212e-01 -6.55006945e-01 -1.52683005e-01 5.28215110e-01 -3.87806147e-01 -2.43460611e-01 9.34897125e-01 7.75516987e-01 4.55192477e-01 4.10478681e-01 -1.06911278e+00 -7.39804924e-01 1.15412605e+00 -7.00448096e-01 3.43076050e-01 -1.66231930e-01 1.86745301e-01 7.21285701e-01 -9.77762818e-01 -5.39155230e-02 8.72776210e-01 2.98728943e-01 6.37600183e-01 -1.08945179e+00 -1.00039053e+00 4.42711025e-01 3.19420278e-01 -1.27869105e+00 -1.98615909e-01 9.63643074e-01 -2.25309476e-01 3.71713161e-01 6.59694057e-03 6.12944722e-01 9.58088100e-01 -4.42707419e-01 1.12880039e+00 1.12128115e+00 -3.12736928e-01 -3.10683250e-01 5.98393440e-01 4.41861928e-01 8.14375341e-01 2.83845425e-01 -1.26681849e-01 -5.53621352e-01 -8.47715791e-03 3.88700515e-01 3.44440579e-01 -4.07673150e-01 -2.31641516e-01 -8.85799825e-01 5.86389542e-01 3.35524231e-01 3.54070812e-01 -3.20927620e-01 -3.18073705e-02 6.47580251e-02 6.04770184e-01 5.30775726e-01 4.10691530e-01 -8.19217443e-01 -6.36332557e-02 -7.17609465e-01 -8.14914629e-02 5.44189572e-01 8.69670868e-01 9.71783638e-01 3.62951010e-01 -3.52627903e-01 1.07750285e+00 3.03577721e-01 4.38301384e-01 7.52337933e-01 -7.91039884e-01 3.82115245e-01 1.04324174e+00 -3.62491667e-01 -4.42216724e-01 1.30441844e-01 -9.91267979e-01 -8.00310969e-01 2.70815998e-01 1.62434742e-01 -6.18218541e-01 -9.18551624e-01 1.50302029e+00 7.76401758e-01 1.01117241e+00 2.57289022e-01 6.11320853e-01 1.23314083e+00 5.35753310e-01 2.00996548e-01 -8.49959552e-02 1.13151503e+00 -1.21318769e+00 -3.42039466e-01 5.25951274e-02 5.09131849e-01 -5.69677711e-01 7.02052593e-01 5.71346700e-01 -1.08272159e+00 -7.44467437e-01 -8.84045541e-01 1.50198132e-01 -1.64971933e-01 2.01847479e-01 3.48858654e-01 3.72930408e-01 -7.47734070e-01 3.48674715e-01 -4.11578536e-01 4.70912755e-01 6.59201443e-01 5.13466716e-01 -5.72477765e-02 2.89492924e-02 -1.12284470e+00 7.30721891e-01 5.83528221e-01 -2.05781594e-01 -1.23339915e+00 -1.21560729e+00 -3.68209571e-01 3.29523683e-01 6.68246448e-01 -8.23202014e-01 1.57194734e+00 -1.08347857e+00 -1.88506877e+00 2.54078150e-01 2.30469644e-01 1.39055047e-02 4.15124536e-01 -4.57727075e-01 -1.55730799e-01 4.50354256e-02 -3.61874491e-01 4.32191879e-01 8.05431962e-01 -1.16349494e+00 -9.85457897e-01 -3.75752032e-01 5.43568470e-02 6.75764263e-01 -8.51161420e-01 -2.99642771e-01 -2.76069313e-01 -4.80705202e-01 -1.93885610e-01 -5.28922021e-01 -3.27439874e-01 -6.39635384e-01 -1.40514702e-01 -7.76160181e-01 9.05270755e-01 -2.19711468e-01 1.50960720e+00 -1.85971332e+00 1.98418066e-01 3.14527005e-01 6.21551394e-01 7.95482874e-01 -3.83310229e-01 1.11000158e-01 -5.97663671e-02 -1.48524465e-02 1.73160627e-01 -4.12298627e-02 -2.46306419e-01 1.79399058e-01 -2.19611034e-01 -5.03236391e-02 5.47833368e-02 7.38484740e-01 -1.28076756e+00 -4.08363402e-01 2.02319667e-01 5.91350675e-01 -3.66126060e-01 7.01645672e-01 -2.02244699e-01 6.29353523e-01 -1.11367011e+00 6.24893665e-01 3.59216422e-01 -3.73428851e-01 7.68570751e-02 2.97834650e-02 2.74097305e-02 2.74161786e-01 -1.21473670e+00 1.51995647e+00 -6.38744414e-01 1.23401262e-01 2.71919191e-01 -1.16557717e+00 9.43210304e-01 5.27742088e-01 3.39300662e-01 -3.84094179e-01 1.69784904e-01 6.77971542e-02 1.89989299e-01 -5.30457675e-01 4.64669555e-01 2.04772279e-01 4.87041891e-01 6.08218491e-01 4.32386786e-01 3.85086797e-02 -9.13238674e-02 3.29568475e-01 7.05090225e-01 1.77239254e-01 1.44618191e-02 -1.01483010e-01 5.53230166e-01 -3.12430233e-01 7.71547616e-01 5.84616303e-01 -1.99178830e-01 7.26656914e-02 -1.11242719e-01 -2.36925393e-01 -5.15378118e-01 -8.56163442e-01 6.49422333e-02 1.88151336e+00 -4.55059606e-04 -2.54314840e-01 -5.16431630e-01 -1.04144347e+00 2.11640447e-01 6.79765046e-01 -4.43062246e-01 -3.05574566e-01 -6.66728973e-01 -6.75253093e-01 3.89496744e-01 6.14664018e-01 4.98416692e-01 -8.72224629e-01 -3.93888175e-01 2.80197054e-01 7.71543458e-02 -5.51126063e-01 -3.15109998e-01 2.99750239e-01 -9.57669914e-01 -1.05002606e+00 -7.22963274e-01 -6.67706370e-01 8.64960670e-01 5.22549272e-01 1.18702245e+00 5.08313835e-01 6.90527707e-02 6.32725298e-01 -2.98123509e-01 -5.49634099e-01 -2.14096680e-01 3.70634675e-01 2.20653370e-01 -1.11450963e-01 5.12408972e-01 -8.81817341e-01 -4.55493242e-01 2.07509294e-01 -7.79285908e-01 3.89404327e-01 4.78316039e-01 9.46795166e-01 5.01869321e-01 3.15044194e-01 1.01507688e+00 -1.03054953e+00 7.21611083e-01 -8.52920413e-01 -5.66310287e-01 5.57403922e-01 -9.73463714e-01 1.62758678e-01 6.94973052e-01 -8.30410600e-01 -1.54935014e+00 -1.74535319e-01 -2.18640305e-02 -5.81938446e-01 -1.80766180e-01 5.09685397e-01 -1.72196224e-01 -1.15157358e-01 4.88124669e-01 2.35629722e-01 -2.68569767e-01 -6.34569943e-01 5.83802581e-01 6.30373240e-01 3.19375128e-01 -1.17604911e+00 8.53870451e-01 -6.57086670e-02 -4.51853395e-01 -2.94225812e-01 -1.24158525e+00 -2.35918656e-01 -6.65557504e-01 -1.87340781e-01 2.80923039e-01 -1.24417996e+00 -6.78947330e-01 5.11273980e-01 -5.92342257e-01 -6.01717293e-01 -3.84308428e-01 5.86559296e-01 7.21884593e-02 -1.32677168e-01 -3.47166210e-01 -6.78344131e-01 -4.91023660e-01 -1.21586668e+00 1.10971428e-01 1.07594192e+00 3.58341515e-01 -1.28263032e+00 1.39238790e-01 6.59461439e-01 5.48840940e-01 -2.57785439e-01 5.66011369e-01 -1.10376930e+00 -5.14166117e-01 2.27140605e-01 9.66075212e-02 4.34037447e-01 2.98202097e-01 2.65789777e-01 -1.15035510e+00 -2.01473683e-01 -2.77188659e-01 -8.24423075e-01 1.19310904e+00 2.15099931e-01 1.40420783e+00 -3.58980507e-01 -2.84700751e-01 6.01672590e-01 1.23510361e+00 -8.09867829e-02 -1.89256892e-01 2.40984499e-01 1.00188720e+00 4.14931148e-01 2.22338468e-01 3.48415375e-01 8.32336247e-01 2.85672337e-01 3.09566379e-01 1.51251644e-01 -2.55053490e-01 -3.20580095e-01 4.70619142e-01 1.29080796e+00 -3.27353090e-01 -1.40703201e-01 -9.52575505e-01 6.68829501e-01 -1.80115879e+00 -8.64633679e-01 1.64903224e-01 1.82336724e+00 1.52291167e+00 -1.58106625e-01 9.90547836e-02 -2.47150674e-01 5.07247746e-01 2.31414940e-02 -7.21803308e-01 -1.68680981e-01 1.13605864e-01 3.05736005e-01 2.15459809e-01 4.29207951e-01 -7.79504836e-01 9.22700405e-01 4.99830675e+00 1.21316135e+00 -1.02679396e+00 2.48429865e-01 6.75815761e-01 -2.13901922e-01 -6.42498136e-01 -1.41886026e-01 -1.28956211e+00 3.55828881e-01 1.05243027e+00 -3.69131714e-01 2.42260575e-01 8.42163444e-01 2.75830012e-02 -2.70121358e-02 -5.61471760e-01 4.23180729e-01 -1.65338829e-01 -1.03893244e+00 -3.14334594e-02 -2.11395219e-01 1.27012432e+00 1.70023024e-01 3.14671427e-01 7.38935471e-01 1.15759599e+00 -8.41654360e-01 1.01288119e-02 7.05170691e-01 3.97422135e-01 -9.02392268e-01 4.13272887e-01 6.16597831e-01 -1.05856061e+00 -3.70663881e-01 -3.82076710e-01 6.68582097e-02 -3.59972417e-01 7.09320664e-01 -9.96645033e-01 7.72160590e-01 5.06121516e-01 6.90773904e-01 -6.85764372e-01 9.48778927e-01 -8.46700549e-01 1.28661299e+00 -1.95239365e-01 7.10834339e-02 1.14576355e-01 -2.03015536e-01 2.82714605e-01 1.01275063e+00 3.78051132e-01 6.07679844e-01 5.24664581e-01 5.46676099e-01 -4.49192017e-01 2.08873507e-02 -2.11462274e-01 1.09500587e-02 8.85289907e-01 1.64804494e+00 -8.63983706e-02 -6.41458452e-01 -5.74104071e-01 4.79191571e-01 8.13669980e-01 5.05091906e-01 -4.85586703e-01 -1.64260998e-01 5.46709061e-01 -2.30869338e-01 2.14300781e-01 1.18993133e-01 -2.45300040e-01 -1.24296820e+00 -3.32891524e-01 -8.97651732e-01 7.40411401e-01 -5.94879329e-01 -1.24980593e+00 3.37169915e-01 6.34257197e-02 -1.00358880e+00 2.89387796e-02 -2.75312901e-01 -1.09710574e+00 9.89472389e-01 -1.88486290e+00 -1.09794915e+00 -4.80508983e-01 6.16367817e-01 4.12413597e-01 -6.21848702e-01 5.48459232e-01 9.40992311e-02 -1.09951568e+00 8.05318296e-01 1.80182517e-01 1.37043148e-01 8.12219083e-01 -1.54537797e+00 -2.99271345e-01 4.42883849e-01 8.52126330e-02 5.14277756e-01 3.17417741e-01 -4.59041059e-01 -1.35043919e+00 -1.17251062e+00 3.93028140e-01 -5.56957006e-01 5.96589923e-01 4.64049965e-01 -1.30094159e+00 5.97604871e-01 7.26440310e-01 -4.15371023e-02 1.21476185e+00 3.76633853e-01 -4.93696779e-01 -4.53514248e-01 -8.95795166e-01 3.57817262e-01 4.82237548e-01 -1.57281935e-01 -8.90749335e-01 1.01455286e-01 7.53574848e-01 -4.74393755e-01 -1.24780655e+00 5.96626878e-01 4.46393847e-01 -7.40793228e-01 8.75892758e-01 -7.76996493e-01 4.25737649e-01 -2.40518630e-01 4.71041143e-01 -1.87904894e+00 -2.94043362e-01 -3.16614002e-01 -6.12980843e-01 1.44644237e+00 3.05572093e-01 -5.13216794e-01 7.07225323e-01 6.40294075e-01 -3.20116460e-01 -1.32757115e+00 -3.66126120e-01 -4.44229990e-01 3.15054417e-01 -4.01147977e-02 9.43153501e-01 1.45423770e+00 -5.44941351e-02 4.57330257e-01 -1.57575175e-01 1.87808111e-01 5.07192016e-01 3.52664351e-01 8.34477782e-01 -1.36971211e+00 -2.82840639e-01 -6.68534636e-01 2.45985374e-01 -9.75680888e-01 3.78868818e-01 -1.04113543e+00 -4.04347092e-01 -1.35069489e+00 3.98909390e-01 -8.02016914e-01 -1.00195062e+00 9.90704834e-01 -8.89140069e-01 -1.27195790e-01 -2.46316679e-02 -2.06683502e-01 -8.88438940e-01 7.89735079e-01 1.62463260e+00 -3.03989220e-02 -3.51057678e-01 2.10483104e-01 -1.19360995e+00 8.77426803e-01 1.20148325e+00 -6.36153400e-01 -8.33786368e-01 -7.09633887e-01 3.18060741e-02 -2.00335383e-01 5.16969264e-02 -6.68101549e-01 6.04366302e-01 -5.97943485e-01 6.26194358e-01 -2.86201239e-01 1.03414096e-01 -8.29715490e-01 -2.44324341e-01 3.16007972e-01 -4.41517562e-01 -1.50224105e-01 2.34152734e-01 2.83850074e-01 -9.10586491e-02 -4.39296693e-01 7.56909370e-01 -1.77203983e-01 -6.46827579e-01 5.18494487e-01 1.10762686e-01 1.79220602e-01 9.45723653e-01 1.33915752e-01 -6.07785225e-01 -1.57507896e-01 -5.43452501e-01 9.47233796e-01 1.32847484e-02 3.96646976e-01 6.93722248e-01 -1.22776866e+00 -1.04282391e+00 2.63302952e-01 -1.43107325e-01 4.60811168e-01 4.31951493e-01 8.35486472e-01 1.87197179e-01 -2.56316923e-02 -1.05745502e-01 -2.31020525e-01 -1.35059214e+00 1.52319327e-01 3.90615940e-01 -3.98792446e-01 -2.18951821e-01 1.29945898e+00 -2.55439593e-03 -8.31179500e-01 3.50166976e-01 -8.84146020e-02 -5.26297390e-01 2.09816784e-01 8.31711411e-01 5.32037318e-01 -1.96069345e-01 -2.43126526e-01 9.36494321e-02 2.28320524e-01 -4.60841596e-01 2.20509648e-01 1.45589590e+00 2.88322233e-02 2.53668457e-01 2.27021992e-01 5.89105964e-01 2.15936080e-01 -1.41243100e+00 -7.73478508e-01 -1.61683992e-01 -1.31584838e-01 3.02105546e-01 -1.12430799e+00 -1.48627520e+00 8.88107002e-01 2.90938526e-01 -1.20229296e-01 1.41568303e+00 -3.29608679e-01 5.53392112e-01 5.69544017e-01 -9.15501490e-02 -1.01348555e+00 1.94870025e-01 5.75510740e-01 4.17203099e-01 -1.40282941e+00 1.79939419e-01 -4.52662222e-02 -5.90675771e-01 1.11852658e+00 1.50745714e+00 1.22402377e-01 7.87922978e-01 1.87074006e-01 2.27416873e-01 2.45563057e-03 -1.24148524e+00 -8.67391229e-02 6.20359898e-01 8.49551111e-02 6.92052960e-01 2.73325533e-01 -6.27307817e-02 1.08609080e+00 3.97467092e-02 -8.12899172e-02 5.10994315e-01 9.03436124e-01 -9.55575049e-01 -1.33599627e+00 -1.16018139e-01 5.57736754e-01 -3.28516871e-01 -2.50383317e-01 -2.63491511e-01 2.93563426e-01 3.96544814e-01 9.11990166e-01 -3.66814256e-01 -5.61718762e-01 1.08257338e-01 2.71128386e-01 4.93645012e-01 -8.38510633e-01 -1.24770713e+00 -7.89341331e-02 -2.62746245e-01 -1.03914827e-01 -6.31574392e-01 -9.15107876e-02 -1.28227985e+00 -1.54347166e-01 -6.11068368e-01 7.00680494e-01 1.55996561e-01 8.63699019e-01 4.28897023e-01 9.66799140e-01 7.77148902e-01 -2.40605086e-01 -7.72738934e-01 -1.06312442e+00 -4.04392213e-01 -2.20613740e-02 3.24912697e-01 -6.37668312e-01 -3.32973301e-01 -6.12760447e-02]
[9.516715049743652, 3.379037618637085]
5717e949-f007-489d-bc5c-a85de20a6040
towards-complex-artificial-life
1805.06366
null
http://arxiv.org/abs/1805.06366v1
http://arxiv.org/pdf/1805.06366v1.pdf
Towards Complex Artificial Life
An object-oriented combinator chemistry was used to construct an artificial organism with a system architecture possessing characteristics necessary for organisms to evolve into more complex forms. This architecture supports modularity by providing a mechanism for the construction of executable modules called $methods$ that can be duplicated and specialized to increase complexity. At the same time, its support for concurrency provides the flexibility in execution order necessary for redundancy, degeneracy and parallelism to mitigate increased replication costs. The organism is a moving, self-replicating, spatially distributed assembly of elemental combinators called a $roving \: pile.$ The pile hosts an asynchronous message passing computation implemented by parallel subprocesses encoded by genes distributed through out the pile like the plasmids of a bacterial cell.
['Lance R. Williams']
2018-05-16
null
null
null
null
['artificial-life']
['miscellaneous']
[-1.63805291e-01 1.14573650e-01 3.79852355e-01 2.75638044e-01 5.72842896e-01 -6.45123839e-01 6.70759737e-01 9.81724113e-02 -2.24926963e-01 5.69865644e-01 -4.43098575e-01 -3.14573824e-01 -3.39339375e-01 -1.19349253e+00 -3.62582356e-01 -8.64686728e-01 -7.31978655e-01 3.21643353e-01 5.90012014e-01 -2.90846407e-01 3.25633198e-01 5.07503748e-01 -1.93343484e+00 2.94852108e-01 5.82187414e-01 4.31667119e-01 9.25726712e-01 8.21565688e-01 -3.09173584e-01 9.06314611e-01 -5.55047154e-01 -4.22009975e-02 1.65374756e-01 -6.16614223e-01 -3.74598771e-01 3.53542805e-01 -7.97398269e-01 2.11871415e-01 -5.58771640e-02 4.50487435e-01 -9.76171903e-03 -1.48382828e-01 6.37459457e-01 -1.34886038e+00 -2.13822052e-01 7.55124912e-02 -2.52366811e-02 -4.30820525e-01 4.37297970e-01 4.61805165e-01 6.00601077e-01 -8.01434994e-01 8.56443048e-01 1.12434411e+00 6.66467428e-01 4.59661514e-01 -1.40920413e+00 7.70831928e-02 -4.35281634e-01 -6.38943791e-01 -1.64621866e+00 -5.07812917e-01 -2.06712075e-02 -5.20074069e-01 1.56138444e+00 8.17727923e-01 1.23083234e+00 2.94205546e-01 9.91899550e-01 4.16506752e-02 8.14911008e-01 -3.87890399e-01 6.81428313e-01 -5.77487946e-02 -4.49185789e-01 1.05906796e+00 8.99699807e-01 -2.67865121e-01 -5.05548954e-01 -7.56753504e-01 1.10566342e+00 1.13546019e-02 -7.26858228e-02 -5.72680533e-01 -1.28241467e+00 3.23956668e-01 -6.81766123e-02 4.94963825e-01 -3.50454003e-01 6.21535718e-01 4.26829576e-01 4.69108164e-01 -1.95492446e-01 6.85971856e-01 -6.58949494e-01 -2.51049429e-01 8.13655555e-02 3.48454624e-01 1.39884818e+00 8.64344478e-01 6.69559717e-01 2.58512974e-01 5.63209832e-01 4.52936053e-01 5.55679023e-01 2.12904841e-01 5.75688601e-01 -1.13488042e+00 -2.58358330e-01 1.28082597e+00 1.12147644e-01 -9.34032261e-01 -4.94526476e-01 -3.97015572e-01 -7.25062907e-01 5.57687104e-01 1.65170029e-01 1.36716843e-01 -2.33963430e-01 1.41271019e+00 3.58217269e-01 -5.05284548e-01 8.95363167e-02 2.38383144e-01 4.68254872e-02 8.66903305e-01 1.26860842e-01 -1.62587523e-01 1.44717205e+00 -5.66341639e-01 -3.09789211e-01 3.06610852e-01 7.97759712e-01 -6.86179042e-01 6.71841979e-01 3.24696749e-01 -1.42705834e+00 -6.00017719e-02 -1.08917356e+00 5.38393855e-01 -4.94145215e-01 -2.21515372e-01 1.09675801e+00 7.81379700e-01 -1.38484919e+00 5.14752567e-01 -9.20105636e-01 -5.54803848e-01 -6.33815378e-02 3.85919333e-01 -3.83914858e-01 4.85434443e-01 -3.18969399e-01 8.73051703e-01 4.92112875e-01 -2.37106770e-01 -1.14939630e+00 -1.81776777e-01 -5.03142118e-01 1.88059792e-01 -2.03597490e-02 -1.43475640e+00 8.31506431e-01 -1.01592553e+00 -1.63805377e+00 8.50726485e-01 5.10355318e-03 -1.08241081e-01 1.52431980e-01 6.65403008e-01 1.10633783e-01 2.03314573e-02 8.38627517e-02 3.10711682e-01 4.95374918e-01 -1.30591881e+00 -6.69336736e-01 -2.51665235e-01 -1.48492068e-01 1.59422129e-01 6.10484481e-02 1.77498311e-01 -7.87591003e-03 -6.89848423e-01 3.92069936e-01 -7.47560322e-01 -4.22737241e-01 -8.23766142e-02 6.05708398e-02 -2.46277690e-01 6.12049639e-01 -2.78988808e-01 7.90261149e-01 -2.21697593e+00 3.93340528e-01 1.95126072e-01 3.87234062e-01 -2.65256733e-01 1.10118471e-01 1.28162694e+00 2.26335734e-01 2.90106118e-01 -2.54868388e-01 3.67512405e-01 5.39316088e-02 2.49761716e-01 3.65966678e-01 3.29678476e-01 2.78397799e-01 4.84114349e-01 -7.25085020e-01 -5.96582144e-02 -5.48816919e-01 -2.23814975e-02 -6.35349214e-01 2.08750650e-01 -5.29118717e-01 1.50108606e-01 -3.42376351e-01 7.72338331e-01 2.25810483e-01 -3.25427324e-01 6.84865296e-01 7.58172750e-01 -8.33228707e-01 1.99887499e-01 -1.27946556e+00 1.30917466e+00 -1.95459992e-01 2.84848303e-01 7.45023131e-01 -7.87040532e-01 8.15627396e-01 5.01732409e-01 4.95643765e-01 -8.28986615e-02 1.13726214e-01 5.01285315e-01 3.23198795e-01 -4.10279393e-01 5.02496302e-01 -1.04655527e-01 -1.56852797e-01 7.14343011e-01 -2.41168275e-01 -6.17265165e-01 3.08983505e-01 2.94969290e-01 1.61946630e+00 1.96788415e-01 5.38818479e-01 -8.26189697e-01 3.65679175e-01 3.77666533e-01 8.04814696e-01 7.44044125e-01 1.48410305e-01 -1.92433760e-01 4.59644586e-01 -5.10636866e-01 -1.58949912e+00 -1.26583743e+00 -6.13638610e-02 1.01662481e+00 7.87239671e-02 -8.33600581e-01 -7.03507125e-01 3.55713844e-01 -4.26223874e-02 1.67323560e-01 -5.36708832e-02 1.89526081e-01 -4.24639493e-01 -9.39247012e-01 5.82036614e-01 -1.89762145e-01 4.85075444e-01 -9.18089867e-01 -1.22603655e+00 6.83263242e-01 3.03933710e-01 -2.12146461e-01 2.10253179e-01 4.00111377e-01 -9.01063144e-01 -7.68919945e-01 -1.99973062e-01 -9.22900558e-01 8.25104713e-01 3.82144034e-01 9.53431726e-01 7.35402465e-01 -8.06294978e-01 6.01072729e-01 -3.60591598e-02 -5.00099838e-01 -7.51063347e-01 -2.70595551e-01 2.33749077e-02 -3.98093641e-01 -6.20699465e-01 -8.86886835e-01 -4.40034539e-01 3.50642234e-01 -1.26217508e+00 3.00920486e-01 2.62606114e-01 9.18773830e-01 1.12648465e-01 5.03135085e-01 4.30632144e-01 -3.94749790e-02 5.17381251e-01 -4.90900129e-01 -5.99292219e-01 1.15419574e-01 -1.84427425e-01 -1.30725831e-01 6.20182574e-01 1.03423875e-02 -1.02796471e+00 3.98831964e-02 2.17809245e-01 9.03319478e-01 8.98909755e-03 3.50729644e-01 -3.58119786e-01 -3.06188196e-01 4.21166450e-01 6.52758121e-01 4.81191128e-01 -1.83884159e-01 1.22461133e-01 5.99371314e-01 1.62342191e-02 -8.16696882e-01 3.39159310e-01 5.53651571e-01 2.48435810e-01 -1.26680529e+00 9.23108637e-01 -2.21589338e-02 -2.12010011e-01 -2.37579286e-01 5.15739679e-01 -5.86390793e-01 -9.89372253e-01 8.72307241e-01 -1.20895886e+00 -3.49257439e-01 -5.34760833e-01 -4.59418222e-02 -8.50606322e-01 1.69916645e-01 -7.37337708e-01 -9.08829689e-01 -3.05028036e-02 -8.56144547e-01 5.24332464e-01 1.18797854e-01 -4.39093083e-01 -7.23220706e-01 4.46048677e-01 -1.62917569e-01 8.01181138e-01 6.44584447e-02 1.17459166e+00 -2.53698081e-01 -1.18595183e+00 1.98590271e-02 2.03418061e-01 -2.99697936e-01 1.04182139e-01 3.33236456e-01 -3.20177585e-01 -1.60388380e-01 1.34699672e-01 1.13624021e-01 2.03169480e-01 -2.76862770e-01 4.99885559e-01 -4.73331183e-01 -6.29616499e-01 3.00003171e-01 1.41986716e+00 7.18181431e-01 9.04019892e-01 6.21574819e-01 -6.12139292e-02 6.69141591e-01 -1.35480016e-01 6.82212532e-01 3.80067706e-01 2.83545136e-01 3.44088018e-01 3.71639013e-01 1.97891131e-01 3.93937588e-01 2.66603917e-01 1.00773370e+00 -3.84423196e-01 -2.21297175e-01 -1.18635499e+00 4.86653894e-01 -1.70723355e+00 -1.08988702e+00 -2.77395278e-01 2.22332716e+00 9.00771379e-01 -2.26195395e-01 9.65165198e-02 1.58814833e-01 5.41866243e-01 -5.62517762e-01 5.98870292e-02 -7.55309522e-01 -1.82222649e-01 9.08139274e-02 3.34433317e-01 8.37377012e-02 -6.18719101e-01 6.02986157e-01 7.60821533e+00 4.95574623e-01 -7.99726248e-01 9.21268202e-03 3.81684899e-01 1.64116144e-01 -4.08316374e-01 3.99977177e-01 -4.55011755e-01 4.02635694e-01 9.75838661e-01 -3.84245366e-01 6.47389114e-01 5.40781081e-01 3.66095275e-01 -6.29482925e-01 -6.03689313e-01 4.70151812e-01 -3.59786004e-01 -1.76980174e+00 -4.72714603e-02 3.25102925e-01 6.48795366e-01 -1.15897246e-01 -5.03844261e-01 -2.02941000e-01 7.34116137e-01 -7.55381942e-01 8.12727392e-01 6.43360913e-01 2.12276101e-01 -4.15273905e-01 2.01854169e-01 7.58077741e-01 -1.19505703e+00 -3.23735327e-01 -1.22853242e-01 -7.85924911e-01 1.28269091e-01 2.71027595e-01 -7.86335230e-01 4.45672244e-01 5.65369368e-01 -2.66971916e-01 -2.16887459e-01 1.22943842e+00 3.68183345e-01 3.99920195e-02 -2.93885440e-01 -4.65386480e-01 1.47640379e-03 -5.38013518e-01 9.06901002e-01 1.16805530e+00 4.27104115e-01 2.23190576e-01 -5.98466694e-02 6.93199217e-01 3.71592283e-01 1.18636690e-01 -1.03415811e+00 -2.14563817e-01 4.44150627e-01 1.14948237e+00 -1.13574386e+00 -4.96051788e-01 -1.56107187e-01 6.60602450e-01 3.25696617e-02 4.49907556e-02 -3.52968723e-01 -6.65337265e-01 7.00216234e-01 4.98895049e-01 3.19021314e-01 -1.10525262e+00 -4.21646535e-01 -8.76791120e-01 -3.13451856e-01 -8.70309830e-01 -6.89839870e-02 -6.63827360e-01 -1.00873852e+00 1.54267788e-01 -3.78381521e-01 -5.92130184e-01 -1.96624383e-01 -4.89678890e-01 -6.37670517e-01 8.03411663e-01 -2.02272043e-01 -7.28592277e-01 9.95323062e-03 5.04645221e-02 2.61166066e-01 -4.15822208e-01 1.15528679e+00 -4.20605898e-01 -4.94025409e-01 -2.90042460e-01 5.37476659e-01 -4.14038211e-01 -1.24141984e-01 -8.71978641e-01 1.98555052e-01 6.06617391e-01 -5.28059840e-01 1.17387617e+00 4.91983652e-01 -9.13878739e-01 -2.18611503e+00 -7.74753749e-01 9.81639802e-01 -1.81470990e-01 6.50106668e-01 -6.12361968e-01 -4.99908328e-01 4.31140065e-01 4.30386275e-01 -6.89249694e-01 6.80262864e-01 -4.00145173e-01 5.51115051e-02 -1.21858910e-01 -1.37802708e+00 1.01319170e+00 1.09975362e+00 -9.27402526e-02 -3.88736308e-01 8.76304135e-02 6.09919906e-01 5.72705790e-02 -8.94753456e-01 -8.98817405e-02 6.95379853e-01 -8.87751102e-01 9.20334995e-01 -1.28283024e-01 1.39934540e-01 -6.97784066e-01 -7.46397823e-02 -9.33624029e-01 -6.04146779e-01 -1.10786116e+00 5.42078018e-01 1.00458574e+00 1.96443155e-01 -1.30659258e+00 3.57970357e-01 6.75106227e-01 -2.22513750e-01 -2.92717725e-01 -1.09824586e+00 -9.97974753e-01 -3.75053525e-01 1.12256430e-01 6.46037638e-01 9.00679708e-01 6.74993753e-01 6.15450442e-02 3.68321300e-01 -1.84431404e-01 5.52521884e-01 -2.07222909e-01 8.14855993e-01 -9.85126972e-01 -6.14927709e-01 -6.46728933e-01 -7.58054018e-01 -6.46003306e-01 -5.05838752e-01 -9.41012979e-01 6.77273273e-02 -1.22358501e+00 2.91039914e-01 -8.72120142e-01 4.12187755e-01 2.79503763e-01 5.23611724e-01 -1.55430391e-01 3.20046663e-01 4.86027241e-01 -3.91835213e-01 2.68726379e-01 9.50535059e-01 2.14734539e-01 -2.59792000e-01 -5.10617375e-01 -4.65619028e-01 8.43778193e-01 9.95945036e-01 -5.77560723e-01 -2.01420039e-01 -2.06951305e-01 6.88620389e-01 3.74259412e-01 4.08796877e-01 -1.02045071e+00 2.82886356e-01 -4.62234080e-01 5.03961034e-02 -1.66538402e-01 2.90762454e-01 -7.94120669e-01 1.15094125e+00 1.20961452e+00 2.29980260e-01 6.12852514e-01 9.30258259e-02 4.75334853e-01 2.41789937e-01 -4.39771622e-01 4.05337542e-01 -7.95201480e-01 -2.50595093e-01 -2.65634775e-01 -1.60131645e+00 -5.08566558e-01 1.61717522e+00 -3.40566188e-01 -3.64756823e-01 1.13643043e-01 -5.02156734e-01 -2.33940333e-01 1.30794203e+00 -1.61488593e-01 3.94923896e-01 -8.32197607e-01 -3.42683822e-01 2.42257729e-01 -2.29438081e-01 -2.39558965e-01 -3.28151315e-01 5.07409990e-01 -1.50117254e+00 4.71797884e-01 -5.76025963e-01 -6.18934274e-01 -9.94029343e-01 2.27945089e-01 4.26056564e-01 7.77994171e-02 -4.35432792e-01 6.83865786e-01 1.63099766e-01 -4.19637114e-01 -3.69519144e-01 -1.71779707e-01 3.94496530e-01 -4.81585979e-01 5.37298858e-01 5.36139071e-01 -6.38486519e-02 -1.84364513e-01 -3.86177212e-01 -6.04036078e-02 6.99715078e-01 -4.07296121e-01 1.37815571e+00 -8.38439986e-02 -1.34499264e+00 5.28855741e-01 3.50916445e-01 8.18253867e-03 -6.51451349e-01 6.76301301e-01 1.50441512e-01 -5.08913577e-01 -7.35919356e-01 -4.06843483e-01 -1.26342326e-01 -8.16468596e-02 -4.20722067e-02 8.36095333e-01 7.32856154e-01 -1.86496209e-02 1.36817440e-01 6.30214512e-01 8.80829394e-01 -9.66363907e-01 1.09275006e-01 5.90492785e-01 7.61802912e-01 1.36548271e-02 -1.09435230e-01 -5.25264800e-01 -1.39925584e-01 1.06825209e+00 2.20099226e-01 -2.32941955e-01 4.77230281e-01 8.45115185e-01 -6.00708961e-01 -4.49648559e-01 -1.39774239e+00 2.47198492e-01 -7.70414889e-01 8.07673812e-01 5.61572075e-01 2.49597520e-01 -1.08611846e+00 4.00376678e-01 1.55813903e-01 -3.18125561e-02 6.46553278e-01 1.72982204e+00 -1.09399951e+00 -1.45923555e+00 -8.09285700e-01 2.11519033e-01 -1.01752050e-01 6.92568272e-02 -2.94240415e-01 7.76443601e-01 6.03706181e-01 7.68229365e-01 4.57356483e-01 6.40232936e-02 -1.03816934e-01 2.97982663e-01 5.94779730e-01 -5.58678389e-01 -1.00597513e+00 -4.84873578e-02 4.94789451e-01 -2.91196793e-01 4.26852740e-02 -1.04740405e+00 -1.45602369e+00 -5.84896743e-01 1.13048919e-01 3.08993846e-01 1.03819180e+00 4.74260420e-01 6.52800441e-01 4.80220169e-01 6.43901050e-01 -6.64142132e-01 -3.30845475e-01 -3.97484809e-01 -8.04068387e-01 -1.54939517e-01 -4.64046627e-01 -2.57943243e-01 -9.77814570e-02 4.22138929e-01]
[5.614199638366699, 4.185136795043945]
a0a6ac45-f3f6-4956-8de2-d48f28fdc897
basn-learning-steganography-with-binary
1907.04362
null
https://arxiv.org/abs/1907.04362v1
https://arxiv.org/pdf/1907.04362v1.pdf
BASN -- Learning Steganography with Binary Attention Mechanism
Secret information sharing through image carrier has aroused much research attention in recent years with images' growing domination on the Internet and mobile applications. However, with the booming trend of convolutional neural networks, image steganography is facing a more significant challenge from neural-network-automated tasks. To improve the security of image steganography and minimize task result distortion, models must maintain the feature maps generated by task-specific networks being irrelative to any hidden information embedded in the carrier. This paper introduces a binary attention mechanism into image steganography to help alleviate the security issue, and in the meanwhile, increase embedding payload capacity. The experimental results show that our method has the advantage of high payload capacity with little feature map distortion and still resist detection by state-of-the-art image steganalysis algorithms.
['Yang Yang']
2019-07-09
null
null
null
null
['steganalysis', 'image-steganography']
['computer-vision', 'computer-vision']
[ 8.32077205e-01 2.48137355e-01 -1.66563615e-01 1.22823484e-01 2.49443009e-01 -7.91766271e-02 2.86998063e-01 -6.73239291e-01 -3.30044955e-01 3.12227398e-01 -8.95808712e-02 -4.87919182e-01 1.37514725e-01 -8.72116923e-01 -4.61129606e-01 -8.87607515e-01 -1.91205531e-01 -4.77020502e-01 3.82751733e-01 -4.20975238e-01 5.19702435e-01 6.62262663e-02 -1.34242618e+00 1.54356882e-01 8.12302291e-01 1.14420021e+00 4.66265798e-01 3.32605630e-01 6.16647378e-02 9.47009444e-01 -4.82504010e-01 -4.64063078e-01 4.24954832e-01 -8.00391853e-01 -3.87364864e-01 2.62209594e-01 -1.93873674e-01 -2.36404881e-01 -1.03158951e+00 1.76509559e+00 4.16399866e-01 -5.05179107e-01 4.03997190e-02 -1.35009491e+00 -9.66335416e-01 6.58701360e-01 -6.45175040e-01 1.70893624e-01 -2.20429182e-01 5.17446101e-01 4.08604711e-01 -4.19980466e-01 5.30456066e-01 1.14787054e+00 4.60233212e-01 6.65011585e-01 -7.37742245e-01 -1.14535296e+00 -2.33097121e-01 6.10673666e-01 -1.35468996e+00 -4.63518351e-01 9.80632484e-01 6.76195994e-02 6.55108511e-01 3.87975305e-01 9.26795125e-01 5.90914905e-01 5.06525874e-01 4.47056413e-01 9.16498780e-01 -4.02454734e-01 -3.05182129e-01 2.47320175e-01 -7.23984659e-01 9.80447531e-01 6.53231919e-01 1.63055912e-01 -6.02412857e-02 3.45479250e-01 9.93200183e-01 2.44770095e-01 -6.59701884e-01 -3.76746446e-01 -1.27559400e+00 8.26969743e-01 5.76650798e-01 5.19439697e-01 -1.77732646e-01 4.48732346e-01 1.52649790e-01 5.01919329e-01 2.56559730e-01 2.91489214e-01 -9.02038887e-02 2.73570836e-01 -5.84041715e-01 -1.95645139e-01 6.64005280e-01 8.07164550e-01 6.56003773e-01 2.96211898e-01 5.01266956e-01 2.59241551e-01 5.23137748e-01 6.22855246e-01 7.59517670e-01 -6.33668602e-01 5.83563209e-01 6.77242875e-01 -4.57548290e-01 -1.76711810e+00 1.80861130e-01 -6.07547998e-01 -1.26503897e+00 2.02749133e-01 1.12893127e-01 4.57378328e-02 -8.43183935e-01 1.36802673e+00 -1.51882218e-02 1.40424699e-01 1.89060435e-01 7.19735384e-01 4.76648360e-01 7.81507373e-01 -2.60658532e-01 -2.59086788e-01 1.42659879e+00 -7.63102770e-01 -8.92869174e-01 -5.35926700e-01 6.19850695e-01 -7.84272611e-01 3.72456759e-01 3.75390053e-02 -8.19542050e-01 -4.99037236e-01 -1.57432520e+00 3.95360827e-01 -1.54761761e-01 -4.80645508e-01 5.16331494e-01 1.18260574e+00 -7.98077881e-01 2.07430482e-01 -4.44994628e-01 -2.36865375e-02 7.45175183e-01 6.88894093e-01 -4.00271863e-01 -2.39271238e-01 -1.56679964e+00 7.39283621e-01 8.98101807e-01 1.53860331e-01 -6.82649732e-01 -5.77049963e-02 -9.89227414e-01 2.12147355e-01 3.56994987e-01 -1.23478763e-01 6.03847980e-01 -1.33756411e+00 -1.11675572e+00 7.17487395e-01 3.77243787e-01 -5.52489877e-01 5.53904057e-01 5.53701401e-01 -7.66438246e-01 2.70962507e-01 -2.58578211e-01 7.69222081e-01 1.18775654e+00 -1.02879190e+00 -6.64638996e-01 -9.43757519e-02 -4.47739661e-01 -4.68189083e-02 -7.63528228e-01 -6.30096421e-02 -4.71268803e-01 -5.59867799e-01 4.06505734e-01 -1.16436708e+00 -3.32446009e-01 1.78016439e-01 -3.71660084e-01 2.99913257e-01 1.56677008e+00 -7.18658149e-01 1.24099457e+00 -2.38562775e+00 -1.43269464e-01 3.99502039e-01 3.35823983e-01 8.95972669e-01 -1.04517065e-01 3.19091290e-01 -1.70158610e-01 5.04186749e-01 -4.15217787e-01 3.13364327e-01 -5.30314326e-01 1.22144714e-01 -2.07444727e-01 8.20875943e-01 -8.58043581e-02 1.12303150e+00 -7.95708537e-01 -6.59369051e-01 2.65758544e-01 5.35888731e-01 -3.62169832e-01 -1.11755833e-01 1.33731514e-01 3.31004530e-01 -5.37695825e-01 3.87613952e-01 8.07787895e-01 -5.93571126e-01 3.72637033e-01 -5.43633364e-02 5.41717745e-02 -2.39914224e-01 -7.75472045e-01 1.11981440e+00 -8.43733922e-02 9.99865592e-01 -1.20425753e-01 -1.06163919e+00 9.16715860e-01 3.42255205e-01 3.87463212e-01 -7.93265641e-01 5.60228169e-01 3.96075249e-01 6.12926364e-01 -7.78552234e-01 2.99532086e-01 1.24158949e-01 6.03106804e-02 4.55686271e-01 -3.90248686e-01 1.48794845e-01 -3.29185098e-01 -4.10342626e-02 8.37068141e-01 -2.96945363e-01 3.01368445e-01 -6.02658875e-02 7.25989521e-01 -1.28004834e-01 4.39816564e-01 4.35886800e-01 -1.73255578e-01 2.51645386e-01 2.47030228e-01 -3.25515062e-01 -1.38258970e+00 -1.07689515e-01 1.99059084e-01 2.92103976e-01 6.58968568e-01 1.13658488e-01 -9.20505583e-01 -5.96795797e-01 -2.97554463e-01 2.38252893e-01 -3.92012209e-01 -6.21626735e-01 -7.89750636e-01 -4.59341615e-01 9.04520214e-01 -2.89257228e-01 1.62099600e+00 -1.32716274e+00 -7.17901468e-01 2.58133858e-01 -2.71237314e-01 -1.19235063e+00 -5.70632219e-01 -4.14426744e-01 -6.96819901e-01 -1.12289715e+00 -1.04717112e+00 -1.31415176e+00 1.01029968e+00 7.53993213e-01 3.26109558e-01 7.37121463e-01 -1.92040682e-01 -2.51431853e-01 -4.86324549e-01 -4.11236405e-01 -8.96722376e-01 1.06168181e-01 -4.00367379e-01 3.05706501e-01 1.99022770e-01 -4.42686200e-01 -8.18165421e-01 5.76278031e-01 -1.34405887e+00 4.51945305e-01 9.71345305e-01 7.57115304e-01 -1.31135099e-02 7.74476588e-01 3.17020565e-01 -6.39203787e-01 2.58332789e-01 -4.55085307e-01 -5.94864368e-01 1.28400087e-01 -9.71359551e-01 -7.02115744e-02 4.28418368e-01 -5.61204791e-01 -7.02789366e-01 -2.70353258e-01 1.32121280e-01 -3.31490129e-01 4.19139266e-01 4.36083794e-01 -4.43503141e-01 -8.16555619e-01 3.34725559e-01 8.91278565e-01 8.37042868e-01 3.46135460e-02 -1.63701534e-01 8.43151391e-01 4.37175304e-01 6.65597320e-01 1.19330037e+00 5.86122632e-01 1.82826266e-01 -7.32905149e-01 -1.33886725e-01 5.82119823e-02 8.85343328e-02 -2.58307815e-01 8.04331243e-01 -6.72828138e-01 -8.18850040e-01 1.03547001e+00 -1.14955842e+00 2.65000075e-01 3.19584101e-01 2.33135596e-01 -1.59837514e-01 8.30666423e-01 -3.52303863e-01 -5.70684731e-01 -3.32111299e-01 -1.31026137e+00 8.55449289e-02 1.18670188e-01 4.26914901e-01 -9.39596236e-01 -5.18371105e-01 2.44278505e-01 6.56457305e-01 3.11839968e-01 7.98640311e-01 -4.32738066e-01 -1.14497006e+00 -5.71909070e-01 -5.36059022e-01 6.18238151e-01 2.70993322e-01 -7.43968189e-01 -5.83607435e-01 -4.76423562e-01 4.18872654e-01 1.53976664e-01 9.86581266e-01 6.94806455e-03 1.27495492e+00 -9.18105900e-01 -4.00729626e-01 8.22802067e-01 1.54162741e+00 5.63572168e-01 1.35597050e+00 5.96068263e-01 7.55669236e-01 7.22522795e-01 2.46847361e-01 9.22725871e-02 9.88830626e-02 2.20343962e-01 9.45126295e-01 -2.06137806e-01 -1.54464468e-01 -3.85889858e-01 2.03659564e-01 8.07927489e-01 -3.37429978e-02 -7.12132156e-01 -5.89713931e-01 4.88212138e-01 -1.67821598e+00 -1.13879633e+00 5.18347733e-02 1.78573871e+00 6.66869462e-01 2.45054930e-01 -6.23288572e-01 4.93205607e-01 1.33836067e+00 5.94299436e-01 -4.96722400e-01 4.97974493e-02 -2.95586377e-01 -3.92514229e-01 1.13525486e+00 8.31786096e-02 -8.62918973e-01 8.60577345e-01 5.45834732e+00 1.04331589e+00 -1.29680538e+00 3.09697147e-02 7.04994798e-01 6.31018400e-01 -2.87128657e-01 6.68451786e-02 -3.87479156e-01 9.09599781e-01 5.52246034e-01 -8.77015889e-02 5.82109749e-01 6.54619694e-01 -1.78837553e-01 1.26653239e-01 -3.72855574e-01 1.16301465e+00 3.30647498e-01 -1.45365834e+00 5.70606962e-02 7.63171673e-01 8.01159799e-01 -4.03476387e-01 5.76422811e-01 -3.09780985e-01 -2.05810323e-01 -1.01931059e+00 5.00025749e-01 2.78042313e-02 1.23304141e+00 -7.40805686e-01 9.24744487e-01 4.32207316e-01 -9.18620110e-01 -2.26986989e-01 -4.69723165e-01 2.03664764e-03 1.08668238e-01 2.74347067e-01 -8.03702116e-01 2.21168339e-01 3.24980259e-01 6.88348293e-01 -2.81662911e-01 9.06081438e-01 -2.87508368e-01 5.29155016e-01 8.90040770e-02 -2.31067270e-01 4.34047371e-01 7.13934302e-02 6.86257303e-01 7.20919073e-01 6.64265335e-01 4.01493087e-02 -1.97033763e-01 5.22908390e-01 -1.52157858e-01 -1.63548797e-01 -8.94467294e-01 -3.06935281e-01 4.44034487e-01 8.68843615e-01 -9.25221264e-01 -3.04622918e-01 -1.48317590e-01 1.03045487e+00 -5.86919010e-01 5.07475846e-02 -7.44133174e-01 -8.03981006e-01 3.30179602e-01 2.34845430e-01 5.87568700e-01 -2.46440664e-01 -1.08030640e-01 -9.28226352e-01 -1.85494706e-01 -9.85971868e-01 -2.74762034e-01 -4.83639270e-01 -5.29016674e-01 4.59957451e-01 -3.56301516e-01 -1.49755013e+00 6.54002698e-03 -3.41058522e-01 -4.46634769e-01 6.35576785e-01 -1.69220817e+00 -1.11955357e+00 -2.53422409e-01 6.32215321e-01 3.77483428e-01 -5.91125369e-01 5.48684895e-01 1.67118296e-01 -2.89994240e-01 5.63726842e-01 1.51258543e-01 4.32484835e-01 1.86256632e-01 -1.74787074e-01 7.19547212e-01 1.01817203e+00 -3.10338229e-01 2.97051132e-01 7.63315916e-01 -8.04056287e-01 -1.46594882e+00 -1.09613776e+00 9.27606583e-01 4.35025513e-01 4.80143666e-01 -2.17563331e-01 -7.98088193e-01 4.55349058e-01 3.41655165e-01 -1.80655658e-01 2.18803406e-01 -1.03004324e+00 -3.19770634e-01 5.42481430e-02 -1.39100182e+00 5.89101732e-01 1.08438087e+00 -3.26717436e-01 -3.83430459e-02 1.66266318e-02 8.78005445e-01 -2.24874079e-01 -2.42693931e-01 3.58971804e-01 6.24331713e-01 -9.20388997e-01 8.39155912e-01 1.14091158e-01 4.61383641e-01 -2.40873724e-01 1.39341176e-01 -9.48964119e-01 -3.12988073e-01 -8.62198889e-01 2.35644709e-02 7.45986223e-01 2.08006978e-01 -1.03859091e+00 1.00810814e+00 9.06776264e-02 1.66394606e-01 -3.63814712e-01 -9.03105199e-01 -6.28838718e-01 -5.40144861e-01 -1.65883582e-02 6.84738874e-01 1.02720678e+00 -7.88528398e-02 -2.13856071e-01 -1.00359654e+00 3.35351713e-02 8.28541934e-01 -4.40594316e-01 5.01965821e-01 -1.05560541e+00 1.40431672e-02 -3.70085329e-01 -8.51274908e-01 -1.04480517e+00 -3.35787460e-02 -8.30896676e-01 -8.98988247e-02 -1.06987512e+00 9.84479263e-02 -4.73458081e-01 -1.26868680e-01 4.15407389e-01 8.33122432e-02 8.37637842e-01 2.64952660e-01 5.47555566e-01 -4.81909424e-01 3.28855038e-01 1.80033600e+00 -3.45576376e-01 1.90569907e-01 -2.12681487e-01 -8.73785079e-01 5.91564119e-01 9.73393381e-01 -7.70469368e-01 -5.23130178e-01 -3.56839687e-01 4.20148104e-01 1.34887397e-01 4.06357229e-01 -1.22578371e+00 3.84117573e-01 -3.66561189e-02 3.28935146e-01 -1.14704827e-02 1.20945573e-01 -1.19337845e+00 5.07977664e-01 1.42182744e+00 -1.32740393e-01 -2.57051051e-01 -2.57832110e-01 6.68932498e-01 -2.24766552e-01 -2.19434530e-01 9.46253598e-01 -4.34844613e-01 -1.00929880e+00 3.30678433e-01 -5.65053105e-01 -4.84895647e-01 1.21988082e+00 -8.62079501e-01 -2.49014199e-01 -5.56741655e-01 -5.63174672e-02 1.91558674e-02 5.44294775e-01 5.39135575e-01 1.10802543e+00 -1.08935845e+00 -6.40616417e-01 6.70215011e-01 -6.78727478e-02 -3.63287777e-01 4.02495503e-01 4.90259379e-01 -8.43167424e-01 4.85847324e-01 -4.41108525e-01 -3.44765961e-01 -1.40152323e+00 5.31643808e-01 2.08647445e-01 -2.49170333e-01 -5.51982522e-01 6.83968604e-01 1.57158837e-01 2.29089513e-01 -4.02291752e-02 3.36020082e-01 -2.82173723e-01 -4.64532197e-01 7.47452259e-01 2.82348961e-01 -3.93420130e-01 -8.29702735e-01 2.96396948e-02 3.76465887e-01 -3.09793323e-01 7.80209899e-02 9.66589332e-01 -4.21045184e-01 -2.89556980e-01 -4.28774625e-01 1.42690456e+00 -3.60258669e-01 -1.03470349e+00 -2.29793757e-01 -2.52746940e-01 -8.75453174e-01 3.56605679e-01 -4.96121287e-01 -1.53833950e+00 6.63772106e-01 7.45770752e-01 6.26001537e-01 1.02236533e+00 -4.06141818e-01 1.32340395e+00 2.96683997e-01 5.97982287e-01 -5.85666180e-01 2.48767897e-01 2.74036050e-01 4.91706938e-01 -1.16104627e+00 -9.44672674e-02 -5.72571218e-01 -4.68499273e-01 8.95313144e-01 3.87185991e-01 -2.06907749e-01 6.94723487e-01 -5.94348833e-02 -1.06204607e-01 -1.52613088e-01 -2.61757582e-01 1.11036487e-01 3.03074392e-03 7.18121290e-01 -2.42172524e-01 -3.47736061e-01 -2.82237619e-01 -1.76002413e-01 -3.74002792e-02 5.43394871e-03 5.57068706e-01 9.71922457e-01 -9.36315775e-01 -1.19875419e+00 -5.12528777e-01 2.39466980e-01 -9.43146646e-01 -2.88179100e-01 1.04714580e-01 6.99352741e-01 2.64292210e-01 9.21945393e-01 -3.56171280e-02 -7.95155644e-01 -2.62011200e-01 -4.15551096e-01 2.07883164e-01 -1.38647661e-01 -2.97848046e-01 -3.31604406e-02 -3.10055196e-01 -1.31862089e-01 -4.84429449e-01 -1.49396494e-01 -9.82377410e-01 -6.97035372e-01 -7.40509152e-01 1.42350987e-01 1.01167452e+00 8.22553039e-01 3.90663326e-01 5.02343118e-01 1.03796220e+00 -5.18009663e-01 -3.70992482e-01 -8.27258468e-01 -5.62150061e-01 2.19642803e-01 4.53590393e-01 6.12719078e-03 -4.86453056e-01 1.03734717e-01]
[4.294663429260254, 8.062056541442871]
4924c6b0-6689-49d5-894f-2ee729ee742b
named-entity-recognition-only-from-word
1909.00164
null
https://arxiv.org/abs/1909.00164v2
https://arxiv.org/pdf/1909.00164v2.pdf
Named Entity Recognition Only from Word Embeddings
Deep neural network models have helped named entity (NE) recognition achieve amazing performance without handcrafting features. However, existing systems require large amounts of human annotated training data. Efforts have been made to replace human annotations with external knowledge (e.g., NE dictionary, part-of-speech tags), while it is another challenge to obtain such effective resources. In this work, we propose a fully unsupervised NE recognition model which only needs to take informative clues from pre-trained word embeddings. We first apply Gaussian Hidden Markov Model and Deep Autoencoding Gaussian Mixture Model on word embeddings for entity span detection and type prediction, and then further design an instance selector based on reinforcement learning to distinguish positive sentences from noisy sentences and refine these coarse-grained annotations through neural networks. Extensive experiments on CoNLL benchmark datasets demonstrate that our proposed light NE recognition model achieves remarkable performance without using any annotated lexicon or corpus.
['Junlang Zhan', 'Ying Luo', 'Hai Zhao']
2019-08-31
null
https://aclanthology.org/2020.emnlp-main.723
https://aclanthology.org/2020.emnlp-main.723.pdf
emnlp-2020-11
['type-prediction']
['computer-code']
[ 2.44760718e-02 -1.31500736e-02 -2.75180489e-01 -6.87499106e-01 -7.48749614e-01 -5.65184295e-01 3.66949618e-01 7.64279254e-03 -9.38728809e-01 8.10179532e-01 4.19132471e-01 -1.98536173e-01 2.32625976e-01 -9.09695268e-01 -4.20655638e-01 -3.70919019e-01 2.19335333e-01 5.37701428e-01 8.33334997e-02 -8.35350007e-02 1.20024338e-01 4.32597935e-01 -1.05930078e+00 7.32718185e-02 1.06303239e+00 9.16276097e-01 3.92548591e-01 6.02900565e-01 -6.87266290e-01 7.63155580e-01 -7.37904608e-01 -5.41323006e-01 6.24972731e-02 -1.36551976e-01 -8.16555500e-01 -2.94230301e-02 -1.45104080e-01 -2.63152778e-01 -5.06319046e-01 1.08307433e+00 7.71252036e-01 3.27498019e-01 7.46464133e-01 -8.26204717e-01 -1.04741514e+00 8.17351043e-01 -1.55572847e-01 3.69194329e-01 -6.89426214e-02 1.64542779e-01 1.13788736e+00 -1.17622256e+00 6.59030914e-01 7.53949881e-01 5.81597686e-01 6.96510673e-01 -1.01996601e+00 -7.75971770e-01 1.87978912e-02 3.18976074e-01 -1.63854611e+00 -6.67909920e-01 7.32344449e-01 -2.39564806e-01 1.31855941e+00 1.06549986e-01 1.99971661e-01 1.17408955e+00 -2.97744989e-01 1.03912759e+00 6.49232566e-01 -3.61634284e-01 1.08390681e-01 3.60334784e-01 2.96767622e-01 7.46945262e-01 2.21505448e-01 -4.03747469e-01 -1.02837801e-01 -1.96254358e-01 5.84706306e-01 7.39305019e-02 -2.61432320e-01 -1.50691643e-01 -1.07203770e+00 7.42507517e-01 2.00674310e-01 6.07052565e-01 -5.41836143e-01 -1.59314528e-01 5.38948834e-01 9.37794596e-02 3.77427220e-01 6.30160689e-01 -1.09027159e+00 -2.16144845e-01 -9.71508622e-01 -4.33091402e-01 9.30070221e-01 1.06164384e+00 7.81117260e-01 1.47945896e-01 -4.43938375e-01 1.14753795e+00 3.06222588e-01 5.61897337e-01 7.22813666e-01 -3.26249093e-01 4.94739443e-01 6.49324894e-01 6.91913292e-02 -1.05028248e+00 -3.26539218e-01 -4.38881576e-01 -1.07594860e+00 -6.50043905e-01 1.58399157e-02 -4.23099637e-01 -9.91694331e-01 1.53184640e+00 1.45166308e-01 3.02983940e-01 2.66808391e-01 6.00155771e-01 1.01413631e+00 6.56677902e-01 5.32726586e-01 -2.29535857e-03 1.38997138e+00 -9.75543976e-01 -9.04293835e-01 -1.61352590e-01 8.55523825e-01 -6.85421646e-01 8.73784363e-01 1.17917350e-02 -6.56984270e-01 -5.17161489e-01 -8.28949749e-01 -2.38630459e-01 -6.61402106e-01 6.71543181e-01 5.04428506e-01 8.73769343e-01 -5.33884823e-01 3.46079946e-01 -9.53229129e-01 -1.65288389e-01 5.61654210e-01 5.86787522e-01 -3.06705803e-01 5.76495845e-03 -1.39633858e+00 7.25109756e-01 7.95899451e-01 3.40218216e-01 -8.27848375e-01 -4.43281919e-01 -1.11293828e+00 4.60923314e-01 4.08126295e-01 -6.11434698e-01 1.13850796e+00 -7.53975570e-01 -1.60398698e+00 7.53031194e-01 -3.23808104e-01 -3.64617378e-01 -1.98517442e-02 -2.23561406e-01 -9.78872538e-01 -1.23766009e-02 5.11659542e-03 6.66899145e-01 6.29481673e-01 -9.12807286e-01 -6.22737885e-01 -9.08801854e-02 -1.99280858e-01 -1.64255247e-01 -7.25394845e-01 2.14744896e-01 -2.45389715e-01 -6.97253585e-01 -2.34575182e-01 -6.60364747e-01 -4.58798021e-01 -5.11726379e-01 -6.27469122e-01 -6.99505746e-01 6.36192262e-01 -8.17741036e-01 1.55671155e+00 -1.98423469e+00 -3.55359942e-01 2.26338342e-01 3.51631582e-01 6.72190309e-01 -2.86743134e-01 1.65432826e-01 1.31516516e-01 3.04879010e-01 -1.41973644e-01 -2.41450354e-01 4.02666271e-01 1.78732440e-01 -3.08362395e-01 8.60618800e-02 5.44798970e-01 1.04443622e+00 -9.53765869e-01 -6.62274003e-01 -1.35278171e-02 4.47663009e-01 -5.39126635e-01 4.11181152e-01 -1.35001987e-01 1.65061444e-01 -7.13022411e-01 4.50074911e-01 6.38387203e-01 -4.61843312e-01 2.12026164e-01 -3.42502445e-01 7.65508488e-02 6.07784688e-01 -1.33606386e+00 1.34040058e+00 -6.76775753e-01 4.20319885e-01 -2.93861300e-01 -1.10949039e+00 1.14510417e+00 4.93730783e-01 8.84284973e-02 -4.04830009e-01 2.91365325e-01 2.72398770e-01 -8.19036067e-02 -7.62397349e-01 7.48164654e-01 -1.33369982e-01 -2.89802432e-01 3.39369446e-01 4.21801031e-01 5.17937601e-01 2.37875149e-01 -7.54918456e-02 1.21522784e+00 -2.96676338e-01 3.87245089e-01 1.53359100e-01 7.71030605e-01 2.40352340e-02 1.08883166e+00 5.48109055e-01 -2.85627395e-01 2.71985352e-01 2.06419200e-01 -3.98395717e-01 -1.14608729e+00 -6.60514653e-01 -1.39828846e-01 1.42522824e+00 -1.25653076e-03 -4.87204969e-01 -6.07101083e-01 -1.19155252e+00 -4.75027740e-01 8.30290854e-01 -2.81357676e-01 -2.22555146e-01 -6.52890682e-01 -7.94753671e-01 9.70408082e-01 8.94252837e-01 7.27338195e-01 -1.39897990e+00 -5.89133091e-02 3.93270940e-01 -1.91571355e-01 -1.19717038e+00 -7.03904331e-01 3.28142047e-01 -5.49384475e-01 -8.35260630e-01 -6.94489062e-01 -1.06374967e+00 7.23537266e-01 -1.38587564e-01 1.03360796e+00 4.61118706e-02 -1.41745552e-01 1.56616583e-01 -4.25214201e-01 -1.09174810e-01 -1.82648867e-01 5.65218866e-01 1.56663954e-01 -8.03903490e-02 1.06085324e+00 -2.58149862e-01 -5.19099057e-01 2.96146154e-01 -9.17123139e-01 -3.25040698e-01 9.98730779e-01 1.20020711e+00 5.30982196e-01 1.71417549e-01 8.88833940e-01 -1.03397298e+00 6.26447082e-01 -5.62498331e-01 -4.01848406e-01 5.49300015e-01 -5.29471099e-01 3.89222592e-01 7.67192006e-01 -4.80850846e-01 -1.49069285e+00 5.83767071e-02 -5.56467533e-01 -2.19779432e-01 -5.95817506e-01 5.68667412e-01 -6.23273611e-01 3.79904211e-01 3.79093945e-01 4.85012174e-01 -7.22044826e-01 -6.95442617e-01 4.82065380e-01 1.23250759e+00 4.25452858e-01 -5.30391634e-01 6.07253194e-01 -6.35674456e-03 -6.78100109e-01 -8.91856670e-01 -1.13827384e+00 -5.99949896e-01 -8.72428477e-01 5.88454306e-01 1.00553513e+00 -8.73599648e-01 -4.83289719e-01 4.45985571e-02 -1.27280712e+00 -1.39856055e-01 -7.52896592e-02 7.23574340e-01 -1.83771759e-01 2.54311770e-01 -6.96840286e-01 -5.89409351e-01 -5.00487566e-01 -8.58739495e-01 8.00928473e-01 4.12035912e-01 -2.04266056e-01 -8.66931438e-01 3.02959114e-01 3.66356552e-01 4.69337970e-01 -5.13246179e-01 7.77499914e-01 -1.48390841e+00 -4.85213995e-01 -3.39566439e-01 -4.30391192e-01 5.24690270e-01 1.00131772e-01 -1.48146674e-01 -9.54884887e-01 7.89540932e-02 -2.68384933e-01 -2.92129278e-01 9.44850028e-01 -2.49011777e-02 1.29525745e+00 -4.15540725e-01 -5.08601546e-01 6.90688908e-01 1.23472369e+00 2.87609875e-01 4.76193547e-01 2.74686456e-01 9.07671630e-01 2.56599456e-01 3.29357535e-01 4.64892775e-01 4.81163949e-01 2.15185449e-01 -1.24713309e-01 4.54169922e-02 9.34043378e-02 -4.45999324e-01 1.23292468e-01 1.18526876e+00 1.46719307e-01 -4.86751884e-01 -9.29783046e-01 7.01857388e-01 -1.38902569e+00 -9.78139460e-01 3.43428016e-01 1.75477099e+00 1.08968508e+00 1.27293870e-01 -2.86506683e-01 -2.09261686e-01 8.52045655e-01 1.50526777e-01 -4.69545782e-01 -1.23645552e-01 -1.21290579e-01 4.05706167e-01 5.39732754e-01 6.90381974e-02 -1.44941640e+00 1.31134892e+00 5.45296717e+00 1.19753551e+00 -1.01383412e+00 1.83648795e-01 5.65982342e-01 4.06677574e-01 -3.84934872e-01 -2.93569058e-01 -1.36042917e+00 4.57585752e-01 1.00624025e+00 2.23841257e-02 6.06527962e-02 1.12162912e+00 -1.79175958e-01 5.02661884e-01 -8.16023946e-01 9.29647624e-01 2.39872690e-02 -1.26487422e+00 -6.34261146e-02 -9.71882418e-02 8.42620075e-01 2.77801275e-01 -2.83303350e-01 9.37888741e-01 7.08586633e-01 -1.04657543e+00 5.02433255e-02 7.02516556e-01 7.49758244e-01 -8.22089911e-01 1.01410580e+00 4.97352183e-01 -1.25523543e+00 3.72841135e-02 -7.29060650e-01 3.47134501e-01 1.33165956e-01 5.59139431e-01 -1.06490648e+00 2.48801559e-01 3.99889171e-01 4.90963697e-01 -3.41364443e-01 1.18088460e+00 -5.33110142e-01 9.34911728e-01 -3.84908646e-01 -3.47866088e-01 5.41188419e-02 6.64457977e-02 2.92269915e-01 1.71434557e+00 2.63283432e-01 3.47375691e-01 3.21267307e-01 9.52256262e-01 -6.17518067e-01 3.40520620e-01 -2.45133519e-01 -6.85156107e-01 7.40205824e-01 1.52688849e+00 -7.63364375e-01 -6.57121301e-01 -4.95708138e-01 1.16610658e+00 6.56379879e-01 3.79827678e-01 -6.29206479e-01 -9.96341050e-01 6.67671323e-01 -3.86962235e-01 8.15191865e-01 -2.78492719e-01 -5.39165772e-02 -1.60276020e+00 -3.39084089e-01 -5.56374669e-01 4.66111213e-01 -3.60889971e-01 -1.61303163e+00 8.53537619e-01 -5.65141737e-01 -1.01728165e+00 -1.86340794e-01 -5.59519947e-01 -6.18155599e-01 7.87619770e-01 -1.60099506e+00 -9.72721279e-01 2.66573634e-02 3.36049289e-01 5.31368434e-01 -4.23667341e-01 1.06716180e+00 6.59496307e-01 -9.86608505e-01 8.85054052e-01 2.65235931e-01 1.01378870e+00 8.46076071e-01 -1.27249253e+00 3.87524188e-01 6.02700830e-01 4.19478118e-01 8.85895014e-01 3.68928164e-01 -7.30402231e-01 -1.06702709e+00 -1.17726815e+00 1.40946412e+00 -4.84833896e-01 5.67237794e-01 -3.13287646e-01 -9.48108196e-01 8.81276309e-01 1.02667645e-01 2.36081123e-01 1.15049100e+00 2.67281890e-01 -3.50663155e-01 9.73993465e-02 -1.06216776e+00 3.84972453e-01 9.99409735e-01 -7.50041306e-01 -9.82079446e-01 1.71135709e-01 8.86455297e-01 -2.02833295e-01 -9.59833920e-01 3.27545255e-01 2.40694359e-01 -2.08053052e-01 9.19091344e-01 -9.42589283e-01 1.74381480e-01 -3.71962935e-01 -8.45703483e-02 -1.30954909e+00 -3.00347239e-01 -2.13633910e-01 -1.02262922e-01 1.74016273e+00 7.09013879e-01 -3.75417620e-01 8.72484803e-01 7.61788249e-01 -2.10013852e-01 -6.07428372e-01 -4.45721328e-01 -7.27703333e-01 -1.90474346e-01 -4.81240153e-01 8.49487126e-01 1.42929673e+00 -9.63319317e-02 7.25535333e-01 -2.99906015e-01 4.07198280e-01 1.79890439e-01 -1.59401018e-02 6.12415373e-01 -1.01064968e+00 -1.55462489e-01 -3.14685434e-01 -2.64096975e-01 -1.48150861e+00 5.17813385e-01 -1.05932057e+00 2.69653708e-01 -1.50680315e+00 2.87686288e-01 -6.85282290e-01 -6.39595211e-01 6.22441709e-01 -4.61351424e-01 1.18134543e-01 -1.78527370e-01 -5.11538051e-02 -1.23602629e+00 1.01420033e+00 7.68612385e-01 -2.49776587e-01 -2.09255382e-01 -2.10763827e-01 -4.87784833e-01 8.26745212e-01 8.16024125e-01 -7.11892843e-01 -3.31987031e-02 -6.35441065e-01 3.62297148e-01 -1.76125899e-01 -3.14947255e-02 -6.98221803e-01 4.84497994e-01 -5.38576357e-02 6.88347042e-01 -6.45742834e-01 5.51569462e-02 -7.32824087e-01 -3.40210557e-01 8.15013889e-03 -4.74572718e-01 -2.67660797e-01 -5.60896173e-02 6.45917118e-01 -3.34999830e-01 -5.90549469e-01 3.52166474e-01 -1.07684091e-01 -1.14331245e+00 5.12191117e-01 -3.61302704e-01 3.39948922e-01 6.67453885e-01 6.76550344e-02 -1.92858338e-01 -2.24695671e-02 -9.13339674e-01 3.53140444e-01 -1.79641843e-02 3.36249381e-01 4.72570390e-01 -1.47816205e+00 -4.88244355e-01 3.03208530e-01 2.81782717e-01 -1.55775428e-01 4.07877892e-01 4.92245138e-01 -1.83859780e-01 6.30658329e-01 -3.95565853e-02 -7.98171461e-02 -1.10031557e+00 6.58328116e-01 1.13988258e-01 -6.20373607e-01 -2.49329656e-01 1.02692187e+00 1.33530917e-02 -1.03973842e+00 1.78462356e-01 -2.57069498e-01 -5.98452508e-01 -5.45543730e-02 6.21576250e-01 2.25438759e-01 -8.92974213e-02 -5.42833149e-01 -2.77738810e-01 2.56046206e-01 -2.50914395e-01 2.78054148e-01 1.48099613e+00 -2.72095054e-01 1.45878449e-01 8.40105303e-03 1.30546212e+00 1.94707304e-01 -7.66884983e-01 -5.89457393e-01 5.30878067e-01 -1.46525264e-01 1.33514196e-01 -6.14730239e-01 -9.21729445e-01 1.06937003e+00 3.35140139e-01 3.14545408e-02 9.00475860e-01 5.57746645e-03 1.44541943e+00 1.01144814e+00 1.22029863e-01 -1.19844556e+00 -1.47529885e-01 8.05434346e-01 2.04297215e-01 -1.53658032e+00 -4.83709663e-01 -1.78738877e-01 -6.36118293e-01 1.01261151e+00 6.70500576e-01 -1.15525536e-01 8.85803699e-01 2.12942481e-01 4.13631089e-02 -7.09863007e-02 -6.37294948e-01 -4.21088964e-01 4.86429036e-01 4.97978032e-01 4.98341262e-01 1.08791545e-01 -3.62067252e-01 1.44261777e+00 -4.84269708e-02 5.47493733e-02 1.08700968e-01 6.11641943e-01 -7.11570323e-01 -1.32033634e+00 4.13352363e-02 6.93989038e-01 -6.33387625e-01 -4.91523981e-01 -2.79644206e-02 5.05788982e-01 2.49425635e-01 6.11438930e-01 7.24754035e-02 -3.54180455e-01 2.52471805e-01 3.67849261e-01 5.82326017e-02 -9.61645126e-01 -4.58194166e-01 -6.36543706e-03 3.26632619e-01 -9.14504007e-02 -1.77082971e-01 -3.42135251e-01 -1.36349857e+00 -2.96584349e-02 -6.05967999e-01 4.27862585e-01 4.74013865e-01 1.14915287e+00 5.30336857e-01 3.92718494e-01 4.96992618e-01 -3.85907561e-01 -5.52582204e-01 -1.12162471e+00 -5.08930266e-01 2.34277397e-01 1.43905412e-02 -4.44742322e-01 -1.32213324e-01 1.26612514e-01]
[9.670619010925293, 9.427018165588379]
3a524748-47af-4af5-9b39-a6058ad94236
synthetic-ct-generation-from-mri-using-3d
2305.19467
null
https://arxiv.org/abs/2305.19467v1
https://arxiv.org/pdf/2305.19467v1.pdf
Synthetic CT Generation from MRI using 3D Transformer-based Denoising Diffusion Model
Magnetic resonance imaging (MRI)-based synthetic computed tomography (sCT) simplifies radiation therapy treatment planning by eliminating the need for CT simulation and error-prone image registration, ultimately reducing patient radiation dose and setup uncertainty. We propose an MRI-to-CT transformer-based denoising diffusion probabilistic model (MC-DDPM) to transform MRI into high-quality sCT to facilitate radiation treatment planning. MC-DDPM implements diffusion processes with a shifted-window transformer network to generate sCT from MRI. The proposed model consists of two processes: a forward process which adds Gaussian noise to real CT scans, and a reverse process in which a shifted-window transformer V-net (Swin-Vnet) denoises the noisy CT scans conditioned on the MRI from the same patient to produce noise-free CT scans. With an optimally trained Swin-Vnet, the reverse diffusion process was used to generate sCT scans matching MRI anatomy. We evaluated the proposed method by generating sCT from MRI on a brain dataset and a prostate dataset. Qualitative evaluation was performed using the mean absolute error (MAE) of Hounsfield unit (HU), peak signal to noise ratio (PSNR), multi-scale Structure Similarity index (MS-SSIM) and normalized cross correlation (NCC) indexes between ground truth CTs and sCTs. MC-DDPM generated brain sCTs with state-of-the-art quantitative results with MAE 43.317 HU, PSNR 27.046 dB, SSIM 0.965, and NCC 0.983. For the prostate dataset, MC-DDPM achieved MAE 59.953 HU, PSNR 26.920 dB, SSIM 0.849, and NCC 0.948. In conclusion, we have developed and validated a novel approach for generating CT images from routine MRIs using a transformer-based DDPM. This model effectively captures the complex relationship between CT and MRI images, allowing for robust and high-quality synthetic CT (sCT) images to be generated in minutes.
['Xiaofeng Yang', 'Hui Mao', 'David S. Yu', 'Pretesh Patel', 'Justin Roper', 'Junbo Peng', 'Chih-Wei Chang', 'Yuheng Li', 'Richard L. J. Qiu', 'Tonghe Wang', 'Jacob Wynne', 'Elham Abouei', 'Shaoyan Pan']
2023-05-31
null
null
null
null
['image-registration', 'ms-ssim', 'anatomy']
['computer-vision', 'computer-vision', 'miscellaneous']
[ 4.44251597e-01 1.36550069e-01 3.48496139e-01 -3.15524071e-01 -1.13160014e+00 -3.54437590e-01 6.63223386e-01 1.00853242e-01 -6.55314267e-01 6.25757992e-01 4.14447874e-01 -3.06757241e-01 -2.69468457e-01 -9.37987685e-01 -3.51040035e-01 -9.71065938e-01 -2.62534767e-01 8.00394654e-01 5.55684745e-01 2.10090727e-01 -5.77169731e-02 6.64254725e-01 -5.69053471e-01 3.00235450e-01 8.37885201e-01 1.08169699e+00 6.32110476e-01 6.85952365e-01 1.06051184e-01 8.26003969e-01 -4.42949623e-01 -3.99127603e-01 3.44814181e-01 -5.71807504e-01 -7.47505665e-01 -1.32054701e-01 -3.92680429e-02 -2.68244684e-01 -3.61859411e-01 9.60825145e-01 8.61669183e-01 1.78667773e-02 8.89793575e-01 -7.84576654e-01 -4.60275382e-01 6.56013727e-01 -7.54871130e-01 3.51437628e-01 6.04159534e-02 5.55316150e-01 -1.08530857e-01 -6.62879288e-01 9.07554805e-01 8.18941057e-01 8.26234281e-01 6.35163844e-01 -1.38176966e+00 -5.43805838e-01 -9.35692012e-01 3.72439027e-02 -1.06271720e+00 1.53503597e-01 3.65873992e-01 -4.98125345e-01 7.29116738e-01 5.35978734e-01 8.67470145e-01 8.20654273e-01 1.08071744e+00 2.37272382e-01 1.64606667e+00 -1.66678548e-01 4.13853496e-01 -4.67653275e-01 -4.63953137e-01 5.90428412e-01 1.27540722e-01 2.46935025e-01 4.30565029e-02 -1.21613137e-01 1.06892192e+00 -1.70442954e-01 -4.79503632e-01 -1.91759780e-01 -1.45243108e+00 6.57425165e-01 7.89188564e-01 7.33425200e-01 -8.18223417e-01 1.30106598e-01 5.17125607e-01 -1.43007681e-01 1.72698796e-01 1.10851184e-01 3.49967241e-01 7.15890229e-02 -1.20663536e+00 -5.48187606e-02 4.09526348e-01 5.91482341e-01 -1.10789672e-01 1.07522145e-01 -5.51747680e-01 6.32846534e-01 1.89269871e-01 7.69672275e-01 1.05395257e+00 -1.03755355e+00 1.84872113e-02 1.03390910e-01 -4.80426401e-01 -5.39454401e-01 -2.93172032e-01 -6.61001682e-01 -1.37696612e+00 2.65724033e-01 2.22339064e-01 9.15144384e-02 -1.38820255e+00 1.39729738e+00 3.67963165e-01 5.72721660e-02 -1.22675829e-01 1.09512532e+00 7.44975388e-01 5.08185387e-01 2.79279858e-01 -4.05935496e-01 1.34261918e+00 -6.61065519e-01 -6.87518239e-01 2.55432352e-03 4.63477522e-01 -9.31466043e-01 8.74263167e-01 2.29139924e-01 -1.58733189e+00 -8.79470482e-02 -1.01047814e+00 4.31093007e-01 3.92591596e-01 -2.42039084e-01 1.77815855e-01 7.05705225e-01 -1.19123065e+00 7.52354324e-01 -1.21346867e+00 3.55822816e-02 5.86024582e-01 4.39744711e-01 -4.32039708e-01 -4.94073182e-01 -8.72650743e-01 1.15130222e+00 1.52135208e-01 8.78568739e-02 -1.32030129e+00 -1.07282150e+00 -6.78669035e-01 -3.00293595e-01 8.62005726e-02 -8.87235105e-01 1.32446957e+00 -5.54838300e-01 -1.45500135e+00 6.79480791e-01 1.16276570e-01 -6.22262120e-01 9.93520498e-01 7.07230508e-01 -3.54729503e-01 5.63704133e-01 3.81984413e-01 6.42990649e-01 4.68835086e-01 -1.29185379e+00 1.17196836e-01 -4.86340046e-01 -8.41640532e-01 1.83717921e-01 4.61708754e-01 1.39602408e-01 -2.84194827e-01 -8.16922307e-01 4.98930454e-01 -9.45024371e-01 -4.98070627e-01 2.28313401e-01 -2.27297336e-01 5.53055346e-01 4.90789503e-01 -1.04028141e+00 7.85237610e-01 -1.65515196e+00 -9.07820910e-02 5.23954153e-01 3.57193798e-01 1.31634414e-01 -2.81832553e-02 -3.87706369e-01 -3.43087703e-01 9.73283779e-03 -9.51543689e-01 -5.35781831e-02 -5.43676555e-01 3.20208818e-01 3.29165131e-01 6.56397581e-01 -4.25329119e-01 1.16551614e+00 -1.05478454e+00 -6.32452846e-01 3.47149998e-01 7.91876137e-01 -1.04863837e-01 9.87509489e-02 4.25082207e-01 8.93371582e-01 -2.45238379e-01 4.92513180e-01 9.67143893e-01 9.84583274e-02 1.85560331e-01 -5.54273784e-01 -4.03650030e-02 -2.89016604e-01 -8.05718243e-01 1.65386355e+00 -5.98863780e-01 3.60025167e-01 2.81194061e-01 -4.94458824e-01 7.00279593e-01 5.83519280e-01 9.11350012e-01 -1.18261611e+00 3.84549528e-01 5.24224758e-01 3.38152558e-01 -3.45151484e-01 -8.08291361e-02 -9.46392179e-01 2.03515485e-01 4.82758880e-01 2.74889451e-02 -8.67212713e-01 -3.57680470e-02 2.18280777e-01 1.31204271e+00 -2.61718690e-01 -1.33704692e-01 -3.46275568e-01 5.52412391e-01 1.82883404e-02 2.97046900e-01 5.66343963e-01 -3.28284204e-01 9.50356007e-01 1.00583293e-01 -1.46523252e-01 -1.33408797e+00 -1.52396655e+00 -2.26189002e-01 -1.00546815e-01 -1.49515629e-01 1.34664565e-01 -1.06522107e+00 -4.87057507e-01 -5.57050526e-01 9.16327834e-01 -5.55676937e-01 -8.78415033e-02 -7.36064255e-01 -1.02278197e+00 6.46022558e-01 4.30997699e-01 5.96576571e-01 -1.04804623e+00 -6.25778019e-01 4.46080297e-01 -5.25827646e-01 -9.44843411e-01 -6.99033141e-01 6.38995245e-02 -1.26281106e+00 -6.86549664e-01 -1.34217811e+00 -4.90224272e-01 7.50444472e-01 -8.21535140e-02 1.01371074e+00 -6.54760897e-02 -5.60716093e-01 1.46599859e-01 4.22868393e-02 -5.01755858e-03 -9.58554804e-01 -6.36856318e-01 -6.59000427e-02 -4.00161177e-01 -4.55948681e-01 -6.93416238e-01 -9.88658667e-01 4.55632806e-01 -1.42602897e+00 1.39445841e-01 7.87560582e-01 9.91461158e-01 1.07240868e+00 8.65875557e-02 -1.27274198e-02 -4.42683369e-01 7.29902446e-01 -1.81049868e-01 -4.88237053e-01 2.84368336e-01 -7.57626832e-01 4.58818153e-02 3.99320602e-01 -4.49022055e-01 -1.22712398e+00 -3.54472362e-03 -3.63256246e-01 -4.06138450e-01 1.38963580e-01 3.28959405e-01 2.56594032e-01 -5.29705822e-01 8.36693585e-01 6.05549693e-01 2.30894998e-01 3.10843550e-02 2.48651244e-02 2.84449339e-01 9.47536886e-01 -3.85852277e-01 6.10757768e-01 6.27396941e-01 3.48403096e-01 -4.50334251e-01 -1.18883900e-01 -1.05760321e-01 -5.85339010e-01 -5.19656420e-01 1.12242258e+00 -4.45638627e-01 -4.91648346e-01 5.94885826e-01 -8.55337143e-01 -3.68461221e-01 -5.36370933e-01 8.66767526e-01 -6.02682650e-01 5.99408925e-01 -9.75353241e-01 -2.40219906e-01 -9.71271276e-01 -1.82710254e+00 6.84625447e-01 9.92562175e-02 -2.11300224e-01 -8.06311488e-01 1.27219949e-02 4.54630703e-01 9.30878699e-01 6.72301710e-01 8.58061612e-01 -1.60440907e-01 -4.55668688e-01 -1.12631269e-01 -2.07177833e-01 5.15494049e-01 -2.26427857e-02 -5.26388884e-01 -5.97226739e-01 -1.36977330e-01 6.71362877e-01 4.36413027e-02 4.25451815e-01 1.01961768e+00 1.09752429e+00 6.62354827e-02 -3.58832040e-04 8.01054537e-01 1.59923160e+00 5.45725048e-01 9.61172938e-01 3.07112396e-01 4.08755064e-01 1.66211262e-01 2.55591840e-01 1.06289826e-01 1.28450757e-02 4.52309072e-01 4.64056134e-01 -2.75088578e-01 -6.29509985e-01 -3.30107920e-02 -2.38500461e-02 7.50239611e-01 -3.21799040e-01 3.02644242e-02 -1.20390320e+00 5.27536929e-01 -1.03937542e+00 -7.88562894e-01 -5.24366319e-01 2.20089960e+00 8.07394981e-01 1.44529417e-01 -2.64905274e-01 5.61167784e-02 7.80224621e-01 -2.75517851e-01 -3.37991774e-01 -1.40791267e-01 -6.35923743e-02 7.90831566e-01 9.21539962e-01 6.29727364e-01 -5.57922423e-01 1.74850091e-01 5.13217354e+00 1.08848524e+00 -1.28060102e+00 7.57838547e-01 8.79832685e-01 5.45218103e-02 -4.03045624e-01 -2.52662927e-01 2.48066530e-01 4.73148644e-01 1.02897668e+00 -3.27262998e-01 2.36057684e-01 4.47143257e-01 4.08377558e-01 -6.20712698e-01 -5.38693726e-01 8.38626266e-01 -1.09974355e-01 -1.40307951e+00 -7.10009858e-02 1.83979541e-01 6.58260763e-01 2.04459816e-01 8.32324848e-02 -1.66929394e-01 1.97400823e-01 -1.23054612e+00 5.73378026e-01 6.25464618e-01 1.18493414e+00 -6.14309430e-01 9.16599989e-01 1.90510571e-01 -9.10684228e-01 4.42117423e-01 -1.30974174e-01 9.40298080e-01 5.13818860e-01 8.75261068e-01 -1.26736104e+00 9.27307844e-01 6.00407958e-01 -8.40366334e-02 -2.39900112e-01 1.29696357e+00 -9.54185575e-02 3.67796957e-01 -4.05861348e-01 4.12788838e-01 3.68929178e-01 -3.12263131e-01 5.82561016e-01 1.12353945e+00 6.56392455e-01 4.74358410e-01 -3.50552589e-01 7.23154068e-01 2.99834814e-02 -1.14484124e-01 -3.56909521e-02 5.85677981e-01 1.56981066e-01 1.44526398e+00 -1.31078196e+00 -4.61448640e-01 2.59632796e-01 1.04465115e+00 -5.18491209e-01 -4.69133034e-02 -9.03950751e-01 1.33858427e-01 -2.25301310e-01 4.16130483e-01 -2.21849963e-01 -1.21427134e-01 -5.36726236e-01 -7.21294582e-01 -1.30407810e-01 -6.80820048e-01 2.62718916e-01 -1.05975235e+00 -1.25035655e+00 1.16957128e+00 1.97130159e-01 -1.14505935e+00 -1.34263530e-01 -1.49690479e-01 -7.45585918e-01 1.17543972e+00 -1.11237466e+00 -9.14970279e-01 -4.66408283e-01 5.98622799e-01 3.42841268e-01 3.53202164e-01 6.73454762e-01 4.25991267e-01 1.42646488e-02 2.51630396e-01 1.41921982e-01 -1.64137259e-02 4.62478340e-01 -1.31455767e+00 1.58679634e-01 6.23786330e-01 -5.99102139e-01 2.40179077e-01 5.76413631e-01 -1.10655928e+00 -1.10074151e+00 -1.09237134e+00 5.49704909e-01 -5.98910684e-03 5.00911355e-01 1.58401713e-01 -7.38495886e-01 2.62820244e-01 1.56813323e-01 3.42807353e-01 3.52604717e-01 -1.17895305e+00 3.94532949e-01 1.54636335e-02 -2.06315136e+00 4.29794043e-01 5.13140261e-01 -1.44922942e-01 -4.14782852e-01 3.49201649e-01 3.38571608e-01 -8.35504591e-01 -1.49764037e+00 5.52615285e-01 5.18709064e-01 -8.46931159e-01 1.20145464e+00 4.24219698e-01 4.17713344e-01 -2.04038888e-01 1.20499715e-01 -1.44160092e+00 -2.34924465e-01 -2.30039537e-01 5.06052971e-01 5.99424183e-01 2.61926204e-01 -3.80935878e-01 7.01078534e-01 7.64277160e-01 -3.96132469e-01 -7.75374174e-01 -1.46299744e+00 -7.15988994e-01 2.61516750e-01 -6.02469444e-01 2.90385246e-01 8.50064933e-01 -5.57163775e-01 -3.13729554e-01 2.60514859e-02 6.34872494e-03 1.09712279e+00 -5.52148342e-01 -2.07002833e-01 -7.61042535e-01 -2.34992296e-01 -3.22589070e-01 -2.95821100e-01 -2.97780097e-01 -3.85701805e-01 -1.19272470e+00 8.85794777e-03 -1.82640803e+00 3.84737462e-01 -4.65021700e-01 8.73090001e-04 1.37316212e-01 1.90181360e-01 5.01866400e-01 1.38483077e-01 2.86940396e-01 3.90084058e-01 4.37104642e-01 2.11183023e+00 -2.46512190e-01 1.40318736e-01 -7.36081675e-02 -4.29960415e-02 6.09930515e-01 6.36988461e-01 -8.41147244e-01 -3.44777197e-01 -2.29988635e-01 -5.24412692e-01 7.65701115e-01 5.17145574e-01 -1.30388975e+00 3.73729885e-01 1.19739823e-01 9.78351116e-01 -6.19932115e-01 2.92797118e-01 -8.24821115e-01 7.70824432e-01 1.28749382e+00 -3.78297307e-02 2.83676714e-01 1.24883883e-01 1.31795108e-01 -1.03530221e-01 -3.13594013e-01 1.19082308e+00 -4.34930593e-01 -6.76792935e-02 3.55746120e-01 -5.05023658e-01 -2.52547801e-01 1.07916403e+00 -2.59244025e-01 6.37175888e-02 -3.58665228e-01 -1.13182664e+00 -1.79530740e-01 2.44391829e-01 -2.62167633e-01 9.91426110e-01 -1.34071529e+00 -8.13613176e-01 7.25132152e-02 -4.16512072e-01 7.44418129e-02 6.91754401e-01 1.40837801e+00 -1.03947067e+00 1.60045832e-01 -4.28172380e-01 -8.22899640e-01 -1.21795332e+00 2.07420260e-01 7.94144869e-01 -8.55234027e-01 -7.42510498e-01 8.02906215e-01 2.55217846e-03 -5.10885596e-01 -3.19131166e-01 -5.15755832e-01 3.25624824e-01 -4.59032416e-01 3.58517408e-01 2.29528785e-01 5.67407131e-01 -7.89447308e-01 -2.90040284e-01 4.85352397e-01 1.36870191e-01 -6.62854135e-01 1.32982516e+00 1.90088304e-03 -1.25412166e-01 -2.82617062e-01 9.98853147e-01 -2.26891592e-01 -9.60362911e-01 -1.04349598e-01 -2.13985294e-01 -4.25249696e-01 6.02211952e-01 -1.31947052e+00 -1.26860821e+00 6.25532925e-01 1.29790795e+00 -3.98303151e-01 1.45521653e+00 -1.02941468e-01 1.08866465e+00 -5.08332670e-01 4.43121344e-01 -6.53190911e-01 -7.94678554e-02 1.56934515e-01 9.67825353e-01 -8.07871044e-01 1.19555667e-01 -5.27941942e-01 -9.65187252e-01 1.10722828e+00 2.98899174e-01 -8.32568668e-03 4.42310780e-01 7.26171315e-01 2.81248074e-02 -1.88285753e-01 -1.60458028e-01 3.56146365e-01 2.64705032e-01 6.17172956e-01 4.70588744e-01 1.67504922e-01 -5.15912652e-01 2.87414074e-01 -1.73995450e-01 2.65899599e-01 5.90902150e-01 1.04226816e+00 -1.60633266e-01 -1.06255960e+00 -6.68926418e-01 4.26565945e-01 -5.87549686e-01 -2.28993386e-01 1.37840375e-01 6.10374331e-01 -5.65077644e-03 4.17144120e-01 -2.51515061e-01 -1.54408827e-01 3.62281233e-01 -3.61094385e-01 8.58673096e-01 -3.06623369e-01 -1.07116592e+00 3.90323728e-01 -1.85275733e-01 -5.18790960e-01 -2.92205244e-01 -5.01287639e-01 -1.52225959e+00 -3.87247175e-01 7.22802579e-02 8.32988769e-02 1.17276025e+00 8.21240187e-01 -2.04514965e-01 8.99315953e-01 4.87913042e-01 -7.72997737e-01 -3.61912310e-01 -8.86422753e-01 -5.97681701e-01 2.05278292e-01 -8.42354372e-02 -3.04572403e-01 -1.06551133e-01 -1.82840690e-01]
[13.626974105834961, -2.499552011489868]
9842ae22-17c6-4d78-a7fc-9ed031e344d2
boxcars-improving-fine-grained-recognition-of
1703.00686
null
http://arxiv.org/abs/1703.00686v3
http://arxiv.org/pdf/1703.00686v3.pdf
BoxCars: Improving Fine-Grained Recognition of Vehicles using 3-D Bounding Boxes in Traffic Surveillance
In this paper, we focus on fine-grained recognition of vehicles mainly in traffic surveillance applications. We propose an approach that is orthogonal to recent advancements in fine-grained recognition (automatic part discovery and bilinear pooling). In addition, in contrast to other methods focused on fine-grained recognition of vehicles, we do not limit ourselves to a frontal/rear viewpoint, but allow the vehicles to be seen from any viewpoint. Our approach is based on 3-D bounding boxes built around the vehicles. The bounding box can be automatically constructed from traffic surveillance data. For scenarios where it is not possible to use precise construction, we propose a method for an estimation of the 3-D bounding box. The 3-D bounding box is used to normalize the image viewpoint by "unpacking" the image into a plane. We also propose to randomly alter the color of the image and add a rectangle with random noise to a random position in the image during the training of convolutional neural networks (CNNs). We have collected a large fine-grained vehicle data set BoxCars116k, with 116k images of vehicles from various viewpoints taken by numerous surveillance cameras. We performed a number of experiments, which show that our proposed method significantly improves CNN classification accuracy (the accuracy is increased by up to 12% points and the error is reduced by up to 50% compared with CNNs without the proposed modifications). We also show that our method outperforms the state-of-the-art methods for fine-grained recognition.
['Jakub Špaňhel', 'Adam Herout', 'Jakub Sochor']
2017-03-02
null
null
null
null
['vehicle-pose-estimation']
['computer-vision']
[ 1.36260465e-01 -1.57147467e-01 9.00097415e-02 -4.60140586e-01 -5.78782439e-01 -6.62793279e-01 8.57612729e-01 -2.81996876e-01 -5.04021108e-01 5.03206909e-01 -1.94923267e-01 -2.54177719e-01 4.03328799e-02 -9.77553248e-01 -1.27070415e+00 -8.40379059e-01 2.16581136e-01 4.90825772e-01 6.01068974e-01 7.16464594e-03 1.87327817e-01 1.22634864e+00 -1.89508533e+00 3.59009415e-01 3.24140757e-01 1.33194757e+00 -1.57298997e-01 7.14942098e-01 2.74095479e-02 4.80062366e-01 -6.59447372e-01 -5.28090775e-01 6.59243524e-01 2.18015537e-01 -5.06939888e-01 5.85788667e-01 1.08259165e+00 -5.04816294e-01 -2.26620063e-01 1.04538476e+00 -1.10114954e-01 6.95636943e-02 7.42241800e-01 -1.28717291e+00 -2.33773798e-01 -2.42109954e-01 -4.86972094e-01 1.11105457e-01 -1.02135405e-01 -6.77766278e-02 3.51485401e-01 -8.62354219e-01 4.74474907e-01 1.30286348e+00 7.14750350e-01 5.84457517e-01 -9.23358917e-01 -8.13470721e-01 1.90196157e-01 3.15550804e-01 -1.74830973e+00 -5.23302019e-01 6.32500708e-01 -6.24256849e-01 7.92190850e-01 3.32332015e-01 5.41773140e-01 6.69106543e-01 2.05168083e-01 1.50312394e-01 1.03125870e+00 -3.61388564e-01 1.38040558e-01 1.20647490e-01 3.97967100e-01 9.13169503e-01 5.90285063e-01 2.49322265e-01 9.48013291e-02 -9.61285979e-02 8.67976010e-01 4.95186150e-01 1.62512451e-01 -6.11731470e-01 -1.15378463e+00 8.11640203e-01 3.42298061e-01 2.05238089e-01 -3.50711048e-01 2.08044022e-01 1.84541464e-01 4.44542468e-02 3.97274941e-01 -5.08533306e-02 -2.93311745e-01 1.40520409e-01 -9.63595271e-01 4.30976123e-01 7.53717422e-01 8.75008941e-01 1.17456365e+00 -6.49200529e-02 -3.35092366e-01 6.48112953e-01 1.47899732e-01 6.51323676e-01 3.71757895e-02 -9.92984891e-01 4.90833312e-01 6.74129367e-01 2.24720374e-01 -9.70536530e-01 -3.29861611e-01 -1.27658501e-01 -1.00561666e+00 6.24726713e-01 7.09844649e-01 -3.47357579e-02 -1.13184679e+00 1.30706871e+00 4.53770012e-01 2.27432892e-01 -2.27389574e-01 8.55434895e-01 8.19253922e-01 5.47969520e-01 1.94738749e-02 1.59148827e-01 1.58013380e+00 -1.00939178e+00 -2.07305416e-01 9.75497365e-02 2.32938707e-01 -6.19645715e-01 4.49969530e-01 2.73943782e-01 -6.53029859e-01 -7.87339568e-01 -1.03129554e+00 2.56373733e-01 -7.79584110e-01 2.11655691e-01 3.07985574e-01 9.24392521e-01 -1.08585989e+00 3.50799501e-01 -5.71520925e-01 -3.51384044e-01 5.62798917e-01 3.62989366e-01 -8.58035386e-01 -1.39448151e-01 -7.20793903e-01 9.13006186e-01 1.28763095e-01 2.09092706e-01 -1.09050894e+00 -4.02923286e-01 -9.01531518e-01 1.55373380e-01 3.59149009e-01 -6.48674548e-01 9.93592680e-01 -8.84733140e-01 -1.23757565e+00 9.34007227e-01 -2.36475199e-01 -5.58480859e-01 4.10593837e-01 9.12353024e-02 -2.08063141e-01 2.62765028e-02 -1.36279956e-01 6.68422520e-01 1.08882010e+00 -1.18770742e+00 -6.46255612e-01 -3.57132345e-01 4.59575236e-01 -2.82497644e-01 -6.38111457e-02 2.11395144e-01 -5.40770888e-01 -6.41112685e-01 -1.08455993e-01 -1.13899863e+00 -2.30475351e-01 2.24638119e-01 -9.98595506e-02 -1.62056491e-01 1.12959659e+00 -3.15024883e-01 6.70997322e-01 -2.02325082e+00 -3.97046685e-01 1.48252800e-01 3.70236099e-01 5.55387437e-01 -2.11159587e-01 -1.11830905e-02 -7.97426403e-02 1.38713524e-01 1.20456330e-03 -3.54669005e-01 7.82231838e-02 3.30830246e-01 -7.05968887e-02 7.42995620e-01 2.27011800e-01 8.55597317e-01 -3.11656833e-01 -4.31988925e-01 6.50736034e-01 5.88159204e-01 -4.12097812e-01 2.10131958e-01 6.38494715e-02 -7.97137469e-02 -4.83294278e-01 6.01702094e-01 1.17652929e+00 -1.83455758e-02 -2.72436619e-01 -4.16755736e-01 -2.54491687e-01 -1.28985092e-01 -1.24013221e+00 7.47794151e-01 -3.64323527e-01 6.86658084e-01 8.33826289e-02 -1.07396209e+00 9.19484496e-01 2.77099758e-01 2.81569898e-01 -6.35009468e-01 2.47786164e-01 -1.64811552e-01 -3.03736567e-01 -2.04625502e-01 5.33069313e-01 -5.98168783e-02 -1.45307571e-01 2.06900373e-01 -1.36285886e-01 3.54200043e-02 2.10973993e-01 -2.92758793e-01 8.53310049e-01 -2.85782784e-01 3.54212493e-01 -2.83477157e-01 7.62025058e-01 -5.13541624e-02 4.44708407e-01 7.08493829e-01 -3.06278050e-01 6.68866158e-01 2.99964935e-01 -1.00275362e+00 -1.10136497e+00 -8.49943280e-01 -2.22739339e-01 1.04676151e+00 1.51725575e-01 -6.19944669e-02 -1.26035869e+00 -6.91932261e-01 7.08217174e-02 1.20400533e-01 -1.01828325e+00 3.10579300e-01 -8.57412696e-01 -5.39216399e-01 5.86897910e-01 5.21706283e-01 7.81072438e-01 -8.75932634e-01 -5.12014031e-01 -1.33900002e-01 4.33243066e-02 -1.46843219e+00 -3.88078094e-01 -1.80785246e-02 -7.14925170e-01 -1.41045284e+00 -6.51355028e-01 -6.42435730e-01 9.83081460e-01 6.68981850e-01 9.72097456e-01 -1.49598410e-02 -1.79940775e-01 2.08976403e-01 -2.79968619e-01 -2.86350459e-01 -2.20309690e-01 -1.65014431e-01 -4.10826355e-02 4.65335637e-01 4.38238472e-01 -8.16454664e-02 -4.23243850e-01 6.65311575e-01 -8.48613739e-01 -6.12134300e-02 6.17629766e-01 6.81114018e-01 6.42578363e-01 1.90596417e-01 8.07285830e-02 -7.22618222e-01 6.57381788e-02 -1.74305975e-01 -1.22379041e+00 1.49545565e-01 -9.19863135e-02 1.11704180e-02 6.50945723e-01 -3.40222836e-01 -7.51295447e-01 1.80119231e-01 -2.12020829e-01 -8.00937831e-01 -8.01711619e-01 -3.71315658e-01 -2.69385785e-01 -7.26518393e-01 3.13427091e-01 -7.27197826e-02 -2.86401957e-01 -4.89703268e-01 3.22668314e-01 6.40031099e-01 3.20067763e-01 -3.51611406e-01 9.65508819e-01 5.74827552e-01 2.00661093e-01 -9.30432916e-01 -3.55243742e-01 -4.24403816e-01 -8.23747575e-01 -2.19834700e-01 1.12493467e+00 -7.86641955e-01 -1.08082914e+00 6.21043444e-01 -1.38346267e+00 -9.47548226e-02 -6.57449588e-02 3.03977817e-01 -3.29689056e-01 2.51198024e-01 -2.73856789e-01 -6.92939699e-01 -2.64749467e-01 -1.28353453e+00 1.32659829e+00 1.71105310e-01 2.63621032e-01 -6.31102502e-01 -2.37826467e-01 5.42415202e-01 5.62445641e-01 3.36381763e-01 6.35849595e-01 -3.81090373e-01 -1.06869900e+00 -3.67883861e-01 -5.31871259e-01 3.91941637e-01 -2.84609217e-02 1.11470982e-01 -1.07431173e+00 -6.11327030e-02 -2.86925822e-01 9.80411246e-02 1.00714195e+00 4.13248867e-01 1.24111271e+00 -4.15315837e-01 -5.42031109e-01 6.68433726e-01 1.26396954e+00 2.84897685e-01 7.49264657e-01 4.11939412e-01 7.69389033e-01 6.35069549e-01 4.42346156e-01 2.82336205e-01 4.08636332e-01 1.03135931e+00 6.05427742e-01 -1.63880810e-01 -3.27157170e-01 8.78710374e-02 1.07226476e-01 -3.98675539e-02 -3.41094464e-01 -2.31871918e-01 -6.49782419e-01 5.92909992e-01 -1.57546175e+00 -1.13357675e+00 2.95547489e-02 2.11286139e+00 1.20397814e-01 1.35620788e-01 1.62937909e-01 5.38576804e-02 8.57746959e-01 2.41876096e-01 -6.67454228e-02 -5.84738255e-01 7.62936100e-02 7.22262561e-02 9.65414524e-01 5.57715356e-01 -1.51374793e+00 9.67352092e-01 6.14992762e+00 9.21897829e-01 -1.26403081e+00 1.24867171e-01 6.55360818e-01 1.25399306e-01 3.98119576e-02 -3.72587204e-01 -1.23937333e+00 2.80168444e-01 7.95493960e-01 4.90336448e-01 4.19774890e-01 9.80288386e-01 1.25883132e-01 2.19968855e-02 -9.88284230e-01 1.01063931e+00 1.72480851e-01 -1.48464739e+00 1.34062365e-01 1.39470220e-01 8.12868416e-01 1.32461801e-01 -1.56166077e-01 9.42215919e-02 1.03417896e-01 -1.08051360e+00 8.34743381e-01 5.73399961e-01 7.85930753e-01 -6.75736785e-01 7.81544447e-01 4.19893712e-01 -1.46533692e+00 1.64265707e-01 -4.69599754e-01 -4.22598831e-02 -1.65756688e-01 4.76754516e-01 -9.55736518e-01 1.97426870e-01 8.93950999e-01 1.78583086e-01 -6.52315915e-01 9.37862754e-01 2.23070055e-01 3.81298542e-01 -2.60979623e-01 -4.40918207e-02 2.85356671e-01 -1.79644395e-02 3.23670954e-01 1.43217933e+00 2.30665803e-01 1.29454464e-01 7.36605749e-02 5.34731150e-01 -1.67373732e-01 -2.96804160e-01 -7.62909651e-01 3.50714922e-01 2.15578243e-01 1.37614369e+00 -6.96602881e-01 -6.32114232e-01 -6.59530938e-01 6.36715412e-01 1.67427912e-01 3.10598642e-01 -9.21158016e-01 -4.21938211e-01 9.92019773e-01 3.55912745e-01 1.01060152e+00 -2.09839180e-01 9.80126485e-03 -9.74861979e-01 2.05323860e-01 -7.84553528e-01 4.51108813e-02 -6.53278112e-01 -1.06149495e+00 1.04101992e+00 1.90060869e-01 -1.23412883e+00 -3.64413589e-01 -9.63835180e-01 -2.96532065e-01 7.74234295e-01 -1.61519241e+00 -1.24631357e+00 -4.78316486e-01 7.79798269e-01 4.41073418e-01 -2.27740835e-02 7.75741279e-01 4.39192742e-01 -3.29926223e-01 6.11906528e-01 -1.67348385e-02 4.17076945e-01 3.29223007e-01 -7.37782240e-01 6.77130401e-01 8.46926510e-01 -7.58165568e-02 4.69559997e-01 4.95839864e-01 -3.44600677e-01 -1.23596442e+00 -1.49889600e+00 1.01977563e+00 -5.87893784e-01 3.44317913e-01 -7.33956277e-01 -6.01603925e-01 6.84755862e-01 -1.08111668e-02 6.89399242e-01 2.47257456e-01 -2.79748946e-01 -6.65403843e-01 -6.50398135e-01 -1.51821744e+00 2.84100235e-01 8.14606547e-01 -4.31519300e-01 -5.81315160e-01 9.37616080e-02 4.39240694e-01 -2.53102064e-01 -6.16477609e-01 5.47392249e-01 9.30339813e-01 -9.96297717e-01 1.08972645e+00 -5.07189035e-01 -2.02478588e-01 -6.88991606e-01 -3.95798951e-01 -9.72006500e-01 -4.55599099e-01 -1.45396516e-01 1.27632767e-01 9.18192029e-01 2.83217616e-02 -8.35392594e-01 9.03406918e-01 5.12005389e-01 -1.72941595e-01 -5.59216380e-01 -1.16421175e+00 -6.64068580e-01 -1.00761771e-01 -6.67396188e-01 8.21954846e-01 3.01988810e-01 -7.09870577e-01 -1.44084230e-01 -3.10888350e-01 5.03962755e-01 6.69605911e-01 3.89151871e-01 1.06649852e+00 -1.33425689e+00 4.56753857e-02 -4.27664578e-01 -8.55115950e-01 -1.01173317e+00 1.67496905e-01 -1.81026265e-01 8.83742198e-02 -1.25312996e+00 3.79397392e-01 -3.48676264e-01 -2.02773944e-01 4.76767868e-01 2.96116501e-01 9.70685005e-01 3.44204068e-01 -1.26162454e-01 -7.67574310e-01 1.27240404e-01 1.21009839e+00 -2.78993011e-01 4.03914481e-01 1.82913035e-01 -5.18335521e-01 8.28326821e-01 6.27413929e-01 -3.44080120e-01 1.38243675e-01 -3.41958672e-01 -3.80855531e-01 -1.21901967e-02 8.70647967e-01 -1.00439489e+00 1.93025857e-01 -1.96308553e-01 5.37741601e-01 -8.56363893e-01 5.82339287e-01 -1.24407935e+00 4.21922535e-01 2.13472620e-01 2.28823736e-01 2.28498243e-02 3.88782263e-01 1.92069292e-01 -2.34673679e-01 -7.33532235e-02 8.86387765e-01 -1.68124691e-01 -7.33824611e-01 4.41930652e-01 -5.14149904e-01 -4.33135837e-01 1.24139488e+00 -5.56114614e-01 -4.36636895e-01 2.39557261e-03 -4.27821606e-01 -3.13863009e-01 5.95583856e-01 4.50472862e-01 4.38377976e-01 -1.49190414e+00 -6.18895471e-01 6.20362103e-01 2.28500113e-01 -2.92940855e-01 4.25862670e-01 5.29693305e-01 -6.93684876e-01 1.12674975e+00 -3.17767024e-01 -5.35343170e-01 -1.48296213e+00 8.52692425e-01 4.60124493e-01 -1.72706291e-01 -3.11984181e-01 4.81000930e-01 6.72266424e-01 -3.37465286e-01 1.52965441e-01 -7.01583624e-01 -4.00469393e-01 -1.92724496e-01 7.05094934e-01 4.32382196e-01 4.70410943e-01 -1.21109343e+00 -6.16659105e-01 1.12518287e+00 -3.92018035e-02 3.11889589e-01 1.27861464e+00 4.00473177e-02 7.15119541e-02 -2.21072435e-01 1.25379646e+00 1.14078254e-01 -1.43213260e+00 1.61960088e-02 -5.02356172e-01 -6.50221229e-01 -1.24572523e-01 -4.24587131e-01 -1.23236442e+00 8.67559016e-01 7.17370093e-01 3.15038711e-01 1.14180827e+00 1.26563817e-01 6.30379260e-01 5.20284176e-01 4.98285264e-01 -5.34274101e-01 -3.71688694e-01 6.88056052e-01 7.40697920e-01 -1.34084260e+00 -1.76873282e-01 -5.15129507e-01 -1.65516943e-01 1.28066540e+00 4.63416219e-01 -3.73975307e-01 6.76533937e-01 4.03706402e-01 1.04901083e-01 -2.18590349e-01 -5.36454499e-01 -2.89152235e-01 6.17712379e-01 6.56304598e-01 3.96027714e-02 2.36726865e-01 4.46636081e-02 3.65298122e-01 -9.68634337e-03 -4.61218357e-02 2.79781371e-01 4.89096671e-01 -6.32253349e-01 -9.16367650e-01 -9.16732073e-01 1.77383721e-01 -3.84448379e-01 8.79542828e-02 -1.33089662e-01 8.56917858e-01 7.20425129e-01 9.93839681e-01 3.27771544e-01 -3.19455177e-01 4.82036322e-01 -2.41215840e-01 5.16979694e-01 -3.11169595e-01 -3.82519662e-01 -1.78135097e-01 1.56662583e-01 -7.17662334e-01 -3.78125817e-01 -6.29909277e-01 -7.97906816e-01 -5.18555343e-01 -9.19319168e-02 1.51895743e-03 7.74355948e-01 1.01501799e+00 1.87167138e-01 3.40087861e-01 5.96733630e-01 -1.23670042e+00 -3.71856913e-02 -7.58077800e-01 -3.86477798e-01 1.34788081e-01 8.24075699e-01 -9.50267375e-01 -2.81768441e-01 2.57990479e-01]
[8.221046447753906, -0.8083351254463196]
6309bdc2-698d-4232-814a-9ca48dd2d23d
improving-the-modality-representation-with
2210.15824
null
https://arxiv.org/abs/2210.15824v3
https://arxiv.org/pdf/2210.15824v3.pdf
Improving the Modality Representation with Multi-View Contrastive Learning for Multimodal Sentiment Analysis
Modality representation learning is an important problem for multimodal sentiment analysis (MSA), since the highly distinguishable representations can contribute to improving the analysis effect. Previous works of MSA have usually focused on multimodal fusion strategies, and the deep study of modal representation learning was given less attention. Recently, contrastive learning has been confirmed effective at endowing the learned representation with stronger discriminate ability. Inspired by this, we explore the improvement approaches of modality representation with contrastive learning in this study. To this end, we devise a three-stages framework with multi-view contrastive learning to refine representations for the specific objectives. At the first stage, for the improvement of unimodal representations, we employ the supervised contrastive learning to pull samples within the same class together while the other samples are pushed apart. At the second stage, a self-supervised contrastive learning is designed for the improvement of the distilled unimodal representations after cross-modal interaction. At last, we leverage again the supervised contrastive learning to enhance the fused multimodal representation. After all the contrast trainings, we next achieve the classification task based on frozen representations. We conduct experiments on three open datasets, and results show the advance of our model.
['Limin Sun', 'Hongsong Zhu', 'Yimo Ren', 'Jie Liu', 'Hong Li', 'Xin Zheng', 'Peipei Liu']
2022-10-28
null
null
null
null
['multimodal-sentiment-analysis', 'multimodal-sentiment-analysis']
['computer-vision', 'natural-language-processing']
[ 3.92260045e-01 -1.67463616e-01 -9.08003822e-02 -3.26010555e-01 -9.21117783e-01 -2.81351417e-01 7.79835880e-01 1.72394022e-01 -1.60049453e-01 4.51797068e-01 5.39734662e-01 9.33775082e-02 -1.06557868e-01 -6.11910105e-01 -5.51878989e-01 -1.18393004e+00 4.14194882e-01 1.53910384e-01 -8.24407861e-02 -6.31220877e-01 3.51728946e-01 1.72304604e-02 -1.56972992e+00 7.42551804e-01 9.90126669e-01 1.02276087e+00 -6.85586482e-02 2.52253383e-01 -4.28758204e-01 8.37245166e-01 -1.98892564e-01 -4.99640077e-01 -1.86852232e-01 -6.10298395e-01 -7.47019410e-01 6.64214715e-02 2.13534627e-02 5.26730604e-02 -7.10827634e-02 1.02273583e+00 6.17822886e-01 3.35382283e-01 7.82746017e-01 -1.25511146e+00 -5.63666701e-01 9.83266592e-01 -1.05722558e+00 -3.95793058e-02 4.58279729e-01 8.24778080e-02 1.06449580e+00 -1.20312178e+00 2.35039622e-01 1.45227575e+00 2.27714255e-01 5.17650187e-01 -9.57177520e-01 -6.38763130e-01 4.69925582e-01 2.38923714e-01 -1.00531840e+00 -4.75590855e-01 1.36825716e+00 -2.53121287e-01 1.44832045e-01 1.67443588e-01 4.13828671e-01 1.17082870e+00 -2.42155164e-01 1.12611520e+00 1.13954425e+00 -4.37562466e-01 -1.78246245e-01 3.17255169e-01 3.95138055e-01 5.60140848e-01 -2.27824375e-01 -1.53978586e-01 -4.55196053e-01 1.58189133e-01 2.16018841e-01 4.39799130e-01 -3.10074359e-01 -2.95725822e-01 -1.21485317e+00 8.96893084e-01 7.28733063e-01 6.17531478e-01 -3.03016186e-01 -1.94060490e-01 5.14308512e-01 2.83110976e-01 4.37812030e-01 2.30557367e-01 -2.38152668e-01 1.25074714e-01 -6.57738388e-01 -8.42493400e-02 1.20835930e-01 3.36806029e-01 9.76167023e-01 -1.09522454e-01 -2.88984090e-01 1.07767081e+00 5.63397348e-01 3.80311012e-01 7.20884442e-01 -4.32457805e-01 7.18305588e-01 1.08371198e+00 -4.05301154e-01 -1.04109013e+00 -5.07887483e-01 -3.78396928e-01 -1.16117084e+00 7.57509544e-02 1.37960300e-01 -2.43317217e-01 -8.04103434e-01 1.72126043e+00 2.75692552e-01 3.74294370e-02 4.32897061e-01 9.12959456e-01 1.09890473e+00 8.44982326e-01 1.35680392e-01 -3.01176935e-01 1.54293168e+00 -1.16589379e+00 -7.56783485e-01 6.16704226e-02 6.07429445e-01 -7.77018547e-01 8.95646036e-01 3.52744937e-01 -1.06746924e+00 -7.82574356e-01 -1.14847708e+00 -1.39174135e-02 -5.76617658e-01 1.19663835e-01 4.82181281e-01 3.47320557e-01 -5.30739903e-01 3.06652546e-01 -5.23536921e-01 -8.85463133e-02 4.84215349e-01 1.72538087e-01 -5.36929309e-01 -1.58099934e-01 -1.40813601e+00 7.48656511e-01 5.95597863e-01 5.33295929e-01 -5.66730499e-01 -4.30056781e-01 -1.00108469e+00 5.37837520e-02 3.06440741e-01 -5.91552317e-01 7.80679345e-01 -1.43054855e+00 -1.48557341e+00 6.54351652e-01 -3.02745663e-02 2.88804471e-02 1.94800436e-01 -1.76027883e-02 -5.53093374e-01 1.85752362e-01 -1.17335394e-01 7.28231609e-01 1.05002618e+00 -1.80616772e+00 -7.04698563e-01 -5.86284101e-01 3.44248354e-01 5.65392137e-01 -6.23297393e-01 -1.62831470e-01 -2.62030184e-01 -5.16874850e-01 2.57001907e-01 -6.68283105e-01 -3.12251672e-02 -5.43048561e-01 -3.39028418e-01 -2.13388816e-01 7.02480078e-01 -6.46714449e-01 1.30037034e+00 -2.39332032e+00 8.55037451e-01 2.82858968e-01 2.30992183e-01 1.07859291e-01 -3.32007736e-01 3.15419823e-01 -3.22221935e-01 6.54644221e-02 -4.53155458e-01 -5.88145256e-01 -1.33695896e-03 -1.24009036e-01 -2.59366006e-01 9.80200917e-02 5.35151541e-01 8.58668029e-01 -7.62620926e-01 -6.17955565e-01 1.91265136e-01 4.04830605e-01 -5.02571464e-01 2.86435127e-01 8.57063308e-02 6.78743899e-01 -4.05159831e-01 7.26858139e-01 1.08196902e+00 -1.17803387e-01 1.92928776e-01 -7.43174851e-01 1.93947889e-02 -2.37212881e-01 -1.16886449e+00 1.88843775e+00 -5.21307707e-01 1.87920198e-01 8.30585882e-02 -1.38623559e+00 8.75851452e-01 9.43106785e-03 4.03889626e-01 -8.35891604e-01 3.76080006e-01 1.72300786e-01 -2.21961811e-02 -6.19115114e-01 6.48535609e-01 -4.36574370e-01 -2.06496418e-01 3.33296090e-01 1.60687238e-01 7.72016346e-02 -3.25384550e-02 2.35784873e-01 2.68779129e-01 3.54014069e-01 -1.18364440e-02 1.99452966e-01 9.97317076e-01 -2.92594850e-01 1.64433390e-01 1.70763955e-01 -4.65094447e-02 5.47002375e-01 5.56045532e-01 -1.08239517e-01 -4.69040692e-01 -9.56940472e-01 -6.45615608e-02 1.42717385e+00 5.39619565e-01 -2.05737203e-01 -4.71141309e-01 -8.85853171e-01 -2.81692028e-01 3.87325853e-01 -9.59519327e-01 -5.86001098e-01 -4.24028248e-01 -9.51293051e-01 1.97701797e-01 6.66779697e-01 7.36664951e-01 -1.00159538e+00 -1.52153075e-01 -1.31653354e-01 -4.24293011e-01 -5.20913482e-01 -1.50454342e-01 2.67155647e-01 -7.59244144e-01 -8.70239198e-01 -1.05174315e+00 -1.04124141e+00 7.15096474e-01 4.18577641e-01 6.32122278e-01 7.58292675e-02 4.06847268e-01 4.21969920e-01 -6.02239311e-01 -2.05520809e-01 -1.77525610e-01 2.70646185e-01 -2.69955516e-01 6.13726914e-01 1.80685297e-01 -4.87943143e-01 -5.58870196e-01 1.31840602e-01 -1.17938983e+00 1.10186622e-01 6.89686239e-01 1.14963257e+00 4.30117399e-01 -1.09581165e-01 7.10051954e-01 -6.96704745e-01 6.64118409e-01 -7.45081544e-01 1.55454571e-03 2.66586900e-01 -1.64084658e-01 1.86074346e-01 5.01507342e-01 -5.65487802e-01 -1.46174550e+00 -6.38849661e-02 -2.06161126e-01 -4.94353980e-01 4.96168621e-03 9.79108036e-01 -4.01174694e-01 1.67879343e-01 3.49364966e-01 2.80298650e-01 3.41153413e-01 -2.24219486e-01 6.55571938e-01 7.22727954e-01 2.54974931e-01 -5.10639131e-01 6.03023291e-01 3.97172123e-01 -1.73465163e-01 -4.45358336e-01 -7.70791173e-01 -2.80294299e-01 -4.75455284e-01 -2.83898503e-01 9.36877012e-01 -8.57885897e-01 -7.25928605e-01 5.11941314e-01 -8.56125593e-01 1.91372260e-01 -5.41857406e-02 4.66201901e-01 -2.21070796e-01 4.80238348e-01 -2.65240103e-01 -7.74141192e-01 -1.67574018e-01 -1.38666272e+00 1.23951876e+00 7.08712876e-01 2.04834014e-01 -1.05049217e+00 2.51216382e-01 5.62093616e-01 3.11887920e-01 1.36252388e-01 9.28221881e-01 -7.50189185e-01 -4.75514419e-02 -3.35307270e-02 -2.44884163e-01 3.36264580e-01 1.73939720e-01 1.77429663e-03 -1.26639545e+00 -2.61810392e-01 -8.04991275e-02 -5.94190598e-01 1.38656890e+00 1.56784117e-01 1.06068146e+00 1.25409484e-01 -3.33070308e-01 3.89945775e-01 1.03256869e+00 1.17067464e-01 7.23130763e-01 4.15810019e-01 7.80015647e-01 8.31016541e-01 8.00439179e-01 2.59033740e-01 5.11324883e-01 3.93635303e-01 6.11302674e-01 -2.66159713e-01 1.77277401e-01 -1.65237904e-01 3.83981824e-01 1.05938005e+00 -2.62754023e-01 1.47114589e-03 -5.57731986e-01 2.79367894e-01 -1.99028707e+00 -1.11879599e+00 1.46010175e-01 1.90028560e+00 5.38972139e-01 5.01182191e-02 2.32415676e-01 2.67690271e-01 8.56379628e-01 4.43831414e-01 -3.22010875e-01 -1.32168517e-01 -3.03886980e-01 -1.64655149e-01 -4.51335877e-01 2.47188851e-01 -1.29053450e+00 7.37092614e-01 4.86145782e+00 8.25845480e-01 -1.27888477e+00 -1.14571281e-01 7.21315742e-01 9.68592241e-02 -7.93806612e-01 -2.36973520e-02 -4.39472169e-01 4.61393476e-01 4.78213906e-01 2.46062428e-01 4.01542038e-01 3.77921939e-01 -2.42614031e-01 -2.03796220e-03 -8.61860037e-01 1.28924525e+00 3.74963164e-01 -1.06042075e+00 4.40403938e-01 -1.80770591e-01 7.10122943e-01 -5.25823832e-01 3.81452709e-01 7.99416006e-01 -2.53719985e-01 -8.43418658e-01 4.59401399e-01 9.67019022e-01 3.14274490e-01 -1.09711993e+00 1.09231842e+00 2.29847625e-01 -1.35806727e+00 -2.80861795e-01 -2.83846229e-01 2.02440053e-01 1.27866924e-01 2.22109973e-01 -7.88876787e-02 1.27194607e+00 4.34286475e-01 9.82549310e-01 -7.70538449e-01 6.03659928e-01 2.62110587e-02 1.61164701e-01 2.03456491e-01 3.05075776e-02 2.26640299e-01 -4.35315341e-01 3.15664411e-01 1.02444410e+00 1.57356128e-01 3.54462638e-02 9.22822952e-02 5.86694598e-01 -2.13449374e-01 3.65192741e-01 -4.82280999e-01 -5.79615049e-02 1.33415699e-01 1.59136057e+00 -4.49380040e-01 -3.79048765e-01 -4.53326046e-01 8.37027371e-01 4.86939132e-01 2.63643831e-01 -9.94097650e-01 -3.94617409e-01 9.96003821e-02 -4.14292872e-01 3.16417873e-01 1.95003375e-01 -2.51591504e-01 -1.38178122e+00 -1.17191397e-01 -1.07706940e+00 7.38021791e-01 -7.41536140e-01 -1.56944835e+00 6.09553337e-01 -2.04653237e-02 -1.59340084e+00 -1.83271244e-02 -5.47510743e-01 -8.12162101e-01 9.19852197e-01 -1.74310076e+00 -1.58019185e+00 -3.55512291e-01 7.85269856e-01 4.20064360e-01 -3.26714128e-01 6.01736963e-01 3.33823085e-01 -7.61768281e-01 7.12385297e-01 -1.51331723e-01 -4.56905477e-02 8.86792779e-01 -9.58383024e-01 -7.08022058e-01 5.76499164e-01 -1.08267300e-01 7.33027756e-01 3.07406098e-01 -3.22656572e-01 -1.39862001e+00 -8.50602090e-01 2.79494673e-01 -1.85328677e-01 5.72733581e-01 6.38948306e-02 -1.10896027e+00 4.32750583e-01 6.50781631e-01 -1.92690521e-01 9.55932200e-01 4.02249128e-01 -4.01415408e-01 -3.30664128e-01 -8.58462274e-01 5.82550406e-01 5.13089538e-01 -5.92089832e-01 -8.59222770e-01 -1.16346940e-01 6.47272885e-01 -1.76352501e-01 -9.34122205e-01 6.43156052e-01 6.66339159e-01 -7.71042585e-01 7.86700189e-01 -7.72647262e-01 9.33469653e-01 -4.47201550e-01 -2.94056714e-01 -1.55556476e+00 -2.96296895e-01 -7.30507076e-02 4.62618656e-02 1.76020539e+00 5.33581436e-01 -5.38371921e-01 2.29010612e-01 9.94765311e-02 -2.46561185e-01 -7.44744122e-01 -6.20545089e-01 -9.33385920e-03 2.44400993e-01 -1.19469471e-01 6.09787881e-01 1.16126680e+00 4.54184800e-01 7.67389417e-01 -4.66042906e-01 9.70617756e-02 2.49920323e-01 4.92396057e-01 7.59365380e-01 -1.06962144e+00 -1.78496048e-01 -7.26626039e-01 -1.51331842e-01 -9.44193602e-01 2.01047078e-01 -1.01852930e+00 -1.22033276e-01 -1.44045639e+00 6.30978823e-01 -5.00219576e-02 -7.10655868e-01 4.16470587e-01 -7.39390612e-01 1.65721580e-01 3.55908453e-01 1.09739736e-01 -8.41053188e-01 1.05288088e+00 1.46213186e+00 -6.18558466e-01 -2.51285732e-01 -1.26747191e-01 -1.18214631e+00 5.83078384e-01 5.59970617e-01 3.33651118e-02 -4.86964166e-01 -2.41904348e-01 2.45250359e-01 9.69363190e-03 2.04472229e-01 -7.07100689e-01 3.26371640e-02 3.69117269e-03 5.31591833e-01 -7.09501505e-01 4.39049900e-01 -9.06603575e-01 -2.83462703e-01 2.98821896e-01 -4.84643877e-01 -1.00600481e-01 2.72797585e-01 4.47758079e-01 -6.89213991e-01 -1.89000219e-01 7.86486745e-01 1.17584161e-01 -7.30612695e-01 1.23849034e-01 -8.45095739e-02 -8.53752270e-02 8.61086547e-01 -2.26328261e-02 -4.98212367e-01 -2.28606433e-01 -8.94688070e-01 5.15120983e-01 5.58518842e-02 4.87309456e-01 6.94885194e-01 -1.69661820e+00 -6.83612287e-01 1.06710747e-01 3.76789898e-01 -1.79277837e-01 7.20544815e-01 1.15592122e+00 1.29081517e-01 -1.67476892e-01 -4.39888000e-01 -7.62256861e-01 -1.06909525e+00 8.67461503e-01 2.83387512e-01 -3.28453451e-01 -2.52530500e-02 5.40680170e-01 3.70648414e-01 -6.02288187e-01 7.47452956e-03 -2.12023184e-02 -1.07773721e+00 8.17065835e-01 5.87352455e-01 3.31435412e-01 -9.93344784e-02 -7.87427545e-01 -3.83738995e-01 7.70905912e-01 -3.80754352e-01 -1.55150026e-01 1.27651179e+00 -2.85642952e-01 -2.13232175e-01 7.19348907e-01 1.34315336e+00 4.38355058e-02 -9.12304044e-01 -1.18766777e-01 -3.82318795e-01 -9.51071605e-02 -9.96399596e-02 -6.00002289e-01 -1.22709239e+00 1.21596992e+00 7.62832701e-01 2.83600241e-01 1.51248443e+00 -8.66509881e-03 5.11460483e-01 1.29277527e-01 -1.13091342e-01 -9.06751096e-01 5.04441142e-01 4.35093611e-01 8.89912903e-01 -1.55405164e+00 -2.05437347e-01 -2.30417594e-01 -1.05741990e+00 1.21587217e+00 7.05155075e-01 5.87850399e-02 4.74670023e-01 -1.56811967e-01 5.42754419e-02 -2.18313724e-01 -3.99033487e-01 -3.60557556e-01 4.46074486e-01 3.68353486e-01 4.62320715e-01 -6.21584132e-02 -3.48717868e-01 1.00317764e+00 2.77636945e-01 -3.01747590e-01 4.03760262e-02 8.82644057e-01 -3.73841316e-01 -9.66379881e-01 -4.87380207e-01 1.97565332e-01 -1.15188006e-02 -2.55906098e-02 -3.49123299e-01 5.37307382e-01 2.07245037e-01 1.04375231e+00 -6.26265556e-02 -7.43502319e-01 4.44168419e-01 1.78073093e-01 4.65833247e-01 -2.19401762e-01 -6.74564004e-01 3.55568022e-01 -3.95466574e-02 -2.04696342e-01 -9.15281057e-01 -6.34390891e-01 -1.30170548e+00 -1.70648135e-02 -3.47687215e-01 2.40413800e-01 3.84779304e-01 1.10097301e+00 1.91054448e-01 8.64176929e-01 1.15248299e+00 -1.11991096e+00 -3.75104338e-01 -1.03524268e+00 -3.57634962e-01 7.48203993e-01 3.48649651e-01 -8.85748267e-01 -4.74536270e-01 -1.40115947e-01]
[13.077596664428711, 5.007893085479736]
af6fb4fd-d802-4813-b4f6-25eec9582ba8
benchmarking-the-impact-of-noise-on-deep
2303.13915
null
https://arxiv.org/abs/2303.13915v1
https://arxiv.org/pdf/2303.13915v1.pdf
Benchmarking the Impact of Noise on Deep Learning-based Classification of Atrial Fibrillation in 12-Lead ECG
Electrocardiography analysis is widely used in various clinical applications and Deep Learning models for classification tasks are currently in the focus of research. Due to their data-driven character, they bear the potential to handle signal noise efficiently, but its influence on the accuracy of these methods is still unclear. Therefore, we benchmark the influence of four types of noise on the accuracy of a Deep Learning-based method for atrial fibrillation detection in 12-lead electrocardiograms. We use a subset of a publicly available dataset (PTBXL) and use the metadata provided by human experts regarding noise for assigning a signal quality to each electrocardiogram. Furthermore, we compute a quantitative signal-to-noise ratio for each electrocardiogram. We analyze the accuracy of the Deep Learning model with respect to both metrics and observe that the method can robustly identify atrial fibrillation, even in cases signals are labelled by human experts as being noisy on multiple leads. False positive and false negative rates are slightly worse for data being labelled as noisy. Interestingly, data annotated as showing baseline drift noise results in an accuracy very similar to data without. We conclude that the issue of processing noisy electrocardiography data can be addressed successfully by Deep Learning methods that might not need preprocessing as many conventional methods do.
['Nicolai Spicher', 'Dagmar Krefting', 'Henning Dathe', 'Ennio Idrobo-Avila', 'Philip Gemke', 'Theresa Bender']
2023-03-24
null
null
null
null
['atrial-fibrillation-detection']
['medical']
[ 1.23014741e-01 -2.59214312e-01 3.20276380e-01 -5.71968675e-01 -1.11719787e+00 -7.03737080e-01 2.03969866e-01 4.96541977e-01 -7.49907017e-01 7.01615393e-01 4.19663489e-02 -3.95374358e-01 -3.64068866e-01 -5.90856493e-01 -4.30906534e-01 -8.80646765e-01 -3.09574515e-01 3.82808775e-01 -3.75875831e-01 1.29393294e-01 -2.92836763e-02 4.97568429e-01 -8.75998914e-01 4.62362587e-01 5.33200622e-01 1.15615201e+00 -4.87005919e-01 8.17439795e-01 3.08618307e-01 5.00452638e-01 -1.21264708e+00 -1.65783450e-01 3.18616003e-01 -6.39003754e-01 -5.83552182e-01 -1.78427055e-01 1.78962097e-01 -2.15391070e-01 1.63477119e-02 7.97480881e-01 1.34054160e+00 -4.86243635e-01 5.95591068e-01 -6.16459131e-01 1.61694065e-01 7.35723197e-01 -1.99039310e-01 8.47009480e-01 2.35364243e-01 4.88286167e-01 5.41171014e-01 -6.76683068e-01 4.90716368e-01 5.97977519e-01 1.26913822e+00 9.93843675e-02 -1.64375210e+00 -4.25562769e-01 -3.04747373e-01 2.30185408e-02 -1.42280805e+00 -4.35895085e-01 7.28316247e-01 -6.75969899e-01 6.77156389e-01 2.61881381e-01 7.08450496e-01 1.19217217e+00 4.67306942e-01 2.74373710e-01 1.11761820e+00 -2.96298414e-01 4.39799696e-01 -1.06104203e-01 3.21659833e-01 8.42190310e-02 3.33303630e-01 1.93274900e-01 -2.83749610e-01 -4.21180010e-01 5.33380330e-01 -1.78959906e-01 -4.36005563e-01 -1.01703905e-01 -1.44911146e+00 5.82250416e-01 1.78365231e-01 6.36835277e-01 -6.73383415e-01 1.90594673e-01 7.82158017e-01 6.78667963e-01 4.07071084e-01 7.49947965e-01 -6.37150109e-01 -4.22296852e-01 -1.13889217e+00 4.55850601e-01 7.50670254e-01 2.56202608e-01 2.14490727e-01 1.41580209e-01 -4.64756817e-01 6.00559354e-01 -1.54584184e-01 3.68238956e-01 5.22117317e-01 -9.23720300e-01 1.83424845e-01 3.14533740e-01 1.60468981e-01 -8.02556157e-01 -1.01136851e+00 -9.22124326e-01 -1.19191027e+00 2.68920541e-01 6.64406538e-01 -5.19490659e-01 -8.84097219e-01 1.36446869e+00 -1.58528492e-01 -1.09460108e-01 -6.97377622e-02 1.09388340e+00 7.64981449e-01 1.04393058e-01 1.80129409e-01 -4.21427459e-01 1.05463505e+00 1.14448123e-01 -9.85872805e-01 4.07755896e-02 7.34154761e-01 -6.22463882e-01 8.34825039e-01 9.26789343e-01 -9.89179015e-01 -5.76867521e-01 -9.35055614e-01 3.36220324e-01 -2.40109507e-02 8.27454776e-02 2.05174729e-01 1.05889213e+00 -1.03445816e+00 9.89569604e-01 -9.75880265e-01 -1.11484760e-02 7.74601102e-01 4.77617472e-01 -2.25257948e-01 3.55414093e-01 -1.34136462e+00 8.90738726e-01 7.33857900e-02 3.21491539e-01 -8.65854919e-01 -6.93196058e-01 -5.98987877e-01 3.43810255e-03 -1.23012606e-02 -5.27199149e-01 1.08811116e+00 -9.71631587e-01 -9.97302949e-01 9.39127266e-01 2.55138814e-01 -8.03759694e-01 1.03557885e+00 -3.16776693e-01 -5.01699746e-01 -1.05091311e-01 -3.93459052e-02 -2.73441710e-02 9.67130303e-01 -1.02681446e+00 -3.44739616e-01 -5.00265718e-01 -2.10273653e-01 -3.19891900e-01 2.00469628e-01 -1.27860516e-01 6.45119175e-02 -9.72081065e-01 2.42462799e-01 -7.15146005e-01 -3.85784805e-01 -2.66354203e-01 -1.92031741e-01 1.25810564e-01 3.50322366e-01 -6.88204527e-01 1.45724630e+00 -2.21220684e+00 -1.26150936e-01 6.34477913e-01 5.15736461e-01 5.14823854e-01 3.38367671e-02 2.17740729e-01 -2.36803308e-01 4.87780541e-01 -5.46199858e-01 -1.97747331e-02 -3.55555415e-01 1.51137665e-01 -2.96351220e-02 7.54656374e-01 2.46257439e-01 8.26694965e-01 -6.93244696e-01 -5.35194501e-02 2.60711104e-01 5.47938645e-01 -1.79132029e-01 3.52767520e-02 3.14904779e-01 6.49745345e-01 4.83100815e-03 3.27605486e-01 5.28358161e-01 -7.72058405e-03 3.69295806e-01 -3.75643522e-01 2.44280636e-01 3.45108032e-01 -1.22487569e+00 1.45871186e+00 -3.42942983e-01 7.13261783e-01 -1.12055272e-01 -1.14733636e+00 9.79987264e-01 6.33112848e-01 6.12218499e-01 -5.62325001e-01 1.44079134e-01 2.04912618e-01 5.85196435e-01 -5.74454010e-01 -2.29712829e-01 -4.52890277e-01 2.01531202e-01 5.28990328e-01 -1.02959327e-01 4.72070798e-02 -1.63270503e-01 -1.39125302e-01 1.43580937e+00 -1.47328258e-01 2.49740824e-01 -5.06955802e-01 2.54941493e-01 -2.85604179e-01 7.44135559e-01 1.33409798e+00 -3.82678300e-01 1.03856575e+00 6.93988442e-01 -9.80327249e-01 -8.20769250e-01 -9.71328676e-01 -5.81322253e-01 2.94775873e-01 -3.44196558e-01 -4.07357126e-01 -7.07970083e-01 -7.60352790e-01 2.22511869e-02 2.63004988e-01 -6.73051059e-01 -2.15633780e-01 -6.83333576e-01 -1.32329500e+00 9.83685553e-01 7.94971228e-01 3.61340074e-03 -1.24733281e+00 -1.19744134e+00 5.66210151e-01 -2.39599645e-01 -9.15646970e-01 6.37478009e-02 7.01576948e-01 -1.05902421e+00 -1.25779653e+00 -7.59318531e-01 -2.77608901e-01 2.14093983e-01 -5.90813935e-01 1.48714149e+00 3.27459902e-01 -5.73626757e-01 2.90325969e-01 -3.80349338e-01 -6.80642247e-01 -5.65896332e-01 -7.84936845e-02 1.63570195e-01 6.08152710e-02 5.27113259e-01 -4.74556535e-01 -7.79319644e-01 8.19525272e-02 -8.32989097e-01 -6.27032042e-01 4.12792027e-01 7.73119390e-01 4.36440766e-01 -2.76660677e-02 1.10820806e+00 -1.12178183e+00 1.08289993e+00 -2.85496116e-01 -3.04690272e-01 -3.08342844e-01 -6.36244118e-01 -1.18216731e-01 5.69736362e-01 -1.80871516e-01 -3.64868790e-01 2.28846341e-01 -4.24574077e-01 -1.45101890e-01 -5.18229902e-01 6.12472892e-01 -1.59378629e-02 1.67738885e-01 1.08503568e+00 -1.62264287e-01 4.86832559e-02 -4.13731843e-01 -1.59916267e-01 6.98707759e-01 3.61146957e-01 -2.14792788e-01 3.76030654e-01 4.52931732e-01 5.27416728e-02 -7.59201765e-01 -5.59039474e-01 -4.30688560e-01 -6.64982557e-01 -1.88513339e-01 7.39448488e-01 -9.04533327e-01 -4.67965662e-01 5.35148919e-01 -1.13675320e+00 -2.55230248e-01 -5.10655940e-01 4.65467274e-01 -3.93238485e-01 4.66076136e-01 -3.66438210e-01 -9.20372069e-01 -5.89637876e-01 -1.09188402e+00 9.13867116e-01 -5.86949646e-01 -7.32847273e-01 -8.48933578e-01 5.42927682e-02 -4.44747545e-02 4.59911168e-01 8.26822817e-01 9.26561296e-01 -8.59726369e-01 1.57066926e-01 -4.09024864e-01 1.47531033e-01 7.57941604e-01 2.47930944e-01 -3.05926055e-01 -1.35224104e+00 -2.54797339e-01 5.16646445e-01 1.06822252e-01 9.32577372e-01 8.47979248e-01 1.21292114e+00 3.28318290e-02 -4.79749404e-02 4.57001179e-01 1.19001889e+00 1.35762662e-01 7.76164293e-01 3.25517923e-01 4.00861651e-01 3.19467038e-01 1.50577798e-01 4.91542459e-01 -2.74880558e-01 4.90972787e-01 8.58296454e-02 -5.06701887e-01 1.79435477e-01 5.03121436e-01 -5.63280797e-03 1.81301028e-01 -2.65145004e-01 -2.77522001e-02 -1.23023880e+00 5.24480343e-01 -1.75564873e+00 -7.65156269e-01 -4.54764277e-01 2.36055732e+00 6.69323802e-01 4.04748887e-01 3.46992731e-01 1.03562558e+00 4.40335721e-01 -1.65303305e-01 -4.43779409e-01 -4.12743688e-01 -2.70251215e-01 3.47207159e-01 3.61225635e-01 1.84159428e-01 -1.16723478e+00 4.17351909e-02 7.04885197e+00 1.24315135e-01 -1.15721023e+00 -1.48222242e-02 1.05115116e+00 -3.13091092e-02 1.11029856e-01 -5.17012417e-01 -1.20588906e-01 5.33369899e-01 1.22714925e+00 2.31623337e-01 1.09229684e-02 4.48331892e-01 7.94334710e-01 -1.45460129e-01 -1.41353834e+00 1.31446207e+00 -1.25752717e-01 -1.35615122e+00 -2.56251454e-01 -1.17509015e-01 3.48527193e-01 -1.07876882e-01 -7.91292787e-02 1.04823649e-01 -4.95722413e-01 -1.18175530e+00 5.90669990e-01 7.27793932e-01 7.40684092e-01 -7.40925729e-01 1.45019734e+00 2.22349644e-01 -5.18821657e-01 -1.32422060e-01 -2.30516437e-02 -1.76496476e-01 7.00026676e-02 1.28874040e+00 -6.91117942e-01 3.55597883e-01 1.02689147e+00 6.11281753e-01 -5.66579819e-01 1.12807631e+00 1.03171699e-01 1.04134202e+00 -3.82488370e-01 4.92174685e-01 -1.79193005e-01 2.25504726e-01 5.65879762e-01 1.40378273e+00 3.75353098e-02 1.05931543e-01 3.88488322e-02 8.12478721e-01 2.02458221e-02 -2.72343848e-02 -5.08120656e-01 2.37616017e-01 1.29580185e-01 8.73619676e-01 -8.41235101e-01 -4.53547567e-01 -1.60609707e-01 6.12457454e-01 -2.45554179e-01 3.19238961e-01 -5.13214469e-01 -3.55258256e-01 3.60839605e-01 6.23435378e-01 -1.06671505e-01 1.81218982e-01 -1.00205731e+00 -7.66901255e-01 3.93664122e-01 -1.26127005e+00 4.95259255e-01 -3.38556498e-01 -1.27121115e+00 8.17925334e-01 -3.80495161e-01 -1.29276729e+00 -3.16588670e-01 -4.70338672e-01 -5.02996564e-01 1.00292873e+00 -1.12277770e+00 -3.93590242e-01 -2.35263020e-01 2.96740294e-01 3.24109584e-01 -7.35488832e-02 9.37366724e-01 5.60829818e-01 -1.05666623e-01 5.14419734e-01 -1.96565911e-01 4.68287140e-01 7.50373244e-01 -1.53605735e+00 6.11555338e-01 8.14572215e-01 3.62910658e-01 5.86525977e-01 7.88687825e-01 -4.76119459e-01 -8.45590770e-01 -1.06058335e+00 7.89318860e-01 -8.05048406e-01 7.55865797e-02 -9.58231241e-02 -1.11990559e+00 1.87681079e-01 -1.86488122e-01 3.06198895e-01 7.47072399e-01 2.91007251e-01 9.93838757e-02 -2.60566324e-01 -1.14519346e+00 3.51552442e-02 6.61479890e-01 -4.08999890e-01 -6.06440187e-01 2.54188567e-01 -1.71223938e-01 -4.05539215e-01 -9.83040512e-01 7.20523715e-01 6.06652200e-01 -1.18375468e+00 7.80984759e-01 -5.72515786e-01 -5.53604923e-02 -1.77585140e-01 3.66737157e-01 -1.40427113e+00 -3.12225461e-01 -6.47364736e-01 9.72728282e-02 7.82251716e-01 5.05899966e-01 -4.57955271e-01 6.09101951e-01 3.29769760e-01 1.37841972e-02 -7.22953916e-01 -9.77903187e-01 -6.44286275e-01 8.26588273e-02 -7.82143891e-01 3.33005488e-01 8.29854906e-01 -2.99892038e-01 1.75451308e-01 -2.47213975e-01 1.15174785e-01 4.48360115e-01 -2.10637406e-01 4.35050130e-01 -1.55073225e+00 -1.37190089e-01 -2.91010529e-01 -6.80157542e-01 -9.80023071e-02 -2.51398295e-01 -8.22084546e-01 -4.13816795e-03 -1.37171960e+00 -2.70411462e-01 -5.94531775e-01 -7.42392957e-01 3.36965472e-01 -2.60902166e-01 5.63567877e-01 -7.86406621e-02 1.60646051e-01 -2.68879116e-01 -1.71634346e-01 5.67007363e-01 -6.99739009e-02 -4.42213863e-01 3.42391729e-01 -4.52294409e-01 8.64307761e-01 8.28070939e-01 -7.27068365e-01 -1.44477151e-02 -3.41890365e-01 3.12466025e-01 8.98892954e-02 4.71014023e-01 -1.30443358e+00 -2.54004568e-01 6.24389291e-01 9.07926977e-01 -2.36603588e-01 -1.07086442e-01 -8.74886572e-01 2.38098815e-01 6.97751820e-01 -5.13804078e-01 3.85887951e-01 2.97384322e-01 4.58661199e-01 -2.23468319e-01 -1.03178779e-02 8.69055331e-01 -1.76157460e-01 -9.30459648e-02 -3.98793370e-02 -8.13628137e-01 3.25156540e-01 6.15998328e-01 -1.55350909e-01 3.01766425e-01 -3.86981964e-01 -1.26328278e+00 -1.95272282e-01 -7.24041089e-02 2.65087754e-01 5.92108905e-01 -9.40318882e-01 -9.99240935e-01 4.29811895e-01 1.27433717e-01 -1.76243320e-01 1.62620947e-01 1.16969419e+00 -5.83337247e-01 1.43989712e-01 -1.64688334e-01 -1.09127319e+00 -1.17358851e+00 2.57679611e-01 8.14657271e-01 -1.11458234e-01 -1.00969267e+00 5.31024456e-01 -3.44686866e-01 -2.46672006e-03 5.72331071e-01 -7.70555556e-01 -1.23019405e-01 2.42333427e-01 6.08495355e-01 4.00769770e-01 8.67377341e-01 -3.12936664e-01 -6.08925521e-01 3.83171618e-01 1.00868978e-01 5.86546818e-03 1.23889625e+00 1.67581216e-01 8.87248218e-02 5.64400852e-01 7.74955094e-01 -3.09263468e-01 -7.12101102e-01 1.52501792e-01 2.26271510e-01 -1.94598198e-01 2.73316592e-01 -1.24801135e+00 -1.14670181e+00 1.22912300e+00 1.43181765e+00 3.74707073e-01 1.16448808e+00 -5.53750575e-01 3.84807140e-01 2.95004874e-01 5.59215769e-02 -1.08830917e+00 -3.07920635e-01 3.62099968e-02 6.45390153e-01 -1.35142827e+00 -1.24068174e-03 1.45824030e-01 -6.61410630e-01 1.07789338e+00 -1.82423536e-02 -8.62642080e-02 8.58357728e-01 5.97724974e-01 8.16336930e-01 -2.24625334e-01 -3.83855999e-01 1.09404147e-01 4.99466397e-02 9.10926998e-01 7.18671024e-01 1.62124470e-01 -5.53930819e-01 8.90933394e-01 1.17267296e-01 3.23590130e-01 6.15211606e-01 8.72234941e-01 -1.02479212e-01 -1.03732777e+00 -4.08180356e-01 8.74256849e-01 -1.09936571e+00 -5.73767051e-02 -3.70085508e-01 4.36125159e-01 2.88276464e-01 1.03592908e+00 -1.18174784e-01 -1.85574383e-01 4.90278095e-01 1.97928980e-01 2.39805534e-01 -6.18586123e-01 -1.25665879e+00 2.55970120e-01 3.19796540e-02 -4.96815085e-01 -3.41717631e-01 -5.55270314e-01 -9.96831536e-01 3.78126830e-01 -1.53032556e-01 1.42657101e-01 5.66320837e-01 9.43908632e-01 3.47192258e-01 8.09608221e-01 2.82605767e-01 -5.73657990e-01 -7.10839033e-01 -9.75941718e-01 -5.03541648e-01 6.94749057e-01 8.29839170e-01 -2.21251830e-01 -5.58152795e-01 2.68534690e-01]
[14.318840980529785, 3.2930819988250732]
06826626-8872-4ee9-b6f6-a049b77056b8
musiac-an-extensible-generative-framework-for
2202.05528
null
https://arxiv.org/abs/2202.05528v1
https://arxiv.org/pdf/2202.05528v1.pdf
MusIAC: An extensible generative framework for Music Infilling Applications with multi-level Control
We present a novel music generation framework for music infilling, with a user friendly interface. Infilling refers to the task of generating musical sections given the surrounding multi-track music. The proposed transformer-based framework is extensible for new control tokens as the added music control tokens such as tonal tension per bar and track polyphony level in this work. We explore the effects of including several musically meaningful control tokens, and evaluate the results using objective metrics related to pitch and rhythm. Our results demonstrate that adding additional control tokens helps to generate music with stronger stylistic similarities to the original music. It also provides the user with more control to change properties like the music texture and tonal tension in each bar compared to previous research which only provided control for track density. We present the model in a Google Colab notebook to enable interactive generation.
['Dorien Herremans', 'Thor Magnusson', 'Chris Kiefer', 'Ivor Simpson', 'Rui Guo']
2022-02-11
null
null
null
null
['music-generation', 'music-generation']
['audio', 'music']
[ 3.88596058e-02 -7.68597648e-02 5.57615645e-02 2.93530762e-01 -6.15801096e-01 -9.11123037e-01 5.49743652e-01 7.20865801e-02 6.16830774e-02 5.76151729e-01 4.64154810e-01 8.94456804e-02 -4.61101145e-01 -8.29527557e-01 -4.16008711e-01 -4.27082062e-01 -9.04323906e-02 1.46480650e-01 2.95836091e-01 -5.46416640e-01 5.72966933e-01 3.50132823e-01 -1.90461266e+00 3.90788138e-01 7.78346956e-01 6.56680465e-01 3.43722522e-01 8.88623714e-01 -9.72534120e-02 5.92024207e-01 -1.03709126e+00 -2.17163533e-01 4.25602168e-01 -5.00312924e-01 -1.98890105e-01 -2.74441004e-01 6.17025018e-01 -7.34685734e-03 3.42189252e-01 7.09581435e-01 8.12303066e-01 2.63641089e-01 5.19965172e-01 -1.04637289e+00 -3.87846738e-01 1.30048668e+00 -4.41384465e-01 -1.92315474e-01 6.34388685e-01 -5.34454398e-02 1.11535859e+00 -5.09981036e-01 5.61980128e-01 1.12667978e+00 8.85412991e-01 2.89235234e-01 -1.44604766e+00 -8.73192787e-01 -2.73136288e-01 -3.65166701e-02 -1.33304822e+00 -1.79140180e-01 8.74946356e-01 -3.95724058e-01 5.90094090e-01 7.80013084e-01 1.16500533e+00 6.12834990e-01 1.46597266e-01 5.21397650e-01 8.49769592e-01 -7.96737134e-01 9.02748555e-02 -1.18685156e-01 -4.51007545e-01 1.18355826e-01 -1.81268319e-01 2.51183063e-01 -8.65896344e-01 -8.25934708e-02 1.26689076e+00 -6.84650242e-01 -6.83464259e-02 -1.67184606e-01 -1.45195055e+00 4.88006383e-01 1.73855931e-01 5.11264265e-01 -1.55936018e-01 5.06090641e-01 4.58323807e-01 1.88186318e-01 9.07954276e-02 1.21393085e+00 -1.95753381e-01 -6.71674311e-01 -1.35857546e+00 9.48015273e-01 7.74089992e-01 1.02889478e+00 4.53658760e-01 4.68774140e-01 -7.81318128e-01 9.13240671e-01 1.11186475e-01 4.82684344e-01 4.38356221e-01 -1.27197194e+00 1.30387440e-01 4.04680222e-01 2.32448980e-01 -9.10622895e-01 -2.62172729e-01 -5.27872741e-01 -5.17968655e-01 6.76333785e-01 4.51666087e-01 -1.48458276e-02 -5.27259588e-01 1.60990477e+00 1.58239722e-01 1.43136665e-01 -3.99637610e-01 7.49207616e-01 5.98869205e-01 4.93402183e-01 -2.12900877e-01 -1.15072675e-01 1.43222928e+00 -8.91997695e-01 -1.21666908e+00 4.13159221e-01 1.16485320e-01 -1.54991615e+00 1.82269037e+00 7.41670489e-01 -1.54745519e+00 -9.17933345e-01 -1.11424720e+00 -8.54114536e-03 3.10139768e-02 4.36142325e-01 5.50401747e-01 8.90511632e-01 -9.28627968e-01 1.13867509e+00 -4.17751580e-01 -1.27379177e-02 -2.37695023e-01 2.17590958e-01 2.54865289e-01 7.88559318e-01 -1.04312408e+00 5.51042795e-01 2.70846516e-01 -3.51654023e-01 -3.67740512e-01 -1.16690874e+00 -6.25426471e-01 1.59250751e-01 8.57171044e-02 -6.77086711e-01 1.57779038e+00 -6.75124168e-01 -2.08587432e+00 3.20927113e-01 3.45354199e-01 -1.80487275e-01 5.46006918e-01 -4.75068927e-01 -2.70153582e-01 -8.38936195e-02 1.21400066e-01 7.06738830e-01 7.17149854e-01 -1.06859398e+00 -5.43344438e-01 4.26867306e-02 1.88811347e-01 3.06297481e-01 -3.44278097e-01 -3.13527405e-01 -4.22428846e-01 -1.56866956e+00 -1.23807177e-01 -1.00226808e+00 3.83729301e-03 -2.07009032e-01 -6.01523101e-01 2.23922372e-01 7.27871716e-01 -5.14016449e-01 1.79955876e+00 -2.15751886e+00 1.15094803e-01 2.83616930e-01 -3.68414730e-01 -9.41525698e-02 -3.05604711e-02 5.62460303e-01 -1.44693116e-02 1.24484241e-01 2.36052141e-01 -1.90406889e-01 2.16582015e-01 -1.84676528e-01 -2.07482666e-01 -3.32451791e-01 -2.87204832e-01 4.89454150e-01 -7.28577256e-01 -2.39685819e-01 2.62747288e-01 4.86083806e-01 -9.69028056e-01 -8.77782777e-02 -3.18171591e-01 4.25142825e-01 -1.14053018e-01 5.41355312e-01 4.69962448e-01 4.36869323e-01 -1.04481000e-02 -4.45525765e-01 -6.69177413e-01 4.04175073e-01 -1.71534693e+00 2.07568312e+00 -5.24309754e-01 4.95893449e-01 -1.34333849e-01 4.56817895e-02 1.36699212e+00 4.04705495e-01 3.81886601e-01 -4.08854097e-01 -6.04950041e-02 1.72388569e-01 1.08131051e-01 -2.84794837e-01 1.09429979e+00 -2.39332065e-01 -8.99177790e-02 5.09524703e-01 -2.83131033e-01 -7.90717304e-01 5.96413672e-01 1.29465042e-02 7.13707328e-01 6.21320844e-01 2.57166058e-01 -5.37797987e-01 1.80816278e-01 -1.49963409e-01 2.06505835e-01 5.81636727e-01 4.42769557e-01 6.92044437e-01 2.66753167e-01 -5.06783798e-02 -1.39966774e+00 -1.28557575e+00 2.25614235e-02 1.20672071e+00 -2.33128518e-02 -1.11208081e+00 -7.44304121e-01 2.67537594e-01 -8.67155790e-02 6.90743983e-01 -5.06120384e-01 1.06060803e-01 -5.28789759e-01 -2.11578459e-01 8.06353748e-01 3.47122818e-01 3.28142464e-01 -1.25302601e+00 -6.39714777e-01 3.53555977e-01 -2.38080174e-01 -5.06840169e-01 -1.02946925e+00 -9.90894586e-02 -1.02614772e+00 -6.50790036e-01 -7.49448180e-01 -5.76663733e-01 -3.23717110e-02 -2.20443234e-01 1.12292171e+00 -1.32329941e-01 -5.90892732e-01 1.14660263e-01 -5.78267276e-01 -7.07833111e-01 -3.97997200e-01 4.22206789e-01 -4.09473106e-02 -3.84171516e-01 -3.76494020e-01 -1.06973290e+00 -7.88501561e-01 3.07904720e-01 -9.78385746e-01 4.27792400e-01 7.94388652e-02 3.59193981e-01 6.29998922e-01 6.28179731e-03 6.20220125e-01 -5.35928309e-01 1.22820210e+00 2.95533866e-01 -3.63549799e-01 -1.24459401e-01 -3.92795205e-01 1.94419220e-01 5.18915117e-01 -8.60976994e-01 -8.34521472e-01 -8.17742273e-02 -8.54907036e-02 -2.23685846e-01 2.40254074e-01 3.87668788e-01 2.45966744e-02 1.55710936e-01 9.88930464e-01 -1.35503367e-01 -2.24347174e-01 -6.34427249e-01 5.86151063e-01 2.88351327e-01 7.84433424e-01 -9.40212190e-01 8.25156450e-01 3.89167406e-02 -4.27823290e-02 -4.79444057e-01 -3.06700706e-01 -1.14147067e-01 -7.02444375e-01 -5.64119577e-01 5.08863568e-01 -5.43643534e-01 -9.41044629e-01 1.55459508e-01 -8.71721864e-01 -4.17256683e-01 -9.23301756e-01 5.85340619e-01 -9.67363238e-01 4.52647358e-02 -5.21702111e-01 -8.07542920e-01 -5.14738500e-01 -8.82503927e-01 1.10701609e+00 3.82051080e-01 -8.74941289e-01 -6.27215803e-01 5.28601885e-01 -7.92205036e-02 4.97226536e-01 5.64444721e-01 8.55660915e-01 3.10533971e-01 -3.99145424e-01 1.34146772e-02 4.14337337e-01 -1.74471717e-02 4.60207433e-01 3.90422106e-01 -8.43616545e-01 -6.09676577e-02 -5.84824979e-01 1.12033613e-01 3.95044804e-01 5.06781101e-01 8.03277671e-01 -3.15747827e-01 9.16371793e-02 4.70966429e-01 1.24263477e+00 2.71897703e-01 9.53236222e-01 6.65102720e-01 5.40875137e-01 3.73644233e-01 7.60126889e-01 9.69236076e-01 -1.88173205e-01 1.36944950e+00 4.02769707e-02 -1.13504276e-01 -5.27919590e-01 -5.93461514e-01 3.79210800e-01 8.76180589e-01 -6.82454109e-01 -4.74963970e-02 -3.82087916e-01 3.50700170e-01 -1.64472270e+00 -1.31784606e+00 -2.08401918e-01 2.27536821e+00 1.10675418e+00 8.51687565e-02 6.86410785e-01 7.62017548e-01 6.88021719e-01 -1.89513624e-01 -2.32098997e-01 -7.66698062e-01 -2.48992722e-02 7.47326076e-01 2.45137900e-01 4.62460220e-01 -6.28392458e-01 8.92203391e-01 7.44748974e+00 1.05358994e+00 -1.14014065e+00 -2.99907714e-01 1.03998836e-02 -6.58882916e-01 -5.80216050e-01 -4.98849433e-03 -5.44722021e-01 3.14573914e-01 4.01016235e-01 -5.40456057e-01 6.74982548e-01 5.73900163e-01 8.54491115e-01 3.48681882e-02 -9.22333717e-01 8.43872309e-01 -2.32382715e-01 -1.50876665e+00 3.66550237e-01 -1.07625099e-02 6.72735810e-01 -8.13275695e-01 3.07582587e-01 1.49044454e-01 -3.39792483e-02 -9.15835261e-01 1.31018758e+00 7.34225094e-01 1.09654593e+00 -9.83264506e-01 1.02138594e-01 -1.65215448e-01 -1.57554948e+00 5.66512868e-02 1.34692743e-01 -3.46074343e-01 3.32032293e-01 4.27224547e-01 -1.00366640e+00 4.42298532e-01 6.32589936e-01 3.85606319e-01 -5.59799016e-01 1.40072680e+00 -1.24009855e-01 4.46927667e-01 -3.65779638e-01 8.65358021e-03 -2.35283300e-01 -2.13369414e-01 7.01248527e-01 1.23929989e+00 1.09700692e+00 -2.65757233e-01 -4.98862602e-02 1.06107473e+00 4.30028886e-01 5.90087533e-01 -1.50246605e-01 8.48318413e-02 7.14409411e-01 1.25190115e+00 -7.19647586e-01 -1.49800643e-01 3.48600954e-01 8.40310216e-01 -2.32472524e-01 3.93997692e-02 -7.94653416e-01 -6.08154237e-01 4.06746566e-01 6.71471596e-01 1.92751199e-01 -2.62460262e-01 -5.46067715e-01 -6.46371365e-01 -1.06402919e-01 -1.04624355e+00 4.01338488e-02 -1.20098448e+00 -8.13366532e-01 5.21711648e-01 -2.90709734e-03 -1.52851915e+00 -4.75529879e-01 -2.11184695e-01 -8.67128074e-01 9.16497409e-01 -5.94224274e-01 -1.18388188e+00 -2.94983745e-01 4.37297940e-01 5.08690238e-01 -1.64942205e-01 1.01977170e+00 4.86572713e-01 5.60091026e-02 8.08596849e-01 -1.26258612e-01 -4.91855353e-01 9.93380010e-01 -1.45849383e+00 3.34009916e-01 3.21192086e-01 3.66037190e-01 6.46344960e-01 1.16765451e+00 -5.96122980e-01 -8.79675210e-01 -5.75172842e-01 5.74511230e-01 -1.08566217e-01 3.76591355e-01 -3.34201723e-01 -3.73901367e-01 1.11892104e-01 2.36603633e-01 -8.91409874e-01 8.62726629e-01 3.50363612e-01 -1.31165445e-01 -1.89428687e-01 -8.78463566e-01 9.25490737e-01 9.11140621e-01 -3.60917866e-01 -3.79026890e-01 -2.46581540e-01 5.92912912e-01 -5.01548767e-01 -1.10534048e+00 3.90028030e-01 1.19915056e+00 -1.13876188e+00 8.88587594e-01 2.06330284e-01 3.60435128e-01 -8.27135384e-01 3.53998691e-02 -1.49412143e+00 -6.08996987e-01 -1.17914844e+00 2.31655478e-01 1.38490236e+00 4.74881470e-01 2.59777188e-01 6.80366933e-01 -1.48870545e-02 -3.75906020e-01 -2.06205651e-01 -5.42853236e-01 -8.11361194e-01 -2.39287332e-01 -4.40186560e-01 8.29335392e-01 7.25126803e-01 4.26529676e-01 3.18361640e-01 -5.83503664e-01 -1.81670517e-01 2.48561487e-01 1.27780676e-01 1.05642116e+00 -1.19959867e+00 -6.62660301e-01 -6.60606742e-01 -1.70722157e-01 -6.26864970e-01 -7.40180194e-01 -7.86743701e-01 -2.37361059e-01 -1.38966107e+00 -4.82813716e-02 -6.70620620e-01 -1.53584480e-01 4.10485297e-01 -3.41508240e-02 7.13431716e-01 8.02679360e-01 1.03893735e-01 7.39590302e-02 3.86550903e-01 1.72787297e+00 -1.48718655e-01 -8.70502412e-01 2.26672798e-01 -6.75743639e-01 6.06732011e-01 8.04032445e-01 -3.92299920e-01 -5.77160299e-01 -9.15066674e-02 6.03532732e-01 2.98172049e-02 1.79873295e-02 -1.46089566e+00 -2.04297118e-02 -2.69588828e-03 2.26039842e-01 -6.66268110e-01 3.11817884e-01 -3.51460129e-01 8.11561763e-01 4.00910050e-01 -5.47106087e-01 3.78197074e-01 7.40024924e-01 -9.63563658e-03 -1.17133997e-01 -2.58099645e-01 5.64193785e-01 1.18689872e-01 -6.05260506e-02 -2.63537437e-01 -3.91195953e-01 -3.62389565e-01 7.39939392e-01 -5.55926502e-01 1.11081526e-01 -5.81794143e-01 -1.10864699e+00 -4.65949655e-01 3.73511285e-01 5.96272111e-01 2.24548385e-01 -1.82953572e+00 -6.25857532e-01 1.44521311e-01 1.30829856e-01 -4.59967643e-01 2.58088976e-01 3.38275075e-01 -8.11987579e-01 2.05713268e-02 -5.72901845e-01 -4.11526918e-01 -1.61793005e+00 2.95006871e-01 9.01095718e-02 -2.53902227e-01 -6.15831137e-01 5.41617036e-01 -1.88972037e-02 -2.74109364e-01 3.50846767e-01 -6.72196925e-01 -3.41953784e-01 2.54888266e-01 5.82301676e-01 5.55617332e-01 -3.26220058e-02 -3.43720540e-02 1.41835183e-01 8.31788063e-01 4.75882024e-01 -6.71189725e-01 9.89244401e-01 1.86450891e-02 1.35786682e-01 7.55157828e-01 2.15939239e-01 8.96551967e-01 -1.07419348e+00 4.57760841e-01 -2.57155091e-01 -6.05560541e-01 -1.95147619e-01 -1.07985902e+00 -6.80436075e-01 3.62137407e-01 7.17519164e-01 3.40951800e-01 1.08833921e+00 -4.16117013e-01 5.48112214e-01 -3.48624513e-02 2.78940409e-01 -1.21051919e+00 3.99730057e-01 4.38651770e-01 1.13755965e+00 -5.02246805e-02 -1.28564727e-03 -3.84870142e-01 -4.96287137e-01 1.14408588e+00 4.41935956e-01 -6.57386854e-02 4.04627919e-01 7.74083495e-01 2.41587818e-01 7.73061812e-02 -4.18798536e-01 -7.71182775e-02 4.62682337e-01 5.84140599e-01 1.11657763e+00 1.86157852e-01 -6.34587288e-01 5.85140944e-01 -1.30426729e+00 1.91305697e-01 5.24777174e-01 5.20448208e-01 -4.63387787e-01 -1.62109661e+00 -7.84093916e-01 1.38681322e-01 -4.33382839e-01 -4.59249109e-01 -2.31096208e-01 7.58580208e-01 6.71816826e-01 8.03673148e-01 2.21018374e-01 -5.78270078e-01 6.92789495e-01 -1.77727342e-01 8.63451779e-01 -6.00178838e-01 -1.16823852e+00 7.83102810e-01 5.57524934e-02 -2.42173374e-01 -3.30362022e-01 -4.46761906e-01 -1.17254388e+00 -5.03478050e-01 -4.60813254e-01 3.25242579e-01 6.77170217e-01 2.85057634e-01 2.67873675e-01 1.18549180e+00 4.58555669e-01 -1.15374589e+00 9.11796167e-02 -1.33594561e+00 -9.16925907e-01 3.47586662e-01 -2.64456421e-01 -5.81332386e-01 -6.98682293e-02 4.11157817e-01]
[15.99519157409668, 5.433119297027588]
c163f1ef-b5e9-4fb7-8a7d-d7191ee914bf
self-supervised-real-time-video-stabilization
2111.05980
null
https://arxiv.org/abs/2111.05980v1
https://arxiv.org/pdf/2111.05980v1.pdf
Self-Supervised Real-time Video Stabilization
Videos are a popular media form, where online video streaming has recently gathered much popularity. In this work, we propose a novel method of real-time video stabilization - transforming a shaky video to a stabilized video as if it were stabilized via gimbals in real-time. Our framework is trainable in a self-supervised manner, which does not require data captured with special hardware setups (i.e., two cameras on a stereo rig or additional motion sensors). Our framework consists of a transformation estimator between given frames for global stability adjustments, followed by scene parallax reduction module via spatially smoothed optical flow for further stability. Then, a margin inpainting module fills in the missing margin regions created during stabilization to reduce the amount of post-cropping. These sequential steps reduce distortion and margin cropping to a minimum while enhancing stability. Hence, our approach outperforms state-of-the-art real-time video stabilization methods as well as offline methods that require camera trajectory optimization. Our method procedure takes approximately 24.3 ms yielding 41 fps regardless of resolution (e.g., 480p or 1080p).
['In So Kweon', 'Jaesik Park', 'Jinsoo Choi']
2021-11-10
null
null
null
null
['video-stabilization']
['computer-vision']
[ 2.93658286e-01 -1.29028201e-01 -1.13707945e-01 -5.52664734e-02 -6.47831023e-01 -7.88340092e-01 2.77533740e-01 2.24407226e-01 -4.92374927e-01 5.55819929e-01 4.32823263e-02 -1.79541856e-01 2.99222887e-01 -3.97888243e-01 -1.17775011e+00 -7.66700327e-01 7.71353394e-02 -2.21423075e-01 6.84072495e-01 2.11885702e-02 3.93113226e-01 3.84094894e-01 -1.51117909e+00 -1.24664374e-01 7.13488996e-01 9.89953458e-01 2.19242692e-01 7.68141210e-01 4.12673891e-01 1.08094788e+00 -1.58388227e-01 -1.94483981e-01 4.78948206e-01 -3.40100914e-01 -5.38360059e-01 6.49889529e-01 8.16719532e-01 -7.11256146e-01 -4.13259655e-01 1.05032277e+00 3.17491382e-01 2.84466982e-01 2.89695188e-02 -1.03163588e+00 1.10542886e-01 1.03312664e-01 -9.63814139e-01 1.55437246e-01 5.63293576e-01 3.08906645e-01 5.02775371e-01 -7.44662285e-01 6.13950789e-01 1.00232351e+00 4.52690423e-01 2.96746254e-01 -1.30330801e+00 -4.11384434e-01 -1.75705571e-02 2.13348255e-01 -1.25224030e+00 -8.54547977e-01 7.51141191e-01 -5.02345622e-01 3.72948647e-01 2.56461531e-01 7.42308915e-01 5.93088090e-01 1.96781799e-01 4.70440835e-01 6.34134293e-01 -4.66834664e-01 2.62546897e-01 -1.22923531e-01 -3.30530226e-01 6.98047042e-01 2.66710315e-02 -2.42154136e-01 -7.60731936e-01 -5.13654947e-02 1.28528392e+00 2.83494331e-02 -6.00102007e-01 -5.80366790e-01 -1.53148079e+00 4.27732855e-01 5.89366741e-02 -1.76168203e-01 -3.48275661e-01 1.53080642e-01 5.45743644e-01 3.69127065e-01 5.60997128e-01 8.38151053e-02 -3.24175149e-01 -3.48342806e-01 -1.30730116e+00 4.76675816e-02 3.60299855e-01 9.89000261e-01 9.79354560e-01 1.31109148e-01 1.22153953e-01 4.16776657e-01 2.05836877e-01 3.03364903e-01 3.89982283e-01 -1.48839962e+00 6.50327802e-01 2.78808594e-01 4.47653025e-01 -1.26784301e+00 -5.76962121e-02 1.42376602e-01 -6.99137568e-01 2.78339893e-01 6.35027885e-01 -2.43143842e-01 -3.14148962e-01 1.55016041e+00 6.94178224e-01 7.07629681e-01 -1.91239357e-01 1.02648807e+00 1.96039915e-01 8.59683692e-01 -6.09104574e-01 -7.28359759e-01 1.15577853e+00 -1.22431803e+00 -7.75687397e-01 -1.09867834e-01 4.21727121e-01 -1.00405955e+00 9.90350723e-01 5.71612298e-01 -1.34510219e+00 -4.77647126e-01 -1.00848508e+00 -1.43800542e-01 5.16954780e-01 6.30185008e-02 -4.68918793e-02 3.88449013e-01 -1.11616695e+00 6.66581690e-01 -1.22952461e+00 -3.02725792e-01 -2.03815158e-02 3.64933461e-01 -5.34071982e-01 2.00857744e-01 -7.25933015e-01 6.07196867e-01 1.75437585e-01 6.96063973e-03 -8.79012764e-01 -6.84629500e-01 -1.00694990e+00 1.08844033e-02 7.31411278e-01 -3.92555773e-01 1.21803045e+00 -1.42983317e+00 -2.03201699e+00 7.63105929e-01 -4.04404879e-01 -4.77751613e-01 7.02315986e-01 -5.78574002e-01 -9.10142530e-03 4.90325272e-01 -9.05584469e-02 4.22157228e-01 1.33162701e+00 -9.67026532e-01 -5.04405379e-01 -4.02712040e-02 2.27808580e-01 4.31117117e-01 -4.65762168e-01 3.57157648e-01 -8.41634929e-01 -6.57468617e-01 1.54657811e-01 -1.03960407e+00 -1.08160347e-01 4.00923580e-01 -1.26582667e-01 4.77261186e-01 1.02811980e+00 -7.22795725e-01 1.32535589e+00 -2.17104030e+00 1.97310254e-01 -5.34797646e-02 7.40338266e-02 3.01396221e-01 1.90669283e-01 3.18297535e-01 -1.43122956e-01 -4.52979505e-01 -9.26497355e-02 -5.49685359e-01 -5.29735923e-01 -1.00319058e-01 -3.31890315e-01 9.23566699e-01 -1.01699941e-01 2.68029004e-01 -8.69113147e-01 -6.08320355e-01 6.54764354e-01 5.06864548e-01 -7.43158579e-01 3.44505340e-01 3.02892774e-02 8.54746044e-01 -2.62935180e-02 4.98010665e-01 7.18732595e-01 -8.13887119e-02 1.24018885e-01 -2.85361171e-01 -7.18481719e-01 1.33368403e-01 -1.46738982e+00 2.00368595e+00 -3.56947422e-01 8.28967690e-01 4.32303429e-01 -9.20448482e-01 6.12043440e-01 3.51697445e-01 7.33075857e-01 -8.07714015e-02 3.49882662e-01 1.08925477e-01 -4.96316433e-01 -5.03028572e-01 5.90468884e-01 2.80791461e-01 4.00728732e-01 2.88743824e-01 -3.17417592e-01 -1.22328237e-01 3.41251820e-01 1.91425398e-01 9.37260985e-01 3.58726293e-01 3.89229894e-01 -3.21139038e-01 8.69481325e-01 -2.42195293e-01 8.17175090e-01 1.49067923e-01 -3.15611154e-01 1.01115477e+00 4.13265377e-01 -3.94446969e-01 -1.13815200e+00 -6.43812180e-01 2.11771280e-01 7.69428194e-01 5.86976290e-01 -7.61370599e-01 -1.10078657e+00 -6.55621812e-02 -3.82597357e-01 4.82833534e-02 -2.07651660e-01 -6.46220753e-04 -9.21536565e-01 -1.26257092e-01 9.99271497e-02 2.15119451e-01 4.48431045e-01 -7.41243362e-01 -1.04897237e+00 2.48878971e-01 -3.95173162e-01 -1.21234035e+00 -1.07530558e+00 -2.51860797e-01 -1.16156375e+00 -1.07200837e+00 -7.13842809e-01 -8.05788517e-01 7.94206858e-01 8.17821980e-01 7.37375915e-01 -8.96020830e-02 1.04019642e-01 2.25265026e-01 -2.08708838e-01 2.33188286e-01 -1.75265506e-01 -2.43777752e-01 3.36839408e-01 5.22590160e-01 -2.62349457e-01 -5.20596743e-01 -8.20804298e-01 5.07082224e-01 -1.03378510e+00 4.15066719e-01 -1.03639383e-02 6.77905917e-01 6.85366333e-01 1.46924844e-02 -3.46909106e-01 -2.70585418e-01 3.78740802e-02 -5.49121499e-02 -1.06079197e+00 1.62836965e-02 -1.34499416e-01 -2.23408118e-01 8.57177973e-01 -5.45462310e-01 -9.74864066e-01 4.05662179e-01 4.31725323e-01 -9.35605407e-01 1.55137375e-01 2.03622252e-01 -6.62916303e-02 -2.29401395e-01 5.76203942e-01 2.00429112e-01 3.35367233e-01 -2.41753474e-01 1.79994240e-01 4.63460118e-01 8.44296217e-01 -3.62057596e-01 9.55201626e-01 7.55892932e-01 -9.73856226e-02 -8.97425115e-01 -6.00616395e-01 -5.44717610e-01 -7.62757480e-01 -5.19457757e-01 8.05138588e-01 -1.21340227e+00 -8.57122660e-01 8.58151555e-01 -1.11494434e+00 -2.62473762e-01 -8.58441815e-02 6.04467452e-01 -6.80100143e-01 7.94589758e-01 -7.47173369e-01 -4.80967164e-01 -2.35823929e-01 -1.20135736e+00 1.02113235e+00 3.85203868e-01 2.39457190e-02 -7.03307509e-01 1.32629216e-01 3.58345807e-01 2.70811468e-01 2.99960941e-01 -1.44747511e-01 4.42391813e-01 -8.44836712e-01 6.62800157e-03 4.96329973e-03 4.40502137e-01 4.27330166e-01 3.78599018e-01 -6.47082031e-01 -7.34962404e-01 2.41875052e-01 -2.18874127e-01 3.78246903e-01 5.73496401e-01 1.06183219e+00 -5.02281308e-01 -7.01061962e-03 9.46186483e-01 1.42143774e+00 1.94661051e-01 5.67796946e-01 6.32869720e-01 6.75734341e-01 4.19332832e-01 8.85303557e-01 6.91306353e-01 2.40621269e-01 8.66658628e-01 6.00954890e-01 -7.69169703e-02 1.63753197e-01 -8.44598338e-02 7.55356789e-01 8.19949031e-01 -2.47805521e-01 -1.65384188e-01 -7.05555141e-01 4.65665936e-01 -2.06138372e+00 -9.80215430e-01 -1.12041317e-01 2.68610120e+00 9.18773234e-01 -6.55564368e-02 5.16514964e-02 2.23796740e-01 1.12522960e+00 4.79162008e-01 -5.48677146e-01 -1.01736180e-01 -5.93666434e-02 -2.80986339e-01 6.24117196e-01 7.92080522e-01 -1.21657145e+00 8.86745393e-01 4.99500704e+00 4.60540086e-01 -1.48093998e+00 -9.55342501e-02 5.86103559e-01 -3.23795408e-01 1.63672090e-01 2.81918257e-01 -4.19456333e-01 7.14600325e-01 8.10844481e-01 -1.93769470e-01 5.79145253e-01 8.06844532e-01 7.81080246e-01 -3.82093042e-01 -9.01315033e-01 1.35306454e+00 2.42815301e-01 -1.44094026e+00 -4.22363490e-01 -1.29450291e-01 6.72392726e-01 -2.18345657e-01 -2.24456355e-01 -4.89657968e-01 -2.63983607e-01 -3.36609662e-01 1.10609949e+00 3.16101372e-01 7.61895061e-01 -6.26285613e-01 2.78352708e-01 3.62428099e-01 -1.27926672e+00 1.24217682e-01 -3.41254145e-01 -1.80391103e-01 6.11402571e-01 6.70579731e-01 -1.62989348e-01 3.91458809e-01 7.25254893e-01 9.54139948e-01 -3.01802874e-01 1.01859665e+00 -2.00959459e-01 5.88289559e-01 -5.17111719e-01 6.97955728e-01 -1.60187297e-02 -6.36280477e-01 5.94737649e-01 8.45536113e-01 4.74234968e-01 2.53785729e-01 2.01403543e-01 6.16912693e-02 9.69704539e-02 5.03782853e-02 -2.55644709e-01 4.46804196e-01 3.26845169e-01 1.15942907e+00 -6.78651512e-01 -4.77236748e-01 -6.24077141e-01 1.29351890e+00 -2.13924646e-02 1.74924672e-01 -1.19522703e+00 -2.32989892e-01 6.44819140e-01 5.30104399e-01 2.91313887e-01 -4.28229988e-01 7.75212571e-02 -1.77585816e+00 3.24620247e-01 -8.83649468e-01 7.00064227e-02 -8.99425805e-01 -5.58778346e-01 4.40237224e-01 -2.02313662e-01 -1.83745360e+00 -1.13474384e-01 -4.56836373e-02 -6.53533518e-01 4.15366977e-01 -1.50296402e+00 -6.53653204e-01 -6.10208929e-01 9.60415602e-01 7.47961879e-01 1.48343533e-01 2.10313529e-01 4.73033875e-01 -7.66911268e-01 3.03609163e-01 4.09898758e-01 -1.62817627e-01 1.30957210e+00 -8.36021483e-01 1.69862017e-01 1.36980104e+00 -2.31581196e-01 5.21642208e-01 8.99877429e-01 -3.76118720e-01 -1.52625084e+00 -9.48389292e-01 8.06116939e-01 7.04040867e-05 7.49043107e-01 -2.20927492e-01 -8.23170424e-01 6.86401665e-01 3.28219175e-01 3.97233248e-01 1.73634976e-01 -7.11564064e-01 -7.37132803e-02 -5.92515826e-01 -8.17663431e-01 5.13110816e-01 7.05465972e-01 -3.64513159e-01 -2.22662404e-01 2.19221294e-01 5.69923460e-01 -9.37237561e-01 -6.33552790e-01 9.80689898e-02 5.19282758e-01 -1.16290152e+00 8.15874994e-01 2.84086075e-02 6.14599943e-01 -8.60794783e-01 1.33562371e-01 -9.19605196e-01 -1.70633405e-01 -1.48716354e+00 -3.49186391e-01 1.15502453e+00 -1.69646084e-01 -3.97530347e-01 8.20046365e-01 6.17200315e-01 -1.10478006e-01 -4.34951931e-01 -8.75530720e-01 -6.23526752e-01 -6.18393540e-01 -1.14741459e-01 6.51145875e-02 9.09268856e-01 1.49537310e-01 2.29046624e-02 -7.85368502e-01 3.26674432e-01 7.47748137e-01 1.20970532e-01 1.10227001e+00 -6.82334006e-01 -1.68686613e-01 1.41824841e-01 -4.87801999e-01 -1.48329496e+00 -3.80449183e-02 -8.00782591e-02 3.81798646e-03 -8.43522370e-01 6.03594817e-03 -3.41424495e-02 -2.46795844e-02 2.75645435e-01 -1.93702981e-01 2.79382080e-01 3.27181816e-01 5.04881084e-01 -5.24254441e-01 4.83388931e-01 1.03792620e+00 2.11005285e-01 -4.42943335e-01 -8.06739852e-02 -2.22364455e-01 9.02033269e-01 7.15556085e-01 -2.72803634e-01 -5.97600043e-01 -7.49263763e-01 8.67282674e-02 4.69712943e-01 2.71872938e-01 -1.20087254e+00 4.18878019e-01 -3.12154740e-01 3.47687788e-02 -4.46141183e-01 3.60534191e-01 -9.04629290e-01 2.24325776e-01 3.29780668e-01 -1.07409261e-01 4.48777020e-01 6.49330616e-02 5.03958046e-01 -3.74865919e-01 1.27436575e-02 1.13081694e+00 1.07157119e-01 -3.56799722e-01 3.34873110e-01 -5.10470927e-01 -1.36428639e-01 1.32355046e+00 -3.87116671e-01 -7.75358602e-02 -5.78793108e-01 -4.48343098e-01 9.94060189e-02 1.05534613e+00 2.67579794e-01 4.02414739e-01 -1.07485461e+00 -4.15861785e-01 1.25559270e-01 -4.08114463e-01 3.27661008e-01 3.26417476e-01 1.04674792e+00 -1.20011544e+00 1.52387917e-01 -1.69046715e-01 -9.28010881e-01 -1.63793635e+00 5.68688571e-01 9.92818028e-02 4.13771830e-02 -7.52642274e-01 7.20203340e-01 1.61331877e-01 1.60589457e-01 2.64022470e-01 -3.75901520e-01 3.25424634e-02 7.84226358e-02 7.15639949e-01 5.22263050e-01 4.11290266e-02 -7.88793206e-01 -3.89316529e-01 8.71133983e-01 8.54557678e-02 -2.37393960e-01 1.19291639e+00 -6.41826272e-01 -1.98143229e-01 2.98060358e-01 1.03998172e+00 2.14845151e-01 -2.04611421e+00 -1.38204098e-01 -3.55902344e-01 -8.84546638e-01 4.14714403e-02 1.55390754e-01 -1.26139116e+00 5.10240376e-01 4.49090779e-01 -9.21411216e-02 1.43485272e+00 -4.10732538e-01 9.92926717e-01 1.73334211e-01 2.39293709e-01 -1.12336898e+00 1.75926909e-01 4.43534702e-01 6.06470764e-01 -1.27666414e+00 3.13379705e-01 -5.77471673e-01 -4.42610979e-01 1.27902675e+00 5.41224837e-01 -3.35080832e-01 4.51342046e-01 2.38891706e-01 1.29193261e-01 3.54257137e-01 -7.51003265e-01 2.86772698e-01 -7.82499388e-02 1.17973216e-01 3.02712828e-01 -4.51796263e-01 -2.78394043e-01 -1.26123250e-01 3.07609662e-02 4.06620316e-02 1.01088548e+00 1.05590069e+00 -4.42008615e-01 -8.14634919e-01 -6.33863211e-01 -1.77480131e-01 -4.13722605e-01 -1.27060227e-02 1.84394896e-01 3.30188274e-01 -1.54581383e-01 9.93442237e-01 1.18856832e-01 -1.42033905e-01 2.67567635e-01 -4.34981257e-01 3.80226612e-01 -3.31966966e-01 -4.85585153e-01 5.12443721e-01 -2.15324268e-01 -1.05062044e+00 -8.16666126e-01 -8.98100615e-01 -1.08786917e+00 -4.62338269e-01 -4.10506845e-01 7.35064130e-03 3.65155190e-01 6.31466210e-01 4.11370546e-01 -7.95242842e-03 1.03099477e+00 -1.33332646e+00 -1.94193229e-01 -5.96642613e-01 -2.93996394e-01 3.37660283e-01 7.07641840e-01 -3.53547871e-01 -5.20168006e-01 9.28361833e-01]
[10.62294864654541, -1.3856219053268433]
1f636fa6-18c1-4b84-9ec5-b96cfd4a20ac
hoiclip-efficient-knowledge-transfer-for-hoi
2303.15786
null
https://arxiv.org/abs/2303.15786v2
https://arxiv.org/pdf/2303.15786v2.pdf
HOICLIP: Efficient Knowledge Transfer for HOI Detection with Vision-Language Models
Human-Object Interaction (HOI) detection aims to localize human-object pairs and recognize their interactions. Recently, Contrastive Language-Image Pre-training (CLIP) has shown great potential in providing interaction prior for HOI detectors via knowledge distillation. However, such approaches often rely on large-scale training data and suffer from inferior performance under few/zero-shot scenarios. In this paper, we propose a novel HOI detection framework that efficiently extracts prior knowledge from CLIP and achieves better generalization. In detail, we first introduce a novel interaction decoder to extract informative regions in the visual feature map of CLIP via a cross-attention mechanism, which is then fused with the detection backbone by a knowledge integration block for more accurate human-object pair detection. In addition, prior knowledge in CLIP text encoder is leveraged to generate a classifier by embedding HOI descriptions. To distinguish fine-grained interactions, we build a verb classifier from training data via visual semantic arithmetic and a lightweight verb representation adapter. Furthermore, we propose a training-free enhancement to exploit global HOI predictions from CLIP. Extensive experiments demonstrate that our method outperforms the state of the art by a large margin on various settings, e.g. +4.04 mAP on HICO-Det. The source code is available in https://github.com/Artanic30/HOICLIP.
['Xuming He', 'Yongfei Liu', 'Longtian Qiu', 'Shan Ning']
2023-03-28
null
http://openaccess.thecvf.com//content/CVPR2023/html/Ning_HOICLIP_Efficient_Knowledge_Transfer_for_HOI_Detection_With_Vision-Language_Models_CVPR_2023_paper.html
http://openaccess.thecvf.com//content/CVPR2023/papers/Ning_HOICLIP_Efficient_Knowledge_Transfer_for_HOI_Detection_With_Vision-Language_Models_CVPR_2023_paper.pdf
cvpr-2023-1
['human-object-interaction-detection']
['computer-vision']
[ 2.67327160e-01 1.75209213e-02 -3.62428516e-01 -2.21050501e-01 -9.80693221e-01 -3.87159646e-01 5.72681010e-01 -1.17813930e-01 -2.63186961e-01 3.67847770e-01 4.52498525e-01 1.87138841e-01 2.07046241e-01 -4.47872818e-01 -1.11468947e+00 -4.52425808e-01 9.82118547e-02 2.48912305e-01 3.08460534e-01 -2.40186155e-02 -7.50626028e-02 4.07280922e-02 -1.52520394e+00 6.87557995e-01 7.78593004e-01 1.15231013e+00 4.42197680e-01 6.01239681e-01 3.44614893e-01 9.36756432e-01 -4.80215490e-01 -3.26415867e-01 2.75601566e-01 -5.54643810e-01 -5.72554171e-01 1.43018559e-01 3.87674898e-01 -5.90390503e-01 -6.45762324e-01 8.09579074e-01 6.70756698e-01 -4.50142473e-02 6.11874938e-01 -1.47491407e+00 -6.59499526e-01 4.84347224e-01 -7.13056326e-01 1.97423771e-01 6.36038423e-01 6.19749606e-01 1.01476848e+00 -1.47317016e+00 6.29324734e-01 1.33351004e+00 4.35271114e-01 3.40210289e-01 -9.93700266e-01 -8.08411658e-01 1.13998726e-02 5.24529755e-01 -1.73116469e+00 -4.66739327e-01 7.10468113e-01 -4.51916397e-01 1.23634660e+00 1.12110123e-01 8.01699817e-01 1.31794345e+00 -2.08604082e-01 1.57206726e+00 6.05305791e-01 -5.04298210e-01 -2.30756894e-01 2.33922705e-01 4.67763357e-02 8.97176981e-01 1.48179278e-01 1.77668199e-01 -9.79552031e-01 1.97791353e-01 7.20229387e-01 2.55101621e-02 -4.82435644e-01 -4.69790876e-01 -1.33245850e+00 7.12575853e-01 7.62778759e-01 8.12456533e-02 -3.15711796e-01 1.32190585e-01 4.78963166e-01 -2.06821755e-01 4.35950235e-02 8.35015997e-02 -1.07091188e-01 8.47167075e-02 -6.38941705e-01 2.12007552e-01 5.45318723e-01 1.41527879e+00 5.68620861e-01 -3.97167861e-01 -8.71575415e-01 7.63002157e-01 2.67533153e-01 6.30505443e-01 2.59994209e-01 -7.83272207e-01 8.56586099e-01 7.22692668e-01 4.51104678e-02 -8.56054604e-01 -2.40894064e-01 -4.22101200e-01 -6.07373416e-01 4.17729169e-02 2.82156497e-01 1.04753621e-01 -7.45222628e-01 1.57268155e+00 4.23440099e-01 7.71490782e-02 -1.17104918e-01 1.20411706e+00 8.63758981e-01 5.56346059e-01 1.24624297e-01 3.22701722e-01 1.66028142e+00 -1.30136275e+00 -5.60538590e-01 -4.20485407e-01 8.53374004e-01 -4.67313588e-01 1.14150703e+00 2.63223082e-01 -1.10018969e+00 -7.66695142e-01 -1.07144260e+00 -4.33578312e-01 -2.41338253e-01 6.14387214e-01 5.59343100e-01 3.14339936e-01 -6.72138274e-01 2.14982145e-02 -7.37445652e-01 -5.08386195e-01 7.20649540e-01 2.84281552e-01 -2.70869136e-01 -9.93083566e-02 -1.16442716e+00 6.07097328e-01 7.69150078e-01 7.60229528e-02 -1.04022932e+00 -7.20190108e-01 -1.15863132e+00 2.50351757e-01 8.31390977e-01 -8.17575455e-01 1.15249085e+00 -9.57173645e-01 -1.27938199e+00 8.45375419e-01 -1.72984466e-01 -5.52375674e-01 5.56665957e-01 -4.47712809e-01 -1.61254883e-01 4.72072482e-01 1.71903566e-01 1.05740535e+00 8.63815904e-01 -1.13829064e+00 -9.55517173e-01 -2.12049529e-01 1.36742204e-01 5.01355410e-01 -3.72592062e-01 2.73837298e-01 -1.13978207e+00 -6.27064884e-01 -3.59811157e-01 -9.91668582e-01 3.56134176e-01 2.22008511e-01 -6.36421144e-01 -3.19413811e-01 7.82597721e-01 -9.09683049e-01 1.19326723e+00 -2.34901881e+00 1.05231449e-01 9.88547653e-02 4.05034155e-01 3.27441096e-01 -1.71343029e-01 2.44371831e-01 9.10790637e-02 -2.62867033e-01 2.98710410e-02 -3.89212281e-01 1.61541685e-01 -1.90903887e-01 -9.14866254e-02 4.22524482e-01 3.96561682e-01 1.47243762e+00 -7.98416495e-01 -7.34054506e-01 3.89910966e-01 6.87690318e-01 -8.28639269e-01 3.72868091e-01 -1.05406195e-01 4.94145483e-01 -2.72395939e-01 9.18448389e-01 4.26394999e-01 -5.81546307e-01 1.64558040e-03 -5.27189016e-01 6.10686056e-02 4.05935831e-02 -9.65701759e-01 1.78371418e+00 -3.14831138e-01 7.64645696e-01 3.94261628e-02 -1.12681842e+00 4.45087254e-01 2.03223467e-01 2.16958538e-01 -7.73797810e-01 3.58161569e-01 -4.44082133e-02 -2.59753875e-03 -4.87901807e-01 2.17879340e-01 4.96298075e-01 -2.33698770e-01 -1.13635749e-01 2.93255836e-01 4.41707760e-01 2.04030260e-01 4.07995135e-01 1.11670983e+00 1.45939320e-01 3.97917777e-01 1.56092599e-01 5.74245632e-01 -7.43923560e-02 4.98886704e-01 9.21030581e-01 -4.27966893e-01 6.92418277e-01 1.86360508e-01 6.95273504e-02 -8.55714917e-01 -1.06365657e+00 5.14936745e-02 1.25536788e+00 4.65124875e-01 -6.10912263e-01 -7.29872048e-01 -8.26713681e-01 -2.54949927e-02 5.26994646e-01 -5.69635868e-01 -2.04601705e-01 -5.70087969e-01 -3.30189526e-01 2.86787629e-01 9.84041810e-01 8.24453712e-01 -1.15281892e+00 -7.46628821e-01 -8.18235353e-02 -5.54713011e-01 -1.42912257e+00 -7.62023270e-01 5.76154180e-02 -1.58655539e-01 -9.58536327e-01 -7.80976117e-01 -9.27106977e-01 4.93552536e-01 6.70888066e-01 9.15351272e-01 -7.24710003e-02 -8.35198104e-01 6.29475892e-01 -4.93099868e-01 -3.23401064e-01 4.68749041e-03 2.15729736e-02 -1.62349090e-01 4.16950434e-02 5.11775315e-01 -1.31605163e-01 -9.64479923e-01 3.82542640e-01 -4.96998549e-01 4.89455312e-01 9.73488867e-01 9.37975585e-01 5.02469182e-01 -2.00172171e-01 7.59809315e-02 -5.03840089e-01 2.09516231e-02 -4.81859326e-01 -3.91184360e-01 3.57106715e-01 -1.21979015e-02 -6.81959987e-02 3.71173918e-01 -4.11764562e-01 -1.39978838e+00 4.01970267e-01 2.76263833e-01 -6.71048820e-01 -1.89292163e-01 2.35965088e-01 -4.70433265e-01 -5.94958849e-02 5.44842303e-01 2.42748842e-01 -3.56750309e-01 -2.55373597e-01 4.99985456e-01 8.31810057e-01 8.55266273e-01 -3.68573755e-01 7.81472802e-01 5.47881663e-01 -4.39088583e-01 -7.21733809e-01 -1.09672546e+00 -8.25002253e-01 -6.32270515e-01 -1.90981358e-01 1.13041198e+00 -1.42034543e+00 -8.59784663e-01 2.72643983e-01 -1.17896187e+00 -4.99003261e-01 -9.66155156e-03 5.55224955e-01 -6.43594086e-01 3.08058470e-01 -4.60018575e-01 -6.76469028e-01 -4.03600782e-01 -9.42532659e-01 1.44507468e+00 2.73413509e-01 -2.04406962e-01 -4.17580813e-01 -3.78142864e-01 8.24388504e-01 -1.72499102e-02 2.01865174e-02 4.02559847e-01 -4.69961733e-01 -9.42212701e-01 -1.83365658e-01 -7.17780352e-01 1.94175526e-01 -3.21604699e-01 -5.06383538e-01 -9.13040102e-01 -2.60665238e-01 -3.22863996e-01 -6.14949405e-01 9.10864592e-01 2.02505052e-01 1.23159099e+00 -2.46918544e-01 -7.60020733e-01 7.28311539e-01 1.20252621e+00 3.86134945e-02 5.95660031e-01 6.67681769e-02 1.16085351e+00 5.09326339e-01 8.37932467e-01 6.80107117e-01 5.39574087e-01 1.11928725e+00 1.15637131e-01 -9.56650525e-02 -6.88127041e-01 -3.85594130e-01 6.19865298e-01 3.01006138e-01 2.20299102e-02 -3.09196830e-01 -1.09958088e+00 6.76093042e-01 -2.10367894e+00 -1.07345724e+00 -7.81271199e-04 2.05211759e+00 6.92103267e-01 1.47616401e-01 2.94687301e-01 -3.42229344e-02 7.52685785e-01 -2.49828488e-01 -5.13634741e-01 3.13275903e-01 -6.55725971e-02 -1.76146440e-02 5.77498555e-01 3.32616597e-01 -1.35298169e+00 1.12340009e+00 4.72487211e+00 9.54287291e-01 -7.00779617e-01 4.34062719e-01 2.10992321e-01 -3.39664340e-01 3.63633245e-01 -1.27243862e-01 -1.20822704e+00 5.86801410e-01 6.23958886e-01 9.12028830e-04 3.25622052e-01 8.68299603e-01 1.02645211e-01 -2.79861629e-01 -1.17925906e+00 1.48299515e+00 5.28289258e-01 -1.16829848e+00 -1.18405603e-01 -4.97723520e-02 5.09483933e-01 7.13704973e-02 -1.90538019e-02 6.15428388e-01 5.41856186e-03 -7.88355231e-01 8.55223656e-01 4.33486521e-01 8.14550459e-01 -6.00523353e-01 5.17444611e-01 3.46879154e-01 -1.55890810e+00 -3.80043328e-01 1.10123111e-02 2.05728412e-02 1.13699898e-01 2.40283847e-01 -9.18375432e-01 4.89515960e-01 9.33005691e-01 7.58742929e-01 -6.91638529e-01 1.13006973e+00 -4.21103954e-01 5.43012381e-01 -3.70254636e-01 1.34411275e-01 -4.13421221e-04 2.76942223e-01 4.66145128e-01 1.49388206e+00 1.08826436e-01 2.31710270e-01 4.76545423e-01 9.74282086e-01 -1.43857330e-01 6.76497668e-02 -5.44070125e-01 -8.06096569e-03 4.49623019e-01 1.12739551e+00 -5.75560153e-01 -4.97073859e-01 -8.93662035e-01 1.65397286e+00 5.37452638e-01 4.01657939e-01 -1.34165776e+00 -6.92286909e-01 3.67899090e-01 1.08225383e-01 6.68826163e-01 -9.46941152e-02 3.50517556e-02 -1.31019986e+00 2.09088594e-01 -7.07921863e-01 4.35255468e-01 -9.02530193e-01 -1.02925360e+00 1.55656934e-01 1.78107023e-01 -1.28314996e+00 -2.06337273e-01 -7.29426622e-01 -4.64065343e-01 5.84726214e-01 -1.32638419e+00 -1.64517772e+00 -7.87795305e-01 6.73718512e-01 7.34665215e-01 -5.62485196e-02 4.38395113e-01 4.49032009e-01 -6.91893220e-01 9.89986539e-01 -2.09005550e-01 4.78506833e-01 7.20979989e-01 -1.01889265e+00 1.47953436e-01 8.00017357e-01 1.93931103e-01 2.83095837e-01 4.49402958e-01 -6.48768187e-01 -1.44268262e+00 -1.24880552e+00 6.30502224e-01 -6.27576828e-01 3.90568882e-01 -8.50067198e-01 -7.94398129e-01 8.56692076e-01 1.08072571e-01 3.64506811e-01 4.98988867e-01 -7.42415935e-02 -4.38663453e-01 1.54940009e-01 -6.99054062e-01 6.33925736e-01 1.57015812e+00 -7.54845202e-01 -3.88445318e-01 4.76820052e-01 5.16833425e-01 -4.29014951e-01 -6.23433650e-01 4.39852953e-01 6.84520960e-01 -8.42258036e-01 1.20602143e+00 -6.70849383e-02 2.37148985e-01 -3.77235770e-01 -1.34876341e-01 -8.03486824e-01 -4.92781430e-01 -4.70603377e-01 -5.84503412e-01 1.14407206e+00 7.20197037e-02 -1.16089933e-01 7.45882630e-01 3.04866463e-01 -9.19521824e-02 -6.64904952e-01 -5.31457841e-01 -1.10489571e+00 -5.31576157e-01 -5.04576564e-01 7.47949928e-02 4.88748580e-01 2.78073013e-01 6.77251220e-01 -5.06071329e-01 3.35806340e-01 7.48184323e-01 2.18433887e-02 1.14913845e+00 -8.07131410e-01 -7.09599555e-01 -2.82678366e-01 -4.77240354e-01 -1.32843494e+00 2.72832483e-01 -1.05905759e+00 2.60006279e-01 -1.41799104e+00 7.97637463e-01 8.45282078e-02 -1.52761787e-01 6.41192555e-01 -3.36246282e-01 4.89808828e-01 4.51960623e-01 3.84514809e-01 -1.14125049e+00 7.43416846e-01 9.40386236e-01 -2.19735041e-01 -2.75648922e-01 -4.69450384e-01 -5.12869477e-01 7.34529316e-01 7.19959021e-01 -2.13952035e-01 -3.76930654e-01 -3.29792142e-01 -1.13373511e-01 -8.14704448e-02 9.62188482e-01 -1.40260363e+00 2.66767651e-01 2.84757137e-01 6.38245285e-01 -7.68906176e-01 3.62602741e-01 -5.85429430e-01 -2.15346709e-01 2.75084794e-01 -3.30813050e-01 -6.19872153e-01 1.07827358e-01 7.09555328e-01 -1.55872658e-01 7.85173196e-03 5.96350431e-01 1.00510985e-01 -1.12284899e+00 1.47119224e-01 -2.53508170e-03 1.46196783e-01 1.24180758e+00 -1.91201955e-01 -1.74900800e-01 -2.92157263e-01 -5.01979411e-01 5.40513277e-01 2.25642249e-01 5.51595390e-01 6.37055457e-01 -1.39184773e+00 -6.62763357e-01 2.06446752e-01 7.16941237e-01 -1.85416251e-01 4.80141103e-01 1.15794635e+00 -4.94691581e-02 6.13251090e-01 -9.13477391e-02 -6.68311834e-01 -1.45933568e+00 7.51615703e-01 1.03434928e-01 2.73504052e-02 -8.90588641e-01 9.15725112e-01 8.19229603e-01 6.24618679e-02 6.36708796e-01 -2.58042485e-01 1.52184203e-01 -1.90495849e-01 7.74714887e-01 2.22942337e-01 -3.28968495e-01 -8.24000776e-01 -4.70769405e-01 3.52085888e-01 -1.54389486e-01 -8.47800002e-02 7.47336984e-01 -2.71919876e-01 5.03803730e-01 1.13885283e-01 1.41095507e+00 -2.93351471e-01 -1.56336272e+00 -4.64609444e-01 -2.49105260e-01 -5.77737331e-01 -3.14381644e-02 -9.39791203e-01 -7.26423740e-01 1.01755643e+00 7.24831402e-01 -3.97301197e-01 1.11556685e+00 6.25133991e-01 8.73938203e-01 4.35480952e-01 1.98684901e-01 -1.08127964e+00 5.29547036e-01 3.88136625e-01 1.13926959e+00 -1.66411543e+00 -3.10890168e-01 -7.93720067e-01 -9.21254814e-01 7.13388205e-01 9.60638463e-01 9.94757637e-02 3.00181717e-01 1.49059847e-01 -4.54091817e-01 -2.49500185e-01 -4.90151584e-01 -6.94338322e-01 4.69059974e-01 6.74096525e-01 2.94014275e-01 -3.99866216e-02 -1.38256710e-03 9.34483469e-01 1.34700686e-01 1.74498782e-01 -1.14823930e-01 8.85358274e-01 -4.32196796e-01 -5.78471303e-01 -3.21400076e-01 2.55084068e-01 -5.43199889e-02 -2.21951142e-01 -2.47188285e-01 7.85523593e-01 3.31895769e-01 8.09995770e-01 2.15794332e-02 -3.75834823e-01 3.62450719e-01 9.20268372e-02 6.42965794e-01 -6.69688046e-01 -3.34995449e-01 1.02179103e-01 2.28600483e-02 -1.01288152e+00 -1.46223590e-01 -5.84043443e-01 -1.41116834e+00 1.79844573e-01 -3.88566375e-01 -3.94903958e-01 2.09260866e-01 8.56957436e-01 7.05769062e-01 5.30333281e-01 2.19381452e-01 -1.23007560e+00 -3.33371490e-01 -7.86933362e-01 -3.53557944e-01 6.73600256e-01 5.01782075e-02 -1.00687063e+00 -1.56642050e-01 2.24659175e-01]
[9.628889083862305, 1.4010441303253174]
20f2c611-28f3-462a-a352-4fa55d339a52
efficient-video-segmentation-models-with-per
2202.12427
null
https://arxiv.org/abs/2202.12427v1
https://arxiv.org/pdf/2202.12427v1.pdf
Efficient Video Segmentation Models with Per-frame Inference
Most existing real-time deep models trained with each frame independently may produce inconsistent results across the temporal axis when tested on a video sequence. A few methods take the correlations in the video sequence into account,e.g., by propagating the results to the neighboring frames using optical flow or extracting frame representations using multi-frame information, which may lead to inaccurate results or unbalanced latency. In this work, we focus on improving the temporal consistency without introducing computation overhead in inference. To this end, we perform inference at each frame. Temporal consistency is achieved by learning from video frames with extra constraints during the training phase. introduced for inference. We propose several techniques to learn from the video sequence, including a temporal consistency loss and online/offline knowledge distillation methods. On the task of semantic video segmentation, weighing among accuracy, temporal smoothness, and efficiency, our proposed method outperforms keyframe-based methods and a few baseline methods that are trained with each frame independently, on datasets including Cityscapes, Camvid, and 300VW-Mask. We further apply our training method to video instance segmentation on YouTubeVISand develop an application of portrait matting in video sequences, by segmenting temporally consistent instance-level trimaps across frames. Experiments show superior qualitative and quantitative results. Code is available at: https://git.io/vidseg.
['Jingdong Wang', 'Changqian Yu', 'Chunhua Shen', 'Yifan Liu']
2022-02-24
null
null
null
null
['image-matting', 'video-instance-segmentation']
['computer-vision', 'computer-vision']
[-3.15047875e-02 -3.11115414e-01 -4.73150611e-01 -5.02162755e-01 -6.75502956e-01 -5.19910812e-01 3.26664388e-01 -3.71291906e-01 -5.24017274e-01 7.52577722e-01 -1.73674718e-01 -1.18155047e-01 8.68497938e-02 -6.29932404e-01 -1.01684153e+00 -6.27221286e-01 -1.19216785e-01 7.22923055e-02 6.77843750e-01 1.74111351e-01 5.55742644e-02 3.29675913e-01 -1.33893073e+00 4.12451595e-01 8.00839782e-01 1.19420207e+00 2.07090467e-01 7.63329804e-01 -1.56359822e-01 1.12070918e+00 -4.78877515e-01 -5.19941807e-01 3.23941290e-01 -3.70678276e-01 -9.30600524e-01 4.26783353e-01 7.09970355e-01 -8.73053133e-01 -5.23770392e-01 1.00651670e+00 1.19418852e-01 3.14862430e-01 1.40532762e-01 -1.48546350e+00 -1.60596207e-01 4.27720279e-01 -7.12829053e-01 5.26377738e-01 2.93005973e-01 3.08840483e-01 7.43668139e-01 -7.13881910e-01 8.24640393e-01 1.13725793e+00 7.21315026e-01 5.26279449e-01 -9.53886211e-01 -7.34272301e-01 7.16855586e-01 7.38269508e-01 -1.41605914e+00 -6.82105362e-01 5.42333126e-01 -4.20997798e-01 7.62335360e-01 1.98737770e-01 7.62916863e-01 9.61118400e-01 -3.96409668e-02 1.11949944e+00 6.33888483e-01 8.70723724e-02 1.63021639e-01 -4.94613767e-01 -5.13260104e-02 8.02486598e-01 -2.26508006e-01 -1.50646996e-02 -6.89207911e-01 1.46627948e-01 8.34942639e-01 9.76901799e-02 -5.25946081e-01 8.68622288e-02 -1.21381605e+00 4.85351682e-01 2.50537694e-01 9.96703953e-02 -2.91297048e-01 4.24757153e-01 5.45323968e-01 1.83892474e-01 7.49770999e-01 -3.85422260e-01 -5.34506381e-01 -2.65821129e-01 -1.56433523e+00 3.10999632e-01 6.37716293e-01 1.04770100e+00 8.14151943e-01 1.14123628e-01 -3.19039106e-01 4.91915792e-01 2.34442353e-01 3.22855055e-01 3.38030368e-01 -1.50331700e+00 4.62791175e-01 4.07154635e-02 9.71598998e-02 -9.92263794e-01 -1.18246995e-01 2.59095520e-01 -6.44873202e-01 -6.16564453e-02 4.91742700e-01 -2.18019366e-01 -1.07010520e+00 1.50354087e+00 6.50852978e-01 1.09268904e+00 -1.68519005e-01 1.16017401e+00 7.96344042e-01 8.21839929e-01 3.86558883e-02 -3.35115075e-01 1.03419566e+00 -1.29668188e+00 -8.49331617e-01 4.47775461e-02 5.42779744e-01 -6.89187050e-01 7.30447948e-01 4.20993984e-01 -1.33897698e+00 -7.14597881e-01 -7.44549096e-01 -2.15357825e-01 -1.10238798e-01 4.89686197e-03 4.41830009e-01 1.89550325e-01 -1.04859889e+00 8.32384169e-01 -1.30466461e+00 -1.02294259e-01 5.39961159e-01 1.98351562e-01 -1.29115820e-01 -7.63133764e-02 -1.15994179e+00 2.92347103e-01 4.45101082e-01 4.00234580e-01 -1.05471885e+00 -8.17661643e-01 -9.36236382e-01 -1.20028846e-01 6.01712644e-01 -5.89539230e-01 1.36868393e+00 -1.41624951e+00 -1.65224147e+00 4.41240966e-01 -4.23472673e-01 -7.27027416e-01 8.69070709e-01 -5.58424234e-01 -2.31154054e-01 5.02470911e-01 4.43680175e-02 9.05489564e-01 9.54224527e-01 -8.92400205e-01 -9.07440603e-01 -6.30266219e-02 3.71336907e-01 8.33924636e-02 -4.22779545e-02 -1.16319753e-01 -1.22722316e+00 -7.20469296e-01 -1.14187211e-01 -9.67694163e-01 -4.25671563e-02 2.97390282e-01 -3.78145576e-01 -2.01881640e-02 1.07351494e+00 -1.13764703e+00 1.30683112e+00 -2.03984404e+00 1.78565994e-01 2.94278227e-02 2.11324580e-02 2.60195941e-01 -8.70388523e-02 -1.23018555e-01 2.32161000e-01 1.08724110e-01 -2.69867361e-01 -5.22424519e-01 -2.65233099e-01 3.89630318e-01 -2.57286936e-01 5.41451693e-01 1.82530537e-01 9.25870597e-01 -9.21547651e-01 -8.96149814e-01 3.56940031e-01 6.01617038e-01 -7.58770347e-01 1.43468484e-01 -5.54459989e-01 5.37556410e-01 -3.28626990e-01 6.75967872e-01 7.59873331e-01 -3.49611640e-01 1.48253381e-01 -4.18922544e-01 -6.47722855e-02 1.13129415e-01 -1.11656523e+00 2.09686327e+00 -3.56868118e-01 8.56680810e-01 5.10880090e-02 -1.09467912e+00 2.51811862e-01 3.90408218e-01 7.80047059e-01 -6.47273600e-01 -1.65544953e-02 -1.43784001e-01 -3.67593288e-01 -7.17937231e-01 4.39040720e-01 3.85373503e-01 4.02521849e-01 1.52224258e-01 1.16420597e-01 1.94167197e-01 6.12071097e-01 2.37698779e-01 7.97537029e-01 6.81678832e-01 -1.25706047e-01 1.46146435e-02 4.63364691e-01 -2.06643902e-03 8.81999671e-01 4.89529729e-01 -2.49581888e-01 7.52707183e-01 4.54078943e-01 -5.80710411e-01 -9.17163134e-01 -8.68556619e-01 3.15767713e-02 8.38209212e-01 4.85761285e-01 -5.90415239e-01 -8.97153318e-01 -7.71425188e-01 -2.17771888e-01 3.26798856e-01 -4.72917527e-01 2.26925477e-01 -8.15458655e-01 -4.56478208e-01 4.21226919e-01 6.08578205e-01 9.38408077e-01 -6.36858523e-01 -6.53460264e-01 2.20998317e-01 -6.48467839e-01 -1.70935380e+00 -7.67523885e-01 -6.05279028e-01 -9.39589024e-01 -1.12339878e+00 -7.97425866e-01 -5.09724140e-01 4.14410025e-01 3.00682724e-01 1.14898789e+00 3.24805140e-01 -1.29124880e-01 3.23125482e-01 -3.46902966e-01 1.80485547e-01 -2.63059745e-03 -3.06242257e-02 -2.56471157e-01 6.43518567e-02 3.57846692e-02 -3.42313498e-01 -8.95089030e-01 5.06961167e-01 -1.00843191e+00 4.81685728e-01 9.93177369e-02 6.32210732e-01 8.39419186e-01 -2.84192134e-02 9.61768553e-02 -6.92147434e-01 -7.29031041e-02 -4.73716408e-01 -7.33896196e-01 3.16125542e-01 -9.45485607e-02 -1.29601821e-01 5.58970511e-01 -4.90270376e-01 -1.14862812e+00 2.66926456e-02 -1.79096490e-01 -1.00639522e+00 -7.16881230e-02 3.12476367e-01 -1.60059184e-02 1.53892547e-01 2.09501907e-01 1.94352075e-01 -4.08275314e-02 -1.73144817e-01 3.30790192e-01 2.31056929e-01 6.52702034e-01 -6.30613685e-01 5.41363478e-01 8.39638233e-01 -2.82932669e-01 -6.93930984e-01 -9.18686569e-01 -3.90820444e-01 -6.25981629e-01 -4.64041412e-01 1.03407967e+00 -1.08881497e+00 -7.06664681e-01 5.06669283e-01 -1.32681012e+00 -7.52484977e-01 1.71826722e-03 5.02801061e-01 -5.24741769e-01 5.49931824e-01 -7.97883093e-01 -4.36907560e-01 -2.42319584e-01 -1.21162665e+00 1.19427836e+00 2.88140148e-01 -1.17851064e-01 -1.14722848e+00 -1.95623964e-01 2.94983625e-01 6.67102635e-02 3.44522446e-01 1.90323859e-01 -1.51072115e-01 -9.49791789e-01 2.25503445e-01 -2.82538205e-01 3.79379153e-01 1.13745150e-03 4.66086835e-01 -8.09556603e-01 -1.73419073e-01 -1.69339657e-01 -7.17986748e-02 9.37693298e-01 7.52501130e-01 1.62235844e+00 -4.60133940e-01 -3.26322377e-01 9.87231791e-01 1.34770536e+00 2.28959292e-01 6.46029890e-01 2.96978682e-01 8.81259739e-01 3.57993007e-01 8.29731703e-01 5.01777053e-01 4.96279538e-01 6.90211535e-01 2.76813686e-01 5.36873341e-02 -2.05585957e-01 1.26330322e-02 4.60862517e-01 5.99849820e-01 -3.78491461e-01 -4.58139241e-01 -6.95460260e-01 5.10896325e-01 -2.23788285e+00 -1.19315851e+00 4.82530408e-02 1.97108269e+00 8.23888719e-01 1.96596265e-01 1.87673435e-01 -4.76371646e-02 7.93684423e-01 2.71023005e-01 -6.38207853e-01 7.79604912e-02 8.41286220e-03 -1.13554066e-02 4.38903868e-01 7.16780663e-01 -1.16112435e+00 1.09129345e+00 5.35616684e+00 8.29885125e-01 -1.25629473e+00 2.23186240e-01 1.02455699e+00 -4.89732742e-01 -1.35563329e-01 6.47764578e-02 -6.80707991e-01 7.55922616e-01 7.88419425e-01 5.16796261e-02 4.62620914e-01 5.76937675e-01 5.82647502e-01 -2.76247829e-01 -1.11601388e+00 1.09043872e+00 -1.17460545e-02 -1.62614453e+00 -6.01380989e-02 -2.82269567e-01 8.53997529e-01 -5.29174414e-03 -1.34665132e-01 6.67472109e-02 7.91155919e-02 -7.19318628e-01 9.49060798e-01 5.38105428e-01 6.13719046e-01 -6.79119170e-01 5.58966517e-01 2.42140498e-02 -1.36456013e+00 3.29639584e-01 -6.62672296e-02 7.99961314e-02 4.54735309e-01 5.82782865e-01 -4.19557959e-01 6.70334101e-01 1.10126197e+00 1.24970818e+00 -3.42733264e-01 1.00963449e+00 -1.59753367e-01 6.85873628e-01 -3.89355332e-01 4.45753783e-01 3.79038781e-01 -3.18334013e-01 2.83957541e-01 1.19394493e+00 3.40662420e-01 2.54494786e-01 3.40120673e-01 7.28376567e-01 -4.29571122e-02 -3.63386363e-01 -1.82620406e-01 1.78208560e-01 3.54685456e-01 1.16700947e+00 -9.06094491e-01 -7.68576205e-01 -6.90262854e-01 1.28811371e+00 1.56520624e-02 7.13597775e-01 -1.55306590e+00 -2.36347457e-03 8.24931085e-01 8.74240920e-02 4.59127456e-01 -4.53731507e-01 -6.96264207e-02 -1.38767064e+00 1.69033855e-01 -5.97486019e-01 5.07226765e-01 -7.47373283e-01 -8.48068655e-01 5.31738043e-01 2.78215051e-01 -1.18454063e+00 -3.27671736e-01 -2.47931644e-01 -6.01417065e-01 3.74609083e-01 -1.71293771e+00 -8.58949721e-01 -5.17358780e-01 8.47949266e-01 1.09657872e+00 3.06070387e-01 3.57804932e-02 5.58394074e-01 -8.19051862e-01 4.18652773e-01 -5.49566150e-02 3.97421330e-01 6.11781776e-01 -8.49618137e-01 5.33063531e-01 1.15379012e+00 2.45602340e-01 1.11402042e-01 5.49861193e-01 -5.78128874e-01 -1.17836821e+00 -1.29293776e+00 4.97641981e-01 -1.31645218e-01 6.36852562e-01 -8.63115862e-02 -1.01631367e+00 7.36962378e-01 2.32949287e-01 3.68634820e-01 2.89195716e-01 -3.70792955e-01 -7.60789216e-02 -1.00871101e-01 -9.00493026e-01 6.52700424e-01 1.32289863e+00 -3.37675720e-01 -9.00572687e-02 4.13811207e-01 8.42715383e-01 -8.23570728e-01 -8.71867895e-01 3.37173492e-01 5.55182576e-01 -9.99755859e-01 1.00935817e+00 -4.25722778e-01 6.22406423e-01 -4.68435317e-01 7.42441788e-02 -9.08547997e-01 5.86478971e-02 -8.18235815e-01 -4.64469969e-01 1.22856128e+00 1.51444906e-02 -2.14473143e-01 9.57793832e-01 9.19448018e-01 -7.38198981e-02 -7.10528851e-01 -9.05871809e-01 -7.73499310e-01 -3.05413783e-01 -6.20913327e-01 4.80685443e-01 7.93877602e-01 -4.52237964e-01 -1.57052562e-01 -4.48388457e-01 2.67605036e-01 5.61656117e-01 2.31161192e-01 7.42449999e-01 -7.12953389e-01 -2.75277168e-01 -3.19242269e-01 -3.11012745e-01 -1.34545982e+00 4.05120969e-01 -4.79217201e-01 6.45181313e-02 -1.31880164e+00 -5.67564778e-02 -9.20032859e-02 -3.29345278e-02 5.31390131e-01 -2.48470992e-01 3.62017930e-01 3.64902437e-01 3.23060304e-01 -9.46229577e-01 3.78386945e-01 1.31260383e+00 -2.59432971e-01 -9.94680077e-02 -2.25066394e-01 1.13469139e-01 9.11805868e-01 7.75551438e-01 -2.99070299e-01 -4.94728267e-01 -7.87731588e-01 -6.97770044e-02 2.65660584e-01 7.02507079e-01 -9.89847422e-01 3.28856409e-01 -3.47327113e-01 3.83059353e-01 -4.92166191e-01 4.28880006e-01 -7.42012441e-01 3.16776305e-01 4.35870379e-01 -1.25853226e-01 2.38106191e-01 2.72186071e-01 5.76583087e-01 -4.61529911e-01 -2.83515751e-02 7.26731122e-01 -8.38043466e-02 -1.31243849e+00 7.56970882e-01 -1.47344083e-01 1.91182047e-01 1.06332338e+00 -2.85211146e-01 -2.65095055e-01 -3.74226183e-01 -7.87075698e-01 4.38926816e-01 4.13996428e-01 4.14304286e-01 6.68691516e-01 -1.25858629e+00 -5.59422791e-01 2.03608461e-02 -4.21603650e-01 3.41824204e-01 5.98510206e-01 1.14229763e+00 -7.05082595e-01 1.49195597e-01 -1.29099870e-02 -9.84253287e-01 -1.24022031e+00 4.26035553e-01 3.57837319e-01 4.31025624e-02 -6.76790297e-01 8.11866462e-01 2.45845959e-01 2.46838197e-01 3.12572062e-01 -6.59854591e-01 8.78375024e-02 4.24497128e-02 5.83281696e-01 3.94159526e-01 -2.57508215e-02 -5.98874927e-01 -3.63392681e-01 6.77991331e-01 -9.06567648e-02 -1.02608368e-01 9.79467154e-01 -4.06128109e-01 1.12544917e-01 2.32128367e-01 1.38592923e+00 -4.18736786e-01 -1.84336293e+00 -1.40322849e-01 -1.60960928e-01 -8.03246498e-01 7.02428073e-02 -2.75094718e-01 -1.63367605e+00 6.28345609e-01 4.88293648e-01 -6.24188641e-03 1.26253045e+00 -2.27101207e-01 1.25147223e+00 7.09667280e-02 2.28701219e-01 -1.24470627e+00 -8.14499613e-03 3.65609139e-01 4.11679834e-01 -1.38142049e+00 3.76769155e-02 -4.79264408e-01 -5.77526808e-01 1.17824054e+00 6.49481773e-01 -9.41341072e-02 6.50580406e-01 3.42438787e-01 -1.03338793e-01 1.35580674e-01 -8.51515651e-01 -1.71863645e-01 2.30104432e-01 2.34191269e-01 3.78676385e-01 -3.05579513e-01 -2.84703523e-01 1.15456194e-01 1.70595646e-01 4.20508265e-01 3.43366146e-01 8.16302955e-01 -2.85360012e-02 -7.64381409e-01 -2.09049702e-01 2.07832530e-01 -5.47555268e-01 -6.23590089e-02 1.26890913e-01 8.56000304e-01 1.48198381e-01 8.64715636e-01 3.90795887e-01 -2.50030756e-01 -1.70948971e-02 -1.32141083e-01 4.34815317e-01 -6.37947246e-02 -2.52541363e-01 3.03069800e-01 5.19390963e-02 -1.07397223e+00 -9.94331181e-01 -7.21566677e-01 -1.40382218e+00 -6.18175328e-01 -1.71378478e-01 2.72430424e-02 3.31892312e-01 1.00062191e+00 4.17575419e-01 5.24417996e-01 3.73173326e-01 -1.15091491e+00 1.23678729e-01 -4.46429968e-01 -7.03817755e-02 5.67904592e-01 4.00379121e-01 -4.43126708e-01 -2.58426785e-01 7.43831635e-01]
[9.177655220031738, -0.10053399205207825]
d709ca85-8a7e-4db6-8c5e-c705e62d11ee
stock-movement-prediction-from-tweets-and
null
null
https://aclanthology.org/P18-1183
https://aclanthology.org/P18-1183.pdf
Stock Movement Prediction from Tweets and Historical Prices
Stock movement prediction is a challenging problem: the market is highly stochastic, and we make temporally-dependent predictions from chaotic data. We treat these three complexities and present a novel deep generative model jointly exploiting text and price signals for this task. Unlike the case with discriminative or topic modeling, our model introduces recurrent, continuous latent variables for a better treatment of stochasticity, and uses neural variational inference to address the intractable posterior inference. We also provide a hybrid objective with temporal auxiliary to flexibly capture predictive dependencies. We demonstrate the state-of-the-art performance of our proposed model on a new stock movement prediction dataset which we collected.
['Yumo Xu', 'Shay B. Cohen']
2018-07-01
null
null
null
acl-2018-7
['stock-trend-prediction', 'stock-market-prediction']
['time-series', 'time-series']
[-4.09530073e-01 -2.92220414e-01 -3.53632450e-01 -2.18646646e-01 -9.18234169e-01 -5.65650403e-01 1.07425117e+00 -5.80676675e-01 -9.41641331e-02 7.77521551e-01 4.57376182e-01 -1.07348591e-01 -1.78118601e-01 -8.70782733e-01 -6.94978476e-01 -7.00541735e-01 -3.46320182e-01 9.84467506e-01 1.92802250e-01 -1.86028957e-01 2.47257322e-01 6.45409897e-02 -1.04968929e+00 -1.66719943e-01 6.80639029e-01 1.15363669e+00 1.45176888e-01 6.46379769e-01 -1.21853672e-01 1.16191983e+00 -4.46014136e-01 -5.42346001e-01 5.06458700e-01 -2.71455526e-01 -2.54959404e-01 1.65894553e-01 -3.66197042e-02 -6.27094388e-01 -5.86762488e-01 8.40074301e-01 1.18156999e-01 1.29847080e-01 8.65853131e-01 -1.34552097e+00 -9.70990777e-01 8.66197109e-01 -5.15800118e-01 5.92284620e-01 -3.58541340e-01 2.23588794e-01 1.41933405e+00 -6.22484505e-01 4.75487530e-01 1.08318830e+00 5.92698812e-01 1.27321213e-01 -1.50983620e+00 -8.78654242e-01 7.40621507e-01 3.29479203e-02 -1.04440522e+00 -1.90462068e-01 9.25372243e-01 -6.27222419e-01 1.00733578e+00 -2.22270399e-01 9.10129309e-01 1.63265204e+00 6.32806301e-01 1.12220633e+00 9.81689572e-01 3.56589675e-01 3.14061284e-01 -2.40383029e-01 4.25133072e-02 1.29069969e-01 -9.12631676e-02 2.52638429e-01 -7.86873817e-01 -3.65950644e-01 9.01528120e-01 8.27172816e-01 1.40474290e-01 -2.42475234e-02 -1.01021957e+00 1.21462715e+00 -1.08413704e-01 -6.61294982e-02 -7.40487099e-01 6.77484155e-01 3.13018635e-03 3.04080307e-01 1.03673410e+00 2.50179395e-02 -7.41173327e-01 -5.65140843e-01 -1.62904489e+00 6.43408775e-01 1.16782558e+00 1.01782084e+00 3.99963617e-01 5.33083797e-01 -2.07727104e-01 3.39403242e-01 7.13162303e-01 7.70741880e-01 6.83438778e-01 -6.75703704e-01 3.84176195e-01 -9.96082425e-02 4.56070065e-01 -5.17750263e-01 -3.27480763e-01 -7.60756612e-01 -7.09586263e-01 -6.96453005e-02 1.73787922e-01 -4.08468038e-01 -1.05920577e+00 1.66509068e+00 -1.98119462e-01 7.25766063e-01 3.85148935e-02 5.16859651e-01 2.31149957e-01 1.10287642e+00 7.61624426e-02 -3.80735219e-01 8.97758245e-01 -9.86597776e-01 -1.01601183e+00 -2.51912773e-01 -2.50035711e-02 -5.45304537e-01 6.27176166e-01 1.91930681e-01 -1.17363429e+00 -1.75227135e-01 -7.79412627e-01 1.35130614e-01 -2.91523516e-01 -1.28075749e-01 7.40323186e-01 1.53345078e-01 -1.03632557e+00 7.57684469e-01 -1.59425783e+00 2.98969448e-01 2.23520398e-01 1.96722642e-01 5.21073580e-01 5.66697955e-01 -1.37291825e+00 7.91033447e-01 -8.52959137e-03 2.35919073e-01 -9.68622923e-01 -8.24745417e-01 -5.57909012e-01 1.59898520e-01 2.53747910e-01 -6.61764860e-01 1.39675665e+00 -3.30175370e-01 -1.87317348e+00 2.02839643e-01 -3.32606316e-01 -1.07715225e+00 9.05333757e-01 -5.21350682e-01 -3.43086541e-01 -2.60855079e-01 1.54478788e-01 2.66780674e-01 1.02185059e+00 -7.61192322e-01 -4.44509506e-01 -8.59350339e-02 -4.72257465e-01 -6.22311607e-02 6.69807643e-02 -1.67732775e-01 -3.45373154e-01 -1.32915914e+00 3.29218656e-02 -1.13726175e+00 -4.65335906e-01 -5.12101293e-01 -3.30397129e-01 -3.11955988e-01 7.56973684e-01 -8.45400572e-01 1.32009709e+00 -1.73942435e+00 9.85164195e-02 3.27907205e-02 1.07913859e-01 -3.89866352e-01 1.03096873e-01 6.86276734e-01 3.48968565e-01 1.44211948e-01 -2.57790148e-01 -1.05059659e+00 5.89506567e-01 4.45750147e-01 -1.32391703e+00 2.59543747e-01 3.13943893e-01 1.33708906e+00 -5.39246202e-01 1.21730305e-02 -2.83943061e-02 4.51557875e-01 -5.14711976e-01 7.74297565e-02 -7.13618517e-01 3.98895144e-01 -6.27199531e-01 5.59040606e-01 5.02134085e-01 -6.39050364e-01 -5.06251082e-02 5.01085043e-01 -1.12999514e-01 4.65260655e-01 -1.04293251e+00 1.29851115e+00 -3.48390490e-01 6.64674759e-01 -5.37754476e-01 -6.34447694e-01 9.03841257e-01 2.90706187e-01 6.38133764e-01 -5.28530717e-01 -8.73070657e-02 2.01468710e-02 -3.29924166e-01 -3.39894444e-02 6.91218257e-01 -4.27336752e-01 -2.12670535e-01 7.15714991e-01 3.51735950e-02 3.18920203e-02 -2.61196420e-02 9.77926776e-02 7.92187333e-01 4.56647158e-01 -1.42427146e-01 -2.65180469e-01 -3.90936255e-01 -2.06139028e-01 8.12280715e-01 9.72791314e-01 -4.69566621e-02 4.06108677e-01 6.77633762e-01 -4.82532173e-01 -8.55456233e-01 -1.34843612e+00 -8.10580626e-02 9.63319719e-01 1.21854236e-02 -3.75121653e-01 3.35782319e-02 -2.97458589e-01 3.37813199e-01 9.55367208e-01 -7.97057390e-01 2.28838637e-01 -4.68335479e-01 -1.22835302e+00 2.75358241e-02 7.41822779e-01 3.18096817e-01 -8.88115287e-01 -3.69764686e-01 6.57553911e-01 4.25850935e-02 -9.73256528e-01 -5.43329835e-01 3.60710412e-01 -9.50759113e-01 -4.38538849e-01 -9.22517657e-01 -3.49507183e-01 -6.46287799e-02 -4.06971157e-01 1.37083840e+00 -5.11949658e-01 1.99784279e-01 3.34220946e-01 2.64991969e-02 -5.92993617e-01 -9.38305259e-02 2.12879747e-01 -8.78534615e-02 3.78985591e-02 2.90506452e-01 -9.62350488e-01 -7.26705432e-01 1.60104394e-01 -8.83044362e-01 -8.32076445e-02 4.18190897e-01 9.27511454e-01 7.59813011e-01 1.68511868e-02 5.25359154e-01 -7.38676548e-01 7.12938666e-01 -8.39089870e-01 -1.20215023e+00 9.18088704e-02 -7.44920969e-01 4.24673140e-01 2.34055340e-01 -8.22303414e-01 -9.89619970e-01 -1.69115245e-01 -6.29515722e-02 -7.53999352e-01 2.68405229e-01 8.29016209e-01 4.88698632e-01 6.42906249e-01 -3.30085844e-01 6.74681187e-01 -1.70638025e-01 -5.31426311e-01 3.55730176e-01 -3.46357822e-02 4.03641820e-01 -2.77191043e-01 9.22435522e-01 6.58478796e-01 -4.54675779e-02 -4.86539006e-01 -8.38920116e-01 -5.24806045e-02 -5.95195830e-01 7.63389766e-02 8.15315366e-01 -1.35554230e+00 -6.59180284e-01 6.28596067e-01 -1.02335501e+00 -7.82199919e-01 -4.13483620e-01 6.46926403e-01 -7.36616790e-01 -5.51806614e-02 -1.13700342e+00 -1.27563107e+00 -2.58145541e-01 -9.62234616e-01 1.14907455e+00 -8.53580236e-02 -2.08504111e-01 -1.52692378e+00 6.36577010e-01 -1.46948338e-01 7.10262239e-01 2.28636950e-01 4.99880373e-01 -8.67457807e-01 -1.14246178e+00 -2.32904717e-01 1.59513548e-01 -1.02091432e-02 -8.28084648e-02 1.82042733e-01 -6.29793465e-01 -9.50990617e-02 5.94740584e-02 -5.93618751e-02 1.34528017e+00 9.26588714e-01 6.34469032e-01 -4.79599059e-01 -1.98918581e-01 7.07792163e-01 1.23643744e+00 1.28963441e-01 3.26359928e-01 3.72794837e-01 3.79608482e-01 2.85615474e-01 3.73412669e-01 8.75713944e-01 7.89657950e-01 4.62874621e-01 2.63297975e-01 3.13405037e-01 6.38442934e-01 -6.22917116e-01 6.52866364e-01 8.23332191e-01 3.94197516e-02 -4.65480030e-01 -8.37603450e-01 5.25881052e-01 -2.23468900e+00 -1.32517374e+00 1.94092244e-01 1.54976892e+00 7.31764793e-01 3.64862323e-01 3.86760831e-01 -5.54759800e-01 2.85119534e-01 6.11078620e-01 -8.25423598e-01 2.70212978e-01 -2.21711695e-01 8.27250779e-02 8.61104727e-01 5.00954390e-01 -1.31424117e+00 1.16135180e+00 8.01351547e+00 6.90136015e-01 -1.14122629e+00 7.05516115e-02 5.92400908e-01 -5.62354803e-01 -5.84902763e-01 8.13420936e-02 -1.18494940e+00 9.86637354e-01 1.15957904e+00 -3.33496809e-01 2.68018186e-01 7.47050166e-01 3.18115830e-01 2.12549746e-01 -1.00469434e+00 8.10730994e-01 -2.54765451e-01 -1.62013781e+00 9.23901498e-02 5.16277671e-01 9.28440332e-01 5.32920957e-01 6.92715049e-01 4.40624416e-01 1.00446630e+00 -8.29416037e-01 1.16320276e+00 1.11371291e+00 -2.04514340e-02 -7.30133057e-01 3.96330416e-01 4.51533347e-01 -1.14870214e+00 5.01165390e-02 -1.86849147e-01 -2.59760678e-01 8.03825855e-01 4.70766783e-01 -2.64168531e-01 2.63708364e-03 6.04177237e-01 1.27266335e+00 -2.20447898e-01 6.91769719e-01 -2.58587718e-01 9.45247710e-01 -5.24623036e-01 -3.08015980e-02 5.73749185e-01 -5.25934815e-01 6.44653082e-01 9.20714021e-01 5.56707084e-01 -1.24774039e-01 3.01760018e-01 1.38030052e+00 5.47786243e-04 -4.61754501e-01 -4.24963415e-01 -2.74000287e-01 2.70562798e-01 6.08853936e-01 -7.77781129e-01 -3.87501687e-01 -6.16327345e-01 9.95422363e-01 1.28711745e-01 7.07949162e-01 -1.09932244e+00 2.06459954e-01 8.97355437e-01 -1.44313946e-01 9.41340685e-01 -6.48902416e-01 -1.36172146e-01 -1.72088027e+00 -8.37620646e-02 -6.37241378e-02 3.64033163e-01 -5.78975439e-01 -1.79530668e+00 4.34621692e-01 7.60896653e-02 -1.23949432e+00 -9.83231187e-01 -3.83554757e-01 -1.01554585e+00 1.06958735e+00 -1.73503804e+00 -1.07494879e+00 5.36094606e-01 5.28537393e-01 8.37056875e-01 -2.99561113e-01 2.90295362e-01 -6.35048226e-02 -5.68941176e-01 -3.64566781e-02 5.25861204e-01 1.63516119e-01 3.12895000e-01 -1.53793526e+00 1.05388427e+00 9.12461996e-01 4.78726089e-01 5.05692005e-01 9.24390793e-01 -1.00727987e+00 -1.20948577e+00 -1.17478442e+00 7.21900225e-01 -7.59023428e-01 1.52781248e+00 -4.42138433e-01 -8.45851541e-01 1.37869370e+00 2.42965907e-01 -2.88942605e-01 7.65951037e-01 1.09517723e-01 -1.41677365e-01 3.01149189e-01 -4.96376514e-01 4.88511980e-01 7.14652300e-01 -4.87478077e-01 -8.16900134e-01 2.74839818e-01 9.46349263e-01 -1.45361751e-01 -9.07882214e-01 -6.97423071e-02 5.61985612e-01 -5.93757331e-01 8.50652635e-01 -6.46657467e-01 3.64059061e-01 2.31887773e-02 -4.84051108e-02 -1.34615767e+00 -4.53979015e-01 -1.13839614e+00 -6.89757466e-01 1.04793549e+00 7.97810555e-01 -8.77329350e-01 9.31628287e-01 8.79417181e-01 2.30369955e-01 -5.94740212e-01 -8.46970916e-01 -9.34631884e-01 3.58289450e-01 -5.76423168e-01 7.20073462e-01 7.88904905e-01 -3.04312259e-01 1.96444780e-01 -9.55081701e-01 2.65739083e-01 6.66621447e-01 6.85544789e-01 5.42187512e-01 -1.25197756e+00 -6.62343621e-01 -6.03395045e-01 -1.09008566e-01 -1.67768526e+00 3.46242636e-01 -4.40848291e-01 -3.70638408e-02 -1.23901320e+00 1.12509415e-01 7.14187175e-02 -3.37977469e-01 3.35771702e-02 -2.04096381e-02 -4.04440574e-02 3.40071261e-01 7.26060331e-01 -6.70391083e-01 1.17487538e+00 9.34600115e-01 -1.01048544e-01 -3.36881250e-01 4.96486992e-01 -3.79987448e-01 5.09708405e-01 5.87990165e-01 -5.94930530e-01 -3.53811264e-01 -2.43756399e-01 4.15630162e-01 3.33431244e-01 4.63250756e-01 -3.00795227e-01 4.11392182e-01 -3.21412385e-01 4.80274618e-01 -1.40446067e+00 5.74658513e-01 -5.23100197e-01 2.98862040e-01 4.07480538e-01 -3.71909112e-01 4.54811454e-01 7.65779689e-02 1.10175657e+00 -4.71628428e-01 4.20261860e-01 3.03039670e-01 -1.00685805e-01 -4.75579083e-01 8.69358540e-01 -5.81283450e-01 1.90065086e-01 7.53752351e-01 2.66188473e-01 -1.04546994e-01 -9.13877666e-01 -1.19451451e+00 6.70024395e-01 6.95721507e-02 4.13822442e-01 4.76249337e-01 -1.32002425e+00 -7.69197226e-01 1.07505977e-01 -3.35624665e-01 -1.99063927e-01 2.28863120e-01 8.68025541e-01 -1.43623263e-01 4.20916975e-01 2.21634835e-01 -5.15978396e-01 -3.20883095e-01 5.98120809e-01 2.13508993e-01 -7.44399965e-01 -8.16927195e-01 6.55857205e-01 2.23077476e-01 8.28873962e-02 1.29282743e-01 -7.72112370e-01 -3.55080329e-02 3.39414299e-01 2.26513579e-01 2.50978023e-01 -5.14180481e-01 -3.62421989e-01 -6.72054524e-03 3.21280062e-01 -1.31017029e-01 -5.74141145e-01 1.78356338e+00 -3.21476430e-01 2.39394739e-01 1.10420728e+00 9.51344848e-01 -3.60168606e-01 -2.02250075e+00 -4.54298675e-01 2.68329620e-01 -2.53600199e-02 1.99640080e-01 -4.69382286e-01 -1.01867127e+00 7.08393574e-01 1.22933768e-01 6.30302429e-01 6.40947461e-01 1.12871647e-01 9.84144270e-01 1.56792298e-01 2.92524341e-02 -1.13263988e+00 -1.32691205e-01 8.38499427e-01 7.82394409e-01 -1.31230521e+00 -1.61183849e-01 1.67031735e-01 -9.22077656e-01 9.28538620e-01 -2.73241699e-02 -6.56504631e-01 1.41404271e+00 4.67260331e-01 -1.07467048e-01 -2.18616918e-01 -1.42536926e+00 -2.05394104e-01 3.24006975e-01 9.54799727e-02 9.07631069e-02 2.56501697e-02 1.64686173e-01 1.01170492e+00 -5.76268196e-01 -4.12375443e-02 3.27692866e-01 9.39407587e-01 -1.52902618e-01 -8.51379633e-01 4.22438420e-02 5.03193676e-01 -7.29271173e-01 -4.07598674e-01 1.84284970e-02 8.93349409e-01 -5.87915599e-01 4.97829825e-01 6.46303177e-01 -1.22213811e-01 -9.62703601e-02 2.76997864e-01 -7.84402490e-02 -3.46144855e-01 -2.37112805e-01 8.32117796e-01 -4.85355079e-01 -3.89326930e-01 -3.07632327e-01 -1.14909077e+00 -7.19931602e-01 -3.90728623e-01 5.70169948e-02 3.84300277e-02 3.74572664e-01 1.04153407e+00 2.84900665e-01 5.48783958e-01 7.49106050e-01 -1.05883384e+00 -9.72317696e-01 -9.94022310e-01 -1.01079214e+00 1.33510441e-01 7.44643807e-01 -6.13939583e-01 -5.43663502e-01 1.19532987e-01]
[6.8355793952941895, 3.4699034690856934]
f4fdb41b-f5af-4655-aacc-243d38a8ea0e
chart-rcnn-efficient-line-chart-data
2211.14362
null
https://arxiv.org/abs/2211.14362v1
https://arxiv.org/pdf/2211.14362v1.pdf
Chart-RCNN: Efficient Line Chart Data Extraction from Camera Images
Line Chart Data Extraction is a natural extension of Optical Character Recognition where the objective is to recover the underlying numerical information a chart image represents. Some recent works such as ChartOCR approach this problem using multi-stage networks combining OCR models with object detection frameworks. However, most of the existing datasets and models are based on "clean" images such as screenshots that drastically differ from camera photos. In addition, creating domain-specific new datasets requires extensive labeling which can be time-consuming. Our main contributions are as follows: we propose a synthetic data generation framework and a one-stage model that outputs text labels, mark coordinates, and perspective estimation simultaneously. We collected two datasets consisting of real camera photos for evaluation. Results show that our model trained only on synthetic data can be applied to real photos without any fine-tuning and is feasible for real-world application.
['Haoshuai Zhou', 'Linkai Li', 'Congxi Lu', 'Shufan Li']
2022-11-25
null
null
null
null
['synthetic-data-generation', 'synthetic-data-generation']
['medical', 'miscellaneous']
[ 6.18046522e-01 -1.95154354e-01 -7.10165501e-02 -5.32850146e-01 -6.82091117e-01 -1.00230801e+00 5.72989225e-01 7.07362145e-02 -1.81947559e-01 4.86277282e-01 -5.76876216e-02 -2.85648137e-01 3.19411218e-01 -7.71609962e-01 -1.02866876e+00 -1.17356412e-01 4.83066499e-01 2.89439917e-01 2.93718010e-01 -1.11110054e-01 7.85164952e-01 7.49111474e-01 -1.36335385e+00 7.28087068e-01 8.24366868e-01 7.98236549e-01 5.93203753e-02 1.03621221e+00 -2.78402060e-01 9.50296462e-01 -8.26955557e-01 -5.52457035e-01 4.00171757e-01 -2.35546872e-01 -4.78543699e-01 6.82302356e-01 8.57923567e-01 -7.68701792e-01 -2.78049409e-01 1.20714808e+00 3.29807371e-01 -1.41468719e-01 6.51498914e-01 -1.24514425e+00 -1.26040280e+00 3.60710293e-01 -5.50736248e-01 -3.68203640e-01 5.34395456e-01 1.27299279e-01 7.14303136e-01 -1.03606200e+00 6.18365347e-01 9.27544713e-01 6.69508755e-01 5.31279027e-01 -1.29203749e+00 -3.19297016e-01 -2.03404706e-02 7.59450579e-03 -1.00254750e+00 -4.87414449e-01 9.71717894e-01 -5.00343561e-01 5.80021203e-01 4.31538403e-01 5.16131580e-01 1.04603970e+00 -3.39109302e-01 1.18888211e+00 1.14321554e+00 -8.09342146e-01 3.11113715e-01 3.27744693e-01 1.00851201e-01 6.94606781e-01 3.87979925e-01 -4.09314752e-01 -3.33366930e-01 4.03413773e-01 1.08477807e+00 1.27935708e-02 -2.73153961e-01 -7.22942650e-01 -1.29870903e+00 4.19213384e-01 5.38655184e-02 -5.45735918e-02 8.07821155e-02 4.95546833e-02 2.42176339e-01 2.43042260e-01 1.94174312e-02 5.61215043e-01 -1.98667988e-01 -2.04707295e-01 -1.25740361e+00 3.39053184e-01 6.59412920e-01 1.63134611e+00 8.42242897e-01 -3.28073204e-02 -1.47292763e-01 7.75306046e-01 5.95297441e-02 5.22580028e-01 3.78844261e-01 -8.14282417e-01 9.13617134e-01 1.00994754e+00 2.00927839e-01 -1.04725301e+00 -3.16410482e-01 5.88300526e-02 -5.69140375e-01 3.53315502e-01 6.36373103e-01 -2.94734746e-01 -1.23135030e+00 9.88553047e-01 -1.45320818e-01 -3.52720797e-01 -7.96819776e-02 7.66222298e-01 6.31363690e-01 5.28874934e-01 -5.27881205e-01 3.44881117e-01 1.23584354e+00 -1.30583382e+00 -7.12531209e-01 -3.53238642e-01 6.19809151e-01 -1.07762492e+00 1.48304129e+00 5.34288943e-01 -9.32599604e-01 -5.54710627e-01 -1.38300169e+00 -5.48622131e-01 -6.12765551e-01 9.91689086e-01 5.46934128e-01 9.14919198e-01 -9.87628341e-01 3.86797190e-01 -5.97604692e-01 -4.80369568e-01 4.62245226e-01 5.13703004e-02 -4.22066569e-01 -1.20113909e-01 -4.46886420e-01 5.06983757e-01 5.55919409e-01 2.54189074e-01 -5.05083442e-01 -4.10546273e-01 -8.24412346e-01 1.06571494e-02 6.92889869e-01 -1.25490338e-01 1.37230647e+00 -9.90201533e-01 -1.75860214e+00 6.43102586e-01 7.70569593e-02 -1.07539348e-01 9.02495980e-01 -4.14147764e-01 -3.59977037e-01 3.24811518e-01 -2.18786672e-02 6.02886677e-01 8.31035137e-01 -1.30322182e+00 -4.80753779e-01 -2.30299175e-01 1.25145301e-01 5.46781980e-02 -4.58005190e-01 1.44534176e-02 -9.23815131e-01 -7.83664823e-01 -9.37935058e-03 -9.57292855e-01 1.42904334e-02 4.38661247e-01 -9.23361182e-01 3.24970752e-01 9.08900321e-01 -7.00768709e-01 1.19485128e+00 -1.83359146e+00 -3.04812878e-01 8.07883665e-02 -1.67530984e-01 4.96204048e-01 -2.18696028e-01 5.85007608e-01 -4.81625535e-02 2.43763208e-01 -3.62460256e-01 -2.41298437e-01 8.36901646e-03 -2.13761970e-01 -4.95079607e-01 2.01925382e-01 4.60249186e-01 7.71729469e-01 -5.65590084e-01 -5.99525392e-01 4.74728495e-01 1.46444216e-01 -4.90057200e-01 2.24715620e-01 -4.83697593e-01 -4.87637110e-02 -1.03193171e-01 9.49977160e-01 9.37429547e-01 -2.85786748e-01 1.37370542e-01 -1.79240808e-01 -2.81178445e-01 -1.77355513e-01 -1.50796890e+00 1.79969573e+00 -1.13324538e-01 1.09980154e+00 -4.13963288e-01 -5.73048294e-01 1.11417389e+00 -6.07566796e-02 -1.09056877e-02 -5.97224653e-01 8.25538635e-02 -3.16870064e-02 -5.03571153e-01 -6.52397275e-01 1.14244211e+00 5.60621619e-01 -1.38632348e-02 4.14898455e-01 -2.28271708e-01 -3.71537745e-01 6.70837462e-01 1.68448970e-01 8.88419032e-01 6.58521891e-01 1.40682802e-01 2.79875547e-01 6.30696297e-01 4.89138216e-01 3.57420444e-01 7.18831301e-01 7.61236846e-02 1.21764147e+00 8.47348094e-01 -4.64863539e-01 -1.56942558e+00 -7.27005064e-01 1.90408543e-01 6.85221672e-01 1.59812272e-01 -5.20905495e-01 -9.70972300e-01 -6.72755480e-01 -2.74363846e-01 7.71745801e-01 -4.67837960e-01 4.78274494e-01 -6.87269568e-01 -5.71537673e-01 6.45663440e-01 8.84586036e-01 6.37106538e-01 -9.75381672e-01 -5.39495349e-01 -1.76973343e-01 2.46540591e-01 -1.44265306e+00 -6.17683351e-01 -8.54173973e-02 -8.76058638e-01 -1.09286761e+00 -8.94851625e-01 -9.53641891e-01 1.17153895e+00 3.54323089e-01 6.75930619e-01 -6.70886263e-02 -1.20510839e-01 1.57054394e-01 -3.37325573e-01 -5.72848320e-01 -3.79331410e-01 1.15352891e-01 -5.02707481e-01 1.44207090e-01 3.11164230e-01 -1.14593901e-01 -4.54222679e-01 2.16228336e-01 -1.28537607e+00 5.66131651e-01 7.28565931e-01 5.24115324e-01 4.82342005e-01 -2.43356317e-01 1.73332289e-01 -1.18212593e+00 7.49294102e-01 2.98036665e-01 -1.01578867e+00 7.13065863e-01 -4.45178628e-01 2.99420327e-01 8.89110446e-01 -3.59437615e-01 -1.19613349e+00 6.04757130e-01 3.21941435e-01 -2.03624681e-01 -4.48094904e-01 1.59154892e-01 -3.09097171e-01 8.69861469e-02 5.95460534e-01 2.66342759e-01 -2.18006641e-01 -6.08428717e-01 6.19967401e-01 8.75642955e-01 8.14767182e-01 -4.22547817e-01 1.03956068e+00 5.80509543e-01 -1.46402821e-01 -8.63780320e-01 -5.66058815e-01 -3.08380336e-01 -1.12041938e+00 -1.68067798e-01 7.49687850e-01 -7.52914190e-01 -5.97343147e-01 7.44619071e-01 -1.31754935e+00 -3.04818213e-01 -1.40530244e-01 3.18950951e-01 -5.43468952e-01 7.21623659e-01 -3.94730300e-01 -6.58886015e-01 -1.35244265e-01 -1.16574204e+00 1.14782178e+00 4.92159814e-01 1.61825120e-01 -7.11654484e-01 3.58676095e-03 3.81127656e-01 9.21698660e-02 4.53197181e-01 9.26153898e-01 -3.93301487e-01 -1.00196755e+00 -6.17612183e-01 -7.00426042e-01 4.59786147e-01 7.94130042e-02 6.43638313e-01 -9.57811177e-01 1.43769398e-01 -4.89459544e-01 -5.92855155e-01 5.53172112e-01 -8.12637880e-02 1.27834713e+00 -2.60716587e-01 -1.50266644e-02 6.69868529e-01 1.62827981e+00 3.54385495e-01 8.28179479e-01 5.41570544e-01 1.16044831e+00 5.05679905e-01 3.57496947e-01 1.31343648e-01 4.38508958e-01 4.30197746e-01 8.05723220e-02 -1.76637188e-01 -1.16485976e-01 -6.92245066e-01 2.93980151e-01 6.34876370e-01 9.91814956e-02 -5.01238406e-01 -1.05393386e+00 5.77255547e-01 -1.87709177e+00 -8.39304447e-01 -2.48623267e-01 2.12463617e+00 6.61568940e-01 2.38658994e-01 5.64578250e-02 2.02508718e-01 9.84256744e-01 1.17975593e-01 -5.02627194e-01 -5.42945981e-01 -2.80422896e-01 -1.64547309e-01 7.33493388e-01 4.97003272e-02 -1.13324702e+00 8.88984978e-01 6.31387711e+00 4.73457426e-01 -1.09876251e+00 -6.51388228e-01 5.42298317e-01 1.41342267e-01 -1.68280855e-01 2.37078309e-01 -6.80493832e-01 2.60754257e-01 6.01221919e-01 2.36520935e-02 2.91351795e-01 1.04229558e+00 2.11129300e-02 -4.97951880e-02 -1.42310238e+00 1.23187101e+00 4.15252596e-01 -1.53287411e+00 3.99528950e-01 -1.03243843e-01 9.22106683e-01 -3.03553671e-01 -3.63187157e-02 6.62911087e-02 2.60059595e-01 -9.19334710e-01 9.51955140e-01 6.34644389e-01 1.14483380e+00 -4.37511563e-01 3.12022924e-01 2.60023147e-01 -9.06768441e-01 1.38219045e-02 -3.56062979e-01 9.72815696e-03 1.10473417e-01 1.97529718e-01 -1.07722223e+00 3.35141510e-01 3.12110424e-01 7.31899261e-01 -1.36777294e+00 1.22539306e+00 -5.26885629e-01 3.32477361e-01 -7.38701224e-02 -3.48528147e-01 9.72180739e-02 -2.04728544e-01 1.28487408e-01 1.33716583e+00 3.52542311e-01 -3.74669015e-01 -6.84940964e-02 1.01623583e+00 -3.75060588e-01 2.00811163e-01 -6.60958052e-01 -3.00931007e-01 2.63311118e-01 1.36896646e+00 -1.04839134e+00 -3.56740803e-01 -6.19118810e-01 9.94061470e-01 2.82649577e-01 3.99619669e-01 -7.95332909e-01 -9.18442667e-01 -1.49921879e-01 6.59020171e-02 3.35034430e-01 -3.25495750e-01 -7.51533210e-01 -1.56883669e+00 3.76780003e-01 -9.47767138e-01 -1.14093848e-01 -1.10259247e+00 -7.85420597e-01 5.26549101e-01 -2.06669927e-01 -1.60880506e+00 -2.02748105e-01 -1.07303226e+00 -4.81600553e-01 4.80920315e-01 -1.55783010e+00 -1.18745136e+00 -6.73201144e-01 2.35794067e-01 8.65882754e-01 -9.52280313e-02 6.00953639e-01 2.49593765e-01 -8.19794476e-01 6.94157481e-01 3.95691276e-01 9.06609952e-01 9.26993251e-01 -1.60432303e+00 9.35278118e-01 1.21365929e+00 3.09284627e-01 4.85729277e-01 3.98805290e-01 -5.46312630e-01 -1.42182422e+00 -1.05565512e+00 4.94224846e-01 -5.78329623e-01 4.78310466e-01 -8.17087948e-01 -7.56842017e-01 7.33940244e-01 1.36086747e-01 1.35390665e-02 3.82584274e-01 -4.82260048e-01 -3.16870719e-01 -9.22801197e-02 -8.67887914e-01 9.18137729e-01 7.67190278e-01 -4.90828454e-01 -4.62434858e-01 2.94226676e-01 4.11654711e-01 -6.14434004e-01 -4.78618771e-01 8.63739923e-02 7.92291462e-01 -1.13790822e+00 5.99490523e-01 -4.12049919e-01 7.84188151e-01 -5.89655161e-01 -7.27054328e-02 -9.25122142e-01 2.37651452e-01 -7.21212327e-01 1.64919406e-01 1.36520970e+00 6.45840228e-01 -7.10340962e-02 9.47832227e-01 1.00824273e+00 -3.00208782e-03 -3.11992884e-01 -1.78680763e-01 -5.45431674e-01 -3.04110765e-01 -4.07695234e-01 7.72252202e-01 8.15886736e-01 -1.67290494e-01 3.64195615e-01 -5.14685869e-01 7.45749334e-03 4.52489853e-01 2.81514883e-01 1.33004320e+00 -1.04762423e+00 3.61214764e-03 -2.36027345e-01 -4.65422243e-01 -1.12932396e+00 -3.46487522e-01 -4.93784219e-01 6.44563138e-02 -1.79166818e+00 -1.01937773e-03 -1.62552312e-01 2.68574148e-01 2.98295826e-01 2.61538923e-02 3.37607533e-01 4.77786481e-01 1.86292812e-01 -5.17476797e-01 1.40945092e-01 1.25728774e+00 -1.54773831e-01 -3.64645243e-01 -1.04077846e-01 -5.64287305e-01 1.00781786e+00 7.44599342e-01 -2.39307299e-01 -4.83588070e-01 -7.78035343e-01 4.64106709e-01 8.94163102e-02 2.34818548e-01 -1.22480726e+00 4.17997122e-01 -3.07069868e-01 8.40671480e-01 -1.00562954e+00 2.29294635e-02 -7.33879387e-01 -4.21681315e-01 -9.03231800e-02 -5.82232475e-01 3.22534323e-01 6.18983693e-02 5.48782587e-01 -1.13800332e-01 -6.13813758e-01 5.42630374e-01 -1.68173194e-01 -7.85467684e-01 -1.03977509e-01 -1.10189199e-01 -6.82023913e-02 1.08743954e+00 -5.79585195e-01 -7.43606031e-01 -3.34354579e-01 -1.25767946e-01 -3.24117169e-02 8.45699310e-01 4.96330142e-01 7.01618016e-01 -1.23482120e+00 -4.29711491e-01 2.24873617e-01 4.82661307e-01 3.51769418e-01 -1.38930947e-01 1.80375308e-01 -1.38772285e+00 5.98436296e-01 -4.43976521e-01 -4.99940842e-01 -1.05083656e+00 7.40578413e-01 1.87759325e-02 -9.95414332e-03 -5.95189929e-01 2.48926520e-01 -8.45289305e-02 -4.40927118e-01 2.36605525e-01 -8.08403134e-01 -2.31454507e-01 -1.07216472e-02 6.20244026e-01 4.83705968e-01 2.81440653e-02 -3.33727419e-01 -2.21307650e-02 7.66828895e-01 -4.03431356e-01 -3.46260428e-01 1.24557590e+00 -1.10953553e-02 8.93101916e-02 3.65897030e-01 1.06383789e+00 1.84706420e-01 -1.55823171e+00 -1.62932783e-01 3.43659133e-01 -4.72793847e-01 -3.42223406e-01 -8.26255202e-01 -8.02520692e-01 1.00575793e+00 3.66508394e-01 6.47300035e-02 1.09062505e+00 -6.79331303e-01 6.57726347e-01 9.06431019e-01 1.36939511e-02 -1.70929480e+00 3.07012051e-01 2.79357135e-01 8.31096530e-01 -1.36052513e+00 2.41324574e-01 -3.56234580e-01 -8.29358339e-01 1.78709459e+00 7.91139603e-01 -2.40632623e-01 2.41304785e-02 2.99902707e-01 2.23181114e-01 3.29589583e-02 -4.02647823e-01 -1.08658699e-02 4.08127427e-01 5.95437586e-01 3.60241711e-01 -1.67005554e-01 -9.93895829e-02 2.30705068e-01 -2.08567873e-01 2.01781273e-01 1.33949673e+00 1.19962037e+00 -1.76219031e-01 -1.18289983e+00 -5.37805796e-01 3.43675226e-01 -2.62587935e-01 -1.94619354e-02 -8.09655964e-01 9.52440083e-01 -2.26821423e-01 7.36653090e-01 3.45054343e-02 -3.08652997e-01 4.46374774e-01 9.92955863e-02 2.93485641e-01 -6.95456862e-01 -1.32000387e-01 -1.33772064e-02 -1.58410650e-02 -1.98450550e-01 -4.39102858e-01 -5.37607312e-01 -1.11565506e+00 1.12042623e-02 -3.52468073e-01 -2.73355722e-01 9.30854321e-01 5.67722678e-01 3.14734250e-01 4.05215979e-01 4.64595944e-01 -6.14673793e-01 -3.71157825e-01 -8.91612530e-01 -3.61399770e-01 4.36826646e-01 5.26462555e-01 -8.66558477e-02 9.34880823e-02 6.80300772e-01]
[11.621419906616211, 2.255239725112915]
e7df1829-68cf-4e5b-a384-502c8f12643c
discohead-audio-and-video-driven-talking-head
2303.07697
null
https://arxiv.org/abs/2303.07697v1
https://arxiv.org/pdf/2303.07697v1.pdf
DisCoHead: Audio-and-Video-Driven Talking Head Generation by Disentangled Control of Head Pose and Facial Expressions
For realistic talking head generation, creating natural head motion while maintaining accurate lip synchronization is essential. To fulfill this challenging task, we propose DisCoHead, a novel method to disentangle and control head pose and facial expressions without supervision. DisCoHead uses a single geometric transformation as a bottleneck to isolate and extract head motion from a head-driving video. Either an affine or a thin-plate spline transformation can be used and both work well as geometric bottlenecks. We enhance the efficiency of DisCoHead by integrating a dense motion estimator and the encoder of a generator which are originally separate modules. Taking a step further, we also propose a neural mix approach where dense motion is estimated and applied implicitly by the encoder. After applying the disentangled head motion to a source identity, DisCoHead controls the mouth region according to speech audio, and it blinks eyes and moves eyebrows following a separate driving video of the eye region, via the weight modulation of convolutional neural networks. The experiments using multiple datasets show that DisCoHead successfully generates realistic audio-and-video-driven talking heads and outperforms state-of-the-art methods. Project page: https://deepbrainai-research.github.io/discohead/
['Gyeongsu Chae', 'Sungwoo Park', 'SeungHyun Lee', 'Sunwon Hong', 'Geumbyeol Hwang']
2023-03-14
null
null
null
null
['talking-head-generation']
['computer-vision']
[-2.73815274e-01 3.93427461e-01 -8.43001753e-02 -2.57993698e-01 -7.87135839e-01 -4.14088845e-01 5.35542786e-01 -9.19107735e-01 -2.51445740e-01 4.74598438e-01 5.25220811e-01 1.90123767e-01 6.01856172e-01 -1.09617554e-01 -8.12332511e-01 -9.37223315e-01 2.44025171e-01 1.67680338e-01 1.79263707e-02 -3.46070863e-02 3.40879261e-02 3.07224095e-01 -1.80126333e+00 9.93899629e-02 4.88528430e-01 8.31000924e-01 1.89834267e-01 9.66070056e-01 3.48363668e-01 8.34698081e-01 -6.16927326e-01 -2.49174133e-01 1.86536133e-01 -5.24002671e-01 -3.96920919e-01 4.36604731e-02 5.63028753e-01 -5.88943779e-01 -5.68566561e-01 8.01900744e-01 1.32476604e+00 -5.19991741e-02 3.36432010e-01 -1.55854774e+00 -2.76421636e-01 3.80720913e-01 -6.49695575e-01 -1.30524427e-01 6.25984609e-01 6.07554257e-01 5.52050292e-01 -1.07428360e+00 5.59336483e-01 1.42832863e+00 5.92031300e-01 1.08310640e+00 -1.22105014e+00 -1.05493164e+00 -1.02851987e-01 2.44142890e-01 -1.64760673e+00 -1.57746315e+00 9.65966225e-01 -3.14211339e-01 5.70108712e-01 2.60282755e-01 7.24793911e-01 1.44598508e+00 -3.33633721e-02 1.05612457e+00 6.18875325e-01 -2.66919613e-01 -1.06121041e-03 2.62266472e-02 -3.55269939e-01 5.26269138e-01 -2.62693167e-01 8.93209428e-02 -9.17335808e-01 -2.28860937e-02 5.39382398e-01 -5.15960932e-01 -9.25166249e-01 -2.89650559e-01 -1.02567220e+00 6.54179811e-01 6.81253746e-02 1.33602405e-02 -1.72157139e-01 1.82411328e-01 3.27733904e-01 -1.03923097e-01 3.20863605e-01 -5.13241217e-02 -4.86471169e-02 -1.64991707e-01 -1.27437425e+00 4.05116469e-01 9.15606081e-01 9.80551898e-01 4.90356952e-01 1.94273964e-01 -2.58264452e-01 7.64771461e-01 5.09704709e-01 5.87415993e-01 6.93411410e-01 -1.17019951e+00 2.87094563e-01 -7.42010958e-03 -2.67276317e-02 -7.23909616e-01 -4.74853545e-01 -5.33560067e-02 -7.37655580e-01 3.08282435e-01 4.04325455e-01 -5.35173059e-01 -6.94692969e-01 2.21614337e+00 7.56290793e-01 4.91090596e-01 -1.63291693e-01 1.16212881e+00 7.42410123e-01 6.15661323e-01 -2.71488577e-01 -4.11482036e-01 1.40540087e+00 -1.01069355e+00 -1.12747955e+00 -2.40243509e-01 4.91147965e-01 -6.95804000e-01 9.36545312e-01 4.19055313e-01 -1.53420234e+00 -5.02546370e-01 -9.37405705e-01 -3.58148128e-01 1.74482822e-01 3.58752787e-01 2.20535249e-01 4.92759675e-01 -1.36529112e+00 1.83853030e-01 -8.95030677e-01 3.84980813e-02 1.92384914e-01 5.51579118e-01 -5.06969512e-01 2.91928440e-01 -1.15330112e+00 7.33428717e-01 -2.13034153e-01 3.03386062e-01 -7.75507450e-01 -6.60555959e-01 -1.26929021e+00 -1.47418723e-01 5.68217859e-02 -9.74518597e-01 1.54661703e+00 -9.46651518e-01 -2.24365878e+00 9.04005766e-01 -6.58216596e-01 -3.35029721e-01 7.96903312e-01 -4.20570940e-01 -2.33619481e-01 2.79844046e-01 -1.96541790e-02 1.11906791e+00 1.42062998e+00 -1.04495335e+00 -2.98447073e-01 -3.64559710e-01 -4.34510171e-01 2.64428288e-01 -1.97693393e-01 1.61766335e-01 -6.90252900e-01 -5.85121214e-01 -2.68971771e-01 -1.17998075e+00 4.39520538e-01 1.72178656e-01 -6.44718885e-01 -5.58020957e-02 1.06789649e+00 -8.63227963e-01 1.36657166e+00 -2.29607368e+00 3.73174757e-01 -2.59640157e-01 3.57768744e-01 1.95587277e-01 3.57030667e-02 -8.11678246e-02 -1.86884522e-01 -2.91776508e-01 -8.23175982e-02 -1.09833872e+00 4.25326563e-02 -2.54560977e-01 -1.43036529e-01 9.18312907e-01 6.43325821e-02 8.78979087e-01 -5.40694654e-01 -5.49877942e-01 1.00561574e-01 1.01829410e+00 -8.34114850e-01 3.37154448e-01 6.13151416e-02 6.09802783e-01 1.83483765e-01 4.22401309e-01 9.42976892e-01 1.65359437e-01 2.50649936e-02 -2.97568589e-01 -1.42788455e-01 4.78707761e-01 -1.18552816e+00 1.82232881e+00 -5.38319767e-01 1.00048518e+00 6.89391375e-01 -4.91791189e-01 6.19350076e-01 7.09257841e-01 2.38895148e-01 -4.20318902e-01 4.66484398e-01 8.71426985e-02 -8.74116570e-02 -7.61661232e-01 1.38254359e-01 -2.82077510e-02 1.85461611e-01 3.77233654e-01 1.31912395e-01 -2.55823821e-01 -3.22465181e-01 -5.08876517e-02 7.40431607e-01 2.47336119e-01 1.00141592e-01 -7.39292949e-02 7.39477456e-01 -7.15591848e-01 5.54962993e-01 3.78484055e-02 -3.68677408e-01 1.03398967e+00 4.61914897e-01 1.30644128e-01 -7.82667339e-01 -8.43549669e-01 1.10573895e-01 1.03379607e+00 -1.21818185e-01 -3.40401947e-01 -1.40466309e+00 -2.47865409e-01 -1.40693396e-01 6.75838530e-01 -6.59146845e-01 -2.08124444e-01 -7.79205680e-01 -4.80220973e-01 8.77522290e-01 2.46517777e-01 4.43730086e-01 -9.38819289e-01 -5.24400532e-01 -4.80494872e-02 -5.06700516e-01 -1.19871306e+00 -1.21617377e+00 -2.60440767e-01 -1.08897254e-01 -6.42752469e-01 -1.02110457e+00 -7.70781875e-01 4.97004598e-01 2.22192705e-01 5.90034902e-01 -3.38677049e-01 -1.95163235e-01 -7.77651593e-02 2.08274335e-01 -3.30402076e-01 -3.52970779e-01 1.17434211e-01 3.39753330e-01 5.49146771e-01 1.30635202e-01 -8.54064465e-01 -9.32238519e-01 3.45348507e-01 -5.46449184e-01 3.55812967e-01 1.97022915e-01 6.78174853e-01 -4.52900901e-02 -5.51986516e-01 4.17046994e-01 -1.50283158e-01 5.55579245e-01 -4.18655336e-01 -6.35569513e-01 -3.41770113e-01 -5.12706377e-02 2.67243031e-02 3.87382239e-01 -8.17823231e-01 -1.03748858e+00 3.78399551e-01 -3.62480611e-01 -7.59552360e-01 -4.15370315e-02 -3.80467355e-01 -7.74820268e-01 1.78097710e-01 4.92234826e-01 2.06939623e-01 5.06182730e-01 -2.85808474e-01 4.28935856e-01 1.03410673e+00 9.24626172e-01 -1.76496003e-02 5.55714190e-01 7.61633456e-01 -3.81220132e-01 -1.10175729e+00 -3.37478578e-01 -3.60539407e-01 -5.11659980e-01 -2.87706554e-01 1.05424547e+00 -1.11627579e+00 -1.25736296e+00 9.50259209e-01 -1.45121682e+00 -5.97386420e-01 8.84143487e-02 4.34085697e-01 -6.73767447e-01 1.35069817e-01 -5.40727794e-01 -7.90647984e-01 -4.89767283e-01 -1.40037024e+00 1.38936675e+00 1.52627498e-01 -5.93227863e-01 -6.27566755e-01 8.83893147e-02 4.22986001e-01 2.87832111e-01 2.45788489e-02 1.10018127e-01 -2.20059589e-01 -4.53311235e-01 -1.13644242e-01 2.50442386e-01 2.21604615e-01 1.23057671e-01 1.55889720e-01 -1.62638378e+00 -2.66018778e-01 2.37896591e-01 -1.31632671e-01 5.80410361e-01 7.41759360e-01 7.92346060e-01 -7.26614177e-01 -2.48882562e-01 1.00176835e+00 5.34232438e-01 -4.85734716e-02 7.29494214e-01 2.00997815e-02 7.58446395e-01 9.26315129e-01 -2.58068834e-02 5.59729695e-01 7.54364967e-01 1.10031307e+00 3.13522041e-01 -2.15026326e-02 -5.35227239e-01 -2.72282600e-01 9.55048919e-01 9.08787847e-01 2.56509453e-01 -1.50941342e-01 -6.12785280e-01 5.10796130e-01 -1.54787588e+00 -1.05255806e+00 -4.75821039e-03 2.17520833e+00 1.04702866e+00 -5.71013652e-02 4.61018592e-01 2.03131735e-01 9.17152703e-01 2.09648430e-01 -7.22959399e-01 -1.36758566e-01 -7.22573400e-02 -2.50320509e-02 2.14571372e-01 9.76244867e-01 -8.34293425e-01 1.02052259e+00 5.17758560e+00 6.22166157e-01 -1.67887557e+00 2.47489184e-01 2.83391863e-01 -6.59444392e-01 -5.45868911e-02 -3.13702494e-01 -1.04453778e+00 6.49098337e-01 9.69558537e-01 -1.90383736e-02 3.90083611e-01 6.60079658e-01 7.84670234e-01 6.71413988e-02 -1.22465539e+00 1.22182620e+00 3.74586999e-01 -1.07866454e+00 -4.26002145e-01 2.53754914e-01 1.69014186e-01 -6.72288835e-02 1.86004460e-01 -2.36142911e-02 -1.00412585e-01 -9.89488721e-01 1.14734769e+00 4.17160749e-01 9.59204912e-01 -5.05425453e-01 2.12492272e-01 4.19905186e-01 -1.12311995e+00 9.58991274e-02 1.64650843e-01 1.16700657e-01 4.71564382e-01 2.54661947e-01 -1.02227056e+00 -6.71520755e-02 5.65333247e-01 3.71980071e-01 -1.48863927e-01 7.91582406e-01 -4.82046157e-01 4.47840244e-01 -3.57798278e-01 3.57056320e-01 -2.98643619e-01 2.57085055e-01 8.85201991e-01 1.24005997e+00 1.73537299e-01 -2.11756885e-01 -5.19178689e-01 8.73574734e-01 -1.83311045e-01 -1.48352563e-01 -6.97411537e-01 4.89481777e-01 5.07584810e-01 1.21262729e+00 2.18203589e-02 -1.27771199e-01 -2.08623156e-01 1.19428778e+00 4.63778973e-02 3.79433632e-01 -1.09740329e+00 -4.39718753e-01 1.16088665e+00 4.26301122e-01 1.03283495e-01 -1.81056112e-01 9.13479105e-02 -1.33203137e+00 1.32632121e-01 -8.98403227e-01 -2.50304699e-01 -1.07925010e+00 -5.09142339e-01 6.83138013e-01 -1.53073713e-01 -1.21097124e+00 -7.60501146e-01 -2.47542500e-01 -7.37416923e-01 9.14928496e-01 -1.47984672e+00 -1.12270570e+00 -4.54238325e-01 9.24994290e-01 6.22099876e-01 1.74402148e-01 5.00004590e-01 4.62119013e-01 -9.23016131e-01 1.09733176e+00 -4.68854249e-01 1.90956414e-01 1.01373386e+00 -8.42355549e-01 6.55924797e-01 6.93598270e-01 -3.45056444e-01 4.95567888e-01 8.57903004e-01 -2.23404586e-01 -1.47100663e+00 -8.74117494e-01 8.57995927e-01 -3.15686584e-01 4.33099061e-01 -1.00392473e+00 -8.75010371e-01 6.26457810e-01 5.02177536e-01 7.63391480e-02 4.84473377e-01 -7.63241231e-01 -1.13210358e-01 -2.17549965e-01 -9.35279667e-01 7.83514142e-01 1.03804290e+00 -6.39505565e-01 -4.59279150e-01 -1.66698713e-02 7.98164070e-01 -5.11265874e-01 -4.05783385e-01 1.59881890e-01 9.40442979e-01 -1.19237113e+00 8.00304115e-01 -5.55749461e-02 1.05778545e-01 -2.91581631e-01 1.68109328e-01 -1.26763797e+00 2.29511768e-01 -1.62163711e+00 -4.16615456e-01 1.46184301e+00 2.31341675e-01 -7.31947899e-01 7.81899095e-01 5.30722916e-01 -9.54415128e-02 -5.48489571e-01 -9.87207651e-01 -3.84053439e-01 -2.75323950e-02 -4.95935827e-01 5.64859450e-01 7.07591295e-01 1.32742554e-01 4.49731082e-01 -5.80399811e-01 1.87259182e-01 4.88543510e-01 -4.39026713e-01 1.27605438e+00 -8.12466860e-01 -1.42713830e-01 -4.34560478e-01 -2.31632739e-01 -1.45543623e+00 5.68718731e-01 -4.58573192e-01 1.76522195e-01 -9.04609442e-01 -3.19285810e-01 1.93535686e-01 4.13162440e-01 3.04657400e-01 -2.55559888e-02 1.32288203e-01 2.93628901e-01 1.67121321e-01 3.78743634e-02 7.61844993e-01 1.23421156e+00 5.49948215e-02 -5.21550298e-01 1.88161537e-01 -6.34707212e-01 9.83637214e-01 6.74425364e-01 -2.40797684e-01 -4.85802203e-01 -4.97241884e-01 -1.53633535e-01 3.96230012e-01 5.32148361e-01 -9.28345740e-01 5.68647087e-01 3.64025384e-01 1.72817305e-01 -2.25403875e-01 8.48700643e-01 -4.17597890e-01 6.25025108e-02 2.81124085e-01 -1.71368420e-01 1.59383621e-02 3.10313493e-01 2.40263287e-02 -1.15493201e-01 2.59871870e-01 1.08287549e+00 2.14892551e-01 -1.36178061e-01 2.62109518e-01 -4.57432717e-01 1.27934784e-01 7.82541513e-01 -2.65523523e-01 -1.46290496e-01 -9.16746616e-01 -7.52911568e-01 1.61498427e-01 3.91618431e-01 4.92662907e-01 6.26884818e-01 -1.24807560e+00 -6.77815974e-01 6.83143795e-01 -2.78372496e-01 1.64223969e-01 1.92960188e-01 1.18322647e+00 -3.08311015e-01 2.30467021e-01 7.78533518e-02 -8.36141765e-01 -1.33076513e+00 3.57582718e-01 6.43317401e-01 4.60035145e-01 -5.12108564e-01 9.57642674e-01 5.67394435e-01 -1.87335864e-01 4.80974674e-01 -2.63931274e-01 -1.26629144e-01 3.41946423e-01 6.95535719e-01 3.19656909e-01 -1.74605809e-02 -1.07610226e+00 -2.94835478e-01 6.70547068e-01 2.22676292e-01 -5.49360693e-01 1.04485166e+00 -5.37349582e-01 1.35883734e-01 2.82443672e-01 1.64654469e+00 3.96828741e-01 -1.58851039e+00 2.34194040e-01 -5.18403232e-01 -1.98547453e-01 7.04724863e-02 -2.48867288e-01 -1.13499510e+00 1.16570711e+00 4.79867816e-01 -1.31241113e-01 1.21962011e+00 -7.39596691e-03 9.40266907e-01 -2.46003807e-01 -4.79022153e-02 -8.74457359e-01 3.11261625e-03 2.29779050e-01 1.21745563e+00 -1.01077724e+00 -5.09056330e-01 -3.79309416e-01 -7.88847804e-01 8.85126710e-01 6.30180001e-01 2.00180858e-01 7.64875054e-01 6.21439636e-01 1.53518721e-01 2.31224805e-01 -8.30343783e-01 -7.36567527e-02 1.85963348e-01 5.83797276e-01 4.15741742e-01 -1.84088349e-01 1.59958377e-01 5.80751777e-01 -7.04144657e-01 1.54753432e-01 3.57906848e-01 6.09532833e-01 -1.13980994e-01 -6.64485097e-01 -5.97933650e-01 -3.94983053e-01 -4.91600633e-01 -1.34367868e-01 -2.63386130e-01 6.81345820e-01 1.19137347e-01 9.64811921e-01 1.17415369e-01 -3.65539134e-01 2.68932492e-01 2.94739425e-01 3.20282400e-01 -2.42701098e-01 -2.97139555e-01 5.42589366e-01 -5.83116636e-02 -7.45890677e-01 -1.72455370e-01 -7.26564646e-01 -1.26180756e+00 -4.45097446e-01 -2.97907770e-01 -8.07344243e-02 7.66823232e-01 7.07198083e-01 6.81137323e-01 3.11127275e-01 8.59240949e-01 -1.62282908e+00 -3.94725591e-01 -1.13590348e+00 -2.66581386e-01 1.85371459e-01 1.02043402e+00 -7.04566598e-01 -8.37792575e-01 2.75766581e-01]
[13.19989013671875, -0.4321385622024536]
c110a81e-1661-4369-ad80-a813b0b70a0c
a-unified-survey-on-anomaly-novelty-open-set
2110.14051
null
https://arxiv.org/abs/2110.14051v5
https://arxiv.org/pdf/2110.14051v5.pdf
A Unified Survey on Anomaly, Novelty, Open-Set, and Out-of-Distribution Detection: Solutions and Future Challenges
Machine learning models often encounter samples that are diverged from the training distribution. Failure to recognize an out-of-distribution (OOD) sample, and consequently assign that sample to an in-class label significantly compromises the reliability of a model. The problem has gained significant attention due to its importance for safety deploying models in open-world settings. Detecting OOD samples is challenging due to the intractability of modeling all possible unknown distributions. To date, several research domains tackle the problem of detecting unfamiliar samples, including anomaly detection, novelty detection, one-class learning, open set recognition, and out-of-distribution detection. Despite having similar and shared concepts, out-of-distribution, open-set, and anomaly detection have been investigated independently. Accordingly, these research avenues have not cross-pollinated, creating research barriers. While some surveys intend to provide an overview of these approaches, they seem to only focus on a specific domain without examining the relationship between different domains. This survey aims to provide a cross-domain and comprehensive review of numerous eminent works in respective areas while identifying their commonalities. Researchers can benefit from the overview of research advances in different fields and develop future methodology synergistically. Furthermore, to the best of our knowledge, while there are surveys in anomaly detection or one-class learning, there is no comprehensive or up-to-date survey on out-of-distribution detection, which our survey covers extensively. Finally, having a unified cross-domain perspective, we discuss and shed light on future lines of research, intending to bring these fields closer together.
['Mohammad Sabokrou', 'Mohammad Hossein Rohban', 'Yixuan Li', 'Dan Hendrycks', 'Hossein Mirzaei', 'Mohammadreza Salehi']
2021-10-26
null
null
null
null
['open-set-learning']
['miscellaneous']
[ 1.01689599e-01 -7.45884180e-02 -3.99073184e-01 -4.33519810e-01 -5.79093814e-01 -8.02904069e-01 4.55093682e-01 4.88245219e-01 8.97605810e-03 6.15212977e-01 -4.62823451e-01 -4.88807142e-01 -4.51735735e-01 -6.49442613e-01 -4.17064041e-01 -6.90395892e-01 -2.55133808e-01 6.40818477e-01 1.29274428e-01 1.45015180e-01 3.96194667e-01 5.69903076e-01 -2.12478018e+00 3.31924856e-01 8.39956641e-01 9.82049644e-01 -4.09882158e-01 3.86190534e-01 -5.00749409e-01 3.85192931e-01 -9.17329967e-01 -3.55667621e-01 2.09196821e-01 -3.34347486e-01 -6.88237846e-01 2.40756720e-01 6.60509706e-01 -2.04621583e-01 -9.37387496e-02 1.12743509e+00 4.74878937e-01 -6.57310933e-02 1.12595952e+00 -1.86160529e+00 -8.21511924e-01 1.59708217e-01 -6.32589638e-01 6.63238168e-01 3.59250367e-01 -2.72300523e-02 1.06907201e+00 -7.16091692e-01 3.83187920e-01 9.02796686e-01 6.62916362e-01 5.61401606e-01 -1.17236972e+00 -7.40698397e-01 5.66852033e-01 2.88894892e-01 -1.25905776e+00 -1.20094985e-01 7.05533803e-01 -6.27880514e-01 9.63570416e-01 4.25956994e-01 4.75369394e-01 1.49623775e+00 2.06394792e-02 1.03094554e+00 1.04988694e+00 -4.23901290e-01 4.48918402e-01 3.69213820e-01 2.83080429e-01 1.16648741e-01 6.36713862e-01 2.18186513e-01 -3.84010613e-01 -4.92862463e-01 2.70043015e-01 2.44047657e-01 8.66851658e-02 -5.35668433e-01 -5.41090131e-01 8.27827930e-01 -1.54420689e-01 6.18952155e-01 -1.48880601e-01 -6.07376158e-01 5.41773260e-01 6.91270590e-01 5.31602085e-01 4.70501512e-01 -5.38608968e-01 -4.02533174e-01 -9.49164987e-01 3.45454872e-01 1.14040792e+00 9.13461626e-01 6.74305439e-01 1.29936382e-01 1.14720002e-01 9.61450338e-01 2.01972365e-01 4.06061798e-01 6.71841741e-01 -3.49453032e-01 1.02346152e-01 6.10612512e-01 -1.91644400e-01 -9.80979145e-01 -3.86205047e-01 -3.44785511e-01 -7.43321240e-01 2.50756890e-01 7.73172081e-01 -7.36741275e-02 -6.80125058e-01 1.43074632e+00 4.75062788e-01 2.20354155e-01 -4.71386202e-02 5.40790498e-01 5.30401528e-01 2.14289352e-01 -1.01786613e-01 -7.42494687e-02 1.09783626e+00 -6.64569676e-01 -6.65706456e-01 -3.96800667e-01 7.06144869e-01 -8.28405261e-01 8.90560567e-01 7.46224046e-01 -5.44115782e-01 -3.00150126e-01 -9.60525155e-01 4.25392985e-01 -7.87067235e-01 -4.54282165e-01 6.18808448e-01 9.11578834e-01 -5.60947299e-01 5.47418714e-01 -6.53812766e-01 -7.19243765e-01 7.04146504e-01 2.19376869e-02 -3.84813756e-01 -1.05404511e-01 -9.96527433e-01 8.90343428e-01 1.82857424e-01 -2.88677454e-01 -7.16259122e-01 -8.25399399e-01 -7.31928289e-01 -3.50870550e-01 3.97198975e-01 -2.99920052e-01 1.24122941e+00 -9.68046963e-01 -8.65655124e-01 1.07740545e+00 -1.81069925e-01 -3.34345967e-01 4.01073456e-01 -1.63865358e-01 -1.07796073e+00 -2.74340928e-01 1.07792526e-01 3.29976529e-02 8.68605077e-01 -1.13076854e+00 -9.11102653e-01 -5.90487897e-01 -3.11791360e-01 -3.39076109e-02 -5.23351908e-01 1.54922649e-01 1.61225662e-01 -8.17664385e-01 1.14058807e-01 -5.82364380e-01 -3.31263654e-02 -1.01121910e-01 -4.07871693e-01 -5.99778116e-01 1.18372524e+00 -7.63387904e-02 1.75946844e+00 -2.38429117e+00 -5.22680044e-01 2.58887857e-01 3.79132926e-01 2.46246144e-01 1.70032363e-02 7.10877597e-01 -4.33357686e-01 1.12797596e-01 -3.97629857e-01 -7.38934353e-02 1.81627139e-01 4.47680414e-01 -6.05457008e-01 7.01174200e-01 3.76969725e-01 4.21155244e-01 -9.69166875e-01 -8.57121274e-02 2.90061027e-01 7.70081067e-03 -3.33678812e-01 1.07254751e-01 -1.35297790e-01 2.10116833e-01 -3.41723502e-01 1.09806204e+00 8.64986539e-01 2.28090044e-02 -1.17144123e-01 4.06868190e-01 -1.21652428e-02 7.78434202e-02 -1.52136016e+00 9.19933319e-01 -3.82078849e-02 6.87190235e-01 -1.77726105e-01 -1.43609142e+00 1.17185140e+00 2.05915183e-01 5.54914534e-01 -4.51206923e-01 -1.02145478e-01 7.69865036e-01 3.13564420e-01 -5.27835369e-01 4.06951040e-01 -1.66429356e-01 -4.47456352e-02 4.82913136e-01 6.93201199e-02 1.28838927e-01 2.15441093e-01 -2.29185194e-01 1.16396022e+00 -1.96693510e-01 5.88485062e-01 -2.21832953e-02 4.57000673e-01 -1.56921312e-01 1.89453736e-01 1.09287322e+00 -6.60016596e-01 6.16289675e-01 7.52735138e-01 -5.40758908e-01 -8.66302967e-01 -1.21383691e+00 -7.71185517e-01 9.94789541e-01 -2.27085426e-01 -2.71903843e-01 -4.90921438e-01 -1.14109051e+00 4.24100459e-01 8.68354917e-01 -5.73590517e-01 -1.80581346e-01 -1.57448471e-01 -8.45591247e-01 6.81336045e-01 4.28976864e-01 -6.95135742e-02 -9.40008879e-01 -3.25014204e-01 -9.74162761e-03 -5.64195625e-02 -8.15610230e-01 7.42554665e-02 3.94433945e-01 -1.08179283e+00 -1.47792661e+00 -6.17337704e-01 -7.19096065e-01 5.46899974e-01 1.10773042e-01 1.23394740e+00 -4.69508693e-02 -4.03815776e-01 5.78448772e-01 -4.27693665e-01 -8.32982004e-01 -4.03620332e-01 1.04661591e-01 3.86177182e-01 -3.46247964e-02 1.36677802e+00 -5.89001536e-01 -1.53252587e-01 6.88507140e-01 -1.03825510e+00 -1.10495377e+00 4.63871330e-01 6.83916330e-01 4.30084139e-01 3.20071608e-01 9.60505366e-01 -1.00502622e+00 7.41691947e-01 -1.13152468e+00 -2.89662927e-01 -6.67582378e-02 -8.47759783e-01 -3.50226611e-01 5.67158759e-01 -5.85031450e-01 -6.51632309e-01 -4.75599259e-01 -1.59213424e-01 -4.92829889e-01 -1.02315259e+00 1.94738835e-01 -8.69991407e-02 2.01946154e-01 8.99928629e-01 2.07877785e-01 1.64290711e-01 -6.33528590e-01 5.63514270e-02 1.11655009e+00 1.50456980e-01 -5.02787888e-01 8.52642596e-01 4.43792373e-01 -3.59812409e-01 -1.14182973e+00 -9.18679714e-01 -9.17036414e-01 -6.46846414e-01 -1.48754576e-02 2.29267493e-01 -5.95120192e-01 -5.45853414e-02 8.44342887e-01 -5.61341703e-01 -7.01669529e-02 -6.13943279e-01 3.35373074e-01 -3.72489750e-01 6.69006705e-01 -1.02506541e-01 -1.13454580e+00 1.51046604e-01 -8.41648161e-01 7.10855603e-01 2.08440423e-01 -8.28090429e-01 -1.26528549e+00 1.15579069e-01 1.25820637e-01 3.26876134e-01 2.08305389e-01 7.52034485e-01 -1.68643534e+00 -6.93804547e-02 -5.94715953e-01 8.13151821e-02 5.78268409e-01 4.48466539e-01 2.02083394e-01 -1.31798792e+00 -2.84367055e-01 4.79637794e-02 -1.90804005e-01 5.42042911e-01 3.00960958e-01 1.34793746e+00 3.28557775e-03 -5.43402910e-01 2.19663590e-01 9.98508513e-01 2.42994308e-01 5.38650930e-01 6.51620507e-01 2.15786353e-01 7.43148446e-01 8.11106086e-01 6.49397075e-01 1.42700702e-01 3.62613350e-01 4.14717913e-01 9.66913477e-02 1.17245398e-03 -5.14114313e-02 3.14681143e-01 1.33948997e-01 3.19902897e-01 -2.93606162e-01 -9.65477884e-01 7.61901140e-01 -1.49762821e+00 -1.20802224e+00 -4.77858871e-01 2.48840261e+00 5.47901332e-01 2.86591083e-01 5.12408435e-01 4.78873461e-01 8.48974824e-01 -1.15158828e-02 -7.18099594e-01 -5.31722367e-01 -1.91486210e-01 1.52427986e-01 1.15390599e-01 1.35178864e-01 -1.35155821e+00 4.55193013e-01 6.95217276e+00 9.36914980e-01 -9.89652812e-01 -3.00119221e-01 6.51041865e-01 1.00886915e-02 -1.71539798e-01 -1.26639709e-01 -1.03195250e+00 5.66987991e-01 8.11453700e-01 9.98517424e-02 6.57804534e-02 1.23477709e+00 -1.68171644e-01 -3.04321855e-01 -1.45760643e+00 1.07382512e+00 3.40193748e-01 -6.56626046e-01 -1.64122418e-01 2.90323108e-01 6.72540903e-01 -6.85356278e-03 1.94662809e-01 6.11945927e-01 -8.81124586e-02 -9.42354858e-01 3.67084563e-01 3.36396009e-01 4.04277354e-01 -7.88247764e-01 8.85741174e-01 5.05600393e-01 -7.49534786e-01 -2.11882979e-01 -2.94813931e-01 -4.28827345e-01 -1.60428286e-01 9.72148597e-01 -6.75297737e-01 4.78057235e-01 9.78500724e-01 7.41752803e-01 -5.64034998e-01 1.36742318e+00 8.96188095e-02 8.74002397e-01 -4.14791048e-01 7.42265657e-02 1.41937226e-01 -3.34650055e-02 7.40199447e-01 9.90503192e-01 2.56321639e-01 -5.03754020e-01 3.15006167e-01 8.10996234e-01 4.08131272e-01 1.45816999e-02 -9.82885599e-01 -3.06859881e-01 5.03174603e-01 9.45105314e-01 -5.64451277e-01 -1.23507328e-01 -8.89858544e-01 7.35580802e-01 1.33357450e-01 2.05617473e-01 -5.88024437e-01 -6.43950582e-01 1.06171167e+00 2.74916053e-01 1.62649810e-01 1.95303395e-01 -5.80858588e-01 -1.01609302e+00 1.74191728e-01 -1.16200376e+00 9.38048184e-01 6.03352534e-03 -2.35049891e+00 2.38947347e-01 2.20247954e-01 -1.41034448e+00 -2.64834851e-01 -8.22083116e-01 -5.70186675e-01 7.67258883e-01 -1.48330700e+00 -5.00203013e-01 -1.55682608e-01 3.67889911e-01 5.37683785e-01 -4.47150737e-01 1.03879213e+00 3.71741444e-01 -6.91255271e-01 7.72451282e-01 3.56581211e-01 1.36873588e-01 1.07578993e+00 -1.40928185e+00 2.86375463e-01 5.65079331e-01 8.02397728e-02 5.73308527e-01 5.38255930e-01 -6.93976939e-01 -7.81618178e-01 -9.94592607e-01 1.01143181e+00 -9.92229283e-01 8.38218868e-01 -1.33362651e-01 -1.29485309e+00 7.55478978e-01 -4.01645228e-02 2.22138658e-01 1.31008351e+00 5.19412160e-01 -4.08103079e-01 9.91161261e-03 -1.37266183e+00 3.20019275e-01 8.23615551e-01 -2.62500018e-01 -8.37429583e-01 1.45089045e-01 -1.79689005e-01 -3.96676302e-01 -7.32329845e-01 2.89810598e-01 4.79756892e-01 -1.18288171e+00 8.82667661e-01 -8.02241087e-01 1.87084302e-01 -1.09470412e-01 -2.22306475e-01 -1.15794635e+00 -1.88929662e-01 -3.77402574e-01 -4.97355551e-01 1.48094642e+00 2.90568024e-01 -1.11797178e+00 7.48003483e-01 4.82526243e-01 -1.85766354e-01 -9.50832129e-01 -8.19997489e-01 -1.16083241e+00 3.50484759e-01 -7.48227537e-01 5.25604367e-01 1.15921640e+00 1.73943534e-01 4.89789359e-02 -1.44610211e-01 2.59034902e-01 5.12363017e-01 4.29656729e-02 9.99599218e-01 -1.67587423e+00 6.50818646e-03 -7.21838653e-01 -6.76612616e-01 -9.40147579e-01 1.32456824e-01 -9.19844091e-01 -2.98013985e-01 -1.13281369e+00 7.81254098e-02 -4.92984265e-01 -3.94493550e-01 3.57663393e-01 -5.39556704e-02 2.24849969e-01 -2.89178163e-01 1.90332115e-01 -5.37774980e-01 1.94491312e-01 8.63374591e-01 6.88673556e-02 -1.83308840e-01 4.63105947e-01 -9.99783814e-01 1.03189826e+00 9.64996338e-01 -5.94914556e-01 -4.95316535e-01 1.00351952e-01 -3.23539488e-02 -6.17552698e-01 3.49459946e-01 -1.05682373e+00 -1.31160259e-01 -2.68003315e-01 5.41008174e-01 -8.08399677e-01 -7.70994648e-02 -9.54431653e-01 -3.02420557e-01 2.84417152e-01 5.12668863e-02 1.76523209e-01 4.63725567e-01 8.01146865e-01 -3.28379720e-01 -6.39541209e-01 7.11583734e-01 -8.92445967e-02 -8.31097186e-01 2.73040414e-01 -7.78880954e-01 5.81682503e-01 1.48916423e+00 -6.38330996e-01 -8.93153846e-02 -2.86190122e-01 -7.13145912e-01 1.84287578e-01 4.26878661e-01 8.15465868e-01 3.43930870e-01 -1.11584973e+00 -3.67696851e-01 6.16396904e-01 6.22594297e-01 5.46865091e-02 4.62761372e-01 7.74016023e-01 -6.44080639e-02 2.81927466e-01 5.00084506e-03 -8.34026694e-01 -1.08233380e+00 6.59986258e-01 3.67932200e-01 -2.36105904e-01 -4.30876642e-01 5.98132133e-01 1.38053000e-01 -8.25748026e-01 5.81923962e-01 -1.60668969e-01 -1.17763840e-01 2.92116225e-01 6.53822124e-01 7.01170683e-01 2.69046485e-01 -2.46574610e-01 -5.74035525e-01 1.82279527e-01 -3.13882500e-01 4.67133641e-01 1.04981637e+00 -4.31312695e-02 -8.45043212e-02 1.00867629e+00 9.17391300e-01 3.27868871e-02 -7.65090525e-01 -1.85386986e-01 1.79075643e-01 -7.33310401e-01 -4.34545100e-01 -8.53980839e-01 -5.72073162e-01 7.79324174e-01 6.17584407e-01 6.42078340e-01 9.93014097e-01 1.94524020e-01 4.44865048e-01 2.41257563e-01 6.37126043e-02 -1.17332554e+00 3.98234129e-01 7.22211778e-01 6.59601152e-01 -1.40124035e+00 -1.87947199e-01 -2.66182244e-01 -5.10353327e-01 1.19984424e+00 1.10883546e+00 1.52181266e-02 9.11998570e-01 2.74683535e-01 5.51188327e-02 -1.14415713e-01 -4.17592347e-01 -1.37181446e-01 2.43874714e-01 1.13455224e+00 4.98328537e-01 -5.41532189e-02 1.93100851e-02 5.89406013e-01 -2.50493050e-01 -1.57504067e-01 4.26921278e-01 9.02978659e-01 -4.10682410e-01 -1.35296071e+00 -6.86228931e-01 9.83995199e-01 -4.51045930e-01 1.20917350e-01 -5.14022589e-01 9.46202517e-01 2.49596730e-01 9.50888216e-01 4.68131751e-01 -1.25556216e-01 5.55857658e-01 5.35119116e-01 3.10906351e-01 -6.73848629e-01 -3.06261569e-01 -2.79301226e-01 1.18823070e-02 -2.03093633e-01 -1.18753891e-02 -1.04038334e+00 -7.72540510e-01 -4.19009805e-01 -3.71950477e-01 1.56165538e-02 2.79654145e-01 9.08600330e-01 3.40230852e-01 3.35116208e-01 4.32382226e-01 -3.20601195e-01 -8.93541157e-01 -9.87759709e-01 -1.02564895e+00 5.64700723e-01 5.08472323e-01 -9.79227841e-01 -7.34429538e-01 -4.83614385e-01]
[7.718326091766357, 2.583534002304077]
1e4bfd28-af0d-4ad6-9c68-c1e744c4cb02
rstgen-imbuing-fine-grained-interpretable
2205.12590
null
https://arxiv.org/abs/2205.12590v1
https://arxiv.org/pdf/2205.12590v1.pdf
RSTGen: Imbuing Fine-Grained Interpretable Control into Long-FormText Generators
In this paper, we study the task of improving the cohesion and coherence of long-form text generated by language models. To this end, we propose RSTGen, a framework that utilises Rhetorical Structure Theory (RST), a classical language theory, to control the discourse structure, semantics and topics of generated text. Firstly, we demonstrate our model's ability to control structural discourse and semantic features of generated text in open generation evaluation. Then we experiment on the two challenging long-form text tasks of argument generation and story generation. Evaluation using automated metrics and a metric with high correlation to human evaluation, shows that our model performs competitively against existing models, while offering significantly more controls over generated text than alternative methods.
['Yulan He', 'Ritabrata Dutta', 'Rilwan A. Adewoyin']
2022-05-25
null
https://aclanthology.org/2022.naacl-main.133
https://aclanthology.org/2022.naacl-main.133.pdf
naacl-2022-7
['story-generation']
['natural-language-processing']
[ 4.61014628e-01 1.28591311e+00 -1.59483507e-01 9.48563814e-02 -7.97735929e-01 -7.32018769e-01 1.59733796e+00 3.93027574e-01 2.10931078e-02 1.14783549e+00 1.32417929e+00 -4.49860722e-01 -7.64827384e-03 -8.17096710e-01 -3.88284773e-01 2.22558845e-02 8.35950300e-02 8.68231654e-01 2.07187623e-01 -8.88585031e-01 7.07807541e-01 -2.78571546e-01 -1.55195427e+00 1.02997553e+00 1.10447061e+00 3.34699541e-01 8.62098709e-02 8.58512998e-01 -4.18584883e-01 1.67808068e+00 -1.17350841e+00 -4.10880774e-01 -4.91478235e-01 -8.18829656e-01 -1.60476983e+00 -9.92893353e-02 1.46664873e-01 1.47237390e-01 7.51991048e-02 4.52337295e-01 5.26822865e-01 1.69994403e-03 8.78628671e-01 -8.61259222e-01 -7.02045202e-01 1.53096223e+00 1.64133999e-02 2.12203354e-01 9.92798150e-01 -2.12066714e-03 1.27806866e+00 -6.97297454e-01 1.46853077e+00 1.78661692e+00 5.08944988e-01 6.06445551e-01 -1.53152406e+00 -1.82252787e-02 2.16247831e-02 -8.07607174e-02 -8.01104426e-01 -5.89472651e-01 6.83325171e-01 -6.83184385e-01 1.20006895e+00 4.79898840e-01 6.45621121e-01 1.28562212e+00 1.22831240e-01 7.92481422e-01 9.97019529e-01 -9.34815705e-01 7.34661147e-02 8.22068453e-02 1.13794014e-01 3.11330259e-01 1.26404809e-02 3.04706190e-02 -6.97592795e-01 -3.46159071e-01 2.15098798e-01 -1.21875215e+00 -2.76446879e-01 5.79623319e-02 -1.54186940e+00 1.28558052e+00 1.52854532e-01 6.01871431e-01 -2.22014382e-01 8.74357596e-02 5.98446012e-01 1.23867646e-01 7.90903986e-01 1.24030519e+00 -4.92337160e-02 -3.12067628e-01 -7.94243932e-01 1.18946445e+00 1.32075715e+00 8.38238120e-01 6.74426481e-02 -1.35761201e-01 -1.07065094e+00 8.25872540e-01 2.87771761e-01 3.47938538e-01 6.83452845e-01 -1.05003750e+00 7.40087748e-01 6.98447168e-01 2.73197532e-01 -1.15133977e+00 -2.78198302e-01 -1.15059033e-01 -3.13144416e-01 -9.50763151e-02 2.86721259e-01 -3.90518039e-01 -3.17683131e-01 1.64621615e+00 1.22840449e-01 -4.49594200e-01 3.61243784e-01 4.83633637e-01 1.05002546e+00 8.61127853e-01 1.91443503e-01 -4.92052794e-01 1.36074507e+00 -9.73545551e-01 -1.05920434e+00 -2.36557066e-01 9.65989411e-01 -1.13726759e+00 1.17428505e+00 2.02624332e-02 -1.63295650e+00 -3.00595582e-01 -1.02079773e+00 -2.25897431e-01 -1.44722149e-01 9.49433595e-02 2.83230454e-01 2.42332458e-01 -9.47849095e-01 5.57043493e-01 -2.77349710e-01 -1.62195832e-01 2.09328458e-01 -2.04088628e-01 2.13921398e-01 5.07223010e-01 -1.49262226e+00 1.02626979e+00 7.90625691e-01 -6.67596400e-01 -4.04462934e-01 -6.75469577e-01 -8.96607518e-01 -6.29888996e-02 5.53702831e-01 -9.81856465e-01 2.00002718e+00 -6.23755813e-01 -1.63676727e+00 8.90885055e-01 -4.53150943e-02 -7.53731012e-01 5.62249720e-01 -3.99266243e-01 1.03949700e-02 1.20982863e-01 3.43972594e-01 6.95927024e-01 3.97007942e-01 -1.24081564e+00 -4.68551844e-01 1.83850408e-01 2.68485814e-01 5.24317801e-01 -3.49422731e-02 1.80761173e-01 4.19004470e-01 -9.48946178e-01 -4.57590282e-01 -6.15027308e-01 -2.26965129e-01 -7.10951686e-01 -7.73587286e-01 -7.63708413e-01 5.18418431e-01 -5.53467631e-01 1.65171504e+00 -1.56067193e+00 3.47891003e-01 3.50116976e-02 2.80727655e-01 1.42957449e-01 -3.95527370e-02 9.47268963e-01 1.71675310e-01 5.55755854e-01 -7.92938396e-02 -1.38201445e-01 2.71192431e-01 6.08984418e-02 -6.39374614e-01 -4.70752925e-01 3.08289826e-01 1.19328690e+00 -9.44462478e-01 -7.72571087e-01 -3.66545394e-02 1.60443500e-01 -6.48177981e-01 3.41775596e-01 -1.08123147e+00 1.78487629e-01 -5.42487025e-01 -2.04704806e-01 -1.86514854e-01 -4.80385780e-01 4.50765997e-01 2.71855980e-01 -2.68997729e-01 1.04356360e+00 -8.19609761e-01 1.55039930e+00 -3.00508589e-01 7.65897036e-01 -2.69816160e-01 -4.35041457e-01 8.73200059e-01 5.67155004e-01 -1.77983895e-01 -6.19715214e-01 1.93455443e-01 9.63687599e-02 1.39783561e-01 -5.79506040e-01 9.66867208e-01 6.06061518e-03 -2.84216672e-01 1.04964900e+00 -1.54079825e-01 -6.03209376e-01 8.28195035e-01 7.45391190e-01 8.88388216e-01 1.21563077e-01 5.11472702e-01 -5.06475270e-01 5.01557112e-01 4.07282114e-01 -2.62777925e-01 8.29325497e-01 4.91087675e-01 4.48893130e-01 8.47294211e-01 -4.99353819e-02 -1.17968166e+00 -6.89526260e-01 6.34270087e-02 1.27521598e+00 -2.32725903e-01 -1.01474297e+00 -1.20115352e+00 -5.37593067e-01 -2.31931135e-01 1.43790638e+00 -6.94101036e-01 1.97210640e-01 -9.61930811e-01 -4.63621229e-01 7.30045557e-01 2.51445204e-01 8.01326036e-02 -1.51389754e+00 -9.74910378e-01 4.45567548e-01 -8.53426456e-01 -9.75977540e-01 -2.21643656e-01 -3.51612866e-01 -4.89765167e-01 -1.22036457e+00 -3.52166444e-01 -5.88933468e-01 1.61895826e-01 -7.61721879e-02 1.68246329e+00 3.18399757e-01 -3.49884555e-02 2.27393210e-01 -7.30346918e-01 -7.00186610e-01 -1.24487531e+00 5.50893307e-01 -6.55090749e-01 -6.25001371e-01 -1.67946771e-01 -2.76589006e-01 -1.53719589e-01 -1.21712826e-01 -1.11332178e+00 6.87475860e-01 9.31294337e-02 9.04430985e-01 -3.06659136e-02 -5.25829673e-01 7.55432010e-01 -1.16751206e+00 1.60483241e+00 -3.48309934e-01 -8.13210607e-02 3.71648133e-01 -7.13474929e-01 3.00782770e-01 3.57413888e-01 -1.20229878e-01 -1.43994856e+00 -7.33471394e-01 -1.31736466e-04 5.77496588e-01 1.57672495e-01 8.23646247e-01 1.43559560e-01 6.68586075e-01 1.26716757e+00 -2.20067114e-01 1.81602448e-01 -1.99851543e-01 8.39476407e-01 4.57000315e-01 4.67942744e-01 -9.19420421e-01 5.87481558e-01 1.03121549e-01 -3.15368682e-01 -6.15642905e-01 -1.11184537e+00 2.34069359e-02 -3.66517454e-01 -1.92804307e-01 8.22385192e-01 -8.21230352e-01 -1.54798269e-01 -1.45151839e-01 -1.69615519e+00 -6.38574719e-01 -7.15301156e-01 -1.87994968e-02 -8.54837477e-01 1.76761031e-01 -6.63988173e-01 -8.09243202e-01 -6.51934981e-01 -6.43766820e-01 1.18804789e+00 3.40647846e-02 -1.19153094e+00 -1.36986756e+00 4.94908214e-01 4.14941192e-01 4.59825844e-01 7.06852019e-01 1.05941355e+00 -8.31359565e-01 -2.43718341e-01 3.02600861e-01 -2.01136321e-02 -2.42498577e-01 -2.50443459e-01 8.09928030e-02 -7.43415534e-01 1.68033063e-01 -2.22852111e-01 -7.21572042e-01 6.15685642e-01 1.10245876e-01 4.93236691e-01 -8.81171465e-01 -3.65490794e-01 -7.81982318e-02 7.98467755e-01 -1.11692652e-01 7.37359643e-01 6.18882179e-01 3.40825558e-01 1.06075251e+00 8.27334225e-01 6.26143694e-01 5.97638190e-01 7.03550041e-01 4.21202369e-03 7.72537217e-02 -5.09288967e-01 -7.56518543e-01 2.57396698e-01 7.49272287e-01 -3.13632824e-02 -7.06838012e-01 -1.00390840e+00 5.12628436e-01 -2.08957839e+00 -1.33241999e+00 -5.99673986e-01 1.33051610e+00 1.21866763e+00 2.36141145e-01 1.00273684e-01 9.47571844e-02 4.44414735e-01 5.01854479e-01 3.05552155e-01 -6.32209659e-01 -5.07062256e-01 3.00647885e-01 -2.85146773e-01 8.23002875e-01 -7.08084404e-01 1.02272809e+00 7.41264772e+00 9.00757492e-01 -4.05393839e-01 5.01041226e-02 6.05791569e-01 -7.23787174e-02 -8.26602876e-01 1.25066236e-01 -6.43130422e-01 2.58382261e-01 9.58824694e-01 -7.94446647e-01 1.53272659e-01 5.71319163e-01 4.36130971e-01 1.43639848e-03 -1.24694383e+00 2.85481036e-01 3.34681720e-01 -2.06630158e+00 3.88961077e-01 -3.66063453e-02 9.78887498e-01 -4.91632432e-01 -3.60406578e-01 3.80388588e-01 7.99142838e-01 -1.28179574e+00 1.15744150e+00 3.55021685e-01 5.24317503e-01 -4.37394053e-01 7.08291411e-01 5.78594565e-01 -7.11095750e-01 3.05289403e-02 1.34218141e-01 -5.30451655e-01 5.30509531e-01 2.95954078e-01 -1.25057542e+00 4.76661801e-01 9.38482732e-02 4.50691432e-01 -5.84417284e-01 2.40661696e-01 -7.15574682e-01 6.09157383e-01 1.17117114e-01 -3.66075814e-01 2.35568821e-01 3.10527056e-01 8.41787875e-01 1.50541091e+00 1.36814803e-01 3.03110868e-01 4.13468540e-01 1.01588070e+00 -6.63832426e-02 4.45621699e-01 -7.88163900e-01 -1.28435373e-01 6.44351959e-01 8.81233335e-01 -4.22171175e-01 -7.13106573e-01 3.85575742e-01 4.34392124e-01 4.11210209e-01 5.26878312e-02 -5.95815241e-01 -1.10269129e-01 1.70905627e-02 3.86374176e-01 6.79340810e-02 9.93405879e-02 -5.39863467e-01 -8.93380463e-01 -9.02109370e-02 -1.28591001e+00 3.68909180e-01 -9.56251144e-01 -1.13274229e+00 8.16991985e-01 3.85494858e-01 -7.07075655e-01 -1.10836911e+00 -2.09794194e-01 -9.13501263e-01 7.46797025e-01 -1.06896436e+00 -1.19538403e+00 8.42973311e-03 1.00937322e-01 8.48287582e-01 -2.23295599e-01 9.33356404e-01 -5.14628470e-01 -4.92875613e-02 2.08109036e-01 -2.58237958e-01 -1.14446655e-01 5.28057754e-01 -1.41591299e+00 7.33147502e-01 4.74247545e-01 1.33763745e-01 4.89913404e-01 1.09635544e+00 -8.15328121e-01 -6.92129612e-01 -7.91813791e-01 1.60530615e+00 -8.65829229e-01 9.04202104e-01 -2.29152098e-01 -7.29110003e-01 3.79404813e-01 1.01267850e+00 -9.88005936e-01 7.44749904e-01 2.12447241e-01 -2.10196123e-01 8.68166804e-01 -7.99117208e-01 7.30840921e-01 1.16140282e+00 -2.91425198e-01 -1.50866258e+00 6.65988326e-01 1.06492865e+00 -6.59958005e-01 -8.11052024e-01 1.78893447e-01 2.66502053e-01 -9.00887668e-01 8.36818635e-01 -7.00699806e-01 1.27124417e+00 -1.12832054e-01 7.53008500e-02 -1.53413534e+00 -2.32595682e-01 -1.10112250e+00 -3.25196773e-01 1.40246367e+00 7.41367877e-01 -2.52207667e-01 3.20726514e-01 4.21054155e-01 -3.63766044e-01 -5.14031231e-01 -6.61546648e-01 -3.73936445e-01 2.68631428e-01 -1.65915862e-01 6.29926503e-01 8.17859411e-01 6.14446223e-01 1.24106956e+00 -2.32737400e-02 -6.31581664e-01 1.86286747e-01 7.03362525e-02 9.58459735e-01 -1.35180199e+00 -3.16941202e-01 -7.81528234e-01 2.95150578e-01 -8.21348906e-01 2.90653378e-01 -1.02020979e+00 1.46699641e-02 -1.91766274e+00 7.83694014e-02 -1.42625332e-01 6.32227123e-01 1.96562901e-01 -2.85465121e-01 -6.84501976e-02 5.66583991e-01 3.62690330e-01 -6.18583143e-01 6.53853714e-01 1.41580510e+00 -6.68393523e-02 -5.28149247e-01 -3.85472238e-01 -1.06354344e+00 7.01537728e-01 8.18642557e-01 -2.81593442e-01 -6.56518042e-01 -3.99662435e-01 5.07056236e-01 6.57838956e-02 2.97338724e-01 -6.13410950e-01 -1.09589487e-01 -1.63299561e-01 1.00010941e-02 -4.77443546e-01 7.09200650e-03 1.99681059e-01 -1.23554662e-01 3.24690610e-01 -1.24902046e+00 2.57196933e-01 1.45305917e-01 1.66034117e-01 -3.35198760e-01 -4.32390213e-01 2.92643726e-01 -1.72223806e-01 -5.99444024e-02 -5.35637975e-01 -6.37302995e-01 7.88942873e-01 8.28669727e-01 -7.63685554e-02 -8.31998467e-01 -5.07732391e-01 -5.34025550e-01 2.98174649e-01 3.43315810e-01 6.31240010e-01 3.86487007e-01 -1.31704664e+00 -1.27109039e+00 -2.90202349e-01 1.33305117e-01 1.03914835e-01 -2.72112668e-01 4.57931161e-01 -6.02614284e-01 7.45125949e-01 2.70664036e-01 -4.66583312e-01 -1.23975015e+00 2.18757495e-01 -9.70806777e-02 -1.07369268e+00 -6.43337429e-01 5.45337021e-01 -7.49593228e-03 -3.29440773e-01 -1.76781639e-02 -2.30961889e-01 -7.56128907e-01 2.72362590e-01 7.32390285e-01 3.23384374e-01 -2.74178803e-01 -6.58898711e-01 3.05072278e-01 -4.64200489e-02 -1.22023821e-01 -7.21298456e-01 1.05687952e+00 -1.58308357e-01 -3.23686868e-01 5.26290536e-01 5.57160974e-01 1.68951213e-01 -7.64851391e-01 -6.42774627e-02 5.99877536e-01 -1.29468128e-01 -2.35734031e-01 -1.12490201e+00 1.80821717e-01 5.06855607e-01 -9.16251913e-02 9.03118372e-01 3.58116478e-01 3.64792943e-01 6.57138348e-01 4.30241644e-01 -2.21179239e-02 -1.37520552e+00 4.78502035e-01 1.06413567e+00 1.45507658e+00 -7.13832200e-01 -5.52209318e-02 -5.24446130e-01 -9.27695811e-01 1.13403499e+00 5.63600123e-01 9.37649906e-02 9.31966379e-02 2.19650656e-01 1.65892601e-01 -5.74642360e-01 -1.39653862e+00 5.68360500e-02 3.97852242e-01 6.17663264e-01 1.06152785e+00 9.99973789e-02 -8.16850245e-01 3.57942969e-01 -1.10794985e+00 -1.31671771e-01 6.89362943e-01 7.87128806e-01 -7.24780858e-01 -1.17363977e+00 -5.99983752e-01 2.81618059e-01 -3.67735326e-01 -1.62024453e-01 -1.09000266e+00 8.63489032e-01 3.66903245e-02 1.29997444e+00 -2.95771547e-02 2.10300740e-02 3.71788561e-01 2.30964184e-01 3.69089574e-01 -1.03186095e+00 -1.13746691e+00 1.97301000e-01 1.12687683e+00 -2.33262837e-01 -5.91306627e-01 -7.53508806e-01 -1.28929126e+00 -2.84191012e-01 -2.47269467e-01 6.03239536e-01 2.97993183e-01 1.00157118e+00 3.28292280e-01 8.01092803e-01 4.28949505e-01 -6.64865136e-01 -7.84559488e-01 -1.39689136e+00 1.40105993e-01 7.34230995e-01 -2.74439249e-02 -4.55942035e-01 -1.65236413e-01 3.27735752e-01]
[11.548778533935547, 9.062111854553223]
307a851a-c5e9-411f-ba11-e961679b4d30
layout-based-causal-inference-for-object
null
null
http://openaccess.thecvf.com//content/CVPR2023/html/Zhang_Layout-Based_Causal_Inference_for_Object_Navigation_CVPR_2023_paper.html
http://openaccess.thecvf.com//content/CVPR2023/papers/Zhang_Layout-Based_Causal_Inference_for_Object_Navigation_CVPR_2023_paper.pdf
Layout-Based Causal Inference for Object Navigation
Previous works for ObjectNav task attempt to learn the association (e.g. relation graph) between the visual inputs and the goal during training. Such association contains the prior knowledge of navigating in training environments, which is denoted as the experience. The experience performs a positive effect on helping the agent infer the likely location of the goal when the layout gap between the unseen environments of the test and the prior knowledge obtained in training is minor. However, when the layout gap is significant, the experience exerts a negative effect on navigation. Motivated by keeping the positive effect and removing the negative effect of the experience, we propose the layout-based soft Total Direct Effect (L-sTDE) framework based on the causal inference to adjust the prediction of the navigation policy. In particular, we propose to calculate the layout gap which is defined as the KL divergence between the posterior and the prior distribution of the object layout. Then the sTDE is proposed to appropriately control the effect of the experience based on the layout gap. Experimental results on AI2THOR, RoboTHOR, and Habitat demonstrate the effectiveness of our method.
['Shuqiang Jiang', 'Xinyao Yu', 'Yubing Bai', 'Weijie Li', 'Xinhang Song', 'Sixian Zhang']
2023-01-01
null
null
null
cvpr-2023-1
['causal-inference', 'causal-inference']
['knowledge-base', 'miscellaneous']
[-1.28994184e-02 2.38233015e-01 1.79122925e-01 -4.10371065e-01 1.74793124e-01 -3.41603577e-01 5.14223754e-01 1.49522960e-01 -6.74043953e-01 6.96599483e-01 2.28409141e-01 -1.44363225e-01 -4.40362543e-01 -8.56169403e-01 -1.23889887e+00 -9.08519685e-01 -1.41625211e-01 1.32452995e-01 4.61206555e-01 -1.55385330e-01 4.90370363e-01 8.03793147e-02 -1.36574626e+00 -3.01182598e-01 1.19227397e+00 7.58237541e-01 9.74547863e-01 2.40570202e-01 2.15648860e-02 7.02907324e-01 -5.12647152e-01 1.96353957e-01 2.38507926e-01 -5.46834111e-01 -3.18452328e-01 2.95983609e-02 -8.72828513e-02 -2.79682487e-01 -2.85286456e-01 1.29937041e+00 4.84389007e-01 4.47440624e-01 6.71739459e-01 -1.35104012e+00 -6.35422945e-01 6.76750004e-01 -6.26610994e-01 2.81651795e-01 1.99745432e-01 3.87048125e-01 6.38313890e-01 -5.75279117e-01 6.85586035e-01 1.31482077e+00 1.78190112e-01 -7.84990657e-03 -1.12211764e+00 -5.57082951e-01 9.77141917e-01 3.36992413e-01 -1.39585674e+00 3.76942940e-02 7.25857437e-01 -5.03710270e-01 5.40328503e-01 -1.95365146e-01 8.81318510e-01 8.00465643e-01 4.17082846e-01 6.41917050e-01 9.27961290e-01 -4.28116351e-01 4.23262179e-01 2.78724045e-01 -2.02568233e-01 8.75818074e-01 1.76264897e-01 2.48034060e-01 -5.29268682e-01 2.26327941e-01 8.22013795e-01 -1.72811210e-01 -4.42857176e-01 -6.85363233e-01 -9.08666551e-01 4.62496847e-01 8.38253796e-01 1.09564386e-01 -5.18301964e-01 1.78013086e-01 3.37108262e-02 1.86446771e-01 5.26775420e-02 5.24537385e-01 -4.16232675e-01 6.43379092e-02 -6.91917771e-03 2.28035837e-01 3.71409625e-01 9.03604031e-01 8.85686576e-01 -1.25805795e-01 -2.78821647e-01 6.45122290e-01 6.30603135e-01 3.81618112e-01 1.23455107e-01 -6.30114794e-01 5.98011613e-01 7.42905617e-01 4.32365209e-01 -1.22819459e+00 -2.80894905e-01 -5.29101670e-01 -2.05853820e-01 3.97646159e-01 5.37183821e-01 -5.36712110e-01 -1.14853954e+00 2.22960329e+00 5.65919638e-01 3.42506796e-01 -6.21011518e-02 1.21868956e+00 4.87082571e-01 5.96095622e-01 3.35506469e-01 -1.48271650e-01 9.24994230e-01 -7.60765910e-01 -8.74929547e-01 -8.06896329e-01 5.98479271e-01 -3.97659034e-01 1.18642974e+00 1.25968352e-01 -6.34384155e-01 -4.31950420e-01 -1.10388243e+00 2.31802478e-01 -2.05323264e-01 2.08386153e-01 4.80587721e-01 4.96497899e-02 -7.10489750e-01 4.06563610e-01 -7.92911887e-01 -5.00921547e-01 1.78870618e-01 1.38317078e-01 -1.43588588e-01 -1.62757054e-01 -1.11997950e+00 1.01179135e+00 7.59300351e-01 3.48252922e-01 -1.04411161e+00 -4.22563970e-01 -6.78231716e-01 1.00026913e-01 9.05616701e-01 -5.65977931e-01 7.80539870e-01 -1.07752204e+00 -1.30002213e+00 1.74012676e-01 2.01459691e-01 -1.94867492e-01 4.60491091e-01 -4.04717177e-01 2.01482445e-01 -2.55251080e-01 3.81867439e-02 9.38975632e-01 6.85874462e-01 -1.55128670e+00 -8.25395346e-01 -4.32281494e-01 2.29948685e-01 8.90324771e-01 -2.19105348e-01 -6.75756872e-01 -9.12120223e-01 -2.38540918e-01 3.00651819e-01 -9.72004652e-01 -4.61753696e-01 5.15246764e-02 -3.05280745e-01 -1.85375974e-01 6.60560131e-01 -5.11197209e-01 1.05730820e+00 -2.39452934e+00 4.90655601e-01 4.65228558e-01 -9.92278531e-02 -2.13629678e-01 -2.35367343e-01 2.79827625e-01 2.95570642e-01 -1.31826207e-01 1.84304814e-03 1.75549999e-01 -1.83431000e-01 3.28493863e-01 -2.29137465e-01 3.04941475e-01 1.10104576e-01 5.83875775e-01 -1.09770834e+00 -3.91286820e-01 1.70828909e-01 2.62099445e-01 -6.97070003e-01 5.63084483e-01 -4.18573260e-01 5.89731395e-01 -9.06598866e-01 -7.24555030e-02 5.86468697e-01 -1.10464226e-02 4.91419107e-01 -1.37346694e-02 -4.44598436e-01 1.53891280e-01 -1.29155803e+00 1.52500927e+00 -2.77732491e-01 2.17623949e-01 -6.80911988e-02 -6.05023742e-01 9.41768765e-01 -2.26032585e-01 9.69300047e-03 -7.34566927e-01 1.17548451e-01 -1.22959599e-01 3.76656204e-01 -7.98865259e-01 2.54592508e-01 1.73565909e-01 2.25926235e-01 -1.07070468e-02 -8.54359567e-02 -3.06781586e-02 -2.41270028e-02 2.78162986e-01 8.76446903e-01 5.19868016e-01 2.92365283e-01 -2.30372190e-01 1.66645318e-01 -1.63635924e-01 7.05851495e-01 9.06084239e-01 -1.35116875e-01 7.53610283e-02 8.47557485e-01 9.99263674e-03 -7.08975852e-01 -9.45284128e-01 1.59754902e-01 1.07443845e+00 8.20532799e-01 -1.84065059e-01 -5.94569445e-01 -6.83771193e-01 -1.62005827e-01 1.04545796e+00 -8.84871483e-01 -6.33881092e-01 -4.46331471e-01 -6.41133189e-01 -1.13460250e-01 7.01174974e-01 6.84003830e-01 -1.12664247e+00 -6.12507999e-01 -5.68172969e-02 -5.15512675e-02 -6.65484369e-01 -3.88026595e-01 4.47815001e-01 -6.63213909e-01 -9.09496546e-01 -1.88406765e-01 -7.88825452e-01 1.16562760e+00 6.26094267e-02 5.33541560e-01 2.89349526e-01 7.10808188e-02 3.25180650e-01 -2.21532837e-01 -3.36434960e-01 2.64632106e-01 -3.48817706e-01 -1.87553510e-01 -2.33336061e-01 1.26799541e-02 -4.85519350e-01 -5.94969273e-01 4.27152425e-01 -5.63834369e-01 2.13798076e-01 6.43572509e-01 8.05040359e-01 5.95768571e-01 4.67604339e-01 4.83563989e-01 -4.98889208e-01 5.10827959e-01 -6.82049453e-01 -7.72027075e-01 2.35815004e-01 -7.10110068e-01 3.44156116e-01 2.53770202e-01 -6.74474895e-01 -1.40000343e+00 -1.93550135e-03 1.85766324e-01 -2.45558277e-01 -7.08225593e-02 8.74160886e-01 -5.30957937e-01 2.86140740e-01 4.37211454e-01 1.48059260e-02 -5.11748493e-01 -2.10402399e-01 2.35650480e-01 -2.64553186e-02 1.96269959e-01 -6.11293733e-01 5.97457767e-01 2.21211269e-01 -9.40565988e-02 -4.46332783e-01 -6.85504973e-01 -3.62359211e-02 -4.56661016e-01 -4.90737706e-01 1.09190059e+00 -6.93456888e-01 -6.12603009e-01 2.90706575e-01 -8.46064389e-01 -6.90326035e-01 2.38098223e-02 7.43974566e-01 -4.25575048e-01 -9.10550822e-03 -1.69987548e-02 -9.74917352e-01 5.01740336e-01 -1.15189159e+00 4.70458150e-01 4.96876895e-01 1.33913919e-01 -9.44986999e-01 -5.99659160e-02 -1.88765511e-01 -4.40955535e-03 9.87665355e-02 1.17000091e+00 -3.56268555e-01 -9.17733848e-01 1.68701857e-01 -3.10924500e-01 -4.94558290e-02 -6.09403057e-03 -2.60486007e-01 -6.34147644e-01 -1.35705441e-01 -1.14257626e-01 -1.06506452e-01 8.47336531e-01 6.73607826e-01 9.55989003e-01 -3.24357241e-01 -5.41535854e-01 3.45471293e-01 1.41671729e+00 7.59343505e-01 7.66548514e-01 5.54469943e-01 7.60191143e-01 6.31454587e-01 1.20278001e+00 4.76353288e-01 2.75695562e-01 6.67373955e-01 7.27147162e-01 1.69088468e-01 8.94451737e-02 -7.17395127e-01 2.21613288e-01 2.01610088e-01 -2.12464929e-02 -4.98640239e-01 -8.05033386e-01 4.52521741e-01 -2.16130090e+00 -5.70336640e-01 -2.61816978e-02 2.45520782e+00 6.61482453e-01 5.44330776e-01 -4.67083395e-01 -4.40901071e-01 6.89243674e-01 1.08559959e-01 -8.03430617e-01 -7.64868855e-02 1.84433550e-01 -6.55744970e-01 4.01384771e-01 8.15405071e-01 -7.13117778e-01 1.09671724e+00 5.48972082e+00 7.34392107e-01 -8.47740769e-01 -3.27249348e-01 2.68561453e-01 6.77909255e-02 -3.89704585e-01 1.84328765e-01 -7.77896702e-01 3.66547257e-01 2.23830998e-01 -3.26987752e-03 5.60586512e-01 8.79867733e-01 3.66083652e-01 -8.00649285e-01 -1.02795124e+00 3.13586920e-01 -1.26936272e-01 -4.92067903e-01 -2.30443850e-01 6.63989484e-02 5.27283430e-01 -2.63521045e-01 1.99102357e-01 5.33278704e-01 4.14612621e-01 -5.50609767e-01 9.41556096e-01 8.29014599e-01 2.09227294e-01 -7.43668318e-01 7.39165366e-01 7.35449851e-01 -9.92767394e-01 -3.03184092e-01 -3.73161316e-01 -1.85171872e-01 6.03948534e-03 3.12254876e-01 -1.16353393e+00 2.06529155e-01 6.96012497e-01 5.58715224e-01 -5.75165391e-01 1.11075342e+00 -8.56933534e-01 3.60722870e-01 -2.30251625e-01 -1.75114363e-01 1.78035155e-01 -5.43683350e-01 7.66460061e-01 5.69193959e-01 3.30335438e-01 1.76453739e-01 5.25665164e-01 9.89831269e-01 2.79584765e-01 -4.64434288e-02 -7.41074562e-01 -6.36649951e-02 6.95802033e-01 8.16935420e-01 -8.49330962e-01 -1.51102409e-01 -2.40642130e-02 7.58875072e-01 6.58719242e-01 7.33963311e-01 -8.13273966e-01 -2.38838717e-01 3.28520209e-01 -1.24990031e-01 5.74633777e-01 -8.81478712e-02 -4.25266236e-01 -5.22475004e-01 8.85145292e-02 -4.50951904e-01 1.31694824e-01 -1.03893256e+00 -8.23813200e-01 3.06799054e-01 1.90085337e-01 -1.03978264e+00 4.17514630e-02 -3.29301298e-01 -7.46533096e-01 9.63340580e-01 -1.07092750e+00 -6.76071227e-01 -2.58113682e-01 1.01230808e-01 2.29978994e-01 1.84636638e-02 4.17972833e-01 -3.43483016e-02 -7.67150581e-01 1.54064000e-01 -8.91937315e-02 -2.78965414e-01 7.04710901e-01 -1.20763373e+00 -1.55028328e-01 8.68474901e-01 -4.51198071e-01 8.13039839e-01 1.19768953e+00 -1.24032319e+00 -1.17307246e+00 -7.64104068e-01 5.19399464e-01 -2.42503330e-01 4.51261342e-01 -2.68300921e-01 -9.61964011e-01 7.79779136e-01 1.02113904e-02 -3.67187351e-01 3.36064488e-01 3.04900467e-01 -2.05512196e-01 -1.36650470e-03 -9.34944928e-01 9.79724765e-01 1.16391540e+00 -2.16705818e-02 -6.43649459e-01 -4.03394876e-03 8.37711751e-01 -4.48126912e-01 -3.86551142e-01 3.57088804e-01 4.59004343e-01 -6.90359294e-01 6.90178275e-01 -4.61535245e-01 4.90799338e-01 -6.03287160e-01 -7.02396929e-02 -1.80416512e+00 -5.91526091e-01 2.02267811e-01 1.29725367e-01 1.19102407e+00 4.73032713e-01 -3.86811197e-01 3.62140059e-01 6.08513653e-01 -2.91852385e-01 -7.47479737e-01 -5.86307585e-01 -3.96661967e-01 -4.21585500e-01 -1.26679927e-01 4.65425998e-01 7.44109690e-01 -5.86939380e-02 4.39143449e-01 -3.69434983e-01 7.85658300e-01 3.99196446e-01 -8.75006169e-02 7.12165773e-01 -9.45508957e-01 -3.14523041e-01 -5.14259972e-02 -1.49014518e-01 -1.26792812e+00 1.09499022e-01 -4.54049766e-01 6.24876678e-01 -1.84081697e+00 2.82432526e-01 -5.49273372e-01 -3.83431554e-01 5.43137610e-01 -5.58435678e-01 -5.84200799e-01 6.55261055e-02 9.13913827e-03 -7.11853802e-01 8.27883184e-01 1.66751754e+00 5.52314483e-02 -7.43604064e-01 -1.83822453e-01 -5.99430144e-01 9.19846475e-01 6.00608349e-01 -5.21360934e-01 -7.56223679e-01 -5.88631213e-01 5.23171186e-01 3.21271271e-02 2.47067124e-01 -7.07911372e-01 2.41922870e-01 -4.63010967e-01 5.61998904e-01 -5.66871285e-01 2.58654475e-01 -1.08686054e+00 -1.02050669e-01 5.41731298e-01 -6.16906404e-01 -2.73916990e-01 2.83926725e-01 1.15240550e+00 1.82649687e-01 -3.23739707e-01 4.55164522e-01 7.62226209e-02 -9.89145756e-01 9.95776355e-02 -3.95384222e-01 5.11164106e-02 8.50230396e-01 -1.05825610e-01 -3.32133114e-01 -3.59864205e-01 -6.82038188e-01 8.35736573e-01 3.48199785e-01 5.86991966e-01 7.21176863e-01 -1.26621008e+00 -2.78174669e-01 1.86703071e-01 1.83375493e-01 -9.56617743e-02 3.83524239e-01 7.56102324e-01 3.89617383e-02 1.90902889e-01 -4.05721188e-01 -4.64194566e-01 -1.10243082e+00 5.56944370e-01 3.30743402e-01 -5.92887290e-02 -5.01028061e-01 1.00042832e+00 8.86213839e-01 -2.46411175e-01 5.02565444e-01 -1.44400135e-01 -6.67679727e-01 -2.00268611e-01 3.92018437e-01 1.68261379e-01 -3.67473006e-01 -8.92157033e-02 -2.55811393e-01 2.03184471e-01 -1.25181571e-01 -3.12620342e-01 1.25463724e+00 -5.00031769e-01 -1.34369163e-02 7.04731762e-01 5.95245540e-01 -1.03616133e-01 -1.98644412e+00 -1.05307393e-01 -1.61368623e-01 -7.60846913e-01 3.68124187e-01 -1.06636095e+00 -8.63004088e-01 5.80943882e-01 8.11672986e-01 -3.92549112e-02 9.86472309e-01 4.71958742e-02 -1.42206009e-02 5.13744712e-01 4.49232280e-01 -1.17805958e+00 3.48070264e-01 5.83311260e-01 1.04814732e+00 -1.13871014e+00 -6.33567572e-02 -5.04409492e-01 -8.45322728e-01 5.54812908e-01 1.27464223e+00 -4.27328274e-02 5.53628922e-01 9.39565450e-02 -1.04680039e-01 -2.72420257e-01 -7.73190081e-01 -2.82295048e-01 2.52282470e-01 6.16671741e-01 1.09717324e-01 -5.24331443e-02 -3.10192704e-01 5.64695060e-01 5.68428263e-02 -1.85534790e-01 1.69503674e-01 1.02902055e+00 -8.16650569e-01 -6.29872978e-01 -3.59301805e-01 1.25125617e-01 2.12739944e-01 5.58701158e-02 -4.37894195e-01 7.49487340e-01 5.28448582e-01 7.15676367e-01 1.98252752e-01 -4.43319201e-01 4.24978882e-01 -3.28235924e-02 4.36132550e-01 -5.52663863e-01 -1.43551141e-01 2.56254554e-01 1.14604518e-01 -4.92821842e-01 -9.84794199e-02 -5.31395078e-01 -1.46673441e+00 2.22103357e-01 -6.29620552e-01 1.39380038e-01 5.07914007e-01 1.08656704e+00 1.30756438e-01 7.97288656e-01 4.41402346e-01 -5.93615830e-01 -2.53522813e-01 -1.01148880e+00 -6.60089850e-01 2.29659811e-01 7.43385926e-02 -1.09440911e+00 -4.90483314e-01 -1.91784099e-01]
[4.497059345245361, 0.5689058899879456]
70f0bd37-cbd9-4b75-9e70-695dc6b38f88
sar-image-despeckling-based-on-nonlocal
1611.07559
null
http://arxiv.org/abs/1611.07559v1
http://arxiv.org/pdf/1611.07559v1.pdf
Sar image despeckling based on nonlocal similarity sparse decomposition
This letter presents a method of synthetic aperture radar (SAR) image despeckling aimed to preserve the detail information while suppressing speckle noise. This method combines the nonlocal self-similarity partition and a proposed modified sparse decomposition. The nonlocal partition method groups a series of structure-similarity data sets. Each data set has a good sparsity for learning an over-complete dictionary in sparse representation. In the sparse decomposition, we propose a novel method to identify principal atoms from over-complete dictionary to form a principal dictionary. Despeckling is performed on each data set over the principal dictionary with principal atoms. Experimental results demonstrate that the proposed method can achieve high performances in terms of both speckle noise reduction and structure details preservation.
['Cheng-Wei Sang', 'Quisong Xia', 'Hong Sun']
2016-11-22
null
null
null
null
['sar-image-despeckling']
['computer-vision']
[ 5.47652125e-01 -6.93964124e-01 2.04190388e-01 -2.39900693e-01 -8.27762008e-01 -2.86234111e-01 3.88741612e-01 -2.94380546e-01 -9.41965953e-02 4.31962490e-01 6.82842553e-01 2.76711702e-01 -5.09957135e-01 -7.62275815e-01 -2.08268300e-01 -1.13712931e+00 7.82159567e-02 2.14976341e-01 -3.88314319e-03 -1.78301066e-01 2.86942899e-01 6.70369148e-01 -1.48079658e+00 4.30352688e-01 8.97407413e-01 8.35680068e-01 5.39202392e-01 2.52159446e-01 4.50117737e-02 7.22024858e-01 -3.52025896e-01 3.62654805e-01 7.43149221e-01 -6.65342510e-01 -1.99152514e-01 5.60344934e-01 5.52223444e-01 3.44248712e-02 -3.31636429e-01 1.51912391e+00 5.57167649e-01 2.37998173e-01 5.65047383e-01 -3.68009657e-01 -4.83518064e-01 3.56203496e-01 -8.99591684e-01 6.17324531e-01 7.81331956e-02 -2.19124585e-01 6.21917427e-01 -1.13310683e+00 5.68923056e-01 1.19998407e+00 6.60088301e-01 -1.32061755e-02 -1.15379870e+00 -4.69667077e-01 -2.70121753e-01 2.25519583e-01 -1.59023499e+00 -7.49053657e-01 1.13167334e+00 -4.33593512e-01 3.87959480e-01 5.86770058e-01 6.37472987e-01 1.90276682e-01 3.49754304e-01 3.50748539e-01 1.55504882e+00 -4.23930466e-01 1.23810083e-01 -3.83567184e-01 5.16041517e-01 5.71403623e-01 6.38163447e-01 2.62464970e-01 -4.55533653e-01 -4.77938533e-01 7.87272453e-01 3.38387638e-01 -4.74800467e-01 -4.23016191e-01 -1.34952259e+00 8.68301511e-01 2.14829609e-01 7.37089574e-01 -6.69698596e-01 -4.05588567e-01 5.49440198e-02 4.89495605e-01 1.48101538e-01 2.23852709e-01 1.09587908e-01 6.17574811e-01 -1.25032449e+00 4.23846617e-02 5.78257859e-01 6.27734005e-01 1.07302761e+00 6.50314987e-01 -1.21138968e-01 8.18375647e-01 3.00064445e-01 1.20538807e+00 6.35708570e-01 -9.01219070e-01 1.01686396e-01 4.01567250e-01 -2.28246916e-02 -1.62253571e+00 -1.93392754e-01 -7.97834635e-01 -1.46955025e+00 1.91608131e-01 -1.30689457e-01 7.12129548e-02 -8.19815397e-01 1.10481584e+00 1.36904106e-01 4.19233173e-01 5.98145306e-01 1.21847510e+00 1.05704904e+00 1.02076209e+00 -3.56714338e-01 -7.93338776e-01 1.32983983e+00 -6.37807310e-01 -8.98652196e-01 -2.34460726e-01 -2.94036996e-02 -1.15904403e+00 2.90093303e-01 4.97147232e-01 -9.44640875e-01 -7.34974802e-01 -1.14452875e+00 4.12396967e-01 5.86236537e-01 3.72499675e-01 3.16553622e-01 3.08555126e-01 -6.35917783e-01 3.10410917e-01 -6.39746070e-01 -1.10009432e-01 1.18495546e-01 8.84944499e-02 -4.21764016e-01 -4.73420024e-01 -8.43426049e-01 6.13668144e-01 2.98949450e-01 1.47721320e-01 -9.10171926e-01 -4.72620487e-01 -8.69999766e-01 6.89050257e-02 -7.08424821e-02 -5.99658012e-01 4.05813962e-01 -8.63515735e-01 -9.32163894e-01 8.18475664e-01 -3.89356464e-01 -3.75317574e-01 -3.09574038e-01 8.30591470e-02 -8.26814532e-01 3.91444802e-01 2.66935825e-01 -2.66672879e-01 1.45838249e+00 -1.48541379e+00 -4.29676533e-01 -5.28341830e-01 -7.44323492e-01 3.73417258e-01 -1.41877279e-01 -1.50228813e-01 5.95940351e-02 -1.07622290e+00 1.01547325e+00 -5.33290565e-01 -5.68894804e-01 -5.95435858e-01 -1.55180395e-02 6.12773478e-01 1.15849066e+00 -7.80542254e-01 1.26532125e+00 -2.29995704e+00 2.71749914e-01 5.65874815e-01 1.78963393e-01 2.85560548e-01 -3.11664581e-01 5.30449092e-01 -3.39245290e-01 -6.05900049e-01 -6.18287504e-01 3.10038507e-01 -7.46592224e-01 8.62163976e-02 -4.71929014e-01 6.47421658e-01 -3.51775289e-01 3.41137618e-01 -7.09182918e-01 -3.15455556e-01 1.71499044e-01 4.92172867e-01 -2.42879763e-01 1.11866660e-01 3.48273963e-01 6.66540146e-01 -6.53446615e-01 8.62913072e-01 1.24239182e+00 1.85406934e-02 2.10146606e-01 -7.98216343e-01 -3.15064758e-01 -4.13433969e-01 -1.62767112e+00 1.46528351e+00 -2.13591143e-01 1.72328442e-01 6.37061715e-01 -1.32683837e+00 1.60941637e+00 9.20963809e-02 7.03366280e-01 -5.67178488e-01 9.10198018e-02 3.30209523e-01 -1.29478589e-01 -5.29994786e-01 2.21052915e-01 -7.01595962e-01 2.61502624e-01 3.15676510e-01 -2.31848344e-01 -1.31853372e-01 2.40445957e-02 -6.12080246e-02 1.01172614e+00 -6.66823626e-01 6.83006525e-01 -8.85988116e-01 1.09817767e+00 3.22396815e-01 8.95576239e-01 5.98368108e-01 1.35057271e-01 5.94071567e-01 -3.83918822e-01 -7.54730582e-01 -1.02225149e+00 -9.21209633e-01 -2.12067708e-01 4.86272812e-01 3.26919943e-01 -1.16007857e-01 -3.37256968e-01 -1.30280048e-01 -1.26868427e-01 2.80525923e-01 -1.53796509e-01 -5.26157022e-02 -8.35899472e-01 -9.53665972e-01 4.87623960e-02 -1.67504519e-01 9.37363923e-01 -6.98354125e-01 -3.23971242e-01 1.58256128e-01 -1.74343482e-01 -7.69522905e-01 -4.89016324e-01 -8.67344514e-02 -1.25470161e+00 -1.03370488e+00 -6.87113822e-01 -1.36351717e+00 9.44549799e-01 1.17292154e+00 7.28895485e-01 -2.73945481e-02 -2.34298065e-01 2.34191492e-01 -5.40846825e-01 8.02422166e-02 -3.84558558e-01 -6.05567694e-01 2.21514672e-01 6.05573535e-01 4.29791868e-01 -9.48178411e-01 -4.36095119e-01 2.46748179e-01 -9.94148016e-01 -2.68156171e-01 1.00920928e+00 1.00217807e+00 1.11349511e+00 7.70520568e-01 1.78532407e-01 -7.40918100e-01 5.10762572e-01 -3.61770779e-01 -6.99288607e-01 4.85961661e-02 -3.43723208e-01 -1.33757656e-02 6.83933914e-01 -3.35214846e-02 -1.18189251e+00 3.85615855e-01 1.87921301e-01 -5.63571632e-01 -5.85295912e-03 8.34299743e-01 -1.31801724e-01 -6.12930715e-01 7.32854843e-01 1.06820846e+00 4.95623112e-01 -8.13813031e-01 -3.26742083e-02 4.92493004e-01 7.60566473e-01 -3.66610557e-01 1.17847013e+00 7.96027601e-01 2.79155016e-01 -1.27931297e+00 -9.32231486e-01 -9.40518498e-01 -5.93913019e-01 6.41607493e-02 4.30958956e-01 -1.28422856e+00 -1.46320745e-01 2.91586787e-01 -7.58099198e-01 5.43696642e-01 -4.81701523e-01 8.18389416e-01 -4.33017373e-01 1.03591096e+00 -2.22321033e-01 -5.68768919e-01 -5.32723069e-01 -8.14019501e-01 6.56280756e-01 4.75631543e-02 3.47279489e-01 -7.01775253e-01 2.57819384e-01 4.84700620e-01 3.93332630e-01 2.10695684e-01 6.56191409e-01 -4.11603034e-01 -5.68876922e-01 -1.40620023e-01 -1.15884982e-01 5.49898326e-01 3.20438355e-01 -8.61226857e-01 -3.52203190e-01 -8.76671135e-01 1.13471901e+00 5.23330532e-02 1.17603827e+00 5.93666434e-01 6.49366379e-01 -4.84111995e-01 -2.91386992e-01 9.16554213e-01 1.88636124e+00 3.77441078e-01 7.17303753e-01 2.88288593e-01 5.58527231e-01 3.46513420e-01 7.34202564e-01 7.14859486e-01 -3.30229402e-01 2.68664002e-01 8.09184015e-02 -8.83559138e-02 -2.48021767e-01 1.58368513e-01 1.90963924e-01 1.33363056e+00 -3.23648714e-02 2.36343175e-01 -8.09780657e-01 7.11668015e-01 -1.63692820e+00 -1.47294331e+00 -4.49299812e-01 1.93364382e+00 5.80921888e-01 -3.17525059e-01 -3.63324076e-01 2.42746800e-01 9.49135900e-01 6.93042219e-01 -2.28772104e-01 1.41123399e-01 -7.44295537e-01 1.87079832e-01 5.41655302e-01 9.23865318e-01 -1.05880594e+00 6.44678116e-01 6.55058718e+00 1.01690972e+00 -9.45597410e-01 3.43267731e-02 3.08067668e-02 4.97653753e-01 -4.90313947e-01 2.23750427e-01 -7.76292324e-01 3.17599654e-01 2.83814907e-01 -2.81712681e-01 3.50368083e-01 6.08148336e-01 3.91244352e-01 -1.95816040e-01 -2.26483181e-01 1.40866649e+00 5.16658545e-01 -1.58004248e+00 7.50130892e-01 -2.03270882e-01 1.05747640e+00 -2.40114853e-01 -4.96200658e-02 -3.76594394e-01 1.05164640e-01 -7.78956175e-01 1.58112288e-01 9.60701406e-01 6.18946016e-01 -6.89535856e-01 6.99391723e-01 5.40584862e-01 -1.29967153e+00 -2.02708900e-01 -8.24767232e-01 -1.59421846e-01 1.50930882e-01 1.29770660e+00 -2.19755545e-01 7.32027173e-01 3.41536582e-01 1.15372026e+00 -1.12456135e-01 1.10756350e+00 1.36619091e-01 5.61181903e-01 -2.07865700e-01 5.22877395e-01 2.56798089e-01 -9.06220734e-01 1.27670336e+00 9.89326239e-01 7.48739123e-01 9.41474676e-01 6.31340325e-01 4.70958710e-01 5.30631185e-01 1.83938801e-01 -6.59808040e-01 1.08989313e-01 5.46327472e-01 1.12392676e+00 -4.92816031e-01 -2.20287263e-01 -3.66813660e-01 6.89070404e-01 -5.45155585e-01 2.38733292e-01 1.36472499e-02 -2.14060172e-01 5.13116419e-01 2.49602050e-01 6.34116292e-01 -4.36039954e-01 -4.47025418e-01 -1.28085852e+00 -1.58010721e-01 -1.30575800e+00 4.64747310e-01 -5.75260401e-01 -1.43537712e+00 7.69802332e-01 -1.01008810e-01 -1.76736259e+00 3.11930209e-01 -2.06640854e-01 -5.46828032e-01 9.87911522e-01 -1.60217237e+00 -1.10568202e+00 -4.58864748e-01 1.10616171e+00 5.14965773e-01 -9.93741870e-01 7.72706687e-01 7.06257075e-02 -5.65155596e-02 -1.51176587e-01 6.90669477e-01 -8.29852670e-02 3.78763199e-01 -5.26087046e-01 -3.40238094e-01 1.13929200e+00 -3.81705910e-02 7.33587503e-01 9.20348287e-01 -1.00891542e+00 -1.45336509e+00 -9.89106715e-01 8.37997019e-01 3.34883809e-01 3.53174448e-01 3.18815947e-01 -7.99110651e-01 4.51330036e-01 1.59176528e-01 3.40313017e-02 8.40489626e-01 -2.92582095e-01 -2.39720270e-01 -5.22841990e-01 -1.21655035e+00 1.89991668e-02 6.06743813e-01 -2.09779084e-01 -1.15653598e+00 4.65245515e-01 1.19015589e-01 -1.52358234e-01 -8.48238647e-01 6.51792407e-01 1.66197211e-01 -9.55044866e-01 1.19737339e+00 -4.55523692e-02 7.73854554e-02 -9.39710736e-01 -6.40677512e-01 -1.18926609e+00 -1.20476866e+00 -7.31879115e-01 1.36740461e-01 8.83171976e-01 -2.13741228e-01 -3.60602647e-01 8.28582764e-01 -4.87922341e-01 -5.28384894e-02 -2.39696026e-01 -8.51996005e-01 -9.54291046e-01 -4.69145417e-01 2.89728642e-01 4.42901969e-01 1.15895641e+00 -4.78480935e-01 4.84741002e-01 -7.96248376e-01 6.24218285e-01 1.27690494e+00 7.98786283e-01 3.76589149e-01 -1.52355492e+00 -1.37803972e-01 1.00626826e-01 -5.10490716e-01 -1.08228660e+00 6.20174557e-02 -9.21366572e-01 -1.53149724e-01 -1.53596377e+00 4.87220138e-01 -4.29205090e-01 -2.33323410e-01 8.16918984e-02 1.28282279e-01 3.66422921e-01 1.34767458e-01 1.07167006e+00 -2.87014276e-01 6.10562682e-01 1.37110984e+00 -3.70732635e-01 -2.13652030e-01 1.95507612e-02 -7.25024045e-01 7.05311239e-01 6.76551282e-01 -5.22208452e-01 -2.80316591e-01 -5.44220209e-01 -2.58202523e-01 4.06698406e-01 1.93681136e-01 -1.46706772e+00 3.83091658e-01 -3.10672164e-01 2.73023725e-01 -8.04782033e-01 1.56245559e-01 -1.11852729e+00 6.23058736e-01 7.16207206e-01 1.11131109e-01 -2.31078893e-01 -9.10433829e-02 7.69082427e-01 -7.75774419e-01 -3.60387236e-01 1.20512390e+00 -3.54137480e-01 -1.04734719e+00 1.33033410e-01 -4.27513480e-01 -1.67318583e-01 8.37949991e-01 -5.26114762e-01 -1.84660964e-02 -2.50522971e-01 -1.14798987e+00 -1.42600030e-01 3.23879898e-01 -1.80490062e-01 1.00583923e+00 -1.56118298e+00 -1.23739696e+00 8.49143445e-01 -1.07196914e-02 -3.93360078e-01 7.47313619e-01 6.62056386e-01 -7.15054810e-01 2.58254737e-01 -7.21106827e-01 -6.13231301e-01 -1.43640661e+00 5.31197786e-01 2.32692137e-01 -3.36464554e-01 -8.39153588e-01 6.33861959e-01 2.23290235e-01 -1.51621206e-02 -3.00849319e-01 2.89474487e-01 -5.31548083e-01 2.62507461e-02 8.59876215e-01 3.84061188e-01 -4.64030690e-02 -1.16270447e+00 -2.56635815e-01 1.25843108e+00 1.05624169e-01 5.60026914e-02 1.64396369e+00 -3.10137033e-01 -8.43795240e-01 -3.76630994e-03 1.10195017e+00 5.35523653e-01 -7.91999280e-01 -6.84035420e-01 -3.55560899e-01 -8.03846538e-01 4.26134735e-01 -5.47282338e-01 -1.19681799e+00 4.05919969e-01 6.72171175e-01 2.15302464e-02 1.63064766e+00 -3.81731182e-01 9.58371401e-01 6.50123358e-01 3.59544396e-01 -6.73493922e-01 -8.91622007e-02 6.63068831e-01 1.12438798e+00 -1.03372645e+00 5.17722487e-01 -6.46218538e-01 -4.66313094e-01 1.07811117e+00 7.96332303e-03 -7.74540722e-01 1.00873709e+00 2.45457008e-01 7.88482726e-02 -5.80390513e-01 -2.39858359e-01 -3.34409654e-01 3.00753862e-01 7.81215370e-01 -7.06151053e-02 -7.75256157e-02 -8.21775973e-01 6.32032931e-01 -7.37386122e-02 -2.20446631e-01 4.18724805e-01 8.32182646e-01 -1.22240591e+00 -9.63329732e-01 -1.11741042e+00 4.54200417e-01 -1.50647819e-01 -1.85514763e-01 9.59210936e-03 2.10253701e-01 1.03322819e-01 9.22287226e-01 -9.34047401e-02 -4.63583678e-01 3.95332485e-01 -3.22742790e-01 2.27733195e-01 -5.95751941e-01 -2.46964991e-01 6.22755766e-01 -1.69767797e-01 -3.03417087e-01 -7.65979052e-01 -7.64019251e-01 -9.11798060e-01 -1.28218085e-01 6.07702211e-02 5.99938393e-01 9.83864218e-02 5.76456070e-01 2.45393783e-01 1.03394523e-01 9.86588061e-01 -6.11028671e-01 -5.83148658e-01 -6.18382454e-01 -1.31791961e+00 3.75189185e-01 4.93583679e-01 -3.50765705e-01 -6.09688878e-01 4.26984519e-01]
[10.442651748657227, -2.004106044769287]
48040ebf-da3b-411f-b6b2-c5c940512dde
galois-boosting-deep-reinforcement-learning
2205.13728
null
https://arxiv.org/abs/2205.13728v1
https://arxiv.org/pdf/2205.13728v1.pdf
GALOIS: Boosting Deep Reinforcement Learning via Generalizable Logic Synthesis
Despite achieving superior performance in human-level control problems, unlike humans, deep reinforcement learning (DRL) lacks high-order intelligence (e.g., logic deduction and reuse), thus it behaves ineffectively than humans regarding learning and generalization in complex problems. Previous works attempt to directly synthesize a white-box logic program as the DRL policy, manifesting logic-driven behaviors. However, most synthesis methods are built on imperative or declarative programming, and each has a distinct limitation, respectively. The former ignores the cause-effect logic during synthesis, resulting in low generalizability across tasks. The latter is strictly proof-based, thus failing to synthesize programs with complex hierarchical logic. In this paper, we combine the above two paradigms together and propose a novel Generalizable Logic Synthesis (GALOIS) framework to synthesize hierarchical and strict cause-effect logic programs. GALOIS leverages the program sketch and defines a new sketch-based hybrid program language for guiding the synthesis. Based on that, GALOIS proposes a sketch-based program synthesis method to automatically generate white-box programs with generalizable and interpretable cause-effect logic. Extensive evaluations on various decision-making tasks with complex logic demonstrate the superiority of GALOIS over mainstream baselines regarding the asymptotic performance, generalizability, and great knowledge reusability across different environments.
['Yang Liu', 'Jianye Hao', 'Yi Li', 'Yan Zheng', 'Hao Zhang', 'Tianpei Yang', 'Zhiming Li', 'Yushi Cao']
2022-05-27
null
null
null
null
['program-synthesis']
['computer-code']
[-7.14714304e-02 2.99537599e-01 -5.60268879e-01 -2.88875937e-01 -3.31660032e-01 -7.14806795e-01 5.40850639e-01 3.57301198e-02 1.76209718e-01 7.08486378e-01 2.60366332e-02 -9.15585637e-01 -2.74319470e-01 -1.22525918e+00 -1.10826683e+00 -1.10692978e-01 6.78578541e-02 1.68456078e-01 3.34974885e-01 -4.45187598e-01 5.61021194e-02 1.44097626e-01 -1.48086929e+00 5.27251244e-01 1.44515312e+00 7.39262819e-01 -1.14796728e-01 4.84501123e-01 2.51186341e-02 1.51426923e+00 -2.82781571e-01 -4.55778301e-01 1.65779173e-01 -3.64566952e-01 -7.53283679e-01 -3.82716894e-01 7.19704330e-01 -6.97384953e-01 -3.54054302e-01 1.11068261e+00 4.35702922e-03 -1.18864119e-01 3.12532902e-01 -1.56059694e+00 -1.01607895e+00 1.14159012e+00 3.23914066e-02 -4.51920956e-01 4.63827282e-01 8.20921302e-01 1.55955708e+00 -4.19551790e-01 4.22937840e-01 1.73145902e+00 7.39731312e-01 8.28936517e-01 -1.59743762e+00 -5.58848023e-01 3.94807965e-01 3.22292261e-02 -1.06131470e+00 -2.12630317e-01 6.44953012e-01 -5.42155921e-01 1.15672874e+00 1.45654753e-01 8.36926281e-01 1.06121051e+00 4.46681827e-01 1.10363925e+00 1.44950187e+00 -3.77251685e-01 5.63705206e-01 1.07887395e-01 3.31249952e-01 1.21345520e+00 6.23023629e-01 4.92761642e-01 -5.90352952e-01 -1.15226395e-01 7.08533168e-01 -1.45264655e-01 -6.89506158e-02 -5.63666582e-01 -1.16959345e+00 8.05946350e-01 4.36955512e-01 -9.95773077e-02 -3.81074026e-02 7.30064154e-01 6.31132126e-01 5.69448948e-01 -3.23501348e-01 9.85040009e-01 -3.49430174e-01 1.63935423e-02 -6.18229985e-01 9.24612701e-01 1.14136517e+00 1.11695230e+00 6.95559740e-01 3.82713377e-01 -6.57747269e-01 2.51038045e-01 4.33273762e-01 7.23789334e-01 4.24995124e-02 -1.23734498e+00 3.36840570e-01 1.03457141e+00 -1.09265447e-01 -1.06137538e+00 -2.33632997e-01 -2.66946375e-01 -5.41474164e-01 4.53235269e-01 2.04186618e-01 -2.59801179e-01 -5.18695235e-01 2.00448489e+00 -1.14563882e-01 -3.62606227e-01 2.86954910e-01 6.34372592e-01 7.09772050e-01 6.24766827e-01 1.47487596e-01 1.93717584e-01 1.39098656e+00 -1.02399552e+00 -6.89101279e-01 -5.41812301e-01 5.04816532e-01 2.97373980e-01 1.57074261e+00 6.56443000e-01 -1.11652625e+00 -3.91688228e-01 -1.32756341e+00 -9.64825004e-02 -2.42005423e-01 -6.55523241e-02 1.24601746e+00 6.66355073e-01 -1.20805490e+00 4.16174889e-01 -5.87568402e-01 6.80263266e-02 5.62832177e-01 2.56032109e-01 8.58817622e-02 7.64413625e-02 -1.28394830e+00 7.54339159e-01 7.91782916e-01 -2.11647302e-01 -1.24326968e+00 -1.08553338e+00 -1.13446343e+00 2.67573297e-01 8.02524269e-01 -9.62227345e-01 1.73852170e+00 -1.00270927e+00 -1.79603422e+00 4.15830791e-01 2.55819738e-01 -7.42966950e-01 5.87733030e-01 -1.59600541e-01 -7.12411925e-02 -6.44580126e-02 -1.97831199e-01 8.23866069e-01 8.15724969e-01 -1.27892900e+00 -6.17918611e-01 4.45253663e-02 9.12399530e-01 -7.27705583e-02 -3.88276167e-02 -5.12296855e-01 -7.60618299e-02 -5.82946122e-01 -4.34545547e-01 -8.83238614e-01 7.47076236e-03 -2.83789132e-02 -2.59775251e-01 -5.19196570e-01 5.74258804e-01 -2.72450328e-01 1.47209740e+00 -2.09128523e+00 1.63635835e-01 2.00259313e-01 5.35206795e-01 1.11813463e-01 -6.67982250e-02 3.42979252e-01 2.34112293e-01 2.29981244e-01 -1.85749203e-01 4.32054251e-01 7.91404068e-01 3.37584972e-01 -7.89796948e-01 -1.18237257e-01 4.32139099e-01 1.49084318e+00 -1.31951404e+00 -4.58245635e-01 3.66180055e-02 -3.08920503e-01 -1.33311141e+00 1.61596492e-01 -1.21278429e+00 -1.09945998e-01 -4.76279765e-01 7.73140430e-01 2.33124092e-01 -1.93509907e-01 6.16976917e-01 -7.46557191e-02 1.70517325e-01 4.02221859e-01 -9.75064158e-01 1.47254586e+00 -6.41941965e-01 5.39394021e-01 -1.03638090e-01 -5.56264758e-01 7.47466385e-01 1.88645020e-01 -1.58849090e-01 -6.65864050e-01 -2.13494971e-01 2.56658018e-01 2.36474633e-01 -5.25978923e-01 2.43425742e-01 -1.76773474e-01 -3.40159178e-01 4.69220281e-01 -4.32971977e-02 -7.59531975e-01 5.03684998e-01 1.93744510e-01 1.24379349e+00 4.95947987e-01 4.41826880e-01 -4.64835852e-01 5.05693972e-01 1.80645391e-01 6.69073820e-01 1.21575499e+00 -1.51654541e-01 -2.00547248e-01 1.18367648e+00 -5.92617393e-01 -7.56494522e-01 -1.13697076e+00 2.33605415e-01 1.32153440e+00 -3.56418006e-02 -7.84010231e-01 -7.89695084e-01 -8.36454034e-01 3.68522972e-01 1.08495688e+00 -3.69701624e-01 -5.42778432e-01 -6.11581564e-01 -1.34202540e-01 1.03827977e+00 5.78100204e-01 7.84298778e-01 -1.33903861e+00 -8.88383985e-01 1.07266784e-01 8.54782313e-02 -8.34253550e-01 -1.08739786e-01 1.10003084e-01 -8.42234313e-01 -9.97434676e-01 3.06849211e-01 -5.93212306e-01 4.71113622e-01 -2.10555241e-01 1.36500621e+00 1.43296421e-01 8.61084387e-02 5.28791070e-01 -4.81752008e-02 -4.87149537e-01 -7.44584739e-01 -1.41077697e-01 3.69001739e-02 -4.77059335e-01 2.49183774e-01 -4.33616400e-01 -1.65368021e-01 -1.45711005e-01 -1.01362658e+00 3.35655034e-01 8.02623332e-01 9.06585991e-01 1.69996843e-01 3.24648172e-01 6.66743815e-01 -9.74098325e-01 1.06302249e+00 2.38647265e-03 -1.01142836e+00 5.05780220e-01 -9.56908822e-01 4.71806824e-01 1.09359539e+00 -3.52103859e-01 -1.01898575e+00 -1.63100377e-01 2.48960212e-01 -2.37665907e-01 -8.93270597e-03 5.62117755e-01 -2.72683620e-01 -5.38740158e-02 8.99855077e-01 3.71792018e-01 4.21506353e-02 1.58266723e-01 6.26124978e-01 1.78558424e-01 5.09738266e-01 -1.49488616e+00 8.41075897e-01 -4.15064208e-02 1.01653039e-02 -1.96730152e-01 -7.66840696e-01 5.83581448e-01 -4.25569154e-02 6.98352531e-02 5.60562670e-01 -8.67454708e-01 -1.37571371e+00 2.86337048e-01 -9.89115477e-01 -9.87668872e-01 -4.16053623e-01 -4.98581640e-02 -8.42912376e-01 5.52024841e-02 -7.53885746e-01 -6.86713934e-01 -3.23850721e-01 -1.53413761e+00 8.85145307e-01 -1.64092761e-02 -4.54007387e-01 -9.40655470e-01 -7.46031106e-02 3.62962671e-03 4.02018547e-01 1.89522326e-01 1.79814351e+00 -2.89547503e-01 -8.51455986e-01 1.38646349e-01 -1.97358966e-01 5.65183043e-01 -1.46030754e-01 1.38986275e-01 -7.35026538e-01 -4.98865210e-02 -3.60083580e-01 -7.39662468e-01 4.92064983e-01 1.32677510e-01 1.27929366e+00 -8.84052336e-01 1.05927482e-01 5.00270605e-01 1.29410100e+00 2.10996404e-01 4.85823572e-01 3.31126511e-01 5.55653155e-01 4.01273012e-01 3.58455092e-01 3.14789742e-01 7.36348867e-01 3.93558621e-01 3.27135146e-01 3.13818574e-01 -5.48620820e-02 -8.36457133e-01 8.67689431e-01 2.15563506e-01 2.25070909e-01 2.34940141e-01 -1.18435609e+00 2.84886837e-01 -2.08800340e+00 -1.02676773e+00 1.41640648e-01 1.73359108e+00 1.53452945e+00 3.41372520e-01 6.34441078e-02 -7.16912597e-02 8.98571312e-02 6.33191466e-02 -7.11835325e-01 -6.26990139e-01 9.14557204e-02 2.71528125e-01 2.75250763e-01 6.11311197e-01 -8.29800665e-01 1.27154315e+00 6.87329721e+00 8.56170237e-01 -1.18090069e+00 -2.89160043e-01 1.50962025e-01 1.45736575e-01 -7.16131330e-01 1.82591245e-01 -7.12329805e-01 7.89259449e-02 6.36195183e-01 -3.86266321e-01 1.00161791e+00 1.12221265e+00 6.94984803e-04 2.34870650e-02 -1.75069535e+00 6.90888226e-01 -3.40130150e-01 -1.59799421e+00 5.35883307e-01 -3.33675712e-01 7.53442049e-01 -5.17424166e-01 1.92505047e-01 1.00386536e+00 7.53463268e-01 -1.20520747e+00 1.27747202e+00 4.11205232e-01 6.36508763e-01 -6.09337151e-01 2.37892717e-01 3.84359777e-01 -8.47008288e-01 -4.84610945e-01 1.80176727e-03 -4.70069140e-01 -5.26918709e-01 3.28576744e-01 -6.27428651e-01 3.74115407e-01 4.22822416e-01 6.86963618e-01 -8.00564349e-01 3.30095321e-01 -8.63931775e-01 7.00249851e-01 -1.23350490e-02 -3.05254936e-01 3.46159935e-01 -6.78481311e-02 3.49891216e-01 1.30657637e+00 -2.24931687e-01 -5.44588119e-02 3.88087511e-01 1.70602500e+00 -1.93398781e-02 -4.14944082e-01 -8.28700781e-01 -3.46878648e-01 4.45544958e-01 1.04739344e+00 -2.52850592e-01 -5.34353435e-01 -4.26465631e-01 2.76009649e-01 5.01486480e-01 5.50422013e-01 -9.54822063e-01 -4.50134844e-01 4.78871822e-01 -1.40518267e-02 4.85168993e-02 -2.50370830e-01 -7.52179980e-01 -1.14958644e+00 9.50220972e-02 -1.77709627e+00 2.85184652e-01 -6.43771052e-01 -1.20104408e+00 1.43167436e-01 3.86202425e-01 -7.02794552e-01 -2.34560341e-01 -9.54813480e-01 -5.03411472e-01 4.06855226e-01 -1.30248570e+00 -1.13565290e+00 -1.33814707e-01 4.19583559e-01 2.79659092e-01 -3.04194927e-01 6.68531418e-01 -1.71910182e-01 -5.02510190e-01 7.08359420e-01 -5.59563160e-01 7.99339339e-02 3.70073706e-01 -1.61885726e+00 1.26840159e-01 7.80887485e-01 -4.73306388e-01 1.19622254e+00 5.15040636e-01 -6.35427952e-01 -2.26011109e+00 -1.22619426e+00 5.02143979e-01 -5.60774803e-01 9.42480624e-01 -5.72674513e-01 -7.01937914e-01 9.89135981e-01 2.21026346e-01 -3.08273941e-01 2.10562393e-01 1.28448159e-01 -8.91267002e-01 -5.09972274e-01 -1.04396582e+00 1.22444952e+00 1.12091601e+00 -7.69797742e-01 -1.04447222e+00 2.57546276e-01 1.09673166e+00 -3.15140009e-01 -7.77259052e-01 5.52842498e-01 5.84663153e-01 -1.03251433e+00 8.96541238e-01 -6.53233111e-01 9.36795771e-01 -6.23275578e-01 -1.72460154e-01 -1.02238083e+00 -5.22059619e-01 -8.26444864e-01 -5.88499248e-01 1.03472579e+00 2.79911131e-01 -7.23649621e-01 3.85682136e-01 6.97863638e-01 -1.73062772e-01 -8.59957099e-01 -2.93069571e-01 -1.02605987e+00 3.40075105e-01 -6.24029338e-01 8.17079246e-01 6.32565796e-01 5.10433555e-01 6.40461147e-01 4.68078405e-02 1.23626355e-03 4.39880699e-01 4.65488404e-01 8.73846948e-01 -9.47897673e-01 -7.23279536e-01 -9.00547087e-01 1.39899030e-01 -9.73815918e-01 7.77602494e-01 -1.30666625e+00 2.94676095e-01 -1.39447176e+00 2.31503230e-02 -4.91401374e-01 3.46940830e-02 1.10905242e+00 -1.09658092e-01 -4.76119250e-01 3.07576299e-01 -8.26204941e-02 -7.92560875e-01 4.69065666e-01 1.27463472e+00 -4.76352841e-01 -3.05900455e-01 -3.44169706e-01 -9.98514652e-01 7.97149062e-01 6.80620551e-01 2.92021432e-03 -8.24234307e-01 -4.88481551e-01 7.98381627e-01 2.65572150e-03 6.89229906e-01 -1.10584641e+00 2.05056772e-01 -7.70554125e-01 -1.17991775e-01 -1.49854757e-02 -3.99543881e-01 -7.78783083e-01 -9.90780666e-02 8.62758696e-01 -6.78280473e-01 7.02884421e-02 4.03522611e-01 3.48886758e-01 -1.03624992e-01 -1.29524142e-01 6.83949828e-01 -1.97254375e-01 -9.92915809e-01 4.90942933e-02 -4.60177124e-01 2.31925026e-01 1.04732680e+00 1.70849070e-01 -6.00463748e-01 -1.84441209e-01 -8.85399207e-02 4.48790371e-01 5.10984778e-01 3.51996064e-01 5.64271927e-01 -1.34175527e+00 -4.99745995e-01 2.43546963e-01 3.87957573e-01 8.81463513e-02 -2.24865124e-01 7.52912045e-01 -8.20987284e-01 7.04847872e-01 -2.88709611e-01 -4.17266935e-01 -6.02546453e-01 8.38424385e-01 5.77424943e-01 -5.56473017e-01 -5.60687959e-01 3.64736021e-01 4.99273509e-01 -8.80571604e-01 2.87712127e-01 -1.02519858e+00 2.40828648e-01 -4.64013666e-01 4.52539772e-01 1.33806393e-01 -2.08034143e-01 5.54398835e-01 -3.65970224e-01 1.50367916e-01 1.96743682e-01 -8.54834542e-02 1.09490693e+00 5.49010992e-01 -5.57950139e-01 3.79143894e-01 3.80366832e-01 -8.50970298e-02 -1.27198339e+00 -2.38403440e-01 2.71783412e-01 -1.29767910e-01 -4.09641676e-02 -1.16689467e+00 -5.34864724e-01 7.05414593e-01 -1.81464925e-01 1.33715495e-01 9.93601322e-01 -3.46298844e-01 3.91307443e-01 1.11684835e+00 6.28185928e-01 -9.92276430e-01 1.66203260e-01 1.06159627e+00 9.49658334e-01 -8.94786775e-01 -4.61084619e-02 -1.72071829e-01 -6.90955997e-01 1.18666029e+00 1.06922734e+00 -2.39823580e-01 1.33358790e-02 5.29295385e-01 -4.59521323e-01 -1.10261612e-01 -1.24148703e+00 3.28356251e-02 3.27455282e-01 5.92118442e-01 4.26437020e-01 1.69640332e-01 -1.85167819e-01 7.69758284e-01 -3.75682265e-01 5.42240322e-01 3.24891210e-01 1.16016030e+00 -3.33327681e-01 -9.12290275e-01 -2.51577020e-01 2.81632751e-01 -1.11082315e-01 -2.27569699e-01 -3.48886132e-01 8.70478630e-01 1.25517696e-01 8.04043531e-01 -3.66431952e-01 -3.24539721e-01 4.03466225e-01 1.77039325e-01 8.10748637e-01 -6.80616021e-01 -8.03004265e-01 -5.35070181e-01 1.16258129e-01 -8.30099523e-01 9.06033143e-02 -1.42989859e-01 -1.43565619e+00 -6.06369674e-01 4.50579673e-01 -5.13402075e-02 6.83775172e-02 8.13230515e-01 3.57714802e-01 7.08273947e-01 9.94929969e-02 -2.70741850e-01 -1.13455474e+00 -3.14018011e-01 -2.70329863e-01 3.80501121e-01 5.15236259e-01 -4.22000140e-01 4.35878411e-02 7.62122348e-02]
[9.142034530639648, 7.198415756225586]
6997cc53-f544-42e1-be6c-976032574202
pv2tea-patching-visual-modality-to-textual
2306.01016
null
https://arxiv.org/abs/2306.01016v1
https://arxiv.org/pdf/2306.01016v1.pdf
PV2TEA: Patching Visual Modality to Textual-Established Information Extraction
Information extraction, e.g., attribute value extraction, has been extensively studied and formulated based only on text. However, many attributes can benefit from image-based extraction, like color, shape, pattern, among others. The visual modality has long been underutilized, mainly due to multimodal annotation difficulty. In this paper, we aim to patch the visual modality to the textual-established attribute information extractor. The cross-modality integration faces several unique challenges: (C1) images and textual descriptions are loosely paired intra-sample and inter-samples; (C2) images usually contain rich backgrounds that can mislead the prediction; (C3) weakly supervised labels from textual-established extractors are biased for multimodal training. We present PV2TEA, an encoder-decoder architecture equipped with three bias reduction schemes: (S1) Augmented label-smoothed contrast to improve the cross-modality alignment for loosely-paired image and text; (S2) Attention-pruning that adaptively distinguishes the visual foreground; (S3) Two-level neighborhood regularization that mitigates the label textual bias via reliability estimation. Empirical results on real-world e-Commerce datasets demonstrate up to 11.74% absolute (20.97% relatively) F1 increase over unimodal baselines.
['Xian Li', 'Carl Yang', 'Jingbo Shang', 'Chenwei Zhang', 'Nasser Zalmout', 'Rongmei Lin', 'Hejie Cui']
2023-06-01
null
null
null
null
['attribute-value-extraction']
['natural-language-processing']
[ 6.47711992e-01 4.97001968e-02 -3.79063308e-01 -6.46998107e-01 -1.32146323e+00 -7.28032887e-01 5.99733889e-01 2.07297832e-01 -4.17250752e-01 6.57599509e-01 1.69308439e-01 1.96166113e-02 1.86246842e-01 -3.79423469e-01 -7.77927816e-01 -8.83281291e-01 2.81847626e-01 3.66986901e-01 -3.82237136e-02 7.39805549e-02 1.22518949e-01 1.40674561e-01 -1.64078176e+00 7.33838737e-01 9.17636991e-01 1.63864088e+00 1.17661707e-01 4.48418081e-01 -3.07405978e-01 7.01757550e-01 -4.07789797e-01 -8.18199515e-01 2.46639065e-02 -4.15630311e-01 -7.13818491e-01 5.18254638e-01 8.02385092e-01 -3.41370046e-01 1.03881508e-01 1.22375846e+00 4.95221406e-01 -1.92626774e-01 8.12155008e-01 -1.35059762e+00 -8.51199448e-01 5.35694301e-01 -9.12513793e-01 -2.29066685e-01 9.21603143e-02 3.29797745e-01 1.17321157e+00 -1.28235030e+00 6.67704761e-01 1.23471677e+00 3.73287052e-01 4.28893089e-01 -1.47794986e+00 -5.08738816e-01 2.75898039e-01 3.17627311e-01 -1.62053430e+00 -4.98630106e-01 8.78032029e-01 -3.96032810e-01 6.67799890e-01 2.99998999e-01 4.34673429e-01 1.50122678e+00 -1.15510955e-01 1.20620215e+00 1.22472501e+00 -2.55341798e-01 -5.50913513e-02 5.66397905e-01 -1.00540183e-01 6.44578457e-01 2.22711563e-02 -1.42922148e-01 -7.59227574e-01 2.54416913e-01 4.87025857e-01 -2.88400441e-01 -1.78187266e-01 -3.17523807e-01 -1.30301869e+00 5.98479450e-01 2.59317011e-01 -5.64739527e-03 -2.76115090e-01 -5.54653332e-02 4.91724849e-01 1.40198069e-02 3.64250034e-01 1.94077536e-01 -5.04946411e-01 -3.78671056e-03 -8.05146277e-01 -1.84137195e-01 3.65250409e-01 1.34204495e+00 6.19301319e-01 1.41062036e-01 -4.20334280e-01 1.07421279e+00 4.34277296e-01 8.91573191e-01 1.81950063e-01 -7.70640969e-01 8.37348223e-01 6.30664766e-01 -9.42336470e-02 -1.01945603e+00 -3.53314847e-01 -4.03430194e-01 -1.07169890e+00 -7.35596716e-02 5.28479099e-01 6.36488423e-02 -9.33855355e-01 1.65629995e+00 1.98294744e-01 -4.73493278e-01 -4.60300557e-02 1.16815150e+00 1.15969622e+00 5.48677444e-01 4.97047186e-01 -1.83181003e-01 1.72432482e+00 -9.57744420e-01 -8.85014296e-01 -4.16521817e-01 2.29762763e-01 -8.70051086e-01 1.21539021e+00 4.49477404e-01 -1.10425866e+00 -5.80730379e-01 -1.00180542e+00 -4.27378386e-01 -4.06540960e-01 6.26777291e-01 3.54944438e-01 4.80385363e-01 -6.80027843e-01 7.66614750e-02 -3.61672342e-01 -1.56369343e-01 7.20679224e-01 3.72309327e-01 -5.37017703e-01 -1.02628604e-01 -1.04485142e+00 7.01651812e-01 4.81113434e-01 2.07730368e-01 -7.75468349e-01 -4.78273869e-01 -1.04355562e+00 -3.23981699e-03 8.36128354e-01 -5.28870821e-01 8.27415526e-01 -1.49479103e+00 -1.17926753e+00 1.20944643e+00 -2.07684532e-01 1.70193166e-01 4.51040715e-01 -1.13799587e-01 -5.11944771e-01 2.91032821e-01 1.58587888e-01 1.05748379e+00 1.14519000e+00 -1.70352554e+00 -7.41149068e-01 -4.73748356e-01 -3.02450985e-01 4.30746913e-01 -5.82308829e-01 -2.31510222e-01 -8.87414396e-01 -9.28521156e-01 1.30154043e-01 -8.63886237e-01 2.91625977e-01 1.57654256e-01 -7.63481379e-01 -6.37384281e-02 6.50500476e-01 -7.95759201e-01 1.01880515e+00 -2.25978422e+00 1.90020099e-01 7.23870322e-02 1.37695462e-01 3.00291032e-02 -3.84137660e-01 -1.00257648e-02 5.56536727e-02 1.51093647e-01 -1.95580959e-01 -4.29994822e-01 1.16444968e-01 4.49833423e-02 -1.73169345e-01 3.31418961e-01 6.36901557e-01 1.04632854e+00 -6.04082406e-01 -1.04595256e+00 1.43210098e-01 5.94038010e-01 -2.48800099e-01 1.98181942e-01 -1.39612481e-01 5.32060623e-01 -2.67924666e-01 1.20668709e+00 7.31120169e-01 -4.15024340e-01 1.88953429e-01 -9.30954218e-01 1.37121901e-01 -6.42197505e-02 -1.05962777e+00 1.55405414e+00 -2.29247212e-01 6.06395721e-01 2.61274964e-01 -7.12323427e-01 7.94592500e-01 1.43081054e-01 4.55528378e-01 -8.90775502e-01 3.41549039e-01 6.17705509e-02 -3.21829408e-01 -7.31056094e-01 5.91718495e-01 -7.80343711e-02 -1.58282325e-01 8.81602019e-02 2.20697060e-01 8.80537778e-02 1.58398271e-01 1.58779845e-01 4.09256488e-01 2.92784423e-01 1.51294887e-01 -8.80413502e-02 5.91118097e-01 -1.51704147e-01 6.71261132e-01 4.93840843e-01 -3.72287065e-01 8.57989967e-01 5.90634346e-01 -1.02758057e-01 -1.00486052e+00 -9.77935791e-01 -3.41966063e-01 1.37820816e+00 4.72549349e-01 -2.56657571e-01 -4.98071581e-01 -9.40648615e-01 -6.68382049e-02 6.30691588e-01 -5.84070206e-01 -1.09385885e-01 -2.58069247e-01 -7.36419916e-01 4.91665989e-01 8.00514519e-01 5.18580973e-01 -8.87838721e-01 -2.49916494e-01 -9.22653824e-02 -5.90612650e-01 -1.42803347e+00 -7.42064714e-01 4.02125180e-01 -5.88419259e-01 -8.07970703e-01 -7.53630757e-01 -7.11489141e-01 8.14134002e-01 8.22569206e-02 1.28133631e+00 -6.80977702e-02 3.07080727e-02 5.42211533e-01 -3.53561610e-01 -2.42233455e-01 -1.67042196e-01 4.50122207e-02 -2.59190589e-01 4.47969019e-01 6.00227237e-01 7.08467066e-02 -6.21420264e-01 4.63568926e-01 -7.74106443e-01 3.96029115e-01 9.37679052e-01 1.10892045e+00 8.95304382e-01 -2.71843910e-01 4.02321696e-01 -9.10736203e-01 1.34553656e-01 -2.74017572e-01 -4.52367276e-01 5.24435699e-01 -6.94747865e-01 3.29782031e-02 3.67496729e-01 -6.02932990e-01 -1.33963037e+00 4.02756721e-01 8.84905681e-02 -3.04370522e-01 -2.82909214e-01 3.47511977e-01 -7.23179519e-01 1.38992161e-01 2.02471837e-01 2.63810009e-01 -1.13891780e-01 -1.98441073e-01 4.83939588e-01 7.94901431e-01 6.68312192e-01 -6.42472029e-01 5.43122172e-01 3.17079097e-01 -9.67312828e-02 -7.57322133e-01 -9.22045410e-01 -2.76450604e-01 -8.08635414e-01 -4.43101466e-01 1.09217060e+00 -1.03715658e+00 -7.47626662e-01 3.60868484e-01 -1.11034191e+00 -1.14730276e-01 3.38698179e-03 3.73981625e-01 -3.20960581e-01 3.41557533e-01 -6.19046986e-01 -9.04108584e-01 -3.39404404e-01 -1.22966337e+00 1.43130708e+00 2.88196981e-01 -7.33311698e-02 -6.64373338e-01 -6.34283006e-01 9.76623833e-01 2.28594065e-01 7.42603391e-02 9.77160633e-01 -5.81315100e-01 -5.95618665e-01 3.18113863e-02 -7.32384443e-01 4.67779875e-01 -5.68883717e-02 4.01423015e-02 -1.33919144e+00 -1.21946730e-01 -3.25071961e-01 -6.37632728e-01 8.57487857e-01 2.31362268e-01 1.29878521e+00 -2.58611828e-01 -1.98916599e-01 5.93501091e-01 1.15479922e+00 1.41634479e-01 5.59226751e-01 1.66451320e-01 1.19554746e+00 9.23153698e-01 7.88368225e-01 3.81619900e-01 5.55764318e-01 7.60189772e-01 5.19399107e-01 -3.61348152e-01 -3.79931450e-01 -1.90912873e-01 4.38991159e-01 7.65957177e-01 1.79158058e-02 -2.81193852e-01 -7.00126529e-01 4.13188517e-01 -1.80556095e+00 -7.14511573e-01 -3.11199367e-01 2.03108048e+00 1.16407120e+00 4.38739620e-02 1.42773256e-01 -9.44212973e-02 8.62001181e-01 -2.17789859e-02 -7.08738267e-01 2.37789564e-02 -5.53837836e-01 -3.79495591e-01 5.67929685e-01 1.22907259e-01 -1.47037137e+00 7.51342416e-01 5.05659771e+00 1.03071010e+00 -9.88555431e-01 2.81471033e-02 1.09466875e+00 -1.57887831e-01 -3.41571808e-01 -2.96212703e-01 -9.72302139e-01 5.96169829e-01 2.91465312e-01 3.97598952e-01 2.08535597e-01 6.94178998e-01 -2.27448106e-01 -1.02297015e-01 -1.19183648e+00 1.28313935e+00 4.85087812e-01 -7.50804245e-01 2.27671057e-01 3.25684473e-02 6.83005691e-01 -4.65441167e-01 4.19465750e-01 3.89591426e-01 -1.90591633e-01 -1.04365253e+00 1.16984141e+00 3.16797614e-01 1.36130905e+00 -7.73419261e-01 7.70089030e-01 1.33823566e-02 -1.26902092e+00 -6.70551062e-02 -3.78194898e-02 6.99506938e-01 1.68709800e-01 5.54382384e-01 -5.11963308e-01 5.02799749e-01 7.90412843e-01 7.31478751e-01 -8.94007385e-01 4.67586070e-01 -3.82244349e-01 5.10028303e-01 -1.08716704e-01 7.15292394e-02 1.08768471e-01 -2.75646865e-01 3.98414731e-01 1.43309629e+00 7.24123865e-02 -4.33111414e-02 7.32372925e-02 9.65905309e-01 -1.90593228e-01 1.37516633e-01 -2.56732672e-01 -1.88880041e-01 3.94493699e-01 1.48977852e+00 -8.17033648e-01 -2.77633250e-01 -6.78010821e-01 1.03625858e+00 1.13772698e-01 5.19227207e-01 -9.57782865e-01 -2.23408952e-01 3.00301582e-01 9.87089588e-04 5.14040411e-01 1.14308037e-01 -6.82777405e-01 -1.17815852e+00 9.62402672e-02 -1.10036814e+00 5.05127430e-01 -9.21785951e-01 -1.58789420e+00 6.32341921e-01 -2.27783397e-01 -1.36107385e+00 8.68012682e-02 -7.64331520e-01 1.88656673e-01 7.21425474e-01 -1.35798931e+00 -1.64702642e+00 -4.00641799e-01 5.63356400e-01 6.52679682e-01 -1.98665172e-01 6.26769423e-01 6.53255820e-01 -7.07956970e-01 9.38937664e-01 -1.76303074e-01 3.59284908e-01 1.09968698e+00 -1.28121161e+00 -3.27517539e-01 7.69129276e-01 1.05601482e-01 3.84535044e-01 4.34772581e-01 -6.00478768e-01 -1.61304796e+00 -1.11151314e+00 8.34023654e-01 -5.34352422e-01 4.22531158e-01 -5.35237968e-01 -9.64365542e-01 4.07564849e-01 3.36827338e-01 -1.17531987e-02 7.51361072e-01 1.55966997e-01 -5.96946716e-01 -3.62336755e-01 -1.04757082e+00 6.35825157e-01 6.21681094e-01 -6.89747870e-01 -1.71866953e-01 8.09561089e-02 3.43423396e-01 -3.40572178e-01 -9.38700318e-01 4.82139170e-01 6.12011135e-01 -7.10256338e-01 1.01216686e+00 -3.18739504e-01 7.20262706e-01 -3.79545659e-01 -3.88363630e-01 -7.93937027e-01 -2.06865191e-01 -2.14909375e-01 -1.97652966e-01 1.74964631e+00 5.70894539e-01 -6.80942535e-02 4.69539642e-01 8.50908279e-01 1.33298606e-01 -7.20364690e-01 -7.76643455e-01 -5.69003761e-01 -2.59798378e-01 -4.31200981e-01 2.91979104e-01 1.00496328e+00 -1.33116618e-01 8.33999753e-01 -7.08359182e-01 1.24170212e-02 6.92819715e-01 1.52927727e-01 5.17427087e-01 -9.38616693e-01 -1.27515122e-01 -6.05669022e-01 -1.07464686e-01 -1.11234343e+00 -4.90521640e-03 -8.92547011e-01 2.60861427e-01 -1.22055650e+00 6.62873805e-01 -2.53575593e-01 -2.59491682e-01 6.38642728e-01 -3.32950830e-01 5.27081430e-01 1.82929561e-01 2.39139330e-03 -9.19482052e-01 6.93260789e-01 1.29620969e+00 -4.47706312e-01 1.60124227e-01 -2.95390695e-01 -7.93599308e-01 6.55653775e-01 4.62045997e-01 -3.53948861e-01 -3.51299405e-01 -4.07691061e-01 4.42766637e-01 5.17647602e-02 3.83509636e-01 -4.56664652e-01 3.14222127e-02 -2.63701618e-01 8.15694332e-01 -7.88041949e-01 4.24952745e-01 -1.08865571e+00 -2.51978844e-01 -4.06816043e-02 -5.42220891e-01 -1.37473881e-01 1.35458380e-01 7.05220580e-01 -2.98887521e-01 -2.07391024e-01 8.20013881e-01 2.75267720e-01 -7.70005703e-01 1.39663085e-01 -2.00743854e-01 1.75476834e-01 7.93417335e-01 -1.73647046e-01 -5.19882441e-01 -4.12192196e-01 -5.12667954e-01 3.57541025e-01 3.66669357e-01 4.97677207e-01 6.13574684e-01 -1.55724025e+00 -7.32484519e-01 1.00516520e-01 5.21391809e-01 -1.18889615e-01 3.28878492e-01 1.22408700e+00 -1.00452565e-02 3.67439277e-02 -1.16626710e-01 -8.68171751e-01 -1.53065848e+00 6.62342131e-01 -6.14465214e-02 1.00110121e-01 -4.13884372e-01 8.14657688e-01 3.29214275e-01 -9.25102606e-02 4.78110492e-01 -3.05421837e-02 -2.60417163e-01 5.84492326e-01 4.08873171e-01 2.52148062e-01 -3.43366228e-02 -1.12527454e+00 -4.67708766e-01 5.78985691e-01 -1.15237884e-01 -1.21982880e-01 1.04425895e+00 -5.06435335e-01 -2.38002073e-02 5.52869380e-01 1.23375130e+00 -2.07294837e-01 -1.42834890e+00 -3.92418474e-01 -6.38859570e-02 -4.42416549e-01 3.22687700e-02 -1.19840848e+00 -1.27311265e+00 1.03990591e+00 7.75459051e-01 7.45027512e-02 1.32932663e+00 5.06003536e-02 7.13479757e-01 1.25990197e-01 -8.83794948e-03 -1.55779958e+00 2.62748629e-01 3.37902606e-01 8.21688533e-01 -1.73269200e+00 6.65387213e-02 -5.64055860e-01 -1.34808993e+00 1.03262711e+00 7.38379240e-01 6.61256909e-01 2.38850310e-01 2.87807941e-01 1.97508797e-01 -1.54653013e-01 -6.90504074e-01 -3.73713046e-01 9.61116612e-01 5.64765692e-01 5.91165543e-01 -6.11094758e-02 2.89264116e-02 1.11678886e+00 3.21056187e-01 -4.32318807e-01 -3.78966779e-02 5.73679745e-01 -1.12195656e-01 -7.48553693e-01 -5.26803195e-01 4.64028388e-01 -4.54018056e-01 -1.65980190e-01 -5.25451422e-01 6.76382422e-01 4.02860403e-01 1.03890729e+00 4.27853279e-02 -3.09814751e-01 1.79514140e-01 1.15049161e-01 4.85050201e-01 -2.13923991e-01 -5.26692569e-01 5.98481596e-01 2.07252741e-01 -4.94688421e-01 -4.73225534e-01 -6.46769941e-01 -1.03799832e+00 3.81455794e-02 -3.61831546e-01 -3.35129052e-01 7.49902248e-01 8.06302011e-01 3.37916583e-01 4.72474426e-01 3.36616874e-01 -7.51650870e-01 -3.60118598e-01 -9.09888446e-01 -5.80656767e-01 7.93222606e-01 2.46088669e-01 -7.28850424e-01 -3.04261148e-01 5.22565663e-01]
[10.77523422241211, 1.3511593341827393]
80b4b623-4f73-41c7-9ed0-2a813cba315f
synopses-of-movie-narratives-a-video-language-1
2203.05711
null
https://arxiv.org/abs/2203.05711v4
https://arxiv.org/pdf/2203.05711v4.pdf
Synopses of Movie Narratives: a Video-Language Dataset for Story Understanding
Despite recent advances of AI, story understanding remains an open and under-investigated problem. We collect, preprocess, and publicly release a video-language story dataset, Synopses of Movie Narratives (SyMoN), containing 5,193 video summaries of popular movies and TV series with a total length of 869 hours. SyMoN captures naturalistic storytelling videos made by human creators and intended for a human audience. As a prototypical and naturalistic story dataset, SyMoN features high coverage of multimodal story events and abundant mental-state descriptions. Its use of storytelling techniques cause cross-domain semantic gaps that provide appropriate challenges to existing models. We establish benchmarks on video-text retrieval and zero-shot alignment on movie summary videos, which showcase the importance of in-domain data and long-term memory in story understanding. With SyMoN, we hope to lay the groundwork for progress in multimodal story understanding.
['Yangfeng Ji', 'Boyang Li', 'Qin Chao', 'Yidan Sun']
2022-03-11
null
null
null
null
['video-text-retrieval']
['computer-vision']
[ 3.61415476e-01 -2.84411430e-01 -6.25104368e-01 -2.51361549e-01 -1.04674006e+00 -9.31906044e-01 1.07229698e+00 3.02013248e-01 -9.70924273e-02 6.05060995e-01 1.19459832e+00 3.28618407e-01 -1.08722508e-01 -3.64591271e-01 -7.07125604e-01 -1.46287799e-01 -1.25204548e-01 3.31510216e-01 1.78438902e-01 -3.12320381e-01 4.85750824e-01 -2.54708886e-01 -1.67228067e+00 1.27530968e+00 -4.67062779e-02 7.13944137e-01 4.32048470e-01 1.12618327e+00 -3.42766605e-02 1.69001019e+00 -3.99544716e-01 -7.07684338e-01 -2.46511027e-01 -5.10405302e-01 -1.00581324e+00 4.34542984e-01 6.61184311e-01 -4.58171606e-01 -1.14806259e+00 5.96448541e-01 3.69374543e-01 4.01337266e-01 6.28465950e-01 -1.52036345e+00 -5.90996981e-01 9.81566131e-01 -5.42509444e-02 5.53945482e-01 1.10540318e+00 9.69787240e-02 1.22308576e+00 -7.25853205e-01 1.48173344e+00 1.04228604e+00 6.61386490e-01 5.31883538e-01 -8.79194021e-01 -2.27525190e-01 -9.46068168e-02 6.88413799e-01 -1.16457856e+00 -8.34259570e-01 6.51048958e-01 -7.06500828e-01 1.04092157e+00 2.32767835e-01 8.96153867e-01 1.74736023e+00 -9.83119011e-04 1.36929476e+00 2.91771770e-01 4.58393693e-02 -1.18833920e-02 -3.20892662e-01 1.02386968e-02 2.84102976e-01 -4.52533573e-01 -5.49630642e-01 -1.32100201e+00 -8.80743638e-02 8.23719203e-01 -7.59309009e-02 -3.72771293e-01 -4.06386048e-01 -1.88028657e+00 6.35327458e-01 -2.54564553e-01 3.37478310e-01 -3.83310705e-01 1.55034646e-01 1.02383745e+00 4.04476076e-01 2.99761593e-01 5.69971561e-01 7.55030289e-02 -1.30820596e+00 -9.53997314e-01 8.39100182e-01 8.18406582e-01 1.23255765e+00 -8.78909752e-02 -2.19225124e-01 -2.73417979e-01 9.42790031e-01 -4.08991963e-01 3.87867808e-01 3.55839282e-01 -1.35614336e+00 9.04214859e-01 4.14536387e-01 1.44315049e-01 -1.41942644e+00 -3.46989632e-01 3.09727818e-01 -4.17463541e-01 -8.71938050e-01 3.87952298e-01 7.37634078e-02 -2.63393134e-01 1.65730202e+00 -1.51616737e-01 3.13096374e-01 2.34097913e-01 8.94758463e-01 1.24581742e+00 1.05344307e+00 -1.42698035e-01 -2.73089141e-01 1.31379211e+00 -9.28117573e-01 -8.73118818e-01 -4.18269128e-01 6.58832133e-01 -7.68751442e-01 1.00923669e+00 4.28357214e-01 -1.47215557e+00 -2.93744177e-01 -9.22659397e-01 -3.92343014e-01 -1.33292362e-01 -1.92231357e-01 5.57834923e-01 -1.42071724e-01 -6.13180816e-01 5.20110130e-01 -5.46882212e-01 -8.81843269e-01 4.59786534e-01 -3.79630327e-01 -7.07609177e-01 -4.99715328e-01 -1.03503120e+00 6.26176536e-01 5.73901713e-01 -5.21213293e-01 -1.22622871e+00 -8.49190772e-01 -1.04238904e+00 -3.05193752e-01 6.21952713e-01 -3.74194473e-01 1.56131470e+00 -7.94679821e-01 -1.04092693e+00 1.02004135e+00 8.37704912e-03 -5.28311789e-01 2.43476436e-01 -3.89367104e-01 -6.46573961e-01 8.31898212e-01 2.43185595e-01 8.65244389e-01 6.14970207e-01 -6.44172132e-01 -4.79024202e-01 1.01576507e-01 3.40038627e-01 4.11557168e-01 -4.90956396e-01 5.02457619e-01 -6.39096379e-01 -9.57287073e-01 -1.93667755e-01 -7.42384136e-01 2.94034094e-01 -2.87390202e-01 -3.57269526e-01 1.35613993e-01 7.21588790e-01 -8.62613678e-01 1.44015157e+00 -2.23017788e+00 5.53621709e-01 -5.93926966e-01 2.45928004e-01 -3.17975730e-01 -3.28537911e-01 1.25241017e+00 -1.25490710e-01 -6.31071329e-02 -8.70338455e-02 -3.69806916e-01 6.89211339e-02 -1.25499824e-02 -6.36580348e-01 3.38398069e-01 3.94574553e-02 9.64650869e-01 -1.10553670e+00 -7.07680523e-01 1.17976926e-01 2.27920607e-01 -5.82225561e-01 2.25402877e-01 -5.83303034e-01 2.21157625e-01 -3.42670560e-01 5.96581399e-01 -1.37614891e-01 -3.87532711e-01 -2.24297997e-02 -1.46854401e-01 -8.87052342e-02 4.33664560e-01 -7.55544126e-01 2.54165101e+00 1.06231414e-01 1.41285098e+00 -3.61065984e-01 -5.69598138e-01 4.87065315e-01 5.86427391e-01 7.18721449e-01 -4.43554401e-01 2.51823038e-01 -3.63110900e-01 -5.52154720e-01 -1.10541081e+00 1.07195342e+00 -9.31808129e-02 -7.20136404e-01 6.21798813e-01 3.03549767e-01 -3.56545061e-01 6.93050861e-01 7.79033661e-01 1.35054874e+00 1.33482859e-01 4.08154011e-01 2.33447313e-01 -4.24911082e-02 7.56331682e-01 4.60000336e-02 7.23766744e-01 -7.27690980e-02 1.09814227e+00 8.12965393e-01 -5.02571046e-01 -1.42977965e+00 -8.71383011e-01 1.98068619e-01 1.28253305e+00 2.75460239e-02 -1.12201405e+00 -7.19881117e-01 -6.17340617e-02 -2.76433647e-01 8.11584413e-01 -4.25813556e-01 -1.68612674e-02 -6.15719855e-01 -3.37093592e-01 8.13971102e-01 5.22559583e-01 3.57374310e-01 -1.01023626e+00 -4.96172518e-01 4.05766726e-01 -8.87624025e-01 -1.68791628e+00 -6.84011161e-01 -5.58941245e-01 -3.58731538e-01 -1.28093159e+00 -7.47187138e-01 -5.88375926e-01 2.00178679e-02 4.92040396e-01 1.48386157e+00 -2.99982220e-01 -2.25744292e-01 8.29434216e-01 -7.32303798e-01 8.25709626e-02 -5.46124160e-01 5.88737801e-03 1.07324339e-01 2.37993747e-02 2.63914406e-01 -6.00391090e-01 -8.00076351e-02 3.11343580e-01 -8.46688211e-01 6.22104228e-01 -4.61925082e-02 5.90928972e-01 2.51025230e-01 -2.23202541e-01 4.22664493e-01 -4.38784331e-01 5.31590521e-01 -1.01504731e+00 2.78081354e-02 1.40581086e-01 3.17029834e-01 -5.45280814e-01 4.02215093e-01 -5.50519049e-01 -9.80095387e-01 -2.41314292e-01 2.34892651e-01 -6.41509831e-01 -1.59484804e-01 5.73518455e-01 1.45574406e-01 6.84183121e-01 5.05732477e-01 3.54708910e-01 -2.89768159e-01 -3.82618278e-01 4.24828678e-01 4.46263433e-01 1.25611031e+00 -5.30208170e-01 3.16960365e-01 5.25953770e-01 -3.92277718e-01 -1.04647219e+00 -8.65731657e-01 -6.21427476e-01 -5.06061077e-01 -7.68996537e-01 1.11400735e+00 -1.21434295e+00 -7.59906471e-01 3.80771399e-01 -1.35958707e+00 -2.08238319e-01 -2.35986188e-01 3.78771931e-01 -1.08063734e+00 2.55863637e-01 -8.24397504e-01 -4.14575785e-01 9.68766510e-02 -5.95262825e-01 1.02331948e+00 -1.27434656e-01 -9.60323274e-01 -7.99912632e-01 1.60386980e-01 8.93866539e-01 -8.37191343e-02 4.24084157e-01 6.99463665e-01 -6.63067162e-01 -5.41332781e-01 -3.81804436e-01 -1.15788661e-01 -3.72522146e-01 -4.46651369e-01 1.06909715e-01 -7.28467405e-01 -8.58052373e-02 -2.42210746e-01 -9.69125450e-01 7.69712269e-01 3.09440821e-01 8.34078550e-01 -2.81277418e-01 -1.71141326e-01 2.09273264e-01 1.04469478e+00 9.17241052e-02 6.64226830e-01 3.04113477e-01 7.20763743e-01 7.22348273e-01 7.61000872e-01 9.86602604e-01 7.42312133e-01 6.30789697e-01 2.68598020e-01 5.09785473e-01 -1.41775236e-01 -7.95940161e-01 6.35596752e-01 1.20484483e+00 -1.08545743e-01 -7.88397729e-01 -1.05132103e+00 9.35138047e-01 -2.13570094e+00 -1.80805874e+00 -7.84047469e-02 1.66481173e+00 6.15296423e-01 1.59793913e-01 3.76732856e-01 -1.04356229e-01 7.12409735e-01 7.42600918e-01 -3.55615377e-01 -1.22523405e-01 -5.98820508e-01 -7.25402653e-01 1.39912471e-01 1.52248219e-01 -1.20379341e+00 7.73495972e-01 6.84465170e+00 1.03104508e+00 -4.12788898e-01 1.35396242e-01 2.44795606e-01 -8.77275527e-01 -1.85885355e-01 -1.18241228e-01 -4.30608362e-01 3.64446521e-01 1.05650270e+00 -4.95260388e-01 5.06894767e-01 7.11153686e-01 2.56127268e-01 -2.94782847e-01 -1.49476576e+00 1.35427701e+00 7.92363226e-01 -1.99018157e+00 9.13600549e-02 -4.02775675e-01 8.27199280e-01 -2.50299852e-02 -3.20278287e-01 2.72516489e-01 -3.12855281e-02 -9.24081028e-01 1.07104039e+00 6.03928089e-01 6.93914115e-01 -6.37400627e-01 4.26915914e-01 4.19920772e-01 -1.29670548e+00 -1.12277947e-01 -9.18308794e-02 -4.22750831e-01 7.27070510e-01 -1.70862507e-02 -5.82447231e-01 2.41594359e-01 5.20104408e-01 1.67043781e+00 -4.53362942e-01 7.27924824e-01 2.70089298e-01 3.78856272e-01 1.49653303e-02 -8.42646975e-03 3.83399576e-01 6.44484982e-02 9.82355118e-01 1.39529073e+00 1.04482986e-01 4.93178278e-01 1.98422715e-01 4.94469166e-01 -2.49646366e-01 -4.87486757e-02 -1.11399508e+00 -9.53118384e-01 4.13422823e-01 8.25501442e-01 -7.02737868e-01 -5.78906596e-01 -4.34140086e-01 1.07938528e+00 3.91522236e-02 5.98686077e-02 -1.00553823e+00 7.06075355e-02 7.03803122e-01 1.82165846e-01 5.09155095e-02 -2.94501454e-01 1.97252166e-02 -1.42963469e+00 -1.03514992e-01 -1.01243103e+00 4.03215855e-01 -1.38590825e+00 -1.16252041e+00 5.33716619e-01 5.98237574e-01 -1.28262556e+00 -6.15645945e-01 -8.95205364e-02 -4.02557611e-01 -2.90832072e-01 -4.88725185e-01 -1.10497200e+00 -2.71123946e-01 6.90619469e-01 1.46706104e+00 -3.68445486e-01 5.54277718e-01 3.84127170e-01 -4.40478235e-01 3.15072611e-02 9.92034078e-02 4.95760255e-02 6.95108891e-01 -7.29374349e-01 5.81582308e-01 6.62051380e-01 4.25791413e-01 1.58282906e-01 1.05952024e+00 -7.90130436e-01 -1.72629261e+00 -7.39703655e-01 1.01604605e+00 -1.00680983e+00 1.18115938e+00 -5.86149573e-01 -5.90357602e-01 8.75075042e-01 5.43293655e-01 -6.74870670e-01 7.77732670e-01 -2.62464732e-01 -2.87059933e-01 5.09444535e-01 -5.86508930e-01 8.04253876e-01 1.38452351e+00 -9.15470839e-01 -1.07340693e+00 7.19361126e-01 7.76816189e-01 -5.47942162e-01 -1.03742826e+00 -4.42216806e-02 8.51375639e-01 -8.14809561e-01 1.00419044e+00 -8.87250662e-01 1.47682440e+00 2.57429123e-01 -4.63119417e-01 -8.79179955e-01 1.20510221e-01 -9.61622000e-01 5.08309491e-02 1.44780886e+00 1.42835572e-01 5.34110844e-01 6.21132433e-01 7.02116251e-01 -2.32944444e-01 -4.01353270e-01 -6.04555428e-01 -5.48606873e-01 -4.15777475e-01 -1.09136820e+00 3.62068892e-01 1.17939889e+00 7.30603755e-01 4.91721004e-01 -8.74736011e-01 -4.61032838e-01 3.16449702e-01 5.21760322e-02 9.44948614e-01 -8.21142972e-01 -2.05836058e-01 -2.54775375e-01 -4.51487660e-01 -1.22656643e+00 2.83531159e-01 -7.19711006e-01 -6.48633018e-02 -1.45958865e+00 7.49912500e-01 4.92017984e-01 2.64195472e-01 2.66579151e-01 4.46347952e-01 4.68640566e-01 4.83323932e-01 3.72355372e-01 -1.35586083e+00 5.41543663e-01 1.09853828e+00 -1.49763465e-01 1.33297071e-01 -5.63325047e-01 -2.85900086e-01 9.95686531e-01 3.88793558e-01 -4.68908697e-01 -5.61292112e-01 -5.47898352e-01 6.37502849e-01 7.77454078e-01 5.57073891e-01 -9.15652752e-01 3.63183737e-01 -3.33714455e-01 -2.01213546e-02 -9.76018906e-01 1.02956259e+00 -4.15259689e-01 5.01445711e-01 -1.53122768e-01 -7.97795475e-01 3.60498101e-01 2.58530110e-01 6.29240572e-01 -5.35733402e-01 -9.06990934e-03 1.33861274e-01 -1.23467036e-01 -1.16350234e+00 1.04565106e-01 -7.68037081e-01 4.90314484e-01 1.03929317e+00 -5.09334624e-01 -6.54446423e-01 -9.90104258e-01 -6.26772821e-01 2.60130882e-01 6.28138900e-01 9.26043093e-01 8.58453035e-01 -1.51939452e+00 -1.01421404e+00 -3.04846555e-01 5.69622338e-01 -5.83226383e-01 6.60821259e-01 5.77982903e-01 -3.94482225e-01 4.05858964e-01 -4.18463856e-01 -3.61634284e-01 -1.48309004e+00 4.17350173e-01 -4.81769115e-01 1.80160165e-01 -8.43908012e-01 8.30194235e-01 2.31701974e-02 1.73459232e-01 1.34367377e-01 -1.12887071e-02 -3.50916386e-01 4.56644297e-01 9.66614485e-01 4.85534698e-01 -5.31257331e-01 -9.65241611e-01 -2.54987687e-01 3.39915991e-01 5.77218086e-02 -3.05635899e-01 1.50767326e+00 -4.94861960e-01 1.07738584e-01 1.12365639e+00 1.22518408e+00 -4.18290585e-01 -1.20879090e+00 -1.27606228e-01 1.34216949e-01 -4.74899411e-01 -2.07799062e-01 -4.81140971e-01 -5.70973814e-01 6.76614583e-01 -2.71007568e-01 9.18589011e-02 8.99463713e-01 3.58435303e-01 1.27443421e+00 6.28462255e-01 2.75974721e-01 -1.05022442e+00 3.92893344e-01 7.05186427e-01 1.19069660e+00 -1.30040276e+00 6.28434420e-02 -1.15263306e-01 -1.22403753e+00 1.09131777e+00 2.41168916e-01 -3.86715122e-02 9.68851224e-02 1.22047454e-01 -4.52223063e-01 -4.36358571e-01 -1.37857866e+00 1.42349586e-01 2.36469612e-01 2.59889811e-01 1.89481497e-01 -6.96090907e-02 -5.56464307e-03 1.02223349e+00 -3.70330095e-01 1.87010959e-01 8.18995535e-01 8.19743812e-01 -3.18599820e-01 -4.88619208e-01 -3.47262770e-01 1.34308577e-01 -3.53235692e-01 -1.38952568e-01 -6.42409146e-01 8.36371422e-01 -2.18579933e-01 1.06045806e+00 3.05272788e-01 -5.25925756e-01 2.04860106e-01 -1.86747331e-02 6.48766458e-01 -5.02203524e-01 -5.53072155e-01 -1.47171751e-01 8.57948959e-01 -7.62880325e-01 -5.17224133e-01 -1.09554482e+00 -9.55624104e-01 -7.20800102e-01 4.72449154e-01 -1.41729295e-01 4.46594477e-01 1.13943851e+00 3.18543881e-01 2.90648073e-01 1.29644200e-01 -1.01263583e+00 2.59025186e-01 -8.74891937e-01 -4.74020630e-01 7.44700134e-01 1.79960370e-01 -5.70227444e-01 -2.67540943e-02 7.19816864e-01]
[10.502279281616211, 0.8036318421363831]
1ed08b4b-f559-4b45-8a79-3dbdc8a013f3
2305-14704
2305.14704
null
https://arxiv.org/abs/2305.14704v2
https://arxiv.org/pdf/2305.14704v2.pdf
An Evaluation on Practical Batch Bayesian Sampling Algorithms for Online Adaptive Traffic Experimentation
To speed up online testing, adaptive traffic experimentation through multi-armed bandit algorithms is rising as an essential complementary alternative to the fixed horizon A/B testing. Based on recent research on best arm identification and statistical inference with adaptively collected data, this paper derives and evaluates four Bayesian batch bandit algorithms (NB-TS, WB-TS, NB-TTTS, WB-TTTS), which are combinations of two ways of weighting batches (Naive Batch and Weighted Batch) and two Bayesian sampling strategies (Thompson Sampling and Top-Two Thompson Sampling) to adaptively determine traffic allocation. These derived Bayesian sampling algorithms are practically based on summary batch statistics of a reward metric for pilot experiments, where one of the combination WB-TTTS in this paper seems to be newly discussed. The comprehensive evaluation on the four Bayesian sampling algorithms covers trustworthiness, sensitivity and regret of a testing methodology. Moreover, the evaluation includes 4 real-world eBay experiments and 40 reproducible synthetic experiments to reveal the learnings, which covers both stationary and non-stationary situations. Our evaluation reveals that, (a) There exist false positives inflation with equivalent best arms, while seldom discussed in literatures; (b) To control false positives, connections between convergence of posterior optimal probabilities and neutral posterior reshaping are discovered; (c) WB-TTTS shows competitive recall, higher precision, and robustness against non-stationary trend; (d) NB-TS outperforms on minimizing regret trials except on precision and robustness; (e) WB-TTTS is a promising alternative if regret of A/B Testing is affordable, otherwise NB-TS is still a powerful choice with regret consideration for pilot experiments.
['Ted Yuan', 'Zezhong Zhang']
2023-05-24
null
null
null
null
['thompson-sampling']
['methodology']
[-1.95068028e-02 -2.11981654e-01 -7.90600598e-01 -3.45608145e-01 -8.45927298e-01 -4.78174001e-01 3.40191871e-01 -4.31913555e-01 -3.64374965e-01 1.39676809e+00 -2.70864725e-01 -1.00812936e+00 -9.81504440e-01 -5.62463760e-01 -7.90776432e-01 -8.68102014e-01 -3.03878009e-01 9.23328757e-01 5.41399777e-01 1.55392522e-02 3.25339556e-01 5.01721025e-01 -1.49244213e+00 3.96362059e-02 7.10825205e-01 1.56268311e+00 -2.37154856e-01 6.14919245e-01 5.81577681e-02 4.58589733e-01 -6.77800417e-01 -1.00245821e+00 6.40923619e-01 -4.28545237e-01 -5.01296341e-01 -9.08097029e-02 -1.60021141e-01 -4.77274895e-01 1.18302643e-01 9.54572916e-01 4.88009363e-01 8.30193236e-03 4.53063041e-01 -1.40409017e+00 -1.96577519e-01 9.23187137e-01 -9.34458256e-01 5.69724441e-01 1.36978561e-02 4.92872447e-01 9.48005259e-01 -7.43712932e-02 -1.26887560e-01 1.28948534e+00 6.29474878e-01 1.45479500e-01 -9.81228292e-01 -8.37106466e-01 3.59930366e-01 5.85431993e-01 -1.22028828e+00 -2.48771057e-01 5.10091662e-01 -1.67311624e-01 4.66649741e-01 8.09813917e-01 1.04183328e+00 1.23652017e+00 2.47042075e-01 8.33165348e-01 1.48228574e+00 -5.34163952e-01 5.74632347e-01 5.08697212e-01 2.96209753e-01 1.93870470e-01 7.37435758e-01 7.05788434e-01 -3.19604069e-01 -4.15398747e-01 6.20132506e-01 -3.18448156e-01 8.37774575e-02 -2.03625619e-01 -7.98671603e-01 8.37774217e-01 -2.99918056e-01 -1.20778143e-01 -6.10949636e-01 1.14441462e-01 3.94105464e-01 3.81381691e-01 3.72434050e-01 -1.03264354e-01 -6.09581113e-01 -4.50188398e-01 -9.10424829e-01 5.30016541e-01 8.01055610e-01 1.01352978e+00 1.73544362e-01 4.01916057e-01 -9.66787219e-01 6.66856229e-01 3.16464663e-01 8.80331635e-01 3.41605932e-01 -7.74716675e-01 4.73614037e-01 -4.41128202e-02 7.47964263e-01 -3.48839194e-01 -2.93406576e-01 -8.22068870e-01 -4.09735054e-01 3.96128111e-02 6.94314182e-01 -4.08987373e-01 -5.72865248e-01 1.44633937e+00 4.65009242e-01 2.59797722e-01 -2.74565816e-01 7.43059397e-01 2.61650141e-02 4.18923825e-01 -1.16961852e-01 -9.19595301e-01 1.37340260e+00 -5.76591909e-01 -7.84063816e-01 1.59629837e-01 8.27550739e-02 -5.25380075e-01 8.75205874e-01 8.99872899e-01 -1.21850026e+00 -3.17703009e-01 -9.04645979e-01 1.31787789e+00 -1.37212202e-01 -2.03628585e-01 7.41726160e-01 1.82188845e+00 -5.84797323e-01 2.84806401e-01 -4.05689150e-01 -3.19172367e-02 4.87467200e-01 3.15370470e-01 4.96138215e-01 1.39010102e-01 -1.24068320e+00 7.87253499e-01 3.00932825e-01 2.29558170e-01 -1.02301824e+00 -5.35080731e-01 -3.51405367e-02 -9.61870551e-02 8.42743814e-01 -4.20089394e-01 1.32444251e+00 -9.69240010e-01 -2.08430433e+00 1.32240593e-01 -1.27422124e-01 -8.88605356e-01 9.63658869e-01 -2.55696308e-02 -7.25165784e-01 -1.27514720e-01 -1.09993108e-01 7.67322108e-02 9.58985388e-01 -1.05348516e+00 -9.97665346e-01 -2.32169330e-01 -4.41286527e-02 -1.82272017e-01 -8.72446522e-02 1.95735648e-01 5.79982065e-02 -5.47502637e-01 -2.20503807e-01 -7.91507363e-01 -9.59115773e-02 -8.31394672e-01 -5.68024695e-01 -4.08945918e-01 5.78408599e-01 -3.31913650e-01 1.46465778e+00 -1.48884153e+00 -6.41839206e-01 6.47224724e-01 -6.32725596e-01 2.31754526e-01 1.60441488e-01 2.21609354e-01 1.71359554e-02 1.05964355e-01 1.41511530e-01 4.86363918e-01 3.47083479e-01 1.31857708e-01 -5.93564332e-01 4.50013399e-01 1.83624048e-02 6.71528995e-01 -5.38541913e-01 -3.99042755e-01 1.94043741e-01 -3.62532228e-01 -4.59426701e-01 -4.70029823e-02 -3.23084414e-01 2.44558424e-01 -5.85078895e-01 9.98726904e-01 6.85799241e-01 -4.59201494e-03 8.89151469e-02 -8.76159519e-02 -9.07362401e-02 -1.01424359e-01 -1.43201876e+00 3.82074416e-01 -1.95703164e-01 1.08550921e-01 -2.27653161e-01 -1.29856038e+00 6.98262870e-01 2.47764200e-01 3.32194120e-01 -8.53141129e-01 3.65019053e-01 1.10532232e-01 9.14592296e-02 -6.07241094e-01 1.41208425e-01 -2.15859741e-01 1.66208953e-01 5.95865011e-01 -3.17718744e-01 1.09364510e-01 3.31887603e-01 -3.14696759e-01 8.11996400e-01 1.00195564e-01 1.22398421e-01 -3.52770180e-01 4.02522027e-01 -3.06440860e-01 6.65542543e-01 1.32175314e+00 -4.11493927e-01 -1.98931068e-01 7.26168573e-01 -3.89221013e-01 -6.86866581e-01 -1.03156126e+00 -5.05888581e-01 1.29873788e+00 1.60614267e-01 5.51618636e-01 -4.72164065e-01 -6.55222237e-01 2.29520380e-01 1.16454065e+00 -5.35965264e-01 2.80819740e-02 -1.95845321e-01 -1.27245545e+00 4.06980366e-01 2.21844703e-01 5.81558287e-01 -6.94439411e-01 -8.33158195e-01 2.60138243e-01 1.38930958e-02 -9.44199681e-01 1.41606089e-02 3.05487096e-01 -7.97203124e-01 -9.50725675e-01 -5.97787857e-01 3.00915748e-01 8.02205577e-02 2.14694574e-01 9.92887676e-01 -2.84363419e-01 1.96964340e-03 4.49467093e-01 -5.04567862e-01 -1.04970551e+00 -1.98571965e-01 -3.85459870e-01 7.46516213e-02 2.64041543e-01 4.15166318e-01 -4.06733125e-01 -6.29057050e-01 1.01941276e+00 -4.84489053e-01 -4.61313456e-01 8.39622140e-01 9.11044061e-01 3.72166008e-01 2.25857973e-01 8.97836804e-01 -8.09972048e-01 6.96371853e-01 -5.38383842e-01 -1.22157991e+00 5.46279013e-01 -8.97148669e-01 -1.69205070e-01 9.37787220e-02 -7.81741917e-01 -1.25264823e+00 -5.89758635e-01 9.16565880e-02 -2.77610600e-01 9.01690722e-02 2.77473122e-01 1.32349670e-01 8.49201381e-02 5.73635340e-01 6.54327199e-02 -8.00887719e-02 -1.58586547e-01 3.22473198e-02 9.29158926e-01 -3.81575041e-02 -1.11086369e+00 5.69673657e-01 3.15884918e-01 7.45411068e-02 -4.78200614e-01 -9.66142535e-01 -1.85582377e-02 -3.12746502e-02 -6.00750566e-01 3.18769783e-01 -5.14857709e-01 -1.23987603e+00 1.77644100e-02 -5.84336579e-01 -2.94585854e-01 -3.78976375e-01 8.93127978e-01 -7.73273408e-01 1.92506567e-01 -1.66708499e-01 -1.80891657e+00 -1.24885261e-01 -1.19083011e+00 5.15089869e-01 2.62099922e-01 -1.32279925e-03 -6.12994373e-01 -1.82697028e-01 6.40234172e-01 4.00882542e-01 -1.63042061e-02 8.63331735e-01 -9.64014590e-01 -5.21317601e-01 -4.26380157e-01 -9.89149734e-02 3.21700215e-01 -3.51929843e-01 2.75735468e-01 -7.02067912e-01 -4.17691916e-01 -7.96865951e-03 -1.74611032e-01 2.33484030e-01 9.80005443e-01 1.30597293e+00 -6.56865537e-01 -1.17482156e-01 1.08746909e-01 1.03111935e+00 8.66265476e-01 6.87326252e-01 6.35436118e-01 -4.14979428e-01 5.34168661e-01 1.02184010e+00 8.70050788e-01 -1.29846498e-01 6.15022659e-01 6.58929825e-01 3.84254485e-01 3.74535918e-01 1.06682338e-01 4.59263235e-01 2.78003663e-01 -2.86043823e-01 -3.35174501e-01 -5.67591429e-01 3.16380620e-01 -1.69013393e+00 -1.19233155e+00 -1.54234156e-01 2.85280991e+00 7.12700307e-01 9.40462649e-01 8.96363497e-01 2.67179400e-01 9.29417789e-01 -2.36911550e-01 -8.07480097e-01 -5.08963406e-01 9.84875020e-03 3.37799668e-01 9.94669378e-01 6.92156926e-02 -7.40073144e-01 3.69071841e-01 6.86157513e+00 1.43952322e+00 -8.18465412e-01 3.28075975e-01 1.08334899e+00 -4.63958561e-01 -8.25319216e-02 1.16220169e-01 -1.16558552e+00 6.78933144e-01 1.39324594e+00 -1.32415771e-01 3.94729465e-01 8.38082910e-01 4.06915337e-01 -4.39578027e-01 -7.85954237e-01 6.76269054e-01 -4.49772537e-01 -1.16142046e+00 5.04840072e-03 1.14637323e-01 6.91381991e-01 -1.38829172e-01 1.56940311e-01 6.65471971e-01 8.36600900e-01 -7.10740805e-01 1.08286667e+00 5.96591890e-01 3.75607193e-01 -1.07953918e+00 1.17052495e+00 3.32599849e-01 -3.69191587e-01 -6.09363496e-01 -4.32255715e-01 -1.22633921e-02 9.24259722e-02 8.65731061e-01 -5.59289157e-01 8.57444823e-01 8.89275670e-01 -1.21872745e-01 -2.55817562e-01 1.35587382e+00 -4.21100017e-03 1.15413070e+00 -4.87265706e-01 -6.29577339e-01 2.63804048e-01 -3.54893476e-01 7.34231770e-01 1.00654793e+00 5.17444193e-01 -1.24490246e-01 -2.85545867e-02 7.48776317e-01 5.11269748e-01 -1.27145857e-01 -1.28739490e-03 2.23042041e-01 8.58473122e-01 1.10701799e+00 -7.85130739e-01 -1.62079811e-01 -1.77059546e-01 -1.15538687e-01 -4.42961156e-01 4.83209491e-01 -1.44289100e+00 -1.03619635e-01 2.60929853e-01 1.31846368e-01 5.20123184e-01 4.58295256e-01 -4.67886209e-01 -3.60128999e-01 -1.82405755e-01 -9.58114922e-01 6.62900090e-01 -7.25971162e-01 -1.26069236e+00 2.61179239e-01 8.04277956e-01 -1.23777735e+00 -2.14404702e-01 -6.16522551e-01 -4.76558030e-01 5.04075646e-01 -1.21563447e+00 -7.32766092e-01 1.79376602e-01 5.34636855e-01 5.45642018e-01 -4.86848027e-01 1.73808634e-01 5.80628477e-02 -9.83413398e-01 9.09063995e-01 2.69024700e-01 -4.45718795e-01 2.40554988e-01 -7.10694432e-01 -1.34105325e-01 6.26323342e-01 -1.60995007e-01 3.48709822e-01 1.09768939e+00 -5.82408786e-01 -1.23635328e+00 -7.31629491e-01 -1.02086902e-01 -2.64862657e-01 8.16792667e-01 5.00563681e-02 -3.65363985e-01 3.98355156e-01 -5.47014773e-02 -2.94003040e-01 5.99353313e-01 2.75442690e-01 -1.22921079e-01 -7.28209019e-01 -1.37489164e+00 5.97036779e-01 6.30335867e-01 2.13946074e-01 -1.75480947e-01 5.83545387e-01 4.62482840e-01 -1.12173960e-01 -8.36875975e-01 6.04036152e-01 9.29042876e-01 -1.34664166e+00 6.90892994e-01 -6.57350481e-01 -3.63117903e-01 1.66356955e-02 -2.32477620e-01 -8.55693400e-01 -5.42646609e-02 -1.07989872e+00 -1.11735694e-01 1.29288399e+00 5.48497617e-01 -1.05923510e+00 8.08089793e-01 4.79960144e-01 9.37013403e-02 -8.46038520e-01 -1.63280487e+00 -1.30149686e+00 -1.10926740e-01 -8.52662504e-01 8.52203846e-01 4.05166030e-01 -2.20416576e-01 -1.16251647e-01 -5.87250471e-01 -1.62293185e-02 8.20350468e-01 5.82683831e-02 8.50227118e-01 -1.11748731e+00 -6.87268674e-01 -6.20005131e-01 -7.89308995e-02 -9.33182359e-01 -2.11628377e-01 -9.73082781e-02 -1.83831111e-01 -7.50527322e-01 2.63260663e-01 -3.78284693e-01 -7.02121913e-01 3.00141215e-01 1.87434793e-01 -7.60992840e-02 -3.02658260e-01 -3.20135243e-02 -6.16845489e-01 3.16428244e-01 1.05240202e+00 -3.65534611e-02 -6.97573945e-02 1.02614737e+00 -7.30558515e-01 4.58764195e-01 7.59229302e-01 -6.10921443e-01 -4.73474771e-01 3.49128872e-01 4.34104532e-01 5.89739025e-01 3.08974296e-01 -7.07587183e-01 -1.59149598e-02 -6.97078764e-01 2.82869250e-01 -9.48233783e-01 6.78620040e-02 -8.90944302e-01 3.57419580e-01 6.49832129e-01 -4.33772691e-02 -1.58792406e-01 2.02019632e-01 8.93428445e-01 2.80120760e-01 -6.25551641e-01 6.83824480e-01 -3.26475129e-02 -2.25681037e-01 6.86497474e-03 -4.94005531e-01 -1.42795190e-01 1.30787158e+00 -7.11259604e-01 -3.39170635e-01 -6.03979647e-01 -4.14546013e-01 3.28179985e-01 -4.64865237e-01 1.59699529e-01 1.14362769e-01 -1.15737975e+00 -6.49120986e-01 7.82674327e-02 -2.77366102e-01 -5.38769901e-01 3.46146405e-01 1.36560059e+00 -8.67645368e-02 6.07454956e-01 -3.92689258e-02 -7.93935776e-01 -9.34694827e-01 4.98204529e-01 2.14218110e-01 -4.12346870e-01 -6.25943914e-02 8.16746771e-01 -3.33250225e-01 1.17188141e-01 5.61289132e-01 -1.05804719e-01 6.83898926e-02 7.30476156e-02 3.41674179e-01 9.37943101e-01 2.62841702e-01 -1.69332195e-02 -1.15991645e-01 2.50358909e-01 -2.35159174e-02 -2.47620106e-01 1.10039592e+00 -1.50514215e-01 2.54058894e-02 5.32273114e-01 1.91557854e-01 -1.08984850e-01 -1.27794683e+00 -2.39638073e-04 2.68276989e-01 -6.71386659e-01 1.43914551e-01 -1.12986565e+00 -7.87673831e-01 2.89725035e-01 8.55032027e-01 8.00055206e-01 1.03210425e+00 -3.52275938e-01 3.79564255e-01 3.22666407e-01 6.86417878e-01 -1.26169407e+00 -2.80909836e-01 1.69155195e-01 6.54199421e-01 -9.72960413e-01 3.54998767e-01 -3.70385759e-02 -6.52864456e-01 8.96306574e-01 2.67774224e-01 2.33542010e-01 7.20608413e-01 1.04331955e-01 -4.42445755e-01 1.84370011e-01 -9.97125328e-01 -2.72958457e-01 2.09275022e-01 4.77382153e-01 -1.01056159e-01 1.45527631e-01 -6.87823474e-01 9.56131041e-01 -2.43321180e-01 1.90663040e-02 2.24024802e-01 6.45179331e-01 -4.89802361e-01 -8.12229812e-01 -7.27785945e-01 8.64712596e-01 -6.72087669e-01 3.40356499e-01 -1.72722731e-02 1.25571620e+00 -1.33231208e-01 1.26192665e+00 -2.88535580e-02 -3.92257363e-01 4.34950382e-01 4.11032774e-02 5.36086738e-01 2.21378550e-01 -4.89627212e-01 3.81012231e-01 3.32597226e-01 -4.03513342e-01 -4.47673500e-01 -8.28682065e-01 -3.69278789e-01 -4.59940791e-01 -9.47992027e-01 6.33373439e-01 7.80261397e-01 1.02673972e+00 -6.00142106e-02 4.73193765e-01 8.48738134e-01 -6.48892641e-01 -1.35942459e+00 -1.14311814e+00 -9.08897758e-01 -1.34721756e-01 -7.42687061e-02 -1.03956532e+00 -5.90375125e-01 -5.64907253e-01]
[4.530822277069092, 3.2678725719451904]
917c071d-8dce-439b-a574-1a8f3c07ff1e
drotrack-high-speed-drone-based-object
2005.00828
null
https://arxiv.org/abs/2005.00828v1
https://arxiv.org/pdf/2005.00828v1.pdf
DroTrack: High-speed Drone-based Object Tracking Under Uncertainty
We present DroTrack, a high-speed visual single-object tracking framework for drone-captured video sequences. Most of the existing object tracking methods are designed to tackle well-known challenges, such as occlusion and cluttered backgrounds. The complex motion of drones, i.e., multiple degrees of freedom in three-dimensional space, causes high uncertainty. The uncertainty problem leads to inaccurate location predictions and fuzziness in scale estimations. DroTrack solves such issues by discovering the dependency between object representation and motion geometry. We implement an effective object segmentation based on Fuzzy C Means (FCM). We incorporate the spatial information into the membership function to cluster the most discriminative segments. We then enhance the object segmentation by using a pre-trained Convolution Neural Network (CNN) model. DroTrack also leverages the geometrical angular motion to estimate a reliable object scale. We discuss the experimental results and performance evaluation using two datasets of 51,462 drone-captured frames. The combination of the FCM segmentation and the angular scaling increased DroTrack precision by up to $9\%$ and decreased the centre location error by $162$ pixels on average. DroTrack outperforms all the high-speed trackers and achieves comparable results in comparison to deep learning trackers. DroTrack offers high frame rates up to 1000 frame per second (fps) with the best location precision, more than a set of state-of-the-art real-time trackers.
['Flora Salim', 'Ali Hamdi', 'Du Yong Kim']
2020-05-02
null
null
null
null
['drone-based-object-tracking']
['computer-vision']
[-4.08146948e-01 -6.33727193e-01 -1.06029108e-01 -1.67921945e-01 -4.94324803e-01 -8.86547625e-01 3.32933992e-01 -2.48869091e-01 -6.85964942e-01 4.82122183e-01 -3.94466072e-01 1.42831802e-01 1.26984492e-01 -5.13317227e-01 -8.97778749e-01 -7.31639206e-01 -2.91033477e-01 3.30034673e-01 7.79919744e-01 8.80400613e-02 3.36331464e-02 6.42501771e-01 -1.71667206e+00 -2.54963130e-01 8.09418440e-01 1.56688070e+00 2.92306766e-02 9.09307241e-01 3.34104270e-01 2.67300725e-01 -8.77952158e-01 -3.72601718e-01 6.28655612e-01 2.47239664e-01 -1.56758670e-02 -8.51143301e-02 1.32210910e+00 -5.36344051e-01 -4.26414371e-01 1.18129492e+00 3.39194953e-01 2.99041063e-01 3.23950410e-01 -1.59302306e+00 -3.08537513e-01 -9.90981460e-02 -6.35150135e-01 7.12744415e-01 4.56398092e-02 4.96083498e-01 3.83902311e-01 -7.43650794e-01 2.50883311e-01 1.18561113e+00 1.17740893e+00 4.33688641e-01 -8.36760521e-01 -1.11483014e+00 1.88221082e-01 -1.19484648e-01 -1.50188029e+00 -2.34034240e-01 3.81554514e-01 -7.58389235e-01 7.70213187e-01 1.04370236e-01 8.54161859e-01 7.12949574e-01 3.02814245e-01 5.25218904e-01 5.94064713e-01 2.61582404e-01 -7.41559565e-02 -2.02651978e-01 -1.19048476e-01 9.54827785e-01 8.12768638e-01 7.40393341e-01 -4.12348241e-01 1.15026549e-01 1.01549125e+00 1.28199413e-01 -4.07150030e-01 -5.07265687e-01 -1.51460028e+00 5.25505066e-01 8.47168505e-01 -1.34929642e-01 1.15645610e-01 6.89308882e-01 3.06015730e-01 -2.42345467e-01 3.09542358e-01 4.74439293e-01 -4.58027869e-01 -2.39358932e-01 -1.15520287e+00 3.83701056e-01 3.54690254e-01 1.36460936e+00 5.17463028e-01 4.29462820e-01 -3.01333249e-01 7.12008178e-02 6.26389205e-01 1.14731181e+00 7.22055435e-02 -1.01369464e+00 4.92246836e-01 4.82661933e-01 5.96926868e-01 -1.18780792e+00 -6.83175147e-01 -5.49045444e-01 -4.49863970e-01 4.31126028e-01 6.45259559e-01 -4.70220536e-01 -9.79102790e-01 1.48107517e+00 6.79061174e-01 5.54361403e-01 -3.95388097e-01 1.57765472e+00 9.49482322e-01 5.36037087e-01 2.00170264e-01 5.03480583e-02 1.27916110e+00 -9.73985374e-01 -7.75990069e-01 -2.01356545e-01 3.78577113e-01 -7.59034872e-01 4.31276798e-01 2.83996999e-01 -8.14202964e-01 -9.29281771e-01 -1.11882412e+00 2.14587256e-01 -3.41291577e-01 6.25309706e-01 5.87643623e-01 8.91328990e-01 -8.22538137e-01 3.39379042e-01 -1.20284069e+00 -1.44541599e-02 6.10716343e-01 6.40377879e-01 -1.18725458e-02 3.23841423e-01 -7.56969631e-01 6.93278611e-01 4.46652949e-01 1.41365647e-01 -8.33372772e-01 -1.10350680e+00 -1.01219296e+00 -1.89893201e-01 6.47411644e-01 -6.30905390e-01 1.15707755e+00 -6.41666651e-01 -1.26721501e+00 5.03495991e-01 1.34090513e-01 -6.57278061e-01 6.47000372e-01 -7.19589293e-01 -6.29485905e-01 1.45233795e-01 1.19911246e-01 1.02045345e+00 9.63276505e-01 -1.05355608e+00 -1.20123613e+00 -2.14644819e-01 -1.29605383e-01 -3.02966568e-03 -7.59273469e-02 -1.15279607e-01 -8.31249595e-01 -8.38161647e-01 -9.05876607e-02 -1.15558147e+00 1.25658453e-01 6.07116818e-01 3.68521363e-02 -1.11689165e-01 1.24777102e+00 -4.37417507e-01 1.31028354e+00 -1.96462548e+00 -1.62856251e-01 -2.60082632e-01 3.56686026e-01 6.59919143e-01 2.55824655e-01 -3.68605494e-01 4.26533520e-01 -2.36915454e-01 1.35147020e-01 -3.56393367e-01 5.22551462e-02 -1.19360998e-01 -2.82718003e-01 9.04245973e-01 1.45600557e-01 1.02562487e+00 -9.96348321e-01 -6.40266240e-01 6.65123165e-01 7.59556055e-01 -4.81308550e-01 8.88620988e-02 -2.96083093e-01 3.62715751e-01 -2.85289288e-01 9.71412599e-01 9.81524646e-01 -1.87594309e-01 -3.85527581e-01 -5.07879019e-01 -5.53796947e-01 -6.42363876e-02 -1.21746743e+00 1.60690546e+00 1.14101253e-01 1.03426945e+00 -1.10817922e-03 -3.48263711e-01 9.20741379e-01 5.90593629e-02 6.95040762e-01 -3.65749836e-01 4.12927806e-01 5.95435314e-02 -2.50577271e-01 -3.32831264e-01 7.79594481e-01 1.81586593e-01 -8.25212374e-02 -1.57737315e-01 1.27369657e-01 -1.36876479e-02 2.82196313e-01 -1.21262453e-01 6.09037757e-01 4.62947458e-01 -1.57441959e-01 -3.29344034e-01 2.27873251e-01 2.87262857e-01 9.10595000e-01 6.17317736e-01 -6.81770265e-01 5.87309361e-01 -2.73736924e-01 -7.78916299e-01 -6.44818068e-01 -1.03590953e+00 -1.41870752e-01 8.53380442e-01 8.88394654e-01 -3.15491796e-01 -6.39583111e-01 -6.18060112e-01 3.11031103e-01 1.50734097e-01 -4.96872932e-01 -6.23342991e-02 -7.41328418e-01 -5.74399173e-01 6.37164950e-01 8.66626382e-01 9.32163954e-01 -5.47343552e-01 -1.22944832e+00 1.60371289e-01 -5.66919632e-02 -1.50962353e+00 -7.82557726e-01 -2.06892222e-01 -7.76612103e-01 -1.18928254e+00 -4.92567569e-01 -4.22693402e-01 4.47958469e-01 5.76753914e-01 9.43392038e-01 8.74087512e-02 -4.63334978e-01 3.34886104e-01 -9.76822823e-02 -4.24155116e-01 2.99353957e-01 -2.41237968e-01 4.33175981e-01 -2.04812691e-01 4.79483038e-01 2.37895131e-01 -9.40593779e-01 6.73804522e-01 -5.15895307e-01 -1.87387452e-01 3.77536684e-01 4.05032754e-01 5.46484470e-01 2.13607341e-01 1.58784445e-02 1.22709209e-02 -2.22466081e-01 -9.57726687e-02 -1.54189312e+00 2.84708254e-02 -2.77741402e-01 -2.45365784e-01 3.52068990e-01 -8.24279785e-01 -8.73909771e-01 4.01112080e-01 3.19936216e-01 -1.01558793e+00 -1.25607178e-01 -2.13209406e-01 1.11198314e-02 -7.08056152e-01 5.66127896e-01 -1.43247291e-01 -2.11966723e-01 -2.14454308e-01 2.26729050e-01 2.50963688e-01 9.50351298e-01 -3.16339731e-01 1.10054481e+00 7.24929571e-01 -5.19899465e-02 -7.30389178e-01 -7.98770607e-01 -6.79869831e-01 -5.62745154e-01 -7.40140021e-01 1.13460755e+00 -1.28766525e+00 -1.11382937e+00 4.41988140e-01 -1.11013281e+00 -3.12392682e-01 -1.80108026e-02 8.68757129e-01 -3.05894971e-01 2.24852249e-01 -3.78711611e-01 -7.64361441e-01 -3.34210515e-01 -1.27432442e+00 1.39339209e+00 8.05382669e-01 2.22833768e-01 -7.55868554e-01 -6.16523214e-02 2.56231368e-01 3.17087352e-01 5.90327799e-01 -2.92121857e-01 -1.38168290e-01 -1.25448298e+00 -1.84420794e-01 -4.09309775e-01 -1.13352090e-01 3.94659340e-02 1.97114021e-01 -7.81109750e-01 -6.19005442e-01 -3.45942140e-01 2.61329096e-02 9.03014839e-01 7.64722705e-01 7.83840477e-01 -2.93106921e-02 -8.03406835e-01 1.14301050e+00 1.37251079e+00 3.24158221e-01 2.19256356e-01 2.58165091e-01 9.89044309e-01 -1.52467057e-01 1.17374623e+00 4.97784466e-01 3.68897587e-01 9.79169846e-01 6.48972452e-01 2.00706087e-02 -1.77860245e-01 -1.17299020e-01 3.32652211e-01 1.42874405e-01 -2.57454515e-01 -2.79886067e-01 -8.09588909e-01 4.52557743e-01 -1.75367451e+00 -8.54838014e-01 -2.29175627e-01 2.30723524e+00 4.71790850e-01 2.23974034e-01 3.28495741e-01 -3.36810976e-01 9.25704896e-01 3.91387157e-02 -5.52377999e-01 3.24704170e-01 9.66163538e-03 -2.22476557e-01 1.19400549e+00 3.56868744e-01 -1.81783783e+00 1.12439859e+00 5.72606611e+00 6.47295058e-01 -1.35370493e+00 -1.30135596e-01 2.30622012e-02 -4.21829909e-01 6.10589802e-01 -1.99242577e-01 -1.59727085e+00 8.01246405e-01 6.56409562e-01 2.01741323e-01 2.47085154e-01 1.07245207e+00 4.02250141e-03 -1.39841765e-01 -6.74662113e-01 1.19900668e+00 2.48431757e-01 -1.54456365e+00 -4.07185495e-01 7.16406032e-02 8.63219917e-01 3.08034688e-01 1.51820555e-01 2.30877995e-01 2.74551690e-01 -8.04761469e-01 1.02042365e+00 5.89323938e-01 8.50811541e-01 -7.61874855e-01 6.01966262e-01 2.15590313e-01 -1.95728242e+00 -1.80552185e-01 -4.46960598e-01 1.28325820e-01 2.42311954e-01 2.33906612e-01 -6.14953578e-01 2.60300964e-01 1.26607239e+00 8.08781922e-01 -7.02695072e-01 1.68492138e+00 1.89989023e-02 2.74536401e-01 -7.90286601e-01 6.18937016e-02 2.80325115e-01 4.97064739e-02 7.95783937e-01 1.22578108e+00 3.58499616e-01 1.78048313e-01 4.66455132e-01 9.02244031e-01 5.80027252e-02 -6.54517412e-01 -2.60419905e-01 2.44541615e-02 5.71990430e-01 1.39526260e+00 -9.36943114e-01 -4.81996447e-01 -3.05058002e-01 5.49690366e-01 -1.03878111e-01 1.94710955e-01 -1.52744925e+00 -3.06529850e-01 9.91055131e-01 1.24733582e-01 8.14072251e-01 -6.11537516e-01 1.19441235e-02 -1.12414074e+00 -6.52204901e-02 -3.78582627e-01 2.81253725e-01 -6.35391593e-01 -9.30709779e-01 6.49188519e-01 5.32400757e-02 -1.66625786e+00 1.03083789e-01 -7.87862897e-01 -2.91855842e-01 4.72876191e-01 -1.56417513e+00 -1.19022238e+00 -8.50625813e-01 3.88554424e-01 5.35404503e-01 1.86172742e-02 2.07384452e-01 6.59576416e-01 -6.56276584e-01 6.12971127e-01 -1.98416159e-01 4.30794537e-01 8.69910479e-01 -1.18637013e+00 5.15644968e-01 1.11511481e+00 3.47776823e-02 3.93756986e-01 6.05391741e-01 -9.70106006e-01 -1.55658913e+00 -1.53739405e+00 3.46637338e-01 -8.28150511e-01 5.69383621e-01 -3.03916246e-01 -6.39243543e-01 7.31501460e-01 -1.80181131e-01 8.23600292e-01 3.04386348e-01 -6.17368102e-01 -2.14342959e-02 -1.45490646e-01 -9.89484131e-01 2.09906414e-01 1.14678764e+00 7.39704957e-03 -4.40797746e-01 -7.40664592e-03 8.73546720e-01 -1.03259051e+00 -9.60116625e-01 6.28197193e-01 6.20898843e-01 -9.28269327e-01 1.22747290e+00 -1.75118372e-01 -4.49729115e-01 -1.09223378e+00 6.41558468e-02 -9.22835231e-01 -3.94493163e-01 -7.52082229e-01 -5.07985115e-01 9.16017056e-01 -2.05874026e-01 -2.84136951e-01 8.87725830e-01 6.51859105e-01 -3.13658178e-01 -5.01628280e-01 -1.01990879e+00 -9.91621315e-01 -4.94209737e-01 -4.31729645e-01 6.37856603e-01 5.26237667e-01 -6.08831227e-01 -2.35089704e-01 -3.26319903e-01 6.72783256e-01 1.03397977e+00 3.22760463e-01 9.89929199e-01 -1.36800015e+00 1.21484362e-01 -3.62217426e-01 -7.57153332e-01 -1.51268232e+00 -1.84744209e-01 -2.66372383e-01 2.72420496e-01 -9.87802267e-01 -4.78680372e-01 -5.98188519e-01 -1.22204795e-03 1.73943445e-01 -2.16589049e-01 7.09399402e-01 4.15669024e-01 4.08393741e-02 -1.08530903e+00 4.29733366e-01 1.09849250e+00 -1.03990883e-01 -2.26977199e-01 1.73887774e-01 -1.39873907e-01 8.29418004e-01 6.01758122e-01 -4.38128084e-01 7.35562528e-03 -5.51639676e-01 -4.06303927e-02 -5.54693043e-02 7.71886289e-01 -1.68650186e+00 5.99997103e-01 -3.53794433e-02 9.12403166e-01 -1.10709679e+00 5.36328673e-01 -1.10145140e+00 1.33407339e-01 5.13197422e-01 2.16217071e-01 1.09889559e-01 7.69326806e-01 6.21660113e-01 -2.73917448e-02 3.44997942e-01 8.29409957e-01 2.22361550e-01 -9.74301934e-01 7.00740516e-01 -1.39029354e-01 2.56693631e-01 1.14330685e+00 -6.16210938e-01 -4.97542977e-01 1.40421271e-01 -2.23250210e-01 4.27988291e-01 5.82655609e-01 7.66376376e-01 5.39929092e-01 -1.47303009e+00 -1.49937883e-01 3.09926331e-01 5.06518967e-02 3.10223788e-01 9.21541899e-02 1.03209591e+00 -6.44635558e-01 7.28702724e-01 -2.80807346e-01 -1.13527393e+00 -1.23728418e+00 5.32029152e-01 5.73939979e-01 3.07255685e-01 -6.20881796e-01 9.33251023e-01 9.29030180e-02 8.62813517e-02 3.93705428e-01 -9.00779784e-01 -2.23821178e-02 -4.41680141e-02 6.37504637e-01 5.97453773e-01 -2.02923506e-01 -1.01127017e+00 -5.95988870e-01 1.19956505e+00 3.15149546e-01 3.18887860e-01 8.25925112e-01 -1.12763330e-01 5.33119857e-01 -3.35549228e-02 8.58193815e-01 -2.42632300e-01 -2.26932549e+00 -2.61454494e-03 -2.44389653e-01 -8.31407726e-01 2.87729412e-01 -5.88051379e-01 -1.46650994e+00 6.39200628e-01 9.81322944e-01 -7.86746740e-02 7.27338910e-01 -2.44251937e-01 9.30409133e-01 2.68695712e-01 4.35046375e-01 -1.02204406e+00 1.31123722e-01 3.69274348e-01 3.30339491e-01 -1.69395280e+00 2.49397516e-01 -4.02061492e-01 -5.28236210e-01 1.12113142e+00 1.08966100e+00 -2.70982951e-01 4.76619303e-01 5.28651953e-01 1.52218208e-01 -2.79781133e-01 -2.21890718e-01 -2.45842993e-01 8.19209635e-01 6.89992964e-01 -1.59301925e-02 2.47314200e-02 2.29701072e-01 4.51742083e-01 -2.04220876e-01 1.02096032e-02 1.59536097e-02 8.97117794e-01 -6.73680305e-01 -2.51159877e-01 -8.37532163e-01 1.30380347e-01 -2.67663062e-01 3.03643674e-01 -7.77687225e-03 9.74877179e-01 6.11258030e-01 8.58339727e-01 5.43904960e-01 -3.68350327e-01 9.95793268e-02 -5.13643205e-01 4.30333853e-01 -1.40359834e-01 -6.32695794e-01 2.16007724e-01 -3.02361339e-01 -8.61450672e-01 -6.02370620e-01 -5.10243535e-01 -1.52385259e+00 -3.15795600e-01 -7.10117340e-01 -1.82524681e-01 7.86350310e-01 7.56386340e-01 3.59896034e-01 5.00976980e-01 3.79014499e-02 -1.30349743e+00 -9.60581899e-02 -5.55488169e-01 -2.05781415e-01 4.22278792e-02 6.80542827e-01 -1.34432530e+00 -2.93765634e-01 2.75450885e-01]
[6.470572471618652, -2.1865131855010986]
b27a655d-6836-4c28-a71a-8022d3fdb48a
sentiment-analysis-for-emotional-speech
null
null
https://aclanthology.org/2020.coling-main.440
https://aclanthology.org/2020.coling-main.440.pdf
Sentiment Analysis for Emotional Speech Synthesis in a News Dialogue System
As smart speakers and conversational robots become ubiquitous, the demand for expressive speech synthesis has increased. In this paper, to control the emotional parameters of the speech synthesis according to certain dialogue contents, we construct a news dataset with emotion labels ({``}positive,{''} {``}negative,{''} or {``}neutral{''}) annotated for each sentence. We then propose a method to identify emotion labels using a model combining BERT and BiLSTM-CRF, and evaluate its effectiveness using the constructed dataset. The results showed that the classification model performance can be efficiently improved by preferentially annotating news articles with low confidence in the human-in-the-loop machine learning framework.
['Tetsunori Kobayashi', 'Yoichi Matsuyama', 'Ryota Ando', 'Hiroaki Takatsu']
2020-12-01
null
null
null
coling-2020-8
['emotional-speech-synthesis', 'expressive-speech-synthesis']
['speech', 'speech']
[-1.65324569e-01 7.55803406e-01 -1.65880978e-01 -7.22152710e-01 -5.05836189e-01 -4.24407661e-01 5.60972154e-01 -2.04562426e-01 -3.31006348e-01 1.02406764e+00 4.25556332e-01 -8.25323686e-02 4.98199373e-01 -4.50298667e-01 -3.70864719e-01 -6.15858257e-01 1.88464269e-01 5.53976119e-01 -1.08821794e-01 -3.40795457e-01 4.61180955e-02 1.19776934e-01 -1.55491304e+00 6.39168322e-01 5.54013252e-01 1.27798235e+00 3.10148537e-01 6.73656166e-01 -3.37725341e-01 1.48752797e+00 -1.02261972e+00 -6.54013038e-01 -3.51196766e-01 -5.54800868e-01 -1.02359581e+00 -2.79703457e-02 -6.50125742e-01 -1.94813415e-01 2.30270326e-02 1.19679272e+00 5.42443395e-01 4.40687835e-01 6.07595980e-01 -1.33634377e+00 -3.42634678e-01 9.42659974e-01 -8.12975094e-02 -2.29764163e-01 5.12037456e-01 -6.44150004e-02 1.03893793e+00 -6.80762947e-01 7.18144417e-01 1.26096845e+00 3.40939224e-01 9.22092021e-01 -8.65849853e-01 -5.34840882e-01 4.77164149e-01 1.55375168e-01 -9.86588359e-01 -6.91919208e-01 1.09313774e+00 -3.81035000e-01 1.12996781e+00 2.51378536e-01 5.38383186e-01 1.61564898e+00 -3.58373523e-02 1.09764218e+00 1.09279037e+00 -5.78402519e-01 2.77755678e-01 6.25288367e-01 -1.32043377e-01 5.18250048e-01 -8.58606875e-01 -1.85222328e-01 -3.81482780e-01 -1.13951758e-01 2.32189640e-01 -5.39069057e-01 -5.78316301e-02 1.80268571e-01 -1.16190195e+00 9.69304800e-01 -5.98947741e-02 4.49538141e-01 -6.50027096e-01 2.56064236e-02 8.79207313e-01 4.25963372e-01 8.81942630e-01 4.28496271e-01 -7.43139029e-01 -6.21206760e-01 -9.01127756e-02 5.76235093e-02 1.19241011e+00 1.09173238e+00 4.25769359e-01 4.51987842e-03 -3.87529522e-01 1.47481000e+00 3.80033404e-01 3.86215866e-01 5.33253253e-01 -1.31454730e+00 1.72756448e-01 2.59033561e-01 5.55790424e-01 -6.48358941e-01 -7.92564690e-01 -1.14691809e-01 -8.02278697e-01 -2.32628688e-01 6.04473948e-02 -7.04340160e-01 -4.03522849e-01 1.96197593e+00 3.94111723e-01 -1.96223095e-01 6.65188789e-01 7.27101624e-01 9.67279375e-01 1.10134017e+00 4.13740069e-01 -6.93394125e-01 1.61289179e+00 -1.27562153e+00 -1.30468190e+00 -2.59920806e-01 7.38495827e-01 -8.07299435e-01 1.21618736e+00 4.87543762e-01 -7.42382586e-01 -3.71214598e-01 -6.33723080e-01 2.47066896e-02 -1.25412017e-01 5.26793480e-01 7.07717359e-01 3.52757543e-01 -9.26806092e-01 1.15732580e-01 -5.94587684e-01 -1.54031217e-01 -2.03478768e-01 1.97563812e-01 -1.15486689e-01 5.66020966e-01 -1.70717740e+00 1.13081503e+00 4.39723551e-01 2.00687379e-01 -5.67418993e-01 1.46357223e-01 -7.95161784e-01 -3.29603888e-02 1.89699292e-01 -2.49791279e-01 1.91255617e+00 -1.36428034e+00 -2.37792468e+00 8.64836514e-01 -1.41109169e-01 -2.28293464e-01 2.55923480e-01 -1.77877575e-01 -6.61264718e-01 9.58120748e-02 -5.40069155e-02 8.24628174e-01 5.54135799e-01 -1.43045020e+00 -8.09265077e-01 -5.68931624e-02 1.16019107e-01 3.67713660e-01 -1.72134191e-02 6.11070752e-01 -1.18508548e-01 -5.82326114e-01 -1.32338241e-01 -1.07559097e+00 -1.36768669e-01 -2.94580162e-01 -4.79456812e-01 -7.43337452e-01 4.50205415e-01 -7.75775313e-01 9.27309513e-01 -2.09348226e+00 7.74537548e-02 -1.53069735e-01 -2.36248165e-01 1.84329823e-01 2.33235791e-01 3.98286194e-01 2.69086748e-01 -2.50063032e-01 8.97566006e-02 -3.91083419e-01 3.81819814e-01 4.74767834e-01 -2.73549139e-01 -2.98498943e-03 4.34945971e-02 4.14366663e-01 -1.01834297e+00 -6.34246528e-01 2.02396601e-01 4.92875278e-01 -4.25344557e-01 7.62561083e-01 -6.15545869e-01 6.84797108e-01 -7.83013940e-01 2.09664717e-01 1.93397738e-02 2.05381569e-02 3.76707375e-01 -6.73348755e-02 -2.23980263e-01 5.95717132e-01 -7.56691813e-01 1.34944904e+00 -6.14875734e-01 4.90896583e-01 4.17978704e-01 -9.68908370e-01 1.37087715e+00 9.42831516e-01 3.62716198e-01 -6.53195024e-01 5.57995319e-01 2.18500551e-02 1.88072268e-02 -1.01198447e+00 4.09341455e-01 -5.11982918e-01 -5.86186826e-01 2.53347635e-01 -1.82686578e-02 -3.75461280e-01 -2.37458304e-01 -2.57408649e-01 8.47950161e-01 1.12552375e-01 2.35598996e-01 8.06630962e-03 6.26402497e-01 -2.54792333e-01 6.28616452e-01 2.41194367e-01 -4.64527130e-01 -8.12135190e-02 8.27868462e-01 -1.54241562e-01 -7.79823542e-01 -4.91377950e-01 1.30233616e-01 1.73977768e+00 -4.47695144e-02 1.28243417e-02 -9.87298191e-01 -4.45081860e-01 -7.15432525e-01 1.29521716e+00 -4.57998216e-01 -7.31004402e-02 -2.78855205e-01 -6.12596989e-01 6.64732635e-01 3.68169308e-01 6.20399117e-01 -1.75947225e+00 -5.88905156e-01 3.67368609e-01 -9.00809228e-01 -1.19135761e+00 -9.54861194e-02 5.50163150e-01 -1.59478143e-01 -2.92729616e-01 -3.68349344e-01 -9.88687277e-01 3.32930177e-01 -6.18287563e-01 1.06371963e+00 -3.35036844e-01 4.71250445e-01 8.47361684e-02 -8.43240678e-01 -5.13845503e-01 -8.40456247e-01 3.69103695e-03 4.65477221e-02 1.31262317e-01 2.17004359e-01 -4.51656193e-01 -4.26797509e-01 3.05338591e-01 -4.16851670e-01 4.10080642e-01 3.96422952e-01 7.73101628e-01 2.24229708e-01 -3.16129833e-01 1.03919446e+00 -9.18609619e-01 9.50017571e-01 -2.97845423e-01 4.33960855e-02 1.89084098e-01 -1.90121651e-01 2.33095400e-02 6.63237929e-01 -6.49130940e-01 -1.59381986e+00 1.35584593e-01 -8.43540192e-01 -1.81669533e-01 -4.77825731e-01 4.96026009e-01 -5.31016707e-01 5.83557725e-01 3.16700906e-01 -3.66861932e-02 -2.65256882e-01 -9.23904479e-02 5.11950076e-01 1.30822504e+00 6.14267588e-01 -6.56656146e-01 -9.42436904e-02 -3.77458632e-02 -6.20250344e-01 -5.88044763e-01 -9.77068126e-01 -4.36937287e-02 -3.28359693e-01 -7.01563060e-01 1.09048319e+00 -9.88643944e-01 -1.18614900e+00 3.88415039e-01 -1.55086005e+00 -5.18559158e-01 -3.63000073e-02 7.63597429e-01 -7.02829957e-01 1.41004443e-01 -1.09145069e+00 -1.32913291e+00 -5.59503913e-01 -1.04592335e+00 9.23724592e-01 1.30533367e-01 -7.73833930e-01 -7.26553202e-01 4.54183929e-02 4.80165750e-01 1.72885641e-01 -1.49668939e-02 8.86627495e-01 -1.03040552e+00 3.69502366e-01 -2.15848386e-01 -2.22281460e-02 5.81984878e-01 -1.74826067e-02 1.29129097e-01 -1.25035441e+00 3.11091125e-01 3.04562181e-01 -8.02718222e-01 -5.21861529e-03 3.22188251e-02 9.51233506e-01 -8.24289262e-01 -6.86771348e-02 -9.77028161e-02 4.36180770e-01 8.37629497e-01 5.72841346e-01 5.30293807e-02 3.44621599e-01 1.05778110e+00 9.56766725e-01 7.08223164e-01 6.46398962e-01 5.85475028e-01 1.54510602e-01 7.20290244e-02 4.73841280e-01 -2.71466911e-01 6.69521749e-01 1.23432946e+00 8.69190469e-02 -6.10959053e-01 -4.92763937e-01 2.85415918e-01 -2.00790071e+00 -9.31370378e-01 8.91798288e-02 1.44599807e+00 1.29085577e+00 9.38974619e-02 -9.45033357e-02 -1.14637606e-01 9.83242035e-01 2.33141467e-01 -3.68102401e-01 -9.32328284e-01 -3.71103324e-02 -3.30329567e-01 -1.23688027e-01 6.28855467e-01 -1.00991249e+00 1.29229617e+00 5.67923403e+00 7.50486732e-01 -1.24906123e+00 1.53178647e-01 8.03891599e-01 2.36764491e-01 -2.38616899e-01 -2.11839512e-01 -4.82379854e-01 6.08718932e-01 1.10039628e+00 1.49639264e-01 3.27538967e-01 1.27881587e+00 4.38530058e-01 -1.06807612e-01 -9.82110381e-01 8.02045524e-01 1.05014935e-01 -7.46267259e-01 -3.68257225e-01 -5.17558932e-01 4.07323897e-01 -1.34328067e-01 -2.48417154e-01 7.77353048e-01 6.55632615e-01 -5.92694223e-01 9.44410682e-01 6.05978489e-01 5.06138980e-01 -6.42546058e-01 7.91304231e-01 7.06044674e-01 -6.68493211e-01 1.27954915e-01 -3.97398844e-02 -2.28874341e-01 3.55617106e-01 4.11850095e-01 -1.03039515e+00 3.09357941e-01 5.96403182e-01 9.24099013e-02 1.59039348e-01 1.64743796e-01 -6.80619955e-01 6.72316670e-01 -6.32886738e-02 -8.33925962e-01 8.47157687e-02 -2.99726218e-01 2.76082724e-01 1.34972441e+00 2.52002805e-01 4.59555447e-01 3.45927268e-01 3.52459133e-01 -2.59747028e-01 3.36014301e-01 -2.75395542e-01 -1.48215145e-01 4.23934221e-01 1.31449175e+00 -9.10860419e-01 -5.68343163e-01 -1.94288179e-01 1.12159693e+00 3.43430758e-01 2.82071441e-01 -1.02956772e+00 -4.32494134e-01 3.19289029e-01 -5.77136874e-01 -6.91317394e-02 2.34212667e-01 1.08233243e-02 -8.75187755e-01 -1.19785048e-01 -7.67636538e-01 5.02252541e-02 -1.34529316e+00 -1.20406437e+00 1.07786238e+00 -2.04341471e-01 -8.70616376e-01 -6.32197022e-01 -5.35740912e-01 -3.88670474e-01 3.88405710e-01 -9.38075483e-01 -1.04521203e+00 3.26232836e-02 3.19474518e-01 5.67633748e-01 -1.89200342e-02 1.17026937e+00 3.26859802e-01 -4.67079729e-01 2.16843084e-01 -2.93945428e-02 1.93367839e-01 7.12425888e-01 -9.38352406e-01 -2.84272343e-01 7.72395507e-02 -3.22535425e-01 1.43531337e-01 1.25723720e+00 -3.82967770e-01 -8.35808396e-01 -8.38181674e-01 1.27933431e+00 -5.90220187e-03 6.95967734e-01 -6.18219137e-01 -7.21322656e-01 7.30289638e-01 5.55352569e-01 -4.48443502e-01 7.73457885e-01 2.20395654e-01 -2.06639543e-02 7.48823807e-02 -1.36721361e+00 6.67101443e-01 6.39309943e-01 -6.74995124e-01 -6.00129485e-01 5.27530134e-01 1.03733432e+00 -4.89720106e-01 -1.00365186e+00 5.31351089e-01 5.63131690e-01 -8.14217925e-01 4.33376402e-01 -4.32107925e-01 4.02127922e-01 6.39354289e-02 -2.06583977e-01 -1.43032014e+00 -6.78870175e-03 -6.05844498e-01 2.78161585e-01 1.43432438e+00 7.13837504e-01 -5.34620523e-01 4.16547596e-01 8.36716473e-01 -6.17498994e-01 -5.43761492e-01 -1.11964238e+00 -1.34631127e-01 -3.13941091e-01 -4.98257816e-01 3.62595320e-01 1.01730847e+00 7.43673384e-01 9.79695082e-01 -7.52491057e-01 -3.43995839e-02 -3.46706182e-01 3.43333697e-03 5.05318046e-01 -1.15187705e+00 -3.08147132e-01 -3.45499605e-01 4.45641167e-02 -1.11605632e+00 7.32599080e-01 -4.39612508e-01 7.86636531e-01 -1.44486630e+00 -3.97862867e-02 -4.15095210e-01 -1.16626970e-01 6.41966760e-01 -9.37257335e-03 -9.19225663e-02 -1.89195424e-01 -1.35243639e-01 -8.22568059e-01 1.01318872e+00 1.14666426e+00 -2.07535680e-02 -6.13052137e-02 1.92387000e-01 -4.02426243e-01 9.50110257e-01 7.47542322e-01 -1.91625208e-01 -3.64644349e-01 -1.28128966e-02 5.13076484e-01 7.32351780e-01 -1.55335858e-01 -4.35198814e-01 9.24691651e-03 -2.00244188e-01 -2.03767400e-02 -3.84553641e-01 6.98144853e-01 -5.94687164e-01 8.20275545e-02 1.31363913e-01 -8.26835692e-01 -2.06997365e-01 6.49032965e-02 1.18481599e-01 -3.72920215e-01 -4.11710441e-01 7.73036957e-01 6.00535423e-03 -4.41740394e-01 -3.06660891e-01 -8.51448298e-01 -1.45570442e-01 9.41155732e-01 4.73874062e-01 -1.75500125e-01 -8.97876740e-01 -9.67034817e-01 3.39044660e-01 -6.12854846e-02 6.21497095e-01 1.80558532e-01 -1.18560565e+00 -3.85624200e-01 -2.24359304e-01 7.57684037e-02 2.15466563e-02 3.40703487e-01 4.98202026e-01 -2.27075964e-01 3.23490173e-01 -1.54926971e-01 -2.03061953e-01 -1.15164828e+00 4.90114272e-01 2.39864320e-01 -2.67658383e-01 -2.25605324e-01 1.00228512e+00 1.02965057e-01 -7.56875217e-01 6.49507284e-01 -3.17760110e-01 -5.04100978e-01 2.45283201e-01 -2.20692251e-02 1.77177101e-01 -1.67525247e-01 -7.93894291e-01 -9.12459940e-02 -1.48765430e-01 2.85654426e-01 -5.35991669e-01 1.03745246e+00 -4.43381995e-01 -3.25319976e-01 1.04366338e+00 1.04645395e+00 -1.40701756e-01 -1.17061508e+00 -1.12735955e-02 1.16303742e-01 2.63045073e-01 -1.81283846e-01 -1.13820887e+00 -6.27911806e-01 6.34728611e-01 2.93291599e-01 4.69816566e-01 9.61145997e-01 1.97238967e-01 7.58358002e-01 6.39983714e-01 3.87051851e-01 -1.74196362e+00 -2.13456769e-02 7.47862279e-01 9.44577277e-01 -1.15336895e+00 -5.12785196e-01 -4.27116305e-01 -1.41295910e+00 7.75338948e-01 6.02886498e-01 2.28307724e-01 4.51543868e-01 3.92728984e-01 4.89404887e-01 -1.28789455e-01 -1.10852301e+00 1.49027959e-01 -2.10454971e-01 3.10204804e-01 7.18535006e-01 3.62068594e-01 -4.94045675e-01 1.14555919e+00 -4.79746491e-01 -8.65676999e-02 2.37537801e-01 6.16821527e-01 -6.29360795e-01 -8.66797686e-01 -8.05592313e-02 2.03080580e-01 -5.25952160e-01 2.72931188e-01 -5.64347208e-01 3.96696746e-01 1.44818589e-01 1.42708111e+00 1.18675590e-01 -4.04101878e-01 3.90079290e-01 5.72502315e-01 7.37178549e-02 -4.22351241e-01 -6.88874424e-01 4.64772880e-01 9.33126807e-01 -1.45383656e-01 -6.96350336e-01 -4.89785373e-01 -1.73379862e+00 1.50257245e-01 -3.26667041e-01 6.65652037e-01 6.25854015e-01 1.21785712e+00 1.36403590e-01 5.33349037e-01 1.02805531e+00 -7.91098237e-01 -5.00511050e-01 -1.51078963e+00 -4.44993973e-01 3.19280922e-01 -1.20989360e-01 -4.91211861e-01 -4.39340740e-01 1.15888081e-01]
[13.01169490814209, 6.1897478103637695]
3daaa7b3-0688-447b-8b65-a3ece4fd511c
leveraging-relational-information-for-1
2205.10056
null
https://arxiv.org/abs/2205.10056v1
https://arxiv.org/pdf/2205.10056v1.pdf
Leveraging Relational Information for Learning Weakly Disentangled Representations
Disentanglement is a difficult property to enforce in neural representations. This might be due, in part, to a formalization of the disentanglement problem that focuses too heavily on separating relevant factors of variation of the data in single isolated dimensions of the neural representation. We argue that such a definition might be too restrictive and not necessarily beneficial in terms of downstream tasks. In this work, we present an alternative view over learning (weakly) disentangled representations, which leverages concepts from relational learning. We identify the regions of the latent space that correspond to specific instances of generative factors, and we learn the relationships among these regions in order to perform controlled changes to the latent codes. We also introduce a compound generative model that implements such a weak disentanglement approach. Our experiments shows that the learned representations can separate the relevant factors of variation in the data, while preserving the information needed for effectively generating high quality data samples.
['Davide Bacciu', 'Andrea Valenti']
2022-05-20
leveraging-relational-information-for
https://openreview.net/forum?id=TNmJgFmz2k
https://openreview.net/pdf?id=TNmJgFmz2k
null
['relational-reasoning']
['natural-language-processing']
[ 3.60340774e-01 5.41365564e-01 -3.33316028e-01 -2.12223679e-01 -6.48603082e-01 -9.29797947e-01 9.96390343e-01 -1.87519968e-01 -4.14799675e-02 6.80127740e-01 7.35755622e-01 -1.95278749e-01 -7.00483203e-01 -6.66515231e-01 -7.23466814e-01 -8.43734086e-01 6.66996017e-02 4.56508785e-01 -2.20000699e-01 -2.04284802e-01 1.28791958e-01 6.12361372e-01 -1.61781144e+00 3.97399902e-01 6.19756937e-01 2.70497978e-01 -1.62067682e-01 5.66825926e-01 7.75921568e-02 3.91734660e-01 -5.49340487e-01 -3.11003417e-01 3.67776364e-01 -6.26928151e-01 -3.33554596e-01 1.85765477e-03 4.24413383e-01 -1.38357341e-01 -3.06841403e-01 8.53930175e-01 8.38123783e-02 -1.29086077e-01 1.17199707e+00 -1.29695141e+00 -6.62875950e-01 7.52563953e-01 -5.52781284e-01 3.92570823e-01 -1.02547295e-01 -8.92138407e-02 1.54837370e+00 -6.33195817e-01 3.93773437e-01 1.21623564e+00 2.69720584e-01 7.27137148e-01 -1.99999642e+00 -6.54196858e-01 3.68700624e-01 -4.41797376e-01 -1.19693398e+00 -7.45707870e-01 7.81503439e-01 -8.73451591e-01 7.15289593e-01 4.60928023e-01 6.74837291e-01 1.38832664e+00 1.69253156e-01 6.48478508e-01 9.02273536e-01 -3.72197717e-01 2.89038926e-01 6.03998490e-02 3.17812622e-01 5.76945662e-01 9.82905149e-01 3.66082966e-01 -6.69212580e-01 -3.39384764e-01 9.16182935e-01 1.07760496e-01 -4.41684872e-01 -1.14038634e+00 -1.15852344e+00 1.13202929e+00 2.48876899e-01 2.98809141e-01 3.54378372e-02 1.64076209e-01 2.01802209e-01 2.50117809e-01 3.81908238e-01 8.67814422e-01 -5.34395099e-01 5.97159788e-02 -7.44053006e-01 4.14240956e-01 7.65905738e-01 7.22433448e-01 8.99674594e-01 6.90575540e-02 -1.72698691e-01 5.16980350e-01 5.43234229e-01 9.47921425e-02 2.21722722e-01 -7.48706639e-01 4.93018508e-01 6.16207659e-01 -1.06954262e-01 -8.23617756e-01 -1.52941763e-01 -4.57639426e-01 -6.42079413e-01 3.36624533e-01 5.84481299e-01 -1.52400017e-01 -8.47590029e-01 2.15933561e+00 -1.90509915e-01 1.26980349e-01 4.35360409e-02 6.66673422e-01 1.46870419e-01 2.86628544e-01 -1.57225430e-01 -6.32583052e-02 1.24072552e+00 -5.06218255e-01 -5.61327159e-01 -4.25753146e-01 4.27144438e-01 -1.71852574e-01 1.01951838e+00 3.03177029e-01 -9.82615471e-01 -2.09533751e-01 -1.34879005e+00 -9.04642642e-02 -1.96845740e-01 1.08314462e-01 9.34054077e-01 7.61835277e-01 -7.47887015e-01 5.96698940e-01 -1.03189230e+00 -9.55123827e-02 5.06538033e-01 3.34158629e-01 -3.87014329e-01 1.13575205e-01 -9.48222339e-01 6.84971869e-01 2.55534649e-01 -1.27592951e-01 -9.97087896e-01 -8.33925784e-01 -9.01574731e-01 3.73887569e-01 3.95417660e-01 -8.48793089e-01 7.56469786e-01 -7.88090765e-01 -1.01627505e+00 8.62184465e-01 -6.05802573e-02 -1.89478844e-01 1.92796677e-01 -3.38873208e-01 -7.94369876e-02 -1.34671822e-01 -9.92162377e-02 3.38494807e-01 1.03676569e+00 -1.50646460e+00 -6.66256174e-02 -7.42689013e-01 9.01633278e-02 9.07236636e-02 -1.36043906e-01 -2.12793872e-01 -1.16322555e-01 -7.24938929e-01 2.45402217e-01 -1.11058939e+00 -1.52051851e-01 5.22056222e-03 -5.12149930e-01 4.98349965e-02 3.29143733e-01 -2.37943739e-01 9.65360463e-01 -2.16712117e+00 6.78963304e-01 2.57507652e-01 7.36274898e-01 -2.94529013e-02 -2.47658104e-01 4.02302206e-01 -4.03078437e-01 4.21347231e-01 -1.17787801e-01 -4.47656065e-01 7.23080784e-02 4.61240262e-01 -8.49750340e-01 5.05074322e-01 5.46071827e-01 8.67718875e-01 -7.45629191e-01 7.31397271e-02 -2.82929629e-01 5.30858636e-01 -8.52486074e-01 1.42533258e-01 -3.76460969e-01 4.61241156e-01 -5.65068662e-01 1.04973517e-01 3.94443989e-01 -4.29634228e-02 3.71407241e-01 -1.14316076e-01 1.95431948e-01 6.93631113e-01 -1.03361356e+00 1.79616904e+00 -1.27398774e-01 6.95783436e-01 -1.22478418e-01 -1.11660159e+00 7.86575794e-01 2.89209306e-01 3.42820436e-01 -7.86091536e-02 2.74552442e-02 -3.86141501e-02 2.76997656e-01 -4.03323859e-01 3.04284215e-01 -2.70995498e-01 -8.60546827e-02 7.91266382e-01 3.18020463e-01 -2.60979794e-02 1.08713722e-02 2.08966553e-01 1.00108099e+00 3.35206181e-01 3.94014269e-01 -5.44232547e-01 -1.67434633e-01 -3.28346133e-01 6.59216166e-01 7.69173861e-01 4.10455884e-03 7.12799549e-01 1.15251541e+00 -1.27312407e-01 -1.14171469e+00 -1.45912659e+00 -7.80738741e-02 8.28448892e-01 -3.63688469e-01 -6.54529512e-01 -4.44707245e-01 -6.40554905e-01 -3.79646979e-02 6.39325798e-01 -9.00645077e-01 -4.83400464e-01 -4.10269409e-01 -1.05486429e+00 7.08640218e-01 4.96120423e-01 -3.76546621e-01 -4.39164370e-01 -7.48425186e-01 -3.70892406e-01 2.99085855e-01 -6.41374111e-01 -7.78347347e-03 7.04892695e-01 -1.01402509e+00 -1.06329215e+00 -3.62433702e-01 -1.46896273e-01 8.71386647e-01 3.31628472e-01 1.18139112e+00 -1.54701084e-01 -5.55498078e-02 9.86674950e-02 -5.15903309e-02 -1.92788497e-01 -3.38588893e-01 2.18135729e-01 -1.42152265e-01 -1.28523543e-01 5.85513353e-01 -9.93720710e-01 -3.08681816e-01 4.86152396e-02 -1.11430120e+00 1.84813991e-01 6.87356949e-01 8.39805305e-01 2.30153441e-01 -9.95343700e-02 3.78289729e-01 -1.07048929e+00 8.05016518e-01 -6.91563427e-01 -4.62514311e-01 2.71925926e-01 -5.96167564e-01 8.05679262e-01 3.14242661e-01 -5.55882394e-01 -6.64142668e-01 -1.10507049e-02 3.27843130e-01 -5.19351006e-01 -2.16002494e-01 3.93605798e-01 -5.69736302e-01 5.48685908e-01 8.93306255e-01 -1.17740100e-02 1.06119327e-01 -5.49237549e-01 7.91780829e-01 1.97464794e-01 -3.51897888e-02 -8.52294087e-01 9.46251094e-01 4.60702509e-01 -1.47307003e-02 -4.34271991e-01 -8.86992216e-01 6.62855133e-02 -7.51205504e-01 3.83082300e-01 7.88668692e-01 -1.00768864e+00 -3.58411521e-01 -3.10671896e-01 -9.08904076e-01 -1.03197463e-01 -5.69273651e-01 4.58627522e-01 -7.67280400e-01 -1.32172137e-01 -3.80990565e-01 -7.05924034e-01 4.43805754e-01 -1.20249152e+00 1.07413912e+00 -5.35150170e-02 -5.15830278e-01 -7.89369702e-01 4.85433072e-01 1.63646430e-01 4.69280221e-02 3.05556804e-01 1.35490847e+00 -9.22525883e-01 -7.35903561e-01 -5.78576140e-02 1.02148689e-02 4.11910117e-02 3.17397416e-01 8.64438638e-02 -1.23088765e+00 -2.44788289e-01 1.60350397e-01 -3.25578272e-01 1.20669162e+00 1.50783479e-01 8.13563287e-01 -4.52111691e-01 -3.70168120e-01 6.43338084e-01 1.22639430e+00 -9.03212950e-02 4.91542459e-01 -1.07978389e-01 8.14377725e-01 8.45886648e-01 -2.42567867e-01 1.98651150e-01 1.35518879e-01 7.32171416e-01 9.93971229e-02 4.22860570e-02 4.97559346e-02 -5.69943488e-01 3.49177808e-01 5.81506312e-01 -2.92464532e-02 -3.02620586e-02 -6.30907476e-01 4.67461795e-01 -1.84577298e+00 -1.04203081e+00 2.12840289e-01 2.10575223e+00 9.42054868e-01 1.82244197e-01 2.27125213e-01 2.98347831e-01 4.18392688e-01 4.58289504e-01 -6.75453246e-01 -4.04253185e-01 1.51568279e-02 1.40794367e-01 2.85917908e-01 5.83234191e-01 -6.45864189e-01 5.45922399e-01 6.93795395e+00 4.20119584e-01 -7.69480169e-01 -1.18791528e-01 4.55828071e-01 -3.49022120e-01 -1.06262207e+00 2.45276511e-01 -8.21110070e-01 1.77901015e-01 8.51927757e-01 -1.45829856e-01 6.88954532e-01 5.33615947e-01 -1.64017093e-03 2.53845453e-01 -1.82939935e+00 6.44961059e-01 1.44422263e-01 -1.25103438e+00 3.50579232e-01 4.91994619e-01 6.08452499e-01 -1.95659995e-01 2.73316205e-01 1.58036262e-01 6.51626766e-01 -1.35869026e+00 5.08490741e-01 6.33461714e-01 3.71985853e-01 -7.31053293e-01 -1.03722867e-02 4.94920850e-01 -6.20960951e-01 2.04934552e-02 -3.82783324e-01 -1.56039909e-01 -2.97850072e-01 7.57166147e-01 -6.46815479e-01 3.21401089e-01 1.69731587e-01 6.92050040e-01 -6.25913501e-01 4.17952031e-01 -4.97411907e-01 4.49988484e-01 5.40199280e-02 2.56705552e-01 -2.58775532e-01 -3.02870005e-01 6.00177407e-01 9.24318850e-01 1.74993590e-01 -1.94052890e-01 -3.79597247e-01 1.61158001e+00 4.20523360e-02 -4.62666333e-01 -1.16227913e+00 -3.77083987e-01 3.40829730e-01 1.03380358e+00 -5.97761512e-01 -1.48453638e-02 -4.68673229e-01 6.28165662e-01 6.45655394e-01 6.13644004e-01 -4.91336554e-01 1.68602437e-01 1.16415346e+00 -7.63662010e-02 4.26070035e-01 -5.70055485e-01 -5.62951863e-01 -1.76508570e+00 -1.12389870e-01 -9.79163527e-01 1.73049018e-01 -5.49255371e-01 -1.37969470e+00 4.44605172e-01 2.16297165e-01 -1.01133609e+00 -5.40620983e-01 -6.37334228e-01 -3.89392436e-01 1.08131695e+00 -1.24493492e+00 -9.12562430e-01 1.93421021e-01 3.87765706e-01 1.93193257e-01 -1.82205319e-01 1.06091869e+00 -1.63625330e-01 -7.14911997e-01 4.97571468e-01 6.96341097e-02 1.41372904e-02 3.72337371e-01 -1.30772841e+00 3.75710309e-01 9.51747298e-01 8.24580610e-01 1.33511817e+00 8.04451108e-01 -4.06679213e-01 -1.31245041e+00 -6.58322513e-01 6.91352010e-01 -8.66591513e-01 7.00915515e-01 -1.02865744e+00 -8.81784737e-01 1.02576125e+00 1.47468597e-01 -1.55226424e-01 1.25766420e+00 5.53062499e-01 -1.01053131e+00 1.18453249e-01 -7.59909570e-01 8.77809882e-01 1.13103116e+00 -8.73196244e-01 -8.58942926e-01 -1.60611123e-01 9.11185026e-01 1.38799310e-01 -6.60085022e-01 2.50518441e-01 7.06661463e-01 -1.13120615e+00 1.03566504e+00 -1.08191466e+00 6.25984311e-01 -2.11240396e-01 -4.21144873e-01 -1.53799713e+00 -4.55894887e-01 -5.15555382e-01 -2.60923773e-01 1.27570367e+00 5.31781971e-01 -4.75989521e-01 8.73599827e-01 8.88744295e-01 2.33236000e-01 -7.52610385e-01 -6.98945642e-01 -5.41154563e-01 4.84582841e-01 -2.68048763e-01 7.30546713e-01 1.00127780e+00 6.76303655e-02 6.96260571e-01 -2.21491098e-01 8.51113424e-02 4.34689462e-01 2.91197568e-01 6.56943321e-01 -1.36702955e+00 -8.26115191e-01 -5.91662705e-01 -4.28824335e-01 -1.01443636e+00 3.82158279e-01 -1.02921402e+00 -1.74770087e-01 -1.11875081e+00 3.91310275e-01 -4.23586279e-01 -4.08394516e-01 4.11473662e-01 -1.17333993e-01 -2.26746826e-03 1.92544177e-01 4.28369015e-01 4.27581593e-02 6.07466698e-01 9.69313502e-01 2.14058552e-02 -5.25029749e-02 -8.14806148e-02 -1.51087368e+00 5.57627618e-01 7.46881247e-01 -5.83352864e-01 -9.10291076e-01 -6.19464099e-01 6.45880878e-01 -1.35967046e-01 4.20821428e-01 -4.51921493e-01 -2.55478323e-01 -3.69471401e-01 4.13786232e-01 -4.53189276e-02 4.18069214e-01 -7.62715995e-01 1.77949131e-01 2.23641515e-01 -9.17577505e-01 -8.15985128e-02 2.65404861e-02 6.72010064e-01 1.25888914e-01 -1.66505963e-01 5.18041849e-01 -1.72049984e-01 1.17025683e-02 4.83284937e-03 -2.37109512e-01 1.20724998e-01 8.15350413e-01 -1.31151974e-01 -5.04509032e-01 -1.37404323e-01 -7.04344392e-01 -3.08326840e-01 4.86887604e-01 5.19997537e-01 4.48244691e-01 -1.23803413e+00 -5.50770521e-01 6.14135444e-01 3.20288599e-01 1.29046477e-02 -3.05294544e-01 4.47903663e-01 1.56410277e-01 4.61072296e-01 -2.76190609e-01 -3.05252492e-01 -8.31560075e-01 6.46009147e-01 3.39389384e-01 -2.04408154e-01 -5.44818223e-01 5.66153944e-01 7.26121664e-01 -2.11180672e-01 1.59764830e-02 -5.13437331e-01 -1.91511571e-01 2.25164652e-01 3.95120323e-01 2.62103304e-02 -7.16990307e-02 -4.12693232e-01 -2.53989279e-01 2.70946532e-01 -1.73656166e-01 -3.94874454e-01 1.43016708e+00 -3.51661816e-02 1.28316309e-03 8.51567507e-01 1.12290668e+00 4.48593587e-01 -1.60465670e+00 -7.25558251e-02 8.15661252e-02 -5.31370699e-01 -1.45258904e-01 -6.31555259e-01 -1.03542793e+00 9.92893994e-01 2.01062888e-01 3.53132188e-01 8.07526112e-01 2.77028710e-01 3.37127969e-02 1.67538553e-01 1.44489124e-01 -4.06038046e-01 4.07817289e-02 1.65403530e-01 8.42714965e-01 -6.66723192e-01 1.12983242e-01 -2.84574807e-01 -5.52949190e-01 9.05157983e-01 4.74410921e-01 -6.52111650e-01 5.99238694e-01 5.07674813e-01 -3.08993697e-01 -4.00163829e-01 -1.12230217e+00 -8.81066695e-02 5.07400513e-01 7.12974012e-01 5.75842738e-01 8.49962011e-02 -1.83609113e-01 7.54635096e-01 -2.82555044e-01 -3.39825630e-01 5.72726607e-01 6.64479077e-01 -2.83550441e-01 -1.19359088e+00 -1.36518940e-01 3.99969161e-01 -3.13314050e-01 -1.15710750e-01 -5.86327434e-01 6.72534466e-01 1.45061389e-01 6.99982166e-01 1.93602666e-01 -2.13913918e-01 1.40350863e-01 2.27797791e-01 6.85841084e-01 -9.34000969e-01 -1.13236949e-01 1.16707452e-01 -7.97306374e-02 -4.68628407e-01 -3.24323803e-01 -6.60587907e-01 -8.71769488e-01 1.09135240e-01 -1.75050765e-01 8.65331963e-02 4.08655435e-01 1.09089673e+00 5.47954977e-01 5.29045284e-01 4.64314729e-01 -7.44669735e-01 -6.38777971e-01 -7.26438999e-01 -6.66743875e-01 3.10175627e-01 7.14301944e-01 -7.60427177e-01 -6.01241529e-01 7.11897984e-02]
[9.25931453704834, 4.870980739593506]
b16381c9-ce5c-46ce-ba81-1bb93f855b04
text-to-speech-synthesis-based-on-latent
2212.08329
null
https://arxiv.org/abs/2212.08329v1
https://arxiv.org/pdf/2212.08329v1.pdf
Text-to-speech synthesis based on latent variable conversion using diffusion probabilistic model and variational autoencoder
Text-to-speech synthesis (TTS) is a task to convert texts into speech. Two of the factors that have been driving TTS are the advancements of probabilistic models and latent representation learning. We propose a TTS method based on latent variable conversion using a diffusion probabilistic model and the variational autoencoder (VAE). In our TTS method, we use a waveform model based on VAE, a diffusion model that predicts the distribution of latent variables in the waveform model from texts, and an alignment model that learns alignments between the text and speech latent sequences. Our method integrates diffusion with VAE by modeling both mean and variance parameters with diffusion, where the target distribution is determined by approximation from VAE. This latent variable conversion framework potentially enables us to flexibly incorporate various latent feature extractors. Our experiments show that our method is robust to linguistic labels with poor orthography and alignment errors.
['Tomoki Toda', 'Yusuke Yasuda']
2022-12-16
null
null
null
null
['text-to-speech-synthesis']
['speech']
[ 4.38556522e-02 2.75842190e-01 -3.61097276e-01 -4.20427382e-01 -9.25899029e-01 -6.66421771e-01 9.77339208e-01 -6.74640715e-01 9.56203565e-02 5.01303732e-01 8.32387209e-01 -2.75720328e-01 2.13221446e-01 -7.79411793e-01 -5.94691813e-01 -7.77432978e-01 5.98404408e-01 8.37038517e-01 3.82214375e-02 -1.10705167e-01 1.07364245e-02 2.69598931e-01 -1.19528532e+00 2.46817559e-01 7.64220953e-01 6.33573592e-01 4.01658595e-01 8.40250850e-01 -7.11016178e-01 6.67224884e-01 -7.72851706e-01 -3.92935187e-01 9.04145911e-02 -6.55330181e-01 -4.30152804e-01 -5.09514883e-02 -1.61840066e-01 -2.66941279e-01 -4.19999331e-01 1.01391423e+00 3.21433038e-01 2.72270679e-01 1.39384437e+00 -1.15199375e+00 -1.20838380e+00 1.11022222e+00 -3.03468376e-01 -9.11282822e-02 9.62378830e-02 -4.59670201e-02 1.14267945e+00 -8.20145905e-01 6.31718338e-01 1.70725524e+00 5.21147132e-01 5.85716367e-01 -1.23696864e+00 -6.33675635e-01 -5.99362254e-02 1.41478226e-01 -1.37246478e+00 -7.59659410e-01 9.28291380e-01 -8.32945526e-01 1.06113565e+00 -2.56166141e-02 4.48828548e-01 1.51955628e+00 4.17063773e-01 9.51357782e-01 8.51341367e-01 -8.60474110e-01 3.55946630e-01 2.01654017e-01 -2.84440160e-01 4.71514970e-01 -5.67868054e-01 1.84933349e-01 -7.40751088e-01 -2.43776232e-01 8.77701819e-01 -2.50109643e-01 1.04503736e-01 -2.13357378e-02 -8.81767094e-01 1.15008414e+00 -4.97718066e-01 2.18293190e-01 -4.76226479e-01 2.84646571e-01 2.53693610e-02 9.39322487e-02 5.86148143e-01 6.04815185e-02 -3.86823088e-01 -3.95810604e-01 -1.27523506e+00 -6.12577274e-02 7.40003526e-01 1.21527755e+00 4.49320853e-01 6.92173302e-01 -4.06344324e-01 1.08524549e+00 9.03140366e-01 1.04316640e+00 9.16006625e-01 -1.13786256e+00 4.58492786e-01 1.11268200e-02 4.78416532e-02 -5.75355232e-01 2.15826958e-01 -6.84572607e-02 -4.08533841e-01 -2.99370219e-03 7.02064112e-02 -1.96652427e-01 -1.12195182e+00 1.89584637e+00 1.06344953e-01 1.26044527e-01 1.87776819e-01 3.51960659e-01 4.58678037e-01 1.21804774e+00 -2.06518129e-01 -5.58629274e-01 1.04322922e+00 -1.16830778e+00 -1.39801800e+00 -1.68541849e-01 2.62560636e-01 -1.11317968e+00 1.10587502e+00 2.19842866e-01 -1.14636302e+00 -6.46290064e-01 -1.08268344e+00 -2.12669998e-01 -1.60188973e-01 1.57586053e-01 -1.33166304e-02 7.02998996e-01 -1.11989760e+00 6.17494762e-01 -1.10021389e+00 -3.14054713e-02 -2.81379193e-01 2.23141804e-01 2.01934457e-01 3.62659186e-01 -1.34928834e+00 8.42353761e-01 1.60400290e-03 -1.81579590e-01 -8.40018451e-01 -6.94978386e-02 -7.11690187e-01 1.85754314e-01 -4.95093353e-02 -7.87228227e-01 1.43617153e+00 -9.06543136e-01 -2.46240568e+00 4.82573695e-02 -5.66351593e-01 -2.76574671e-01 2.55248368e-01 -1.88412845e-01 -5.08177638e-01 -3.75223830e-02 -1.58282340e-01 6.26523256e-01 1.46532476e+00 -9.53354359e-01 -3.17832947e-01 -4.74980026e-02 -8.03617179e-01 2.04506993e-01 -4.06219393e-01 1.07257888e-01 -5.13040364e-01 -9.58720744e-01 1.62940592e-01 -1.08972490e+00 1.96534976e-01 -2.53518462e-01 -2.60080576e-01 -5.17633140e-01 7.24906325e-01 -9.89617348e-01 1.29540873e+00 -2.24357486e+00 5.86573184e-01 8.31656158e-02 1.23357475e-02 -1.01162061e-01 -2.05959305e-01 6.46276712e-01 2.03914464e-01 6.14956096e-02 -1.43253759e-01 -9.11133051e-01 4.50463504e-01 5.57373106e-01 -1.01191461e+00 1.24908850e-01 -6.61659390e-02 8.86773765e-01 -6.27638161e-01 -5.23397088e-01 1.34891063e-01 8.01696301e-01 -3.97275686e-01 5.55118084e-01 -5.63148081e-01 3.61017913e-01 -1.51705563e-01 1.79669783e-01 2.44819641e-01 5.23475334e-02 1.73407272e-01 2.60099359e-02 -3.06771755e-01 6.46762609e-01 -1.04473281e+00 1.64195585e+00 -3.15680742e-01 8.98644030e-01 -2.10717604e-01 -3.74166965e-01 1.19439542e+00 6.35694504e-01 1.81963533e-01 -1.77072480e-01 2.24406511e-01 1.53390869e-01 -1.74194619e-01 -4.55886751e-01 7.60215938e-01 -3.77351552e-01 5.96931204e-02 6.48766458e-01 2.84772128e-01 -6.17134690e-01 -1.33055344e-01 1.31868482e-01 7.69441187e-01 4.37551349e-01 6.37864098e-02 3.63026783e-02 4.29259520e-03 -3.30615491e-01 6.51215851e-01 5.66590071e-01 7.77270347e-02 7.23148465e-01 4.00492400e-01 6.88346550e-02 -1.23692381e+00 -1.36057436e+00 2.38989666e-01 9.45987344e-01 -3.63078684e-01 -5.47824442e-01 -8.34187090e-01 -2.28196919e-01 -2.46312976e-01 1.40357530e+00 -3.40427488e-01 -1.24601685e-01 -3.86961639e-01 -2.67987728e-01 6.31553710e-01 5.94859362e-01 -2.00175390e-01 -9.66921568e-01 3.56812805e-01 4.64088768e-01 -4.15215969e-01 -9.60505664e-01 -7.48754859e-01 1.00596845e-01 -7.30670989e-01 -7.21103027e-02 -7.01032817e-01 -6.25370681e-01 1.85572386e-01 -2.06095934e-01 5.69393098e-01 -6.86387241e-01 3.42990786e-01 3.31382513e-01 -3.53954077e-01 -4.12304014e-01 -1.18291426e+00 6.14287369e-02 5.20963371e-01 1.14442063e-02 3.27789187e-01 -7.56474853e-01 -1.86108157e-01 1.29265055e-01 -7.72001028e-01 1.14318475e-01 4.28875983e-01 6.07960761e-01 6.83638275e-01 -3.10699102e-02 1.56357065e-01 -6.46331966e-01 6.92974329e-01 -4.81563479e-01 -7.97942281e-01 2.99327940e-01 -7.34080315e-01 5.00711858e-01 5.54105103e-01 -9.18271959e-01 -1.33608949e+00 1.19171301e-02 -3.84971380e-01 -7.45942473e-01 8.92648250e-02 4.54353303e-01 -1.15635380e-01 7.11030841e-01 4.68755454e-01 4.02203202e-01 2.67984439e-02 -5.77092290e-01 9.10267770e-01 1.10377347e+00 4.47969109e-01 -5.54220438e-01 8.99192214e-01 2.14259312e-01 -5.50848246e-01 -9.56520021e-01 -5.11923790e-01 -1.04867825e-02 -7.39174485e-01 -1.15942113e-01 1.05124593e+00 -8.48917067e-01 -9.57575589e-02 4.39753115e-01 -1.49645352e+00 -4.79456216e-01 -5.38594544e-01 9.08520997e-01 -7.82572329e-01 4.51798379e-01 -9.56435323e-01 -9.36930835e-01 -1.20285593e-01 -1.36926591e+00 1.04381967e+00 3.70765217e-02 -5.82959175e-01 -1.09806252e+00 5.20410359e-01 3.15845996e-01 6.34442925e-01 -3.14446658e-01 1.20507812e+00 -4.74720806e-01 -5.80460072e-01 1.70002133e-01 3.91531706e-01 5.59684813e-01 3.15996617e-01 6.26310110e-01 -1.04654479e+00 -1.83467921e-02 2.45880872e-01 2.37815399e-02 4.65455949e-01 8.10786009e-01 5.55292189e-01 -4.39240992e-01 -1.74893916e-01 7.21068859e-01 9.13843930e-01 4.77148980e-01 5.21513104e-01 -1.75855771e-01 8.06265831e-01 4.77580249e-01 7.21995905e-02 4.13823634e-01 5.13962388e-01 6.61110461e-01 -2.20471352e-01 2.60155171e-01 -4.64443892e-01 -5.72957575e-01 9.09851670e-01 2.19147968e+00 2.78611511e-01 -5.71776867e-01 -9.24596250e-01 4.30589825e-01 -1.69606435e+00 -9.13757324e-01 2.97739878e-02 1.81026542e+00 1.00569320e+00 1.01869665e-01 -2.22532019e-01 -1.67247921e-01 8.68593633e-01 2.98039526e-01 -4.61937666e-01 -6.31068468e-01 2.78104506e-02 8.19841549e-02 2.86647797e-01 8.66518080e-01 -5.21174610e-01 1.42964613e+00 7.11306953e+00 1.08375537e+00 -1.02551615e+00 2.78798044e-01 -2.75546312e-02 4.34473194e-02 -9.11436975e-01 4.85354401e-02 -1.06109810e+00 4.80158180e-01 1.44047153e+00 -9.48681906e-02 6.80572689e-01 7.46104240e-01 3.86202008e-01 5.80164254e-01 -9.81934011e-01 6.92541003e-01 1.68435231e-01 -1.18572748e+00 2.90185183e-01 1.14387758e-01 9.27438378e-01 1.66433617e-01 4.66229916e-01 4.08325613e-01 8.24277461e-01 -9.40101445e-01 1.18970466e+00 6.74182653e-01 1.03103995e+00 -3.32264394e-01 1.83486924e-01 3.98924142e-01 -1.11344492e+00 9.84005406e-02 -3.16759437e-01 1.57999828e-01 3.82095426e-01 3.40382665e-01 -9.99473453e-01 -7.00366721e-02 3.25264484e-02 3.66724223e-01 1.85657144e-01 4.16595906e-01 -7.22573519e-01 1.23392808e+00 -2.75193125e-01 -6.88612536e-02 2.14105826e-02 -4.45690095e-01 7.70519853e-01 1.12137711e+00 6.47186995e-01 -1.15702741e-01 -4.72101010e-02 1.04682076e+00 6.63900152e-02 1.89972669e-01 -3.67166102e-01 -5.85405648e-01 1.03864133e+00 7.59994268e-01 -6.14236891e-01 -2.98893690e-01 -3.53356153e-01 1.14443743e+00 1.08774833e-01 6.35615647e-01 -8.32134247e-01 -2.80641675e-01 4.61050570e-01 -2.48965457e-01 6.17003739e-01 -7.80038178e-01 -2.16940880e-01 -1.19328856e+00 -3.54107916e-01 -8.14301372e-01 -1.89547166e-01 -1.06539965e+00 -1.41356039e+00 9.21025515e-01 8.82094279e-02 -8.74486983e-01 -8.18240285e-01 -3.59960228e-01 -3.45479608e-01 1.15675962e+00 -1.30082071e+00 -1.16014373e+00 3.91544729e-01 4.34062243e-01 9.98895943e-01 -5.76789498e-01 9.03734505e-01 2.16025263e-02 -4.51446623e-01 4.77942586e-01 7.08634496e-01 1.48938298e-02 8.12356293e-01 -1.24362087e+00 8.61724854e-01 7.81657100e-01 5.61124802e-01 7.77398050e-01 9.31670487e-01 -9.16465700e-01 -9.91346180e-01 -8.28826249e-01 1.10702145e+00 -6.99713647e-01 7.90327847e-01 -5.24983943e-01 -8.72626007e-01 9.26270664e-01 3.84205312e-01 -5.84924877e-01 8.04401398e-01 9.06055346e-02 -3.42543811e-01 2.59505719e-01 -4.47836041e-01 7.41594970e-01 6.08393252e-01 -1.13430655e+00 -1.01688051e+00 1.32754833e-01 1.16260862e+00 -4.44012731e-01 -6.96569920e-01 -1.60589576e-01 6.47698462e-01 -3.06615919e-01 5.75711906e-01 -1.70745641e-01 3.42982680e-01 -2.38520160e-01 -4.84991252e-01 -1.59656954e+00 -5.30314684e-01 -9.33490813e-01 -3.85222435e-01 1.58447361e+00 5.69527805e-01 -3.71872604e-01 4.29572016e-01 6.44372880e-01 -2.61794001e-01 -2.05237374e-01 -1.00061071e+00 -8.35383594e-01 2.46675804e-01 -6.01920128e-01 7.80888259e-01 9.49369133e-01 -3.03634793e-01 5.52932680e-01 -5.58375716e-01 3.29521835e-01 3.77287507e-01 -1.41430005e-01 4.65748966e-01 -9.93530989e-01 -7.86407292e-01 -4.24992502e-01 1.57123387e-01 -1.46412086e+00 4.55451071e-01 -8.50409269e-01 3.85146141e-01 -1.47661150e+00 -9.17367712e-02 -1.29878357e-01 -6.44429773e-02 2.55282521e-01 1.07422195e-01 -3.36197793e-01 4.37774621e-02 5.52947938e-01 4.31364067e-02 1.17065883e+00 8.21080863e-01 -4.00969051e-02 -6.53620422e-01 -1.23052998e-02 -1.33850902e-01 8.95999372e-01 7.22461164e-01 -1.00090480e+00 -6.06852770e-01 -7.41674781e-01 1.43940359e-01 4.08719629e-01 -4.65422183e-01 -5.87405384e-01 4.86736566e-01 -4.47490305e-01 1.35050640e-01 -7.08188117e-01 7.55122185e-01 -4.29573953e-01 3.28216583e-01 -3.85965928e-02 -5.84022999e-01 1.37390792e-01 -1.64116144e-01 5.37312746e-01 -9.51245576e-02 -2.55099088e-01 5.88589072e-01 2.51394749e-01 -2.02943996e-01 1.74216375e-01 -1.16265357e+00 -9.76613462e-02 4.34545696e-01 -5.03933690e-02 -9.34729725e-02 -6.88718915e-01 -6.94330931e-01 -2.19817698e-01 1.91509515e-01 6.58371329e-01 5.52218437e-01 -1.51318753e+00 -6.49644196e-01 4.16567832e-01 -2.44549707e-01 -3.66727352e-01 -1.22046478e-01 2.47576550e-01 -1.07689649e-01 3.58276546e-01 2.20986739e-01 -5.07631719e-01 -1.18736851e+00 2.99112439e-01 6.44356832e-02 -2.79790573e-02 -4.03933913e-01 1.01507056e+00 5.69578595e-02 -5.55180967e-01 3.65926147e-01 -3.26564074e-01 -2.85320729e-02 2.21605971e-02 3.04789066e-01 3.46696347e-01 -5.15948832e-01 -9.14074063e-01 -2.79229451e-02 4.99753147e-01 7.92827010e-02 -1.12051761e+00 1.24221468e+00 -5.95685363e-01 1.97215974e-01 1.03002131e+00 1.03528965e+00 5.96782744e-01 -1.47437942e+00 -3.84804845e-01 -1.16218939e-01 -1.41091302e-01 3.95390809e-01 -6.61743283e-01 -6.68557107e-01 1.28069544e+00 4.02297080e-01 2.52451412e-02 4.63545114e-01 -2.29379814e-02 1.06581688e+00 7.54494146e-02 -1.89758372e-02 -1.51989663e+00 1.66641042e-01 8.49475622e-01 7.45263100e-01 -6.60100818e-01 -3.86970073e-01 -9.34795663e-02 -9.44623291e-01 1.27401090e+00 5.05316034e-02 2.25168541e-01 7.51117587e-01 5.44709086e-01 4.66899574e-01 9.79406014e-02 -9.40210938e-01 9.68243256e-02 5.11191547e-01 6.17692828e-01 4.50976074e-01 2.52696365e-01 3.44850421e-02 7.43861854e-01 -5.71746349e-01 -2.11611584e-01 4.85311061e-01 3.90093654e-01 -5.10146916e-01 -1.51014733e+00 -4.78036702e-01 -8.15175008e-03 -2.66594708e-01 -3.98540199e-01 -2.35829204e-01 1.42095640e-01 -8.52681231e-03 9.43895638e-01 1.20791897e-01 -4.83324051e-01 -1.56800762e-01 7.27025628e-01 3.30491871e-01 -6.56709790e-01 -7.56987706e-02 7.00633109e-01 -1.94236368e-01 -9.76969749e-02 4.34559658e-02 -8.21625412e-01 -1.31956899e+00 -2.11330697e-01 -6.14095986e-01 3.10476750e-01 1.09761405e+00 1.18511438e+00 2.47921377e-01 6.02086723e-01 5.96871614e-01 -5.08194447e-01 -8.55499446e-01 -1.04291070e+00 -8.18286479e-01 -1.32274806e-01 2.34893009e-01 -5.50655603e-01 -5.96544087e-01 3.96914303e-01]
[15.00573444366455, 6.563294410705566]
ffc70f5a-ee0f-4032-ac31-627d92b854fe
direct-robot-configuration-space-construction
2303.05653
null
https://arxiv.org/abs/2303.05653v1
https://arxiv.org/pdf/2303.05653v1.pdf
Direct Robot Configuration Space Construction using Convolutional Encoder-Decoders
Intelligent robots must be able to perform safe and efficient motion planning in their environments. Central to modern motion planning is the configuration space. Configuration spaces define the set of configurations of a robot that result in collisions with obstacles in the workspace, C-clsn, and the set of configurations that do not, C-free. Modern approaches to motion planning first compute the configuration space and then perform motion planning using the calculated configuration space. Real-time motion planning requires accurate and efficient construction of configuration spaces. We are the first to apply a convolutional encoder-decoder framework for calculating highly accurate approximations to configuration spaces. Our model achieves an average 97.5% F1-score for predicting C-free and C-clsn for 2-D robotic workspaces with a dual-arm robot. Our method limits undetected collisions to less than 2.5% on robotic workspaces that involve translation, rotation, and removal of obstacles. Our model learns highly transferable features between robotic workspaces, requiring little to no fine-tuning to adapt to new transformations of obstacles in the workspace.
['Hod Lipson', 'Riya Gupta', 'Carl Gross', 'Christopher Benka']
2023-03-10
null
null
null
null
['motion-planning']
['robots']
[-1.90994248e-01 1.99802220e-01 4.55438606e-02 -4.38529514e-02 -5.75299561e-01 -7.03133941e-01 4.79370683e-01 -7.32441545e-02 -6.33248746e-01 5.12035131e-01 1.41614974e-01 -5.83348930e-01 -2.76059300e-01 -6.10461056e-01 -9.08292174e-01 -2.96214491e-01 -4.27929997e-01 8.42431247e-01 2.42768109e-01 -5.62162817e-01 3.94911319e-01 8.76090646e-01 -1.23897207e+00 -1.81222067e-03 2.74575204e-01 4.45771754e-01 7.51769602e-01 9.30437863e-01 1.57200456e-01 2.90336728e-01 -5.61677277e-01 2.63095140e-01 6.17112517e-01 -4.43540551e-02 -1.14176738e+00 -1.70590445e-01 -4.07434970e-01 -1.96880355e-01 -6.66553736e-01 5.74755192e-01 3.32810640e-01 4.87465441e-01 7.91073442e-01 -1.29284430e+00 -2.77995974e-01 4.72879201e-01 -1.83021545e-01 -2.78702468e-01 4.68397915e-01 6.32368505e-01 3.22981745e-01 -7.48414218e-01 8.84265304e-01 1.28727281e+00 7.73595691e-01 5.37879884e-01 -9.22972798e-01 -4.97922599e-02 -7.79886171e-02 -3.73383868e-03 -1.50996125e+00 -2.86107957e-01 3.28229547e-01 -5.52732050e-01 1.67299843e+00 -1.11272998e-01 5.66001356e-01 7.95627296e-01 1.20372617e+00 1.86549455e-01 4.72624898e-02 -3.83469790e-01 3.65303546e-01 -8.01334620e-01 -5.10576010e-01 7.73789525e-01 2.56377578e-01 1.23884119e-01 1.39076397e-01 1.91913590e-01 1.10413885e+00 -1.02511182e-01 1.47345886e-01 -8.48513424e-01 -1.70368421e+00 4.28761214e-01 6.76362336e-01 -1.06523642e-02 -1.72086731e-01 5.86456358e-01 3.27925235e-01 1.42739555e-02 -5.87551177e-01 1.05811357e+00 -5.13170779e-01 -3.19350690e-01 -9.01708379e-02 5.17731726e-01 7.58533478e-01 1.79170835e+00 5.75857878e-01 -1.07354544e-01 3.48121405e-01 3.02289933e-01 7.33664706e-02 4.11393225e-01 3.33441675e-01 -1.58368540e+00 8.28040063e-01 5.01729846e-01 5.84754586e-01 -6.55295789e-01 -1.04809284e+00 3.46721336e-02 -4.55367833e-01 7.22409904e-01 3.82138163e-01 -3.74664187e-01 -9.03177440e-01 1.32891953e+00 2.44739890e-01 -7.27327406e-01 2.69546896e-01 9.21296000e-01 -3.14207107e-04 4.87659872e-01 -1.84025317e-01 3.70053023e-01 8.51576209e-01 -1.01514292e+00 -3.88555288e-01 -5.98567247e-01 9.98271883e-01 -9.50550556e-01 9.11694705e-01 4.41151768e-01 -1.05412984e+00 -5.08008897e-01 -1.40991628e+00 -2.31397316e-01 8.37766286e-03 2.52625108e-01 6.04820728e-01 -1.13089560e-02 -9.01456356e-01 9.53415215e-01 -1.29123890e+00 -2.55323321e-01 1.24931157e-01 7.57827520e-01 -7.99444795e-01 -9.90126878e-02 -6.44049466e-01 1.61073744e+00 5.57020247e-01 2.56399333e-01 -1.07383823e+00 1.00859581e-02 -1.03304517e+00 -3.01595002e-01 3.38737369e-01 -7.28945851e-01 1.55248678e+00 -3.07760775e-01 -1.46354413e+00 2.31769443e-01 1.03363410e-01 -1.40421435e-01 4.34378415e-01 -3.95318091e-01 -1.03869068e-03 -1.68847367e-01 2.01290190e-01 6.99208617e-01 3.82490158e-01 -1.15071297e+00 -5.18616974e-01 -1.49633750e-01 1.32412866e-01 4.18716997e-01 5.17360389e-01 -5.02816856e-01 -5.91476679e-01 -6.74504638e-02 6.07948840e-01 -1.55773079e+00 -8.04681003e-01 1.48542643e-01 -5.13718367e-01 -1.00821943e-03 5.37676275e-01 -3.36737424e-01 4.17648882e-01 -1.78009093e+00 5.86836517e-01 1.19782567e-01 -1.59457192e-01 -8.07913095e-02 -3.08708966e-01 5.36866426e-01 2.29483381e-01 -1.40135065e-01 4.83555198e-02 -7.19407946e-02 4.09086235e-02 5.29255748e-01 -1.85810387e-01 6.21967077e-01 1.75777137e-01 8.57541978e-01 -1.01015425e+00 -1.22340128e-01 4.10122067e-01 1.79758310e-01 -7.09604204e-01 1.28908694e-01 -2.67356664e-01 5.14340997e-01 -5.07714093e-01 3.58847439e-01 2.77389884e-01 2.92299360e-01 4.13662642e-01 1.14977755e-01 -5.18434942e-01 4.33817387e-01 -1.02742207e+00 2.26372099e+00 -6.15134299e-01 5.66920280e-01 9.03186351e-02 -4.42328990e-01 1.03213751e+00 -1.54817462e-01 5.77989340e-01 -3.96235704e-01 3.56642485e-01 3.31036896e-01 1.53693661e-01 -5.13643026e-01 1.04866397e+00 9.71665531e-02 -7.65389025e-01 3.56308550e-01 -1.46548539e-01 -6.65714502e-01 -4.11767736e-02 -1.92684114e-01 1.51588058e+00 6.14165246e-01 2.99635351e-01 -1.55880913e-01 5.46990149e-02 6.45635426e-01 3.88583392e-01 4.93142694e-01 -1.08288921e-01 6.54442132e-01 3.34854752e-01 -6.09282613e-01 -1.63910615e+00 -1.15987551e+00 4.09308463e-01 7.04605937e-01 7.24724472e-01 -3.01787913e-01 -6.67471230e-01 -4.01355326e-02 9.36867148e-02 6.78619266e-01 -3.35600555e-01 -4.26471978e-01 -1.15990090e+00 -2.67372979e-03 4.39865112e-01 7.21907079e-01 8.71921033e-02 -1.02674747e+00 -1.21200395e+00 3.83589953e-01 -2.77808636e-01 -8.99445593e-01 -5.52793443e-01 5.90775192e-01 -8.98239493e-01 -1.42096150e+00 -2.33768165e-01 -1.09560239e+00 9.60730255e-01 3.00364643e-01 6.01460695e-01 -1.98905930e-01 -6.51060581e-01 2.36378789e-01 -3.29076260e-01 -1.19401895e-01 -6.19634688e-01 1.13157228e-01 3.84362906e-01 -1.14274728e+00 -1.91691101e-01 -2.74411201e-01 -4.45787907e-01 6.44930720e-01 -2.66634881e-01 1.14263259e-01 9.83430207e-01 5.55395186e-01 6.91718936e-01 7.49235824e-02 -6.34619966e-02 -2.74461005e-02 4.96740937e-01 -5.06879926e-01 -4.94474590e-01 2.14325404e-03 -3.04201961e-01 5.78826010e-01 6.38660073e-01 -5.08049190e-01 -9.19642985e-01 8.59364986e-01 4.52159680e-02 -5.08264005e-01 -1.89488947e-01 4.46291983e-01 -2.04499692e-01 6.13814853e-02 8.50488126e-01 -3.07717621e-01 2.38628648e-02 -3.34624052e-01 6.81833804e-01 4.34534311e-01 1.09015691e+00 -6.76791131e-01 6.04122460e-01 3.14557433e-01 4.12386447e-01 -5.28388798e-01 5.79493903e-02 -2.72978127e-01 -1.32992530e+00 -1.84400678e-01 8.11745584e-01 -5.83167672e-01 -8.58917773e-01 1.01285204e-01 -1.45971572e+00 -7.68486619e-01 -2.85294294e-01 5.30559123e-01 -1.32777977e+00 2.17412665e-01 -2.44616106e-01 -7.15817094e-01 1.51210092e-02 -1.50505972e+00 1.04967892e+00 -2.31454283e-01 -6.22265875e-01 -2.92905033e-01 3.03014740e-02 -1.11479066e-01 1.70733169e-01 5.66386223e-01 9.89715040e-01 2.98490245e-02 -6.05999351e-01 -3.31282735e-01 4.38384384e-01 -4.17258084e-01 2.30226398e-01 -2.15548083e-01 -1.83710024e-01 -2.63208598e-01 -4.37252462e-01 -1.19106419e-01 3.42615008e-01 3.04170519e-01 8.56467128e-01 -2.94300646e-01 -8.10108244e-01 4.51095372e-01 1.20450997e+00 4.88748252e-01 8.69080424e-01 6.80943489e-01 4.08213168e-01 5.79662323e-01 1.06684196e+00 4.56373602e-01 3.19941431e-01 8.67332280e-01 9.15629327e-01 6.42304599e-01 -1.16829708e-01 -2.76626945e-01 5.11377692e-01 4.96563613e-01 -1.40193880e-01 -1.13608226e-01 -1.28682613e+00 6.83269799e-01 -2.03162789e+00 -6.51873589e-01 -2.39501461e-01 2.07113910e+00 6.83980227e-01 3.77563626e-01 -2.14077964e-01 -1.11693598e-01 5.16612053e-01 -4.02365685e-01 -6.77267849e-01 -6.64917052e-01 4.59161222e-01 -9.32743400e-02 8.77648294e-01 7.20262945e-01 -1.27610278e+00 9.67350125e-01 6.80181980e+00 1.98103949e-01 -6.95530832e-01 -2.77750939e-01 -1.87811330e-01 -5.20288467e-01 7.15770051e-02 2.22255886e-02 -6.06459260e-01 1.04849689e-01 9.53693330e-01 -1.00784535e-02 6.44851387e-01 1.48723161e+00 5.49746305e-02 -3.31915379e-01 -1.31826174e+00 7.11486280e-01 -2.89346308e-01 -1.21642148e+00 -4.29851890e-01 -1.49436845e-02 6.04219913e-01 1.92485809e-01 -6.80377185e-02 3.66846174e-01 7.05880642e-01 -1.20982194e+00 1.27769041e+00 4.92107242e-01 9.88414586e-01 -9.12461877e-01 6.60776019e-01 5.60274899e-01 -1.24797428e+00 -3.81796271e-01 -7.35085487e-01 -2.31053710e-01 4.30704117e-01 -1.13296546e-01 -1.34525263e+00 4.30702150e-01 3.46727937e-01 2.13106781e-01 -3.37159373e-02 9.98854756e-01 -1.08705118e-01 -5.25779665e-01 -2.22424179e-01 -1.82475388e-01 2.33012006e-01 1.50890023e-01 5.65693974e-01 8.08560252e-01 7.26373255e-01 -3.37337120e-03 2.16062278e-01 6.79378390e-01 4.47616011e-01 -6.46499693e-01 -9.09515381e-01 2.98332423e-01 6.79536164e-01 8.17254424e-01 -6.85467482e-01 4.31108594e-01 1.36839718e-01 1.03268516e+00 2.93682098e-01 1.33388430e-01 -7.78077304e-01 -8.30475688e-01 1.05960715e+00 8.19043070e-03 2.57843345e-01 -1.37322497e+00 -4.16943997e-01 -4.25602645e-01 -4.74220887e-02 -3.09906423e-01 -3.09560120e-01 -9.73777235e-01 -5.78695774e-01 5.02375960e-01 1.23153389e-01 -1.59431505e+00 -7.25911617e-01 -1.09435356e+00 -2.62742490e-01 7.14688361e-01 -8.76898706e-01 -8.36294591e-01 -3.46215785e-01 3.47395599e-01 7.98119724e-01 -1.82680607e-01 1.08111274e+00 -1.81044623e-01 -6.22749850e-02 2.33676478e-01 5.40168248e-02 2.63489224e-02 4.25408006e-01 -8.82003486e-01 9.26948845e-01 5.78332663e-01 -4.62874949e-01 7.94311047e-01 8.72693300e-01 -8.67042065e-01 -2.15221715e+00 -1.39264524e+00 5.91936827e-01 -8.51043403e-01 2.58772135e-01 -1.68878511e-01 -3.19739968e-01 1.09829009e+00 -4.29672033e-01 -2.22678959e-01 4.60321382e-02 -1.11415520e-01 -2.37939715e-01 5.03662825e-01 -8.74657154e-01 1.12831366e+00 1.53121114e+00 -4.58560549e-02 -7.49547422e-01 2.56145984e-01 7.23515511e-01 -1.05200303e+00 -7.68780351e-01 2.05660522e-01 7.53351748e-01 -3.51665735e-01 1.14081383e+00 -6.59454107e-01 4.29418147e-01 -5.10816574e-01 -1.94110692e-01 -1.33847845e+00 -6.07817352e-01 -8.19306731e-01 1.38032334e-02 1.55986875e-01 4.71439481e-01 -6.62233233e-02 7.10280061e-01 7.36044884e-01 -9.91528153e-01 -7.14063525e-01 -1.14175761e+00 -1.14788604e+00 2.75026768e-01 -6.54934227e-01 6.52570605e-01 3.68710667e-01 5.71339726e-01 -1.93076566e-01 -5.28373150e-03 2.91690022e-01 2.28530988e-01 4.03717364e-04 1.13443041e+00 -8.64872932e-01 3.77863348e-02 -4.40245569e-01 -5.01516402e-01 -1.11111605e+00 2.44515806e-01 -8.18503380e-01 9.49143171e-01 -1.83444071e+00 -2.63123572e-01 -8.24259341e-01 4.23569232e-01 6.92090392e-01 5.64699948e-01 -2.99738795e-01 8.94814581e-02 4.68719214e-01 -7.18943536e-01 6.15739524e-01 1.30167544e+00 -1.08931057e-01 -3.40593815e-01 -2.19730988e-01 -2.20145226e-01 8.08851063e-01 1.16227651e+00 -3.40684801e-01 -2.60031849e-01 -9.14597452e-01 3.12504560e-01 1.40765801e-01 1.86743960e-02 -1.30432296e+00 3.67587745e-01 -6.73061132e-01 5.57021618e-01 -5.62920928e-01 5.99032640e-01 -8.37101936e-01 4.34744835e-01 9.17260826e-01 -3.66432369e-01 4.48140144e-01 5.15983641e-01 5.86883903e-01 5.02625644e-01 -4.02294874e-01 2.98242599e-01 -2.63217777e-01 -1.08434522e+00 -1.48554191e-01 -1.03055644e+00 -2.91736931e-01 1.41891384e+00 -3.66051823e-01 -4.19505537e-01 -1.81914344e-01 -7.96625078e-01 3.38123173e-01 7.48640239e-01 8.34495008e-01 8.84668708e-01 -1.34313118e+00 -1.18974380e-01 1.37569800e-01 -2.68848985e-02 5.62813401e-01 -8.85809883e-02 4.07505155e-01 -1.18120861e+00 7.48130143e-01 -6.97383046e-01 -3.75223130e-01 -9.35113311e-01 4.82187569e-01 3.73679936e-01 7.11496323e-02 -7.99033225e-01 6.91544354e-01 -2.98691720e-01 -9.19852138e-01 6.01176172e-03 -6.40220284e-01 1.74970612e-01 -8.59836817e-01 1.14642575e-01 5.63788235e-01 4.80347462e-02 -8.03620219e-01 -5.53120255e-01 5.26486993e-01 4.13419336e-01 -3.02383691e-01 1.06518960e+00 -5.38179502e-02 1.49975926e-01 1.98946938e-01 9.77001131e-01 -4.16212946e-01 -1.63939023e+00 4.95738953e-01 1.75165877e-01 -3.86894464e-01 -3.92425537e-01 -6.65919542e-01 -3.91555429e-01 6.48703992e-01 2.45506808e-01 -5.03420174e-01 4.11086410e-01 3.00375242e-02 6.88916266e-01 1.14575899e+00 1.21131122e+00 -1.23832989e+00 3.78792912e-01 1.28072119e+00 1.26672673e+00 -7.19557226e-01 8.46686661e-02 -2.57167161e-01 -7.04700947e-01 1.33132064e+00 6.28718913e-01 -1.89344093e-01 2.51096576e-01 5.42166173e-01 -1.60175413e-01 3.83626707e-02 -6.48593903e-01 4.72106859e-02 8.14841315e-02 1.00428343e+00 4.42574313e-03 1.97046831e-01 1.65710524e-01 6.32056057e-01 -6.43521369e-01 -2.96846390e-01 7.30982602e-01 1.39056695e+00 -8.60012054e-01 -9.46262419e-01 -4.29336965e-01 9.11575034e-02 3.02226067e-01 5.69631398e-01 -3.59094024e-01 1.08140838e+00 8.17099363e-02 9.90764856e-01 4.16373253e-01 -9.23468113e-01 5.79634428e-01 2.20533460e-03 9.08710718e-01 -8.38324904e-01 -2.13519186e-01 -1.99101165e-01 3.10384661e-01 -1.05437505e+00 3.80625933e-01 -7.27226555e-01 -2.22309422e+00 -2.81238794e-01 -1.66202918e-01 -2.90170878e-01 1.11269593e+00 8.02317798e-01 6.51794910e-01 6.90641224e-01 1.85276598e-01 -1.59176779e+00 -7.37637579e-01 -6.59876525e-01 -1.65189192e-01 1.36559755e-02 3.45510751e-01 -8.87027860e-01 5.99649921e-02 1.38325952e-02]
[4.726498603820801, 0.9186777472496033]
516cd210-6a41-460a-9326-3677934227d4
bayesian-analysis-of-dynamic-linear-topic
1511.03947
null
http://arxiv.org/abs/1511.03947v1
http://arxiv.org/pdf/1511.03947v1.pdf
Bayesian Analysis of Dynamic Linear Topic Models
In dynamic topic modeling, the proportional contribution of a topic to a document depends on the temporal dynamics of that topic's overall prevalence in the corpus. We extend the Dynamic Topic Model of Blei and Lafferty (2006) by explicitly modeling document level topic proportions with covariates and dynamic structure that includes polynomial trends and periodicity. A Markov Chain Monte Carlo (MCMC) algorithm that utilizes Polya-Gamma data augmentation is developed for posterior inference. Conditional independencies in the model and sampling are made explicit, and our MCMC algorithm is parallelized where possible to allow for inference in large corpora. To address computational bottlenecks associated with Polya-Gamma sampling, we appeal to the Central Limit Theorem to develop a Gaussian approximation to the Polya-Gamma random variable. This approximation is fast and reliable for parameter values relevant in the text mining domain. Our model and inference algorithm are validated with multiple simulation examples, and we consider the application of modeling trends in PubMed abstracts. We demonstrate that sharing information across documents is critical for accurately estimating document-specific topic proportions. We also show that explicitly modeling polynomial and periodic behavior improves our ability to predict topic prevalence at future time points.
['Brian Howard', 'Surya T. Tokdar', 'David L. Banks', 'Chris Glynn']
2015-11-12
null
null
null
null
['dynamic-topic-modeling']
['natural-language-processing']
[ 6.49982691e-02 6.18920103e-02 -5.91910124e-01 -2.67620683e-01 -1.06513965e+00 -5.62026501e-01 8.66194725e-01 5.26183426e-01 -3.43005359e-01 9.78476465e-01 3.70912045e-01 -6.89225852e-01 -2.89543778e-01 -7.73365021e-01 -7.77763128e-01 -5.36184371e-01 -3.73438776e-01 9.90749955e-01 2.41474852e-01 5.06655991e-01 1.98649675e-01 1.61648765e-01 -1.15881681e+00 -1.40371351e-02 8.91107738e-01 9.21097919e-02 3.03574324e-01 9.07539546e-01 -3.01220894e-01 1.99286133e-01 -7.32758820e-01 -2.43455201e-01 -2.97716409e-01 -8.69294181e-02 -6.50113463e-01 -9.20186117e-02 -1.83829218e-01 -1.62936136e-01 1.92411467e-01 7.37328827e-01 4.07595001e-02 1.74109921e-01 1.34258044e+00 -1.35973406e+00 -6.00840151e-02 6.39649391e-01 -1.04111123e+00 4.00344342e-01 1.24295294e-01 -2.48999178e-01 8.36622477e-01 -4.53285247e-01 7.44380474e-01 1.37456322e+00 7.42723048e-01 -1.48146329e-02 -1.49864519e+00 -5.71945786e-01 5.51850975e-01 -3.08179557e-01 -1.40830076e+00 1.21578008e-01 4.18971866e-01 -7.72320151e-01 8.02405715e-01 1.08068012e-01 8.28465223e-01 1.14321995e+00 8.02321970e-01 8.02020729e-01 7.37975240e-01 -3.87897372e-01 5.93229115e-01 6.81840554e-02 5.70280433e-01 1.71577111e-01 4.51908797e-01 -4.89792705e-01 -3.47790062e-01 -1.03151894e+00 5.33790410e-01 2.67012030e-01 -1.78242242e-03 -1.51470795e-01 -8.46768796e-01 1.11872840e+00 -4.59172815e-01 3.94028351e-02 -5.38234472e-01 3.42033237e-01 3.17036092e-01 -9.98285487e-02 1.00474823e+00 -5.21583576e-03 -5.39917469e-01 -5.04922569e-01 -1.32461798e+00 7.31390655e-01 1.14740014e+00 1.08059669e+00 3.37623298e-01 -4.54638451e-01 -2.35623896e-01 6.63715303e-01 4.79050905e-01 6.02569580e-01 2.96238571e-01 -8.59213710e-01 2.00551346e-01 8.81092772e-02 5.19882262e-01 -5.60834706e-01 -2.88782507e-01 -3.81114483e-01 -4.76353198e-01 -4.52895075e-01 6.93223238e-01 -2.10233837e-01 -8.79742980e-01 1.99183202e+00 4.42786396e-01 1.08002007e-01 -2.85273820e-01 7.23226368e-02 -1.63715735e-01 1.06693852e+00 6.65316522e-01 -8.17951739e-01 1.74340248e+00 -2.17549279e-01 -1.01007378e+00 2.60753751e-01 7.30162382e-01 -7.86133349e-01 8.81758749e-01 4.38938022e-01 -1.08776200e+00 1.46647289e-01 -4.32977587e-01 2.51937620e-02 -1.56222239e-01 -2.84497797e-01 7.69145429e-01 6.59485281e-01 -8.17678750e-01 2.82386422e-01 -1.45583379e+00 -4.78763908e-01 3.10404360e-01 6.65599480e-02 4.26534027e-01 -1.05508104e-01 -1.07577324e+00 4.86378342e-01 1.43862262e-01 -5.01786113e-01 -7.05027699e-01 -1.28593373e+00 -3.02925855e-01 3.70746851e-01 1.05873317e-01 -9.41056788e-01 1.45317852e+00 -2.90820181e-01 -1.01356149e+00 2.39944056e-01 -7.41084754e-01 -5.67791462e-01 5.43446243e-01 -1.37402723e-02 -9.22161490e-02 9.53458920e-02 2.86885619e-01 3.42649043e-01 5.39652407e-01 -9.74381745e-01 -6.71604514e-01 -3.58112961e-01 -4.69879627e-01 2.44666323e-01 -3.26154411e-01 2.31167618e-02 -7.46050239e-01 -6.96041167e-01 -8.32791403e-02 -8.46989274e-01 -3.14913154e-01 -2.91455090e-01 -2.19329432e-01 -5.06239235e-01 5.95905960e-01 -6.78937733e-01 1.44961560e+00 -1.75560117e+00 -2.98551500e-01 4.59360182e-01 9.28544477e-02 -6.23320282e-01 3.64345282e-01 6.65708005e-01 3.31948996e-01 1.02192611e-01 -3.99940908e-01 -4.42744076e-01 -7.50633925e-02 1.28473669e-01 -4.12726432e-01 6.79794550e-01 -1.36389107e-01 4.14978594e-01 -6.84490561e-01 -5.15631676e-01 -3.57877135e-01 4.83007997e-01 -7.72073030e-01 -3.02063972e-01 -5.92824042e-01 -4.19129580e-02 -4.55384672e-01 3.22942585e-01 6.83484077e-01 -7.45035231e-01 5.44780970e-01 3.52924049e-01 -2.42361546e-01 3.76440138e-01 -1.13545465e+00 1.18004775e+00 -3.77046525e-01 4.38472092e-01 3.70544903e-02 -6.65321767e-01 4.90132749e-01 3.36680502e-01 5.87186754e-01 2.40599111e-01 -1.53395668e-01 2.32047755e-02 -1.94980830e-01 6.18584156e-02 7.05839753e-01 -2.51373678e-01 -2.14190315e-02 9.59394395e-01 -2.15698823e-01 -1.17626645e-01 3.37739199e-01 5.55379629e-01 1.03742647e+00 -1.42012358e-01 3.03432256e-01 -7.51924038e-01 -3.12333196e-01 2.57434875e-01 4.48785663e-01 1.10423660e+00 2.40934432e-01 1.90046906e-01 9.79411721e-01 -3.40277404e-02 -1.25959957e+00 -1.21053362e+00 -8.29056382e-01 9.93855953e-01 -3.56540293e-01 -4.66896921e-01 -6.61691248e-01 -1.05039380e-01 4.22928929e-02 9.78407204e-01 -7.64704406e-01 2.17607886e-01 -1.46825656e-01 -1.53262448e+00 7.09718019e-02 3.60556096e-01 -1.89576164e-01 -4.25409377e-01 -5.61948597e-01 6.14018798e-01 -2.84244835e-01 -6.37447000e-01 -4.96082038e-01 9.60031375e-02 -1.17548335e+00 -9.62615788e-01 -1.12836528e+00 -1.70579597e-01 5.77502906e-01 5.16298376e-02 9.74719107e-01 -4.46433157e-01 -2.35296473e-01 6.59200072e-01 4.65279855e-02 -7.64461279e-01 -5.23796916e-01 1.53537601e-01 -1.09767996e-01 -5.25321484e-01 4.70789820e-01 -4.93549734e-01 -5.95351279e-01 5.65281101e-02 -9.44902420e-01 -4.83000502e-02 7.40431920e-02 7.26246834e-01 5.34028769e-01 1.21091053e-01 3.62952560e-01 -1.20870864e+00 8.78778100e-01 -1.03243458e+00 -8.03663850e-01 2.73062319e-01 -8.30834508e-01 -1.02513574e-01 -1.91221476e-01 -7.60993361e-01 -1.32555032e+00 -4.36620533e-01 3.49916518e-01 -1.64538380e-02 8.50689858e-02 9.47881162e-01 1.79258376e-01 7.76764572e-01 3.45947206e-01 2.60683126e-03 8.81825611e-02 -5.12377679e-01 1.74691156e-01 5.57260692e-01 2.21073776e-01 -7.34801233e-01 1.32070258e-01 7.37604678e-01 6.75932914e-02 -1.01976097e+00 -6.79142714e-01 -7.12651432e-01 -1.23934798e-01 1.79260820e-02 6.11822009e-01 -1.24158621e+00 -8.89169097e-01 3.53566527e-01 -1.16842699e+00 -4.43077236e-01 -2.16532737e-01 8.94612432e-01 -6.19385064e-01 2.28398502e-01 -6.69495583e-01 -1.28707564e+00 -1.23633347e-01 -9.70029354e-01 1.11027944e+00 8.77935998e-03 -5.85610926e-01 -1.51933241e+00 5.15500903e-01 -7.81405717e-02 1.59745201e-01 -1.20647037e-02 1.21454632e+00 -6.28091037e-01 -4.53664422e-01 -2.67533422e-01 -8.47855732e-02 -6.01985395e-01 2.29095295e-03 4.57550138e-01 -6.32817745e-01 -2.81195015e-01 -2.71093864e-02 4.10400987e-01 7.82776833e-01 1.22936475e+00 9.96108592e-01 -4.47443396e-01 -9.90059555e-01 1.75974697e-01 1.24474061e+00 1.00530230e-01 2.53153384e-01 2.49067873e-01 1.64167419e-01 5.99668086e-01 4.94677573e-01 9.02359426e-01 6.76493406e-01 5.15683651e-01 -3.57110530e-01 1.92166492e-01 4.16461974e-01 -3.54982734e-01 1.26671091e-01 6.35686457e-01 2.75381476e-01 -6.27734244e-01 -1.19446945e+00 9.82736945e-01 -1.75371122e+00 -9.72124994e-01 -4.71209526e-01 2.22195768e+00 1.25702274e+00 3.14684123e-01 5.96456051e-01 -3.49363804e-01 8.90730202e-01 -3.73195678e-01 -5.70351303e-01 -2.37291396e-01 2.03518607e-02 -5.66120893e-02 7.01950550e-01 7.44867086e-01 -7.09350705e-01 6.53221369e-01 7.52744293e+00 9.11505282e-01 -3.55348140e-01 2.82365113e-01 9.19683516e-01 -1.42632931e-01 -6.88885093e-01 1.58961624e-01 -1.19524944e+00 7.33650267e-01 1.54614878e+00 -6.75763607e-01 -1.67617872e-01 6.19664073e-01 3.79222691e-01 -6.95042908e-01 -8.25130224e-01 2.22366035e-01 -3.39614987e-01 -1.18326414e+00 -3.19681276e-04 5.73570192e-01 9.63436723e-01 -9.20118093e-02 1.58184424e-01 6.97492063e-02 1.18830907e+00 -4.14706409e-01 3.04099828e-01 6.79605842e-01 5.36742210e-01 -9.48349476e-01 4.41756278e-01 4.37206060e-01 -7.01900661e-01 9.38930288e-02 -3.21730912e-01 1.75448671e-01 5.34166157e-01 1.18084824e+00 -1.14789701e+00 1.01168372e-01 5.25320828e-01 3.50249171e-01 -2.47477423e-02 1.08588600e+00 2.51733691e-01 1.17356038e+00 -9.51131880e-01 -1.61697000e-01 2.26908538e-04 -1.24004133e-01 5.39268792e-01 1.25254333e+00 4.92619544e-01 -1.77591713e-03 -6.43837750e-02 7.52440631e-01 1.64160028e-01 1.50027245e-01 -2.91854352e-01 -4.75480817e-02 8.11068773e-01 7.37704813e-01 -1.17264867e+00 -5.56205332e-01 -3.87639850e-01 3.78193915e-01 -8.10395777e-02 6.82027340e-01 -4.97712612e-01 -1.60025150e-01 5.29921174e-01 2.56981552e-01 4.09315944e-01 -4.11089063e-01 -5.31490982e-01 -9.48063970e-01 -3.15768212e-01 -4.98000234e-01 6.73840404e-01 -4.24289525e-01 -1.26893497e+00 -2.49046702e-02 7.44257629e-01 -5.91287434e-01 -5.68583012e-01 -2.00501621e-01 -6.92295611e-01 1.12369025e+00 -1.13027418e+00 -8.77692401e-01 4.47565347e-01 3.85302931e-01 4.50997084e-01 2.75295109e-01 6.02153361e-01 -2.25668594e-01 -3.29640478e-01 3.76692295e-01 6.55256927e-01 -6.57134473e-01 5.16301632e-01 -1.23917627e+00 5.75813651e-01 5.25490701e-01 -3.08638662e-01 1.16579199e+00 1.17748272e+00 -1.35758841e+00 -1.12273884e+00 -8.23508561e-01 8.68774652e-01 -5.08630276e-01 9.80022728e-01 -4.69891846e-01 -1.04533923e+00 8.88217032e-01 -1.66404903e-01 -8.38895857e-01 1.05319715e+00 7.90314615e-01 -6.89828470e-02 4.39186335e-01 -9.39816594e-01 6.38229847e-01 3.57432455e-01 -2.10006386e-01 -3.00522357e-01 7.46690750e-01 7.51791060e-01 -5.47563359e-02 -1.10714400e+00 2.67053172e-02 6.24478996e-01 -1.51027173e-01 6.56959474e-01 -6.28568590e-01 2.79978961e-01 8.39468651e-03 5.48141375e-02 -1.07265079e+00 -1.95523888e-01 -7.61099041e-01 -3.36094201e-01 1.14304173e+00 5.27277827e-01 -4.08094227e-01 8.67688894e-01 9.64684010e-01 2.57256627e-01 -3.76597196e-01 -9.93693650e-01 -6.76650405e-01 5.49625516e-01 -4.72066730e-01 4.59764153e-01 7.34549582e-01 2.66644448e-01 -1.91136934e-02 -1.14113241e-01 1.75533071e-01 8.07436526e-01 2.10478306e-01 6.40814960e-01 -1.46299839e+00 -3.94601464e-01 -1.69586539e-01 1.80276275e-01 -1.05855751e+00 -4.52322811e-02 -4.42570657e-01 -7.28065223e-02 -1.35177159e+00 8.56303096e-01 -2.99892575e-01 2.58975983e-01 1.94806159e-02 -3.56034517e-01 -3.08606923e-01 -3.32240462e-01 5.05806267e-01 -3.56321424e-01 4.49468672e-01 8.98724496e-01 9.47328955e-02 -4.37057376e-01 3.95174384e-01 -5.26338816e-01 6.61449850e-01 5.77823877e-01 -7.17629850e-01 -5.07690609e-01 8.09923708e-02 3.86967957e-01 3.76721859e-01 6.44057468e-02 -2.99494445e-01 4.21649426e-01 -2.27516472e-01 2.84792632e-01 -1.14098883e+00 2.84438461e-01 -4.36977297e-01 4.25974548e-01 4.45668906e-01 -5.71535051e-01 1.20263018e-01 3.70975286e-01 1.18353271e+00 2.00039208e-01 -2.34411269e-01 4.69278544e-01 -1.40494918e-02 3.93470794e-01 2.03280658e-01 -1.10244370e+00 7.42774829e-02 8.05013955e-01 2.11722001e-01 -2.32811391e-01 -7.55326867e-01 -8.58774006e-01 4.61931586e-01 3.37111056e-01 -1.38839588e-01 6.94307610e-02 -8.74480009e-01 -5.61718762e-01 -2.84266621e-01 -1.49863213e-01 -6.78839087e-02 4.50605750e-01 8.03314090e-01 -1.91366911e-01 5.09774029e-01 4.24234271e-01 -7.70107985e-01 -1.19045150e+00 4.34825271e-01 -2.22770274e-01 -6.56054556e-01 -3.68738323e-01 5.16126692e-01 2.98064679e-01 -4.73718159e-02 2.53917724e-01 -2.21023619e-01 1.83992326e-01 1.96771502e-01 6.62552714e-01 4.83348787e-01 -3.28762621e-01 1.54615596e-01 -1.38453022e-01 3.62814888e-02 -6.59740627e-01 -8.57546270e-01 1.46331036e+00 -3.58710885e-01 -2.34823022e-02 9.70273018e-01 9.52540874e-01 -1.86079413e-01 -1.34613502e+00 -2.38246769e-01 8.34451541e-02 1.67368557e-02 1.18838862e-01 -6.29228175e-01 -2.42293730e-01 6.61651790e-01 1.74963027e-01 3.74078304e-01 5.76095998e-01 1.21095635e-01 3.52830142e-01 3.42873521e-02 1.22307718e-01 -9.87840235e-01 -3.58540326e-01 3.48516971e-01 4.19005424e-01 -6.70264721e-01 5.02170265e-01 -4.01107073e-01 -2.55393118e-01 8.58954787e-01 6.62652180e-02 3.12815487e-01 1.34016716e+00 4.80368823e-01 -5.03110886e-01 -3.55534792e-01 -1.15653312e+00 3.90253842e-01 1.02895074e-01 2.64716268e-01 4.68532056e-01 1.59855276e-01 -7.49770403e-01 4.68892127e-01 -2.15670004e-01 4.89341728e-02 7.61945963e-01 9.67287362e-01 -3.95320863e-01 -9.98638451e-01 -4.63432908e-01 7.75363684e-01 -9.24314022e-01 -2.94668376e-01 2.32838184e-01 8.72475982e-01 -5.99450827e-01 7.09451020e-01 7.79589176e-01 5.67594528e-01 -3.40736777e-01 3.99111629e-01 2.15645581e-01 -6.09062135e-01 -5.12870066e-02 9.28226411e-01 -6.55071437e-02 5.18363789e-02 -1.92916304e-01 -1.47943866e+00 -8.65512908e-01 -4.72460628e-01 -4.60918009e-01 4.94066775e-01 1.04757595e+00 7.73885667e-01 3.08739543e-01 4.69180167e-01 3.08780938e-01 -2.55304754e-01 -4.45338905e-01 -1.13271701e+00 -8.42241824e-01 -1.16671257e-01 2.92723682e-02 -6.51231766e-01 -4.90528286e-01 3.03332448e-01]
[10.269942283630371, 6.903753280639648]
e6a82332-517b-422c-95f4-bebc18cc0e2c
deep-clustering-with-a-constraint-for
2303.03036
null
https://arxiv.org/abs/2303.03036v1
https://arxiv.org/pdf/2303.03036v1.pdf
Deep Clustering with a Constraint for Topological Invariance based on Symmetric InfoNCE
We consider the scenario of deep clustering, in which the available prior knowledge is limited. In this scenario, few existing state-of-the-art deep clustering methods can perform well for both non-complex topology and complex topology datasets. To address the problem, we propose a constraint utilizing symmetric InfoNCE, which helps an objective of deep clustering method in the scenario train the model so as to be efficient for not only non-complex topology but also complex topology datasets. Additionally, we provide several theoretical explanations of the reason why the constraint can enhances performance of deep clustering methods. To confirm the effectiveness of the proposed constraint, we introduce a deep clustering method named MIST, which is a combination of an existing deep clustering method and our constraint. Our numerical experiments via MIST demonstrate that the constraint is effective. In addition, MIST outperforms other state-of-the-art deep clustering methods for most of the commonly used ten benchmark datasets.
['Takafumi Kanamori', 'Yusaku Hino', 'Kaito Goto', 'Hiroki Waida', 'Yuichiro Wada', 'Yuhui Zhang']
2023-03-06
null
null
null
null
['deep-clustering', 'deep-clustering']
['miscellaneous', 'natural-language-processing']
[-7.72479951e-01 -5.16275585e-01 2.04082385e-01 -2.67196625e-01 -1.04565300e-01 -4.88390267e-01 2.27751344e-01 -1.98903337e-01 -3.21215838e-01 5.33143520e-01 -9.29328054e-03 -1.68699339e-01 -4.47872311e-01 -7.73866236e-01 -5.29105902e-01 -1.06796229e+00 -2.81704813e-01 8.95872474e-01 2.52648592e-01 4.59075458e-02 2.18870595e-01 3.94443601e-01 -1.10687327e+00 -6.94376975e-02 1.04833484e+00 8.43985736e-01 3.66466492e-01 1.23711899e-01 -1.19353697e-01 2.19393402e-01 -7.77274251e-01 -9.76362154e-02 3.91810775e-01 -1.32607907e-01 -7.75015116e-01 1.41979009e-01 -6.16125204e-02 -1.17115773e-01 -4.92579222e-01 8.63229990e-01 7.37983108e-01 2.71289408e-01 7.98164904e-01 -1.37146389e+00 -4.94057119e-01 8.87207627e-01 -9.70950365e-01 1.19762786e-01 -2.42248863e-01 1.23321088e-02 5.70912182e-01 -7.17153609e-01 4.10281658e-01 1.14645517e+00 8.33902121e-01 1.92425206e-01 -8.73923540e-01 -8.77718687e-01 3.52913827e-01 2.81057239e-01 -1.86230862e+00 -8.04074928e-02 1.05932426e+00 -3.03707957e-01 3.76829743e-01 -2.61676639e-01 4.99829262e-01 9.28030074e-01 -1.38696551e-01 7.26266444e-01 9.11594152e-01 1.15225606e-01 4.65563148e-01 -2.52523363e-01 4.37259562e-02 5.81347704e-01 3.80790353e-01 -1.80572554e-01 -2.68324632e-02 1.40779510e-01 8.29872668e-01 9.31673795e-02 -8.04440677e-02 -5.48617780e-01 -1.30256379e+00 8.51155519e-01 7.59410858e-01 5.62690794e-01 -1.39460891e-01 3.44434887e-01 3.33258510e-01 -7.90914446e-02 2.10526630e-01 3.76642406e-01 -4.33865428e-01 -8.61146301e-02 -1.15024984e+00 -6.36032671e-02 6.82731509e-01 9.12991226e-01 5.71068347e-01 2.42226869e-02 2.56686211e-01 7.29997516e-01 3.66959602e-01 8.62182602e-02 2.38596499e-01 -9.55535412e-01 4.23525959e-01 8.61674011e-01 -2.77188212e-01 -1.12618577e+00 -7.24505723e-01 -7.98168659e-01 -1.57773793e+00 -2.98096567e-01 3.94668609e-01 -4.26142514e-01 -8.76513660e-01 1.86476350e+00 4.88616198e-01 5.69522440e-01 -8.75021070e-02 1.04213417e+00 7.29101896e-01 6.39368415e-01 -4.88789529e-01 -1.82329878e-01 9.14191902e-01 -8.86198401e-01 -7.22961366e-01 3.43115330e-01 5.96594512e-01 -6.80899620e-01 1.04349422e+00 3.40838253e-01 -5.93940377e-01 -5.18745124e-01 -1.00848532e+00 1.36449575e-01 -6.34572983e-01 2.86754757e-01 8.74187946e-01 4.22266841e-01 -1.16151428e+00 5.00390589e-01 -1.11860502e+00 -5.86619496e-01 3.83949637e-01 5.96663415e-01 -1.64230749e-01 -1.47726625e-01 -1.02877629e+00 3.03521067e-01 5.44035196e-01 3.11413884e-01 -8.64008188e-01 -4.64337200e-01 -4.22610879e-01 2.80403823e-01 5.39793134e-01 -5.71825802e-01 5.84571838e-01 -5.96941888e-01 -1.43452036e+00 4.16000485e-01 9.38209668e-02 -9.45986360e-02 6.28019273e-01 -2.06021238e-02 -1.57106921e-01 2.30480209e-01 -1.22190371e-01 6.51104212e-01 2.39607781e-01 -1.57593131e+00 -2.01072738e-01 -4.29483801e-01 3.33719477e-02 1.15758710e-01 -4.91335034e-01 -2.85524487e-01 -9.67835844e-01 -6.12567842e-01 5.53661585e-02 -8.93653810e-01 -4.55760926e-01 -1.86235607e-02 -9.41646039e-01 -4.04962093e-01 1.33602011e+00 -8.45719129e-02 1.34213579e+00 -2.07759929e+00 2.31206819e-01 5.35142124e-01 3.32997113e-01 2.34123960e-01 -4.60030548e-02 4.89521205e-01 2.13407382e-01 6.02396607e-01 -3.55481654e-01 -4.56980973e-01 1.76768526e-01 3.98217946e-01 2.18620911e-01 5.84319234e-01 -5.34703396e-02 6.66459262e-01 -6.36511147e-01 -7.82181859e-01 4.52060193e-01 6.13538384e-01 -5.21675646e-01 1.80858567e-01 3.74058262e-02 5.60907722e-01 -5.67148447e-01 5.23146927e-01 9.81237710e-01 -4.47524935e-01 4.27920163e-01 -3.59307855e-01 -1.41777143e-01 -2.66122162e-01 -1.43703425e+00 1.95314360e+00 -1.11265272e-01 5.84426045e-01 3.05587351e-01 -1.42740357e+00 8.68745506e-01 3.83507833e-02 7.55252600e-01 -3.57622862e-01 3.66924673e-01 -3.96099016e-02 3.54018301e-01 -2.68854797e-01 1.92302525e-01 1.56325743e-01 9.44960713e-02 5.90009212e-01 -2.42822915e-01 3.19459230e-01 3.57738733e-01 5.02269566e-01 1.06904972e+00 -2.88696498e-01 -3.21866006e-01 -7.78117478e-01 2.70937562e-01 -2.48615652e-01 8.22771013e-01 7.62028515e-01 -2.97848821e-01 6.77528858e-01 5.50977468e-01 -3.52986634e-01 -9.34897006e-01 -8.75484705e-01 -1.50508180e-01 6.67304933e-01 6.12129450e-01 -3.68385643e-01 -1.03689015e+00 -6.74990892e-01 -7.68487155e-02 9.59631149e-03 -7.12741792e-01 -1.47122117e-02 -6.31461322e-01 -1.07811928e+00 7.62531281e-01 7.15948343e-01 1.17656326e+00 -6.34336174e-01 -3.87266517e-01 1.06610693e-01 -3.27966303e-01 -1.23198688e+00 -3.40773731e-01 8.65906626e-02 -7.31078804e-01 -1.39746451e+00 -5.90772688e-01 -1.01924860e+00 6.67805731e-01 3.87082517e-01 1.09403849e+00 6.93237603e-01 -1.64540038e-01 -7.56442696e-02 -4.28071767e-01 1.94209427e-01 -3.50966342e-02 4.83667582e-01 2.41591319e-01 -2.10863352e-01 3.51426303e-01 -8.38543594e-01 -8.83296847e-01 7.06235170e-01 -9.39829588e-01 -2.12474614e-02 6.45686567e-01 5.56018889e-01 4.95406747e-01 8.55084181e-01 6.02077127e-01 -5.17654657e-01 6.46110833e-01 -5.80749810e-01 -4.72694188e-01 1.98107839e-01 -3.46819133e-01 3.04395761e-02 1.02251983e+00 -6.19064629e-01 -7.80628622e-01 1.03221349e-01 2.38459427e-02 -6.66667938e-01 -1.71103209e-01 7.26379395e-01 -4.54859853e-01 1.37381569e-01 1.75522625e-01 -2.13463604e-03 -1.60450518e-01 -7.02837586e-01 2.31451556e-01 5.97614050e-01 5.21051347e-01 -9.34608817e-01 8.49346578e-01 7.60607541e-01 2.49075532e-01 -6.29008472e-01 -3.77276510e-01 -4.24811453e-01 -1.10697544e+00 -7.90301934e-02 9.69580591e-01 -6.75313592e-01 -9.43732381e-01 6.40942693e-01 -9.66080666e-01 -4.98541921e-01 4.62860197e-01 3.19244355e-01 -2.52445579e-01 5.46785712e-01 -7.27138817e-01 -4.89132643e-01 -1.18693836e-01 -1.45861232e+00 8.04126441e-01 7.68314376e-02 3.29146862e-01 -1.36613321e+00 -2.34259337e-01 7.17021450e-02 3.52359623e-01 6.72932565e-01 8.47360194e-01 -6.48112655e-01 -5.49710095e-01 2.65760481e-01 -5.31895757e-01 9.94825512e-02 1.31825745e-01 5.56300044e-01 -4.51270133e-01 -4.79075760e-01 -2.36496508e-01 -2.36173898e-01 8.85227442e-01 4.71633255e-01 1.82160699e+00 -1.09859137e-03 -6.46928728e-01 8.97566259e-01 1.61310112e+00 3.20488334e-01 6.98351204e-01 1.17195331e-01 9.83361244e-01 3.23755771e-01 3.14580739e-01 4.63949770e-01 5.90695381e-01 6.94388986e-01 5.61249912e-01 -4.44585025e-01 7.16758296e-02 6.30898476e-02 -2.28000209e-01 1.29690909e+00 1.25744447e-01 -5.02326906e-01 -1.34599829e+00 6.64697289e-01 -2.05645323e+00 -6.67019010e-01 -1.99291125e-01 1.61280632e+00 5.91733694e-01 9.34791192e-02 1.07689738e-01 2.74099022e-01 1.06968045e+00 -1.35947555e-01 -7.68367171e-01 1.32163450e-01 -6.16506673e-02 -1.75123587e-01 2.02118322e-01 1.48295134e-01 -1.20734763e+00 9.25147891e-01 6.22386789e+00 9.62511837e-01 -1.06577146e+00 -1.68075189e-01 6.80044949e-01 1.48116186e-01 -2.63104513e-02 -1.60224438e-01 -3.40574563e-01 8.12739909e-01 5.15140057e-01 5.34717552e-02 3.79029512e-01 6.54200613e-01 4.13147539e-01 -5.78326173e-02 -1.27598131e+00 9.84850705e-01 -1.74440891e-01 -1.48233259e+00 -7.85839483e-02 3.57345730e-01 7.34748125e-01 4.80995215e-02 7.88941234e-02 3.17921281e-01 6.15781188e-01 -1.16267717e+00 2.35947639e-01 1.33111343e-01 7.34809279e-01 -1.02795720e+00 1.06456745e+00 3.95408273e-01 -1.46099150e+00 -1.18562981e-01 -5.04461169e-01 3.34207341e-02 3.97234596e-02 9.32645559e-01 -4.35416311e-01 8.35415125e-01 9.18100715e-01 9.49397504e-01 -5.65254807e-01 1.21347415e+00 7.10074455e-02 7.53452957e-01 -8.40211034e-01 1.50029778e-01 5.60133457e-01 -2.51710624e-01 1.95885271e-01 1.25456667e+00 3.72795105e-01 1.77352831e-01 5.10174334e-01 1.16026807e+00 -3.23492318e-01 -2.58540720e-01 -5.35207689e-01 1.20425627e-01 1.02327383e+00 1.19327211e+00 -1.27169430e+00 -3.00798714e-01 -3.09629571e-02 6.45377874e-01 3.25486362e-01 5.56959748e-01 -1.01780474e+00 -4.75287199e-01 5.71545601e-01 -1.08721904e-01 3.72944295e-01 -5.52870750e-01 -4.92608130e-01 -1.10834801e+00 -3.59835811e-02 -6.31846845e-01 3.27177703e-01 -5.91579676e-01 -1.38309944e+00 3.62781554e-01 -3.09127513e-02 -1.02692473e+00 3.03188026e-01 -4.38385457e-01 -1.09357500e+00 1.89307928e-01 -1.28829753e+00 -1.06144369e+00 -6.41118646e-01 9.32871938e-01 3.86294633e-01 -1.10995978e-01 3.58096838e-01 7.93002427e-01 -1.16689384e+00 5.90530396e-01 4.79237288e-01 5.08385956e-01 5.62790751e-01 -1.23676872e+00 1.70902431e-01 9.28916991e-01 -1.60281375e-01 8.60707581e-01 3.88720602e-01 -4.61588889e-01 -1.28978610e+00 -1.18314266e+00 -1.49171025e-01 -9.71651226e-02 4.50280815e-01 -6.44900620e-01 -8.52235675e-01 2.61285603e-01 1.54620558e-01 -4.34370525e-03 5.87931931e-01 4.52608615e-02 -1.65056735e-01 -1.96243063e-01 -1.16038132e+00 3.93995196e-01 1.21226871e+00 7.14797759e-03 -2.31765479e-01 3.16673964e-01 8.81511092e-01 -2.27343410e-01 -9.54841793e-01 5.87431431e-01 2.42550239e-01 -1.12470794e+00 9.17488277e-01 -2.13678733e-01 4.60522175e-01 -6.73649192e-01 -1.82325274e-01 -1.45031250e+00 -3.75425458e-01 -4.83350039e-01 -1.10491626e-01 1.35545945e+00 1.99658852e-02 -3.08630228e-01 8.75563323e-01 1.42879009e-01 -3.11265230e-01 -8.74959826e-01 -1.02055335e+00 -9.22138214e-01 5.94809294e-01 -7.95985162e-02 1.04745984e+00 1.52229965e+00 -3.40392381e-01 1.29598260e-01 -1.00008860e-01 1.38689414e-01 6.54199302e-01 8.52193907e-02 8.53530288e-01 -1.61277926e+00 1.04443088e-01 -4.83843505e-01 -3.39103609e-01 -1.19628966e+00 3.03791225e-01 -6.20186210e-01 -2.63542861e-01 -1.87395370e+00 3.74983102e-01 -8.34236681e-01 -3.00840795e-01 3.42742562e-01 -2.08810717e-02 1.92377623e-02 1.84515432e-01 3.03117305e-01 -8.80405545e-01 8.00852418e-01 1.32413423e+00 -1.16989031e-01 -3.27361524e-02 -3.22584927e-01 -7.79269755e-01 6.97654903e-01 9.93731320e-01 -3.09293628e-01 -6.03271842e-01 -8.05158496e-01 7.06102178e-02 -3.42319757e-01 1.32943988e-01 -1.28884256e+00 4.65878159e-01 -1.79568484e-01 4.43671405e-01 -1.03478432e+00 1.52686477e-01 -1.11848283e+00 5.81470057e-02 3.94603133e-01 2.93261223e-02 3.24843466e-01 9.40777361e-02 5.98263800e-01 -3.27276111e-01 5.07629454e-01 8.96221459e-01 -3.91080379e-02 -5.90414345e-01 5.75550199e-01 -2.20892251e-01 2.56092578e-01 1.12588441e+00 -3.16695035e-01 -5.77739298e-01 -4.03630048e-01 -5.21092653e-01 9.12996352e-01 6.37922585e-01 2.19790250e-01 5.15446961e-01 -1.42545259e+00 -5.00666559e-01 -1.17313221e-01 -3.71223807e-01 5.41710079e-01 1.09915257e-01 1.02679300e+00 -7.68487453e-01 1.98043033e-01 -1.31750837e-01 -8.26728642e-01 -8.31834435e-01 8.10389578e-01 5.29501200e-01 -1.75050169e-01 -4.85306680e-01 6.16278529e-01 2.82696784e-01 -7.42719412e-01 6.61300719e-01 -3.26687157e-01 8.95848405e-03 -2.34096348e-01 1.68980926e-01 5.48952341e-01 -7.57838190e-02 -4.03383583e-01 -5.88579297e-01 7.68271387e-01 5.27335797e-03 2.45978460e-01 1.37999117e+00 -3.06258619e-01 -2.65447110e-01 1.14345588e-01 1.25905252e+00 -4.14276272e-01 -1.19660616e+00 -3.14864404e-02 -1.76597103e-01 -2.21102580e-01 3.31894457e-02 -7.58111000e-01 -1.82130730e+00 1.35303593e+00 5.72039247e-01 1.66539520e-01 1.08989108e+00 -1.00984871e-01 9.26651895e-01 5.31527817e-01 3.02562028e-01 -1.37442076e+00 4.27229166e-01 5.91158450e-01 5.31426549e-01 -1.13742638e+00 1.67658910e-01 -4.16175216e-01 -4.18642312e-01 1.08392990e+00 1.07845485e+00 -4.26799506e-02 1.01988411e+00 3.91450733e-01 8.82860348e-02 -4.95305121e-01 -6.34037435e-01 -1.31739855e-01 -1.32249564e-01 7.57082343e-01 3.22579682e-01 9.99646634e-02 -1.44954443e-01 4.67923254e-01 -2.48148099e-01 -3.19589019e-01 5.60094655e-01 5.29725194e-01 -2.62315392e-01 -8.43363702e-01 -2.75058091e-01 2.96007097e-01 -4.16706502e-01 1.03983775e-01 -8.25247109e-01 1.11442935e+00 2.58792967e-01 1.22934592e+00 3.56513739e-01 -6.51272058e-01 -1.80127695e-01 -5.60631275e-01 -7.50599653e-02 -1.34595945e-01 -4.58218008e-01 2.13904187e-01 -2.99869448e-01 -5.09302199e-01 -5.24301052e-01 -1.01447940e-01 -1.61102724e+00 -8.20006847e-01 -4.72338766e-01 3.29892784e-01 6.25603437e-01 9.07712221e-01 5.94884157e-01 4.93500173e-01 6.64417505e-01 -8.51471186e-01 -1.35206640e-01 -8.94369125e-01 -6.75896287e-01 4.87015575e-01 -1.33758225e-02 -1.14564407e+00 -4.34281051e-01 -3.93859655e-01]
[9.076977729797363, 3.3687026500701904]
33d26b30-7848-4bbc-877d-fcf2366a54e7
viewnet-a-novel-projection-based-backbone
null
null
http://openaccess.thecvf.com//content/CVPR2023/html/Chen_ViewNet_A_Novel_Projection-Based_Backbone_With_View_Pooling_for_Few-Shot_CVPR_2023_paper.html
http://openaccess.thecvf.com//content/CVPR2023/papers/Chen_ViewNet_A_Novel_Projection-Based_Backbone_With_View_Pooling_for_Few-Shot_CVPR_2023_paper.pdf
ViewNet: A Novel Projection-Based Backbone With View Pooling for Few-Shot Point Cloud Classification
Although different approaches have been proposed for 3D point cloud-related tasks, few-shot learning (FSL) of 3D point clouds still remains under-explored. In FSL, unlike traditional supervised learning, the classes of training and test data do not overlap, and a model needs to recognize unseen classes from only a few samples. Existing FSL methods for 3D point clouds employ point-based models as their backbone. Yet, based on our extensive experiments and analysis, we first show that using a point-based backbone is not the most suitable FSL approach, since (i) a large number of points' features are discarded by the max pooling operation used in 3D point-based backbones, decreasing the ability of representing shape information; (ii)point-based backbones are sensitive to occlusion. To address these issues, we propose employing a projection- and 2D Convolutional Neural Network-based backbone, referred to as the ViewNet, for FSL from 3D point clouds. Our approach first projects a 3D point cloud onto six different views to alleviate the issue of missing points. Also, to generate more descriptive and distinguishing features, we propose View Pooling, which combines different projected plane combinations into five groups and performs max-pooling on each of them. The experiments performed on the ModelNet40, ScanObjectNN and ModelNet40-C datasets, with cross validation, show that our method consistently outperforms the state-of-the-art baselines. Moreover, compared to traditional image classification backbones, such as ResNet, the proposed ViewNet can extract more distinguishing features from multiple views of a point cloud. We also show that ViewNet can be used as a backbone with different FSL heads and provides improved performance compared to traditionally used backbones.
['Senem Velipasalar', 'Minmin Yang', 'Jiajing Chen']
2023-01-01
null
null
null
cvpr-2023-1
['few-shot-point-cloud-classification', 'point-cloud-classification']
['computer-vision', 'computer-vision']
[-1.41509771e-01 -1.40165329e-01 -1.76866397e-01 -4.30983484e-01 -5.45645058e-01 -5.39210081e-01 6.98980093e-01 -5.92663251e-02 -3.03677190e-03 1.05066232e-01 -9.66536626e-02 -4.52687517e-02 5.58199994e-02 -1.09846008e+00 -9.08173978e-01 -5.80699921e-01 5.18415980e-02 3.68120581e-01 6.87462389e-01 -1.63404882e-01 4.00669008e-01 1.06213057e+00 -1.99931884e+00 3.50530088e-01 6.00401461e-01 1.16273749e+00 1.91027731e-01 1.43252071e-02 -5.98902822e-01 2.41669357e-01 -4.52085614e-01 -1.60581172e-01 6.57566249e-01 1.92835823e-01 -5.43736696e-01 1.55416831e-01 8.76901925e-01 -3.97239596e-01 -3.49703848e-01 9.72949564e-01 5.56522429e-01 1.53018296e-01 6.48893416e-01 -1.52224970e+00 -6.15318596e-01 -1.27580732e-01 -6.39964581e-01 -5.28813936e-02 3.35285604e-01 1.70128763e-01 9.18003023e-01 -1.43832397e+00 8.29245329e-01 1.43852234e+00 7.66344011e-01 6.18365884e-01 -1.13089466e+00 -8.87152791e-01 3.10828358e-01 7.26295561e-02 -1.26330936e+00 -1.41578421e-01 1.10233867e+00 -3.86979967e-01 1.26463020e+00 1.11150019e-01 9.51685786e-01 1.20774519e+00 1.53804764e-01 8.93756866e-01 1.01689482e+00 -6.64848611e-02 3.32421750e-01 -1.20981745e-02 1.59361899e-01 6.46728277e-01 5.75613640e-02 2.03762189e-01 -4.56502020e-01 -3.44263554e-01 9.37740088e-01 5.12191594e-01 -4.12936091e-01 -1.10984647e+00 -1.10235226e+00 8.40935290e-01 8.09894323e-01 1.02762701e-02 -1.54837340e-01 -7.96662942e-02 2.87278473e-01 2.36454710e-01 7.67224729e-01 1.97474539e-01 -3.31123084e-01 3.07958663e-01 -8.87292325e-01 2.93877065e-01 6.12935662e-01 1.30420458e+00 9.37808812e-01 -2.27048486e-01 1.32401556e-01 7.61725605e-01 2.60876209e-01 5.38704991e-01 1.82355627e-01 -7.43095398e-01 5.93074918e-01 1.01495314e+00 -1.61168709e-01 -8.69201303e-01 -3.18310857e-01 -3.11411917e-01 -8.19383144e-01 7.76774585e-01 -8.65890160e-02 3.66796523e-01 -1.42589784e+00 1.32163024e+00 3.05289745e-01 4.25063252e-01 -1.37678469e-02 8.60751748e-01 1.32258546e+00 6.14055693e-01 -2.83177197e-01 2.39370212e-01 1.08293664e+00 -6.84214294e-01 -7.06393644e-02 -9.10878107e-02 3.62957269e-01 -5.49209058e-01 1.02272403e+00 1.41630590e-01 -9.92028713e-01 -7.15178490e-01 -1.24414659e+00 -1.30871728e-01 -6.43118978e-01 -2.89460510e-01 5.95104694e-01 3.00078988e-01 -9.91165340e-01 7.28145242e-01 -9.45631921e-01 -5.64275801e-01 8.22835624e-01 3.01167339e-01 -7.00227857e-01 -3.40932786e-01 -7.19673574e-01 7.72777319e-01 2.58912206e-01 -1.73156723e-01 -7.88930357e-01 -9.85473812e-01 -1.00031471e+00 2.09532678e-01 2.33897269e-01 -9.14826393e-01 8.03520203e-01 -2.70435244e-01 -1.24730086e+00 1.09570837e+00 -1.89991146e-01 -9.59380269e-02 3.63854527e-01 -1.65205136e-01 -1.10925198e-01 2.18947053e-01 2.19949082e-01 9.57063913e-01 7.83315420e-01 -1.67482471e+00 -5.91714680e-01 -5.35094321e-01 3.10094416e-01 2.77613819e-01 7.13553354e-02 -3.16097230e-01 -6.68102145e-01 -3.21761459e-01 8.36677372e-01 -1.00296891e+00 -2.36752823e-01 3.02355409e-01 -3.46599698e-01 -4.45039839e-01 1.13309646e+00 1.91150792e-02 5.00598848e-01 -2.30033350e+00 -5.11847697e-02 1.68459252e-01 2.95984536e-01 2.49481797e-01 -1.25066668e-01 4.16563511e-01 -2.53928751e-01 2.18007684e-01 -1.57300249e-01 -4.50138867e-01 -1.39516860e-01 2.97947317e-01 -3.74358207e-01 4.51278359e-01 3.77297461e-01 8.88010561e-01 -7.52652824e-01 -2.79932261e-01 7.40502417e-01 4.32288855e-01 -5.42227089e-01 4.92185168e-03 -1.42078966e-01 2.74699092e-01 -3.09550315e-01 8.83906126e-01 1.14488208e+00 -3.68697703e-01 -5.20758808e-01 -2.24621281e-01 -4.03775647e-02 1.18333846e-01 -9.95913267e-01 2.06703401e+00 -4.06264663e-01 2.76937693e-01 -3.90310317e-01 -8.21821928e-01 1.21935380e+00 3.09656709e-01 6.67087018e-01 -2.85014123e-01 -5.13375551e-02 9.80962440e-02 -3.84506047e-01 -3.47998261e-01 7.71873668e-02 -1.47901967e-01 6.76328549e-03 1.27523333e-01 4.51461792e-01 -4.76578742e-01 -2.96794981e-01 6.22657686e-03 1.13799524e+00 3.53380471e-01 1.56403095e-01 7.18221664e-02 4.38377559e-01 -8.07536766e-02 6.30084395e-01 6.75193131e-01 -1.88744903e-01 1.22781098e+00 2.82895267e-01 -7.03220725e-01 -9.77530241e-01 -1.37654245e+00 -2.66707569e-01 4.57804054e-01 5.59435427e-01 -2.91385204e-01 -1.65996745e-01 -1.08045447e+00 2.68525451e-01 7.09013700e-01 -4.25034940e-01 -1.00470513e-01 -4.67471302e-01 -3.16010118e-01 6.36425018e-02 5.38116574e-01 5.55026531e-01 -8.69455993e-01 -5.75290322e-01 -3.88829336e-02 1.43221006e-01 -1.28777945e+00 7.04496820e-03 2.22345561e-01 -1.28342843e+00 -1.18064499e+00 -6.96315825e-01 -7.56200254e-01 7.71986902e-01 8.98325682e-01 1.20825434e+00 -1.56686515e-01 1.41628876e-01 5.60730815e-01 -4.42909420e-01 -7.57171810e-01 7.72756413e-02 9.33422819e-02 -7.68975541e-02 -2.09046170e-01 8.86280835e-01 -1.05644858e+00 -6.08034015e-01 3.48788679e-01 -7.07755327e-01 2.52908673e-02 6.16326034e-01 7.35221624e-01 8.15864384e-01 -2.18330577e-01 2.40248129e-01 -7.94761240e-01 1.24031626e-01 -3.86639714e-01 -5.39993405e-01 9.78839844e-02 -2.83215493e-01 -2.08246320e-01 3.50899726e-01 -2.22207338e-01 -8.19171667e-01 1.58707336e-01 -1.67158589e-01 -1.40783060e+00 -5.59094012e-01 1.06919959e-01 -2.66509086e-01 -4.00922805e-01 6.38783038e-01 2.20289916e-01 1.28175870e-01 -5.57317972e-01 3.48310441e-01 4.01149035e-01 1.37201875e-01 -1.98816642e-01 1.06891477e+00 9.28935409e-01 1.28035143e-01 -9.24816728e-01 -7.49508321e-01 -7.91491508e-01 -9.17447925e-01 -1.43773079e-01 9.22436357e-01 -1.01614165e+00 -5.21061301e-01 2.80094624e-01 -1.44523931e+00 3.41998786e-01 -3.71914685e-01 5.57708144e-01 -6.93768203e-01 2.66465008e-01 -3.39336544e-01 -5.24565518e-01 -2.67905563e-01 -1.23433256e+00 1.48411250e+00 1.41159445e-01 9.40064192e-02 -6.01069033e-01 -1.99766085e-02 6.20144680e-02 3.39928567e-02 4.88308966e-01 1.00409245e+00 -7.62177885e-01 -9.86709833e-01 -4.15531069e-01 -2.37477452e-01 4.36960638e-01 2.04088669e-02 -1.70799106e-01 -1.27012432e+00 -4.19917434e-01 2.37394497e-01 -2.49966636e-01 9.33175325e-01 3.52309763e-01 1.31805885e+00 3.20458770e-01 -5.87240934e-01 9.74025786e-01 1.56269634e+00 1.26077443e-01 6.98237658e-01 1.91441596e-01 7.90342987e-01 5.24596214e-01 3.60190332e-01 1.69415966e-01 2.09331781e-01 5.15959620e-01 8.48753273e-01 -2.07957581e-01 -6.12966530e-03 -3.30677330e-01 3.99704874e-02 8.60439241e-01 -3.36508274e-01 -4.63111177e-02 -8.70670855e-01 3.84674370e-01 -1.70918036e+00 -9.73369837e-01 6.36691749e-02 2.28615427e+00 -1.82885602e-02 3.86191726e-01 -1.81625679e-01 -3.70434448e-02 6.08539522e-01 3.82218510e-01 -6.63293600e-01 -2.19956003e-02 -5.95376231e-02 4.85312223e-01 5.52954793e-01 -6.77291006e-02 -1.21803463e+00 8.34042847e-01 5.83865356e+00 6.37216330e-01 -1.26679385e+00 5.41139171e-02 8.73577744e-02 -3.03324342e-01 -2.49477550e-01 1.15009733e-01 -8.94355953e-01 2.99113601e-01 2.06655994e-01 1.47442684e-01 -7.17343464e-02 1.21378624e+00 -1.45429343e-01 2.45215654e-01 -1.30913937e+00 1.31329930e+00 2.13987559e-01 -1.47507763e+00 3.32293987e-01 1.64633840e-01 7.07984686e-01 6.33025110e-01 -1.93868190e-01 4.90046680e-01 5.90744764e-02 -7.98148453e-01 5.43758750e-01 4.53031838e-01 5.90465546e-01 -7.05707312e-01 7.49973714e-01 4.23055351e-01 -1.26744616e+00 8.39628503e-02 -7.47384727e-01 1.85785592e-01 1.01627402e-01 4.96083736e-01 -6.46758020e-01 9.53827262e-01 1.04455936e+00 9.98203516e-01 -4.96212512e-01 1.26479733e+00 -9.72190127e-02 1.02543861e-01 -4.50804830e-01 1.48172766e-01 3.74602348e-01 -1.38200119e-01 8.22076559e-01 6.65134370e-01 5.26710749e-01 3.92840691e-02 2.70743936e-01 1.20501578e+00 5.61350062e-02 -1.68266654e-01 -1.31360781e+00 4.27054673e-01 5.15369296e-01 1.08729541e+00 -7.72044182e-01 -2.69864976e-01 -8.64533484e-01 7.63362110e-01 3.74582767e-01 4.27222371e-01 -5.24758339e-01 -4.16076541e-01 7.84114778e-01 1.33106247e-01 6.10665619e-01 -3.33763808e-01 -1.78627372e-01 -1.33510435e+00 1.98799551e-01 -4.47555125e-01 9.24038440e-02 -9.56093848e-01 -1.69322097e+00 5.93650162e-01 2.96527117e-01 -2.01430559e+00 1.02997683e-01 -6.84353828e-01 -7.50720441e-01 9.09799457e-01 -1.54532635e+00 -1.33219433e+00 -4.91758615e-01 5.40236175e-01 7.54487932e-01 -1.48599759e-01 7.56693006e-01 7.43624792e-02 -1.75116062e-02 1.47251353e-01 -2.62702644e-01 -1.19846612e-02 4.87078339e-01 -1.17214835e+00 8.22961926e-01 4.09077018e-01 2.41552696e-01 5.38183928e-01 2.05933183e-01 -6.46303713e-01 -1.31891501e+00 -1.12150943e+00 5.75719833e-01 -6.85048997e-01 5.00403866e-02 -6.10643744e-01 -1.29472697e+00 6.02965474e-01 -1.06841065e-01 4.01667267e-01 6.38357639e-01 1.20408401e-01 -3.37972373e-01 1.97908115e-02 -1.07825398e+00 4.17847365e-01 1.50784254e+00 -5.39992452e-01 -9.14680123e-01 2.23475561e-01 7.57586241e-01 -4.92284864e-01 -7.89026558e-01 8.10029864e-01 3.26586127e-01 -1.32336175e+00 1.34338033e+00 -5.57588875e-01 3.93963128e-01 -2.84096956e-01 -2.55415887e-01 -1.30593598e+00 -5.57764590e-01 6.46198466e-02 -8.94651487e-02 9.30512130e-01 8.43331739e-02 -5.93429506e-01 1.18010116e+00 2.13418663e-01 -4.28403050e-01 -1.02541935e+00 -1.06113648e+00 -1.01278043e+00 2.25771740e-02 -5.56910813e-01 8.15081477e-01 9.57542419e-01 -5.33640504e-01 4.05796826e-01 2.13233642e-02 4.51220751e-01 7.30033875e-01 3.82257342e-01 1.11218369e+00 -1.70237970e+00 1.53339118e-01 -4.58785981e-01 -9.15889144e-01 -9.80190694e-01 1.88639909e-01 -1.18855834e+00 -2.03694403e-01 -1.70604861e+00 -5.52632399e-02 -5.32532334e-01 -2.78335571e-01 3.03472131e-01 8.79237056e-02 1.38704076e-01 4.58509117e-01 4.33663219e-01 -3.11053723e-01 7.36080229e-01 1.36076224e+00 -2.11123735e-01 -2.66100228e-01 2.94250190e-01 -1.36145055e-01 1.00119054e+00 4.56018329e-01 -3.33238810e-01 -5.41106522e-01 -3.11967134e-01 -6.20944910e-02 -8.47144946e-02 6.01543963e-01 -1.26162338e+00 2.18085185e-01 2.58859154e-02 6.56600296e-01 -1.40748072e+00 7.26520300e-01 -1.10594928e+00 7.86787197e-02 1.67715088e-01 2.48506457e-01 -1.15658954e-01 1.62635669e-01 7.44428873e-01 -3.05827349e-01 -2.29213923e-01 5.85104823e-01 -5.87075293e-01 -8.71095300e-01 7.92953730e-01 2.03011364e-01 -3.07543337e-01 1.10689414e+00 -6.87252402e-01 -1.83516487e-01 -7.67929479e-02 -6.90922976e-01 2.76877135e-01 7.57685006e-01 7.60423779e-01 9.35423255e-01 -1.57817757e+00 -3.37740749e-01 6.31056786e-01 5.34052730e-01 5.97491920e-01 3.53562534e-01 4.69953448e-01 -4.81868714e-01 2.81781644e-01 -3.08569878e-01 -1.28823471e+00 -1.06957304e+00 7.20130920e-01 1.93109557e-01 9.99118388e-02 -1.16175246e+00 7.98992574e-01 5.84064126e-01 -8.84709656e-01 2.62655884e-01 -4.82015401e-01 -2.24651471e-01 -7.16669410e-02 1.62260592e-01 1.28418609e-01 3.04441750e-01 -5.08430481e-01 -3.83518636e-01 1.00428259e+00 -5.22250794e-02 1.88371360e-01 1.59847176e+00 1.63023859e-01 1.44666135e-01 6.66644812e-01 1.35372329e+00 -3.53306293e-01 -1.28302979e+00 -4.02156025e-01 -1.79190129e-01 -6.79683805e-01 8.64188299e-02 -2.32530683e-01 -1.01125729e+00 1.16568482e+00 7.05805480e-01 2.52202958e-01 8.41436923e-01 1.91649571e-01 6.81008458e-01 3.02064747e-01 6.88227296e-01 -6.42862856e-01 -1.36463791e-01 5.30663013e-01 9.76452112e-01 -1.45945215e+00 -3.52494381e-02 -7.50030100e-01 -2.87726223e-01 1.18668818e+00 8.48997355e-01 -4.05388862e-01 9.19689178e-01 -8.08919966e-02 -1.07825987e-01 -6.82901323e-01 -6.81428730e-01 -2.18236268e-01 3.89895380e-01 7.63438940e-01 -7.27771968e-02 -2.90394753e-01 2.76854187e-01 2.28035614e-01 -2.42903903e-01 5.01093976e-02 1.08927302e-01 1.18870556e+00 -3.93980354e-01 -8.95024955e-01 -3.35319787e-01 5.80803990e-01 2.43846583e-03 1.41542345e-01 -2.70303428e-01 1.07938707e+00 2.66657293e-01 4.42148685e-01 4.34813350e-01 -5.65231085e-01 7.76139915e-01 2.01004624e-01 5.12116134e-01 -9.22416866e-01 -2.74451822e-01 -9.51977223e-02 -4.34500724e-01 -8.10320258e-01 -6.33306384e-01 -4.09824193e-01 -8.97947609e-01 -1.60120353e-01 -4.49631006e-01 -3.41132849e-01 6.21969104e-01 7.56724119e-01 6.21345162e-01 3.14959079e-01 7.77606547e-01 -1.51883745e+00 -4.60882723e-01 -7.62535691e-01 -5.02608836e-01 6.19749904e-01 2.58803397e-01 -1.12711227e+00 -5.04979312e-01 -4.15019870e-01]
[8.07878589630127, -3.3366682529449463]
e4f0d702-2004-4622-a76d-8d452536d02f
computing-education-in-the-era-of-generative
2306.02608
null
https://arxiv.org/abs/2306.02608v1
https://arxiv.org/pdf/2306.02608v1.pdf
Computing Education in the Era of Generative AI
The computing education community has a rich history of pedagogical innovation designed to support students in introductory courses, and to support teachers in facilitating student learning. Very recent advances in artificial intelligence have resulted in code generation models that can produce source code from natural language problem descriptions -- with impressive accuracy in many cases. The wide availability of these models and their ease of use has raised concerns about potential impacts on many aspects of society, including the future of computing education. In this paper, we discuss the challenges and opportunities such models present to computing educators, with a focus on introductory programming classrooms. We summarize the results of two recent articles, the first evaluating the performance of code generation models on typical introductory-level programming problems, and the second exploring the quality and novelty of learning resources generated by these models. We consider likely impacts of such models upon pedagogical practice in the context of the most recent advances at the time of writing.
['Sami Sarsa', 'Eddie Antonio Santos', 'Brent N. Reeves', 'Andrew Luxton-Reilly', 'Juho Leinonen', 'Arto Hellas', 'James Finnie-Ansley', 'Brett A. Becker', 'James Prather', 'Paul Denny']
2023-06-05
null
null
null
null
['code-generation']
['computer-code']
[ 4.44944166e-02 3.61607790e-01 1.94672607e-02 -3.73362184e-01 -4.87452328e-01 -8.10075462e-01 3.02412063e-01 8.06499183e-01 -2.62928724e-01 3.27468634e-01 1.78015143e-01 -9.33339179e-01 -3.18543106e-01 -8.71221483e-01 -7.05985308e-01 -1.75230056e-01 5.70985153e-02 8.76594707e-02 2.19296739e-01 -3.54355991e-01 7.80448556e-01 6.94284976e-01 -2.08286428e+00 2.42281601e-01 1.28616071e+00 1.29804835e-01 2.41295218e-01 5.27991235e-01 -6.41871989e-01 1.25501454e+00 -7.71749675e-01 -4.13565129e-01 -2.37602606e-01 -3.42458427e-01 -8.88969064e-01 -1.28704071e-01 4.51921731e-01 -1.69432253e-01 -4.25112993e-02 9.12610412e-01 2.44650587e-01 3.07441384e-01 1.47207111e-01 -1.04985893e+00 -5.22455454e-01 4.69914496e-01 -6.35947511e-02 2.08979666e-01 7.62201369e-01 8.16623718e-02 7.49275565e-01 -4.78801459e-01 6.83506966e-01 6.43714845e-01 7.33373702e-01 5.76542437e-01 -9.79886591e-01 -4.13052946e-01 1.36934280e-01 5.71736880e-03 -1.10060203e+00 -1.53627485e-01 4.36056823e-01 -9.18103635e-01 9.67307508e-01 1.47659704e-01 1.13752854e+00 2.33606309e-01 2.84337997e-01 5.90031624e-01 8.68281960e-01 -8.94173682e-01 2.09240422e-01 7.34062493e-01 3.62913191e-01 8.29960644e-01 4.25203502e-01 -2.33629569e-01 -3.45753431e-01 -4.90931831e-02 5.33167660e-01 -2.61885047e-01 -2.08844811e-01 -3.27330053e-01 -9.91892159e-01 8.09846461e-01 1.85013339e-01 6.31094694e-01 1.83091715e-01 7.88301677e-02 1.97119161e-01 6.87894076e-02 -3.46230902e-02 8.35409641e-01 -2.39664540e-01 -6.18192792e-01 -7.95282900e-01 5.57492971e-01 1.13542569e+00 1.15290225e+00 3.30333561e-01 2.26572171e-01 3.94044459e-01 6.49140596e-01 5.01032412e-01 -1.03954062e-01 6.27280235e-01 -9.28969502e-01 1.23509288e-01 7.56658018e-01 -3.77828509e-01 -9.31340933e-01 8.61514583e-02 -4.40297365e-01 5.07849976e-02 4.64543521e-01 3.46184015e-01 -8.68890509e-02 -4.31134403e-01 1.18199360e+00 2.34057188e-01 -1.00335687e-01 -5.63883819e-02 3.08744431e-01 1.16000116e+00 7.34653175e-01 3.67712140e-01 2.24084571e-01 1.18460536e+00 -9.34491277e-01 -3.53380263e-01 6.28979057e-02 9.32928145e-01 -9.04940844e-01 9.32350874e-01 5.96232295e-01 -1.36087620e+00 -6.27759695e-01 -8.80806029e-01 -1.30158275e-01 -5.26944041e-01 -2.06199855e-01 6.29878283e-01 1.25930405e+00 -1.04645026e+00 4.69686240e-01 -5.96537828e-01 -2.32358843e-01 7.50056505e-02 6.81233257e-02 2.42942981e-02 -1.66685686e-01 -6.32327199e-01 8.94341707e-01 2.28048891e-01 -5.63455403e-01 -3.96400243e-01 -1.23474002e+00 -7.43302286e-01 5.03546476e-01 1.24390565e-01 -3.70513260e-01 1.70145571e+00 -7.41845489e-01 -1.41077077e+00 8.65069091e-01 1.80101439e-01 1.14427254e-01 2.38860130e-01 8.58961493e-02 -5.72814420e-02 3.66642401e-02 8.34795982e-02 6.10302091e-01 -2.07640365e-01 -9.76958632e-01 -8.22734475e-01 8.00312161e-02 4.03010398e-01 3.66062433e-01 -4.75288481e-01 1.41441301e-01 -1.63861006e-01 -4.58241820e-01 2.45309234e-01 -7.18392611e-01 -3.83768171e-01 1.49985030e-01 5.36463082e-01 -4.48428303e-01 3.36670309e-01 -2.02855632e-01 1.04358411e+00 -1.87749958e+00 -3.30763936e-01 1.75316527e-01 1.07235134e-01 1.54572949e-01 7.73733929e-02 6.81065083e-01 -2.90595323e-01 3.91267955e-01 1.13405965e-01 2.19028935e-01 1.77559227e-01 -1.58982262e-01 -4.16738957e-01 -2.38587379e-01 -4.58639376e-02 3.38766932e-01 -1.10118747e+00 -3.69798034e-01 3.35581332e-01 4.49222505e-01 -8.60230684e-01 3.69104773e-01 -2.55575508e-01 1.85447738e-01 -3.74851167e-01 1.91437349e-01 1.46191731e-01 7.41361931e-04 1.77949920e-01 8.10012639e-01 -7.70135105e-01 7.12460637e-01 -1.05184937e+00 1.65645564e+00 -8.15105855e-01 9.51931119e-01 -1.08825676e-02 -8.22873533e-01 8.57977092e-01 5.13222218e-01 3.57807010e-01 -2.58767515e-01 -2.15809762e-01 2.40921170e-01 3.37698460e-01 -7.14351714e-01 5.25781274e-01 -3.40003148e-02 2.45016456e-01 8.81955028e-01 1.50910378e-01 -1.05205297e+00 5.15478492e-01 4.87567216e-01 7.66749501e-01 5.26627779e-01 -9.21668205e-03 -5.09189129e-01 3.76934230e-01 3.18330288e-01 1.53939128e-01 6.92638934e-01 -1.14569962e-01 3.68559718e-01 4.32026595e-01 -5.06916165e-01 -8.37782741e-01 -6.09675407e-01 -1.99232638e-01 1.09624791e+00 -4.74731117e-01 -5.57029366e-01 -8.93616080e-01 -2.62583315e-01 -2.37547427e-01 1.02512717e+00 3.92344370e-02 1.52167216e-01 -4.11668956e-01 -4.10235137e-01 2.58514136e-01 2.56273836e-01 9.55289602e-02 -1.21732318e+00 -1.00863242e+00 3.30272615e-01 3.17579657e-02 -1.04143047e+00 1.55242041e-01 5.37922569e-02 -9.06689644e-01 -6.71909332e-01 -2.73679674e-01 -1.36717260e+00 9.09935355e-01 2.85013795e-01 1.22358549e+00 8.88508141e-01 -5.80099285e-01 1.01488292e+00 -3.07843179e-01 -7.41556704e-01 -7.73480833e-01 -4.57780026e-02 -4.02318954e-01 -1.02283752e+00 4.85135257e-01 -4.78398681e-01 5.29247038e-02 -5.55165708e-01 -1.09525454e+00 3.81618410e-01 2.54573792e-01 3.23942959e-01 -9.49190035e-02 4.06426340e-01 5.06178498e-01 -9.74119246e-01 7.22157955e-01 -4.60674584e-01 -7.78684199e-01 3.19758028e-01 -6.77130103e-01 -1.49434552e-01 5.98492742e-01 -8.72378424e-02 -1.09786355e+00 -2.27536187e-01 -4.63273883e-01 4.50501323e-01 -5.41466236e-01 9.21556175e-01 1.84454575e-01 -7.18418658e-01 7.62193441e-01 1.40918776e-01 -2.30282247e-01 -1.93576381e-01 -9.35011506e-02 4.57675993e-01 1.63593888e-01 -1.35508120e+00 6.49998963e-01 -4.00556982e-01 -1.49977403e-02 -1.17114592e+00 -5.05321980e-01 -2.90539086e-01 -4.61488098e-01 -4.49121356e-01 2.73564428e-01 -8.31738591e-01 -6.23293400e-01 1.07704327e-01 -1.01655817e+00 -3.21206927e-01 -3.71197730e-01 5.61795235e-01 -2.23426357e-01 1.27085134e-01 -4.78793174e-01 -5.54399848e-01 2.57357955e-01 -1.57026851e+00 9.66836289e-02 6.99510396e-01 -2.72384644e-01 -1.30218768e+00 1.22523502e-01 7.31148303e-01 4.06236589e-01 2.88674552e-02 1.24005282e+00 -5.52926183e-01 -6.77451611e-01 -1.49582043e-01 2.59409964e-01 6.05625734e-02 -2.90437758e-01 5.36079347e-01 -8.73974741e-01 1.92109928e-01 -3.09681818e-02 -2.39393055e-01 -3.56852561e-02 -1.29417386e-02 1.14966023e+00 -1.88168809e-01 -1.14246391e-01 2.28031561e-01 1.60693157e+00 3.08977127e-01 2.42879465e-01 4.54766154e-01 2.40097135e-01 8.65949094e-01 2.87416339e-01 7.64283687e-02 3.93187970e-01 1.37773231e-01 -8.07348192e-02 5.25516629e-01 -1.54649757e-03 -2.45109349e-01 1.83580533e-01 1.43389177e+00 -3.89201306e-02 2.98136741e-01 -1.56680954e+00 9.98610795e-01 -1.34094906e+00 -8.72834086e-01 -2.99382597e-01 1.80313814e+00 8.93628657e-01 3.57005775e-01 -4.70634848e-02 -8.57586712e-02 3.44509810e-01 -2.92590588e-01 2.58296967e-01 -9.78551745e-01 6.78859115e-01 7.92171597e-01 -2.79905587e-01 6.12205684e-01 -3.00263882e-01 5.72183073e-01 6.80204153e+00 5.01937270e-01 -9.20597911e-01 -3.26983541e-01 4.30200040e-01 9.72301885e-02 -7.52134085e-01 1.87585920e-01 -6.81455672e-01 2.34544307e-01 1.21998847e+00 -7.62731194e-01 3.67667019e-01 1.15908694e+00 9.60887522e-02 -2.32921407e-01 -9.57372427e-01 2.46250451e-01 5.07931784e-02 -1.70369768e+00 -1.28867283e-01 -2.16400623e-01 1.16729069e+00 -2.89889216e-01 -5.95283136e-02 5.29009461e-01 6.19367361e-01 -9.00022268e-01 7.47754693e-01 -1.16710728e-02 1.77625686e-01 -8.41968894e-01 3.50631803e-01 4.41212565e-01 -9.05659020e-01 -1.12337939e-01 -7.05599636e-02 -6.93582594e-01 -5.54864407e-01 2.43802428e-01 -9.99166965e-01 2.21340135e-01 5.54957628e-01 4.20419686e-02 -5.01162350e-01 1.45093822e+00 -2.82692343e-01 5.64427197e-01 -4.89965752e-02 -7.12848246e-01 2.52196580e-01 -1.41700998e-01 1.28754422e-01 1.33787775e+00 3.76642704e-01 7.45007932e-01 2.84767747e-01 1.06742251e+00 2.95252025e-01 2.91755915e-01 -5.24452984e-01 -2.57239968e-01 7.76193082e-01 1.29446149e+00 -8.26676846e-01 -8.03161934e-02 -7.82116473e-01 1.63055122e-01 2.08577141e-01 2.34386042e-01 -3.94801110e-01 -9.19354439e-01 4.77618694e-01 5.28048098e-01 -1.49448648e-01 -4.63349640e-01 -4.89768893e-01 -9.06570017e-01 -1.87227845e-01 -1.19683385e+00 -1.03869952e-01 -8.39465857e-01 -7.23171353e-01 2.30081737e-01 9.93826613e-02 -7.34550118e-01 -2.93162502e-02 -7.20157802e-01 -8.71119440e-01 8.69663417e-01 -1.17753005e+00 -6.16438687e-01 -3.29558313e-01 -1.68842539e-01 4.52470362e-01 -2.22667649e-01 9.11818206e-01 4.43402259e-03 -3.40116352e-01 3.68825525e-01 2.18083203e-01 1.93905067e-02 3.13134938e-01 -1.23686111e+00 3.81912053e-01 7.42305636e-01 1.50357530e-01 9.84665990e-01 7.03221321e-01 -2.85659552e-01 -1.44418716e+00 -5.93076229e-01 1.25639808e+00 -3.91258627e-01 5.80244243e-01 1.43663064e-01 -7.83358037e-01 6.44590914e-01 2.27934286e-01 -3.62525761e-01 1.05389369e+00 6.72124326e-02 -4.41916622e-02 2.16850400e-01 -1.14398515e+00 6.20198905e-01 4.52211380e-01 -4.48706627e-01 -8.43197942e-01 3.65925074e-01 4.46206629e-01 -6.50864422e-01 -1.05540156e+00 -1.26102954e-01 5.99396944e-01 -9.95120525e-01 7.30618834e-01 -4.08930629e-01 8.92512321e-01 5.51315174e-02 3.88614923e-01 -9.29485023e-01 -1.88109353e-01 -4.86720592e-01 5.68355381e-01 1.04676712e+00 2.96402350e-02 -3.16413671e-01 9.16160524e-01 1.29714203e+00 -5.27451098e-01 -6.46184564e-01 -2.89191693e-01 -2.84242809e-01 5.10504067e-01 -4.21561331e-01 6.19562030e-01 1.25153208e+00 7.21480727e-01 -9.72633287e-02 8.14617574e-01 -1.36683568e-01 4.84172791e-01 1.87981442e-01 7.18680441e-01 -1.34733129e+00 -2.35955328e-01 -7.88640618e-01 -4.72285628e-01 -7.62113869e-01 9.06870663e-02 -9.54687715e-01 8.02976415e-02 -1.43087947e+00 8.75553265e-02 -6.13502920e-01 2.92251289e-01 4.34816211e-01 -1.27822548e-01 -1.07109599e-01 2.67855942e-01 -2.58117706e-01 -2.18714684e-01 -7.99679607e-02 1.12897742e+00 3.59962076e-01 -1.66858241e-01 -2.88488977e-02 -8.48729789e-01 1.01405132e+00 6.76292896e-01 -3.37009490e-01 -4.68826950e-01 -5.68452179e-01 4.36849177e-01 5.05038723e-02 -9.06539895e-03 -1.42708302e+00 5.61827183e-01 -6.54298604e-01 2.30597243e-01 6.04373477e-02 -3.16445321e-01 -8.32570732e-01 -9.92383808e-02 4.70193624e-01 -5.72161376e-01 3.32246512e-01 6.78863883e-01 -2.24232644e-01 -2.00730637e-01 -1.22146440e+00 7.20125973e-01 -5.03185153e-01 -6.26429379e-01 -3.84206682e-01 -1.06248868e+00 7.97115266e-02 1.22916150e+00 -2.09610447e-01 -3.05693448e-01 -3.70012671e-01 -5.14492989e-01 -3.05117052e-02 4.36797082e-01 3.40638667e-01 4.09551769e-01 -8.96988332e-01 -3.10777247e-01 3.36170256e-01 -1.41362637e-01 9.49777514e-02 4.67332937e-02 1.51666448e-01 -1.17627001e+00 7.88749516e-01 -6.62175655e-01 -2.40394697e-01 -1.27737582e+00 2.13472337e-01 1.27964556e-01 -6.57544658e-02 -3.02614629e-01 9.54460323e-01 -1.32119581e-01 -8.31706882e-01 4.89480913e-01 -2.08713636e-01 -1.81171462e-01 -3.54645848e-01 6.04797840e-01 2.97201633e-01 1.08351901e-01 -1.34768128e-01 1.70800105e-01 2.46218368e-01 -5.15519120e-02 -1.76120356e-01 1.38708568e+00 2.76459664e-01 -1.58169925e-01 4.14074004e-01 6.74990475e-01 2.65954524e-01 -4.24713731e-01 2.58219205e-02 2.04863578e-01 -3.46311927e-01 7.15912580e-02 -8.43433559e-01 -6.47528231e-01 1.19342804e+00 2.61267543e-01 2.15685755e-01 7.16815889e-01 -5.79895496e-01 1.04079805e-01 3.57690364e-01 2.80067235e-01 -8.69521320e-01 2.06881791e-01 6.67208970e-01 4.53023016e-01 -8.51288080e-01 2.67911822e-01 -4.75271255e-01 -2.26900071e-01 1.69470263e+00 1.10618484e+00 2.51222670e-01 5.85301280e-01 3.07959974e-01 -7.57862926e-02 -1.37966171e-01 -8.62886429e-01 2.96217412e-01 8.46631303e-02 5.03460884e-01 1.42073119e+00 -3.53375405e-01 -4.44053441e-01 3.05566669e-01 -3.03455323e-01 2.75690407e-01 1.30199790e+00 1.54873776e+00 -8.61164808e-01 -1.36658466e+00 -6.72523677e-01 6.11701496e-02 -4.47378784e-01 -2.67941266e-01 -3.87754649e-01 6.79203987e-01 1.66293830e-01 8.46642911e-01 3.97147313e-02 8.06065872e-02 9.06248167e-02 3.92440826e-01 7.76881039e-01 -1.23025692e+00 -1.14999938e+00 -4.90581006e-01 -1.45478487e-01 2.72128195e-01 -6.19121753e-02 -5.88793874e-01 -1.31490600e+00 -6.95826888e-01 -3.77384156e-01 7.22686291e-01 9.78317857e-01 6.85026765e-01 2.29871109e-01 6.48827136e-01 -2.12833583e-02 -5.86442292e-01 -6.52677178e-01 -4.30677980e-01 -1.96015567e-01 -1.64427355e-01 -4.15334329e-02 -3.90368439e-02 -1.04706831e-01 4.05145168e-01]
[9.831528663635254, 7.3534393310546875]
e26d04b2-693f-4ea0-8eac-39c4bf3c3001
hp-gan-probabilistic-3d-human-motion
1711.09561
null
http://arxiv.org/abs/1711.09561v1
http://arxiv.org/pdf/1711.09561v1.pdf
HP-GAN: Probabilistic 3D human motion prediction via GAN
Predicting and understanding human motion dynamics has many applications, such as motion synthesis, augmented reality, security, and autonomous vehicles. Due to the recent success of generative adversarial networks (GAN), there has been much interest in probabilistic estimation and synthetic data generation using deep neural network architectures and learning algorithms. We propose a novel sequence-to-sequence model for probabilistic human motion prediction, trained with a modified version of improved Wasserstein generative adversarial networks (WGAN-GP), in which we use a custom loss function designed for human motion prediction. Our model, which we call HP-GAN, learns a probability density function of future human poses conditioned on previous poses. It predicts multiple sequences of possible future human poses, each from the same input sequence but a different vector z drawn from a random distribution. Furthermore, to quantify the quality of the non-deterministic predictions, we simultaneously train a motion-quality-assessment model that learns the probability that a given skeleton sequence is a real human motion. We test our algorithm on two of the largest skeleton datasets: NTURGB-D and Human3.6M. We train our model on both single and multiple action types. Its predictive power for long-term motion estimation is demonstrated by generating multiple plausible futures of more than 30 frames from just 10 frames of input. We show that most sequences generated from the same input have more than 50\% probabilities of being judged as a real human sequence. We will release all the code used in this paper to Github.
['Zicheng Liu', 'John Kender', 'Emad Barsoum']
2017-11-27
null
null
null
null
['human-pose-forecasting']
['computer-vision']
[ 3.76055658e-01 4.33298379e-01 3.64586376e-02 -1.30166799e-01 -9.05182779e-01 -3.46548319e-01 7.92051852e-01 -8.91605854e-01 -2.41899729e-01 1.10613871e+00 4.99381542e-01 2.72633974e-02 4.51642305e-01 -8.59603047e-01 -1.11781561e+00 -7.46025503e-01 6.94933254e-03 5.93290091e-01 4.36788797e-01 -1.67839006e-01 -3.55751365e-01 4.24569666e-01 -1.28196275e+00 1.87764570e-01 3.48488897e-01 6.25054300e-01 4.44612652e-02 1.27467287e+00 5.71909547e-01 1.02284682e+00 -7.85491049e-01 -6.28734767e-01 2.95298934e-01 -7.35993445e-01 -6.68022692e-01 -3.82627845e-02 -7.74211250e-03 -6.55282021e-01 -7.95175254e-01 7.33244956e-01 5.91061532e-01 2.41274670e-01 8.79962444e-01 -1.59784091e+00 -2.93521851e-01 3.02213013e-01 -3.09055328e-01 -2.73054332e-01 7.21050322e-01 7.77091205e-01 5.55652142e-01 -5.38004756e-01 9.65021431e-01 1.32760561e+00 7.90560007e-01 1.15237319e+00 -1.16353965e+00 -5.22821248e-01 -4.08710808e-01 2.27114215e-01 -1.22141457e+00 -2.15918615e-01 6.94115639e-01 -5.39673328e-01 6.76298499e-01 4.68869768e-02 8.94747496e-01 2.07078528e+00 6.26701772e-01 9.64073479e-01 5.59456646e-01 -1.54762194e-01 2.34895602e-01 -5.58978260e-01 -7.32280433e-01 6.80393398e-01 -1.03995860e-01 4.80093122e-01 -4.84451801e-01 -1.24880895e-01 9.91523921e-01 -1.25514910e-01 -2.71696746e-01 -4.35459018e-01 -1.57118726e+00 8.45498621e-01 1.87992454e-01 -2.15322331e-01 -5.64556658e-01 9.24242556e-01 1.57571778e-01 -2.94087559e-01 3.52906957e-02 7.50910640e-02 -1.14736527e-01 -5.08214176e-01 -8.18645120e-01 9.49672401e-01 6.26038194e-01 9.24549162e-01 4.24377054e-01 4.22301799e-01 -3.67262393e-01 3.96528512e-01 2.77137727e-01 9.74447787e-01 6.57791793e-01 -1.40751982e+00 3.51043463e-01 -2.35341206e-01 4.24436867e-01 -9.15931165e-01 -2.94947445e-01 9.35074612e-02 -9.64308560e-01 4.65041459e-01 4.67998266e-01 -5.07578075e-01 -1.12406039e+00 2.04577947e+00 2.48707563e-01 5.48648536e-01 1.60390198e-01 8.30377817e-01 4.89108920e-01 8.94730449e-01 1.45911053e-01 1.64078191e-01 8.56177151e-01 -8.57918262e-01 -4.95519519e-01 -1.52357206e-01 2.22733602e-01 -5.48521161e-01 8.03448915e-01 2.18566790e-01 -1.17804074e+00 -7.44895279e-01 -8.90371263e-01 6.17997609e-02 1.62241578e-01 -1.87351331e-01 2.49221534e-01 5.98495424e-01 -9.33532119e-01 8.90505254e-01 -1.19834554e+00 -1.00963235e-01 3.32827508e-01 2.51060985e-02 -3.76853228e-01 -1.01859644e-01 -1.33902764e+00 7.19723761e-01 4.26626831e-01 -9.72269997e-02 -1.32629454e+00 -2.76975006e-01 -9.93823171e-01 -2.77557611e-01 3.67677137e-02 -1.37318397e+00 1.30629265e+00 -8.33283246e-01 -1.75834620e+00 4.70687568e-01 -1.22807503e-01 -7.80209780e-01 9.92085159e-01 -3.99035037e-01 -3.54446143e-01 1.36549383e-01 2.43156403e-01 1.22554696e+00 1.03263116e+00 -1.06020081e+00 -4.06442702e-01 8.80374238e-02 -3.06283355e-01 6.67539909e-02 4.75321680e-01 -3.62557322e-01 -3.90674442e-01 -1.13273525e+00 -3.76474947e-01 -1.34686077e+00 -4.68111038e-01 3.56843136e-02 -6.42729580e-01 2.08508626e-01 6.35302305e-01 -8.44894588e-01 7.50862241e-01 -1.74884057e+00 5.09616554e-01 1.02856522e-02 -1.56266704e-01 1.15483165e-01 -2.57885635e-01 3.06201279e-01 2.48319767e-02 1.28307462e-01 -5.40928185e-01 -3.57920825e-01 1.28552541e-01 5.02651751e-01 -4.44278091e-01 2.61924297e-01 3.23955327e-01 1.31664801e+00 -1.11323535e+00 -3.52200270e-01 3.54083210e-01 6.26358390e-01 -5.84122479e-01 4.45926666e-01 -5.33887446e-01 8.63089740e-01 -1.61735475e-01 3.23215574e-01 2.79119641e-01 -4.57953885e-02 -6.24639280e-02 5.86286187e-02 6.06552720e-01 -1.82264462e-01 -1.00871301e+00 1.81749690e+00 -1.20225884e-01 5.68850338e-01 -7.04019904e-01 -4.31789696e-01 6.26635015e-01 5.34602940e-01 5.88616610e-01 -2.35851347e-01 -4.08893228e-02 -8.92860144e-02 -9.73715261e-02 -4.65828806e-01 6.53124690e-01 -3.08820218e-01 -3.09297800e-01 4.62833941e-01 6.00998364e-02 -3.74861658e-01 -6.36895224e-02 1.58063427e-01 1.37067211e+00 8.02585661e-01 1.71320319e-01 5.11823535e-01 1.01952448e-01 -1.02341948e-02 6.97628081e-01 7.55921185e-01 -2.72645742e-01 1.22092044e+00 4.39153165e-01 -4.12771314e-01 -1.60451162e+00 -1.57591808e+00 5.08353531e-01 4.64250654e-01 2.01561842e-02 -1.96060583e-01 -7.31877744e-01 -6.46111369e-01 -2.26043999e-01 9.71061349e-01 -6.78971112e-01 -4.68593717e-01 -8.99522245e-01 -5.61163008e-01 9.36163008e-01 7.28481472e-01 3.04919571e-01 -1.53878534e+00 -8.22697997e-01 3.81406188e-01 -4.95751590e-01 -1.12968051e+00 -5.28493524e-01 -5.09820759e-01 -5.96898139e-01 -8.83873582e-01 -1.20399606e+00 -3.12720090e-01 2.19044998e-01 -3.98659170e-01 1.25401950e+00 -3.19385231e-01 -1.79393813e-01 4.32694823e-01 -3.00825417e-01 -2.03112289e-01 -1.03106260e+00 -2.28812292e-01 1.83066115e-01 -4.24434356e-02 -1.46551952e-01 -4.62562233e-01 -7.64014602e-01 3.09202403e-01 -9.19928372e-01 4.22418475e-01 4.38145965e-01 1.01493514e+00 7.04169393e-01 -2.31178090e-01 4.49945956e-01 -5.57226837e-01 2.24157214e-01 -7.82036424e-01 -1.35474056e-01 -2.40430143e-02 -2.12151129e-02 1.74362242e-01 5.06975591e-01 -6.42683506e-01 -1.10759652e+00 3.85532558e-01 -5.59898376e-01 -7.32304931e-01 -3.35985839e-01 6.67386577e-02 -2.55013049e-01 4.34858590e-01 8.01556706e-01 4.08296317e-01 5.26283076e-03 6.49536848e-02 7.46540129e-01 -1.80109907e-02 1.04044044e+00 -5.47665417e-01 9.84902978e-01 5.57743907e-01 2.03953773e-01 -6.97903991e-01 -2.57437885e-01 1.65796742e-01 -3.39180678e-01 -4.48888421e-01 1.26070225e+00 -8.65460694e-01 -5.50572455e-01 8.38684678e-01 -1.44146597e+00 -7.18731463e-01 -5.12601554e-01 5.15220344e-01 -1.26438701e+00 5.40334344e-01 -5.98618746e-01 -8.36494625e-01 -1.13569856e-01 -1.23146617e+00 1.22373450e+00 1.47226024e-02 -6.86536789e-01 -8.14436495e-01 3.95564198e-01 1.58846289e-01 3.29187177e-02 9.57123876e-01 5.16505599e-01 -1.41807660e-01 -7.83515632e-01 -2.99078375e-01 4.05753374e-01 3.32768679e-01 -9.30631757e-02 1.29707918e-01 -6.19170845e-01 -5.26063144e-02 -2.66819447e-01 -4.11713511e-01 7.01284111e-01 5.92048526e-01 9.09438014e-01 -4.35187906e-01 -3.11367154e-01 6.74120784e-01 1.00487554e+00 3.57004076e-01 1.23772538e+00 9.06152725e-02 9.96802986e-01 4.09030765e-01 4.93040204e-01 4.67702210e-01 2.20630258e-01 8.30710948e-01 4.68025982e-01 3.25155020e-01 -2.25501642e-01 -8.37382257e-01 6.14606321e-01 2.93167293e-01 -2.75965154e-01 -6.53838456e-01 -9.17858899e-01 6.16038561e-01 -1.87072790e+00 -1.36019802e+00 8.30606669e-02 2.09857464e+00 6.54248655e-01 2.89929450e-01 4.00384545e-01 6.74876198e-02 5.78745544e-01 2.09010959e-01 -6.40165746e-01 -2.88930982e-02 -1.36086255e-01 3.26534659e-01 3.57209265e-01 4.50724870e-01 -1.02986515e+00 9.26537097e-01 6.36235094e+00 7.98304021e-01 -8.41370642e-01 -6.33707121e-02 7.49076307e-01 -9.95214731e-02 -3.98589343e-01 -2.19982505e-01 -5.39548337e-01 6.76878273e-01 1.08477604e+00 -1.46720693e-01 1.20457046e-01 8.41526091e-01 3.12109172e-01 3.74590531e-02 -1.01165104e+00 8.83158684e-01 -8.84339660e-02 -1.41690910e+00 3.35657537e-01 2.26484034e-02 9.23659444e-01 -1.98267642e-02 8.43953639e-02 2.12712675e-01 7.42001772e-01 -1.28332460e+00 1.09653008e+00 9.87481773e-01 8.77286494e-01 -8.60679269e-01 6.69463992e-01 5.48822820e-01 -9.66438293e-01 3.42058450e-01 -3.47857662e-02 1.79111287e-01 8.61352563e-01 1.74623311e-01 -8.67912591e-01 4.76218104e-01 3.62218082e-01 6.50882304e-01 -1.53848633e-01 7.46280253e-01 -4.98944581e-01 6.04832709e-01 -2.48996451e-01 1.82899311e-01 -1.09260110e-02 1.38994455e-01 7.68236220e-01 8.85491014e-01 6.31523967e-01 2.56087035e-02 -5.63674048e-02 8.38789344e-01 1.46916494e-01 -5.02745509e-01 -8.20122004e-01 5.96003048e-02 3.12295794e-01 6.36293292e-01 -3.57102454e-01 -3.82536054e-01 3.08829881e-02 1.35264456e+00 -1.09505065e-01 4.08462286e-01 -1.28694844e+00 -1.91240944e-02 7.52830327e-01 -3.91077623e-02 3.67708147e-01 -3.60833436e-01 -1.12507656e-01 -1.12258232e+00 -1.16719455e-01 -8.30104470e-01 2.58271415e-02 -1.11837626e+00 -1.07463372e+00 7.51502991e-01 1.21908434e-01 -1.46709967e+00 -1.34287751e+00 -3.28519851e-01 -6.41273081e-01 8.74297500e-01 -6.47989094e-01 -1.12229264e+00 -1.75226554e-01 5.15550196e-01 5.24071038e-01 -2.78991908e-01 7.87802815e-01 -5.17367981e-02 -1.87085286e-01 5.28694928e-01 -2.21864998e-01 2.90428013e-01 4.29199368e-01 -1.10976660e+00 1.20749485e+00 9.53902245e-01 2.20252320e-01 -5.65561280e-02 1.03436506e+00 -9.60223496e-01 -9.63640630e-01 -1.36522138e+00 6.11265004e-01 -8.02563787e-01 3.94623041e-01 5.68927564e-02 -6.82363391e-01 8.91654611e-01 -2.04694849e-02 -3.94233391e-02 2.36839876e-01 -9.12920237e-01 7.85919055e-02 4.28240865e-01 -1.22518897e+00 9.33487475e-01 1.24351001e+00 -2.57834375e-01 -4.63510782e-01 1.72176868e-01 8.71234655e-01 -6.81453407e-01 -8.41656983e-01 5.96305788e-01 7.35269010e-01 -1.09791172e+00 1.24825382e+00 -6.39074802e-01 9.56040800e-01 -3.07618141e-01 -2.18664855e-01 -1.37145102e+00 -1.84203580e-01 -6.46531582e-01 -4.72083420e-01 7.00222313e-01 2.03279689e-01 -2.22643688e-01 1.24833906e+00 6.24051034e-01 2.94093676e-02 -7.65268266e-01 -9.72207069e-01 -8.34330559e-01 9.80814695e-02 -7.27826416e-01 6.16105795e-01 4.11010355e-01 -6.07137561e-01 1.17061593e-01 -1.04486179e+00 4.46100123e-02 7.21783459e-01 -3.46934974e-01 1.33385277e+00 -5.23368537e-01 -7.50298798e-01 -1.67299509e-01 -7.36810982e-01 -1.25155294e+00 2.33838439e-01 -4.12915230e-01 4.17725205e-01 -1.40320790e+00 -7.20026791e-02 8.73790234e-02 3.98228705e-01 1.55393749e-01 -2.68764049e-01 3.63201439e-01 3.30741912e-01 2.45887607e-01 -2.17261642e-01 1.03882968e+00 1.36245537e+00 -6.81963861e-02 1.12786427e-01 2.69611567e-01 9.44449753e-02 8.68982613e-01 5.80254138e-01 -4.72475946e-01 -4.56145227e-01 -2.25357935e-01 -7.38278627e-02 7.08831608e-01 8.37502658e-01 -1.46139681e+00 -2.00770214e-01 -3.16227138e-01 6.20536029e-01 -6.66903615e-01 7.83557475e-01 -5.00058055e-01 9.41253543e-01 7.94759691e-01 -2.11174309e-01 1.47762537e-01 -1.91170238e-02 9.43381608e-01 -5.12969494e-03 5.26948385e-02 7.01884508e-01 -2.20821172e-01 -8.43488634e-01 5.39056122e-01 -4.93643045e-01 1.67780951e-01 1.04989886e+00 -2.08757401e-01 -1.97720267e-02 -9.50946331e-01 -1.00425100e+00 -1.61053166e-01 6.53707564e-01 4.24283594e-01 8.11435997e-01 -1.70887446e+00 -8.78629684e-01 -8.61903504e-02 -6.11500368e-02 1.42549038e-01 3.70286047e-01 1.44563600e-01 -8.42014492e-01 1.46430314e-01 -3.67627025e-01 -6.56258821e-01 -8.18005264e-01 4.14368868e-01 3.63815486e-01 -3.97805363e-01 -6.95853949e-01 7.20508516e-01 1.66419163e-01 -2.53511429e-01 -1.41365290e-01 -7.72447437e-02 1.89961776e-01 -7.75296152e-01 4.18293327e-01 5.22139907e-01 -6.59281254e-01 -1.05253482e+00 -1.36687413e-01 3.02406788e-01 5.00610471e-01 -7.19792962e-01 9.69321728e-01 9.59743559e-02 5.41621447e-01 4.15973037e-01 9.89114523e-01 -1.63284630e-01 -1.93891096e+00 1.63669840e-01 -2.72336721e-01 -2.94811726e-01 -7.45111406e-01 -6.58407867e-01 -9.94253695e-01 6.42191410e-01 5.24205565e-01 -2.51536131e-01 7.60423660e-01 -1.41600534e-01 1.28392518e+00 3.05196363e-02 7.10033596e-01 -5.69092870e-01 3.73706967e-01 4.08738375e-01 1.03595412e+00 -1.05694640e+00 -2.71497190e-01 -8.62247422e-02 -9.89596605e-01 8.61368120e-01 5.17138660e-01 -3.49459350e-01 4.11122203e-01 1.49275109e-01 1.79459639e-02 2.92078316e-01 -6.37850285e-01 4.08640392e-02 3.29082817e-01 1.06912887e+00 1.26211479e-01 3.28680068e-01 3.64549533e-02 4.63679880e-01 -5.34835100e-01 3.88095587e-01 6.41106963e-01 6.46732330e-01 -4.24889103e-03 -1.05720150e+00 -4.77835476e-01 7.39253312e-02 -3.36756319e-01 1.95982039e-01 -3.04297525e-02 7.01897979e-01 1.14814311e-01 4.86363232e-01 -1.09326169e-01 -7.59951711e-01 7.74434358e-02 1.24628060e-01 5.46289563e-01 -3.58342707e-01 1.04189329e-01 -2.48930886e-01 1.27205715e-01 -7.74288297e-01 -3.67547393e-01 -8.57763648e-01 -1.23996198e+00 -4.73784089e-01 4.06190902e-01 -2.35282928e-01 3.31115484e-01 8.07790399e-01 2.53512532e-01 5.82215309e-01 2.72323966e-01 -1.43876207e+00 -5.07201493e-01 -8.98318529e-01 -3.21643203e-01 7.95379937e-01 1.88515618e-01 -6.66134119e-01 -5.96094243e-02 5.22951484e-01]
[7.299492835998535, -0.10407783091068268]
1c201a88-23b4-49a7-a545-99808cfe0b97
vvc-extension-scheme-for-object-detection
2305.18782
null
https://arxiv.org/abs/2305.18782v1
https://arxiv.org/pdf/2305.18782v1.pdf
VVC Extension Scheme for Object Detection Using Contrast Reduction
In recent years, video analysis using Artificial Intelligence (AI) has been widely used, due to the remarkable development of image recognition technology using deep learning. In 2019, the Moving Picture Experts Group (MPEG) has started standardization of Video Coding for Machines (VCM) as a video coding technology for image recognition. In the framework of VCM, both higher image recognition accuracy and video compression performance are required. In this paper, we propose an extention scheme of video coding for object detection using Versatile Video Coding (VVC). Unlike video for human vision, video used for object detection does not require a large image size or high contrast. Since downsampling of the image can reduce the amount of information to be transmitted. Due to the decrease in image contrast, entropy of the image becomes smaller. Therefore, in our proposed scheme, the original image is reduced in size and contrast, then coded with VVC encoder to achieve high compression performance. Then, the output image from the VVC decoder is restored to its original image size using the bicubic method. Experimental results show that the proposed video coding scheme achieves better coding performance than regular VVC in terms of object detection accuracy.
['Hiroshi Watanabe', 'Kein Yamada', 'Taiju Watanabe', 'Takahiro Shindo']
2023-05-30
null
null
null
null
['video-compression']
['computer-vision']
[ 5.22523701e-01 -3.41147900e-01 -1.35391429e-01 1.33619770e-01 3.96336615e-02 -2.34849602e-02 2.26972550e-01 -1.80919051e-01 -5.51371813e-01 4.23582464e-01 -1.98460668e-02 -1.06752686e-01 3.87575179e-01 -8.72394979e-01 -4.82218742e-01 -7.06114650e-01 1.14803314e-01 -4.24760818e-01 5.48826456e-01 2.72596121e-01 4.92299169e-01 3.79544884e-01 -1.66605926e+00 4.70067799e-01 5.38627446e-01 1.37926483e+00 7.66917646e-01 6.33605003e-01 -4.06573504e-01 1.26463521e+00 -5.41158080e-01 -1.27551675e-01 3.39901924e-01 -6.71886384e-01 -6.95070207e-01 4.91834372e-01 -8.36539343e-02 -7.01358378e-01 -6.55290902e-01 1.33849740e+00 6.83331043e-02 5.74817806e-02 6.26896024e-01 -1.17016828e+00 -5.85816026e-01 1.21515378e-01 -6.59960747e-01 3.48389745e-01 2.15400890e-01 5.30432863e-03 3.91242594e-01 -7.58532763e-01 5.01732111e-01 1.18425262e+00 2.03224912e-01 5.01873016e-01 -8.03935409e-01 -5.71231723e-01 -3.06082934e-01 9.32202816e-01 -1.39623022e+00 -1.76342919e-01 7.46269047e-01 -2.65834451e-01 8.21022093e-01 3.25256646e-01 9.32500422e-01 4.15652484e-01 4.15904075e-01 7.24432647e-01 6.51527584e-01 -6.77026451e-01 2.67682135e-01 -1.41309025e-02 -2.88292944e-01 6.26220047e-01 3.84773344e-01 -9.53693166e-02 -2.85133310e-02 3.95119935e-01 9.06021059e-01 4.00922894e-01 -4.72917169e-01 -1.21453740e-01 -1.08452141e+00 7.46889889e-01 3.77354652e-01 5.53476751e-01 -4.47243184e-01 1.86545700e-01 5.74119687e-01 2.39186078e-01 -8.75514820e-02 -1.72841981e-01 1.12221628e-01 -3.22465926e-01 -9.06795382e-01 -3.36403400e-01 5.70526898e-01 8.09054315e-01 4.14459974e-01 4.01026547e-01 2.68032581e-01 8.48365664e-01 5.03332555e-01 5.88347673e-01 9.15942192e-01 -1.23130667e+00 4.65120584e-01 7.10505962e-01 -2.29081303e-01 -1.38152313e+00 -8.28733370e-02 -4.41634189e-03 -1.21484911e+00 3.53542268e-01 2.32819431e-02 1.00213520e-01 -7.99431682e-01 1.00970745e+00 -1.47738084e-01 1.02545016e-01 4.60555911e-01 9.01283503e-01 7.38946140e-01 1.38621414e+00 -6.65762499e-02 -5.44171870e-01 1.27520335e+00 -8.03127646e-01 -9.57678258e-01 -5.24199866e-02 4.73289996e-01 -8.41827154e-01 4.26331609e-01 5.60194612e-01 -9.68999684e-01 -8.33597124e-01 -1.27674258e+00 9.27930027e-02 -4.15151380e-03 3.90000418e-02 2.54000664e-01 5.85700035e-01 -7.06450403e-01 1.71235442e-01 -6.11782908e-01 -3.58736992e-01 4.15916413e-01 2.77579606e-01 -3.96087527e-01 -3.64886731e-01 -9.34688032e-01 7.27720022e-01 9.51038182e-01 -7.79654458e-02 -5.26461601e-01 -1.50113061e-01 -8.20176125e-01 2.58750707e-01 3.09587363e-02 -1.07715428e-01 8.90411973e-01 -1.40108657e+00 -1.29859293e+00 6.37070537e-01 -2.01737955e-02 -7.54540563e-01 2.58760720e-01 2.10601643e-01 -5.45150340e-01 7.26523638e-01 -1.95662871e-01 8.61862957e-01 1.03050160e+00 -8.77587855e-01 -9.00218785e-01 -7.04071820e-02 -1.00542717e-01 8.89222994e-02 -3.42385203e-01 7.08044320e-02 -7.14232147e-01 -4.85273719e-01 2.82955557e-01 -6.81012988e-01 1.13325141e-01 2.28952095e-01 2.32023492e-01 -7.53152417e-03 1.47216642e+00 -6.93221271e-01 1.33021104e+00 -2.50386214e+00 4.04748656e-02 7.06180977e-03 6.69194013e-02 7.07471550e-01 -3.30924802e-02 2.25393400e-01 1.43001825e-01 -9.15757790e-02 -3.18992078e-01 3.70277196e-01 -8.56158674e-01 3.67172360e-01 1.03610910e-01 3.37188542e-01 -5.75448908e-02 5.19254625e-01 -5.25783002e-01 -9.04989660e-01 6.78688347e-01 4.43182409e-01 -7.37043440e-01 5.07759824e-02 2.47948900e-01 1.67402193e-01 -3.11739475e-01 6.35728002e-01 1.01184964e+00 -2.36280233e-01 2.28904337e-01 -2.01552033e-01 -1.29735708e-01 -5.65870106e-01 -1.18101001e+00 1.04160738e+00 -3.81807536e-01 1.10849190e+00 8.36738497e-02 -1.44658422e+00 9.46149409e-01 4.73089874e-01 6.10987186e-01 -9.30594027e-01 3.23456198e-01 1.67154193e-01 1.50020078e-01 -8.92077565e-01 3.02020282e-01 1.17540449e-01 4.96007532e-01 -6.46671802e-02 -6.07365742e-02 -6.06860220e-02 3.76127362e-01 9.56349820e-02 6.58891976e-01 -2.67434806e-01 5.31746149e-01 1.17851235e-01 1.12941194e+00 -5.37534505e-02 6.65470302e-01 3.47230732e-01 -2.73336887e-01 4.72111404e-01 7.67763928e-02 -5.39483249e-01 -1.32796001e+00 -6.21430337e-01 -2.35468715e-01 2.40356371e-01 5.39223135e-01 -2.67917901e-01 -8.83486688e-01 -3.44215669e-02 -2.92762756e-01 4.11296129e-01 -4.56136558e-03 -2.32783973e-01 -6.79275811e-01 -3.97813290e-01 2.39354908e-01 1.87157065e-01 1.32738900e+00 -1.38899469e+00 -1.00201523e+00 3.49586010e-01 -3.11721593e-01 -1.31520534e+00 -2.51322687e-01 -4.61935490e-01 -1.01373661e+00 -1.13552701e+00 -9.01127160e-01 -1.33266270e+00 5.66449404e-01 8.63210440e-01 3.63131732e-01 4.67068672e-01 -4.35868323e-01 3.22701544e-01 -6.41526341e-01 -2.17328668e-01 -6.50941908e-01 -5.45645475e-01 -1.56173244e-01 2.18389139e-01 3.54334950e-01 -2.43419111e-01 -7.99813867e-01 1.25964791e-01 -1.36491680e+00 3.70616943e-01 6.76213861e-01 6.72059953e-01 2.26547942e-01 5.36434650e-01 2.46698618e-01 -2.38590002e-01 1.15758307e-01 -1.34004101e-01 -7.35553443e-01 4.49014418e-02 -4.58020002e-01 -3.20724040e-01 7.68872499e-01 -2.04328001e-01 -9.69557881e-01 -4.50134166e-02 -8.20679292e-02 -4.30266768e-01 1.31317943e-01 3.59183967e-01 -2.43913531e-02 -3.00550193e-01 1.56530485e-01 8.43255103e-01 5.63431799e-01 -1.47953942e-01 -8.77030939e-02 1.16778994e+00 5.24798036e-01 4.10272837e-01 3.90062809e-01 3.60120177e-01 9.10169706e-02 -1.23532140e+00 3.68211158e-02 -3.43158811e-01 -3.12757283e-01 -6.65889978e-01 1.27835488e+00 -9.13489759e-01 -8.13331783e-01 7.43362665e-01 -1.36273658e+00 3.32784414e-01 2.36438677e-01 1.05499649e+00 -3.89555722e-01 8.76614213e-01 -6.84332132e-01 -7.95200825e-01 -4.01754856e-01 -1.35275304e+00 4.87192452e-01 3.52003545e-01 2.75172472e-01 -6.69562280e-01 -6.11664355e-01 3.37588519e-01 4.46471661e-01 -7.91958421e-02 8.94111693e-01 1.25536487e-01 -8.66199434e-01 -3.86446714e-01 -4.96147066e-01 8.13964009e-01 1.44173399e-01 3.26262452e-02 -4.55118090e-01 -1.28385410e-01 3.92944455e-01 9.97362658e-02 8.72646034e-01 4.87441570e-01 1.53090537e+00 -3.93751830e-01 -1.95527852e-01 6.80547953e-01 1.78155673e+00 1.15478849e+00 1.21286488e+00 6.17393076e-01 5.02487838e-01 2.15184584e-01 4.96722162e-01 3.55837524e-01 -3.58288772e-02 5.61062872e-01 6.07442677e-01 -5.48900776e-02 -2.57050514e-01 4.56008725e-02 4.35215265e-01 1.05513299e+00 -3.09985012e-01 -3.27113897e-01 -5.71591556e-01 6.17329776e-02 -1.55215943e+00 -1.39028049e+00 -1.94611058e-01 2.18625736e+00 4.11670536e-01 4.14667800e-02 -4.25088614e-01 5.59392810e-01 9.57382143e-01 5.46541177e-02 -2.58141875e-01 -5.98116934e-01 -7.35915452e-02 -3.39598268e-01 5.78934848e-01 3.06216508e-01 -9.71677661e-01 5.46545684e-01 5.74353790e+00 1.03596151e+00 -1.40217447e+00 -1.14345774e-01 5.27669013e-01 1.53721064e-01 1.57382056e-01 -1.99469015e-01 -4.08244967e-01 9.65400517e-01 6.90663874e-01 -2.23161072e-01 4.72372025e-01 9.47261989e-01 1.82377473e-01 -3.66013139e-01 -5.23901463e-01 1.59779799e+00 3.26830804e-01 -1.39790297e+00 3.43632787e-01 3.11363172e-02 4.73276496e-01 -4.30913448e-01 -1.18317150e-01 1.72730610e-01 -7.01850235e-01 -5.96087813e-01 5.39634407e-01 1.87518969e-01 7.90648282e-01 -6.95155382e-01 9.00809586e-01 2.65154302e-01 -1.31803560e+00 -5.08405745e-01 -8.67971361e-01 -1.59327909e-01 1.37472406e-01 3.45281899e-01 -4.59646672e-01 2.27684155e-01 7.39260554e-01 7.35515773e-01 -3.39415312e-01 1.11813724e+00 2.98409045e-01 4.86048996e-01 -4.22566831e-02 -3.58573161e-02 3.68469357e-01 -4.97417301e-01 5.67413867e-01 9.21514928e-01 5.50010324e-01 4.26046044e-01 5.32728955e-02 2.60164857e-01 -1.09726943e-01 2.74186522e-01 -7.39987373e-01 -2.77511086e-02 3.77130866e-01 8.52118433e-01 -9.12556767e-01 -7.25212455e-01 -8.61719608e-01 1.15107632e+00 -3.04052949e-01 1.88886017e-01 -7.42429733e-01 -3.96200627e-01 -3.01362691e-03 7.39347190e-02 5.60386062e-01 -1.74523741e-01 1.34192169e-01 -1.10749590e+00 -2.89743301e-02 -7.70384312e-01 1.75262034e-01 -9.24898207e-01 -4.03318971e-01 5.00662804e-01 -1.51669368e-01 -1.81757176e+00 -6.91746920e-02 -6.06853664e-01 -4.54290211e-01 4.69581634e-01 -1.17921460e+00 -5.82533717e-01 -3.76732618e-01 4.68041778e-01 9.82190132e-01 -4.82981920e-01 5.30537486e-01 4.76137996e-01 -4.07434374e-01 8.96156281e-02 5.35128355e-01 2.56499320e-01 1.97378069e-01 -5.65707922e-01 -2.06638753e-01 9.81685638e-01 -1.11280821e-01 1.55302867e-01 3.91435713e-01 -4.69401032e-01 -1.55253255e+00 -9.73945439e-01 6.05763018e-01 5.13696730e-01 7.49270245e-02 9.22464132e-02 -8.39582026e-01 2.80371875e-01 3.58001113e-01 -6.00266792e-02 4.04055715e-01 -9.41292584e-01 9.15800631e-02 -3.68810803e-01 -1.28990841e+00 4.23729241e-01 3.37192357e-01 -2.53039092e-01 -4.39133108e-01 1.55489549e-01 6.43400252e-01 1.64106805e-02 -6.92625701e-01 3.36090684e-01 7.54442811e-01 -1.00310457e+00 8.82192373e-01 7.10233673e-02 6.19278252e-01 -5.21476805e-01 -4.23822314e-01 -6.38400435e-01 -4.36526746e-01 2.77877301e-02 8.05408061e-02 8.81995618e-01 -4.73706722e-02 -3.84892613e-01 6.42644346e-01 2.34162301e-01 8.79463181e-02 -5.22963166e-01 -1.01282489e+00 -7.56760478e-01 -4.84770209e-01 -3.00384909e-01 1.41188487e-01 5.71052730e-01 5.19623570e-02 2.19955556e-02 -6.68716371e-01 -1.84044372e-02 5.99148393e-01 2.63637640e-02 3.68424505e-01 -9.66554165e-01 -2.27454394e-01 -3.73354912e-01 -1.17071474e+00 -1.04248738e+00 -3.56428564e-01 -7.17218518e-01 -3.12330961e-01 -1.61438870e+00 4.11103040e-01 2.64097482e-01 -1.70730948e-01 -1.20170027e-01 7.15779439e-02 5.94368517e-01 7.59038210e-01 6.13385141e-01 -4.87762183e-01 4.25158143e-01 1.28910315e+00 -3.81621003e-01 -5.98081090e-02 -2.20126674e-01 -4.13465649e-02 7.03379631e-01 8.07954133e-01 -1.39721051e-01 -3.40751171e-01 -4.01645035e-01 -4.02215987e-01 5.09344697e-01 1.65997744e-01 -1.34932935e+00 1.54188469e-01 -6.00977466e-02 7.62629151e-01 -5.88034809e-01 3.06063920e-01 -1.22255266e+00 2.95811564e-01 1.18961656e+00 -9.20867473e-02 -1.23165578e-01 8.01559836e-02 4.91178691e-01 -6.31745100e-01 -6.43030405e-01 1.03657007e+00 -2.04047292e-01 -1.34527206e+00 5.75624034e-02 -1.00011432e+00 -5.93413293e-01 1.38868916e+00 -7.99507439e-01 -2.75182594e-02 -4.57249880e-01 -2.94025093e-01 -1.28807157e-01 4.01073337e-01 4.18486029e-01 1.06603336e+00 -1.43301153e+00 -4.43857282e-01 4.43478048e-01 -4.70275469e-02 -3.26546133e-01 5.69999754e-01 6.57405436e-01 -1.34162974e+00 5.18123627e-01 -4.86922890e-01 -7.17578351e-01 -1.60512340e+00 9.10163760e-01 4.85984683e-02 1.97485819e-01 -9.09607112e-01 3.73355001e-01 3.12281191e-01 6.17063642e-01 1.95245042e-01 -1.78852290e-01 -5.01845241e-01 -2.52302080e-01 9.74898994e-01 4.49108928e-01 -2.60338098e-01 -7.34695256e-01 -1.84600249e-01 7.33933568e-01 -5.02669588e-02 7.84202814e-02 9.71732080e-01 -3.45701844e-01 -2.66319752e-01 -6.91488758e-03 1.64339340e+00 -3.42330545e-01 -9.62624431e-01 1.82474494e-01 -3.46597701e-01 -6.90053642e-01 3.49599421e-01 -1.64623246e-01 -1.36121321e+00 8.20575416e-01 9.66049314e-01 2.78593242e-01 1.49314439e+00 -4.18902755e-01 8.71113181e-01 2.90359706e-01 4.99489427e-01 -1.11693454e+00 3.78275327e-02 2.19679296e-01 6.84609413e-01 -1.24441969e+00 8.39645043e-02 -4.17585671e-01 -6.63390815e-01 1.49620247e+00 4.77908850e-01 -1.19312584e-01 6.02924049e-01 1.26163706e-01 -1.23369910e-01 1.55839875e-01 -4.38725531e-01 7.37617835e-02 -5.80416247e-02 5.93244374e-01 2.16263697e-01 -2.20751464e-01 -6.93118215e-01 -1.25258103e-01 3.10434759e-01 1.71456590e-01 8.09011281e-01 9.07991946e-01 -1.07421315e+00 -8.42779517e-01 -6.88482940e-01 4.35567826e-01 -6.52604938e-01 4.88425270e-02 2.24160999e-01 5.92342615e-01 2.32918382e-01 1.12443173e+00 3.84526283e-01 -3.05185646e-01 -6.85891807e-02 -3.07430506e-01 5.20795166e-01 -1.14445291e-01 2.35639974e-01 1.84084140e-02 -4.75962460e-01 -2.81087011e-01 -7.32502341e-01 -2.23715603e-01 -1.48417628e+00 -2.84001231e-01 -1.07075535e-01 2.47004837e-01 8.82325113e-01 7.27448702e-01 1.58798508e-02 3.79870683e-01 7.31123149e-01 -6.23350024e-01 -8.29722546e-03 -8.17459822e-01 -6.96804225e-01 5.17515361e-01 1.58553436e-01 -4.23782200e-01 -2.69041210e-01 4.90303993e-01]
[11.175915718078613, -1.5825532674789429]
8cfbac87-70b1-45b4-aafd-56b2264e8fc3
powerplanningdl-reliability-aware-framework
2005.01386
null
https://arxiv.org/abs/2005.01386v2
https://arxiv.org/pdf/2005.01386v2.pdf
PowerPlanningDL: Reliability-Aware Framework for On-Chip Power Grid Design using Deep Learning
With the increase in the complexity of chip designs, VLSI physical design has become a time-consuming task, which is an iterative design process. Power planning is that part of the floorplanning in VLSI physical design where power grid networks are designed in order to provide adequate power to all the underlying functional blocks. Power planning also requires multiple iterative steps to create the power grid network while satisfying the allowed worst-case IR drop and Electromigration (EM) margin. For the first time, this paper introduces Deep learning (DL)-based framework to approximately predict the initial design of the power grid network, considering different reliability constraints. The proposed framework reduces many iterative design steps and speeds up the total design cycle. Neural Network-based multi-target regression technique is used to create the DL model. Feature extraction is done, and the training dataset is generated from the floorplans of some of the power grid designs extracted from the IBM processor. The DL model is trained using the generated dataset. The proposed DL-based framework is validated using a new set of power grid specifications (obtained by perturbing the designs used in the training phase). The results show that the predicted power grid design is closer to the original design with minimal prediction error (~2%). The proposed DL-based approach also improves the design cycle time with a speedup of ~6X for standard power grid benchmarks.
['Sukanta Dey', 'Sukumar Nandi', 'Gaurav Trivedi']
2020-05-04
null
null
null
null
['multi-target-regression']
['miscellaneous']
[-9.16796401e-02 -1.04212416e-02 -3.44022423e-01 -1.44536451e-01 -4.53529507e-01 -3.40372562e-01 3.02909344e-01 2.47569263e-01 1.47387415e-01 9.36793685e-01 -1.01078607e-01 -4.79498237e-01 -4.53460544e-01 -9.26720262e-01 -3.17689985e-01 -7.59642005e-01 -1.36620045e-01 5.21883309e-01 -9.44636390e-03 -1.91381592e-02 5.10314167e-01 8.80196095e-01 -1.02410150e+00 4.07625549e-02 6.50952280e-01 1.12277198e+00 1.44256294e-01 4.59122986e-01 2.79639453e-01 5.93772352e-01 -8.56835067e-01 4.32328373e-01 2.48840854e-01 -4.27206397e-01 -3.71424109e-01 7.58674070e-02 2.86573246e-02 -2.46583238e-01 -2.78259099e-01 1.23248887e+00 6.50043488e-01 -1.30028024e-01 6.57324255e-01 -1.36732006e+00 -7.72748590e-02 8.02594066e-01 -7.98817277e-01 1.44048899e-01 -1.37075871e-01 3.57394442e-02 6.80847824e-01 -3.46029758e-01 1.03193313e-01 8.08115005e-01 3.81757885e-01 5.98818138e-02 -1.27197385e+00 -1.00574911e+00 -3.98499638e-01 2.93251306e-01 -1.63264871e+00 -1.93201572e-01 1.17798042e+00 -1.96488231e-01 1.57094550e+00 -8.40548649e-02 5.72777510e-01 4.84624356e-01 1.26950061e+00 2.06885681e-01 1.03238022e+00 -4.81833160e-01 8.04851413e-01 -8.35473314e-02 1.80045336e-01 4.18245196e-01 6.83874667e-01 2.84880221e-01 -1.19607337e-01 -1.87442094e-01 6.07477963e-01 -3.43913525e-01 -5.89338876e-02 -2.26371661e-01 -6.22124732e-01 5.46176076e-01 5.77751756e-01 7.13186681e-01 -2.97119796e-01 5.14778078e-01 5.05334854e-01 1.48715109e-01 -1.50326803e-01 7.45790422e-01 -6.73067451e-01 -9.06755850e-02 -1.27083802e+00 3.44063431e-01 8.68843377e-01 1.03371572e+00 6.42394602e-01 7.91733980e-01 1.47917628e-01 1.02422833e-01 3.75486314e-01 3.67267281e-01 3.77620906e-01 -4.62451696e-01 1.22550137e-01 7.63852358e-01 -1.60830375e-02 -1.02540779e+00 -9.12341118e-01 -9.69473302e-01 -1.29219699e+00 4.76208150e-01 1.20060019e-01 -5.35213232e-01 -8.95583451e-01 1.11762702e+00 -4.24638577e-02 -4.84607667e-02 -9.00912285e-02 3.22261572e-01 2.15827778e-01 1.15529144e+00 -1.42058864e-01 -5.23123682e-01 1.02762103e+00 -7.26747811e-01 -9.72537279e-01 -2.40697220e-01 6.17652714e-01 -6.00864887e-01 3.99516761e-01 8.94224048e-01 -5.91975987e-01 -6.52354717e-01 -1.99138153e+00 5.21612644e-01 -2.25191399e-01 3.30731958e-01 3.61035347e-01 8.37975383e-01 -9.15118277e-01 8.54669809e-01 -7.73417652e-01 -1.61653876e-01 4.57653910e-01 8.68454993e-01 1.46821544e-01 -1.29382946e-02 -8.82822812e-01 8.81258070e-01 5.08807838e-01 1.86766773e-01 -1.14756846e+00 -1.10269415e+00 -6.78125858e-01 3.83316070e-01 2.73958385e-01 -6.53082877e-02 9.45529401e-01 -7.49179959e-01 -1.54050028e+00 -2.48501346e-01 3.82285893e-01 -4.10172820e-01 -1.28297761e-01 1.27961054e-01 -5.79845607e-01 -5.10120988e-01 -1.60907790e-01 1.83370233e-01 6.43455863e-01 -1.24776053e+00 -6.43600821e-01 -2.06762537e-01 -5.74773610e-01 -2.20208362e-01 -2.37656623e-01 -3.27070504e-01 8.50635022e-03 -2.25372404e-01 -2.33240470e-01 -6.82218492e-01 -6.15013599e-01 -6.19868517e-01 -5.75465441e-01 -2.26268664e-01 9.60087180e-01 -6.97925508e-01 1.41789079e+00 -1.72233498e+00 -1.22213185e-01 6.50570989e-01 -2.55950719e-01 -1.38577381e-02 2.42398903e-01 5.20601213e-01 -1.78272024e-01 -1.33698806e-01 9.61083099e-02 6.72799423e-02 4.88182157e-02 1.00628793e-01 5.41548505e-02 6.13473773e-01 1.53126851e-01 5.98461986e-01 -4.94088590e-01 6.57060519e-02 3.88977468e-01 2.04943448e-01 -4.45085973e-01 5.96647337e-02 -3.76383007e-01 3.98833454e-01 -3.77574027e-01 4.23894882e-01 7.47516870e-01 -1.53976521e-02 6.84216261e-01 -6.90696776e-01 -1.40146345e-01 -4.97393794e-02 -1.37718260e+00 1.41081715e+00 -7.48262167e-01 6.50123775e-01 -3.75157744e-01 -1.13885736e+00 1.31292832e+00 2.24675909e-01 4.61112916e-01 -9.77532446e-01 6.59036875e-01 2.29210854e-01 5.65779865e-01 1.23710759e-01 2.26942629e-01 1.53595880e-01 -5.86813748e-01 3.96899104e-01 1.19817868e-01 -3.04617405e-01 1.67595372e-01 -3.58651906e-01 1.36739933e+00 -8.58349726e-03 6.98238492e-01 -1.10565031e+00 6.13829017e-01 2.37080529e-01 8.85448337e-01 9.79318097e-02 1.85202822e-01 4.51957881e-02 8.97502303e-01 -6.07475460e-01 -1.50222588e+00 -8.72440994e-01 -2.64913112e-01 -1.04287535e-01 -2.01733157e-01 -2.38060787e-01 -6.43975854e-01 -6.17334843e-01 -2.99609691e-01 1.10538757e+00 -3.33190262e-01 -3.14297080e-01 -6.98843777e-01 -1.05147922e+00 2.41053745e-01 5.80198109e-01 5.13455153e-01 -9.09268379e-01 -7.46863306e-01 4.20581907e-01 9.48261738e-01 -8.97160709e-01 -1.52037814e-01 1.02829897e+00 -6.54654741e-01 -8.37334037e-01 4.70063537e-02 -9.59763587e-01 1.01448309e+00 -7.41802335e-01 1.09172046e+00 2.28481814e-01 -6.34254813e-01 -5.68121731e-01 -4.60252501e-02 -1.52827039e-01 -5.57078660e-01 3.38550240e-01 2.13394403e-01 -6.66797936e-01 2.67132044e-01 -6.79528236e-01 -2.43900880e-01 1.29697710e-01 -5.53127825e-01 -6.44170493e-02 7.72367001e-01 8.99195611e-01 4.49609339e-01 1.59212577e+00 1.04349101e+00 -3.24384332e-01 4.26992089e-01 -3.47678781e-01 -1.40768123e+00 -1.33014441e-01 -7.91408837e-01 3.96253347e-01 1.36868107e+00 -4.03494090e-01 -8.36610198e-01 2.95097560e-01 -6.79801255e-02 -2.08468392e-01 1.00174904e-01 3.72637600e-01 -1.13635015e+00 -2.58119315e-01 4.43403751e-01 -3.51052284e-02 -4.21167046e-01 -3.56726021e-01 -1.28749803e-01 5.55885613e-01 2.51180857e-01 -3.17594141e-01 1.13244879e+00 -1.56196177e-01 6.81822121e-01 -6.61654115e-01 -2.53491998e-01 3.63029689e-01 -7.06963181e-01 -1.63634300e-01 4.80004609e-01 -5.50146401e-01 -7.10953414e-01 2.07487673e-01 -8.97967398e-01 -4.42447335e-01 1.46354083e-02 1.18957050e-01 -3.06037247e-01 -1.02800980e-01 -1.95574477e-01 -6.98918164e-01 -6.69131160e-01 -1.41853321e+00 5.26032031e-01 6.15044415e-01 -5.77875257e-01 -1.03832150e+00 -2.65076697e-01 -3.02876472e-01 3.65420401e-01 4.50903535e-01 1.60127139e+00 -7.22830355e-01 -6.90720201e-01 -2.15406865e-01 -3.34855095e-02 4.76044357e-01 5.54531753e-01 -1.37141545e-03 -4.72523540e-01 -5.37227631e-01 2.50042677e-01 1.71586275e-01 -1.26973152e-01 6.63370609e-01 7.57174909e-01 -1.32040381e-01 -5.11381388e-01 3.69859993e-01 2.27723265e+00 9.83149886e-01 6.30829930e-01 1.95205122e-01 5.52638829e-01 -1.20387018e-01 5.37243962e-01 6.50657773e-01 -1.59082457e-01 4.85056967e-01 4.78541195e-01 1.97881064e-03 8.73888135e-02 -8.80885348e-02 8.02088678e-02 5.96461952e-01 9.89401817e-01 -3.38377297e-01 -1.11275542e+00 6.64945364e-01 -1.45054185e+00 -2.10112587e-01 8.73145163e-02 1.99384248e+00 7.54235685e-01 7.40220010e-01 -3.52991790e-01 6.89939320e-01 3.02470297e-01 -2.92506218e-01 -7.46626735e-01 -7.64245927e-01 5.28415799e-01 8.05074334e-01 8.37103844e-01 6.09378815e-01 -7.99075902e-01 5.92940271e-01 5.35758543e+00 1.02471972e+00 -1.26215982e+00 -3.24082971e-01 7.87648797e-01 5.23334183e-02 1.49741694e-01 -1.83861516e-02 -1.10456586e+00 3.64397615e-01 1.21649218e+00 -6.46185815e-01 2.98502326e-01 1.01940131e+00 4.93689448e-01 -5.45134187e-01 -1.51673114e+00 8.30552876e-01 -3.91234644e-03 -1.40196335e+00 -3.51222426e-01 3.71828794e-01 1.16085064e+00 -5.44866323e-01 -2.27677688e-01 2.52579272e-01 3.24789912e-01 -1.12195575e+00 3.17493796e-01 2.55640805e-01 5.89239717e-01 -1.54713166e+00 1.15109527e+00 2.63913423e-01 -1.11880374e+00 -2.85064310e-01 -1.68530419e-01 -1.90046072e-01 5.28234653e-02 9.42519903e-01 -1.07525480e+00 7.65554428e-01 6.32670760e-01 5.40085852e-01 -5.29487312e-01 9.16968703e-01 1.52189404e-01 3.84620428e-01 -4.63314146e-01 -5.11588991e-01 8.08244348e-02 1.40512828e-02 7.28826523e-02 6.33459747e-01 4.33410138e-01 -3.88900906e-01 2.71457583e-01 9.92592692e-01 -9.32315588e-02 -1.88786328e-01 -3.94183964e-01 1.33572415e-01 6.66618168e-01 1.60673988e+00 -9.89064038e-01 5.57546839e-02 -1.56705618e-01 4.52785105e-01 -2.48507142e-01 -9.46335793e-02 -9.09696221e-01 -6.09208286e-01 5.70938051e-01 3.23659182e-01 2.50476867e-01 -4.42942560e-01 -8.73364747e-01 -7.36683980e-02 -3.15136701e-01 -9.07471001e-01 -2.73771822e-01 -4.77520078e-01 -9.28888142e-01 6.63469136e-01 1.29027545e-01 -1.02784431e+00 -4.93673414e-01 -5.92956424e-01 -7.87052631e-01 1.06122220e+00 -1.20445526e+00 -7.45407879e-01 -2.03492776e-01 -2.30376258e-01 6.90771103e-01 -5.53932905e-01 6.51448727e-01 4.95911628e-01 -7.02349484e-01 6.28908694e-01 1.62044525e-01 -1.41721874e-01 1.82481185e-01 -1.17531598e+00 3.94009829e-01 9.94980216e-01 -4.44581985e-01 1.08440369e-01 1.05051160e+00 -1.03277695e+00 -1.79588723e+00 -1.28924608e+00 5.16165674e-01 2.26519302e-01 8.15768480e-01 -4.65449482e-01 -5.46437025e-01 3.35107774e-01 6.76936626e-01 -2.06630602e-01 4.31618005e-01 -4.79895502e-01 7.16108501e-01 -5.91569543e-01 -1.33952725e+00 4.83699322e-01 2.18013704e-01 2.92856902e-01 -6.33057281e-02 8.32952932e-03 2.80657738e-01 -1.42581001e-01 -1.08237183e+00 7.97994733e-01 1.77020639e-01 -5.00942111e-01 2.72239685e-01 1.97393388e-01 7.85300285e-02 -7.52050817e-01 -1.68623313e-01 -1.41466916e+00 -5.31487346e-01 -4.27949220e-01 -1.11529134e-01 1.26876438e+00 4.19970989e-01 -1.12915915e-02 1.11249411e+00 1.22237526e-01 -2.16098607e-01 -1.00557506e+00 -1.12348592e+00 -7.12072670e-01 7.42239058e-02 -2.00987384e-01 6.43011689e-01 5.65942585e-01 -1.32841289e-01 6.04315996e-01 -1.52087376e-01 4.39433098e-01 7.19905376e-01 -3.14701945e-01 4.58752781e-01 -1.08289421e+00 -4.18874741e-01 -9.81164500e-02 -5.44875920e-01 -4.97960925e-01 2.45328560e-01 -5.32768309e-01 -5.44156805e-02 -1.45683384e+00 -2.72832662e-01 -4.60486323e-01 -1.00980803e-01 5.03469467e-01 3.47036958e-01 -2.54662275e-01 -1.81005955e-01 -5.62780559e-01 1.77812397e-01 5.26649952e-01 9.36066210e-01 -2.31936559e-01 -2.89384156e-01 -8.18194747e-02 -5.08890033e-01 4.94613707e-01 1.03152859e+00 -3.29528630e-01 -6.54185295e-01 4.28924337e-02 3.75336558e-01 1.62601650e-01 -3.61811459e-01 -1.68388140e+00 3.64378035e-01 3.74362469e-02 8.69826198e-01 -1.09194553e+00 -1.33575186e-01 -1.44775450e+00 5.86978793e-01 9.33954358e-01 3.89632076e-01 3.48959625e-01 8.89476180e-01 1.02501929e-01 1.13348179e-01 -3.48295897e-01 1.04420745e+00 3.26575011e-01 -5.84888637e-01 1.22742131e-02 -6.78978801e-01 -6.48192763e-01 1.17792606e+00 -6.00416735e-02 1.04575619e-01 2.08543375e-01 -4.45308745e-01 3.74330759e-01 1.79931313e-01 4.17930514e-01 2.95294136e-01 -1.51986551e+00 -3.16188186e-01 5.14223397e-01 -4.57969725e-01 -1.80433951e-02 1.87495708e-01 2.19922289e-01 -7.23619699e-01 5.76684713e-01 -4.85241234e-01 -5.12323499e-01 -9.09326553e-01 5.43034792e-01 7.55618334e-01 -8.33806753e-01 -4.43660647e-01 1.59676269e-01 -3.76756012e-01 9.10400674e-02 -3.23864110e-02 -6.03015840e-01 -1.32255018e-01 -2.70153940e-01 3.92708868e-01 2.99858421e-01 4.24559593e-01 -3.03728264e-02 -3.96048397e-01 5.07663012e-01 -4.64858897e-02 8.70604068e-02 1.30305266e+00 3.76395404e-01 -3.06556374e-01 1.92198247e-01 1.24621654e+00 -3.15633655e-01 -9.37904418e-01 5.70402890e-02 4.37936693e-01 9.23565403e-02 8.32649589e-01 -1.00675654e+00 -1.26723981e+00 3.70132715e-01 1.07823741e+00 -1.86560556e-01 1.57551432e+00 -6.13378465e-01 5.96326530e-01 2.72625417e-01 6.45854592e-01 -1.24746966e+00 -2.68981345e-02 3.64082187e-01 5.61577439e-01 -5.88506818e-01 4.27111059e-01 -1.68401212e-01 1.36654511e-01 1.32458949e+00 1.05583000e+00 -4.33786958e-01 1.05934680e+00 1.33923519e+00 -5.12416244e-01 2.25853585e-02 -8.05563092e-01 6.52323425e-01 8.51290897e-02 5.98835766e-01 2.03245610e-01 -2.08417282e-01 -2.15063155e-01 8.79759431e-01 -2.04571217e-01 1.50157288e-02 6.17370307e-01 9.99327958e-01 -4.41560805e-01 -1.34648454e+00 -4.07292098e-01 7.13977158e-01 -2.49773502e-01 6.10015020e-02 1.56947136e-01 8.53588998e-01 2.62961209e-01 7.84465790e-01 3.40606987e-01 -4.13019389e-01 3.11500221e-01 -2.96773940e-01 4.65134442e-01 -4.98809099e-01 -6.91983700e-01 1.83167338e-01 1.59985662e-01 -2.89987147e-01 4.84136790e-01 -3.02967966e-01 -1.50147235e+00 -1.98124066e-01 -3.25032622e-01 2.14498803e-01 7.53309488e-01 8.87890577e-01 3.70811298e-02 1.42663479e+00 1.07309771e+00 -9.65660274e-01 -1.62509888e-01 -9.68818188e-01 -7.68816054e-01 -6.19558215e-01 3.05267107e-02 -6.30848408e-01 -2.54859805e-01 -1.70798317e-01]
[5.933703899383545, 3.346686363220215]
6a4d6284-30d6-4d99-b9d8-3d873afa87df
learning-affinity-via-spatial-propagation-1
null
null
https://arxiv.org/pdf/1710.01020.pdf
https://arxiv.org/pdf/1710.01020.pdf
Learning Affinity via Spatial Propagation Network
In this paper, we propose spatial propagation networks for learning the affinity matrix for vision tasks. We show that by constructing a row/column linear propagation model, the spatially varying transformation matrix exactly constitutes an affinity matrix that models dense, global pairwise relationships of an image. Specifically, we develop a three-way connection for the linear propagation model, which (a) formulates a sparse transformation matrix, where all elements can be the output from a deep CNN, but (b) results in a dense affinity matrix that effectively models any task-specific pairwise similarity matrix. Instead of designing the similarity kernels according to image features of two points, we can directly output all the similarities in a purely data-driven manner. The spatial propagation network is a generic framework that can be applied to many affinity-related tasks, including but not limited to image matting, segmentation and colorization, to name a few. Essentially, the model can learn semantically-aware affinity values for high-level vision tasks due to the powerful learning capability of the deep neural network classifier. We validate the framework on the task of refinement for image segmentation boundaries. Experiments on the HELEN face parsing and PASCAL VOC-2012 semantic segmentation tasks show that the spatial propagation network provides a general, effective and efficient solution for generating high-quality segmentation results.
['Jan Kautz', 'Ming-Hsuan Yang', 'Guangyu Zhong', 'Jinwei Gu', 'Shalini De Mello', 'Sifei Liu']
2017-10-03
null
null
null
null
['face-parsing']
['computer-vision']
[ 2.27516755e-01 1.41534552e-01 -3.59814465e-02 -6.23511672e-01 -5.14614284e-01 -5.47494650e-01 3.27408999e-01 -2.11136397e-02 -5.11394382e-01 5.24868332e-02 -1.39568165e-01 -1.29080787e-01 -2.79190361e-01 -9.18365359e-01 -1.09682965e+00 -8.49065900e-01 1.78656161e-01 6.82326555e-01 3.66713196e-01 -2.64037937e-01 1.73346892e-01 6.83771014e-01 -1.41109300e+00 2.43227988e-01 8.77797246e-01 9.44619536e-01 1.90604821e-01 6.24033332e-01 -3.52113843e-01 6.08836114e-01 -2.00327843e-01 -4.75681603e-01 3.45540464e-01 -2.97322392e-01 -1.09846807e+00 1.79880738e-01 7.54472315e-01 -1.06990196e-01 -1.73781350e-01 1.18048978e+00 -1.36407418e-02 -2.19852291e-02 6.64788485e-01 -1.16181028e+00 -9.07917738e-01 7.60600209e-01 -7.14014530e-01 -1.41370490e-01 -3.74795087e-02 -5.21419048e-02 1.19420993e+00 -1.14238477e+00 6.75527573e-01 1.16676831e+00 7.17935920e-01 4.83673960e-01 -1.44528568e+00 -3.19988221e-01 2.92145580e-01 2.95475572e-01 -1.36485505e+00 -2.26379093e-02 8.11747730e-01 -5.77836931e-01 6.10233665e-01 2.84375012e-01 8.24721277e-01 6.66318834e-01 -1.79003682e-02 1.03596961e+00 8.73268545e-01 -3.47727686e-01 1.37863189e-01 -6.87754527e-02 5.39008796e-01 9.35203612e-01 -1.14962541e-01 -2.08678558e-01 -3.68455559e-01 9.25062373e-02 9.11073506e-01 -4.03672270e-02 -1.71481848e-01 -8.42032969e-01 -1.12272382e+00 9.04638529e-01 1.01310742e+00 3.95251781e-01 -2.93093801e-01 2.94620246e-01 7.31027452e-03 -5.68503654e-03 3.59087735e-01 4.94229972e-01 -4.25279677e-01 3.60652328e-01 -9.50431824e-01 2.18505323e-01 7.00290382e-01 8.35446477e-01 1.19891346e+00 -1.65045559e-01 -2.48953700e-01 9.85307038e-01 3.15762192e-01 3.78988475e-01 2.55420487e-02 -1.26480722e+00 2.15359822e-01 5.58590710e-01 -1.60224363e-01 -1.11574268e+00 -5.44604957e-01 -4.80457962e-01 -8.77164185e-01 2.41931394e-01 6.42521620e-01 2.26899423e-02 -1.17803597e+00 2.05580473e+00 4.36002940e-01 2.46475011e-01 -1.46447778e-01 9.95566785e-01 7.56019711e-01 6.43927336e-01 -8.70907903e-02 2.56539524e-01 1.27487671e+00 -1.13294768e+00 -4.21628386e-01 -3.22923660e-01 4.15355146e-01 -6.28164053e-01 1.09732139e+00 2.50898302e-01 -1.28729522e+00 -5.48220277e-01 -9.63754356e-01 -4.50526834e-01 -3.87403429e-01 -1.54172387e-02 8.12450588e-01 2.23054186e-01 -1.43246424e+00 5.83266139e-01 -8.92015636e-01 -4.46248472e-01 4.41250473e-01 4.99449641e-01 -3.29185188e-01 -1.11783892e-01 -9.04765785e-01 6.42319560e-01 2.48097256e-01 3.17433119e-01 -5.44878781e-01 -8.21914196e-01 -9.55936491e-01 1.58894360e-01 1.55570924e-01 -1.04867578e+00 8.28102529e-01 -1.19935441e+00 -1.42336059e+00 1.05494404e+00 -1.56082809e-01 -3.66009027e-01 4.14113045e-01 -1.14029817e-01 2.36429468e-01 1.99914113e-01 2.26824492e-01 1.27035797e+00 9.20803547e-01 -1.41679335e+00 -5.81873655e-01 -4.79976714e-01 1.48711205e-01 2.20020741e-01 -2.88682610e-01 -1.63656980e-01 -9.83782947e-01 -6.06352270e-01 4.02125150e-01 -9.63364065e-01 -5.15919924e-01 1.72859162e-01 -5.43803096e-01 -8.99080932e-02 6.12178802e-01 -4.73566175e-01 7.30862319e-01 -2.12928319e+00 7.39904642e-01 5.77843547e-01 2.13281766e-01 2.84670554e-02 -3.37294549e-01 1.06067456e-01 -1.44074531e-02 4.42230515e-02 -8.86691272e-01 -4.01701301e-01 4.07227501e-02 4.44315195e-01 -6.02747612e-02 3.37619215e-01 5.09169400e-01 1.19043577e+00 -7.93532252e-01 -3.52503419e-01 2.71912277e-01 7.33816445e-01 -7.69822896e-01 1.96340710e-01 -2.31944367e-01 4.73280877e-01 -2.28493169e-01 2.91592598e-01 7.56186604e-01 -4.32760268e-01 -8.00133348e-02 -5.85856438e-01 1.31931733e-02 -2.77595013e-01 -1.07145822e+00 2.12373257e+00 -3.53634834e-01 4.41410661e-01 3.18750441e-01 -1.00305223e+00 5.52529156e-01 -2.89166331e-01 5.99225342e-01 -5.19006491e-01 6.34129792e-02 -1.57118794e-02 -5.12287915e-02 -2.25707829e-01 3.53153199e-01 1.57528594e-01 3.33124362e-02 2.94498980e-01 3.11095953e-01 -2.21321523e-01 2.78051555e-01 4.34483767e-01 9.05046463e-01 1.41663447e-01 -2.23743930e-01 -4.42002654e-01 6.08950973e-01 6.52389154e-02 5.32044530e-01 7.49634624e-01 7.88156688e-02 8.85357976e-01 5.16144156e-01 -4.23696518e-01 -9.53644395e-01 -1.24030864e+00 -2.44720519e-01 1.18972707e+00 3.91618580e-01 -3.30436826e-01 -1.12740207e+00 -5.39489388e-01 -8.14535469e-02 3.05971444e-01 -8.59570444e-01 -2.97805872e-02 -6.78936422e-01 -7.55980253e-01 2.15424135e-01 6.28391623e-01 5.36304951e-01 -1.00155783e+00 -1.42951593e-01 -5.97804375e-02 -8.04283991e-02 -1.21278882e+00 -6.75052404e-01 1.85400784e-01 -6.02835238e-01 -1.05560529e+00 -6.62299812e-01 -1.13213980e+00 9.40486312e-01 2.09350526e-01 1.15222514e+00 2.75299937e-01 -3.57235193e-01 5.92172027e-01 -9.71259028e-02 6.88780546e-02 -1.66331530e-01 7.48032555e-02 -3.72087479e-01 3.10737610e-01 2.10117787e-01 -5.39834738e-01 -6.32602036e-01 2.07425460e-01 -8.94060135e-01 3.14564466e-01 5.98398924e-01 9.57053244e-01 9.18547988e-01 -2.88043320e-01 5.71271852e-02 -1.20959830e+00 2.92374343e-01 -2.18211785e-01 -6.99560761e-01 3.67539793e-01 -3.26546818e-01 2.74851441e-01 4.19936597e-01 -1.27010912e-01 -8.77104461e-01 4.79227453e-01 -5.06102145e-01 -3.46074045e-01 -1.81479827e-01 4.08896208e-01 -3.01523387e-01 -3.37041706e-01 4.36326057e-01 8.15115273e-02 7.33234512e-04 -3.26271206e-01 1.02300465e+00 5.23338467e-02 8.57548118e-01 -8.20529938e-01 9.84481692e-01 6.66769683e-01 1.31160185e-01 -8.31867695e-01 -8.72494876e-01 -4.12397414e-01 -1.04722488e+00 -2.76978742e-02 1.45894682e+00 -6.80461884e-01 -6.40912056e-01 6.66794598e-01 -1.22140491e+00 -5.68430007e-01 -4.07572031e-01 2.06404567e-01 -5.88965356e-01 2.83979446e-01 -9.92942393e-01 -2.35671118e-01 -1.03284106e-01 -1.38601470e+00 1.17775941e+00 2.12520748e-01 1.23198912e-01 -1.22372687e+00 -9.98743474e-02 3.48393232e-01 1.98133856e-01 8.14864039e-02 1.12803090e+00 -2.17669740e-01 -8.20444226e-01 2.34640896e-01 -5.03986835e-01 4.74207878e-01 -2.13677257e-01 2.44827509e-01 -9.72122729e-01 3.56299267e-03 -1.56354204e-01 -1.54653966e-01 1.16758418e+00 6.45946622e-01 1.48092461e+00 -1.13799348e-01 -1.61152557e-01 1.13414967e+00 1.25801444e+00 -2.06649706e-01 4.82243210e-01 9.92089361e-02 1.45250678e+00 8.09579730e-01 3.19577336e-01 5.59724346e-02 5.33644438e-01 6.90595925e-01 6.34847999e-01 -6.89919531e-01 -1.51151136e-01 -1.47772431e-01 -5.20554818e-02 8.20567131e-01 7.34898895e-02 2.57805258e-01 -7.93052495e-01 4.21465099e-01 -2.11125207e+00 -7.19522536e-01 -4.68046814e-01 1.99007368e+00 7.84682393e-01 -1.00068189e-01 -4.02463228e-02 -1.99472815e-01 6.14486516e-01 1.49842259e-02 -6.07463360e-01 -3.47551942e-01 -2.01876223e-01 4.98278916e-01 6.36914432e-01 8.44269514e-01 -1.19463503e+00 1.33787072e+00 6.38089228e+00 6.83211803e-01 -9.48209584e-01 6.31183609e-02 7.79524267e-01 2.00166211e-01 -5.75392187e-01 -8.95903334e-02 -6.04871511e-01 1.26824558e-01 3.66204828e-01 2.94475257e-01 3.95774066e-01 8.03679824e-01 -1.78268582e-01 1.95276827e-01 -1.27987111e+00 1.01503980e+00 -4.28065248e-02 -1.52346563e+00 2.69855767e-01 -3.41859390e-03 7.76386738e-01 1.98069960e-02 4.02256668e-01 3.39259878e-02 4.04777557e-01 -1.08233595e+00 8.61938298e-01 3.54755253e-01 3.81215990e-01 -7.70811915e-01 4.68145192e-01 2.15400800e-01 -1.02708638e+00 9.06289443e-02 -5.32643855e-01 3.06311965e-01 9.01283100e-02 6.94492042e-01 -3.94277245e-01 2.94582874e-01 9.02352393e-01 9.11172986e-01 -5.98070800e-01 8.73004138e-01 -3.97993565e-01 4.16704267e-01 -3.37525576e-01 3.68208468e-01 5.04673541e-01 -6.50237918e-01 1.88732579e-01 1.27575374e+00 1.09342650e-01 -9.71635431e-03 2.95784716e-02 1.16360426e+00 -2.33147070e-01 1.56235904e-01 -4.09837902e-01 3.95420760e-01 1.72399104e-01 1.62591326e+00 -9.33755398e-01 -1.39233038e-01 -3.99680853e-01 1.23921120e+00 7.45650649e-01 5.78682959e-01 -8.48439217e-01 -7.23753348e-02 7.97622979e-01 -1.47402138e-01 4.47670519e-01 -3.62721682e-01 -5.52709222e-01 -9.96553838e-01 -2.18579993e-01 -6.38048470e-01 1.58765256e-01 -7.38482296e-01 -1.42384958e+00 5.61718941e-01 1.15104122e-02 -6.00470603e-01 2.70493515e-03 -8.83297145e-01 -6.11837626e-01 8.06422710e-01 -1.38217604e+00 -1.39331853e+00 -3.23814362e-01 8.29139829e-01 3.41923594e-01 1.71810538e-01 6.19948506e-01 2.77104914e-01 -6.97860003e-01 4.16161716e-01 -1.86009943e-01 3.59561622e-01 3.97624999e-01 -1.67697716e+00 4.75251764e-01 9.74754572e-01 6.28872454e-01 8.06861341e-01 4.88980949e-01 -1.93639949e-01 -1.29411232e+00 -1.15015137e+00 5.76669037e-01 -4.25880939e-01 6.66785359e-01 -5.98785281e-01 -1.15646493e+00 6.89660251e-01 2.25424260e-01 2.03129873e-01 5.26880264e-01 1.79555148e-01 -5.49109936e-01 -1.57699376e-01 -8.24617565e-01 6.35446429e-01 1.22757101e+00 -5.38757920e-01 -3.38697582e-01 4.79839087e-01 7.22845197e-01 -5.57995260e-01 -8.05507243e-01 2.37063199e-01 4.16781932e-01 -1.11275482e+00 1.25792396e+00 -5.38020849e-01 4.09504473e-01 -4.36915547e-01 -8.79067704e-02 -1.15168583e+00 -6.13006175e-01 -1.97080120e-01 2.03352422e-01 1.12010670e+00 6.31002784e-01 -4.38367069e-01 8.57739091e-01 7.80249655e-01 -2.39316896e-01 -8.28629375e-01 -6.61065400e-01 -2.64614195e-01 3.33220810e-01 -5.63542843e-01 6.32625341e-01 9.00551856e-01 -5.71277797e-01 4.80488777e-01 -1.81017146e-01 3.33319604e-01 7.73948789e-01 2.12428778e-01 6.23905540e-01 -1.07990324e+00 -4.86905873e-01 -6.18577182e-01 -3.42279315e-01 -1.43690133e+00 4.25801218e-01 -1.11664963e+00 1.60649732e-01 -1.59361100e+00 3.25344205e-01 -6.38360739e-01 -2.57454425e-01 5.13040066e-01 -2.07351208e-01 5.46962976e-01 2.42334157e-01 1.92793369e-01 -5.72447658e-01 3.86122257e-01 1.32609689e+00 -4.25252348e-01 -1.06832735e-01 -2.32809380e-01 -7.49040306e-01 8.93126190e-01 5.93803763e-01 -2.04034120e-01 -4.95035529e-01 -8.55598152e-01 3.75540704e-01 -3.69372010e-01 5.32619178e-01 -7.83980072e-01 4.20677423e-01 -1.32099837e-01 3.43803495e-01 -3.80223215e-01 3.99162471e-01 -8.68910134e-01 4.66224086e-03 1.60836607e-01 -4.23047006e-01 -8.32422674e-02 -4.64750975e-02 3.62288088e-01 -3.49985778e-01 -1.45267785e-01 9.20143545e-01 -1.04858458e-01 -8.25041652e-01 7.08195865e-01 -5.89646250e-02 3.71105969e-02 8.96209598e-01 -2.97224373e-01 -1.34266779e-01 -1.42376676e-01 -9.10850465e-01 2.74399340e-01 5.60509980e-01 2.65269101e-01 6.22660041e-01 -1.31529593e+00 -5.54564178e-01 4.22507495e-01 6.91736564e-02 3.52933109e-01 2.15273812e-01 8.83723021e-01 -6.52896464e-01 3.58710401e-02 -2.98403442e-01 -1.10603166e+00 -1.13913405e+00 4.37309653e-01 4.98129338e-01 -5.86389378e-02 -6.29112065e-01 1.35307539e+00 8.25096488e-01 -4.74049002e-01 1.29511401e-01 -4.17164505e-01 -2.70439386e-01 -1.76991761e-01 3.33335817e-01 -5.94618693e-02 4.96256202e-02 -9.30278778e-01 -3.90038401e-01 1.10207939e+00 -8.84612426e-02 -1.82748750e-01 1.27571702e+00 -3.73232588e-02 -5.65820098e-01 2.60254443e-01 1.41604316e+00 -2.08221629e-01 -1.46442223e+00 -2.33716160e-01 -4.48238617e-03 -3.15625370e-01 4.08977605e-02 -4.83429909e-01 -1.48482513e+00 9.96535182e-01 4.71988082e-01 1.00619584e-01 1.02515018e+00 2.68370003e-01 6.75962210e-01 2.71885484e-01 1.46105245e-01 -9.26350832e-01 8.22064951e-02 6.13388300e-01 7.93025136e-01 -1.11612737e+00 -3.72397840e-01 -6.22375011e-01 -5.55994153e-01 9.92272675e-01 5.82243502e-01 -2.58452445e-01 8.24332535e-01 3.17492813e-01 1.75552204e-01 -2.99016297e-01 -3.17404956e-01 -4.34858203e-01 5.60499847e-01 6.65941417e-01 4.00557846e-01 6.84101507e-02 -2.02444419e-01 3.28135729e-01 -1.71122044e-01 -4.67286229e-01 1.70074761e-01 5.04696071e-01 -4.01015311e-01 -1.36245966e+00 -2.51597226e-01 2.89094359e-01 -7.05523640e-02 -1.30717248e-01 -5.44625759e-01 6.28294110e-01 3.01318139e-01 6.56781137e-01 3.07938308e-01 -3.20569456e-01 3.27844620e-01 -8.58455077e-02 7.14166999e-01 -6.30131721e-01 -5.62561631e-01 -2.46842969e-02 -3.40193182e-01 -8.65360856e-01 -5.18620610e-01 -4.76560950e-01 -1.54037917e+00 -2.51320213e-01 2.56282799e-02 1.17433153e-01 7.29060888e-01 9.50411499e-01 2.17641339e-01 5.28534412e-01 4.26841110e-01 -9.16499376e-01 -7.86885098e-02 -5.53602755e-01 -5.71409583e-01 7.94617891e-01 1.66309670e-01 -5.34177780e-01 -1.77737907e-01 1.54443294e-01]
[9.655721664428711, 0.5238730311393738]
f57ad705-c41c-4f7b-9828-953590a3dc85
multi-stage-distillation-framework-for-cross-2
2209.05869
null
https://arxiv.org/abs/2209.05869v1
https://arxiv.org/pdf/2209.05869v1.pdf
Multi-stage Distillation Framework for Cross-Lingual Semantic Similarity Matching
Previous studies have proved that cross-lingual knowledge distillation can significantly improve the performance of pre-trained models for cross-lingual similarity matching tasks. However, the student model needs to be large in this operation. Otherwise, its performance will drop sharply, thus making it impractical to be deployed to memory-limited devices. To address this issue, we delve into cross-lingual knowledge distillation and propose a multi-stage distillation framework for constructing a small-size but high-performance cross-lingual model. In our framework, contrastive learning, bottleneck, and parameter recurrent strategies are combined to prevent performance from being compromised during the compression process. The experimental results demonstrate that our method can compress the size of XLM-R and MiniLM by more than 50\%, while the performance is only reduced by about 1%.
['Xuefeng Yang', 'Qi Ju', 'Zhe Zhao', 'Yuejian Fang', 'Weijie Liu', 'Kunbo Ding']
2022-09-13
multi-stage-distillation-framework-for-cross-1
https://aclanthology.org/2022.findings-naacl.167
https://aclanthology.org/2022.findings-naacl.167.pdf
findings-naacl-2022-7
['xlm-r']
['natural-language-processing']
[-3.67969126e-02 -2.32942745e-01 -5.55676639e-01 -4.37422574e-01 -1.06314170e+00 -3.87741268e-01 3.47296864e-01 2.21674219e-01 -6.50042057e-01 4.57289428e-01 -1.96144562e-02 -7.52005100e-01 1.03225209e-01 -5.46472490e-01 -7.14726985e-01 -3.22817773e-01 3.51462156e-01 3.58079046e-01 2.96039701e-01 -7.24694505e-02 8.11981782e-02 6.54230267e-02 -1.56876624e+00 2.15005562e-01 1.27396238e+00 7.58234441e-01 5.73331237e-01 2.59988934e-01 -4.82265830e-01 5.69859445e-01 -3.89153868e-01 -6.52135432e-01 1.34234995e-01 -2.63723403e-01 -7.60182500e-01 -4.84687686e-01 4.77642119e-01 -3.18389505e-01 -5.08709788e-01 1.15748680e+00 5.76156080e-01 -3.19469385e-02 4.00051326e-01 -9.30903673e-01 -4.56265867e-01 1.06095076e+00 -6.30831599e-01 1.52508676e-01 4.69778553e-02 -6.62915334e-02 1.00833082e+00 -7.68092453e-01 2.13966101e-01 1.23711038e+00 6.80763841e-01 2.97078282e-01 -9.72983062e-01 -1.07248902e+00 1.12562068e-01 2.64123172e-01 -1.49009609e+00 -7.02012837e-01 5.48993170e-01 2.32079014e-01 1.17027950e+00 2.05889568e-01 3.49365324e-01 6.39964938e-01 -1.73596859e-01 1.03847313e+00 9.65584517e-01 -5.81436872e-01 -2.55922496e-01 1.95932925e-01 -1.12273470e-01 7.41402864e-01 4.74029809e-01 -2.46323138e-01 -5.01624703e-01 -1.90400288e-01 4.20894742e-01 -1.99929804e-01 -9.23933163e-02 -1.63912565e-01 -8.60479057e-01 7.31672287e-01 3.37927550e-01 5.44949710e-01 1.20382965e-01 -2.50641964e-02 7.63990283e-01 4.35998172e-01 4.67766196e-01 5.34483552e-01 -5.76589108e-01 -4.38771278e-01 -1.25488949e+00 -3.92388925e-02 6.65472746e-01 1.08314264e+00 7.09252894e-01 -1.23909779e-01 1.48726478e-01 1.14451468e+00 2.37945050e-01 6.76806927e-01 8.73883784e-01 -7.21995592e-01 8.03986669e-01 6.95921659e-01 -4.26116288e-01 -7.09734738e-01 -3.58801857e-02 -3.54022086e-01 -8.25611651e-01 -5.39858282e-01 1.14350565e-01 7.27692991e-02 -7.61061847e-01 1.62299824e+00 1.66545719e-01 2.82403052e-01 1.25300288e-01 4.98936683e-01 6.94587052e-01 6.35719836e-01 1.28338277e-01 -3.54462802e-01 1.42228925e+00 -1.11065793e+00 -6.98764324e-01 -4.22511607e-01 1.31202948e+00 -1.20529020e+00 1.33733082e+00 4.63083535e-02 -1.46787059e+00 -7.54370272e-01 -1.22888041e+00 -2.30620831e-01 -2.20546097e-01 7.79349655e-02 6.59800410e-01 5.75972199e-01 -7.48378754e-01 5.30961990e-01 -8.22903156e-01 -1.98071197e-01 1.38543308e-01 2.54653186e-01 -2.63893288e-02 -4.62036610e-01 -1.30115831e+00 9.59818959e-01 5.81107378e-01 -2.16096759e-01 -1.93085834e-01 -7.45839477e-01 -7.46734619e-01 1.56830341e-01 2.20784888e-01 -4.47058886e-01 1.18031037e+00 -3.23126167e-01 -1.25049293e+00 7.65255809e-01 -3.78557056e-01 -4.54017937e-01 2.98524499e-01 -4.57608908e-01 -4.18516934e-01 -1.93575740e-01 -1.96524501e-01 4.57123756e-01 4.27232504e-01 -9.20307636e-01 -6.87538743e-01 -2.14391649e-01 -1.75765168e-03 4.71978992e-01 -8.58848274e-01 9.45714489e-02 -1.16372406e+00 -7.40629554e-01 1.56690702e-01 -9.33873475e-01 -1.29111364e-01 -4.18820709e-01 -1.25621408e-01 -3.58407646e-01 7.99252331e-01 -6.05154872e-01 1.69627011e+00 -2.09361434e+00 -2.11287707e-01 1.04362249e-01 -1.00454427e-01 8.59435797e-01 -1.69607103e-01 1.86743557e-01 2.87926853e-01 7.42969960e-02 -3.38164978e-02 -6.00977778e-01 -2.99331993e-02 4.21661168e-01 -2.58776933e-01 2.31300920e-01 -3.26116949e-01 9.16343451e-01 -7.52667487e-01 -9.38513100e-01 1.03910476e-01 3.94025892e-01 -6.56309843e-01 4.42456722e-01 -1.55430555e-01 -1.79323047e-01 -3.63852769e-01 4.97882158e-01 7.03085423e-01 -1.92482740e-01 5.49920976e-01 -3.58980924e-01 1.11904472e-01 8.70127141e-01 -9.22179997e-01 2.06143737e+00 -8.84107471e-01 3.29777688e-01 -2.41260707e-01 -9.96613264e-01 9.91395414e-01 2.76397824e-01 4.24175769e-01 -1.09078705e+00 1.13143101e-01 5.55270314e-01 -1.05919644e-01 -1.96992129e-01 7.25718379e-01 1.78692788e-02 -2.50253886e-01 7.80192018e-01 -3.11126202e-01 -7.62956068e-02 1.37373433e-01 9.43594351e-02 7.67977118e-01 7.08967671e-02 1.03727095e-02 -1.30414471e-01 6.46812379e-01 -1.56939551e-01 6.20572448e-01 5.53669930e-01 -2.18860116e-02 -1.28406007e-02 -1.39098421e-01 -9.34381858e-02 -1.08730805e+00 -7.01819062e-01 -1.79866984e-01 1.30362952e+00 1.45994082e-01 -7.13344932e-01 -9.86548543e-01 -5.41628480e-01 1.23027325e-01 5.76722145e-01 1.95482790e-01 -7.49940693e-01 -1.10753262e+00 -8.47445250e-01 9.78078604e-01 4.99931365e-01 7.42251158e-01 -6.71041846e-01 -2.52214730e-01 1.89431190e-01 -3.30206513e-01 -1.34065950e+00 -7.09509790e-01 1.07117176e-01 -1.18429673e+00 -7.96314001e-01 -5.38199544e-01 -1.07438564e+00 4.96407211e-01 5.28308213e-01 1.10705554e+00 1.65006727e-01 -7.11431652e-02 -1.99774817e-01 -2.61449248e-01 1.63147822e-02 -5.88668764e-01 6.53565645e-01 2.76308984e-01 -6.13418341e-01 7.95696139e-01 -7.35834539e-01 -5.86028397e-01 3.88369083e-01 -7.09969580e-01 1.19370140e-01 8.08892906e-01 6.69529140e-01 5.92623115e-01 1.33930027e-01 5.33981264e-01 -6.92504168e-01 7.09862590e-01 -1.34265319e-01 -6.11713946e-01 6.05113328e-01 -1.11734724e+00 4.98371750e-01 8.31267536e-01 -6.61039710e-01 -9.05825913e-01 -2.56272554e-01 -4.67337035e-02 -5.44554949e-01 3.45135272e-01 6.32805407e-01 -1.34447515e-01 -1.01379685e-01 3.14847469e-01 3.91442001e-01 -1.10108428e-01 -9.00851369e-01 5.97267210e-01 9.61554766e-01 6.76546454e-01 -7.83292770e-01 7.53223538e-01 -2.90623754e-02 -4.58862692e-01 -3.85042280e-01 -8.85062754e-01 -5.55790842e-01 -4.30758238e-01 3.25969160e-01 3.18955928e-01 -1.23835170e+00 -6.08561993e-01 2.26058304e-01 -8.66679013e-01 -1.81839898e-01 4.98577170e-02 6.44803643e-01 -3.65792096e-01 5.87354064e-01 -8.54992867e-01 -5.07041335e-01 -7.23211467e-01 -1.14171576e+00 7.09644735e-01 8.50398913e-02 -8.78121480e-02 -8.79323006e-01 2.67216787e-02 7.40173340e-01 5.91669023e-01 -7.10669279e-01 1.06508303e+00 -5.89321971e-01 -5.70068955e-01 -1.61992595e-01 -3.33323240e-01 3.29928905e-01 1.38993347e-02 -4.21044409e-01 -8.07393074e-01 -6.26477897e-01 -1.18845426e-01 -6.60268009e-01 7.84940898e-01 -1.76410213e-01 1.43170404e+00 -1.99245885e-01 -5.32132983e-01 9.11960304e-01 1.19157302e+00 1.66548118e-01 3.72804046e-01 2.95527160e-01 7.16735661e-01 2.10657850e-01 6.96176946e-01 1.63903683e-01 6.66446686e-01 9.99713123e-01 -1.59389660e-01 -1.15578704e-01 -3.73308539e-01 -6.15864754e-01 4.95608687e-01 1.86380184e+00 2.15414345e-01 5.74284000e-03 -7.54396021e-01 6.40692115e-01 -1.70705509e+00 -5.58515191e-01 2.58710355e-01 2.39855528e+00 1.43477952e+00 2.81949162e-01 -1.16948828e-01 3.19747999e-02 4.89299327e-01 1.36752933e-01 -6.74783468e-01 -6.06683075e-01 3.85597092e-03 2.47326881e-01 6.42994881e-01 4.34539974e-01 -7.69616902e-01 1.30510497e+00 6.38970375e+00 1.29065216e+00 -1.18838882e+00 1.49478644e-01 4.99032766e-01 -1.78211108e-01 -4.47200239e-01 -1.37927057e-02 -1.25208056e+00 5.24182379e-01 1.34978628e+00 -4.72540796e-01 2.97612667e-01 9.30876017e-01 -1.09662451e-01 9.74061936e-02 -9.20454264e-01 1.06619191e+00 7.04652220e-02 -9.55091059e-01 8.23074281e-02 4.72688526e-02 6.12378359e-01 2.48647898e-01 3.35867554e-02 6.67168081e-01 4.15232807e-01 -8.27431142e-01 1.91220701e-01 -6.81337714e-02 9.95839775e-01 -1.04528487e+00 5.52691758e-01 4.71041054e-01 -1.45222533e+00 2.69100517e-01 -7.21909165e-01 3.59443575e-01 1.71707243e-01 5.63795865e-01 -8.00228417e-01 4.89252359e-01 5.42696893e-01 4.71330494e-01 -5.31559348e-01 7.05752015e-01 6.69215247e-02 6.52660847e-01 -5.17202675e-01 1.09466486e-01 2.78226495e-01 2.39030067e-02 -1.04264885e-01 1.32181096e+00 4.55501616e-01 -1.74051747e-01 1.36016354e-01 4.40598577e-01 -3.75316173e-01 3.07771236e-01 -4.63305563e-01 -5.68329962e-03 8.51273775e-01 8.51990938e-01 1.56993810e-02 -5.44692039e-01 -6.25735402e-01 1.06305265e+00 5.76227605e-01 4.30771261e-02 -1.03831065e+00 -4.70011950e-01 7.83714950e-01 -2.43346132e-02 3.05605412e-01 -2.73910910e-01 -2.09467560e-01 -1.42047429e+00 2.77812928e-01 -1.02415228e+00 5.15678823e-01 -3.92927855e-01 -9.82014358e-01 5.74178278e-01 -4.11433093e-02 -1.01911163e+00 -4.59393650e-01 -8.97785276e-02 -1.93657905e-01 9.69531059e-01 -1.93477380e+00 -1.02255297e+00 1.52087975e-02 5.98780572e-01 3.82822305e-01 -1.89359277e-01 9.46073353e-01 8.13409328e-01 -7.00060904e-01 1.51842630e+00 4.53620702e-01 5.83570637e-02 9.22484815e-01 -7.12786019e-01 6.24279201e-01 7.71531820e-01 1.91726834e-01 9.31925893e-01 2.84041047e-01 -4.60250080e-01 -1.58852470e+00 -1.06922078e+00 1.41126704e+00 -1.16733033e-02 6.41439974e-01 -3.33401978e-01 -1.27081859e+00 3.78878534e-01 5.09590656e-02 -1.36174150e-02 7.42429554e-01 4.13069457e-01 -8.04746330e-01 -3.35691571e-01 -8.28558266e-01 7.48867631e-01 1.11071706e+00 -9.21243727e-01 -6.95211649e-01 1.87854439e-01 9.37259495e-01 -3.72175813e-01 -1.31317866e+00 5.47514737e-01 5.53567410e-01 -5.84188521e-01 1.18195331e+00 -4.19379711e-01 1.97058916e-01 -3.76614816e-02 -1.57451123e-01 -9.72981036e-01 -4.03725430e-02 -6.17473483e-01 -4.94257122e-01 1.39019513e+00 4.31803375e-01 -4.79013234e-01 7.99572051e-01 4.66985434e-01 -5.80090173e-02 -8.21484268e-01 -8.50259483e-01 -1.03608966e+00 2.84910500e-01 -4.53896672e-01 7.38619387e-01 1.13802791e+00 3.90910298e-01 4.87280786e-01 -4.90990341e-01 -1.03378057e-01 4.78171468e-01 4.82401937e-01 8.39912295e-01 -8.20704520e-01 -3.72735500e-01 -3.77693921e-01 9.49182808e-02 -1.73478115e+00 2.91536868e-01 -1.07928205e+00 -4.00947854e-02 -1.01355052e+00 3.71395797e-01 -1.13937986e+00 -5.57537556e-01 4.99940008e-01 -4.60295707e-01 4.17336710e-02 1.76182285e-01 5.28460741e-01 -6.28908813e-01 5.81762433e-01 1.19390881e+00 6.86956868e-02 -5.97250313e-02 -2.63765216e-01 -7.03908265e-01 4.84603852e-01 8.63759398e-01 -4.86278504e-01 -6.32570803e-01 -6.73862457e-01 2.73488183e-03 -2.26019938e-02 -4.65016127e-01 -8.86665940e-01 4.08620089e-01 8.68129823e-03 -1.33271098e-01 -5.01418173e-01 4.17949975e-01 -7.57632196e-01 -2.13536993e-01 6.19877040e-01 -3.09760481e-01 2.70651579e-01 3.65016162e-01 1.36305258e-01 -4.24043745e-01 -1.44364998e-01 7.57434964e-01 -7.17538446e-02 -4.93015975e-01 2.94712305e-01 1.70109138e-01 2.15333730e-01 5.64152062e-01 1.02589451e-01 -3.08748484e-01 -1.37176335e-01 -1.08410604e-01 2.86057472e-01 5.73408365e-01 6.12799108e-01 3.19613785e-01 -1.54898608e+00 -5.08372843e-01 3.62852931e-01 2.61709034e-01 7.26824626e-02 6.75683990e-02 6.95788264e-01 -2.58226305e-01 8.73853385e-01 2.04360917e-01 -4.08483714e-01 -1.53803194e+00 6.01988852e-01 3.76472063e-02 -7.45825350e-01 -5.60980380e-01 7.39562571e-01 -1.03278197e-01 -5.81468344e-01 4.08124655e-01 -3.62820715e-01 7.77619258e-02 -2.59172350e-01 5.58794916e-01 1.25876352e-01 9.60086063e-02 -4.80120063e-01 -2.26664275e-01 6.66394234e-01 -5.26870787e-01 2.45828733e-01 1.08740962e+00 -3.26744944e-01 -5.45697138e-02 2.06277296e-01 1.54817140e+00 -1.08522654e-01 -5.68573415e-01 -9.20777559e-01 1.40111391e-02 -3.26087117e-01 2.80383289e-01 -4.43897307e-01 -1.01101410e+00 8.75530660e-01 4.35355484e-01 -2.19962686e-01 1.25615120e+00 -5.71669675e-02 1.68240893e+00 6.34332538e-01 3.99076879e-01 -1.29306316e+00 -1.19315118e-01 6.09082758e-01 1.25848025e-01 -1.20106971e+00 1.80344209e-01 -4.13259715e-01 -4.04278129e-01 7.54719257e-01 7.50938177e-01 3.40546817e-01 4.88551795e-01 3.73386830e-01 1.05201434e-02 4.00550365e-02 -8.33523989e-01 -1.62646353e-01 4.41110134e-01 6.77558333e-02 7.42792904e-01 7.92251751e-02 -3.32296580e-01 2.40671620e-01 -3.82895023e-01 -8.59103575e-02 -1.77326113e-01 1.04861355e+00 -5.95591784e-01 -1.53216600e+00 8.25193431e-03 2.95698851e-01 -6.09541655e-01 -4.87872064e-01 2.23877668e-01 5.43156743e-01 3.62774618e-02 7.64783144e-01 1.24413967e-01 -6.35130703e-01 2.83279508e-01 2.06586346e-01 4.32314098e-01 -2.40732595e-01 -5.41029751e-01 1.06993474e-01 1.64319530e-01 -5.07764220e-01 -2.80009717e-01 -3.63820702e-01 -1.07589173e+00 -7.55022645e-01 -5.38179278e-01 4.14361060e-01 6.54031694e-01 8.91320646e-01 5.02133012e-01 2.02756301e-01 6.11764848e-01 -5.22414185e-02 -7.20760882e-01 -9.79684353e-01 -6.54688850e-02 2.98715353e-01 -2.04599395e-01 -3.56458634e-01 -2.81278074e-01 -1.03673980e-01]
[13.631701469421387, 7.037595272064209]
df844211-4dbf-4ceb-836d-98de495c2b00
game-theoretic-algorithms-for-conditional
2208.09551
null
https://arxiv.org/abs/2208.09551v1
https://arxiv.org/pdf/2208.09551v1.pdf
Game-Theoretic Algorithms for Conditional Moment Matching
A variety of problems in econometrics and machine learning, including instrumental variable regression and Bellman residual minimization, can be formulated as satisfying a set of conditional moment restrictions (CMR). We derive a general, game-theoretic strategy for satisfying CMR that scales to nonlinear problems, is amenable to gradient-based optimization, and is able to account for finite sample uncertainty. We recover the approaches of Dikkala et al. and Dai et al. as special cases of our general framework before detailing various extensions and how to efficiently solve the game defined by CMR.
['Zhiwei Steven Wu', 'J. Andrew Bagnell', 'Sanjiban Choudhury', 'Gokul Swamy']
2022-08-19
null
null
null
null
['econometrics']
['miscellaneous']
[-4.47512530e-02 2.99114048e-01 -5.19118845e-01 -2.67742306e-01 -1.27955842e+00 -7.70463407e-01 5.89451969e-01 -2.52488226e-01 -3.49397212e-01 1.01249886e+00 -1.35316700e-01 -8.92406166e-01 -9.03560162e-01 -2.87569433e-01 -4.40413445e-01 -7.06188381e-01 -2.87040442e-01 5.97047567e-01 -3.55742246e-01 -4.68432941e-02 4.28649664e-01 5.20325124e-01 -7.48247147e-01 -6.49156988e-01 9.24304068e-01 1.17280066e+00 2.99996193e-02 7.21894205e-01 3.15014124e-01 9.36386943e-01 -1.79224744e-01 -5.91261446e-01 4.19368923e-01 -2.77082831e-01 -7.54921496e-01 1.78997383e-01 -2.17198417e-01 -1.93192273e-01 -2.45077372e-01 1.21013141e+00 5.14344335e-01 4.61295366e-01 1.07236803e+00 -1.48447394e+00 -7.37183154e-01 6.97863042e-01 -8.57164919e-01 1.83523968e-01 1.16837367e-01 -1.15053551e-02 1.10671377e+00 -6.79054081e-01 4.35054541e-01 1.37697768e+00 6.34940207e-01 3.67843479e-01 -1.34942055e+00 -3.29543322e-01 1.33056298e-01 -2.82757998e-01 -1.30156791e+00 -6.22376978e-01 6.42936647e-01 -5.37762105e-01 6.53738618e-01 3.52049619e-01 9.92066339e-02 6.00848675e-01 1.50962994e-01 9.84159887e-01 1.13747644e+00 -5.04201829e-01 4.09152985e-01 -5.59981801e-02 2.44935509e-02 5.18701553e-01 1.56406015e-01 1.98044956e-01 -4.95190024e-02 -5.00103295e-01 9.81940746e-01 -1.23532437e-01 5.20485230e-02 -6.42375052e-01 -7.78510153e-01 1.52881181e+00 -2.80218273e-01 -5.14215454e-02 -4.11794543e-01 2.42023215e-01 1.52848437e-01 3.44085157e-01 7.31347799e-01 5.51162243e-01 -6.87406242e-01 -1.36133626e-01 -8.86224508e-01 6.40562236e-01 9.69461381e-01 1.00388324e+00 5.71838677e-01 3.33473057e-01 -1.11385055e-01 6.98063195e-01 4.54203904e-01 6.85483515e-01 1.63083479e-01 -1.62744141e+00 3.91683906e-01 -2.38920763e-01 5.09511709e-01 -8.23207498e-01 -6.59247041e-01 -2.80222476e-01 -5.86863518e-01 5.10843471e-02 6.38848543e-01 -7.23717928e-01 -5.13500154e-01 1.85108161e+00 1.34580895e-01 1.69378877e-01 9.97120664e-02 6.47682190e-01 1.56605110e-01 5.26160181e-01 -2.27619201e-01 -8.15050304e-01 8.96281302e-01 -5.02671480e-01 -8.12113464e-01 -3.52564454e-01 6.14805400e-01 -5.84632754e-01 6.85628414e-01 4.21392202e-01 -1.34258425e+00 1.62052587e-01 -5.97643375e-01 -6.77600428e-02 1.51959315e-01 -1.67450622e-01 1.28877795e+00 7.72101223e-01 -1.17968857e+00 5.72615623e-01 -6.52055323e-01 1.13948341e-02 1.55012503e-01 5.87976038e-01 -9.93737280e-02 2.40685567e-01 -9.49433923e-01 7.25170195e-01 5.54551370e-02 1.63918555e-01 -6.79156005e-01 -5.87567747e-01 -1.17263293e+00 7.44091049e-02 7.59960115e-01 -4.98019367e-01 1.76311767e+00 -7.71644115e-01 -1.94385648e+00 7.73715615e-01 -1.15989439e-01 -5.12250841e-01 6.26880467e-01 5.51443398e-02 -1.27452224e-01 -2.18014531e-02 3.77070725e-01 1.53047279e-01 6.49505079e-01 -7.58340836e-01 -4.61166948e-01 -3.84216607e-01 2.58460701e-01 1.33432344e-01 3.73785257e-01 6.35283947e-01 -2.95763195e-01 -6.61840022e-01 1.76173419e-01 -1.09693241e+00 -8.35758686e-01 -6.38037562e-01 -4.23256457e-01 -4.09749858e-02 3.35678604e-04 -5.58078349e-01 1.12155867e+00 -1.78624141e+00 3.72736663e-01 4.33700085e-01 -1.58985928e-02 -2.94971913e-01 -5.74857928e-02 4.31135595e-01 -1.68031365e-01 2.84045070e-01 -6.69459403e-01 -5.88909447e-01 4.75438625e-01 1.53455898e-01 -2.36017719e-01 8.99569750e-01 1.75748855e-01 1.19757318e+00 -7.95300603e-01 -2.56828338e-01 1.21960782e-01 -2.56310999e-01 -6.67260408e-01 -2.47099176e-02 -3.37408483e-02 4.72890198e-01 -5.91983020e-01 7.76534855e-01 6.56643808e-01 -4.08870801e-02 3.19714814e-01 5.91771483e-01 -3.13210458e-01 1.56843916e-01 -1.52827239e+00 1.44113445e+00 -2.88676172e-01 5.47399640e-01 6.37619734e-01 -1.54739058e+00 5.30489385e-01 3.28317225e-01 5.90768814e-01 -2.88459450e-01 3.08415979e-01 3.18713903e-01 -2.86431462e-01 -5.01216769e-01 4.16157603e-01 -6.08453155e-01 -6.27232850e-01 4.35453236e-01 1.85922801e-01 -4.30838764e-01 1.94294199e-01 1.53111503e-01 7.03036427e-01 -1.60206899e-01 8.34741533e-01 -6.97661281e-01 2.35887572e-01 -3.49186510e-01 7.00877190e-01 1.28779793e+00 -2.21101031e-01 3.72344643e-01 1.09806609e+00 4.47440669e-02 -7.86998510e-01 -8.92417431e-01 -2.89950222e-01 1.12986207e+00 -4.06078100e-01 -3.63972075e-02 -5.18070877e-01 -2.46062189e-01 2.39649490e-01 5.54815710e-01 -5.86217105e-01 2.23395929e-01 -1.50569379e-01 -1.06175804e+00 4.31487292e-01 2.88315654e-01 -3.16344649e-02 -5.37855685e-01 -1.21300250e-01 2.57139087e-01 -6.99036717e-02 -9.62909639e-01 -5.16906381e-01 4.16765749e-01 -8.16669703e-01 -9.99069691e-01 -6.11295283e-01 -3.90999109e-01 2.18185753e-01 7.67252967e-02 1.06413209e+00 -3.86992246e-01 6.06095828e-02 6.18005037e-01 8.79487768e-03 -6.67398512e-01 -2.12497368e-01 -2.11845949e-01 2.57975489e-01 -2.86967624e-02 7.14193210e-02 -4.81057495e-01 -1.25150606e-01 1.65117867e-02 -8.72470379e-01 -6.08250618e-01 2.70164430e-01 8.98944378e-01 5.02897441e-01 -1.21894136e-01 6.38815999e-01 -1.10701334e+00 9.01239991e-01 -8.55523527e-01 -1.27915537e+00 6.92983568e-02 -8.07525575e-01 2.65771061e-01 1.86725914e-01 -2.52710968e-01 -1.07030141e+00 -4.81705926e-02 4.54243682e-02 -1.36418909e-01 1.37800947e-01 1.07819188e+00 -1.67499036e-01 -3.57315540e-01 3.17033470e-01 -2.96398610e-01 1.84725616e-02 -5.22566557e-01 5.27108908e-01 5.38249373e-01 3.56286138e-01 -7.24470854e-01 6.90170348e-01 3.66352320e-01 3.85183901e-01 -5.10381758e-01 -6.56525135e-01 -4.35259402e-01 -4.37922776e-01 8.27299654e-02 5.49478710e-01 -7.74701476e-01 -9.68105733e-01 3.24988902e-01 -8.87872994e-01 -5.35264790e-01 -2.90799230e-01 8.15977931e-01 -1.09873879e+00 3.41590971e-01 -6.69006348e-01 -1.57749116e+00 2.75400132e-01 -1.04661226e+00 8.79967868e-01 1.62510946e-01 1.18582703e-01 -1.45127749e+00 2.96958923e-01 6.35285676e-02 1.50036797e-01 3.33536059e-01 6.14975095e-01 -3.74460608e-01 -2.84003973e-01 -3.32831651e-01 6.50710687e-02 1.40149951e-01 -2.22519800e-01 1.35484144e-01 -5.80716312e-01 -2.22678304e-01 3.94618154e-01 -2.03853965e-01 8.49753201e-01 1.31548178e+00 9.45959389e-01 -5.86336970e-01 7.12029217e-03 8.73972058e-01 1.27152038e+00 2.50124663e-01 3.28124970e-01 3.34348977e-01 2.07511723e-01 6.54144704e-01 6.47198021e-01 7.10787117e-01 4.71141905e-01 4.94358569e-01 3.30643237e-01 7.76062608e-02 1.06983960e+00 5.21693677e-02 2.31780261e-01 5.57635903e-01 -1.62426218e-01 -1.76535308e-01 -7.15909421e-01 6.13366246e-01 -2.42063522e+00 -1.16824114e+00 -1.65726379e-01 2.19303179e+00 5.87590039e-01 -1.75302655e-01 5.31536818e-01 -1.90354571e-01 5.75686991e-01 2.32147038e-01 -4.65240628e-01 -7.43812382e-01 -3.07141691e-01 1.75793335e-01 1.23911381e+00 9.29387748e-01 -1.14112318e+00 9.32120681e-01 8.65270710e+00 8.95529687e-01 -5.34469068e-01 2.40090042e-01 7.33139038e-01 -9.19478014e-02 -4.61861998e-01 3.00134897e-01 -3.72496545e-01 1.00244209e-01 9.09170091e-01 -3.58066142e-01 7.71293104e-01 7.78706968e-01 5.93094826e-01 -4.23831373e-01 -7.13765383e-01 9.01189387e-01 -3.15218002e-01 -9.44425881e-01 -7.31250346e-01 3.54048222e-01 1.08863604e+00 -6.28169859e-03 4.23393309e-01 3.78308386e-01 7.20385075e-01 -1.16173339e+00 6.47931516e-01 3.04711699e-01 5.80739498e-01 -9.94741142e-01 6.20268047e-01 5.01042008e-01 -6.80606008e-01 -3.59801918e-01 -5.12642920e-01 -6.86627924e-01 2.61320829e-01 6.86476767e-01 -1.78322881e-01 5.80248296e-01 1.70479462e-01 3.99092138e-01 3.48497517e-02 7.88671017e-01 -1.67326316e-01 6.39133573e-01 -3.05792540e-01 2.23603919e-01 5.55828452e-01 -7.79363871e-01 5.61097145e-01 1.06846273e+00 2.45873779e-01 4.64915127e-01 -2.18105037e-02 8.96945596e-01 -1.35311792e-02 1.24043651e-01 -5.49455464e-01 -1.49270967e-01 3.64161342e-01 1.02230918e+00 -5.99190891e-01 -1.63760558e-02 -5.94183683e-01 6.77121580e-01 2.88545549e-01 7.50147343e-01 -7.19481468e-01 -2.45961145e-01 7.45555639e-01 -2.60126114e-01 2.45502263e-01 -4.23123062e-01 -3.11151415e-01 -1.44554651e+00 -1.18266888e-01 -8.95543575e-01 5.75963199e-01 -2.30356395e-01 -1.00454140e+00 -2.11196944e-01 3.74509275e-01 -5.44250906e-01 -8.96972001e-01 -8.31049979e-01 -6.03452981e-01 1.06498992e+00 -1.43389463e+00 -6.83770776e-01 7.73734093e-01 7.32204199e-01 2.31402621e-01 -1.17619269e-01 4.80209678e-01 9.98601690e-02 -7.48823702e-01 3.77783060e-01 8.01244020e-01 -1.03572406e-01 2.30509326e-01 -1.70239556e+00 2.00651795e-01 1.13811827e+00 1.38914455e-02 5.50314069e-01 9.93348539e-01 -4.52448696e-01 -1.46264672e+00 -6.91475093e-01 7.83419132e-01 -3.00843358e-01 1.05872905e+00 -1.55506685e-01 -3.15628529e-01 1.32461941e+00 -2.93357354e-02 -2.03047812e-01 5.70157468e-01 5.27616978e-01 -3.91884856e-02 1.79197699e-01 -1.17655611e+00 5.35044491e-01 7.10713208e-01 -5.50536573e-01 -2.86932290e-01 4.16197389e-01 3.01525533e-01 -5.64220548e-01 -7.37003028e-01 2.83447206e-01 4.96012807e-01 -7.75919259e-01 8.79468799e-01 -1.13145351e+00 2.05444358e-02 2.27854654e-01 -1.50557637e-01 -1.26249003e+00 -4.47444618e-01 -1.36862588e+00 -6.11685365e-02 1.04306030e+00 3.69877338e-01 -8.32149088e-01 2.96377212e-01 1.02593732e+00 9.12747085e-02 -5.70002556e-01 -1.24921918e+00 -1.02761781e+00 6.23739600e-01 -8.56791854e-01 4.17135715e-01 9.82853413e-01 3.54924828e-01 2.26722565e-02 -9.35109258e-01 -3.30863297e-02 7.84540117e-01 6.71330169e-02 6.03751421e-01 -1.14679492e+00 -6.37740433e-01 -7.35513210e-01 -2.08262324e-01 -1.25234246e+00 5.53295195e-01 -7.69245803e-01 3.56390290e-02 -1.15569174e+00 2.32710376e-01 -3.58429134e-01 -3.21760893e-01 1.25077935e-02 -1.41914502e-01 7.15655908e-02 2.37656966e-01 -3.95343229e-02 -6.07226491e-01 2.61642277e-01 8.32585275e-01 1.34817719e-01 -2.57072598e-01 5.49638867e-01 -1.20691311e+00 8.56609046e-01 8.06987941e-01 -5.97600877e-01 -2.19352901e-01 -2.65544891e-01 5.46500087e-01 7.12327123e-01 2.41998151e-01 -1.05127044e-01 7.01163709e-02 -8.24645579e-01 -1.40999436e-01 -1.83839336e-01 1.22179627e-01 -2.88877904e-01 9.10212770e-02 8.31890106e-02 -4.01164770e-01 1.21804133e-01 2.37089545e-02 3.40334386e-01 -4.72290404e-02 -6.51627541e-01 7.20842063e-01 -2.18160868e-01 -3.21202904e-01 3.65692407e-01 -6.94352806e-01 5.45388579e-01 6.55115604e-01 2.24846467e-01 1.11058831e-01 -1.07584250e+00 -7.23801196e-01 4.78933126e-01 1.93346649e-01 -1.05086220e-02 1.75029173e-01 -1.16771412e+00 -8.00476074e-01 -2.50885069e-01 -4.62239146e-01 -4.00813997e-01 7.67999217e-02 1.31372929e+00 -1.89357623e-01 9.31892693e-01 3.01086694e-01 6.41925111e-02 -6.05963647e-01 7.09390700e-01 4.60900545e-01 -4.37434971e-01 3.00759543e-03 8.81764650e-01 2.74941266e-01 -5.56377888e-01 -2.02100322e-01 -3.12400788e-01 9.94942784e-02 -6.02919199e-02 3.39612842e-01 6.53615355e-01 -3.61606419e-01 -6.75999880e-01 -3.54227424e-01 2.80447125e-01 4.78554368e-01 -7.15553999e-01 1.30017924e+00 -5.25035024e-01 -2.28940085e-01 6.71647966e-01 1.17238867e+00 3.51332128e-01 -1.21249878e+00 -2.98684508e-01 3.57086122e-01 -2.87738979e-01 2.38331974e-01 -4.69127089e-01 -9.96932030e-01 5.10928452e-01 -1.35718480e-01 3.07476461e-01 1.05900538e+00 2.28924435e-02 4.48851027e-02 4.14921761e-01 2.20539674e-01 -1.17806160e+00 -6.11886024e-01 5.29510200e-01 6.74942672e-01 -1.38045692e+00 9.03498381e-03 -2.05715895e-01 -5.99190772e-01 8.99508297e-01 -2.30898052e-01 -2.36580297e-01 8.19725394e-01 3.92818421e-01 -1.71534076e-01 -5.26028425e-02 -5.35945952e-01 -4.98945713e-01 3.97324055e-01 7.07359791e-01 2.14546487e-01 3.39839607e-01 -8.65589261e-01 1.01845264e+00 -6.18450902e-02 -1.70278162e-01 5.76730788e-01 8.02716076e-01 -2.13921010e-01 -1.05654573e+00 -4.32921022e-01 6.12906396e-01 -9.49924290e-01 -2.49458477e-01 -2.78223336e-01 9.16317105e-01 -3.82356703e-01 1.19845009e+00 -8.43735114e-02 2.03153357e-01 5.43723069e-02 -4.63692918e-02 4.20089543e-01 -4.09935981e-01 -7.45974705e-02 5.93962789e-01 -5.20413443e-02 -4.96843815e-01 -6.41115904e-01 -1.32080722e+00 -6.79369628e-01 -6.57584012e-01 -6.30789876e-01 3.95747483e-01 4.08103794e-01 1.29250991e+00 -1.69956818e-01 1.07497275e-01 8.50884080e-01 -7.10559726e-01 -1.05378115e+00 -8.29260826e-01 -1.44348490e+00 -2.45550141e-01 5.42421579e-01 -6.84213281e-01 -6.39141679e-01 -4.54135239e-01]
[6.525765895843506, 4.097433090209961]
36b4bc3b-bfab-4b78-a659-6e9fc740ab02
differentially-private-distributed-data
1910.12832
null
https://arxiv.org/abs/1910.12832v2
https://arxiv.org/pdf/1910.12832v2.pdf
Differentially Private Distributed Data Summarization under Covariate Shift
We envision AI marketplaces to be platforms where consumers, with very less data for a target task, can obtain a relevant model by accessing many private data sources with vast number of data samples. One of the key challenges is to construct a training dataset that matches a target task without compromising on privacy of the data sources. To this end, we consider the following distributed data summarizataion problem. Given K private source datasets denoted by $[D_i]_{i\in [K]}$ and a small target validation set $D_v$, which may involve a considerable covariate shift with respect to the sources, compute a summary dataset $D_s\subseteq \bigcup_{i\in [K]} D_i$ such that its statistical distance from the validation dataset $D_v$ is minimized. We use the popular Maximum Mean Discrepancy as the measure of statistical distance. The non-private problem has received considerable attention in prior art, for example in prototype selection (Kim et al., NIPS 2016). Our work is the first to obtain strong differential privacy guarantees while ensuring the quality guarantees of the non-private version. We study this problem in a Parsimonious Curator Privacy Model, where a trusted curator coordinates the summarization process while minimizing the amount of private information accessed. Our central result is a novel protocol that (a) ensures the curator accesses at most $O(K^{\frac{1}{3}}|D_s| + |D_v|)$ points (b) has formal privacy guarantees on the leakage of information between the data owners and (c) closely matches the best known non-private greedy algorithm. Our protocol uses two hash functions, one inspired by the Rahimi-Recht random features method and the second leverages state of the art differential privacy mechanisms. We introduce a novel "noiseless" differentially private auctioning protocol for winner notification and demonstrate the efficacy of our protocol using real-world datasets.
['Venkata Sitaramagiridharganesh Ganapavarapu', 'Roman Vaculin', 'Karthikeyan Shanmugam', 'Kanthi Sarpatwar', 'Ashish Jagmohan']
2019-10-28
differentially-private-distributed-data-1
http://papers.nips.cc/paper/9589-differentially-private-distributed-data-summarization-under-covariate-shift
http://papers.nips.cc/paper/9589-differentially-private-distributed-data-summarization-under-covariate-shift.pdf
neurips-2019-12
['data-summarization']
['miscellaneous']
[ 2.48018280e-01 4.49264646e-02 -3.05887163e-01 -4.92395818e-01 -1.46386516e+00 -1.17706263e+00 1.54851168e-01 4.25726950e-01 -4.53043312e-01 8.39914560e-01 -1.04187123e-01 -1.35544553e-01 -3.78545046e-01 -9.09028590e-01 -9.50733066e-01 -1.14281940e+00 -3.05921197e-01 4.66774344e-01 -7.11854696e-02 -1.24001674e-01 2.69524395e-01 9.34234262e-02 -1.40474772e+00 1.60602957e-01 7.41231263e-01 1.48517048e+00 -4.00599748e-01 3.72544169e-01 3.51892442e-01 1.71863779e-01 -6.90838516e-01 -8.29005718e-01 1.17753613e+00 -3.27609211e-01 -7.37905920e-01 -4.30694729e-01 1.62244469e-01 -2.75676399e-01 -1.68283373e-01 1.34835756e+00 6.30069852e-01 -1.95868298e-01 4.40784663e-01 -1.94673502e+00 -6.41142905e-01 1.08829284e+00 -8.95610034e-01 -1.38679385e-01 1.47084504e-01 2.11263910e-01 1.10261667e+00 -1.04016900e-01 7.68777251e-01 7.20778823e-01 4.90876764e-01 4.07302827e-01 -1.51528072e+00 -1.30995154e+00 -8.11035410e-02 -1.30578279e-01 -1.70782781e+00 -4.07523125e-01 7.32844114e-01 -1.43788695e-01 3.41689646e-01 9.07885075e-01 3.06518286e-01 8.16654861e-01 3.38471904e-02 8.40018570e-01 1.19259763e+00 4.81571630e-02 7.23991752e-01 6.56575978e-01 1.92538053e-01 1.97783872e-01 7.30270326e-01 8.89878199e-02 -8.87474597e-01 -1.18631113e+00 2.83621028e-02 1.15161262e-01 -4.10903305e-01 -6.44787014e-01 -9.40040171e-01 9.85644042e-01 1.18663751e-01 -1.76260710e-01 -3.35413694e-01 2.26531565e-01 5.10768354e-01 8.19667935e-01 2.90456682e-01 1.43229350e-01 -8.50477159e-01 1.66635111e-01 -8.00769210e-01 7.82445669e-01 9.74262595e-01 1.41028082e+00 8.50645065e-01 -5.80819845e-01 6.38369843e-02 9.75853205e-02 1.49113402e-01 6.41808987e-01 2.97965854e-01 -9.75581586e-01 6.71014190e-01 6.15897894e-01 2.95787007e-01 -9.08540428e-01 2.44050682e-01 -1.07446402e-01 -1.10134029e+00 1.00284800e-01 4.80874985e-01 -3.82055521e-01 -1.10295095e-01 2.13667655e+00 6.65135026e-01 -3.33308429e-01 4.30678517e-01 8.08986664e-01 3.28318387e-01 5.01535773e-01 -7.24819079e-02 -4.63403165e-01 1.30354142e+00 -1.52931154e-01 -2.60126144e-01 3.30566853e-01 6.90849245e-01 -3.31315905e-01 7.30470657e-01 5.11049449e-01 -1.13488460e+00 2.76956409e-01 -9.63652551e-01 -1.26369461e-01 -4.62279290e-01 -3.42449248e-01 7.70870328e-01 1.05051446e+00 -8.49749744e-01 4.48159933e-01 -3.40501875e-01 -7.54270107e-02 9.12656486e-01 8.50169003e-01 -6.95994496e-01 1.34892374e-01 -1.26622558e+00 -3.38449255e-02 1.93003207e-01 -5.10284483e-01 -8.39408100e-01 -9.12340999e-01 -5.34003794e-01 -6.87002987e-02 4.62785780e-01 -8.59099329e-01 8.58482242e-01 -9.20179427e-01 -1.02137756e+00 1.10886729e+00 3.23031366e-01 -8.79400432e-01 8.20769548e-01 3.57427835e-01 -1.13272248e-02 -7.76162818e-02 1.97186425e-01 2.17935905e-01 7.02753246e-01 -1.27326763e+00 -1.01673663e+00 -1.16264522e+00 -2.57767797e-01 8.01819488e-02 -2.27012157e-01 1.50703806e-02 9.64983329e-02 -5.57754755e-01 -9.75290760e-02 -9.30324256e-01 -3.28548014e-01 1.99879080e-01 -7.66051829e-01 -1.04191052e-02 9.69882369e-01 -3.86730701e-01 1.05863345e+00 -2.36049581e+00 -4.80932966e-02 7.44836271e-01 4.37761307e-01 -5.27756813e-04 2.51537234e-01 4.28334922e-01 4.20725435e-01 3.63112420e-01 -6.07461333e-01 -4.11147863e-01 3.74070972e-01 -1.03843845e-01 -5.85235834e-01 1.04870200e+00 -5.26995718e-01 6.47358477e-01 -5.03641844e-01 -1.44915342e-01 -4.16906297e-01 2.46713355e-01 -4.68652576e-01 1.13005355e-01 -2.02962890e-01 1.78452209e-01 -7.12401927e-01 5.65613389e-01 1.23407149e+00 -4.70886789e-02 1.89198837e-01 5.57578802e-02 6.08085878e-02 -9.09173191e-02 -1.73819780e+00 1.69867074e+00 3.32651258e-01 -1.42230183e-01 7.01159179e-01 -8.45187664e-01 8.44301999e-01 1.80136561e-01 6.32463217e-01 -3.57025594e-01 3.41944039e-01 4.44689631e-01 -3.97465646e-01 7.05055967e-02 3.82500768e-01 7.44446814e-02 -8.35690677e-01 9.50486779e-01 -3.06784749e-01 5.24285110e-03 -6.39536023e-01 3.31049293e-01 1.22771764e+00 -4.88725901e-01 4.51733708e-01 -4.92055565e-01 2.75521874e-01 -6.53370917e-02 8.79899204e-01 9.27220225e-01 -3.63100052e-01 4.45738494e-01 6.97610915e-01 -2.22023189e-01 -8.67297947e-01 -8.09553206e-01 3.83827873e-02 9.78269815e-01 4.47253197e-01 -2.64115632e-01 -7.83892810e-01 -8.07759166e-01 7.29270160e-01 5.39995253e-01 -8.45030844e-01 -2.05163926e-01 3.58084813e-02 -5.97968936e-01 7.96313643e-01 -3.44784651e-03 5.97100914e-01 -5.62733591e-01 -8.85246038e-01 -1.93071559e-01 6.16017953e-02 -3.95182759e-01 -8.80276799e-01 3.96961004e-01 -5.84184229e-01 -9.80887890e-01 -4.73177642e-01 -3.41801673e-01 6.71499074e-01 1.99131802e-01 4.47931916e-01 -3.32086056e-01 -2.61414468e-01 2.43953139e-01 -1.15343079e-01 -8.85463536e-01 -7.47406185e-02 1.50515139e-01 1.17627822e-01 3.29226315e-01 7.06164658e-01 -6.83028877e-01 -8.68549168e-01 1.77528530e-01 -1.12865353e+00 -4.55852926e-01 3.19246560e-01 4.66832340e-01 9.33749139e-01 4.96251620e-02 5.52012444e-01 -1.28816807e+00 6.62819266e-01 -7.84585714e-01 -8.70820045e-01 3.09718013e-01 -9.33516443e-01 3.18173356e-02 7.69944608e-01 -3.72415364e-01 -5.52402794e-01 2.77675837e-01 5.04111528e-01 -3.37158769e-01 2.67306715e-02 -1.03551596e-02 -6.61391854e-01 -1.75274119e-01 5.79424620e-01 4.04322684e-01 3.22043151e-01 -3.83069843e-01 4.81618404e-01 9.74592984e-01 4.21253234e-01 -6.30388498e-01 7.31974423e-01 7.09464848e-01 1.53186962e-01 -2.40320861e-01 -9.33744945e-03 -2.49648318e-01 -1.78872034e-01 6.89250708e-01 2.45954245e-01 -8.70880425e-01 -1.58506930e+00 5.41865349e-01 -7.01793969e-01 6.52014613e-02 -8.72797728e-01 8.95207375e-02 -6.15478635e-01 3.76672417e-01 -9.48860049e-02 -9.89657342e-01 -8.76590312e-01 -1.09580088e+00 9.97122407e-01 1.33084252e-01 -1.02174513e-01 -3.62863511e-01 -5.14749624e-02 3.10005039e-01 4.42055017e-01 5.62228620e-01 7.55836666e-01 -1.28630269e+00 -8.71563137e-01 -5.31003833e-01 3.88952345e-02 1.92803040e-01 -7.17865378e-02 -4.48272854e-01 -9.96876001e-01 -4.43983525e-01 3.57631564e-01 -3.82311106e-01 6.07497871e-01 2.82312870e-01 1.34742975e+00 -1.03584826e+00 -3.50615025e-01 8.25988054e-01 1.45788252e+00 1.53548613e-01 3.90599340e-01 1.19985573e-01 1.47877902e-01 5.13864100e-01 5.49322546e-01 1.13722742e+00 4.86956239e-01 4.54523206e-01 2.76173294e-01 2.05032095e-01 7.58561492e-01 -2.72871017e-01 2.15339810e-01 -9.18786079e-02 4.58029866e-01 -2.65415072e-01 -3.35550368e-01 6.64022326e-01 -1.96987689e+00 -7.91919649e-01 7.43136033e-02 2.80901241e+00 1.23502481e+00 -3.63616735e-01 4.12162155e-01 4.33674976e-02 5.49373806e-01 -4.96405624e-02 -9.16355252e-01 -4.78791028e-01 -3.89102817e-01 1.92728862e-01 1.31934488e+00 7.09247515e-02 -7.76150823e-01 3.92392576e-01 4.31082106e+00 8.75326991e-01 -8.77824187e-01 1.92864731e-01 1.07335806e+00 -4.78815913e-01 -6.71764851e-01 3.02821934e-01 -6.59872472e-01 8.57148170e-01 9.29922998e-01 -1.01727438e+00 5.12128472e-01 1.07148528e+00 -2.65211731e-01 -3.36603224e-01 -1.47375846e+00 1.13378096e+00 -1.63935587e-01 -1.30601656e+00 -1.74983442e-01 5.19933879e-01 5.80486774e-01 -1.96190417e-01 5.96720576e-01 -1.03335276e-01 7.37291038e-01 -8.37625682e-01 8.00894558e-01 2.10800573e-01 1.02136064e+00 -1.14578378e+00 4.26734000e-01 5.43110371e-01 -8.24538767e-01 -2.62861639e-01 -3.93414050e-01 4.66370553e-01 -1.09395407e-01 5.73459148e-01 -4.22615558e-01 7.77618170e-01 9.86503541e-01 -6.26612529e-02 -1.80891842e-01 6.59146070e-01 4.11642462e-01 3.17439288e-01 -7.99281836e-01 8.84691067e-03 -1.42333895e-01 -2.70890802e-01 6.66694701e-01 7.72680819e-01 3.27150047e-01 4.93932426e-01 1.45719439e-01 8.09826612e-01 -7.93944359e-01 3.97738755e-01 -8.86471093e-01 2.39730909e-01 9.53891933e-01 9.40605104e-01 -1.62266687e-01 -9.08154622e-02 1.00433350e-01 9.58605409e-01 -4.65311073e-02 6.25516176e-02 -5.10734439e-01 -5.26176870e-01 1.04553354e+00 5.65793999e-02 2.68719047e-01 2.80907422e-01 -5.07226646e-01 -8.99235129e-01 2.65950799e-01 -9.89433527e-01 9.30256248e-01 1.20710030e-01 -1.63011062e+00 8.26072693e-02 -8.61400142e-02 -1.05069232e+00 1.42317146e-01 1.82230026e-01 -2.76282698e-01 1.01850259e+00 -1.25265813e+00 -1.11828470e+00 2.48846084e-01 1.10580468e+00 -3.77086520e-01 -2.64019996e-01 9.59076166e-01 -7.51572195e-03 -2.45914608e-01 1.33822322e+00 5.85347593e-01 -1.53790936e-01 7.54472435e-01 -1.04977369e+00 1.59309492e-01 5.16858816e-01 -2.65747279e-01 7.69246340e-01 6.64148569e-01 -6.69283152e-01 -2.06553888e+00 -1.12930596e+00 7.80166566e-01 -3.22679371e-01 2.56947547e-01 -7.07055271e-01 -5.85097849e-01 7.99821734e-01 -6.00369088e-02 3.69822025e-01 1.14164495e+00 -4.25425917e-01 -6.15428507e-01 -7.04846501e-01 -2.31738734e+00 1.43477663e-01 8.64416957e-01 -4.83483583e-01 5.12740090e-02 2.40551844e-01 7.17253447e-01 -2.29696870e-01 -8.89182210e-01 4.71690372e-02 5.66771746e-01 -8.86765838e-01 6.39848113e-01 -5.06123483e-01 -2.86964923e-01 -2.72215396e-01 -6.26460552e-01 -8.06530654e-01 2.16140419e-01 -1.45400548e+00 -3.59505676e-02 1.56021428e+00 4.59206969e-01 -9.72701371e-01 1.08654511e+00 1.39665389e+00 8.33329380e-01 -4.09825981e-01 -1.47134030e+00 -5.78478217e-01 2.90532172e-01 -1.57545045e-01 1.11419761e+00 1.01309061e+00 2.90779937e-02 -3.59740078e-01 -4.96234387e-01 2.77337015e-01 1.25096428e+00 3.23136628e-01 1.15822077e+00 -1.26505029e+00 -2.19379038e-01 4.94881123e-02 -2.96941698e-01 -4.53928769e-01 -4.47452348e-03 -1.03740442e+00 -2.33056128e-01 -6.89699471e-01 5.01815259e-01 -9.70878959e-01 -3.86420280e-01 5.46717286e-01 2.08501294e-01 -1.74316555e-01 3.08670606e-02 2.30677292e-01 -5.58451235e-01 4.11277145e-01 4.98315871e-01 -7.67438784e-02 -3.84029001e-01 3.03646892e-01 -1.48336935e+00 2.34868247e-02 6.37298882e-01 -8.61750662e-01 -5.22201002e-01 -5.79741597e-03 2.70556897e-01 1.70003176e-01 3.85410756e-01 -3.53514284e-01 6.26028299e-01 -3.90423536e-01 2.17944104e-02 -4.36235905e-01 -6.09720014e-02 -1.22873902e+00 6.97463095e-01 3.19352388e-01 -7.11046457e-01 -4.75551859e-02 -2.77754277e-01 9.09296155e-01 2.47347593e-01 1.99254200e-01 7.61061490e-01 -1.17726721e-01 3.43081094e-02 7.11955190e-01 2.58572161e-01 5.99050112e-02 1.73188329e+00 -8.78208354e-02 -4.95422661e-01 -3.02944154e-01 -1.20392948e-01 5.03462911e-01 9.14814174e-01 -4.80787084e-03 3.21932673e-01 -9.90524948e-01 -7.68589318e-01 2.94822663e-01 2.33227640e-01 4.43073303e-01 2.87973911e-01 7.56043077e-01 1.33823946e-01 8.88558701e-02 -6.08577169e-02 -2.67885029e-01 -1.38780928e+00 8.03754032e-01 1.98431108e-02 3.12603381e-03 -3.58555555e-01 1.04457605e+00 -2.56717242e-02 -2.62517303e-01 4.18018430e-01 -1.26080319e-01 6.17399991e-01 1.31128505e-01 6.24456584e-01 5.52492321e-01 -7.45310122e-03 -5.66536844e-01 -4.44245994e-01 -7.33596692e-03 -3.64652544e-01 -2.93648273e-01 1.52404642e+00 -3.71609330e-01 -2.60558456e-01 2.66535790e-03 1.60875094e+00 1.74542665e-01 -1.00019240e+00 -3.82209808e-01 -2.45715261e-01 -8.86179686e-01 -2.10278794e-01 -6.45394385e-01 -1.29212344e+00 3.53903055e-01 8.59077692e-01 2.84147769e-01 1.26760316e+00 4.01087143e-02 1.08565474e+00 3.42185274e-02 9.61107135e-01 -1.10750866e+00 -7.76999354e-01 -4.12153155e-01 4.88368452e-01 -1.09927011e+00 1.59231871e-01 -7.45852888e-02 -9.90818143e-01 4.90416974e-01 9.30585042e-02 -1.46626951e-02 7.86529481e-01 4.79542017e-01 -2.21327588e-01 -1.61028504e-01 -8.14089835e-01 3.87997508e-01 -3.87210816e-01 6.08111382e-01 -4.75758642e-01 3.65423381e-01 -4.98867989e-01 1.32497358e+00 -2.50344425e-01 1.71903819e-01 3.88381153e-01 1.24384034e+00 -7.44654089e-02 -1.42890465e+00 -2.93326050e-01 6.11658633e-01 -9.37624454e-01 1.50688663e-01 -6.31624520e-01 4.26218212e-01 2.13651016e-01 7.76239634e-01 -2.82109827e-01 -3.17280799e-01 2.16102704e-01 -9.39134788e-03 -1.29510194e-01 -2.08005264e-01 -1.26571763e+00 -2.32658103e-01 -3.72417659e-01 -6.33157492e-01 -1.23871185e-01 -9.77427363e-01 -1.17683768e+00 -7.67506719e-01 -3.60002697e-01 4.62141037e-01 8.00678730e-01 2.81579971e-01 9.07777488e-01 -6.44993305e-01 1.20951200e+00 -5.24083860e-02 -1.15131128e+00 -1.93695471e-01 -1.33744419e+00 5.85475445e-01 4.46172655e-01 -4.59512360e-02 -6.01216257e-01 -3.25971171e-02]
[5.872924327850342, 6.698272705078125]
d4fcb9db-b9e4-4a6a-9f1c-cd510368e80f
actor-director-critic-a-novel-deep
2301.03887
null
https://arxiv.org/abs/2301.03887v1
https://arxiv.org/pdf/2301.03887v1.pdf
Actor-Director-Critic: A Novel Deep Reinforcement Learning Framework
In this paper, we propose actor-director-critic, a new framework for deep reinforcement learning. Compared with the actor-critic framework, the director role is added, and action classification and action evaluation are applied simultaneously to improve the decision-making performance of the agent. Firstly, the actions of the agent are divided into high quality actions and low quality actions according to the rewards returned from the environment. Then, the director network is trained to have the ability to discriminate high and low quality actions and guide the actor network to reduce the repetitive exploration of low quality actions in the early stage of training. In addition, we propose an improved double estimator method to better solve the problem of overestimation in the field of reinforcement learning. For the two critic networks used, we design two target critic networks for each critic network instead of one. In this way, the target value of each critic network can be calculated by taking the average of the outputs of the two target critic networks, which is more stable and accurate than using only one target critic network to obtain the target value. In order to verify the performance of the actor-director-critic framework and the improved double estimator method, we applied them to the TD3 algorithm to improve the TD3 algorithm. Then, we carried out experiments in multiple environments in MuJoCo and compared the experimental data before and after the algorithm improvement. The final experimental results show that the improved algorithm can achieve faster convergence speed and higher total return.
['Yuanlin Zhang', 'Yonghong Song', 'Zongwei Liu']
2023-01-10
null
null
null
null
['action-classification']
['computer-vision']
[-2.30556130e-01 -1.02153920e-01 -2.19987676e-01 -2.40936037e-02 -2.24808753e-01 -4.85805385e-02 3.32203478e-01 2.49857139e-02 -9.28997457e-01 8.72157693e-01 -5.43109290e-02 9.11689177e-02 -1.30533114e-01 -8.98378968e-01 -4.66588378e-01 -9.98233497e-01 9.46771502e-02 3.50845397e-01 4.92189676e-01 -7.38527626e-02 3.12129885e-01 3.12938750e-01 -1.35146654e+00 -1.22812323e-01 9.91810381e-01 1.04827893e+00 3.90249282e-01 3.84290069e-01 -1.87505372e-02 1.02914417e+00 -8.99928927e-01 3.24340671e-01 3.00493628e-01 -8.26665878e-01 -3.22633535e-01 8.69704783e-02 -5.32046080e-01 -6.44432724e-01 -8.93796831e-02 1.10871935e+00 7.13308215e-01 4.37873572e-01 3.06633770e-01 -1.06837404e+00 -1.29928872e-01 6.98717892e-01 -5.78455806e-01 1.61003470e-01 7.23886043e-02 3.66467953e-01 6.63577259e-01 -3.28917116e-01 2.25547835e-01 1.57328999e+00 8.88954997e-02 6.28526509e-01 -7.42803454e-01 -7.43346512e-01 6.82817280e-01 2.81380326e-01 -8.40826929e-01 -1.93570659e-01 7.48583138e-01 -6.65882379e-02 5.87227643e-01 -1.46545351e-01 1.05840755e+00 6.83622897e-01 2.29700908e-01 1.08493960e+00 9.91377413e-01 -3.00779909e-01 6.37308717e-01 2.08418950e-01 -2.44984508e-01 6.76711857e-01 1.84027925e-01 4.89706963e-01 -7.02062100e-02 1.21711627e-01 9.42579925e-01 1.31026059e-01 -5.71759790e-02 -3.49259108e-01 -1.07466805e+00 7.89012671e-01 6.26691937e-01 3.46640229e-01 -8.09176743e-01 3.16585839e-01 4.61888939e-01 3.01537216e-01 2.60378778e-01 4.59710419e-01 -2.42554441e-01 -2.44654074e-01 -4.07020092e-01 2.38300636e-01 4.13529843e-01 1.77164525e-01 5.92722058e-01 5.63758254e-01 -3.39839637e-01 8.86292934e-01 4.67005312e-01 5.65877378e-01 7.55020261e-01 -1.10860360e+00 4.55624133e-01 9.14696634e-01 2.78874338e-01 -9.70725775e-01 -2.35230118e-01 -5.98198295e-01 -6.41907156e-01 8.12739134e-01 3.16423178e-01 -3.80317181e-01 -6.32919908e-01 1.52427554e+00 5.36775470e-01 2.24507097e-02 2.63074338e-01 1.01846790e+00 2.39927143e-01 7.36186028e-01 -4.02977802e-02 -5.60624659e-01 7.99615145e-01 -1.19750655e+00 -8.64510596e-01 -1.57312870e-01 5.64106405e-01 -2.34061152e-01 8.32925618e-01 6.76758051e-01 -9.23488379e-01 -6.96725368e-01 -1.06185973e+00 8.31233323e-01 -4.86900285e-02 3.60926092e-01 4.55231130e-01 1.79309875e-01 -4.08344865e-01 7.69876003e-01 -8.72538984e-01 1.79849714e-01 3.22463185e-01 1.84504732e-01 1.87398165e-01 2.05981135e-01 -1.28014886e+00 9.53063369e-01 8.13348353e-01 1.67467341e-01 -1.25699854e+00 -3.72173544e-03 -4.63265240e-01 2.04725042e-01 6.94234133e-01 -9.38711911e-02 1.39422369e+00 -1.46744871e+00 -1.81424928e+00 -1.71745062e-01 2.38824487e-01 -4.03399467e-01 6.46466434e-01 -3.65754329e-02 -1.88132569e-01 -3.59005504e-03 -4.35939580e-02 3.80592048e-01 8.01983237e-01 -1.07920229e+00 -1.04617631e+00 -2.65898824e-01 3.05474013e-01 6.64582670e-01 -3.36198688e-01 -3.06250840e-01 -2.20943898e-01 -2.29537547e-01 -1.06834993e-01 -6.85208678e-01 -4.53276455e-01 -1.14360496e-01 1.99342564e-01 -3.93833399e-01 6.68230116e-01 -2.90209949e-01 1.33720076e+00 -2.20257640e+00 1.49567172e-01 3.20230693e-01 8.25631768e-02 6.01686656e-01 -2.54301876e-01 8.54100138e-02 1.57856479e-01 -2.36405671e-01 -1.73230488e-02 2.32546642e-01 -2.33151808e-01 3.73694807e-01 1.79598778e-01 2.16375500e-01 -3.26841623e-02 3.59964579e-01 -1.17974377e+00 -4.25448477e-01 2.97381252e-01 -2.20495462e-02 -5.00834346e-01 4.47715610e-01 -3.96024942e-01 4.57685292e-01 -1.00878930e+00 3.71522188e-01 4.51112598e-01 1.38350815e-01 2.49836639e-01 3.23343128e-01 -1.92713022e-01 5.40324226e-02 -1.66480458e+00 9.60354447e-01 -5.82947493e-01 9.65637937e-02 1.75570786e-01 -1.10781252e+00 1.30533481e+00 3.35997432e-01 5.40800631e-01 -1.10892928e+00 3.98804307e-01 2.56633610e-01 2.11838514e-01 -5.82936704e-01 6.32209107e-02 1.62663773e-01 2.87675530e-01 4.68170941e-01 -2.58472621e-01 9.45117474e-02 3.83824110e-01 -6.75410479e-02 8.94634843e-01 3.44184697e-01 2.65697181e-01 1.40349254e-01 7.65893936e-01 -1.13730304e-01 9.55252111e-01 6.24677896e-01 -3.11735719e-01 -3.28241259e-01 6.54463708e-01 -5.82995057e-01 -8.05905223e-01 -5.27257860e-01 3.70702326e-01 1.00857317e+00 3.96299154e-01 8.30004141e-02 -4.83782411e-01 -1.00779283e+00 9.51814950e-02 6.24006331e-01 -4.61340338e-01 -4.76542145e-01 -6.07899427e-01 -7.79473722e-01 2.71438301e-01 5.59797108e-01 9.44023609e-01 -1.43840671e+00 -9.21502888e-01 5.36318183e-01 2.00571463e-01 -3.20136517e-01 -1.44880310e-01 1.22421861e-01 -8.29829574e-01 -1.25749719e+00 -7.03332007e-01 -6.20980501e-01 7.16192424e-01 5.50788045e-02 4.24824625e-01 2.33305275e-01 3.49622279e-01 -2.77134702e-02 -4.49919194e-01 -3.76843244e-01 -5.13445497e-01 -2.18161866e-01 1.72858804e-01 -8.61514211e-02 -5.53167686e-02 -3.42398703e-01 -4.29251522e-01 3.69602352e-01 -7.19201863e-01 -1.72891110e-01 8.53332460e-01 1.01486135e+00 2.60491878e-01 2.52995253e-01 8.48671675e-01 -5.25879860e-01 1.02180600e+00 -2.60068417e-01 -1.04794705e+00 1.31392375e-01 -9.74814475e-01 4.50137496e-01 1.04025972e+00 -8.61460388e-01 -1.13320255e+00 -8.52557570e-02 -1.29190952e-01 -4.40687388e-01 2.05585331e-01 3.77067864e-01 -8.56779963e-02 1.45531237e-01 4.52652693e-01 2.70080835e-01 3.70439947e-01 -3.20078045e-01 -5.06058596e-02 6.10084593e-01 4.89408430e-03 -3.88510764e-01 3.78061414e-01 -1.17095739e-01 -1.09993555e-01 -4.61412296e-02 -5.77695251e-01 -1.82059221e-02 -9.41132233e-02 -7.26122618e-01 6.45163000e-01 -6.98134959e-01 -1.07839406e+00 5.71622133e-01 -1.05677295e+00 -4.26809847e-01 -4.27366376e-01 8.41922343e-01 -3.77090931e-01 2.17983529e-01 -3.72727156e-01 -1.18947101e+00 -2.50293344e-01 -1.31290507e+00 3.14597309e-01 7.24169970e-01 4.48805302e-01 -9.27667499e-01 2.74974883e-01 -2.15782657e-01 3.56348991e-01 7.08209351e-02 6.36775196e-01 -6.78195834e-01 -2.90800959e-01 -5.20560443e-02 2.30237350e-01 6.58900797e-01 -1.05369180e-01 6.85443655e-02 -5.61989188e-01 -3.78353626e-01 1.25221506e-01 -4.07231212e-01 7.55302787e-01 2.12859407e-01 8.87429774e-01 -4.02708501e-01 -1.80614710e-01 2.19957620e-01 1.33753896e+00 1.00629556e+00 4.73702878e-01 8.59222233e-01 2.06967086e-01 2.19378024e-01 1.14329851e+00 6.79424644e-01 -4.79941741e-02 5.29973149e-01 7.99746692e-01 -4.19535227e-02 1.92727536e-01 -2.19699442e-01 7.47814178e-01 6.08557105e-01 -8.56076553e-02 -9.54641029e-02 -3.62391114e-01 3.65206569e-01 -2.21490884e+00 -1.06561244e+00 1.35207221e-01 2.26050878e+00 6.39504433e-01 3.93894941e-01 2.70025671e-01 1.50039718e-01 7.51934052e-01 2.20886335e-01 -9.33255792e-01 -5.76871395e-01 2.61120677e-01 -3.15018594e-01 2.51301229e-01 3.98217648e-01 -6.71240449e-01 6.79584801e-01 5.83256388e+00 9.34359193e-01 -1.23206604e+00 -1.08217478e-01 4.69898045e-01 -8.56438056e-02 -1.82761922e-02 3.89914624e-02 -7.05709040e-01 6.97714448e-01 5.60580730e-01 -1.24882936e-01 8.62620473e-01 1.25924969e+00 4.60978299e-01 -6.07214570e-01 -7.15958476e-01 6.16693139e-01 -3.13020825e-01 -8.05521011e-01 -1.90844223e-01 -1.46798193e-01 6.40851259e-01 -2.61971384e-01 -2.89353937e-01 6.43028975e-01 5.17133534e-01 -4.74934489e-01 6.68858409e-01 5.73152423e-01 1.07879661e-01 -1.05765450e+00 1.07415259e+00 8.88778150e-01 -1.05162930e+00 -6.08881891e-01 -6.70822263e-01 -2.35206887e-01 -2.49604121e-01 4.40898985e-01 -7.11584687e-01 6.12987459e-01 4.17602181e-01 6.29125118e-01 -3.00406516e-01 1.06804359e+00 -5.21545708e-01 2.99418002e-01 -1.81065857e-01 -5.67433178e-01 4.76540744e-01 -3.36663485e-01 4.30864125e-01 5.12573302e-01 1.77692339e-01 -7.70280370e-03 4.16289151e-01 6.60967112e-01 2.62945920e-01 1.09417297e-01 -3.03624839e-01 6.48347661e-02 6.42528117e-01 1.25148046e+00 -4.55386609e-01 -6.46078587e-01 3.96642201e-02 5.29801428e-01 4.75154430e-01 2.40919903e-01 -9.33789194e-01 -5.22709250e-01 1.41296789e-01 -3.09459150e-01 2.05402404e-01 -3.06258146e-02 3.23383547e-02 -8.22290659e-01 -7.37385228e-02 -9.04008925e-01 2.15841964e-01 -5.61437607e-01 -8.54106486e-01 5.37752211e-01 -1.36583447e-01 -1.31535518e+00 -4.28306371e-01 -3.87316704e-01 -8.30918312e-01 7.31548905e-01 -1.36424327e+00 -2.69418240e-01 -1.99079156e-01 4.47687566e-01 5.66401720e-01 -4.64101791e-01 5.83414495e-01 1.15975775e-01 -7.67608106e-01 2.66352803e-01 4.60289776e-01 3.45101720e-03 4.05857593e-01 -1.02081501e+00 -4.18211371e-01 6.54088080e-01 -5.59066296e-01 4.18309011e-02 3.67629111e-01 -6.30312860e-01 -1.01558769e+00 -9.10514176e-01 2.08562419e-01 4.02370572e-01 3.31801534e-01 1.74911141e-01 -6.92297637e-01 2.13291198e-01 -8.65163188e-03 -2.80668139e-01 -9.57056805e-02 -1.33761317e-01 3.23004782e-01 -5.73830009e-01 -1.15976143e+00 5.04315615e-01 4.75776106e-01 2.20181569e-01 -4.94426697e-01 7.84994513e-02 5.43015301e-01 -3.24404448e-01 -6.14360869e-01 2.37018093e-01 4.88238692e-01 -1.01457000e+00 4.95680004e-01 -3.40093464e-01 2.31784403e-01 -4.22998726e-01 3.59319389e-01 -1.66922355e+00 -3.70647043e-01 -9.01164785e-02 -6.17692322e-02 1.00209498e+00 1.82211414e-01 -8.31649899e-01 6.11066282e-01 1.16707161e-01 -4.47057225e-02 -1.08110380e+00 -8.71653259e-01 -8.88841808e-01 -2.86824048e-01 6.86259344e-02 6.32352829e-01 5.30495524e-01 -1.00652121e-01 3.33639652e-01 -5.01757503e-01 -1.76311865e-01 3.32171619e-01 3.84250805e-02 7.14847505e-01 -9.46538389e-01 -4.79072005e-01 -4.54332262e-01 -5.76520786e-02 -1.13643956e+00 1.13865258e-02 -4.91171271e-01 2.49257818e-01 -1.66390288e+00 4.92146425e-02 -5.48352778e-01 -5.40550411e-01 6.42177880e-01 -3.98552924e-01 -4.41102624e-01 3.55094999e-01 2.31321290e-01 -8.24832261e-01 1.03619969e+00 1.74970770e+00 -1.45779952e-01 -5.56632876e-01 4.16344464e-01 -3.70548606e-01 7.65436649e-01 9.66864109e-01 -6.73951328e-01 -4.10322994e-01 -3.75651032e-01 -1.04371943e-01 3.59081388e-01 3.60868424e-02 -1.17798734e+00 5.80360442e-02 -4.97658819e-01 6.26469195e-01 -2.68780112e-01 1.25484005e-01 -9.64188337e-01 -2.31003657e-01 1.02696669e+00 -4.89683658e-01 1.11054063e-01 -6.57391697e-02 5.73306620e-01 -1.32627845e-01 -4.57273096e-01 9.19666409e-01 -3.85040611e-01 -5.63571036e-01 4.94940616e-02 -6.08890653e-01 -1.34534240e-01 1.27885973e+00 -3.90614122e-02 -1.95270851e-01 -4.12179708e-01 -5.97724736e-01 7.86207676e-01 1.23929873e-01 2.34556705e-01 7.77603447e-01 -1.44681692e+00 -4.53919590e-01 1.68798506e-01 -3.79487753e-01 -8.60942379e-02 -2.64589000e-03 7.76620567e-01 -2.69828945e-01 2.26475764e-02 -5.04285216e-01 -2.87466824e-01 -1.01702332e+00 5.42901158e-01 7.09163666e-01 -6.44746542e-01 -2.53814191e-01 3.35313559e-01 -1.18330963e-01 -4.29086655e-01 5.27565181e-01 -1.07321836e-01 -6.43501043e-01 -3.19024064e-02 4.72763985e-01 6.45050228e-01 -3.01220745e-01 7.01602176e-02 -2.32825398e-01 2.99605608e-01 -1.09967748e-02 -1.90427244e-01 1.37313902e+00 1.47901937e-01 -1.95642915e-02 3.71003360e-01 7.36560047e-01 -1.53655767e-01 -1.45071614e+00 -5.89345172e-02 -2.91150719e-01 -4.53195214e-01 1.21489793e-01 -9.29333448e-01 -1.15665483e+00 7.07114160e-01 8.28879118e-01 1.87866390e-01 1.33327162e+00 -5.59581220e-01 4.93799627e-01 4.58290577e-01 2.78004795e-01 -1.48500609e+00 4.79699284e-01 5.28695345e-01 6.71818435e-01 -9.29765642e-01 1.09243676e-01 4.43275928e-01 -9.87687707e-01 1.12822258e+00 1.16852105e+00 -3.46569777e-01 1.13843530e-01 -4.15693074e-02 3.00332084e-02 1.01364963e-01 -9.19504046e-01 -1.63945466e-01 -1.89781189e-01 2.52698511e-01 -1.17329709e-01 -1.02440149e-01 -6.87495112e-01 3.69339973e-01 5.28648973e-01 9.02878493e-02 4.90898281e-01 9.26529229e-01 -1.02733684e+00 -1.20826459e+00 -4.14102763e-01 3.01297575e-01 -1.00844249e-01 4.20753479e-01 -6.84683099e-02 7.06514001e-01 2.75572896e-01 9.38340366e-01 -2.08874810e-02 -4.76457864e-01 4.29460913e-01 -2.47241423e-01 2.30316341e-01 -3.08616489e-01 -6.54040873e-01 3.14552218e-01 -7.55172521e-02 -6.36510551e-01 -3.67051423e-01 -3.28286350e-01 -1.63677740e+00 -1.36999875e-01 -5.69977582e-01 6.48645043e-01 5.98629177e-01 8.17532659e-01 8.87215957e-02 9.63543117e-01 1.23322260e+00 -6.68248892e-01 -1.13392699e+00 -1.01799250e+00 -5.83570898e-01 8.01189989e-02 2.03723058e-01 -7.96335936e-01 -4.30200994e-01 -5.68497479e-01]
[4.036343574523926, 2.065160036087036]
31555700-8920-4f63-9937-186e1f75211b
flightbert-a-non-autoregressive-multi-horizon
2305.01658
null
https://arxiv.org/abs/2305.01658v1
https://arxiv.org/pdf/2305.01658v1.pdf
FlightBERT++: A Non-autoregressive Multi-Horizon Flight Trajectory Prediction Framework
Flight Trajectory Prediction (FTP) is an essential task in Air Traffic Control (ATC), which can assist air traffic controllers to manage airspace more safely and efficiently. Existing approaches generally perform multi-horizon FTP tasks in an autoregressive manner, which is prone to suffer from error accumulation and low-efficiency problems. In this paper, a novel framework, called FlightBERT++, is proposed to i) forecast multi-horizon flight trajectories directly in a non-autoregressive way, and ii) improved the limitation of the binary encoding (BE) representation in the FlightBERT framework. Specifically, the proposed framework is implemented by a generalized Encoder-Decoder architecture, in which the encoder learns the temporal-spatial patterns from historical observations and the decoder predicts the flight status for the future time steps. Compared to conventional architecture, an extra horizon-aware contexts generator (HACG) is dedicatedly designed to consider the prior horizon information that enables us to perform multi-horizon non-autoregressive prediction. Additionally, a differential prediction strategy is designed by well considering both the stationarity of the differential sequence and the high-bits errors of the BE representation. Moreover, the Bit-wise Weighted Binary Cross Entropy loss function is proposed to optimize the proposed framework that can further constrain the high-bits errors of the predictions. Finally, the proposed framework is validated on a real-world flight trajectory dataset. The experimental results show that the proposed framework outperformed the competitive baselines.
['Yi Lin', 'Jianwei Zhang', 'Zheng Zhang', 'Dongyue Guo']
2023-05-02
null
null
null
null
['trajectory-prediction']
['computer-vision']
[ 4.62187111e-01 -2.56379485e-01 -3.42727631e-01 -2.44433627e-01 -4.74181622e-01 -3.55012864e-01 4.09060925e-01 -9.82753113e-02 -2.02145785e-01 6.12036109e-01 2.31066197e-01 -4.77873355e-01 -3.50632221e-01 -8.89626324e-01 -5.55458546e-01 -6.19007111e-01 -2.25938261e-01 -2.79128477e-02 2.23432377e-01 -2.24868819e-01 -1.76451844e-03 2.13839754e-01 -1.59604836e+00 2.99845129e-01 9.18655932e-01 1.58504486e+00 1.88722387e-01 5.22635102e-01 3.45388204e-01 8.78141642e-01 -3.39156061e-01 -3.11701298e-01 5.82132399e-01 -4.38427418e-01 -2.02526122e-01 -8.12910721e-02 -1.51039377e-01 -4.83033210e-01 -6.27095938e-01 8.54974687e-01 3.15339804e-01 5.66911757e-01 4.28503275e-01 -1.08554196e+00 -1.27448095e-02 1.53529286e-01 4.25646268e-03 3.46510738e-01 -1.69149805e-02 4.80196595e-01 8.51652205e-01 -5.36488831e-01 9.94880199e-02 1.08025837e+00 6.36309564e-01 1.33885309e-01 -5.79227030e-01 -7.59275913e-01 4.57135260e-01 3.62438023e-01 -1.52986443e+00 -1.75333396e-01 6.25785410e-01 -7.10497618e-01 8.79056573e-01 4.24662948e-01 8.08904350e-01 8.09018970e-01 7.02329338e-01 5.87137818e-01 7.49364197e-01 -8.70676991e-03 1.69711068e-01 2.55729482e-02 -2.38326818e-01 6.43630028e-01 -2.64005810e-01 8.69052172e-01 -1.79912880e-01 1.01561241e-01 4.46565688e-01 3.70607942e-01 -4.48585242e-01 -5.87653881e-03 -1.11566889e+00 7.33233094e-01 4.89514679e-01 -6.83246180e-02 -6.41698658e-01 -5.50038666e-02 4.86092538e-01 8.95055160e-02 4.33878124e-01 1.73208326e-01 -3.19501817e-01 -3.84956270e-01 -1.01650560e+00 3.38962346e-01 5.05638719e-01 1.27094948e+00 3.36087793e-01 3.59539419e-01 -9.24219370e-01 3.03872138e-01 2.41004795e-01 3.23246181e-01 7.39949167e-01 -2.71391809e-01 8.27174902e-01 3.78922850e-01 1.35012999e-01 -1.00847423e+00 -2.47768655e-01 -7.63608217e-01 -9.57419574e-01 -7.90799707e-02 -3.00614983e-01 -4.87572193e-01 -7.39829361e-01 1.41962588e+00 2.57178724e-01 5.18642843e-01 -9.45663371e-04 9.99350190e-01 1.33695707e-01 1.02139950e+00 -1.31880954e-01 -4.18186903e-01 1.13224328e+00 -1.22751915e+00 -9.96272206e-01 -1.35892257e-01 4.55710799e-01 -6.53866410e-01 6.46248519e-01 2.34133556e-01 -8.25550079e-01 -8.83521855e-01 -1.26967347e+00 2.96380699e-01 -2.24254325e-01 6.52285159e-01 2.82217771e-01 6.77978098e-01 -4.57819402e-01 5.70420802e-01 -7.40319073e-01 3.62981021e-01 2.27399915e-01 2.07954362e-01 2.73800522e-01 3.94367985e-02 -1.61552978e+00 5.51308334e-01 1.01829708e+00 4.15018559e-01 -9.68848169e-01 -6.86922371e-01 -9.73268449e-01 2.95541972e-01 6.13393545e-01 -5.10800540e-01 1.18657541e+00 -5.97372472e-01 -1.67188334e+00 -1.51326686e-01 -1.50162473e-01 -9.92670894e-01 4.70026910e-01 -2.88104683e-01 -1.02270138e+00 -1.32704392e-01 -4.81754422e-01 3.71599466e-01 1.03288186e+00 -3.64015281e-01 -1.00476766e+00 -6.17779829e-02 2.58030128e-02 3.78525138e-01 -2.02735856e-01 -2.91284412e-01 -2.61807114e-01 -1.12463009e+00 -3.43484312e-01 -1.07780302e+00 -4.13863301e-01 -3.84868175e-01 -2.63296694e-01 2.64037609e-01 7.98718512e-01 -8.89612317e-01 2.11880302e+00 -2.28304338e+00 8.36250633e-02 1.81491300e-01 -3.31688702e-01 6.30163491e-01 2.03566447e-01 6.28634989e-01 -1.24396086e-01 -2.43455589e-01 -2.98955202e-01 -1.48358373e-02 5.16655445e-02 -3.01111722e-03 -9.54158843e-01 1.29228234e-01 2.09255069e-01 6.72340214e-01 -7.91218400e-01 -1.55039623e-01 5.05981326e-01 3.49066645e-01 -6.07017994e-01 4.82298106e-01 -4.36882496e-01 5.19976437e-01 -3.19964200e-01 4.40190434e-01 5.41920602e-01 5.90200089e-02 1.59544945e-02 -7.46013597e-02 -3.95662367e-01 4.51473325e-01 -8.86052966e-01 1.36157644e+00 -6.54436052e-01 3.49358916e-01 -4.50672060e-01 -5.19105315e-01 1.04941416e+00 5.19126415e-01 3.19850236e-01 -4.21432376e-01 1.30702421e-01 1.44291753e-02 -4.08409489e-03 -2.53642172e-01 6.79683030e-01 -3.34252506e-01 8.03956017e-02 -2.42724001e-01 -2.73347467e-01 -1.52320834e-02 -2.14962140e-02 -3.73927087e-01 7.77544916e-01 1.95261894e-03 3.81935894e-01 2.59274542e-01 9.99473929e-01 -1.19401060e-01 1.01628232e+00 1.32022157e-01 -7.46866837e-02 3.11821699e-01 2.75517136e-01 -4.62907642e-01 -6.62533283e-01 -7.12163925e-01 -8.00531581e-02 3.55665624e-01 1.24156147e-01 -6.93242192e-01 -4.19504434e-01 -7.17530370e-01 -1.98325872e-01 1.15706813e+00 -2.37995118e-01 -5.46824455e-01 -2.80659318e-01 -5.65407693e-01 3.65783781e-01 4.29882020e-01 7.80999720e-01 -6.81488991e-01 -7.29363918e-01 4.26958263e-01 -8.85426924e-02 -1.22039747e+00 -7.18757093e-01 -1.37422428e-01 -6.78605855e-01 -7.58251905e-01 -5.68793952e-01 -3.50817919e-01 3.11265320e-01 9.90148485e-02 3.59587848e-01 -2.69240141e-01 -1.27881140e-01 4.32607867e-02 -4.82348174e-01 -3.57367486e-01 -2.01968774e-01 -7.71123124e-03 -1.29749009e-03 4.43846256e-01 1.36818588e-01 -2.94929177e-01 -6.28339171e-01 4.05942857e-01 -1.00679362e+00 1.78701207e-01 7.17171907e-01 1.06321669e+00 8.74272585e-01 7.03332007e-01 5.26799917e-01 -5.85694790e-01 5.48907101e-01 -5.86479783e-01 -1.00114512e+00 3.14191759e-01 -8.64583850e-01 -1.55868068e-01 1.13701725e+00 -1.69624895e-01 -1.07807887e+00 1.75808016e-02 -4.37939018e-01 -7.05966353e-01 1.27158687e-01 5.51468730e-01 -1.63302228e-01 -6.19954895e-03 5.63627621e-03 6.12245321e-01 -3.15333813e-01 -2.91047841e-01 8.70570093e-02 6.69115126e-01 3.09606224e-01 -7.90458769e-02 7.69530833e-01 4.75528724e-02 2.64913648e-01 -4.64806646e-01 -7.29918718e-01 -3.77547592e-01 -5.47943115e-01 -2.77919471e-01 7.04176486e-01 -1.22535908e+00 -6.13623798e-01 1.72180265e-01 -9.92125630e-01 -2.00592354e-02 -3.31819862e-01 9.59995210e-01 -7.54008412e-01 4.32122767e-01 -4.07497644e-01 -1.12819612e+00 -2.90331900e-01 -1.24181235e+00 9.23585415e-01 -9.15835276e-02 1.30483791e-01 -8.60751688e-01 -5.85346818e-02 1.10682964e-01 3.28285575e-01 2.92236656e-01 1.00907564e+00 -5.36156893e-01 -8.26439500e-01 -4.33684409e-01 8.11330304e-02 6.54108822e-01 4.42075655e-02 -4.24601197e-01 -7.36639857e-01 -4.61731672e-01 1.74355507e-01 1.25517845e-01 8.49984169e-01 6.24197759e-02 1.59019506e+00 -7.13934422e-01 -2.58699745e-01 7.77221084e-01 1.28994298e+00 7.17107117e-01 6.89775944e-01 -1.06044911e-01 3.25588971e-01 4.59165603e-01 1.36892867e+00 9.46738005e-01 1.95523724e-01 9.24834788e-01 4.81081635e-01 3.84390295e-01 1.45456910e-01 -6.81786060e-01 6.65111542e-01 1.07368374e+00 1.19702332e-01 -5.64102888e-01 -5.36096156e-01 3.09889048e-01 -1.81898093e+00 -9.66626227e-01 1.86181411e-01 2.58143210e+00 5.27537525e-01 2.08230704e-01 -1.99292243e-01 1.23015217e-01 4.25416321e-01 5.32613039e-01 -5.67676663e-01 -3.13182920e-01 2.01688573e-01 6.58083707e-02 6.70117497e-01 2.59004563e-01 -1.31897926e+00 6.23763740e-01 5.38583946e+00 1.31284010e+00 -1.03700125e+00 -5.69690131e-02 4.65471447e-01 -2.41867378e-01 8.50765500e-04 -1.14725813e-01 -1.15921104e+00 9.92210746e-01 1.31360972e+00 -4.31411088e-01 6.21449351e-01 7.90465832e-01 2.00117603e-01 3.95870745e-01 -7.99614847e-01 9.44087207e-01 -7.05692247e-02 -1.10419548e+00 1.02190748e-01 5.05651440e-03 5.39125383e-01 -3.70848000e-01 4.59231436e-01 6.81922495e-01 -1.29256889e-01 -8.39558065e-01 6.49062455e-01 8.30295980e-01 8.85483801e-01 -1.05106521e+00 8.09864461e-01 6.43473208e-01 -1.66261590e+00 -6.80360913e-01 -4.55089450e-01 -3.63326184e-02 6.15141869e-01 6.08226240e-01 -1.07184875e+00 1.12671852e+00 2.76812792e-01 9.04896021e-01 -2.98332781e-01 1.20223963e+00 -1.75689593e-01 6.60314679e-01 -3.43022235e-02 1.68200359e-01 5.18021405e-01 -3.46466690e-01 8.02948475e-01 9.84580398e-01 8.43095422e-01 2.70110995e-01 3.62395346e-01 6.14593148e-01 3.29629689e-01 1.08422395e-02 -6.60293996e-01 -3.46928418e-01 4.15109485e-01 8.95703554e-01 -8.02044868e-02 -1.48661017e-01 -3.49790961e-01 8.53307545e-01 -1.96086749e-01 3.06906104e-01 -1.20220363e+00 -4.66796607e-01 7.16349721e-01 6.65971339e-02 6.73690677e-01 -2.94547170e-01 2.99172670e-01 -9.50940192e-01 2.00358108e-01 -7.23414719e-01 4.17498648e-01 -6.49870694e-01 -8.38835835e-01 8.47748816e-01 -5.93979098e-02 -2.04497886e+00 -6.04160845e-01 -3.74822319e-01 -3.84607136e-01 1.00307584e+00 -1.86620891e+00 -9.04921055e-01 -5.77068403e-02 4.22336310e-01 7.15998232e-01 -3.49299431e-01 5.61651170e-01 4.62117821e-01 -8.56937408e-01 5.88671029e-01 7.59786218e-02 -3.43736917e-01 3.60817671e-01 -7.09666014e-01 3.50075662e-01 9.85123932e-01 -2.94324905e-01 3.49108130e-01 3.36618841e-01 -8.82319629e-01 -1.19698834e+00 -1.87903917e+00 7.33090222e-01 1.35885850e-01 4.28427726e-01 -4.85633351e-02 -7.38541007e-01 7.23857045e-01 -4.56342064e-02 -2.73121923e-01 6.74060047e-01 -4.50448394e-01 2.34191269e-01 -2.08435416e-01 -8.15878034e-01 5.61117291e-01 7.56524444e-01 -3.42228442e-01 -3.11767817e-01 5.79422534e-01 1.17332745e+00 -7.54305363e-01 -8.87275517e-01 7.60812342e-01 2.63867319e-01 -8.78265202e-01 9.66441751e-01 -6.52982593e-01 3.49894881e-01 -5.68476796e-01 -1.67626023e-01 -1.30587327e+00 -3.68732005e-01 -7.46676385e-01 -4.37757313e-01 1.03004742e+00 1.43723652e-01 -6.07192695e-01 3.42072487e-01 3.95740241e-01 -5.63805401e-01 -1.20151782e+00 -1.03910673e+00 -1.08514905e+00 -4.86142218e-01 -4.57416862e-01 1.07580280e+00 3.24863404e-01 -1.96037412e-01 5.41411750e-02 -8.54939401e-01 5.13570905e-01 -3.89693305e-02 1.13219284e-01 3.98528159e-01 -7.53765285e-01 -3.69951665e-01 -1.32916644e-01 -4.97567892e-01 -1.59051263e+00 2.01335236e-01 -9.20911491e-01 1.51482776e-01 -8.44073832e-01 -5.96157968e-01 -2.27066278e-01 -4.62461680e-01 -3.93060818e-02 -9.25975963e-02 -5.70342839e-01 1.52071118e-01 -6.98296577e-02 -4.03628856e-01 1.31896245e+00 1.10631192e+00 8.23000539e-03 -1.73406631e-01 6.19530320e-01 -5.44451028e-02 4.94457155e-01 6.59100056e-01 -2.10885122e-01 -8.40284526e-01 1.53658697e-02 -4.88008782e-02 6.02562547e-01 2.99743980e-01 -1.48380101e+00 3.72222185e-01 -1.20944999e-01 2.33170182e-01 -1.08097398e+00 7.87432194e-01 -1.26404178e+00 2.72964984e-01 5.46258926e-01 -4.18256432e-01 3.46196741e-01 3.31180483e-01 1.15302432e+00 -6.28611326e-01 -1.28730819e-01 4.64413434e-01 2.15257794e-01 -7.25726187e-01 7.28504598e-01 -4.45289344e-01 -2.11359397e-01 1.38802004e+00 9.34900790e-02 7.54786981e-03 -2.59912282e-01 -3.49438816e-01 5.46979427e-01 8.14892501e-02 5.53825855e-01 8.28178823e-01 -1.50385559e+00 -3.15228820e-01 6.21963203e-01 1.29716292e-01 -1.26067698e-01 8.19571376e-01 8.99378061e-01 -2.76262671e-01 1.15946043e+00 4.14164066e-02 -1.95749745e-01 -9.08218086e-01 9.82848704e-01 2.64837027e-01 -6.28354311e-01 -5.93305230e-01 4.86941010e-01 2.15208694e-01 -1.85142934e-01 1.68183625e-01 -6.17852688e-01 -3.38717401e-01 -1.34168983e-01 7.34603345e-01 4.25193369e-01 2.15279460e-01 -6.25192404e-01 -9.54014622e-03 2.47817114e-01 8.30746721e-03 -7.03498721e-02 6.52933538e-01 -1.64092913e-01 3.02755594e-01 4.34448719e-01 9.53533173e-01 -2.71686584e-01 -1.42283499e+00 -1.71821088e-01 -2.77498156e-01 -6.71401262e-01 2.63233572e-01 -7.32032835e-01 -9.60038364e-01 1.21571743e+00 5.86454272e-01 -2.21726313e-01 1.55951369e+00 -1.13914609e+00 1.40310752e+00 1.44299984e-01 4.22893912e-01 -8.09153438e-01 -4.89995360e-01 5.89543402e-01 7.57438481e-01 -7.83667922e-01 -1.68832943e-01 -5.20578444e-01 -1.00432897e+00 1.18097663e+00 4.42921788e-01 2.33371586e-01 7.39089787e-01 -2.14260414e-01 -5.38256764e-01 2.13370323e-01 -1.26833034e+00 -2.12732822e-01 7.26934195e-01 3.25784504e-01 1.28159538e-01 2.17621908e-01 -3.57423276e-01 1.10982430e+00 -2.92093515e-01 3.95941913e-01 1.48063794e-01 6.58161402e-01 -2.93186992e-01 -8.45324159e-01 -1.76436588e-01 4.81113553e-01 -1.33796677e-01 -2.62324184e-01 1.38446972e-01 4.35951501e-01 2.49851465e-01 9.30329382e-01 7.78729841e-02 -9.70830083e-01 4.26402718e-01 1.42182559e-01 -1.39915362e-01 -3.84491861e-01 -7.28255510e-01 -4.47613634e-02 8.27709213e-03 -5.84317148e-01 1.14090845e-01 -5.39411485e-01 -9.63055074e-01 -3.24935503e-02 -1.30358800e-01 2.50369281e-01 3.75000983e-01 7.11706102e-01 6.40343070e-01 1.07088172e+00 1.03874671e+00 -3.52718323e-01 -8.69624674e-01 -6.78954363e-01 -6.29045784e-01 -1.82381898e-01 4.33935016e-01 -7.39578485e-01 -2.09405035e-01 -1.08513474e-01]
[6.935773849487305, 2.7537682056427]
20549a74-dd86-471c-ac9b-a38ff5c187c0
policy-learning-for-active-target-tracking
2212.01498
null
https://arxiv.org/abs/2212.01498v2
https://arxiv.org/pdf/2212.01498v2.pdf
Policy Learning for Active Target Tracking over Continuous SE(3) Trajectories
This paper proposes a novel model-based policy gradient algorithm for tracking dynamic targets using a mobile robot, equipped with an onboard sensor with limited field of view. The task is to obtain a continuous control policy for the mobile robot to collect sensor measurements that reduce uncertainty in the target states, measured by the target distribution entropy. We design a neural network control policy with the robot $SE(3)$ pose and the mean vector and information matrix of the joint target distribution as inputs and attention layers to handle variable numbers of targets. We also derive the gradient of the target entropy with respect to the network parameters explicitly, allowing efficient model-based policy gradient optimization.
['Nikolay Atanasov', 'Arash Asgharivaskasi', 'Shumon Koga', 'Pengzhi Yang']
2022-12-03
null
null
null
null
['continuous-control']
['playing-games']
[-2.37404592e-02 4.87139374e-01 -6.33888006e-01 -2.33788729e-01 -5.48060834e-01 -3.36814702e-01 3.26755941e-01 -2.94704467e-01 -9.79909778e-01 7.56266892e-01 -9.99903604e-02 -3.41504246e-01 -3.39637816e-01 -4.53603059e-01 -9.73106325e-01 -7.81476617e-01 -9.75607932e-02 4.45355505e-01 -1.28406703e-01 -5.23744933e-02 2.54489839e-01 5.06358922e-01 -1.07280421e+00 -6.86955512e-01 5.89729965e-01 1.38473856e+00 7.02049077e-01 6.89063549e-01 5.95424652e-01 6.72990203e-01 -3.91046315e-01 2.50932336e-01 6.04561985e-01 -9.33310315e-02 -3.11315328e-01 1.61425505e-05 2.39637345e-02 -2.00029850e-01 -4.57434714e-01 1.72184551e+00 4.64253962e-01 5.40846050e-01 8.89822483e-01 -9.04335797e-01 -2.94849247e-01 4.21732008e-01 -1.87560841e-01 2.73065776e-01 -2.66902655e-01 4.06537175e-01 6.45522594e-01 -4.23880845e-01 5.28936028e-01 1.53948307e+00 4.78012532e-01 8.29740047e-01 -7.66106844e-01 -2.63754368e-01 5.51231205e-01 3.35883141e-01 -1.16558671e+00 -2.92863131e-01 5.37332475e-01 -4.37216014e-01 1.08454514e+00 -1.42705470e-01 6.21299565e-01 1.00277388e+00 6.21584356e-01 5.35081089e-01 5.53850114e-01 -1.17307059e-01 6.99834287e-01 1.73407048e-01 3.35248001e-02 8.23185503e-01 4.65336651e-01 7.30969667e-01 -4.21771705e-02 3.06663755e-02 5.61048925e-01 5.47942631e-02 -2.51619339e-01 -8.44928145e-01 -8.69572639e-01 1.05412209e+00 9.02608514e-01 -6.17949478e-02 -8.57259631e-01 5.69572687e-01 1.14202127e-01 4.81471002e-01 1.62202507e-01 8.39238346e-01 -6.60110414e-01 -1.01164363e-01 4.55795228e-02 1.11918353e-01 8.55491042e-01 1.09355879e+00 6.20792329e-01 5.65494835e-01 -4.91718240e-02 3.08997661e-01 7.39455998e-01 1.39440167e+00 5.58966160e-01 -1.22180688e+00 7.21425593e-01 4.41201597e-01 8.46822977e-01 -9.41542625e-01 -6.88891411e-01 -4.53178316e-01 -6.54338419e-01 6.33942246e-01 2.16620520e-01 -8.55614543e-01 -9.17275071e-01 1.98558104e+00 3.95239800e-01 -3.25175852e-01 4.55935240e-01 1.03381789e+00 -2.59891391e-01 6.24568999e-01 -1.92261979e-01 -4.68452573e-01 6.30696177e-01 -7.74889767e-01 -7.44132817e-01 -8.13193679e-01 5.25476456e-01 1.38846431e-02 9.63046908e-01 5.84302433e-02 -8.54971170e-01 -1.46511331e-01 -1.23510563e+00 5.89670599e-01 -4.25748825e-01 1.76897556e-01 -4.07110639e-02 2.83802480e-01 -9.80378091e-01 6.32053912e-01 -1.24834979e+00 -2.96603769e-01 2.10452408e-01 7.26347268e-01 8.81682485e-02 1.85080230e-01 -1.00404572e+00 1.85399246e+00 9.76328433e-01 2.99808472e-01 -1.29785466e+00 -2.34613240e-01 -1.02815640e+00 2.73521934e-02 6.67975068e-01 -5.48815131e-01 1.39915895e+00 -7.21044779e-01 -2.17295480e+00 -3.25711742e-02 1.25880167e-01 -5.93484223e-01 3.13679576e-01 -4.55649942e-01 2.17569217e-01 -1.38344839e-01 -1.21458627e-01 6.19524181e-01 1.08494961e+00 -9.64353383e-01 -8.84751141e-01 -7.13005722e-01 -2.77647555e-01 8.30943763e-01 -3.54174495e-01 -5.79384565e-01 1.94788035e-02 2.07972527e-01 -1.81971684e-01 -1.04274595e+00 -6.40170336e-01 -1.55403569e-01 -3.00202221e-01 -4.50778231e-02 9.26388860e-01 -6.31933331e-01 7.00165451e-01 -1.91954398e+00 5.57845473e-01 2.61591464e-01 -7.44965598e-02 1.30098268e-01 -3.43926728e-01 -2.37883300e-01 3.75681877e-01 -4.81395006e-01 -2.54325569e-02 -8.12470913e-02 3.32035050e-02 2.30291560e-01 -2.40539134e-01 7.68327415e-01 -7.52543584e-02 8.24141860e-01 -1.05094969e+00 7.02020824e-02 2.41999403e-01 3.13386694e-02 -2.86522061e-01 2.56572276e-01 -5.35747528e-01 3.99495304e-01 -8.58219087e-01 2.34357029e-01 2.73838520e-01 -1.04366802e-01 1.44705400e-01 2.01778457e-01 -1.56942904e-01 -9.86067019e-03 -8.98407578e-01 1.11274290e+00 -4.11186337e-01 4.42681611e-01 7.75970697e-01 -1.01185215e+00 1.10793352e+00 -1.15741104e-01 4.53196585e-01 -4.60947722e-01 6.77281678e-01 5.29249907e-02 -3.86756100e-02 -2.30987355e-01 4.36779112e-01 -3.82739166e-03 -3.05243582e-01 -4.29896079e-02 -9.51633751e-02 -2.81864375e-01 -2.22481340e-01 -3.27308506e-01 9.69927788e-01 -2.81579196e-01 3.76196653e-01 -2.93417096e-01 2.28222489e-01 1.37093022e-01 3.55797738e-01 1.02070093e+00 -2.07230374e-01 -3.02038193e-01 2.14427635e-01 -1.67876080e-01 -1.01378989e+00 -8.32485259e-01 4.13635790e-01 8.71171653e-01 2.86389291e-01 3.78605872e-01 -5.42759240e-01 -7.08971620e-01 2.59544522e-01 9.21218276e-01 -6.24031723e-01 -7.57233143e-01 -6.77318335e-01 -5.50017118e-01 -1.07926726e-01 4.45933014e-01 5.04055679e-01 -9.77303863e-01 -1.24957490e+00 1.74015313e-01 1.61535248e-01 -6.89053655e-01 -5.62814355e-01 6.16626024e-01 -8.61479104e-01 -1.27041352e+00 -3.31967562e-01 -5.74111342e-01 7.44954824e-01 -2.21885830e-01 3.11040610e-01 -8.03210020e-01 2.59177566e-01 8.28511417e-01 2.50865996e-01 -7.25228310e-01 -2.97143221e-01 3.09348762e-01 4.86880869e-01 -2.58234352e-01 -5.25534945e-03 -4.63028289e-02 -2.40182579e-01 1.18508361e-01 -3.14712226e-01 -4.54763949e-01 7.00761259e-01 1.07855129e+00 4.48413640e-01 -9.16085765e-02 2.63179302e-01 -9.69862118e-02 1.09067380e+00 -4.94758606e-01 -1.63646638e+00 1.18448831e-01 -9.32902634e-01 3.69837105e-01 6.42343700e-01 -8.61625016e-01 -8.93988729e-01 4.01651382e-01 3.40157032e-01 -7.63088703e-01 4.00974810e-01 5.26846886e-01 -2.51182735e-01 -9.07370597e-02 7.00845182e-01 1.65164322e-01 6.17508411e-01 -2.19463646e-01 4.83171731e-01 4.42368895e-01 4.02915776e-01 -1.95512846e-01 3.79332513e-01 1.27578661e-01 2.75315911e-01 -5.56701124e-01 -8.08539927e-01 -3.37362438e-01 -5.26234448e-01 -2.65164018e-01 7.44530559e-01 -7.85058022e-01 -1.26674521e+00 3.62270296e-01 -1.09518945e+00 -8.36102486e-01 -6.29742265e-01 8.98053527e-01 -1.18705904e+00 -1.24000475e-01 -2.90337890e-01 -1.23796570e+00 -4.71055776e-01 -9.60739553e-01 7.27090418e-01 3.07303578e-01 2.24345312e-01 -9.44910944e-01 2.80199777e-02 -7.85161555e-01 5.51944077e-01 8.90127346e-02 5.88166654e-01 -5.10728478e-01 -4.52863425e-01 -3.86987150e-01 5.25382273e-02 4.30110008e-01 6.75857887e-02 -8.02213967e-01 -2.95900732e-01 -6.54016614e-01 7.06759572e-01 -1.88372508e-01 8.29461634e-01 1.04232585e+00 4.65895772e-01 -8.02827537e-01 -7.57376134e-01 4.93742794e-01 1.24888551e+00 7.66898513e-01 -1.32582396e-01 4.98813838e-01 6.34809375e-01 3.41461092e-01 8.79998446e-01 5.28315127e-01 1.47158995e-01 4.52389836e-01 9.15417552e-01 7.21111894e-01 4.67584610e-01 -2.80694216e-01 7.30037808e-01 4.37154859e-01 5.85320592e-01 -2.45802596e-01 -7.15405703e-01 4.89301473e-01 -2.27013040e+00 -6.67635798e-01 6.73494279e-01 2.36070061e+00 4.01371360e-01 5.01899943e-02 -1.01550883e-02 -6.26292884e-01 8.72586846e-01 -5.15130796e-02 -1.52438307e+00 -4.42566872e-02 3.60459000e-01 -7.79619038e-01 1.33356643e+00 1.16106844e+00 -1.07089949e+00 9.77440417e-01 7.30458450e+00 4.58532631e-01 -1.32959771e+00 -1.46795407e-01 4.36838776e-01 -2.43165612e-01 2.75579810e-01 -4.94320512e-01 -1.34904730e+00 4.74951148e-01 1.17491949e+00 -2.75387079e-01 8.13671350e-01 1.34025419e+00 2.21752927e-01 -1.13014773e-01 -9.29602861e-01 9.35808420e-01 -1.81848690e-01 -9.16362226e-01 -4.64743942e-01 2.06027240e-01 4.35006440e-01 6.29160166e-01 5.58124781e-01 5.41670680e-01 8.34755480e-01 -6.10516250e-01 7.84925282e-01 6.64629996e-01 5.24737060e-01 -6.78219557e-01 6.67286694e-01 7.75047839e-01 -7.32378483e-01 -9.39480245e-01 -7.66748548e-01 -1.46326855e-01 1.91249564e-01 2.09969252e-01 -1.35988045e+00 -1.57216758e-01 4.81988609e-01 7.45865464e-01 4.53344807e-02 9.84159410e-01 -6.08766079e-02 5.46120778e-02 -8.35418820e-01 -9.56730783e-01 4.07692581e-01 -3.30958396e-01 1.13853312e+00 6.37841046e-01 5.95369816e-01 -9.95056555e-02 4.85492498e-01 7.40020514e-01 2.76113540e-01 -4.16331351e-01 -9.75595593e-01 -2.20003817e-02 5.00011027e-01 8.09130013e-01 -4.22181189e-01 -2.39061162e-01 2.51242548e-01 4.99761492e-01 6.42500699e-01 4.92685080e-01 -3.75605941e-01 -3.52480501e-01 8.53133500e-01 -4.73611951e-01 6.09416008e-01 -4.40041333e-01 -1.26420766e-01 -9.14910674e-01 -5.33617334e-03 -3.62605244e-01 2.90915579e-01 -3.67750049e-01 -1.06651390e+00 4.90922630e-01 1.76963657e-01 -9.50100839e-01 -9.34892952e-01 -1.14223230e+00 -1.74929529e-01 7.87195504e-01 -1.25017715e+00 -3.01915437e-01 3.60512704e-01 6.33323491e-01 3.69486570e-01 -4.44841892e-01 5.17101288e-01 -4.58448082e-01 -5.69014728e-01 2.76770562e-01 6.65749669e-01 -1.96121395e-01 1.25189096e-01 -1.20246899e+00 7.42893592e-02 7.11324155e-01 -7.08148062e-01 3.32494467e-01 9.77955878e-01 -9.59263325e-01 -1.88074374e+00 -1.33161223e+00 -2.00779028e-02 -4.92550671e-01 7.73036540e-01 -1.78840116e-01 -1.72881633e-01 9.36460733e-01 -1.92559630e-01 -6.54443502e-02 -3.98132831e-01 -1.91912055e-01 1.49063513e-01 -1.44621789e-01 -1.36753809e+00 6.68670058e-01 6.57603443e-01 -5.79331676e-03 -3.24959576e-01 3.17630410e-01 1.01043034e+00 -7.28292882e-01 -4.26240057e-01 4.89100873e-01 2.96317279e-01 1.21764615e-02 6.51021421e-01 -8.12963009e-01 -5.33906758e-01 -1.14158846e-01 -3.17492306e-01 -1.95871294e+00 -4.48233902e-01 -6.05724454e-01 -4.69235748e-01 1.69389024e-01 5.56253970e-01 -9.07311797e-01 1.09790933e+00 6.26431227e-01 -2.55845845e-01 -6.96003139e-01 -1.39365125e+00 -9.81349647e-01 -4.92037600e-03 -1.53275684e-01 1.11284545e-02 8.78287777e-02 1.86950922e-01 6.02939069e-01 -5.82601190e-01 4.45252180e-01 5.70677996e-01 -3.36280018e-01 3.38953674e-01 -9.27813828e-01 -4.63037528e-02 -5.58612704e-01 -1.07177332e-01 -1.43178761e+00 5.09525299e-01 -5.02645493e-01 8.84346366e-01 -1.36909759e+00 -2.39248201e-01 -9.18959528e-02 -1.41338691e-01 1.75771162e-01 1.46563968e-03 -8.79517853e-01 3.99792939e-01 -9.76115242e-02 -8.74564350e-01 1.05456793e+00 1.10713315e+00 -3.54269087e-01 -4.73765016e-01 6.19862497e-01 -5.58473051e-01 7.79565930e-01 8.73082221e-01 -5.64486504e-01 -5.35937548e-01 -3.51869732e-01 -4.51187342e-02 2.58429289e-01 -9.01631713e-02 -9.23294842e-01 3.23473930e-01 -5.24064064e-01 4.35624361e-01 -5.97123444e-01 7.22260535e-01 -1.20128715e+00 -3.69567752e-01 1.23384726e+00 -5.61081052e-01 2.07996935e-01 1.40737087e-01 1.04457033e+00 2.10934728e-01 -4.31164801e-01 1.05577767e+00 -1.78030714e-01 -6.81948900e-01 3.41485977e-01 -6.80993795e-01 -1.76075608e-01 9.23805535e-01 3.80946904e-01 -1.80895671e-01 -7.45968223e-01 -7.80622900e-01 6.87449515e-01 1.30389303e-01 3.79249960e-01 7.23935902e-01 -1.22678065e+00 -2.51640260e-01 7.61997402e-02 -4.35220242e-01 -1.30048051e-01 -2.29977563e-01 3.75785410e-01 9.14914533e-02 8.34929883e-01 -1.45985767e-01 -5.36215901e-01 -7.10468292e-01 9.74629462e-01 9.60616529e-01 -3.55528682e-01 -2.08651245e-01 8.24231029e-01 -9.48577076e-02 -8.27388465e-01 5.82212031e-01 -5.81815004e-01 -1.64099678e-01 -2.71377325e-01 6.05389237e-01 5.22968948e-01 -3.23289335e-01 -2.48066261e-01 -1.54522896e-01 3.17230046e-01 1.40505970e-01 -4.26776171e-01 1.04109001e+00 -4.03734952e-01 2.12080359e-01 4.96456176e-01 1.17587209e+00 -8.19783866e-01 -2.08224797e+00 -2.35313222e-01 2.42213249e-01 -1.29958779e-01 1.25140205e-01 -8.34705770e-01 -8.46135855e-01 4.08510983e-01 1.13562894e+00 -1.47131801e-01 5.97155333e-01 -1.27715230e-01 1.76158220e-01 1.39023364e+00 4.36109036e-01 -1.24499190e+00 1.66978359e-01 1.36780214e+00 8.51902485e-01 -1.17928660e+00 -3.51506412e-01 1.72710031e-01 -6.26545310e-01 8.34743321e-01 1.01204157e+00 -3.74051720e-01 9.25061703e-01 2.81334162e-01 7.31952935e-02 -2.20736698e-03 -8.17175925e-01 -1.39614850e-01 1.96368337e-01 9.48220432e-01 -5.46794415e-01 1.29687175e-01 1.09442614e-01 1.14051975e-01 -1.18004039e-01 -3.63001525e-01 1.72629252e-01 8.93150508e-01 -1.26655889e+00 -3.78202438e-01 -5.68573773e-01 5.30942738e-01 -5.07802591e-02 1.54147804e-01 -9.52214599e-02 6.37010276e-01 -5.97669303e-01 9.25937414e-01 9.81954560e-02 -3.38940948e-01 4.44884002e-01 -1.25339508e-01 4.08238173e-01 -5.02577126e-01 1.72036573e-01 -1.41359657e-01 -1.78544596e-01 -5.57815790e-01 2.42252350e-01 -6.29433692e-01 -1.15801358e+00 2.38709152e-01 -4.54905421e-01 2.51831234e-01 1.10323763e+00 9.44321632e-01 5.48871040e-01 2.90974140e-01 6.68679714e-01 -1.18525660e+00 -1.68901694e+00 -1.36156857e+00 -5.36094248e-01 -2.98512548e-01 6.36266589e-01 -9.15437520e-01 -4.05800432e-01 -4.76579756e-01]
[4.658564567565918, 2.18918776512146]
caeb04ec-5f1a-460a-a8be-189f139843df
questions-for-flat-minima-optimization-of
2202.00661
null
https://arxiv.org/abs/2202.00661v5
https://arxiv.org/pdf/2202.00661v5.pdf
When Do Flat Minima Optimizers Work?
Recently, flat-minima optimizers, which seek to find parameters in low-loss neighborhoods, have been shown to improve a neural network's generalization performance over stochastic and adaptive gradient-based optimizers. Two methods have received significant attention due to their scalability: 1. Stochastic Weight Averaging (SWA), and 2. Sharpness-Aware Minimization (SAM). However, there has been limited investigation into their properties and no systematic benchmarking of them across different domains. We fill this gap here by comparing the loss surfaces of the models trained with each method and through broad benchmarking across computer vision, natural language processing, and graph representation learning tasks. We discover several surprising findings from these results, which we hope will help researchers further improve deep learning optimizers, and practitioners identify the right optimizer for their problem.
['Matt J. Kusner', 'Ricardo Silva', 'Linqing Liu', 'Jean Kaddour']
2022-02-01
null
null
null
null
['self-supervised-image-classification']
['computer-vision']
[ 2.54378021e-02 -1.08951055e-01 -3.86685878e-01 -6.95288897e-01 -8.54160786e-01 -3.92455488e-01 3.32047135e-01 3.04634362e-01 -6.64186478e-01 6.21902108e-01 4.27192330e-01 -3.28686446e-01 -3.75813484e-01 -6.28288507e-01 -7.06865311e-01 -5.83874702e-01 -1.41390994e-01 3.01134944e-01 5.63114956e-02 -1.11132771e-01 5.14006078e-01 4.35776860e-01 -1.14592636e+00 1.43246591e-01 9.80499268e-01 1.10181034e+00 1.10592470e-01 2.82907009e-01 -2.35501692e-01 6.16072834e-01 -1.63960204e-01 -6.94208860e-01 2.43327439e-01 -4.34843749e-01 -7.54992723e-01 -3.00969630e-01 8.85187447e-01 2.00697437e-01 -4.15620297e-01 1.15587389e+00 4.51840013e-01 5.08583426e-01 5.76271474e-01 -8.66588712e-01 -9.12303746e-01 4.92384374e-01 -5.60048342e-01 5.58660567e-01 -1.31923422e-01 2.46189818e-01 1.68327272e+00 -9.54656661e-01 6.54163003e-01 1.31219161e+00 1.11788309e+00 6.23729765e-01 -1.37679446e+00 -3.33962917e-01 4.39876497e-01 3.85687411e-01 -1.29266620e+00 -6.59363270e-01 7.98913419e-01 -1.58343092e-01 1.29685342e+00 1.10311531e-01 5.35610676e-01 7.91469753e-01 3.09407353e-01 1.05606484e+00 7.67773926e-01 -2.31850505e-01 1.66539893e-01 5.35175875e-02 5.77738285e-02 1.20270622e+00 2.30990127e-01 -1.61561191e-01 -7.63012648e-01 -1.78871322e-02 3.33325833e-01 -1.76583782e-01 -3.52378756e-01 -4.65109557e-01 -7.64268816e-01 1.07086003e+00 7.03906715e-01 1.78737238e-01 -2.28817537e-01 3.46135616e-01 3.59020412e-01 3.83641273e-01 8.22904646e-01 1.05984437e+00 -4.37602729e-01 -9.75233987e-02 -1.01626587e+00 3.99249017e-01 7.25678504e-01 5.05770028e-01 8.29793394e-01 1.99720219e-01 -4.63315919e-02 1.17433810e+00 4.93465483e-01 1.97476968e-01 3.78435731e-01 -7.82350302e-01 7.55916893e-01 6.98399723e-01 -4.03057277e-01 -1.38898897e+00 -4.94127750e-01 -6.77627861e-01 -5.45560956e-01 1.25585303e-01 3.88097376e-01 -2.53860205e-01 -7.10430980e-01 1.86278367e+00 1.11417891e-02 2.60902178e-02 -3.21017295e-01 9.95368302e-01 7.39020944e-01 3.75114709e-01 1.33103520e-01 2.20345989e-01 7.37319827e-01 -1.22763503e+00 -3.91248047e-01 -5.50192297e-01 8.35951447e-01 -6.95595682e-01 1.28877223e+00 2.60581970e-01 -1.18569505e+00 -2.16915220e-01 -1.28350496e+00 -2.24702373e-01 -4.07403052e-01 -2.25666445e-02 8.65937293e-01 6.32944286e-01 -1.29135239e+00 1.13568354e+00 -9.86457944e-01 -3.43721151e-01 8.00752223e-01 3.25572610e-01 -1.45004302e-01 -1.61916897e-01 -9.65810537e-01 1.08097827e+00 -3.27031016e-02 7.16181397e-02 -7.62910247e-01 -8.30995679e-01 -8.23070049e-01 2.04252750e-02 2.83756852e-01 -8.63995254e-01 8.28583896e-01 -9.61096227e-01 -1.23821831e+00 9.93104398e-01 -3.80616963e-01 -7.35449374e-01 2.21083611e-01 -2.68922210e-01 5.84269688e-02 -2.08834976e-01 -2.46368274e-01 4.31262970e-01 7.38704503e-01 -9.20178115e-01 -4.15789992e-01 -6.06098354e-01 -1.35185897e-01 4.30149078e-01 -6.08722866e-01 3.45772952e-02 -3.49491388e-01 -6.74171567e-01 1.62850544e-01 -7.31856942e-01 -3.71015906e-01 6.59768656e-02 -5.10627031e-01 -3.72649580e-01 6.17559850e-01 -6.39758587e-01 1.30854714e+00 -1.88763130e+00 3.78395349e-01 2.00223967e-01 4.10117507e-01 4.22933906e-01 -4.33783591e-01 2.34573767e-01 1.02427632e-01 3.70960563e-01 -3.68806273e-01 -7.93588698e-01 3.41068432e-02 1.20977029e-01 -2.33660027e-01 6.28797472e-01 3.61930847e-01 1.21042442e+00 -8.09127808e-01 -3.51611078e-01 -2.77105533e-02 4.86784965e-01 -7.27737010e-01 -9.68992412e-02 -2.01254770e-01 -1.02104895e-01 -5.49015760e-01 5.99762917e-01 4.10306424e-01 -4.05478597e-01 1.30012557e-02 -2.44177982e-01 1.44520476e-01 6.90086484e-01 -9.00085568e-01 1.57224596e+00 -4.30295438e-01 1.00276184e+00 1.76057681e-01 -1.35580409e+00 8.79534304e-01 -1.23763040e-01 4.59289789e-01 -6.90817773e-01 -7.10329637e-02 1.31073952e-01 -1.23060353e-01 -4.17197764e-01 3.78491759e-01 -1.47658646e-01 5.41355431e-01 4.41791534e-01 9.24450457e-02 4.81181592e-03 1.15641288e-01 1.18338332e-01 1.24683905e+00 -7.64162913e-02 -5.66220395e-02 -4.31184202e-01 2.20475018e-01 4.91086021e-03 4.72136229e-01 9.91052747e-01 -3.42707247e-01 7.90410876e-01 2.89172560e-01 -6.32757485e-01 -8.31284046e-01 -1.12717235e+00 3.01039480e-02 1.26887977e+00 -1.50744831e-02 -3.94293845e-01 -6.20974958e-01 -8.01770627e-01 1.52101457e-01 6.65265381e-01 -4.43591326e-01 -4.20872837e-01 -8.05142820e-01 -1.21140563e+00 4.60533977e-01 4.42586333e-01 4.50941086e-01 -8.84226739e-01 -1.63376480e-01 2.70991385e-01 2.83553023e-02 -9.07065332e-01 -7.94484675e-01 1.02262191e-01 -1.32978594e+00 -9.35479999e-01 -5.43793857e-01 -8.94865572e-01 5.53780675e-01 1.89195961e-01 1.48814833e+00 3.73472065e-01 -3.72778744e-01 4.83164519e-01 -6.43792152e-02 -2.92147160e-01 -1.93840209e-02 4.33083266e-01 1.07523397e-01 2.22357810e-02 4.25663412e-01 -6.21642351e-01 -8.33360076e-01 2.90129304e-01 -5.37203372e-01 -3.68123114e-01 4.14404333e-01 6.43205702e-01 6.92341745e-01 -1.73944265e-01 5.17655611e-01 -8.82025540e-01 1.19631124e+00 -4.66147453e-01 -4.22421247e-01 4.72085893e-01 -1.28220427e+00 4.88296449e-01 6.58242881e-01 -1.65399179e-01 -7.48975813e-01 -3.12932372e-01 -1.31636202e-01 -2.36229762e-01 2.73939461e-01 6.98226810e-01 2.81258225e-01 -6.41218603e-01 9.63488400e-01 1.02785341e-01 7.92522728e-03 -4.93586183e-01 2.51429886e-01 1.66868001e-01 1.69585526e-01 -7.03109741e-01 5.92693269e-01 3.54986459e-01 3.51519585e-02 -7.89870679e-01 -1.26488721e+00 -4.55009282e-01 -1.35964841e-01 2.70907767e-02 7.62319863e-01 -6.59285307e-01 -3.72518629e-01 3.91586542e-01 -9.66024160e-01 -4.17736202e-01 -1.98407307e-01 4.81376588e-01 -4.71049607e-01 2.85753459e-01 -6.20376587e-01 -5.28040707e-01 -5.22357941e-01 -1.24845791e+00 6.98456287e-01 4.50956613e-01 -1.63164094e-01 -1.61002743e+00 1.11315794e-01 2.84470707e-01 8.54278564e-01 1.05580583e-01 1.03384221e+00 -6.30233705e-01 -5.73274910e-01 -1.78508878e-01 -3.78108591e-01 5.28512061e-01 6.06387504e-04 3.34244519e-02 -8.03688705e-01 -3.36942136e-01 3.18577215e-02 -4.66646254e-01 1.36751914e+00 8.00913155e-01 1.36882758e+00 -3.82710725e-01 -4.31709945e-01 1.06419027e+00 1.55956042e+00 -2.71766335e-01 3.59023571e-01 4.01638120e-01 7.69233167e-01 3.57341766e-01 6.69545904e-02 -5.73070757e-02 4.09133166e-01 7.48907626e-01 3.96638304e-01 -2.53311135e-02 -3.91768515e-01 -3.12666029e-01 2.81075537e-01 7.07079113e-01 -1.48189172e-01 -1.81963339e-01 -9.61357832e-01 5.60404360e-01 -1.93685579e+00 -8.49367917e-01 1.69879958e-01 2.06263876e+00 7.98224032e-01 1.78552657e-01 -2.92523429e-02 -2.98105597e-01 5.15675902e-01 5.96712351e-01 -9.00907457e-01 -5.58301687e-01 -3.08575660e-01 4.06422079e-01 6.62237704e-01 6.83964908e-01 -1.09553516e+00 1.09502017e+00 7.08038855e+00 9.68871593e-01 -1.06555641e+00 -1.51533097e-01 8.97301257e-01 -3.53107810e-01 -4.24297690e-01 -5.23386300e-02 -9.76327658e-01 1.37280256e-01 8.16902876e-01 -1.53276369e-01 9.59835768e-01 9.05878007e-01 2.72666693e-01 2.73533136e-01 -1.16413033e+00 1.06009901e+00 8.20968449e-02 -1.73387039e+00 -4.31222245e-02 -4.68581766e-02 9.55694079e-01 7.13715613e-01 3.49321008e-01 3.05515856e-01 4.11368012e-01 -1.37153399e+00 2.65369356e-01 6.24370456e-01 1.67718410e-01 -5.44597030e-01 3.72031271e-01 9.34736580e-02 -1.04611290e+00 -1.17724128e-01 -5.90222359e-01 1.31421685e-02 1.80361748e-01 7.87115872e-01 -7.54351735e-01 -5.63215874e-02 6.16277218e-01 9.40641165e-01 -7.45312870e-01 1.31960154e+00 -1.40333831e-01 1.01308537e+00 -3.68637234e-01 -4.30945873e-01 5.17360389e-01 -4.57770944e-01 7.89491236e-01 1.17274725e+00 2.76903231e-02 -3.30848038e-01 -3.80926009e-04 1.12070954e+00 -4.35321569e-01 3.08370948e-01 -4.94929850e-01 -2.98959553e-01 1.97570190e-01 9.93603706e-01 -6.36732876e-01 1.82053164e-01 -3.49943072e-01 6.66696012e-01 9.68491554e-01 4.85311329e-01 -5.03892362e-01 -5.60287833e-01 9.85901535e-01 1.08108602e-01 1.56406477e-01 -5.35241842e-01 -9.06923234e-01 -1.08818281e+00 1.50655210e-01 -8.53246748e-01 5.20166397e-01 -3.51693749e-01 -1.56077635e+00 4.83012974e-01 -2.40306437e-01 -3.04923654e-01 4.92240004e-02 -8.84329259e-01 -7.32029974e-01 8.01782012e-01 -1.50412953e+00 -6.38380706e-01 1.29312471e-01 3.83480817e-01 5.53337693e-01 -3.89739931e-01 5.25704801e-01 2.43749157e-01 -7.07057297e-01 9.37368095e-01 3.04335535e-01 5.39083704e-02 3.62825125e-01 -1.29495621e+00 6.07401788e-01 6.78405881e-01 6.61451221e-01 6.97672427e-01 6.09056413e-01 -3.50550592e-01 -1.53683031e+00 -9.20004487e-01 9.74879920e-01 -5.62349617e-01 6.88835919e-01 -1.09639831e-01 -1.16366720e+00 5.57745099e-01 1.58546850e-01 2.92387232e-02 4.90997583e-01 6.29164815e-01 -4.17076766e-01 -2.26726696e-01 -1.03057909e+00 7.07504809e-01 1.29592836e+00 -4.73772734e-01 -3.68880540e-01 6.09213471e-01 4.36196029e-01 -2.44682178e-01 -7.23316193e-01 3.22962493e-01 4.32556391e-01 -1.09631658e+00 1.11944056e+00 -1.07946014e+00 4.86631244e-01 2.11423695e-01 -1.38666898e-01 -1.58863127e+00 -2.07743108e-01 -5.53290367e-01 -3.46030109e-03 8.06403756e-01 8.48580062e-01 -8.67036283e-01 1.12591708e+00 8.19562197e-01 -2.74585217e-01 -1.48389757e+00 -8.37729692e-01 -7.72193432e-01 3.28751832e-01 -4.68081772e-01 3.39587897e-01 7.85099566e-01 -2.13233709e-01 3.44036043e-01 -1.20488495e-01 -2.07472622e-01 7.47977734e-01 4.16485546e-03 4.09136415e-01 -1.02679074e+00 -3.08805317e-01 -1.14099181e+00 -4.26958174e-01 -1.13122690e+00 3.07447970e-01 -1.29433370e+00 -1.06674872e-01 -1.56579065e+00 1.31733119e-01 -5.50683022e-01 -4.40550685e-01 4.89723355e-01 -3.90571862e-01 1.68865666e-01 -9.26827714e-02 1.52482584e-01 -8.03781390e-01 8.49069715e-01 1.13275623e+00 -2.99945474e-01 -2.50790507e-01 1.82601541e-01 -9.65884149e-01 6.90688789e-01 9.68703091e-01 -6.28594756e-01 -4.09473777e-01 -8.64524841e-01 5.86755514e-01 -6.68642640e-01 6.94421232e-02 -9.48857963e-01 2.05820546e-01 -2.34419525e-01 2.22692952e-01 1.28764391e-01 1.90262288e-01 -1.84853584e-01 -5.55697978e-01 3.08092147e-01 -6.21026337e-01 2.48094186e-01 1.61072478e-01 5.60500383e-01 -1.15458302e-01 -4.40938354e-01 9.31183994e-01 -2.03425199e-01 -6.27043962e-01 6.77158713e-01 1.51704818e-01 7.27489531e-01 4.43706095e-01 -7.62259439e-02 -1.44492149e-01 -5.28200448e-01 -5.20151258e-01 2.89171398e-01 2.81890720e-01 3.39472830e-01 7.56534457e-01 -1.31590569e+00 -8.44836533e-01 -2.42287181e-02 -1.40383750e-01 -1.31280452e-01 -1.20588951e-01 9.01802242e-01 -4.64205801e-01 3.05105150e-01 2.17741475e-01 -3.89070749e-01 -1.03037953e+00 1.94528744e-01 6.30501986e-01 -4.25281435e-01 -5.29138982e-01 1.40182614e+00 -1.19175375e-01 -6.03182554e-01 4.31715339e-01 -1.26833513e-01 7.81005099e-02 -2.54880667e-01 3.65086406e-01 4.58807081e-01 2.90262103e-01 -3.89573544e-01 -4.54567611e-01 7.64981806e-01 -2.45501220e-01 2.02156305e-01 1.47963440e+00 -2.77678594e-02 -5.50229549e-02 2.59367824e-01 1.61999547e+00 -1.52956039e-01 -1.32571149e+00 -4.92453128e-01 3.12221974e-01 -4.37910765e-01 3.36707562e-01 -4.15652752e-01 -1.33864748e+00 9.00673568e-01 4.21145171e-01 2.91303575e-01 9.44977164e-01 9.08265822e-03 7.89457023e-01 7.05449522e-01 7.61050805e-02 -1.28416061e+00 1.47510841e-01 6.71952248e-01 8.71769965e-01 -1.32613099e+00 2.83142060e-01 1.43718347e-01 -5.33849418e-01 1.02722168e+00 3.50734860e-01 -3.45697135e-01 8.39341879e-01 2.63057780e-02 2.86365431e-02 -4.66871351e-01 -8.77566993e-01 -1.23547621e-01 6.30515397e-01 5.48177779e-01 6.36550605e-01 -1.10715553e-01 -2.47193128e-01 1.63391933e-01 -2.72520244e-01 -3.33827615e-01 -9.56905261e-02 4.10727978e-01 -5.75740337e-01 -9.87019598e-01 1.40622973e-01 7.68524230e-01 -5.04019856e-01 -3.21171641e-01 -5.46609104e-01 4.60180849e-01 -4.48669672e-01 9.28984463e-01 -1.49206832e-01 -4.10546839e-01 3.08067292e-01 1.78388998e-01 6.65358007e-01 -4.85657483e-01 -4.86419767e-01 -7.13394821e-01 6.88983351e-02 -8.59292567e-01 -1.03417084e-01 -7.38169491e-01 -9.65944588e-01 -2.34261379e-01 -3.00963670e-01 5.33667989e-02 8.95983934e-01 1.09701073e+00 5.05487978e-01 1.99167952e-01 4.96586770e-01 -6.68469727e-01 -9.39349830e-01 -6.92969799e-01 -3.31496954e-01 3.83405447e-01 2.73952127e-01 -4.94781971e-01 -6.06662214e-01 -4.31752682e-01]
[8.25529956817627, 3.523998498916626]
07e67162-9d77-4280-aec8-b63c774f3e97
efficientad-accurate-visual-anomaly-detection
2303.14535
null
https://arxiv.org/abs/2303.14535v1
https://arxiv.org/pdf/2303.14535v1.pdf
EfficientAD: Accurate Visual Anomaly Detection at Millisecond-Level Latencies
Detecting anomalies in images is an important task, especially in real-time computer vision applications. In this work, we focus on computational efficiency and propose a lightweight feature extractor that processes an image in less than a millisecond on a modern GPU. We then use a student-teacher approach to detect anomalous features. We train a student network to predict the extracted features of normal, i.e., anomaly-free training images. The detection of anomalies at test time is enabled by the student failing to predict their features. We propose a training loss that hinders the student from imitating the teacher feature extractor beyond the normal images. It allows us to drastically reduce the computational cost of the student-teacher model, while improving the detection of anomalous features. We furthermore address the detection of challenging logical anomalies that involve invalid combinations of normal local features, for example, a wrong ordering of objects. We detect these anomalies by efficiently incorporating an autoencoder that analyzes images globally. We evaluate our method, called EfficientAD, on 32 datasets from three industrial anomaly detection dataset collections. EfficientAD sets new standards for both the detection and the localization of anomalies. At a latency of two milliseconds and a throughput of six hundred images per second, it enables a fast handling of anomalies. Together with its low error rate, this makes it an economical solution for real-world applications and a fruitful basis for future research.
['Rebecca König', 'Lars Heckler', 'Kilian Batzner']
2023-03-25
null
null
null
null
['semi-supervised-anomaly-detection']
['computer-vision']
[ 2.13263869e-01 -4.00319338e-01 5.06830513e-01 -2.94768244e-01 -3.51682127e-01 -3.69789153e-01 4.74149704e-01 6.75174057e-01 -4.55187351e-01 1.04110986e-01 -8.34078610e-01 -5.03641665e-01 1.20083578e-01 -9.41326082e-01 -8.02513063e-01 -8.83469641e-01 -1.79040447e-01 3.00736099e-01 6.29790962e-01 1.43814400e-01 4.64864552e-01 1.00617182e+00 -2.25137615e+00 3.15142602e-01 7.73336232e-01 1.26606429e+00 -8.94482285e-02 9.90066886e-01 -9.03076306e-03 7.31290996e-01 -9.54776406e-01 -2.50895005e-02 2.63849646e-01 -1.92847311e-01 -5.00421584e-01 4.00371820e-01 8.52426231e-01 -6.28722370e-01 -5.35436086e-02 9.90365326e-01 3.24494451e-01 4.46319245e-02 3.46535861e-01 -1.61043024e+00 -1.17480353e-01 -1.18702583e-01 -7.43310034e-01 7.40336001e-01 2.36643896e-01 3.02805036e-01 6.34525955e-01 -6.16959095e-01 1.50463089e-01 7.51489580e-01 4.76067007e-01 3.27244669e-01 -1.20971870e+00 -4.38766569e-01 2.64359057e-01 7.28110135e-01 -1.06505442e+00 -1.88903481e-01 6.35218382e-01 -4.93770599e-01 1.11482239e+00 4.77738947e-01 5.53322911e-01 8.42299223e-01 2.72672176e-01 7.99216151e-01 6.28795028e-01 -4.51831073e-01 3.95957857e-01 -5.83218746e-02 3.77287388e-01 7.66535580e-01 2.99543738e-01 -5.69600202e-02 -4.03028667e-01 -2.34150931e-01 5.81178367e-01 4.72867370e-01 1.82414521e-02 -2.50012904e-01 -1.00377178e+00 6.62994266e-01 1.16829187e-01 1.40353382e-01 -6.70120776e-01 -9.95618179e-02 6.77314222e-01 7.63463259e-01 3.22752833e-01 3.24263453e-01 -5.47455609e-01 -1.90282926e-01 -7.12836325e-01 1.24538243e-01 6.54904842e-01 4.94703025e-01 7.84587622e-01 2.35401168e-01 1.21181376e-01 4.27929014e-01 -2.44327039e-01 3.53833944e-01 5.68835497e-01 -7.31996059e-01 -9.61521789e-02 9.59699392e-01 -1.54143363e-01 -1.10779238e+00 -2.64999539e-01 -2.45169476e-01 -7.90832818e-01 6.58129275e-01 5.47113717e-01 1.33190364e-01 -8.85565937e-01 1.13380206e+00 7.19672382e-01 6.24488056e-01 -1.06804937e-01 6.47235572e-01 2.29261458e-01 5.93540013e-01 -1.88205481e-01 -1.29614562e-01 1.45034349e+00 -7.00107098e-01 -2.47490749e-01 -8.88704658e-02 8.79184365e-01 -8.33825231e-01 1.06610513e+00 1.06029117e+00 -8.09043467e-01 -6.14584565e-01 -8.79185557e-01 2.84215748e-01 -4.16624337e-01 -2.22681761e-02 5.49592793e-01 3.73753011e-01 -8.66668642e-01 8.31353128e-01 -1.18357420e+00 -2.33894616e-01 3.11217785e-01 5.68900883e-01 -4.06746924e-01 7.69729838e-02 -3.80868882e-01 4.79780793e-01 4.23455715e-01 -1.18454374e-01 -6.38344884e-01 -7.09411204e-01 -8.33441854e-01 2.12029234e-01 4.04108882e-01 -9.85787362e-02 1.26972234e+00 -1.23665047e+00 -1.14439464e+00 7.80099571e-01 -8.07158351e-02 -5.75168669e-01 3.63534838e-01 -3.99471849e-01 -5.21611631e-01 3.53356481e-01 -2.10553817e-02 1.68594554e-01 1.33734548e+00 -6.56557858e-01 -1.07594037e+00 -4.78239983e-01 -4.07512575e-01 -3.17826599e-01 -5.50208807e-01 -2.37636324e-02 -2.04752386e-01 -4.27724212e-01 1.74113736e-01 -8.98985088e-01 -1.91313118e-01 -2.90570371e-02 -3.49050075e-01 -5.72971582e-01 1.40348125e+00 -2.89657146e-01 8.23473752e-01 -2.46965003e+00 -6.17717743e-01 6.35426819e-01 2.95204729e-01 5.05147040e-01 -1.13314293e-01 5.94238080e-02 -3.06356668e-01 -4.60698187e-01 -1.04848862e-01 -1.57808512e-01 -4.45931971e-01 4.39665169e-01 -6.28284693e-01 5.98503947e-01 5.88151395e-01 3.56907040e-01 -7.42970407e-01 -2.77907580e-01 4.49291140e-01 1.82956353e-01 -6.61911726e-01 5.35854161e-01 5.23165315e-02 3.95400733e-01 -4.18552786e-01 5.63688040e-01 6.48094416e-01 -1.66477814e-01 -3.10084164e-01 2.18334675e-01 -1.85885698e-01 8.24489966e-02 -1.34280610e+00 9.40113962e-01 -4.11468118e-01 6.47493541e-01 -2.23899052e-01 -1.26208103e+00 9.51009214e-01 1.32599592e-01 5.45028269e-01 -8.17583323e-01 -1.39272228e-01 3.11281711e-01 1.11947909e-01 -4.81845528e-01 2.80687869e-01 5.57029247e-01 2.33435124e-01 6.39834583e-01 6.21519461e-02 2.60923713e-01 3.79916102e-01 1.46619514e-01 1.53103256e+00 -2.99617887e-01 1.80234089e-01 -1.29056571e-04 6.78463519e-01 -9.22569185e-02 4.90102589e-01 8.94739091e-01 -1.00662932e-01 3.63436133e-01 7.10856259e-01 -1.02750647e+00 -9.85018671e-01 -1.10172951e+00 4.66561839e-02 1.25701213e+00 -2.25265808e-02 -3.57425392e-01 -5.38369715e-01 -9.61207688e-01 1.26713350e-01 5.34718275e-01 -3.31507444e-01 -3.67748678e-01 -8.38994145e-01 -4.42534626e-01 2.34899819e-01 6.02306902e-01 2.79634058e-01 -1.28470790e+00 -1.15306664e+00 1.42457664e-01 2.85158575e-01 -1.16083789e+00 -1.02840081e-01 4.39595461e-01 -9.98359025e-01 -1.30974436e+00 -9.39222127e-02 -6.89777553e-01 1.04891205e+00 2.52474040e-01 1.14071751e+00 6.73721075e-01 -7.98000097e-01 4.51846957e-01 -2.21685842e-01 -5.95090330e-01 -3.87925267e-01 -3.32007498e-01 2.64069796e-01 1.58386126e-01 8.00347924e-01 -7.12531328e-01 -5.98665833e-01 2.80621976e-01 -1.01006651e+00 -4.67390835e-01 4.90819812e-01 8.52006674e-01 7.59918272e-01 3.68037075e-01 3.26736271e-01 -7.31784642e-01 2.87510306e-01 -4.31896508e-01 -1.12632501e+00 -1.38278276e-01 -6.51959717e-01 7.57244825e-02 1.09446335e+00 -5.94833732e-01 -6.04077458e-01 3.16053092e-01 -2.27124095e-01 -5.52389264e-01 -6.41566277e-01 -1.28426284e-01 3.30525041e-01 -1.44807994e-01 7.14660227e-01 4.53184664e-01 3.59919332e-02 -3.93839031e-01 -2.90288538e-01 4.22714919e-01 8.11281383e-01 -5.57103992e-01 7.56522417e-01 4.17532772e-01 9.37107280e-02 -1.16677916e+00 -5.50395191e-01 -8.11645985e-01 -5.36081791e-01 -7.63682574e-02 4.34951723e-01 -7.25480497e-01 -1.08822489e+00 6.44832015e-01 -1.03801036e+00 -1.43751755e-01 -4.33849633e-01 3.08573008e-01 -2.96142250e-01 5.16834080e-01 -5.74968517e-01 -6.76728606e-01 -3.31244856e-01 -1.10047376e+00 1.05738711e+00 2.44127378e-01 -2.06141219e-01 -6.90094233e-01 -1.55011073e-01 -1.49470285e-01 2.71670163e-01 2.95789510e-01 7.12973595e-01 -1.20297146e+00 -6.22404695e-01 -4.91115361e-01 -1.33432195e-01 5.33851981e-01 -1.81160830e-02 3.54141384e-01 -1.03515863e+00 -3.67988169e-01 2.01694727e-01 -1.81369543e-01 8.71827245e-01 -1.68583691e-02 1.78621936e+00 -3.05810958e-01 -1.21222608e-01 4.27199721e-01 1.09372330e+00 2.47956902e-01 4.78915840e-01 5.57221353e-01 6.45433843e-01 4.31960583e-01 6.18573904e-01 6.98798358e-01 -4.44339663e-02 4.20267075e-01 6.70592427e-01 -9.05360952e-02 4.48614508e-01 3.10951799e-01 3.87875319e-01 6.04821801e-01 7.12823635e-03 -6.31342903e-02 -1.05073225e+00 6.53240860e-01 -1.71298563e+00 -8.17684412e-01 -4.14283961e-01 2.28885627e+00 4.63361651e-01 2.39424706e-01 1.94880471e-01 6.94991589e-01 5.09364963e-01 -2.25804254e-01 -5.88585019e-01 -8.65524411e-01 3.80653888e-01 5.12720048e-01 1.44114912e-01 1.10395476e-01 -1.33219731e+00 6.33119226e-01 5.14774656e+00 4.64433998e-01 -1.34694529e+00 -3.13447237e-01 5.54685354e-01 8.70295276e-04 2.54148543e-01 -3.56596053e-01 -6.94979548e-01 5.88659585e-01 1.04435253e+00 2.07912192e-01 1.14873976e-01 1.43141520e+00 -1.28771096e-01 -3.49760890e-01 -1.29341245e+00 1.00933409e+00 7.94775039e-02 -9.63797152e-01 -7.45668039e-02 9.98582393e-02 5.35061419e-01 1.94266089e-03 8.83289725e-02 2.07151100e-01 4.92620245e-02 -6.86197877e-01 2.29031116e-01 1.40956521e-01 2.91442603e-01 -1.14703548e+00 9.03920352e-01 4.82931376e-01 -8.01609993e-01 -2.72808373e-01 -3.74860078e-01 -2.37538353e-01 -5.01920640e-01 9.99556661e-01 -1.04960263e+00 5.71848489e-02 9.75068867e-01 3.38415861e-01 -7.74495065e-01 9.51804161e-01 -1.31629810e-01 6.49246335e-01 -6.36269689e-01 2.10770831e-01 2.86384225e-01 -3.39753344e-03 5.07530749e-01 1.11334467e+00 5.06892979e-01 -6.69100210e-02 4.06869859e-01 3.92262638e-01 2.16581851e-01 6.58177286e-02 -7.26909757e-01 2.60127336e-01 2.69040078e-01 1.29501140e+00 -9.37568009e-01 -3.81698728e-01 -4.11124289e-01 1.29249203e+00 2.16641486e-01 -2.89034694e-02 -5.22431195e-01 -6.05345786e-01 8.12947333e-01 -6.80308864e-02 5.52499115e-01 -1.65960997e-01 -2.11479202e-01 -1.07341146e+00 4.07867163e-01 -1.02380884e+00 5.97539604e-01 -1.50622085e-01 -1.15197408e+00 5.55545330e-01 -4.32387799e-01 -1.21880221e+00 -7.33576655e-01 -8.19940627e-01 -1.11058486e+00 4.07349408e-01 -1.36933315e+00 -5.46686649e-01 -5.38162053e-01 8.92134070e-01 4.55300152e-01 -2.03663811e-01 8.58605623e-01 1.58774897e-01 -7.15676308e-01 5.92259288e-01 -1.08004138e-01 1.40683129e-01 6.27521515e-01 -1.48119640e+00 7.62607813e-01 1.20023894e+00 4.69650745e-01 3.49706501e-01 7.97316194e-01 -4.02280599e-01 -1.15441585e+00 -1.13630152e+00 6.68949068e-01 -3.14618647e-01 6.20091856e-01 -1.22634009e-01 -1.40017235e+00 6.12439334e-01 -1.56302959e-01 5.50723970e-01 5.64262986e-01 2.15498656e-02 -3.92766923e-01 -3.03075075e-01 -1.13576686e+00 4.32969064e-01 4.91591007e-01 -3.49049658e-01 -3.65013570e-01 3.35335881e-01 2.75457025e-01 -3.26044172e-01 -5.20770788e-01 2.23580435e-01 2.59876370e-01 -1.26338089e+00 8.11216831e-01 -5.10630429e-01 2.92180419e-01 -2.98414826e-01 2.74185956e-01 -1.18853545e+00 -1.44266486e-02 -4.32695121e-01 -6.08915925e-01 8.81411076e-01 -1.41222760e-01 -8.03929567e-01 8.77446055e-01 3.48306000e-01 -7.11790174e-02 -8.11397374e-01 -8.72621715e-01 -8.43222857e-01 -5.83665192e-01 -6.57834053e-01 4.62644190e-01 8.67609322e-01 -4.31748539e-01 -1.87963694e-01 -4.11406346e-03 6.36613309e-01 6.38770461e-01 2.68049806e-01 9.26414490e-01 -1.49265802e+00 -2.38587543e-01 -2.82010496e-01 -1.12274849e+00 -6.85089827e-01 5.55862971e-02 -3.20173711e-01 -4.58317213e-02 -5.90690196e-01 -1.78703129e-01 -1.94287091e-01 -4.61007327e-01 6.73125982e-01 -2.07831502e-01 4.99489337e-01 -1.44951969e-01 -5.09561524e-02 -5.80511272e-01 9.65267345e-02 6.45184875e-01 1.28973886e-01 -3.28867406e-01 3.64729464e-01 -1.73808962e-01 1.17037439e+00 9.08596277e-01 -5.80511689e-01 -1.66733846e-01 -2.37996191e-01 8.28035474e-02 -4.04664636e-01 6.65408969e-01 -1.30056751e+00 3.46430600e-01 9.62272193e-03 7.51891315e-01 -7.19048321e-01 -1.22530863e-03 -1.06208646e+00 -6.08789325e-01 6.40496075e-01 1.24583638e-03 5.78970790e-01 3.30565721e-01 4.91864741e-01 -2.83014327e-01 -2.08655626e-01 7.82034218e-01 6.22485206e-02 -9.72278535e-01 2.31528312e-01 -4.26704228e-01 -2.42742270e-01 1.42997313e+00 -2.76113540e-01 -1.93218976e-01 -1.91516191e-01 -5.37611604e-01 2.75338590e-01 2.99060106e-01 2.70597517e-01 8.22417796e-01 -1.02860963e+00 -5.27786076e-01 9.47617590e-01 2.30577603e-01 2.39725351e-01 3.04247558e-01 7.92177260e-01 -7.35199451e-01 -9.96438414e-02 -3.06010246e-01 -1.17318344e+00 -1.77110898e+00 6.26420200e-01 1.19896233e-01 -1.83528975e-01 -1.00769305e+00 6.89991117e-01 1.01117313e-01 -6.08964562e-02 3.41401935e-01 -2.07784355e-01 -5.89587949e-02 -6.27089217e-02 1.03474867e+00 4.62812662e-01 5.30916035e-01 -1.74307480e-01 -3.40221375e-01 2.53746957e-01 -4.94057477e-01 5.29862285e-01 1.36471212e+00 2.42411822e-01 -2.36477673e-01 3.73615235e-01 9.80226994e-01 -2.92979274e-02 -1.12175596e+00 -2.40028575e-01 3.96609038e-01 -6.78839326e-01 -1.08565856e-02 -4.31983888e-01 -1.06845248e+00 9.49775457e-01 9.06580925e-01 6.46629393e-01 1.55687928e+00 -2.21560657e-01 8.92462373e-01 7.91507423e-01 -1.82684660e-02 -9.86065507e-01 3.55129629e-01 6.71826005e-01 4.25505012e-01 -1.43110371e+00 -1.11925066e-01 -1.33644238e-01 -4.52812344e-01 1.52805293e+00 1.01252139e+00 -4.17626888e-01 3.13521981e-01 4.61612135e-01 2.14226156e-01 -1.54951945e-01 -9.06552434e-01 -8.72221589e-02 2.54379719e-01 4.45965886e-01 -5.19305058e-02 -1.01241685e-01 2.89047897e-01 9.85984318e-03 -1.04628958e-01 -4.33991939e-01 6.27729535e-01 9.89982307e-01 -5.70499599e-01 -8.90306771e-01 -5.24482548e-01 6.57652557e-01 -6.51908517e-01 1.32126123e-01 -1.22143157e-01 5.58724523e-01 2.50247538e-01 8.04588675e-01 8.81004095e-01 -2.79296577e-01 3.07942986e-01 1.83829114e-01 1.11948371e-01 -4.54051077e-01 -5.92540085e-01 -2.48513386e-01 -3.82648289e-01 -1.04711509e+00 1.25656560e-01 -5.25449693e-01 -1.22594285e+00 -4.34424430e-01 -1.69290915e-01 8.86486396e-02 7.90563047e-01 9.66715395e-01 5.08976579e-01 6.25724852e-01 1.02759099e+00 -6.41615927e-01 -6.94172144e-01 -4.75866854e-01 -4.03555930e-01 5.54674923e-01 7.68406570e-01 -3.25825274e-01 -4.45083022e-01 -4.27456461e-02]
[7.663540363311768, 2.210428237915039]
e247d3ff-e010-4575-8c9b-23364df64463
understanding-and-mitigating-multi-sided
2111.05564
null
https://arxiv.org/abs/2111.05564v1
https://arxiv.org/pdf/2111.05564v1.pdf
Understanding and Mitigating Multi-Sided Exposure Bias in Recommender Systems
Fairness is a critical system-level objective in recommender systems that has been the subject of extensive recent research. It is especially important in multi-sided recommendation platforms where it may be crucial to optimize utilities not just for the end user, but also for other actors such as item sellers or producers who desire a fair representation of their items. Existing solutions do not properly address various aspects of multi-sided fairness in recommendations as they may either solely have one-sided view (i.e. improving the fairness only for one side), or do not appropriately measure the fairness for each actor involved in the system. In this thesis, I aim at first investigating the impact of unfair recommendations on the system and how these unfair recommendations can negatively affect major actors in the system. Then, I seek to propose solutions to tackle the unfairness of recommendations. I propose a rating transformation technique that works as a pre-processing step before building the recommendation model to alleviate the inherent popularity bias in the input data and consequently to mitigate the exposure unfairness for items and suppliers in the recommendation lists. Also, as another solution, I propose a general graph-based solution that works as a post-processing approach after recommendation generation for mitigating the multi-sided exposure bias in the recommendation results. For evaluation, I introduce several metrics for measuring the exposure fairness for items and suppliers, and show that these metrics better capture the fairness properties in the recommendation results. I perform extensive experiments to evaluate the effectiveness of the proposed solutions. The experiments on different publicly-available datasets and comparison with various baselines confirm the superiority of the proposed solutions in improving the exposure fairness for items and suppliers.
['Masoud Mansoury']
2021-11-10
null
null
null
null
['exposure-fairness']
['adversarial']
[-1.99102640e-01 -3.63270119e-02 -3.06230485e-01 -4.51426804e-01 -9.00419354e-02 -6.98373079e-01 3.24479610e-01 3.03949416e-01 -3.11850518e-01 5.19668102e-01 4.58650082e-01 -4.69984740e-01 -6.69411480e-01 -9.88434196e-01 -2.89352477e-01 -5.33957243e-01 1.66832462e-01 1.76554680e-01 -8.96959379e-02 -5.46108425e-01 5.76722622e-01 4.59310383e-01 -1.38134789e+00 1.75338969e-01 1.09979129e+00 8.92719209e-01 -2.36996338e-01 3.50078374e-01 -5.34387305e-03 5.91658592e-01 -5.98280430e-01 -9.62006867e-01 7.04330146e-01 -4.48792487e-01 -3.70620728e-01 -1.48896411e-01 2.42085576e-01 -3.58601183e-01 -9.44104139e-03 1.13290691e+00 5.63784301e-01 4.13374811e-01 7.70113051e-01 -1.55815685e+00 -6.78814888e-01 8.75353098e-01 -8.01529586e-01 2.17019260e-01 2.38652468e-01 -2.10423276e-01 1.45673800e+00 -6.22543573e-01 2.33901158e-01 1.08651340e+00 3.17112774e-01 1.54112116e-01 -1.03354037e+00 -6.11556172e-01 3.61259967e-01 1.11405484e-01 -1.21229494e+00 -2.38834828e-01 4.91958022e-01 -2.91426808e-01 5.32325387e-01 8.10434937e-01 4.28645998e-01 4.37362164e-01 2.00838923e-01 3.99278462e-01 8.82461965e-01 -2.03696772e-01 1.79564148e-01 5.79098642e-01 4.90480065e-01 -8.14012159e-03 7.72575498e-01 2.02611446e-01 -2.34317541e-01 -2.94892550e-01 3.24891001e-01 2.44377747e-01 -1.52610838e-01 -2.19137713e-01 -5.90241551e-01 9.95989799e-01 5.91099024e-01 1.50791243e-01 -6.06818020e-01 -2.81708807e-01 2.64891773e-01 5.28873861e-01 6.82554007e-01 5.91446340e-01 -1.95668593e-01 1.73240140e-01 -9.95614350e-01 2.51285613e-01 8.26771379e-01 7.53384650e-01 4.08310354e-01 -6.46994710e-02 -6.18665278e-01 6.15468502e-01 5.29112756e-01 1.92143992e-01 1.08713187e-01 -7.41857529e-01 5.34077883e-01 7.46389508e-01 4.20751005e-01 -1.49145091e+00 -1.88617393e-01 -8.29893827e-01 -7.68217087e-01 3.23565036e-01 4.56860274e-01 -2.16989666e-01 -3.23924035e-01 1.62349892e+00 3.48592788e-01 -2.45065138e-01 -2.40745470e-01 1.31190443e+00 6.64090872e-01 6.80805683e-01 2.10398957e-01 -4.43387985e-01 1.07073116e+00 -1.15241957e+00 -7.35911608e-01 3.42545271e-01 3.00997853e-01 -9.92426634e-01 9.32375610e-01 3.42168927e-01 -1.18524337e+00 -3.55148435e-01 -8.04161727e-01 3.07827145e-01 -3.35151106e-01 -6.21414883e-03 4.01086271e-01 1.07091689e+00 -6.45037711e-01 7.04170763e-01 9.09342915e-02 -1.02390505e-01 1.02717370e-01 5.90341151e-01 6.01955764e-02 1.34711161e-01 -1.44696105e+00 1.03327382e+00 -1.59116700e-01 7.86575824e-02 -2.86213309e-01 -8.93526912e-01 -2.18262985e-01 5.98426819e-01 5.67252517e-01 -7.47630775e-01 8.59816492e-01 -1.16796422e+00 -1.22873580e+00 1.01664402e-01 4.06391352e-01 -1.46214128e-01 7.86564052e-01 -5.98578192e-02 -5.92055619e-01 -5.28991699e-01 -1.91245943e-01 -7.30056054e-05 6.54278219e-01 -1.47332740e+00 -9.91112947e-01 -4.84402359e-01 5.92189074e-01 6.07625544e-01 -5.64393163e-01 1.05848432e-01 -6.51417971e-02 -8.07158053e-01 -4.02655274e-01 -9.08063829e-01 -3.58530432e-01 -4.69718009e-01 -3.89795542e-01 -1.53905347e-01 4.01520014e-01 -4.97887403e-01 1.71241570e+00 -2.05801272e+00 -1.36439741e-01 8.01926315e-01 1.32519960e-01 4.83834475e-01 -1.46012694e-01 5.04214942e-01 5.43073080e-02 3.37164044e-01 4.11179632e-01 -7.46068880e-02 3.60517651e-01 9.48096346e-03 -1.31676629e-01 5.37208855e-01 -4.07478005e-01 5.04988611e-01 -7.07065046e-01 1.34973479e-02 2.57257104e-01 3.52305889e-01 -7.45374143e-01 2.96590537e-01 1.49578422e-01 2.04684287e-01 -3.10965598e-01 2.34053478e-01 9.04290080e-01 2.94544995e-02 2.02100217e-01 -3.64534646e-01 -2.05409855e-01 2.96274334e-01 -1.52028143e+00 9.00932848e-01 -4.91470426e-01 -2.03341722e-01 1.18076503e-01 -7.90755630e-01 7.94426739e-01 2.44998917e-01 5.48899889e-01 -7.59547830e-01 3.98239374e-01 9.29837078e-02 2.76717782e-01 -4.51366231e-02 1.01721883e+00 -1.93603858e-01 -5.00445552e-02 7.87265956e-01 -4.26505327e-01 4.18194860e-01 2.09169060e-01 4.74724382e-01 5.41756809e-01 -3.91230643e-01 3.49631757e-01 -4.45637107e-01 6.98351920e-01 -4.32750225e-01 4.33852643e-01 6.48303032e-01 -1.94011740e-02 2.66983747e-01 5.23825109e-01 -2.90805221e-01 -7.44022608e-01 -5.91349542e-01 2.35710800e-01 1.36476099e+00 5.26617527e-01 -3.22674662e-01 -4.66585338e-01 -8.50841880e-01 3.19793522e-01 1.09377170e+00 -5.42052567e-01 -3.80082816e-01 1.67967081e-01 -6.57841742e-01 1.24230087e-01 4.01942693e-02 6.07389286e-02 -5.52848876e-01 -3.44499707e-01 1.21105105e-01 -1.21719517e-01 -6.26139998e-01 -8.17289710e-01 -2.98627347e-01 -5.92044115e-01 -9.28008020e-01 -6.13420188e-01 7.38529712e-02 7.75032043e-01 9.25861299e-01 9.72263157e-01 4.18375760e-01 1.73083529e-01 1.29065171e-01 -6.01330638e-01 -3.87974173e-01 -2.27634922e-01 -4.32335138e-02 1.75746381e-01 3.00903976e-01 4.48711962e-02 -3.23242188e-01 -9.08490181e-01 9.12878633e-01 -8.99377406e-01 -3.67039859e-01 3.27622086e-01 4.81879115e-01 2.13213861e-01 4.08648431e-01 8.88377309e-01 -1.28883576e+00 1.27850366e+00 -9.19749618e-01 -5.48476517e-01 4.68101382e-01 -1.42115939e+00 -2.05808505e-01 9.68758881e-01 -1.09222636e-01 -1.24037397e+00 -4.23148602e-01 -4.24440242e-02 -6.79619312e-02 1.67025149e-01 4.13392574e-01 -2.51309574e-01 -1.79686755e-01 4.24003184e-01 -5.62518358e-01 -1.04421258e-01 -4.62054789e-01 7.27105141e-01 8.03155839e-01 -1.00533299e-01 -2.77248889e-01 6.91003859e-01 1.53931022e-01 -6.05413457e-03 -1.31236717e-01 -7.80240476e-01 -6.27054930e-01 -1.41129475e-02 -3.89941424e-01 2.72034049e-01 -6.38975441e-01 -8.99871945e-01 -1.23399161e-01 -7.20898926e-01 2.93218285e-01 -3.88945997e-01 4.57182467e-01 -2.49384083e-02 4.05494213e-01 -2.93427020e-01 -9.12063360e-01 -7.78465390e-01 -1.19555640e+00 2.53908277e-01 5.75372815e-01 -2.25429475e-01 -9.72948015e-01 1.30944140e-02 5.75762808e-01 7.72047997e-01 -2.46331319e-01 8.82245421e-01 -9.36824262e-01 -2.17509866e-01 -3.20178926e-01 -3.40742946e-01 3.52622509e-01 1.10090658e-01 1.60810292e-01 -4.97545451e-01 -4.78461653e-01 -2.59924322e-01 3.01709533e-01 3.88633698e-01 3.77881825e-01 7.38308132e-01 -6.44731939e-01 1.13736793e-01 1.15194485e-01 1.43312633e+00 -1.40331872e-02 6.00455284e-01 1.43322408e-01 4.87447500e-01 8.78070772e-01 1.06600904e+00 8.34527075e-01 5.32897592e-01 8.88011515e-01 7.57567286e-01 -3.10902804e-01 1.93449706e-02 -7.37611875e-02 2.66171157e-01 7.53854275e-01 -4.50801045e-01 -7.63164103e-01 -5.45936152e-02 2.63293386e-01 -2.05622506e+00 -9.82854187e-01 -5.30777037e-01 2.63812542e+00 1.59846276e-01 -2.05169275e-01 5.31341791e-01 2.36278504e-01 8.74122858e-01 -1.64258942e-01 -2.75360197e-01 -9.89688873e-01 8.60827044e-02 -1.62716106e-01 8.12938750e-01 4.88867700e-01 -6.24471247e-01 5.43946564e-01 5.95300293e+00 7.04214692e-01 -8.77155960e-01 -6.21983688e-03 6.31612897e-01 -3.38386297e-01 -7.36199915e-01 1.21389553e-01 -5.36227703e-01 6.04316175e-01 7.03695297e-01 -7.60748684e-01 6.33272886e-01 6.85997486e-01 6.63444459e-01 -1.08673550e-01 -7.71850407e-01 6.39632344e-01 -5.59311695e-02 -8.69853854e-01 2.93027926e-02 4.11953300e-01 9.07934546e-01 -4.70907688e-01 2.52117902e-01 8.19824934e-02 3.56579334e-01 -7.75165498e-01 7.07910538e-01 5.50110698e-01 1.35565132e-01 -1.06726134e+00 1.08298826e+00 3.37391704e-01 -8.87706995e-01 -2.33287558e-01 -5.71708798e-01 -2.88474619e-01 3.46101940e-01 8.19094539e-01 -3.42123151e-01 1.02158761e+00 3.65179539e-01 3.47365439e-01 -3.46696645e-01 1.24312949e+00 -1.69942051e-01 3.91443461e-01 -5.33826351e-02 -4.58962880e-02 1.93723664e-02 -6.50486171e-01 4.49957967e-01 9.20238256e-01 5.45763671e-01 2.82303751e-01 -1.64142072e-01 6.59907460e-01 -2.97503233e-01 7.18931258e-01 -3.68173152e-01 1.83289111e-01 4.33853656e-01 1.72955668e+00 -5.39631605e-01 -1.31373107e-01 -5.07062435e-01 4.81393456e-01 1.09716775e-02 2.07788616e-01 -1.00440502e+00 -1.33210436e-01 7.54477680e-01 2.71597743e-01 8.14586282e-02 3.06061029e-01 -4.43249583e-01 -9.38148737e-01 -3.22327018e-01 -1.09348643e+00 6.42301679e-01 -2.32900202e-01 -1.51910508e+00 2.34000817e-01 -2.66730189e-01 -1.32735908e+00 1.82007238e-01 -5.05727082e-02 -7.11506784e-01 9.42498267e-01 -1.57731307e+00 -8.46096933e-01 -1.94735840e-01 7.46000767e-01 9.90031809e-02 -1.96445093e-01 4.62295085e-01 8.29298079e-01 -6.43858433e-01 8.91751051e-01 1.87065557e-01 -7.03178883e-01 9.45200861e-01 -1.03715158e+00 -1.91912919e-01 1.00231278e+00 9.87652987e-02 8.82959902e-01 8.63706112e-01 -4.61238325e-01 -1.29676628e+00 -9.06131625e-01 8.53647292e-01 -9.34520289e-02 3.63903135e-01 6.02659509e-02 -5.75211823e-01 1.23418182e-01 2.52442390e-01 -3.66901428e-01 1.16210139e+00 3.12442362e-01 -1.49737597e-01 -3.99665534e-01 -1.36791372e+00 4.84188139e-01 6.89815640e-01 -6.24246076e-02 -2.64418185e-01 4.19733077e-02 2.98004299e-01 2.14929860e-02 -9.33169067e-01 2.24715650e-01 8.36986482e-01 -1.25736618e+00 8.50004196e-01 -7.41249979e-01 2.87120461e-01 -4.89169896e-01 -4.61794771e-02 -1.58628738e+00 -7.71836758e-01 -4.56214517e-01 2.52331477e-02 1.49673128e+00 6.15735888e-01 -5.83129525e-01 5.31951070e-01 1.20551097e+00 1.86143771e-01 -4.70486820e-01 -4.98014450e-01 -6.71508789e-01 -1.48067325e-01 -3.72301675e-02 8.87408853e-01 9.12716269e-01 1.14539757e-01 4.08613622e-01 -9.02950108e-01 9.80970114e-02 5.26379228e-01 4.56420273e-01 8.20963264e-01 -9.72697616e-01 -1.95555553e-01 -6.17263496e-01 -2.08809823e-02 -6.30495787e-01 -2.02936575e-01 -8.12975347e-01 -3.25971127e-01 -1.65184748e+00 2.67514110e-01 -7.74692774e-01 -8.79755378e-01 2.00658873e-01 -3.47735047e-01 2.39463776e-01 5.39748907e-01 2.43375510e-01 -5.81663966e-01 3.08448046e-01 1.26657689e+00 2.19016463e-01 -2.03415975e-01 6.26740038e-01 -1.53191757e+00 3.57802331e-01 7.00368047e-01 -6.17470384e-01 -6.82607472e-01 -2.00109467e-01 7.46444404e-01 -5.07982112e-02 -6.62110969e-02 -4.04688269e-01 2.56297350e-01 -4.94810641e-01 -2.09779531e-01 -2.41770640e-01 -1.89262360e-01 -1.43096948e+00 5.42153537e-01 2.89008945e-01 -4.83744532e-01 1.02279186e-01 -3.50913435e-01 5.71436107e-01 -2.62800436e-02 -3.38857830e-01 6.89734757e-01 1.02743559e-01 -1.65146828e-01 3.36384863e-01 -1.77534938e-01 -3.46714944e-01 1.24732554e+00 4.25253548e-02 -5.44019639e-01 -8.26425254e-01 -4.08109128e-01 4.09403533e-01 4.97087747e-01 5.70393920e-01 1.72603086e-01 -1.23641992e+00 -7.14501917e-01 -4.01558936e-01 3.93907242e-02 -8.72968078e-01 3.92638385e-01 9.39165354e-01 -1.65723398e-01 2.23455369e-01 -4.11479056e-01 3.33428979e-01 -1.40169251e+00 6.86332524e-01 8.99864361e-02 -5.05228817e-01 1.82090774e-01 6.67015851e-01 8.97793025e-02 -3.01881731e-01 1.84439465e-01 9.52714607e-02 -6.81564808e-01 3.47415954e-01 3.10312331e-01 9.32181001e-01 8.60669091e-02 -8.57681692e-01 -3.51512164e-01 2.40112394e-01 8.99999961e-02 2.06781790e-01 1.34590364e+00 -6.62502110e-01 -1.74268275e-01 -8.67265090e-02 6.84693456e-01 5.77379286e-01 -6.58575416e-01 -4.09295000e-02 -2.04561278e-01 -1.00084794e+00 2.74173707e-01 -9.97141063e-01 -1.49651027e+00 5.59519053e-01 3.49988431e-01 7.39580750e-01 1.22545862e+00 -6.05434775e-01 6.65265799e-01 -2.23890990e-01 2.75154054e-01 -1.25760996e+00 -2.98820734e-01 3.76730002e-02 7.06676900e-01 -1.03151500e+00 4.71878380e-01 -5.38131654e-01 -9.73628759e-01 9.54793394e-01 4.92617548e-01 -5.69545627e-02 7.01772630e-01 -1.23935357e-01 1.09337099e-01 -2.62878346e-03 -6.16854548e-01 -8.72112364e-02 6.07479274e-01 8.04191753e-02 6.88313663e-01 4.33742791e-01 -1.25032365e+00 1.13715410e+00 1.13015641e-02 -1.03712574e-01 6.74530387e-01 4.62871522e-01 -3.01687896e-01 -1.49916303e+00 -1.32167131e-01 7.35980749e-01 -6.62248075e-01 1.20363459e-02 -4.41354275e-01 3.98357540e-01 2.63718218e-01 1.58555114e+00 -4.18204844e-01 -6.87652588e-01 8.11515629e-01 -4.95752484e-01 -6.63743094e-02 -3.69913876e-01 -1.23900115e+00 1.14457026e-01 3.14069897e-01 -5.16278923e-01 -4.39970016e-01 -4.37349677e-01 -8.20585072e-01 -9.10104156e-01 -8.83834183e-01 4.72926110e-01 8.21280003e-01 7.71428347e-01 5.42411983e-01 5.81094980e-01 1.27966821e+00 -2.93641180e-01 -8.50286186e-01 -6.03072286e-01 -9.75059986e-01 7.99321115e-01 -2.05676273e-01 -6.48308694e-01 -4.60285544e-01 -5.47019362e-01]
[9.695348739624023, 5.644174575805664]
5e8f746f-4d8e-47b2-8373-be3fd9625045
eeny-meeny-miny-moe-how-to-choose-data-for
2210.14465
null
https://arxiv.org/abs/2210.14465v1
https://arxiv.org/pdf/2210.14465v1.pdf
Eeny, meeny, miny, moe. How to choose data for morphological inflection
Data scarcity is a widespread problem in numerous natural language processing (NLP) tasks for low-resource languages. Within morphology, the labour-intensive work of tagging/glossing data is a serious bottleneck for both NLP and language documentation. Active learning (AL) aims to reduce the cost of data annotation by selecting data that is most informative for improving the model. In this paper, we explore four sampling strategies for the task of morphological inflection using a Transformer model: a pair of oracle experiments where data is chosen based on whether the model already can or cannot inflect the test forms correctly, as well as strategies based on high/low model confidence, entropy, as well as random selection. We investigate the robustness of each strategy across 30 typologically diverse languages. We also perform a more in-depth case study of Nat\"ugu. Our results show a clear benefit to selecting data based on model confidence and entropy. Unsurprisingly, the oracle experiment, where only incorrectly handled forms are chosen for further training, which is presented as a proxy for linguist/language consultant feedback, shows the most improvement. This is followed closely by choosing low-confidence and high-entropy predictions. We also show that despite the conventional wisdom of larger data sets yielding better accuracy, introducing more instances of high-confidence or low-entropy forms, or forms that the model can already inflect correctly, can reduce model performance.
['Mans Hulden', 'Saliha Muradoglu']
2022-10-26
null
null
null
null
['morphological-inflection']
['natural-language-processing']
[ 2.77299523e-01 2.73735195e-01 -2.34907046e-01 -3.62442017e-01 -1.23752713e+00 -8.94263923e-01 4.53322887e-01 6.66930795e-01 -8.54193747e-01 7.58501291e-01 4.22415942e-01 -7.37495780e-01 -1.56191081e-01 -5.18320382e-01 -5.25505126e-01 -6.38754189e-01 2.23863780e-01 8.07857096e-01 1.11274784e-02 -5.26802801e-02 2.54914701e-01 2.40028381e-01 -1.17072952e+00 2.13703945e-01 1.22316968e+00 3.94916415e-01 3.38226169e-01 1.78566754e-01 -2.77668864e-01 5.70616782e-01 -6.24994993e-01 -9.35646772e-01 2.89135426e-01 -1.52057678e-01 -8.82166862e-01 -1.24571338e-01 3.67706299e-01 1.90120786e-01 5.06217837e-01 9.55779910e-01 5.85069537e-01 -7.36266077e-02 6.28623962e-01 -6.52187228e-01 -5.05698502e-01 1.00705576e+00 -2.09213361e-01 2.03864992e-01 4.06940818e-01 3.36076915e-01 1.30312777e+00 -8.26538444e-01 7.45424271e-01 1.27114511e+00 6.90288663e-01 4.31786060e-01 -1.50436783e+00 -4.19173688e-01 2.08579198e-01 -6.66632652e-02 -1.25579858e+00 -8.35405231e-01 5.09676456e-01 -4.79190499e-01 1.11696732e+00 3.49936098e-01 3.45113337e-01 6.60908759e-01 -7.37218857e-02 7.14275956e-01 1.13712251e+00 -9.31066632e-01 2.78626800e-01 5.39189100e-01 1.30881429e-01 3.72700244e-01 5.51237762e-01 4.73275706e-02 -5.09951830e-01 -5.55544794e-01 2.06138641e-01 -6.96191847e-01 -2.76094645e-01 -6.19602464e-02 -8.61786008e-01 7.50537634e-01 -1.17544442e-01 4.03010279e-01 -2.99302489e-01 -4.43856120e-01 2.04297975e-01 2.67177731e-01 5.98196149e-01 1.08866739e+00 -1.01743770e+00 -2.43181363e-01 -9.41414714e-01 6.36633262e-02 1.11807930e+00 6.91481471e-01 7.06823587e-01 9.34720854e-04 4.52467315e-02 1.30303729e+00 3.73830646e-01 2.41761580e-01 4.85099375e-01 -7.49856114e-01 6.76178098e-01 7.70093501e-01 1.78670466e-01 -5.12913704e-01 -3.25860143e-01 -2.96748579e-01 -1.73475236e-01 7.78905675e-02 7.67500877e-01 -2.20620111e-01 -8.29148591e-01 1.80306113e+00 1.65198326e-01 -6.78984404e-01 1.03078783e-02 5.59680700e-01 3.75309378e-01 4.84285980e-01 4.14680123e-01 -7.80762851e-01 1.28499651e+00 -3.75087261e-01 -6.75043106e-01 -5.89094162e-01 9.55061078e-01 -1.01071441e+00 1.38593340e+00 5.23188591e-01 -1.09472609e+00 -2.04191312e-01 -7.37860620e-01 -1.17246658e-01 -3.68254930e-01 -7.94751793e-02 6.24083936e-01 6.91901088e-01 -9.59426224e-01 6.13505542e-01 -8.26475441e-01 -2.93212563e-01 1.92929372e-01 4.34879780e-01 -3.14548612e-01 6.34560287e-02 -1.03819466e+00 1.26317394e+00 5.58766663e-01 1.62603632e-02 -7.09458962e-02 -5.82335413e-01 -9.45232630e-01 -4.00730185e-02 4.35391068e-01 -1.97032496e-01 1.17144322e+00 -1.17515671e+00 -1.10357285e+00 9.95171428e-01 -1.10977083e-01 -4.75097865e-01 3.60983372e-01 -3.35782081e-01 -3.19791257e-01 -5.40494382e-01 8.35280269e-02 5.56449175e-01 3.61989975e-01 -1.31195152e+00 -4.75648463e-01 -3.61692399e-01 -9.26229879e-02 3.97533417e-01 -2.72569180e-01 4.57712054e-01 -2.09688872e-01 -5.13405561e-01 7.16311932e-02 -9.14723277e-01 -1.64757490e-01 -5.76105952e-01 -2.48808831e-01 -6.22762978e-01 1.22302718e-01 -9.62927699e-01 1.67012107e+00 -2.13665104e+00 -5.46691380e-02 2.05020234e-01 -1.29526675e-01 1.88998520e-01 2.29317725e-01 3.49840224e-01 1.86170209e-02 6.13927901e-01 -4.61964935e-01 -2.55579472e-01 7.07086474e-02 4.00141507e-01 -1.92213356e-01 1.42839566e-01 4.81651843e-01 5.60553789e-01 -8.73028636e-01 -6.84702754e-01 -6.08559102e-02 1.36722356e-01 -6.05680943e-01 -3.62096019e-02 -2.28122026e-01 1.62756413e-01 1.32125139e-01 7.11587906e-01 2.89271951e-01 -2.60449555e-02 5.13282478e-01 1.85783923e-01 -4.94680732e-01 9.13746119e-01 -1.09581232e+00 1.12447596e+00 -6.25702322e-01 3.44046026e-01 1.92474239e-02 -4.71940249e-01 9.13445771e-01 3.08409810e-01 5.03363870e-02 -5.41097403e-01 -2.47187063e-01 7.23210931e-01 6.95652366e-01 -4.13863331e-01 5.37742853e-01 -2.65563190e-01 -1.96472868e-01 3.52439612e-01 -1.25781912e-02 -3.96456182e-01 5.09933352e-01 4.24196683e-02 1.03046596e+00 2.61542678e-01 6.63307726e-01 -5.11004984e-01 2.42966235e-01 2.22850561e-01 9.56899941e-01 7.73031771e-01 -1.46516487e-01 4.28615689e-01 5.25825620e-01 -1.20291285e-01 -1.07220840e+00 -8.17799568e-01 -4.67182368e-01 1.29704857e+00 -3.80601406e-01 -5.49581110e-01 -4.48299766e-01 -8.05868030e-01 -1.28638878e-01 1.43363082e+00 -3.02494496e-01 9.34295263e-03 -8.15571606e-01 -1.06201065e+00 2.97480851e-01 3.23788315e-01 -8.67723376e-02 -1.32865143e+00 -3.62248480e-01 2.27027521e-01 -2.04080060e-01 -6.23701334e-01 -2.69776672e-01 7.58987606e-01 -7.64842749e-01 -7.84146965e-01 -2.02985644e-01 -7.64976203e-01 5.76856732e-01 -4.21357721e-01 1.47188592e+00 3.20908904e-01 2.77556360e-01 3.35534550e-02 -5.25783181e-01 -6.94488943e-01 -7.88139641e-01 2.38453567e-01 -3.93775702e-02 -3.97628725e-01 6.31329060e-01 -1.62153721e-01 -1.00763328e-01 3.54453996e-02 -7.51276612e-01 -1.89679176e-01 6.50085270e-01 8.96968961e-01 6.11500084e-01 -1.46688446e-01 5.00656843e-01 -1.32303762e+00 5.83817482e-01 -4.92875844e-01 -4.91349071e-01 5.31692147e-01 -8.89101446e-01 2.15697661e-01 6.63788021e-01 -3.25701088e-01 -1.12288439e+00 2.45533630e-01 -3.26994985e-01 3.92363697e-01 -1.16137013e-01 6.62216902e-01 -3.92317027e-01 3.24339479e-01 8.83300483e-01 -2.07398832e-01 -2.75271058e-01 -7.64540553e-01 -8.44338238e-02 7.85365522e-01 1.48889989e-01 -7.26886034e-01 5.93750894e-01 -1.75123826e-01 -6.03258252e-01 -7.89169967e-01 -1.06084919e+00 -4.61620331e-01 -7.71364093e-01 1.32006720e-01 4.31343675e-01 -4.91398275e-01 -1.02588654e-01 8.84396508e-02 -1.00928712e+00 -5.55339098e-01 -3.76685500e-01 5.39084315e-01 -4.18774068e-01 2.84947246e-01 -4.16834801e-01 -1.01765192e+00 -2.77908444e-01 -1.21362936e+00 9.66716111e-01 3.45867127e-02 -7.82617152e-01 -1.17864525e+00 1.30256236e-01 2.81003028e-01 2.34539509e-01 -7.01621398e-02 1.48012865e+00 -1.28656518e+00 -1.55344129e-01 -2.74515413e-02 3.52567762e-01 3.20370555e-01 1.69887841e-01 1.88761443e-01 -8.59901428e-01 -2.50394225e-01 4.54998687e-02 -4.13428366e-01 6.74211204e-01 1.51479408e-01 7.61245489e-01 -4.78862911e-01 -4.60357852e-02 2.47211725e-01 1.44665694e+00 3.48158538e-01 4.73327577e-01 4.49505687e-01 3.90658498e-01 8.58317077e-01 6.12131536e-01 5.77362105e-02 3.90143126e-01 6.70841813e-01 -5.29829264e-02 1.62587110e-02 6.46045953e-02 -2.37648144e-01 5.11785865e-01 1.07680678e+00 1.37409747e-01 -3.80472749e-01 -1.50662196e+00 5.82766414e-01 -1.47799230e+00 -7.06348181e-01 -8.07015076e-02 2.67065620e+00 1.44618464e+00 5.38459241e-01 1.21200293e-01 4.62885112e-01 5.66036999e-01 -1.15238585e-01 -2.40536958e-01 -7.65474856e-01 -2.81427860e-01 2.50483334e-01 4.35211778e-01 8.53660822e-01 -9.68088150e-01 1.08134508e+00 5.90982533e+00 8.95425260e-01 -9.27463412e-01 -5.69469482e-02 6.90192342e-01 7.18450695e-02 -5.21041214e-01 3.19610596e-01 -9.33116674e-01 5.42693913e-01 1.05983818e+00 -1.71320438e-01 3.19635987e-01 7.19751596e-01 1.59373105e-01 -4.14786071e-01 -1.14856505e+00 4.14483368e-01 -1.00408472e-01 -8.40696335e-01 -3.86879481e-02 1.17847733e-01 4.35976803e-01 2.38491781e-02 -2.86401838e-01 4.19576287e-01 6.52051508e-01 -7.61327803e-01 9.57819223e-01 2.07986355e-01 8.33604097e-01 -5.86603224e-01 9.18916285e-01 6.70503497e-01 -6.45909131e-01 -1.41839728e-01 -3.67523313e-01 -1.05023451e-01 1.48730576e-01 5.92659712e-01 -1.16155672e+00 2.37227753e-01 4.96191442e-01 1.52772695e-01 -7.43536413e-01 1.05873716e+00 -3.40397418e-01 1.25664282e+00 -5.51288188e-01 -9.56371352e-02 1.65890902e-02 -1.39643297e-01 5.50931513e-01 1.41555035e+00 -3.61459120e-03 6.94191232e-02 1.66343644e-01 5.12850225e-01 1.44735575e-01 5.72359204e-01 -6.18187308e-01 -1.01472452e-01 7.61746347e-01 1.08268499e+00 -8.33488166e-01 -3.00663263e-01 -3.53240073e-01 4.74310458e-01 6.17020845e-01 5.92030808e-02 -2.02327073e-01 -2.01214924e-01 6.58279508e-02 2.35322744e-01 -3.53367850e-02 -1.92089051e-01 -6.72435999e-01 -9.26884532e-01 8.51760339e-03 -9.83891606e-01 5.58925688e-01 -4.87397313e-01 -1.34110200e+00 5.48745990e-01 -5.18703498e-02 -8.64854097e-01 -4.57572818e-01 -5.86696982e-01 -2.73937553e-01 9.58003998e-01 -1.11049378e+00 -7.13912129e-01 2.79216081e-01 -2.06550620e-02 5.44700027e-01 1.13771237e-01 9.02371824e-01 2.56286263e-01 -4.94730413e-01 6.52150035e-01 -3.04275677e-02 2.00460941e-01 7.94434071e-01 -1.66355157e+00 3.74683529e-01 7.94920266e-01 4.62661415e-01 9.05724823e-01 7.26090193e-01 -9.84222174e-01 -9.71842229e-01 -6.90888107e-01 1.62913561e+00 -7.07106352e-01 5.76460481e-01 -4.20689791e-01 -1.17864668e+00 6.30724907e-01 3.65841910e-02 -4.89549845e-01 9.34905887e-01 5.75767994e-01 -1.52573526e-01 9.11304578e-02 -1.18411660e+00 6.77540421e-01 1.01126921e+00 -2.57707804e-01 -8.90590250e-01 3.68470252e-01 5.96555054e-01 -1.71900928e-01 -7.19520628e-01 4.87078667e-01 3.34755033e-01 -7.01417983e-01 3.34793448e-01 -5.39778292e-01 2.16949806e-01 2.56359056e-02 -1.07904218e-01 -1.46327698e+00 -4.69214797e-01 -6.17238760e-01 3.80175471e-01 1.54739141e+00 1.19318068e+00 -4.39181030e-01 5.35770655e-01 8.80711436e-01 -2.41333961e-01 -8.28789473e-01 -8.59104156e-01 -6.71524942e-01 3.40802580e-01 -5.89804888e-01 2.85581648e-01 1.04919875e+00 9.41215605e-02 4.53921318e-01 1.35559142e-01 -1.14718169e-01 2.68814564e-01 -1.54529095e-01 3.61550331e-01 -1.27605903e+00 -2.77514309e-01 -4.13456917e-01 -8.55391696e-02 -5.60399890e-01 3.21247429e-02 -9.81195569e-01 3.92767161e-01 -1.43331957e+00 1.06039554e-01 -8.00397336e-01 -1.10226013e-01 6.44921482e-01 -4.52516407e-01 -3.49714160e-02 2.28085220e-01 3.24331224e-01 -3.67660791e-01 -1.40488252e-01 6.95389211e-01 2.77261019e-01 -5.91297030e-01 6.17239326e-02 -7.78788209e-01 9.48734999e-01 7.35012174e-01 -6.56816483e-01 -1.60226017e-01 -6.43961906e-01 7.21335411e-01 -7.45174959e-02 -1.11637510e-01 -4.58588064e-01 4.84420434e-02 -2.57065177e-01 2.70933002e-01 -3.62883955e-01 8.35019499e-02 -7.05621600e-01 5.70353270e-02 3.02221507e-01 -5.06058156e-01 3.45198750e-01 2.25726396e-01 -3.43000633e-03 6.74947426e-02 -6.22638583e-01 6.83860421e-01 -4.15983766e-01 -4.16163564e-01 -1.14804059e-01 -2.23785236e-01 4.33405131e-01 3.87061357e-01 -2.93661922e-01 -1.14743643e-01 -3.39784101e-02 -7.35589504e-01 -1.55347819e-02 6.62251711e-01 2.71087706e-01 1.25469893e-01 -8.60354841e-01 -8.88563216e-01 1.74277008e-01 1.21048346e-01 -5.45020401e-03 -4.11037087e-01 8.63085091e-01 -3.64658624e-01 3.42212230e-01 2.89676934e-01 -3.41068983e-01 -1.10202456e+00 2.41211817e-01 2.68101543e-01 -4.81096268e-01 -8.73246342e-02 1.02196836e+00 -8.82626772e-02 -6.05805874e-01 1.54786870e-01 -1.96688354e-01 -2.45925695e-01 3.37108195e-01 1.09161004e-01 2.66598046e-01 5.18912435e-01 -5.77551603e-01 -4.04714853e-01 9.46604535e-02 -3.23036045e-01 -3.74821514e-01 1.34715486e+00 -1.23897344e-02 -1.54224932e-01 8.94853592e-01 5.53744555e-01 6.56107664e-01 -1.00162578e+00 -2.17235535e-01 8.89463723e-01 -3.14349383e-01 -6.63056970e-02 -1.29071605e+00 -4.64007169e-01 5.97436070e-01 2.07777888e-01 3.92952472e-01 7.18906999e-01 7.68714468e-04 2.79605955e-01 3.18224400e-01 4.96891558e-01 -1.41569948e+00 -3.96118522e-01 5.73946655e-01 9.01369750e-01 -1.30441284e+00 1.35310292e-01 -2.42329329e-01 -7.92576551e-01 7.59652615e-01 7.28521347e-01 2.50735909e-01 3.60747546e-01 4.32727545e-01 2.16410264e-01 -8.83186385e-02 -1.03574848e+00 -2.46221334e-01 1.94938540e-01 3.13716739e-01 8.62860262e-01 2.22451374e-01 -7.60258436e-01 6.75273657e-01 -6.61715031e-01 -4.63249087e-01 3.35443139e-01 8.33248198e-01 -4.16609526e-01 -1.23507094e+00 -3.87574732e-01 7.89136291e-01 -6.56288207e-01 -6.31118536e-01 -8.93747091e-01 9.09841299e-01 4.14385587e-01 9.12240028e-01 2.87309974e-01 -8.95711407e-03 1.90786704e-01 6.02410316e-01 3.72238308e-01 -1.14115012e+00 -9.42399979e-01 1.44491285e-01 6.16889775e-01 3.08613703e-02 -1.40704945e-01 -1.08297586e+00 -1.13719702e+00 -1.23641305e-01 -8.62275541e-01 3.78183097e-01 6.00969315e-01 1.04778898e+00 5.55274934e-02 -2.20774963e-01 3.06805968e-01 -1.91498205e-01 -9.46955800e-01 -1.27382350e+00 -2.37873077e-01 4.76293296e-01 -1.14647131e-02 -5.01400232e-01 -7.38738716e-01 3.21443342e-02]
[10.758749961853027, 9.466996192932129]
b012529a-52b4-499a-971f-1a117cef7e99
robust-counterfactual-inferences-using
1808.07569
null
http://arxiv.org/abs/1808.07569v1
http://arxiv.org/pdf/1808.07569v1.pdf
Robust Counterfactual Inferences using Feature Learning and their Applications
In a wide variety of applications, including personalization, we want to measure the difference in outcome due to an intervention and thus have to deal with counterfactual inference. The feedback from a customer in any of these situations is only 'bandit feedback' - that is, a partial feedback based on whether we chose to intervene or not. Typically randomized experiments are carried out to understand whether an intervention is overall better than no intervention. Here we present a feature learning algorithm to learn from a randomized experiment where the intervention in consideration is most effective and where it is least effective rather than only focusing on the overall impact, thus adding a context to our learning mechanism and extract more information. From the randomized experiment, we learn the feature representations which divide the population into subpopulations where we observe statistically significant difference in average customer feedback between those who were subjected to the intervention and those who were not, with a level of significance l, where l is a configurable parameter in our model. We use this information to derive the value of the intervention in consideration for each instance in the population. With experiments, we show that using this additional learning, in future interventions, the context for each instance could be leveraged to decide whether to intervene or not.
['Abhimanyu Mitra', 'Sushant Kumar', 'Kannan Achan']
2018-08-22
null
null
null
null
['counterfactual-inference']
['miscellaneous']
[ 4.62089151e-01 2.09004238e-01 -7.76381016e-01 -3.76206249e-01 -5.90437829e-01 -4.89441901e-01 5.57173133e-01 5.85798025e-01 -7.78246522e-01 9.18771565e-01 5.67247093e-01 -7.52532244e-01 -4.39769298e-01 -8.93754363e-01 -9.30403829e-01 -8.57185841e-01 -2.49109487e-03 5.80751777e-01 -1.78370833e-01 -4.77806143e-02 4.82927173e-01 2.15084642e-01 -1.44399762e+00 4.29827094e-01 6.07086778e-01 8.38110924e-01 -2.02525146e-02 5.91512322e-01 1.09599486e-01 4.68023419e-01 -5.97556949e-01 -1.60500541e-01 3.40445727e-01 -7.34669268e-01 -7.09583342e-01 1.90417439e-01 1.55864879e-01 -4.42083061e-01 1.66355297e-01 6.93968594e-01 4.35743034e-01 2.21543640e-01 9.21317816e-01 -1.03228474e+00 -2.15009525e-01 1.10671961e+00 -5.96014500e-01 2.82440424e-01 5.47793090e-01 4.43502337e-01 1.30080307e+00 -3.13514173e-02 5.22136509e-01 1.30190885e+00 3.51977766e-01 3.35929036e-01 -1.81766200e+00 -6.96262240e-01 5.13354242e-01 1.00356765e-01 -6.63089275e-01 -4.17755395e-01 8.41747165e-01 -4.90728080e-01 4.94809330e-01 2.92780757e-01 8.46127212e-01 9.26125407e-01 1.72427952e-01 6.14769578e-01 1.25269854e+00 -6.29439652e-01 6.87305868e-01 3.58302712e-01 -9.36140865e-03 2.65809149e-01 5.34211159e-01 5.51753998e-01 -2.15596706e-01 -3.98867369e-01 3.87668580e-01 2.33922780e-01 -3.28646630e-01 -4.00726676e-01 -8.51260245e-01 1.21584773e+00 3.26837689e-01 1.03009358e-01 -8.02759945e-01 6.14665449e-02 4.24450725e-01 4.37416524e-01 2.40675718e-01 7.79931307e-01 -7.45840013e-01 -1.96409076e-02 -7.16255307e-01 5.29761910e-01 7.53411949e-01 1.49988949e-01 1.03964412e+00 -4.62089092e-01 -3.39140266e-01 5.38384974e-01 -1.13561183e-01 1.79669321e-01 5.19513428e-01 -8.87841463e-01 4.61556196e-01 4.98615324e-01 5.34416735e-01 -6.32388055e-01 -2.85141438e-01 -1.12599088e-02 -2.55341083e-01 2.28560433e-01 5.48874438e-01 -8.15369606e-01 -8.10434163e-01 2.01300788e+00 2.95380920e-01 2.57724643e-01 -2.04935104e-01 7.80401945e-01 -4.83562984e-02 4.52865422e-01 1.70942560e-01 -6.57363832e-01 1.03660882e+00 -1.21813551e-01 -4.85462278e-01 -3.16374272e-01 9.53833222e-01 -4.15467471e-01 1.11226428e+00 3.74874830e-01 -7.09451795e-01 -1.75019830e-01 -9.92274106e-01 7.61677563e-01 -7.55701587e-02 -3.93720627e-01 7.68184423e-01 6.29800022e-01 -6.63921595e-01 8.69028866e-01 -3.82968873e-01 -2.77027547e-01 3.67221892e-01 5.35054743e-01 -1.61434650e-01 1.11464068e-01 -1.23859429e+00 7.23877311e-01 4.49468046e-01 -3.99013400e-01 -5.06649315e-01 -8.53885651e-01 -6.00775659e-01 4.74352986e-01 8.10215950e-01 -8.24635208e-01 1.26239347e+00 -1.30863643e+00 -1.22728169e+00 5.10374129e-01 -1.23704635e-01 -8.51585805e-01 5.51853299e-01 2.60036975e-01 -6.35762289e-02 -2.52946705e-01 2.11768404e-01 3.74882996e-01 7.83460259e-01 -1.08855462e+00 -1.15074885e+00 -6.80714309e-01 4.32918519e-01 1.90484673e-01 4.51646782e-02 -5.66563345e-02 1.85548529e-01 -3.12793225e-01 -3.79067719e-01 -1.17414117e+00 -4.08161730e-01 -4.64062393e-01 -3.38859320e-01 -2.77545005e-01 5.02929211e-01 -2.60953248e-01 1.19278336e+00 -1.91608906e+00 -1.68977484e-01 3.03509891e-01 -3.19988765e-02 -1.84228480e-01 7.27495402e-02 4.88057882e-01 -1.20721564e-01 3.85734528e-01 -1.37257367e-01 1.89556509e-01 -4.22468372e-02 -1.82370581e-02 -3.23885053e-01 5.24049938e-01 1.22103073e-01 3.22155923e-01 -6.95184231e-01 -2.01075912e-01 1.91329092e-01 -1.51378840e-01 -1.04203749e+00 3.03089470e-01 -3.13806325e-01 4.84988898e-01 -7.16138363e-01 -2.05024164e-02 4.16283965e-01 2.07241885e-02 4.08748031e-01 1.45382732e-01 -7.92912096e-02 5.48507214e-01 -1.36686194e+00 9.19245005e-01 -7.59325981e-01 4.68602508e-01 -4.88913953e-02 -1.40015602e+00 5.18776715e-01 1.54882669e-01 5.15462697e-01 -4.57400143e-01 3.23931098e-01 5.22384886e-03 3.38190764e-01 -4.77516413e-01 7.65121207e-02 -6.54297829e-01 -2.18920976e-01 7.08530664e-01 -3.13797921e-01 2.08269805e-01 1.07744291e-01 -1.11454636e-01 1.14462614e+00 -3.34836364e-01 6.60562754e-01 -2.72545427e-01 2.46848360e-01 -2.12122247e-01 8.51898432e-01 1.13659430e+00 -1.26811698e-01 1.34646162e-01 8.91066968e-01 -2.76884049e-01 -8.14978063e-01 -8.00931871e-01 -5.37163466e-02 1.14591384e+00 -1.55045748e-01 1.85113102e-01 -4.64439124e-01 -8.68869007e-01 4.83714342e-01 1.12791550e+00 -1.01432407e+00 -4.49433237e-01 -3.54627430e-01 -6.33652151e-01 -3.41677427e-01 3.14089447e-01 3.29438955e-01 -1.16922009e+00 -8.26399148e-01 1.25987723e-01 1.36362240e-01 -2.70547569e-01 -6.29063427e-01 3.53189617e-01 -8.72794032e-01 -1.25782311e+00 -2.29600444e-01 -2.31883436e-01 5.20061553e-01 -2.63422839e-02 9.12043214e-01 -2.37706497e-01 1.14100173e-01 2.27355048e-01 -2.54284501e-01 -5.83144307e-01 -2.55013078e-01 -1.52078226e-01 7.37015009e-02 2.04342604e-01 3.74616146e-01 -4.94710028e-01 -8.61922622e-01 8.60024542e-02 -6.98799253e-01 -3.76516938e-01 6.08253717e-01 1.00556326e+00 2.98261661e-02 4.15995628e-01 8.68143797e-01 -1.62016857e+00 8.11436296e-01 -6.63363695e-01 -5.80856144e-01 1.69376925e-01 -7.41047859e-01 4.21946585e-01 7.27413595e-01 -7.83956587e-01 -1.07826018e+00 -1.82999611e-01 1.48478150e-01 -6.30703568e-02 -2.31797308e-01 7.27150321e-01 -4.62696701e-01 6.61413372e-01 6.91501379e-01 -2.99983114e-01 -2.65871678e-02 -3.96338493e-01 3.15508306e-01 7.40411997e-01 5.54991923e-02 -8.27566445e-01 1.22191347e-01 1.68244332e-01 -1.81002572e-01 -5.04166603e-01 -7.24059820e-01 -2.17313230e-01 -2.19364852e-01 3.03650033e-02 4.30129439e-01 -4.83945638e-01 -1.18485785e+00 -1.83178335e-01 -5.59688568e-01 -6.06588125e-01 -4.95920807e-01 6.96059287e-01 -7.71781266e-01 -2.90730000e-01 6.64466321e-02 -1.04161382e+00 1.75904781e-01 -1.17329240e+00 4.79748100e-01 2.74406940e-01 -3.95137846e-01 -1.18424475e+00 2.06032284e-02 2.24508807e-01 1.71062946e-01 1.76908702e-01 1.25035191e+00 -1.07127726e+00 -3.15141618e-01 -3.99067730e-01 2.13476896e-01 1.02125205e-01 5.70735455e-01 -2.15198323e-01 -6.50869370e-01 -5.60988367e-01 1.16746575e-01 -2.90023126e-02 8.09394658e-01 9.13646996e-01 1.10251987e+00 -9.70351756e-01 -5.17987907e-01 1.06142879e-01 1.30974126e+00 5.72565079e-01 3.78078967e-01 2.97863394e-01 2.29146436e-01 8.03486168e-01 7.59707987e-01 7.59133816e-01 1.72382325e-01 8.13066721e-01 3.30749929e-01 2.30956301e-01 5.11272490e-01 -3.95126462e-01 3.02711725e-01 -3.70125622e-01 2.71073222e-01 -9.11280364e-02 -4.26543504e-01 5.56125700e-01 -1.79698288e+00 -1.14315045e+00 5.31707168e-01 3.03243113e+00 8.59550536e-01 4.68956947e-01 6.53795123e-01 7.95630813e-02 8.70665193e-01 2.45018378e-02 -8.43318999e-01 -8.41432273e-01 3.66832495e-01 5.39542176e-04 6.93062901e-01 6.10168099e-01 -8.98471713e-01 3.31283689e-01 6.15993643e+00 5.25541604e-01 -1.31427610e+00 -4.68981206e-01 9.92228091e-01 -2.17309460e-01 -4.96968836e-01 3.83779824e-01 -7.18469083e-01 6.51427507e-01 1.36584628e+00 -5.67063570e-01 5.36770761e-01 5.01162469e-01 6.27954066e-01 -4.82096404e-01 -1.58213055e+00 2.63055623e-01 -4.14987475e-01 -1.15799868e+00 -4.80245501e-02 4.12248671e-01 5.92537642e-01 -5.55211663e-01 1.05923191e-01 5.25747359e-01 7.30814397e-01 -7.64772117e-01 5.77678978e-01 3.79412025e-01 4.26009566e-01 -1.04663157e+00 8.89987707e-01 7.36364782e-01 -4.43000644e-01 -6.72613502e-01 -6.69301003e-02 -5.02313614e-01 -2.05491588e-01 6.64464116e-01 -1.38452709e+00 1.00633681e-01 3.18740785e-01 1.98398620e-01 -3.36427093e-02 8.62561822e-01 -6.21230491e-02 8.67423058e-01 -1.69946596e-01 -2.72566229e-01 -4.17689160e-02 -2.03745425e-01 3.41130137e-01 9.23713386e-01 3.05880338e-01 6.79267496e-02 3.40280652e-01 5.69654107e-01 -3.98132801e-02 2.13934138e-01 -8.02256107e-01 5.45396749e-03 5.20218074e-01 6.86784744e-01 -5.57853103e-01 -3.87076020e-01 -3.89484107e-01 4.33008164e-01 1.64516345e-01 3.55899662e-01 -4.14465100e-01 -2.38496408e-01 7.16496348e-01 4.01794255e-01 4.56952095e-01 6.58409417e-01 -2.27036729e-01 -7.37032950e-01 -3.01161975e-01 -8.24012578e-01 6.89764917e-01 -3.33526522e-01 -1.32699251e+00 -3.20778042e-01 3.23683411e-01 -9.17916119e-01 -5.73066950e-01 -3.66820455e-01 -8.11762810e-01 1.01081073e+00 -8.98589849e-01 -4.25731540e-01 5.78668535e-01 6.21127784e-02 3.67760867e-01 1.94151610e-01 4.90492791e-01 -1.56575754e-01 -4.94020849e-01 5.21561980e-01 3.84872928e-02 -1.27828419e-01 6.91468537e-01 -1.34788811e+00 -4.92540836e-01 3.19281161e-01 -2.82519728e-01 8.30226779e-01 1.17286873e+00 -6.56186998e-01 -1.12649596e+00 -7.30340064e-01 6.94455445e-01 -1.64042458e-01 6.01918399e-01 -1.69611067e-01 -6.92651570e-01 9.43214476e-01 1.64410770e-02 -3.28207910e-01 7.60399520e-01 6.79045260e-01 -1.02379739e-01 -3.55772197e-01 -1.56567526e+00 8.12853992e-01 6.08415782e-01 -2.17938080e-01 -6.78642333e-01 -6.32931367e-02 7.22234070e-01 2.80698668e-02 -5.66658854e-01 2.68147856e-01 6.80290341e-01 -1.07336414e+00 6.24873221e-01 -1.02892721e+00 4.48405057e-01 3.45779769e-02 -1.16986364e-01 -1.78258669e+00 -3.54635686e-01 -3.69491369e-01 2.91583151e-01 1.23976421e+00 5.64691901e-01 -8.71927917e-01 8.91956806e-01 8.26116502e-01 4.55634892e-01 -9.70390558e-01 -8.38431299e-01 -3.73012722e-01 2.11103484e-01 -1.26285717e-01 8.76025200e-01 7.68164337e-01 8.72063711e-02 5.28530717e-01 -1.89518586e-01 1.16761155e-01 3.25482935e-01 5.36294818e-01 7.92924464e-01 -1.04322195e+00 -6.09682679e-01 -5.30399382e-01 -1.63279057e-01 -7.02431917e-01 1.40384719e-01 -5.73136151e-01 7.30300322e-02 -1.22326565e+00 5.73872745e-01 -3.72257203e-01 -4.93138611e-01 3.99396658e-01 -5.10827780e-01 -5.44502795e-01 1.55796900e-01 -2.22292647e-01 -5.53839877e-02 1.91568404e-01 9.47612703e-01 -2.52962232e-01 -7.44715989e-01 6.06905580e-01 -1.27116144e+00 4.82479930e-01 7.07511187e-01 -5.05033255e-01 -4.44963843e-01 3.42917591e-01 4.41369526e-02 5.70701241e-01 1.51112482e-01 -3.31947565e-01 -1.70329332e-01 -7.92396367e-01 3.07381570e-01 -5.94982430e-02 -1.57769695e-01 -8.68978500e-01 1.95488334e-01 6.71231806e-01 -9.21551049e-01 -3.42142642e-01 8.38147700e-02 7.23907590e-01 2.33593971e-01 -3.49392295e-01 6.40075922e-01 -4.36074845e-02 -1.57465488e-01 8.28462169e-02 -3.38623106e-01 -4.19225767e-02 7.60833621e-01 1.26265496e-01 1.36572942e-02 -7.79012561e-01 -7.70692945e-01 2.99866617e-01 5.42521179e-01 1.65790096e-01 1.53296858e-01 -1.16161919e+00 -7.49428868e-01 8.85031968e-02 5.46669438e-02 -3.64872158e-01 2.99459845e-01 6.04493439e-01 2.80643225e-01 3.98346573e-01 1.68440044e-02 -1.97179303e-01 -9.87728298e-01 9.32158828e-01 1.22486942e-01 -5.14985144e-01 -3.15348655e-01 3.24570388e-01 5.06367505e-01 -1.60694093e-01 -1.57773420e-02 -2.49720559e-01 -3.34530681e-01 4.23845857e-01 4.40392017e-01 2.52757370e-01 7.84806162e-02 -2.17393994e-01 -1.64527252e-01 8.81216899e-02 -3.06914717e-01 -2.75864899e-01 1.35830498e+00 -1.65096417e-01 2.32631058e-01 8.48573148e-01 1.21745455e+00 8.80453736e-02 -1.43223691e+00 -1.90881014e-01 1.71308983e-02 -8.40550005e-01 4.97348756e-02 -9.34654832e-01 -1.02646053e+00 5.00373781e-01 6.89340353e-01 5.40055275e-01 1.24435556e+00 -4.38982844e-02 4.30712029e-02 2.51364619e-01 3.88408005e-01 -1.06850386e+00 -3.15523207e-01 -8.37269351e-02 7.39064276e-01 -1.33391309e+00 1.84018195e-01 2.27086246e-01 -6.42965317e-01 6.97968841e-01 2.18810305e-01 -3.65487695e-01 6.64864123e-01 -1.19586021e-01 -2.06560418e-01 5.22939069e-03 -1.05395067e+00 -1.34212434e-01 2.93232724e-02 3.36527884e-01 3.37948769e-01 5.32467723e-01 -6.26780510e-01 5.14816642e-01 -3.41814011e-01 5.39680235e-02 6.33757710e-01 8.02118659e-01 -4.19858903e-01 -1.12482548e+00 -4.55567330e-01 1.20488620e+00 -4.09843832e-01 2.43320793e-01 -3.55327338e-01 8.50268424e-01 1.48622692e-01 9.85690475e-01 3.47367436e-01 -2.58288473e-01 6.43511832e-01 1.54659644e-01 4.05066192e-01 -6.97303236e-01 -3.96965504e-01 1.23531856e-01 2.93291926e-01 -2.86881447e-01 -1.39101803e-01 -1.14222682e+00 -1.10170412e+00 -4.03557867e-01 -4.66219932e-01 3.23061973e-01 5.20831645e-01 1.17380440e+00 1.68687358e-01 4.18234885e-01 1.20933735e+00 -8.92993689e-01 -7.94913650e-01 -9.24411297e-01 -7.36728013e-01 4.70386058e-01 6.48183405e-01 -8.67817640e-01 -8.01390290e-01 -2.88118988e-01]
[8.367703437805176, 5.411685466766357]
ac4c7daf-4d6f-423a-b499-7383cd3555e4
gatortron-a-large-clinical-language-model-to
2203.03540
null
https://arxiv.org/abs/2203.03540v3
https://arxiv.org/pdf/2203.03540v3.pdf
GatorTron: A Large Clinical Language Model to Unlock Patient Information from Unstructured Electronic Health Records
There is an increasing interest in developing artificial intelligence (AI) systems to process and interpret electronic health records (EHRs). Natural language processing (NLP) powered by pretrained language models is the key technology for medical AI systems utilizing clinical narratives. However, there are few clinical language models, the largest of which trained in the clinical domain is comparatively small at 110 million parameters (compared with billions of parameters in the general domain). It is not clear how large clinical language models with billions of parameters can help medical AI systems utilize unstructured EHRs. In this study, we develop from scratch a large clinical language model - GatorTron - using >90 billion words of text (including >82 billion words of de-identified clinical text) and systematically evaluate it on 5 clinical NLP tasks including clinical concept extraction, medical relation extraction, semantic textual similarity, natural language inference (NLI), and medical question answering (MQA). We examine how (1) scaling up the number of parameters and (2) scaling up the size of the training data could benefit these NLP tasks. GatorTron models scale up the clinical language model from 110 million to 8.9 billion parameters and improve 5 clinical NLP tasks (e.g., 9.6% and 9.5% improvement in accuracy for NLI and MQA), which can be applied to medical AI systems to improve healthcare delivery. The GatorTron models are publicly available at: https://catalog.ngc.nvidia.com/orgs/nvidia/teams/clara/models/gatortron_og.
['Tanja Magoc', 'Ying Zhang', 'Mona G Flores', 'Cheryl Martin', 'Colin Compas', 'Christopher Parisien', 'Kaleb E Smith', 'Hoo Chang Shin', 'Nima PourNejatian', 'Aokun Chen', 'Yonghui Wu', 'Jiang Bian', 'Elizabeth A Shenkman', 'William R Hogan', 'Duane A Mitchell', 'Gloria Lipori', 'Christopher A Harle', 'Xi Yang']
2022-02-02
null
null
null
null
['medical-relation-extraction', 'clinical-concept-extraction']
['medical', 'medical']
[ 8.63025114e-02 3.38367134e-01 -1.92757100e-01 -3.77910882e-01 -9.69210327e-01 -3.91119212e-01 1.02175698e-01 7.26878643e-01 -4.97756809e-01 6.46594167e-01 5.91991365e-01 -8.51814032e-01 -1.44322127e-01 -7.06717372e-01 -3.04904878e-01 -2.23903820e-01 -1.77480057e-01 1.06330609e+00 -4.40679044e-01 -3.09761427e-02 -2.52104849e-01 3.76446307e-01 -5.71695328e-01 9.65039790e-01 1.07029724e+00 8.28444421e-01 -1.33992761e-01 1.15796876e+00 -2.45276853e-01 1.11930370e+00 -5.58711112e-01 -3.14390153e-01 -1.02330223e-01 -2.31252477e-01 -1.15446341e+00 -4.05324101e-01 1.46719776e-02 -3.24404061e-01 -1.16550818e-01 7.66367614e-01 7.15079486e-01 -5.10302365e-01 5.48745036e-01 -9.68257070e-01 -7.90889502e-01 7.60836124e-01 -1.80972204e-01 3.84069353e-01 4.62391108e-01 3.69332135e-01 8.47918987e-01 -5.94987452e-01 7.39974856e-01 1.17848432e+00 8.22433114e-01 8.00695181e-01 -7.55425751e-01 -6.76006734e-01 -2.53416210e-01 -7.66755193e-02 -1.33128715e+00 -3.31143409e-01 6.45437613e-02 -4.85190660e-01 1.56963074e+00 3.97823364e-01 5.65570831e-01 1.04278123e+00 8.78422618e-01 8.16093683e-01 6.66847587e-01 -2.03035027e-01 1.74228549e-01 1.02584206e-01 5.34699440e-01 8.96123528e-01 4.79885310e-01 -2.64194965e-01 -2.79084742e-01 -8.61524940e-01 4.49982345e-01 2.61185735e-01 -2.06760447e-02 5.05318403e-01 -1.40501177e+00 1.09300113e+00 3.03996176e-01 3.82266939e-01 -5.32157362e-01 6.97159097e-02 8.13241601e-01 1.54897988e-01 4.20122564e-01 1.06799126e+00 -7.81493187e-01 -1.84652939e-01 -5.98707557e-01 2.01946095e-01 1.17511082e+00 9.69736099e-01 -3.28641385e-02 -9.75338891e-02 -1.07353866e-01 7.17522800e-01 1.66342631e-01 7.14041352e-01 7.77949274e-01 -7.41485059e-01 6.57745838e-01 6.56017542e-01 -2.81718671e-01 -8.05492043e-01 -8.95337820e-01 -1.35574162e-01 -1.15677142e+00 -7.41788208e-01 3.73210721e-02 -5.78818858e-01 -1.04671180e+00 1.32254469e+00 1.75472483e-01 5.15952669e-02 4.76296246e-01 3.77412379e-01 1.32690454e+00 6.34012282e-01 6.85722172e-01 -2.71639917e-02 2.11863112e+00 -7.75557637e-01 -8.69003177e-01 -4.21220124e-01 1.32411027e+00 -8.47708404e-01 8.28088760e-01 2.73315877e-01 -1.16055763e+00 -4.99377698e-02 -6.78498566e-01 -2.72777528e-01 -4.95371968e-01 -1.18461184e-01 1.01029992e+00 3.85193646e-01 -9.95281994e-01 1.34904116e-01 -1.16518104e+00 -4.67023224e-01 7.48579264e-01 5.06097436e-01 -2.61102080e-01 -2.47225299e-01 -1.51002860e+00 9.10619020e-01 3.14858317e-01 -1.49391010e-01 -4.72193867e-01 -1.20635641e+00 -8.55656922e-01 2.97081135e-02 1.55736491e-01 -1.54511845e+00 1.22319865e+00 -4.51381117e-01 -1.01565123e+00 9.62559164e-01 -2.16653436e-01 -7.95790255e-01 2.72174310e-02 -2.87036568e-01 -5.95102847e-01 4.14988011e-01 4.73799855e-02 7.00676680e-01 6.28777966e-02 -5.11932373e-01 -4.14731026e-01 -3.84851217e-01 -2.93216854e-01 1.46000495e-03 -4.00500804e-01 2.34257787e-01 -1.20083436e-01 -6.40836775e-01 -3.81004572e-01 -8.51126373e-01 -6.57083690e-01 -6.19213507e-02 -5.83709717e-01 -1.48341745e-01 9.24589038e-02 -8.46744955e-01 1.27826321e+00 -1.88816357e+00 -4.00131464e-01 9.05314684e-02 7.24427879e-01 4.66213614e-01 -2.99962580e-01 4.25061733e-01 -2.03931462e-02 5.01518369e-01 -1.95536599e-01 2.58782264e-02 -4.17482138e-01 1.87939689e-01 -2.87935644e-01 1.01020029e-02 4.28343296e-01 1.42128718e+00 -9.76080120e-01 -8.04726243e-01 -1.11694373e-01 6.36050463e-01 -9.05740082e-01 2.77822375e-01 -2.56898880e-01 1.79536581e-01 -9.79251742e-01 8.58891129e-01 3.18385720e-01 -9.83148634e-01 2.86663920e-01 -1.98334575e-01 4.93389517e-01 5.66235363e-01 -4.70454544e-01 1.48529458e+00 -4.05388653e-01 1.72469065e-01 -1.16319485e-01 -6.58243239e-01 5.36901891e-01 6.32441401e-01 1.03794301e+00 -4.14766312e-01 1.95516363e-01 2.81513799e-02 2.70821393e-01 -1.06279874e+00 1.12245895e-01 -3.30981761e-01 -2.50323534e-01 4.81239051e-01 -1.66869015e-01 -2.33499147e-02 -2.11585388e-02 4.29650187e-01 1.60171270e+00 -7.38283455e-01 8.49309266e-01 -2.37962708e-01 3.26465666e-01 5.16495287e-01 5.10974109e-01 5.96744895e-01 -1.14992641e-01 2.52113014e-01 3.56270432e-01 -7.13866830e-01 -8.64570558e-01 -1.07661223e+00 -4.47151661e-01 7.56777227e-01 -4.51950401e-01 -7.79357374e-01 -6.59769237e-01 -5.15639067e-01 1.78540528e-01 7.12126017e-01 -2.98480183e-01 -2.02139676e-01 -6.62475049e-01 -1.35293686e+00 1.09961498e+00 8.23008060e-01 7.99291953e-02 -1.27412057e+00 -6.92093372e-01 3.98543328e-01 -2.76829422e-01 -1.42515135e+00 -6.19153678e-01 -1.04186870e-01 -1.06893158e+00 -1.02008772e+00 -2.88054407e-01 -6.37394369e-01 6.28235221e-01 -4.10333991e-01 1.40956998e+00 3.23703475e-02 -8.78242612e-01 3.12319428e-01 -1.74056739e-01 -8.66220355e-01 -7.78490961e-01 2.05923557e-01 6.54541701e-02 -6.53964043e-01 9.20436442e-01 -1.91855177e-01 -7.40674078e-01 -3.54301870e-01 -1.01415503e+00 2.47280553e-01 7.19463885e-01 8.76883864e-01 5.70588112e-01 -5.29823065e-01 9.13358569e-01 -1.52415347e+00 8.95754337e-01 -8.73744071e-01 2.03222185e-02 3.20796281e-01 -7.29384661e-01 6.12373948e-02 7.39110887e-01 -4.81770843e-01 -6.00999475e-01 -2.36182928e-01 -5.89937270e-01 -8.74699950e-02 -2.38384411e-01 8.90498519e-01 3.41443181e-01 4.48798895e-01 7.72591114e-01 -1.76438183e-01 1.60247803e-01 -3.39752972e-01 3.51010084e-01 9.60713148e-01 1.53435513e-01 -3.27708304e-01 1.87962890e-01 4.84655768e-01 -2.33659104e-01 -6.12881362e-01 -8.06296408e-01 -5.38045526e-01 -1.30778432e-01 5.80929577e-01 1.34782732e+00 -9.59548593e-01 -1.08322060e+00 -7.83077180e-02 -1.16227460e+00 -1.65881261e-01 -3.05825859e-01 6.00904346e-01 -2.95099437e-01 2.58263916e-01 -1.36150730e+00 -4.20011014e-01 -1.32495511e+00 -1.00124729e+00 1.15305209e+00 -1.44521058e-01 -1.01965797e+00 -1.20511723e+00 1.12843879e-01 6.33585155e-01 4.39229608e-01 2.12210804e-01 1.55734682e+00 -1.18067002e+00 -9.39696953e-02 -2.40824431e-01 -2.47525111e-01 1.84219014e-02 2.99653918e-01 -3.52113426e-01 -7.45578587e-01 -1.56452894e-01 1.68321371e-01 -3.42970699e-01 4.79081303e-01 5.24141073e-01 1.38030088e+00 -6.51563823e-01 -6.52596653e-01 7.51279950e-01 1.18283057e+00 3.89196873e-01 3.89400870e-01 -1.41446099e-01 8.17516506e-01 3.37581307e-01 3.13074142e-01 4.12947536e-01 6.34620249e-01 1.24581099e-01 -2.53866345e-01 -3.25834483e-01 5.08078597e-02 1.15542682e-02 1.84390470e-01 1.36811090e+00 1.35459006e-01 -1.75837666e-01 -1.65915024e+00 5.55823863e-01 -1.56702292e+00 -4.06531453e-01 6.70319796e-02 1.56706822e+00 1.38021910e+00 -8.77059996e-02 -2.88003594e-01 -5.13064504e-01 1.39100030e-01 -2.96287447e-01 -7.51987875e-01 -7.38082647e-01 2.10957274e-01 4.87462550e-01 3.45753670e-01 5.80797315e-01 -8.47050726e-01 8.59821677e-01 6.18319654e+00 6.73325896e-01 -1.00415885e+00 1.51369736e-01 1.06374991e+00 -3.93427610e-01 -2.05417380e-01 -4.82355028e-01 -9.55076277e-01 3.05804968e-01 1.60080159e+00 -2.94311374e-01 -3.63483503e-02 7.31344402e-01 3.19763333e-01 2.53185302e-01 -1.44775701e+00 1.01917398e+00 1.27318397e-01 -1.76690865e+00 5.42741835e-01 2.17934296e-01 6.28752112e-01 2.95739979e-01 -7.41716400e-02 2.28470132e-01 4.94041681e-01 -1.54319298e+00 -1.63703725e-01 5.57343066e-01 1.01447833e+00 -4.62714493e-01 1.12622237e+00 1.75417274e-01 -8.82041335e-01 -8.47729668e-03 -1.32222548e-01 3.17806184e-01 3.34614038e-01 6.86665833e-01 -1.39779460e+00 4.25141633e-01 6.94151878e-01 6.86395466e-01 -4.60927367e-01 4.43075269e-01 4.20584440e-01 7.67993152e-01 -2.69188970e-01 -1.18231609e-01 1.70615628e-01 1.17581278e-01 2.47344226e-01 1.53984201e+00 9.34635848e-02 6.89571023e-01 3.44829351e-01 7.40604222e-01 -2.80230075e-01 3.16782475e-01 -5.35221338e-01 -4.51136827e-01 3.87511224e-01 1.11267817e+00 -3.79721820e-01 -8.05660248e-01 -3.31004620e-01 5.74073672e-01 7.80814886e-02 3.01358670e-01 -7.72858381e-01 -2.41463035e-01 6.91641986e-01 1.67148128e-01 -3.28899652e-01 2.46794224e-01 -6.72520041e-01 -1.12903845e+00 -2.91225284e-01 -1.40085936e+00 8.91441107e-01 -6.26135230e-01 -1.89035344e+00 9.56613600e-01 -1.77340120e-01 -8.80181253e-01 -6.34256423e-01 -6.92830801e-01 -1.04122892e-01 8.58673275e-01 -1.36366963e+00 -1.10334718e+00 -1.17386580e-01 4.68524396e-01 4.00192589e-01 -2.10108131e-01 1.38742578e+00 4.55836952e-01 -3.89559984e-01 6.51374698e-01 -1.40673012e-01 4.30622369e-01 7.59248853e-01 -1.01532400e+00 4.97065723e-01 1.04071042e-02 -2.72675633e-01 1.14576662e+00 2.24458307e-01 -7.80890465e-01 -1.47371590e+00 -1.35385108e+00 1.46724236e+00 -8.45415533e-01 7.98847437e-01 -2.03200713e-01 -1.07609642e+00 8.99891794e-01 1.15388371e-01 -6.06280938e-02 1.38784385e+00 -4.77090217e-02 -1.96581706e-01 5.26798554e-02 -1.27739143e+00 6.50057316e-01 7.94612885e-01 -6.04273677e-01 -7.20733166e-01 7.07416117e-01 1.12667942e+00 -2.83324689e-01 -1.56549168e+00 6.77775145e-01 4.05377746e-01 6.15491420e-02 1.15974641e+00 -1.27372885e+00 6.92283511e-01 9.20027718e-02 1.60746992e-01 -8.66421700e-01 -8.84671435e-02 -4.78876978e-01 -1.87684670e-01 5.47866702e-01 7.64750063e-01 -9.87016439e-01 5.51637053e-01 8.72636199e-01 5.28412908e-02 -1.48203909e+00 -4.97835368e-01 -2.44894505e-01 3.84906560e-01 -3.20763737e-01 5.16651034e-01 1.27592611e+00 4.63562250e-01 5.88971615e-01 1.86562344e-01 4.39714044e-02 1.38939247e-01 -2.92443931e-02 1.47416890e-01 -9.78630841e-01 -4.06530946e-01 -3.12460095e-01 -1.87588423e-01 -6.27618611e-01 -7.20232027e-03 -1.19786704e+00 -2.55465806e-01 -1.84915161e+00 5.62827766e-01 -5.64229906e-01 -1.68880701e-01 8.07020605e-01 -4.00227666e-01 -5.13629057e-02 -1.33286538e-02 1.31698787e-01 -4.45204854e-01 9.57789198e-02 9.49137568e-01 -2.54591733e-01 -2.53462404e-01 -2.59807467e-01 -9.09056902e-01 7.77172685e-01 9.19869006e-01 -5.42951524e-01 -2.27996126e-01 -5.59024572e-01 3.35278422e-01 2.39413932e-01 1.10791914e-01 -5.75342536e-01 3.43295395e-01 -1.05299711e-01 3.38868141e-01 -2.12015629e-01 1.32402286e-01 -4.79579866e-01 -1.24431424e-01 9.71624374e-01 -6.47834063e-01 4.44379508e-01 5.58009386e-01 1.86847150e-01 -1.56102046e-01 1.41608745e-01 5.00135601e-01 -3.76166463e-01 -1.84737355e-01 3.69597763e-01 -8.00938487e-01 4.50456321e-01 7.52133667e-01 2.03625888e-01 -4.79221702e-01 -5.50817959e-02 -7.20991910e-01 5.62222242e-01 -1.96990341e-01 3.00777465e-01 8.00429821e-01 -9.38067973e-01 -9.89436090e-01 -2.54374482e-02 2.91756868e-01 1.25860199e-01 3.47124934e-01 8.88858795e-01 -1.00380135e+00 9.17244375e-01 1.57049343e-01 -4.73169595e-01 -1.42957544e+00 7.12609410e-01 2.83361256e-01 -8.64745259e-01 -7.29302883e-01 6.86461449e-01 3.52277964e-01 -4.60865080e-01 5.01922034e-02 -8.22004080e-01 -1.73943534e-01 -2.81212121e-01 8.04668427e-01 -6.99228048e-02 1.67851914e-02 -8.88048187e-02 -6.68244123e-01 3.04706007e-01 -4.37958866e-01 2.40755901e-01 1.47384918e+00 3.63271534e-01 -4.02461469e-01 2.63870329e-01 1.23904514e+00 -1.13644175e-01 -1.66396216e-01 -8.86742696e-02 2.67530441e-01 3.26084495e-01 -2.47760981e-01 -1.07737350e+00 -6.91660464e-01 9.34727907e-01 3.83994371e-01 -2.57438093e-01 1.02569973e+00 1.84226558e-01 1.33945572e+00 5.98211706e-01 2.08281279e-02 -7.17101097e-01 -6.87067062e-02 4.26605225e-01 6.30482733e-01 -1.14310229e+00 1.34997830e-01 -5.44032812e-01 -9.42253530e-01 8.81335258e-01 4.70259428e-01 1.09274246e-01 9.43863273e-01 8.49980235e-01 3.36089164e-01 -7.01724231e-01 -1.16730332e+00 2.33608752e-01 2.65745759e-01 2.35841811e-01 9.04559672e-01 4.31640208e-01 -2.36509502e-01 9.43740547e-01 -3.34543407e-01 3.55030537e-01 2.88287789e-01 8.55568230e-01 4.19631600e-02 -9.99723136e-01 -1.45486102e-01 1.00334728e+00 -9.03174222e-01 -8.86259496e-01 -2.75152087e-01 4.67904150e-01 3.90432812e-02 9.18819189e-01 8.49638656e-02 -1.84984341e-01 1.64954334e-01 3.37252438e-01 1.16958926e-02 -1.09755671e+00 -1.10794866e+00 -1.45010948e-01 4.90038633e-01 -6.63006604e-01 -8.37253705e-02 -3.07050437e-01 -1.82818270e+00 -2.89140135e-01 1.01856507e-01 1.38326958e-01 3.80763233e-01 7.81557202e-01 9.73467946e-01 7.41974890e-01 -1.88472584e-01 3.09138268e-01 -5.86051047e-01 -9.47427988e-01 -8.60887840e-02 3.31108153e-01 2.67620981e-01 2.99185395e-01 -5.93460537e-02 3.97909164e-01]
[8.59883975982666, 8.548994064331055]
28fa7c83-e8eb-453e-af28-f30b502828f8
adversarial-synthesis-learning-enables
1712.07695
null
http://arxiv.org/abs/1712.07695v1
http://arxiv.org/pdf/1712.07695v1.pdf
Adversarial Synthesis Learning Enables Segmentation Without Target Modality Ground Truth
A lack of generalizability is one key limitation of deep learning based segmentation. Typically, one manually labels new training images when segmenting organs in different imaging modalities or segmenting abnormal organs from distinct disease cohorts. The manual efforts can be alleviated if one is able to reuse manual labels from one modality (e.g., MRI) to train a segmentation network for a new modality (e.g., CT). Previously, two stage methods have been proposed to use cycle generative adversarial networks (CycleGAN) to synthesize training images for a target modality. Then, these efforts trained a segmentation network independently using synthetic images. However, these two independent stages did not use the complementary information between synthesis and segmentation. Herein, we proposed a novel end-to-end synthesis and segmentation network (EssNet) to achieve the unpaired MRI to CT image synthesis and CT splenomegaly segmentation simultaneously without using manual labels on CT. The end-to-end EssNet achieved significantly higher median Dice similarity coefficient (0.9188) than the two stages strategy (0.8801), and even higher than canonical multi-atlas segmentation (0.9125) and ResNet method (0.9107), which used the CT manual labels.
['Bennett A. Landman', 'Richard G. Abramson', 'Albert Assad', 'Shunxing Bao', 'Zhoubing Xu', 'Yuankai Huo']
2017-12-20
null
null
null
null
['splenomegaly-segmentation-on-multi-modal-mri']
['medical']
[ 3.98474574e-01 4.95575517e-01 1.41119942e-01 -3.96200716e-01 -9.53363597e-01 -8.74881268e-01 3.95226032e-01 -2.13598326e-01 -4.44166541e-01 8.36987257e-01 -1.36460379e-01 -3.75589520e-01 3.66284639e-01 -7.15127110e-01 -7.04293370e-01 -7.75329113e-01 2.08341330e-01 7.61530876e-01 2.49802470e-01 1.86493456e-01 -1.23734355e-01 5.77629864e-01 -5.44203579e-01 1.11588286e-02 1.14288914e+00 6.99901819e-01 1.67656094e-01 7.45471954e-01 -1.22474656e-01 3.66102785e-01 -6.70810401e-01 -4.52016473e-01 5.63824773e-01 -1.01244521e+00 -8.06966305e-01 1.45941123e-01 3.16444039e-01 -5.40101707e-01 -2.17996031e-01 1.04193819e+00 6.27300024e-01 -1.31874055e-01 7.30894625e-01 -1.10621417e+00 -6.13760710e-01 8.07015181e-01 -7.56887078e-01 -8.15024227e-03 -8.82077813e-02 4.90359545e-01 3.07504326e-01 -4.29340273e-01 7.54910648e-01 8.85584891e-01 7.59844780e-01 7.51267612e-01 -1.27194512e+00 -9.07270253e-01 -3.04292887e-01 -5.12777030e-01 -1.26536274e+00 6.19203560e-02 5.48052013e-01 -5.14643967e-01 1.81655526e-01 2.69327402e-01 7.80203938e-01 9.47518647e-01 4.03325617e-01 4.82607365e-01 1.41367304e+00 -5.47855757e-02 3.61810476e-02 -1.09296553e-01 -3.34685504e-01 7.34282970e-01 2.30120242e-01 2.47750636e-02 2.45804146e-01 -1.75690111e-02 1.25086212e+00 9.24495421e-03 -9.74012688e-02 -1.80727586e-01 -1.53965282e+00 8.92571151e-01 6.84872210e-01 4.47815746e-01 -3.91173184e-01 8.48612189e-02 5.21618366e-01 9.51627344e-02 1.20655976e-01 5.62414169e-01 -7.26062208e-02 4.33272928e-01 -1.32922304e+00 -1.93210647e-01 5.28164566e-01 6.69942677e-01 2.96562850e-01 3.88860375e-01 -2.59190828e-01 5.91976702e-01 2.30139121e-01 5.09422183e-01 8.82853985e-01 -9.66630161e-01 2.87315659e-02 3.65428388e-01 -3.19401443e-01 -6.78553879e-01 -6.94060743e-01 -6.68664813e-01 -1.26491368e+00 8.43833387e-02 5.58039129e-01 -3.09684068e-01 -1.54640496e+00 1.93177104e+00 4.91200030e-01 2.19898283e-01 -5.38895354e-02 1.11357152e+00 1.01895475e+00 2.50539780e-01 3.53481978e-01 -7.76226632e-03 1.18423343e+00 -1.14521050e+00 -4.55533147e-01 2.71231178e-02 6.36365473e-01 -8.09506357e-01 1.00869107e+00 1.81214452e-01 -1.22602630e+00 -3.64577562e-01 -1.15186346e+00 1.79793447e-01 -1.96376428e-01 -4.36922126e-02 5.16420782e-01 8.56061757e-01 -1.16947305e+00 5.02567351e-01 -1.08010197e+00 -3.80562037e-01 4.83922839e-01 6.19859755e-01 -2.78170556e-01 -1.83353014e-02 -1.19702244e+00 7.96913266e-01 4.30253148e-01 -1.44491270e-01 -1.22927833e+00 -7.85153449e-01 -6.06699646e-01 -2.30122343e-01 2.17710137e-01 -9.53271210e-01 9.60501134e-01 -1.23332810e+00 -1.62308943e+00 1.12511039e+00 4.39759463e-01 -4.14382517e-01 8.31317008e-01 3.53897333e-01 -1.80259973e-01 5.61183453e-01 2.49318510e-01 1.16322684e+00 7.23305404e-01 -1.33988738e+00 -9.90281329e-02 -2.53074080e-01 -1.43393159e-01 1.26074135e-01 3.06685984e-01 4.82170135e-02 -3.15448642e-01 -9.55850303e-01 3.18789631e-01 -1.24897408e+00 -4.13440019e-01 2.14511290e-01 -5.35557508e-01 3.90797198e-01 4.32570010e-01 -1.08547556e+00 5.02683461e-01 -1.77506733e+00 4.40457091e-02 3.66806865e-01 5.27410448e-01 2.72522986e-01 -1.41440973e-01 -1.84396252e-01 -2.32546598e-01 3.76712143e-01 -7.96882927e-01 -1.67563170e-01 -3.41716051e-01 1.96250156e-01 1.88961744e-01 6.89742863e-01 -2.47375444e-02 1.12107825e+00 -1.00067437e+00 -9.29158807e-01 2.43555948e-01 3.40075344e-01 -5.66187739e-01 2.65145391e-01 2.01429307e-01 1.33537054e+00 -2.92885751e-01 7.27555692e-01 8.30407381e-01 -3.25124443e-01 3.48184824e-01 -3.25401306e-01 3.47352833e-01 -3.57238531e-01 -7.34096825e-01 1.95333290e+00 -4.28119451e-01 1.49103850e-01 5.67151234e-03 -8.91449928e-01 7.50472128e-01 5.03754199e-01 8.96758556e-01 -5.20442545e-01 3.41091692e-01 4.31252629e-01 4.24955070e-01 -1.34641945e-01 -1.30600065e-01 -6.48462355e-01 -1.92152739e-01 4.93119359e-01 2.32810125e-01 -5.58516324e-01 2.04405859e-02 2.31684409e-02 8.51565838e-01 -4.48692450e-03 2.93773636e-02 -2.23345459e-01 5.65064192e-01 1.17039330e-01 5.88467419e-01 5.86412728e-01 -4.80623990e-01 1.11713541e+00 4.70272511e-01 -1.98834211e-01 -1.30976605e+00 -1.37273157e+00 -1.42528206e-01 6.80640042e-01 2.98573938e-03 2.31972396e-01 -9.40691590e-01 -1.03783262e+00 -3.32295597e-01 4.84660923e-01 -6.90492749e-01 -1.99307814e-01 -7.59034455e-01 -8.87441814e-01 1.14888608e+00 4.34752554e-01 6.78424835e-01 -8.46621871e-01 -3.98865402e-01 1.95848763e-01 -1.63636059e-01 -9.93237376e-01 -7.43462443e-01 -1.18842028e-01 -1.05316818e+00 -9.66171086e-01 -1.40531313e+00 -7.58921444e-01 9.93276477e-01 -3.10683727e-01 9.68670845e-01 6.11068457e-02 -1.98350713e-01 9.68346447e-02 -1.17231868e-01 1.95003711e-02 -7.49736905e-01 2.52786934e-01 -2.20856536e-02 -1.44668356e-01 -3.78427774e-01 -5.78287721e-01 -9.66511369e-01 4.45366234e-01 -1.31179917e+00 3.02425414e-01 7.73501813e-01 1.04460371e+00 9.88076448e-01 -4.00451899e-01 6.13241255e-01 -1.01786351e+00 4.12776291e-01 -4.70630139e-01 -4.73054707e-01 4.44000334e-01 -6.16664410e-01 -1.76359609e-01 8.36530387e-01 -5.95904589e-01 -9.54160154e-01 2.20308781e-01 -2.70092160e-01 -5.67343473e-01 -6.42268360e-02 3.42770338e-01 2.02491224e-01 -3.55381280e-01 3.94590467e-01 3.01438570e-01 2.10177034e-01 -1.38525963e-01 2.96023875e-01 2.73360908e-01 6.61307931e-01 -4.36076581e-01 6.23357177e-01 3.64521146e-01 2.26468578e-01 -7.38313794e-02 -4.44561332e-01 1.44607246e-01 -8.74387801e-01 -1.61734626e-01 1.24702132e+00 -7.05122590e-01 -3.16351682e-01 5.60330212e-01 -7.82176793e-01 -4.45894748e-01 -2.91246265e-01 6.84599936e-01 -4.69613314e-01 4.66610163e-01 -7.91159511e-01 2.24338681e-03 -7.93113649e-01 -1.63123930e+00 7.60133743e-01 5.05890250e-01 -2.29096130e-01 -1.12054324e+00 7.68780634e-02 3.49091679e-01 5.84057271e-01 9.49379861e-01 6.55646503e-01 -9.53227341e-01 -3.27923685e-01 -2.14253202e-01 -3.78170848e-01 3.52779180e-01 2.05755129e-01 -9.64621753e-02 -5.88478208e-01 -4.66203332e-01 1.83678254e-01 -2.92250514e-01 4.07408267e-01 5.65937757e-01 1.15736163e+00 -1.48555590e-02 -1.28217369e-01 9.73726511e-01 1.42423081e+00 5.36373854e-01 5.30752361e-01 2.06714366e-02 8.55921507e-01 3.06113511e-01 2.91840166e-01 3.23170871e-02 1.73486203e-01 3.49915445e-01 1.61051258e-01 -6.83894455e-01 -4.74861294e-01 -2.49069363e-01 -4.38331254e-02 8.51819277e-01 1.73323199e-01 -1.86422810e-01 -1.15717566e+00 4.64327097e-01 -1.17825961e+00 -2.65152514e-01 1.06032565e-02 1.97693503e+00 9.32746530e-01 3.07618566e-02 9.70743150e-02 -4.50535059e-01 9.38680649e-01 -1.60091445e-01 -8.61026943e-01 -3.18980664e-01 1.97037216e-03 4.67339784e-01 7.48361588e-01 3.19693118e-01 -8.22576642e-01 8.59986186e-01 6.41233206e+00 7.29910135e-01 -1.51028788e+00 5.28132379e-01 9.84458208e-01 5.75290881e-02 -2.14897051e-01 -4.40364070e-02 -1.65152088e-01 6.51847064e-01 1.00276971e+00 1.02868211e-02 2.70694107e-01 4.25619066e-01 -5.60183004e-02 -1.76510915e-01 -8.17927659e-01 6.50712788e-01 4.11268556e-03 -1.07378590e+00 -1.55190472e-02 -3.22532207e-02 9.15784419e-01 4.87285592e-02 1.32384226e-01 2.31566951e-01 4.25195843e-01 -1.20960140e+00 2.74584293e-01 4.63417262e-01 1.31226718e+00 -5.82643867e-01 8.15685868e-01 5.66101633e-03 -8.39303553e-01 6.97585404e-01 -7.61099532e-02 6.90184474e-01 3.47380430e-01 4.29635435e-01 -1.18526399e+00 6.21774316e-01 3.06878120e-01 9.72117111e-02 -5.90541303e-01 9.26273286e-01 -1.88602567e-01 5.89581490e-01 -4.11727756e-01 4.79573667e-01 4.56525832e-01 -3.36053103e-01 4.77313250e-01 1.05247235e+00 2.95329988e-01 5.50359040e-02 1.08287834e-01 1.04255593e+00 -2.67289430e-01 1.53543502e-01 -2.45995164e-01 -7.09808916e-02 1.29496351e-01 1.46101677e+00 -1.38056719e+00 -5.94697833e-01 -2.61240184e-01 1.13045907e+00 -3.11698943e-01 8.64071473e-02 -1.28733957e+00 -3.79490435e-01 -1.35334909e-01 5.56636192e-02 -1.86910667e-02 -1.43485283e-02 -5.89704871e-01 -1.13017988e+00 -5.09932101e-01 -8.24647248e-01 4.71178532e-01 -7.89814055e-01 -1.18577230e+00 7.38589048e-01 -7.56234601e-02 -1.24124432e+00 -1.59480572e-01 -2.08841041e-01 -7.29329824e-01 1.08245802e+00 -1.04504812e+00 -1.40464139e+00 -3.03235024e-01 5.82322776e-01 2.83886105e-01 3.77163477e-02 6.12280250e-01 4.30607498e-01 -5.00593126e-01 8.90697241e-01 1.38715506e-01 4.47064430e-01 9.39019263e-01 -1.26196969e+00 3.86790633e-02 8.66043150e-01 -4.74517882e-01 5.53620458e-01 3.83018881e-01 -8.84347081e-01 -9.55449641e-01 -1.12583220e+00 3.13132614e-01 -5.09801209e-02 4.12047476e-01 6.23822808e-02 -7.64281929e-01 8.43387306e-01 4.23663080e-01 2.10522100e-01 8.02644849e-01 -6.92365229e-01 1.64484918e-01 3.91856171e-02 -1.89902997e+00 6.46267653e-01 6.62067771e-01 -1.74168319e-01 -4.37118828e-01 3.19969982e-01 8.44834447e-01 -8.77301216e-01 -1.44658029e+00 5.32062590e-01 6.47823393e-01 -5.38442850e-01 9.90377903e-01 -3.84868890e-01 5.07090509e-01 -3.05562973e-01 1.61534667e-01 -1.34770977e+00 7.60724917e-02 -4.67723608e-01 3.70711565e-01 1.14871562e+00 3.75585705e-01 -7.93154299e-01 7.70480752e-01 6.86784983e-01 -3.24789315e-01 -6.98479950e-01 -8.88181329e-01 -6.32443309e-01 5.69463670e-01 1.41367495e-01 7.01201797e-01 1.21506488e+00 -4.96163845e-01 2.58441940e-02 -2.40290061e-01 -7.15301558e-02 6.86810970e-01 1.07548617e-01 4.83187556e-01 -8.11434567e-01 -2.25697219e-01 -4.62028593e-01 -1.75649434e-01 -6.14153981e-01 -4.82821018e-02 -1.31734514e+00 -1.13305420e-01 -1.36393762e+00 2.85959303e-01 -6.33460224e-01 -4.37877476e-01 4.95968819e-01 -7.75892287e-02 6.58679008e-01 3.19053680e-01 3.63969296e-01 -1.48633569e-01 2.95879930e-01 2.14742708e+00 -2.65112296e-02 -9.41918269e-02 -1.45165488e-01 -6.91101909e-01 6.08206451e-01 1.06736791e+00 -7.03490615e-01 -3.41164619e-01 -2.14623213e-01 -2.29084492e-01 4.53193307e-01 3.29265386e-01 -9.28943813e-01 9.52202231e-02 6.15595281e-02 8.15426111e-01 -4.58395243e-01 -1.35448918e-01 -6.97473764e-01 6.25192463e-01 9.90209460e-01 -2.22081020e-01 6.10824861e-02 1.89373851e-01 2.73789000e-02 -1.51996091e-01 -2.66081512e-01 1.19277906e+00 -5.59391499e-01 -1.00726604e-01 4.37163472e-01 -2.78055459e-01 1.92789167e-01 1.13445485e+00 -1.45926431e-01 -1.95193570e-02 -2.16489092e-01 -1.09228635e+00 1.66389033e-01 5.44891596e-01 -6.39400482e-02 5.35803974e-01 -1.27694857e+00 -7.46844649e-01 1.30151242e-01 -4.88963246e-01 2.41392791e-01 3.37279588e-01 1.43414617e+00 -1.02623188e+00 2.81517357e-01 -7.01157033e-01 -8.23373199e-01 -8.33161473e-01 4.47705656e-01 6.71881139e-01 -7.59074032e-01 -4.20617312e-01 6.84741735e-01 4.70143080e-01 -8.40827107e-01 -3.37900370e-01 -3.13603252e-01 2.24398762e-01 -8.98085609e-02 -1.06093995e-01 2.15731323e-01 5.18198162e-02 -6.32507145e-01 -3.10979009e-01 6.17523193e-01 -7.42129534e-02 -2.44990930e-01 1.12378812e+00 -1.10740840e-01 -9.33873057e-02 3.51793803e-02 1.19452655e+00 -1.67301908e-01 -1.10502303e+00 -3.71348113e-02 -5.22678077e-01 -2.97871053e-01 4.21336628e-02 -1.12221014e+00 -1.66153967e+00 6.54601216e-01 9.48005080e-01 -4.01253477e-02 1.29487741e+00 -2.03583524e-01 1.25701594e+00 -4.03540671e-01 2.67505616e-01 -6.07562542e-01 -1.34433806e-01 1.11777112e-01 7.86637187e-01 -1.18254304e+00 -7.69565329e-02 -2.83629030e-01 -9.36439216e-01 9.72812593e-01 6.88614905e-01 -3.00761759e-01 4.15706515e-01 1.80473238e-01 1.85220644e-01 -8.90941396e-02 5.57177551e-02 4.40653525e-02 4.17785019e-01 5.81774712e-01 5.33146560e-01 2.17755467e-01 -6.64165020e-01 5.59664547e-01 -1.81677207e-01 6.89136162e-02 4.29919988e-01 7.96304107e-01 1.48084551e-01 -1.17833698e+00 -4.71722513e-01 6.06806219e-01 -9.15865302e-01 -3.37260105e-02 -2.89440900e-01 9.68631923e-01 2.31228337e-01 3.41817737e-01 -6.81188405e-02 -2.26718545e-01 -5.11645302e-02 -1.76014621e-02 6.09895110e-01 -4.27375108e-01 -9.13728654e-01 2.83022732e-01 -4.32492107e-01 -4.09354329e-01 -4.62567836e-01 -5.03083050e-01 -1.45878482e+00 -3.07750285e-01 -1.30563408e-01 -2.42959604e-01 5.58593512e-01 6.92805827e-01 3.16207968e-02 7.84067392e-01 6.80496037e-01 -6.46223962e-01 -1.59918621e-01 -9.25585508e-01 -5.58691502e-01 4.47743148e-01 -3.92521061e-02 -4.40501273e-01 -2.36409515e-01 2.00641781e-01]
[14.285225868225098, -2.2306711673736572]
a7fcb22f-eeac-4729-afa0-2f09f4be0273
guir-mup-2022-towards-generating-topic-aware
null
null
https://aclanthology.org/2022.sdp-1.34
https://aclanthology.org/2022.sdp-1.34.pdf
GUIR @ MuP 2022: Towards Generating Topic-aware Multi-perspective Summaries for Scientific Documents
This paper presents our approach for the MuP 2022 shared task —-Multi-Perspective Scientific Document Summarization, where the objective is to enable summarization models to explore methods for generating multi-perspective summaries for scientific papers. We explore two orthogonal ways to cope with this task. The first approach involves incorporating a neural topic model (i.e., NTM) into the state-of-the-art abstractive summarizer (LED); the second approach involves adding a two-step summarizer that extracts the salient sentences from the document and then writes abstractive summaries from those sentences. Our latter model outperformed our other submissions on the official test set. Specifically, among 10 participants (including organizers’ baseline) who made their results public with 163 total runs. Our best system ranks first in Rouge-1 (F), and second in Rouge-1 (R), Rouge-2 (F) and Average Rouge (F) scores.
['Nazli Goharian', 'Sajad Sotudeh']
null
null
null
null
sdp-coling-2022-10
['scientific-article-summarization', 'document-summarization']
['natural-language-processing', 'natural-language-processing']
[ 3.86002026e-02 5.38892448e-01 -1.46553874e-01 -1.39883935e-01 -1.68196285e+00 -7.11305916e-01 8.99196327e-01 4.80504990e-01 -2.59879112e-01 1.14794385e+00 1.10411608e+00 -2.13011354e-01 7.03996941e-02 -3.69512171e-01 -8.08185399e-01 -3.95329356e-01 1.15119226e-01 5.86859524e-01 1.98947433e-02 -1.52978212e-01 1.05183268e+00 1.85026705e-01 -1.09948790e+00 5.96277237e-01 1.27962184e+00 3.47686261e-01 3.27659696e-01 1.27831876e+00 -2.76797533e-01 6.40870988e-01 -1.25017452e+00 -3.88533145e-01 -3.58687103e-01 -5.81923664e-01 -1.01971805e+00 -4.32061762e-01 8.28571081e-01 -5.65318502e-02 -2.17225879e-01 8.06858063e-01 7.27126896e-01 4.63760078e-01 9.46117699e-01 -8.01137626e-01 -7.32910216e-01 1.13285208e+00 -7.90487528e-01 4.24625039e-01 5.26728570e-01 8.07033572e-03 1.26911008e+00 -9.64012623e-01 9.47633684e-01 1.42324615e+00 3.66394281e-01 6.21036768e-01 -1.06218219e+00 -2.93985546e-01 6.14893883e-02 -1.46212563e-01 -7.15207517e-01 -6.74439490e-01 5.31164467e-01 -1.13025427e-01 1.25654423e+00 6.05073929e-01 3.64186317e-01 1.21650958e+00 5.88215470e-01 1.06903040e+00 6.03982985e-01 -2.67305762e-01 3.48024368e-01 -5.08786775e-02 7.84104168e-01 1.92255825e-01 7.16078699e-01 -7.65052259e-01 -8.96548092e-01 -3.47237229e-01 7.46464878e-02 -5.21285713e-01 -3.28091383e-01 4.51066434e-01 -1.58540058e+00 6.09706402e-01 1.57393873e-01 3.10535043e-01 -7.50044703e-01 8.44607726e-02 7.47296810e-01 9.67767462e-02 9.60585654e-01 1.32123399e+00 -2.50390917e-01 -2.50329524e-01 -1.66310441e+00 9.01891649e-01 1.10708463e+00 8.81144464e-01 1.05375744e-01 8.99345949e-02 -1.14720714e+00 8.10393155e-01 -1.27827451e-01 3.85910183e-01 6.21124625e-01 -1.00793231e+00 7.34575808e-01 1.30353630e-01 3.26984495e-01 -8.79226685e-01 -3.27015460e-01 -6.22967839e-01 -7.98884988e-01 -4.49327856e-01 -1.42080158e-01 -4.40249801e-01 -8.04703534e-01 1.36677456e+00 -3.43218625e-01 -1.01757839e-01 4.58998322e-01 4.94212508e-01 1.74778926e+00 1.32530546e+00 5.31627089e-02 -5.34743786e-01 1.39654469e+00 -1.47746384e+00 -8.30191433e-01 -1.44633606e-01 3.85921180e-01 -7.65361428e-01 9.50327456e-01 4.88872141e-01 -1.68830216e+00 -4.09259886e-01 -1.28797328e+00 -3.64207774e-01 -2.68343478e-01 4.62471604e-01 2.19246984e-01 7.12269619e-02 -1.59407330e+00 9.40722942e-01 -5.62643290e-01 -5.54620266e-01 2.09135801e-01 -8.75040442e-02 -1.28841490e-01 2.88888961e-01 -9.26642776e-01 8.63595128e-01 4.25011098e-01 -3.68475735e-01 -9.09211576e-01 -9.91952538e-01 -5.63919365e-01 5.60505629e-01 2.56779552e-01 -9.65958118e-01 1.52971280e+00 9.38938558e-02 -1.49496853e+00 7.01955080e-01 -5.00089765e-01 -6.28235340e-01 4.10982788e-01 -6.37985885e-01 1.72257666e-02 3.54615718e-01 4.04898822e-01 6.09426558e-01 2.98030287e-01 -1.31989288e+00 -4.83842552e-01 -8.06831568e-02 -3.05427819e-01 4.78192449e-01 -2.61721522e-01 1.43342167e-01 -1.89054161e-01 -5.56755126e-01 -2.91667640e-01 -5.11637449e-01 -2.13909075e-01 -9.73908544e-01 -1.14623678e+00 -8.22374880e-01 5.91216564e-01 -9.70536888e-01 1.33503401e+00 -1.52845037e+00 4.00578767e-01 -4.43169326e-01 3.15680951e-01 1.82390437e-01 -3.69614184e-01 8.33462358e-01 7.17913061e-02 5.48547924e-01 -5.99527806e-02 -8.61169875e-01 3.16441129e-03 -5.53467393e-01 -8.61343861e-01 -1.54947296e-01 8.41782317e-02 9.44557786e-01 -1.10757864e+00 -4.87705052e-01 -3.37712467e-01 -4.33731824e-02 -3.26498032e-01 1.82579473e-01 -5.51840663e-01 2.44504884e-01 -6.50237739e-01 2.49833092e-01 4.28879499e-01 -3.14290792e-01 -2.31154859e-01 8.19325447e-02 -5.10376155e-01 7.76437044e-01 -5.57226717e-01 1.77851331e+00 -1.89852327e-01 9.03417647e-01 -1.73099697e-01 -6.36220276e-01 9.99329984e-01 4.58346099e-01 1.46581590e-01 -9.81057659e-02 -2.93183029e-01 3.11255276e-01 -4.93157387e-01 -1.09259322e-01 1.45170534e+00 3.94656569e-01 -3.02943408e-01 7.32834041e-01 2.51641721e-01 -5.10957658e-01 8.39269817e-01 1.10291684e+00 1.21377110e+00 1.38976695e-02 4.65275735e-01 -7.26802349e-01 4.17319477e-01 3.73274833e-02 1.24858655e-01 1.40209901e+00 1.07846931e-01 9.75670159e-01 1.06070006e+00 -2.67973721e-01 -1.06208491e+00 -8.71995211e-01 3.52527231e-01 9.66182530e-01 -2.90889829e-01 -8.84113312e-01 -8.24891984e-01 -6.38524175e-01 -2.32974872e-01 1.62165952e+00 -4.65711504e-01 -1.54528156e-01 -5.55270910e-01 -6.65395379e-01 6.49838090e-01 2.75021434e-01 3.59319448e-01 -1.41114223e+00 -5.07266760e-01 1.07687294e-01 -6.71597898e-01 -6.58259809e-01 -6.75237298e-01 -4.92871553e-02 -8.80906343e-01 -4.04279172e-01 -1.20111430e+00 -4.09328461e-01 1.69266984e-01 3.20337325e-01 1.37581491e+00 -3.08786362e-01 1.98986471e-01 1.39344424e-01 -1.54149339e-01 -8.51282358e-01 -5.05118012e-01 7.18032777e-01 -1.26317382e-01 -6.75265968e-01 4.18950543e-02 -2.96348572e-01 -3.47130239e-01 -5.71777463e-01 -6.62954271e-01 2.45221332e-01 6.78725660e-01 6.00102365e-01 4.10557330e-01 -6.06614053e-01 1.10045826e+00 -8.60879958e-01 1.53063595e+00 -3.81035239e-01 -5.84032238e-02 5.64034939e-01 -5.34080684e-01 4.16187197e-02 6.96957111e-01 -5.01562133e-02 -1.17536831e+00 -7.13406444e-01 5.18301055e-02 3.31832170e-02 1.53804481e-01 8.67136776e-01 8.27859938e-02 6.67777836e-01 7.97623515e-01 5.52248478e-01 -3.26433480e-01 -5.65191507e-01 5.05645573e-01 6.71393871e-01 7.54912555e-01 -6.00236595e-01 3.15791488e-01 -2.26507843e-01 -2.71835506e-01 -1.12049544e+00 -1.29423404e+00 -4.37348098e-01 -1.90140501e-01 -8.79662260e-02 7.72025466e-01 -8.87476683e-01 -4.29587394e-01 3.32842708e-01 -1.82049072e+00 1.07549340e-01 -4.45145994e-01 3.11433345e-01 -5.62076867e-01 4.64794397e-01 -7.97954559e-01 -6.34121120e-01 -1.23748600e+00 -9.43865180e-01 1.21177828e+00 8.38942945e-01 -7.35117674e-01 -6.83320403e-01 3.98136139e-01 3.07121634e-01 5.02124310e-01 2.91464776e-01 8.17391515e-01 -1.20145214e+00 -2.56031215e-01 -9.83508006e-02 -2.72090465e-01 5.34111783e-02 -1.38510317e-01 2.39169598e-01 -8.44446898e-01 -2.18434528e-01 -9.42955390e-02 -4.20610011e-01 1.49715054e+00 9.62002099e-01 1.11896443e+00 -6.38211131e-01 -3.76653314e-01 8.02190080e-02 8.58908772e-01 -4.30456735e-02 6.60075128e-01 2.78973430e-01 5.44343948e-01 4.95471269e-01 2.65080690e-01 3.43701005e-01 4.75905806e-01 3.42776000e-01 -1.86117664e-01 1.59176946e-01 -2.83003360e-01 -4.01354223e-01 4.54922706e-01 1.25232887e+00 -5.55383302e-02 -9.25756991e-01 -7.43831933e-01 7.66679585e-01 -1.99629700e+00 -1.13180220e+00 -2.68783361e-01 1.99264312e+00 9.96055782e-01 2.36128747e-01 6.33856878e-02 -5.11400640e-01 5.83923995e-01 7.89774835e-01 -4.22723651e-01 -8.83024573e-01 -2.66321748e-01 6.25694245e-02 4.88973670e-02 4.47821349e-01 -9.33021069e-01 9.56701815e-01 6.67094231e+00 9.37982917e-01 -6.79018736e-01 -2.01908156e-01 7.81075716e-01 -3.11707169e-01 -5.50550759e-01 -8.79418254e-02 -1.02879024e+00 4.94527102e-01 1.51882875e+00 -1.04236460e+00 -1.65387481e-01 6.68368697e-01 3.58403236e-01 -2.96045661e-01 -1.06886530e+00 4.49979484e-01 4.65950698e-01 -1.87016284e+00 6.77521467e-01 -1.28201142e-01 1.05557859e+00 -1.09045627e-03 -1.43257201e-01 6.40655577e-01 5.22309661e-01 -8.81322622e-01 5.81466436e-01 9.60265040e-01 5.06301582e-01 -7.63947427e-01 8.50815594e-01 4.15437132e-01 -4.70027149e-01 5.20272434e-01 -5.56547880e-01 1.62080303e-01 3.29322100e-01 9.40168858e-01 -8.36883247e-01 1.02816284e+00 4.07621950e-01 9.29641902e-01 -6.70053720e-01 1.18363643e+00 -2.19009280e-01 7.95901060e-01 5.49173132e-02 -5.57296276e-01 3.13329756e-01 -4.80106100e-02 1.35115361e+00 1.64551699e+00 4.62571293e-01 -7.57667348e-02 2.06415891e-03 9.93030310e-01 -7.10200548e-01 8.22315216e-02 -5.26321888e-01 -4.84057456e-01 4.34543312e-01 1.38409150e+00 -7.53694713e-01 -9.24921393e-01 3.72216046e-01 8.74787450e-01 2.16319636e-01 4.02628213e-01 -4.06618088e-01 -9.04443741e-01 1.67095885e-02 -4.57411051e-01 9.07139406e-02 -1.36307646e-02 -7.22616255e-01 -1.24422276e+00 -9.72317345e-03 -7.34021842e-01 2.59776503e-01 -1.14909983e+00 -1.05483449e+00 8.39438379e-01 4.02199551e-02 -7.17616975e-01 -3.03204924e-01 6.66680783e-02 -1.19484735e+00 9.92747247e-01 -1.22440100e+00 -9.05955493e-01 9.11565870e-03 -4.71217334e-01 1.14955401e+00 -3.90299439e-01 7.53664732e-01 -4.09653097e-01 -5.54253399e-01 3.38465273e-01 3.55253041e-01 -4.00933832e-01 1.16738617e+00 -1.60134625e+00 8.51452887e-01 9.09590483e-01 -1.85480639e-02 9.13864315e-01 1.26057220e+00 -9.70064461e-01 -1.06648839e+00 -9.73402023e-01 1.58616316e+00 -5.98120213e-01 5.93377888e-01 -1.87942162e-02 -9.24343884e-01 5.89384973e-01 9.37238932e-01 -9.30352151e-01 4.77303684e-01 2.11350441e-01 1.49239469e-02 2.45654017e-01 -7.79726088e-01 7.94558346e-01 4.91965979e-01 -1.35277677e-02 -1.02593565e+00 6.75584078e-01 1.27962732e+00 -5.86918235e-01 -5.98515570e-01 1.83834936e-02 4.19241905e-01 -5.16517878e-01 8.13918352e-01 -8.53003561e-01 1.48372102e+00 -3.42399701e-02 2.38275185e-01 -1.90814579e+00 -3.90102416e-01 -8.48218083e-01 -3.90045345e-01 1.45655894e+00 6.52257681e-01 -3.46799463e-01 4.12364125e-01 2.53204912e-01 -7.31642008e-01 -6.45796061e-01 -6.14334583e-01 -6.06814265e-01 4.61181760e-01 4.44406480e-01 2.91870952e-01 4.44177866e-01 9.58463177e-02 8.51730168e-01 -4.06403899e-01 -4.65743929e-01 5.36104083e-01 1.57928824e-01 7.49132693e-01 -1.23455465e+00 1.38100935e-02 -9.14921880e-01 2.78929442e-01 -9.89443898e-01 1.48369879e-01 -8.76703024e-01 2.89713085e-01 -2.33933020e+00 6.99053824e-01 4.53634501e-01 -2.23254636e-01 1.85825974e-01 -7.64125049e-01 -2.86202252e-01 2.94931263e-01 4.23269719e-01 -1.05729461e+00 7.44277060e-01 1.11477482e+00 -2.75952965e-01 -3.35638434e-01 3.62351276e-02 -1.48656702e+00 3.01324129e-01 6.93728030e-01 -4.30830449e-01 -1.72176436e-01 -3.18001956e-01 5.01632579e-02 2.73669124e-01 1.45790409e-02 -9.58673239e-01 5.05259633e-01 -2.78648268e-03 2.80535728e-01 -1.28026187e+00 -7.85399452e-02 5.13592660e-01 -2.66839266e-01 2.29701191e-01 -1.10273647e+00 2.15438381e-01 3.15184593e-01 4.19805616e-01 -7.40359575e-02 -3.58811110e-01 3.88029486e-01 -3.28556359e-01 -9.27450284e-02 -1.97597519e-01 -4.47385967e-01 2.25327134e-01 4.67596442e-01 2.89033115e-01 -1.09412301e+00 -7.22300887e-01 -3.35956126e-01 4.75840151e-01 2.23182335e-01 4.47058499e-01 5.38887382e-01 -8.53803098e-01 -1.47556365e+00 -5.88039398e-01 -1.01646021e-01 7.88306911e-03 3.42469364e-01 6.23839855e-01 -4.50231105e-01 9.70140994e-01 2.21181363e-02 -2.67384678e-01 -1.02213848e+00 1.02040090e-01 -2.77202159e-01 -1.00051367e+00 -7.41123557e-01 9.01256263e-01 8.70758593e-02 -2.44443938e-01 1.24324732e-01 -9.80498716e-02 -5.47344148e-01 3.18875015e-01 1.15046728e+00 7.46469736e-01 2.65313804e-01 -1.37912974e-01 -1.17530815e-01 7.24551603e-02 -7.21444368e-01 -4.36827749e-01 1.50581956e+00 8.14394578e-02 -3.15190196e-01 7.42775202e-01 9.62913811e-01 1.16325401e-01 -5.87003767e-01 8.03997293e-02 2.09354892e-01 2.40794301e-01 9.40664411e-02 -1.20769703e+00 -3.28943372e-01 6.88448012e-01 -4.34309453e-01 4.07291263e-01 4.67197716e-01 -9.23222378e-02 8.47520232e-01 7.18409121e-01 -1.97199970e-01 -1.06959820e+00 2.01468691e-01 8.27109694e-01 1.46494818e+00 -8.85740817e-01 5.29128432e-01 8.24609175e-02 -9.04621124e-01 1.20446789e+00 4.28549260e-01 -1.40719876e-01 -1.37426600e-01 -3.22071671e-01 -3.33358079e-01 -4.15712059e-01 -1.27429152e+00 6.08763516e-01 6.34468257e-01 1.47178456e-01 7.78967381e-01 9.01251063e-02 -8.99068832e-01 8.55165124e-01 -5.45865059e-01 -6.21718019e-02 1.20081758e+00 6.41098797e-01 -7.20446527e-01 -4.92678374e-01 -5.87735176e-02 8.40117335e-01 -6.02423549e-01 -2.22344860e-01 -8.40538561e-01 3.72059852e-01 -9.12875235e-01 1.13261795e+00 -7.24280477e-02 -8.33197609e-02 4.16532665e-01 1.86990455e-01 -1.86816081e-02 -9.00276005e-01 -8.51881385e-01 6.90895021e-02 3.19113284e-01 -2.25825876e-01 -3.77285555e-02 -7.50897646e-01 -9.44827139e-01 -2.99824953e-01 6.91251382e-02 7.60445833e-01 7.96022773e-01 6.23022020e-01 7.02243865e-01 1.04055929e+00 4.78928387e-01 -1.14129603e+00 -8.38129342e-01 -1.47637236e+00 -4.17168647e-01 -1.00656845e-01 4.45276797e-01 -4.95589115e-02 -3.79152000e-01 6.49685562e-02]
[12.556046485900879, 9.614302635192871]
79747bee-b5e5-4cec-8d98-76598f0dbffb
specific-investments-under-negotiated
2303.14515
null
https://arxiv.org/abs/2303.14515v1
https://arxiv.org/pdf/2303.14515v1.pdf
Specific investments under negotiated transfer pricing: effects of different surplus sharing parameters on managerial performance: An agent-based simulation with fuzzy Q-learning agents
This paper focuses on a decentralized profit-center firm that uses negotiated transfer pricing as an instrument to coordinate the production process. Moreover, the firm's headquarters gives its divisions full authority over operating decisions and it is assumed that each division can additionally make an upfront investment decision that enhances the value of internal trade. On early works, the paper expands the number of divisions by one downstream division and relaxes basic assumptions, such as the assumption of common knowledge of rationality. Based on an agent-based simulation, it is examined whether cognitively bounded individuals modeled by fuzzy Q-learning achieve the same results as fully rational utility maximizers. In addition, the paper investigates different constellations of bargaining power to see whether a deviation from the recommended optimal bargaining power leads to a higher managerial performance. The simulation results show that fuzzy Q-learning agents perform at least as well or better than fully individual rational utility maximizers. The study also indicates that, in scenarios with different marginal costs of divisions, a deviation from the recommended optimal distribution ratio of the bargaining power of divisions can lead to higher investment levels and, thus, to an increase in the headquarters' profit.
['Christian Mitsch']
2023-03-25
null
null
null
null
['q-learning']
['methodology']
[-4.58814859e-01 6.47650659e-01 -4.73300129e-01 1.58472165e-01 -1.36850134e-01 -6.17589414e-01 9.50234011e-02 2.72200089e-02 -5.73132575e-01 1.05737317e+00 -1.41943544e-01 -3.22554350e-01 -6.57284617e-01 -9.54688013e-01 -1.42283395e-01 -8.63223255e-01 2.77389407e-01 7.63669372e-01 -2.82497913e-01 -3.00460875e-01 5.76342285e-01 3.87000203e-01 -1.12096584e+00 -2.09639058e-01 8.53834569e-01 8.33707631e-01 2.49353439e-01 1.77444413e-01 7.50493854e-02 7.11458623e-01 -7.92437255e-01 -4.74597722e-01 7.99214959e-01 -1.62059203e-01 -5.69282353e-01 3.65220100e-01 -5.95329225e-01 -6.20388865e-01 2.60611087e-01 1.04588413e+00 3.89716655e-01 2.97191292e-01 7.63853788e-01 -1.44485271e+00 -7.03002393e-01 1.03386331e+00 -4.85015094e-01 1.03110850e-01 2.99771689e-02 1.89538851e-01 1.02566874e+00 -3.93296257e-02 4.62821931e-01 1.13415992e+00 -6.44370262e-03 1.25437185e-01 -1.13690054e+00 -6.16401434e-01 1.16051950e-01 -1.44496888e-01 -1.34579265e+00 3.69885266e-02 4.50120032e-01 -3.51421624e-01 8.40426147e-01 -1.68258771e-01 6.13741875e-01 -3.30695584e-02 6.21485293e-01 4.73658517e-02 1.43401122e+00 -7.47382820e-01 6.79174960e-01 2.73116022e-01 -4.00914937e-01 -1.32472605e-01 8.87377799e-01 2.07757801e-01 2.01828361e-01 2.80235615e-02 9.53214407e-01 -1.96050122e-01 -1.29353717e-01 -3.14423889e-01 -8.13036263e-01 7.44963884e-01 2.36505404e-01 6.01434469e-01 -1.03535962e+00 2.36608759e-02 -3.61413322e-02 7.41472483e-01 -1.02418773e-01 7.88931966e-01 -7.78470412e-02 -2.33880337e-02 -4.23285604e-01 1.59485385e-01 9.88119304e-01 5.37237763e-01 6.99522197e-01 1.45867422e-01 -8.73473957e-02 5.18192649e-02 2.57276177e-01 3.65364522e-01 2.05433533e-01 -1.81698847e+00 3.16780448e-01 6.13623738e-01 8.48126650e-01 -8.69768262e-01 -1.73406214e-01 -8.88789475e-01 -1.64087892e-01 6.43846929e-01 5.10740101e-01 -5.82661629e-01 -1.12704724e-01 1.44363391e+00 -8.38580206e-02 -7.62016058e-01 4.25796241e-01 1.01217735e+00 -3.24097127e-01 5.75565577e-01 -1.11944713e-01 -7.46360779e-01 1.18944180e+00 -6.31678939e-01 -7.99011111e-01 2.82313854e-01 2.21726999e-01 -5.39759874e-01 4.36527640e-01 5.69616437e-01 -1.26856935e+00 -2.28195056e-01 -6.79093003e-01 6.66952372e-01 -9.06759501e-02 -2.80630022e-01 6.31132841e-01 8.28682005e-01 -9.80166018e-01 5.75590432e-01 -5.61743677e-01 -1.02370478e-01 5.51244728e-02 5.22493243e-01 9.34226736e-02 2.60952920e-01 -1.10431099e+00 1.09358776e+00 4.16294724e-01 4.90079559e-02 -5.59411466e-01 -3.34413439e-01 -3.08039963e-01 5.97062826e-01 7.86026418e-01 -7.28728354e-01 1.50921178e+00 -1.45260465e+00 -1.41111732e+00 2.77170897e-01 4.22736734e-01 -4.93743271e-01 6.45387769e-01 5.37439287e-01 2.82902747e-01 2.62947619e-01 3.63540262e-01 3.39607716e-01 1.09631665e-01 -1.48793387e+00 -1.01321924e+00 -5.87436020e-01 8.24359059e-01 7.26884663e-01 -2.07062215e-02 -1.23015769e-01 5.33557296e-01 -2.20753342e-01 -1.00431085e-01 -9.09054458e-01 -5.15383005e-01 -8.49014938e-01 -4.29880470e-02 -2.26119265e-01 3.78264510e-03 -1.76121779e-02 7.54175067e-01 -1.78533125e+00 -2.31236249e-01 5.81228554e-01 1.67561788e-02 -4.18795377e-01 2.55491048e-01 8.00544858e-01 2.17201531e-01 2.53410518e-01 3.26999068e-01 3.02512228e-01 5.90631127e-01 4.10405725e-01 2.58202821e-01 2.54294783e-01 -3.47944677e-01 5.27196288e-01 -6.29160285e-01 2.64058840e-02 -1.70049056e-01 -4.19704586e-01 -2.66352385e-01 -3.88599724e-01 1.63318574e-01 5.51487617e-02 -5.58940053e-01 5.88650048e-01 5.33986449e-01 -1.01653099e-01 7.98723519e-01 5.42166650e-01 -6.10979378e-01 -8.63277465e-02 -1.27342641e+00 7.02589452e-01 -4.26258773e-01 4.08863604e-01 5.84791541e-01 -1.04181540e+00 8.19681883e-01 4.81994212e-01 4.96752083e-01 -7.09047675e-01 4.73724693e-01 2.48645186e-01 6.63926065e-01 1.99967101e-02 7.49397099e-01 -6.08038783e-01 4.97836769e-02 9.23414826e-01 -3.90219271e-01 7.48013407e-02 2.44326800e-01 -4.04090136e-02 6.74465239e-01 -1.54559121e-01 4.88837749e-01 -5.25543928e-01 1.53848514e-01 1.13827817e-01 9.04712796e-01 6.70489490e-01 -3.08751136e-01 -2.78127044e-01 8.94913316e-01 3.00868243e-01 -7.39679575e-01 -6.95858717e-01 1.88089266e-01 1.00252545e+00 5.49807847e-01 4.87346321e-01 -6.72328770e-01 -1.79591581e-01 3.54854792e-01 1.01043797e+00 -3.85944635e-01 1.44651935e-01 1.97728232e-01 -5.39260745e-01 6.45513386e-02 4.64139640e-01 7.15266347e-01 -7.59463310e-01 -1.12954509e+00 9.39519331e-02 -3.04008927e-02 -5.72569788e-01 -1.63662419e-01 1.35112181e-01 -6.12457514e-01 -9.01087761e-01 -7.09058881e-01 -3.05599600e-01 8.36292267e-01 5.49809754e-01 5.54375589e-01 -1.01404741e-01 3.57474297e-01 4.34834749e-01 -3.90683383e-01 -8.22629273e-01 -5.39905071e-01 -5.19381016e-02 6.74480870e-02 -3.43742043e-01 3.41999322e-01 -2.71940708e-01 -5.45388460e-01 3.63427639e-01 -6.14571631e-01 -3.14799786e-01 7.54972041e-01 4.27351356e-01 1.28074676e-01 9.71955538e-01 1.34725678e+00 -4.85043019e-01 1.09086692e+00 -3.78672898e-01 -8.77941966e-01 2.18749046e-01 -1.15077209e+00 -2.23562308e-02 5.08151829e-01 1.04665151e-02 -1.70704937e+00 -5.90553939e-01 7.73288190e-01 1.49129294e-02 -1.20937623e-01 6.45053566e-01 -3.24894041e-01 1.51296064e-01 1.83554053e-01 -1.25655875e-01 4.57654893e-01 -3.34709547e-02 -1.06580198e-01 7.33429670e-01 5.19842841e-02 -5.59101045e-01 7.71507382e-01 2.30164573e-01 8.88323635e-02 -2.72486091e-01 -6.96956413e-03 -2.08568573e-01 -3.47232878e-01 -4.70284671e-01 6.33530676e-01 -9.28209245e-01 -1.40235019e+00 6.51743039e-02 -5.92594087e-01 -3.37410033e-01 -3.15070391e-01 9.11332369e-01 -8.77940059e-01 2.19235182e-01 -3.79232049e-01 -1.14876211e+00 1.13620371e-01 -1.01988149e+00 -1.63707510e-01 6.58653796e-01 -4.70614582e-02 -9.01671529e-01 -3.97115290e-01 9.21854079e-01 5.18245280e-01 9.98623222e-02 8.25143993e-01 -5.84364951e-01 -9.04623151e-01 1.49620086e-01 1.89379454e-01 2.68673539e-01 3.99111211e-01 5.39703555e-02 -3.17893147e-01 -3.15715522e-01 -5.42125246e-03 -8.79489258e-02 3.72558199e-02 6.34127200e-01 -5.65204676e-03 -4.31414455e-01 -8.24535266e-02 -2.51413107e-01 1.46691072e+00 1.09492958e+00 4.79380071e-01 9.32807922e-01 -4.19362217e-01 1.19381905e+00 1.30051923e+00 8.09423685e-01 6.68892145e-01 5.14745533e-01 5.95932484e-01 2.61327535e-01 6.97308421e-01 7.20574036e-02 2.82628715e-01 1.47975564e-01 -8.87526155e-01 -1.25934510e-02 -5.51114380e-01 5.71783543e-01 -1.80818796e+00 -1.31172895e+00 3.46188515e-01 2.28030562e+00 4.44931716e-01 2.16804177e-01 4.72990572e-01 1.36174276e-01 1.03093207e+00 -4.70040262e-01 -4.38548058e-01 -7.96466529e-01 3.04200109e-02 -3.13590288e-01 8.91139984e-01 4.75896358e-01 -5.97393475e-02 4.71552819e-01 5.70227861e+00 3.49983990e-01 -7.08420396e-01 -3.77225950e-02 7.46832013e-01 -2.84379423e-01 -5.05727589e-01 4.75548953e-01 -3.96450132e-01 3.93594056e-01 6.56607270e-01 -1.12497342e+00 4.74553198e-01 5.49417794e-01 8.07376444e-01 -6.72725439e-01 -6.19887769e-01 1.30730867e-01 -5.49604714e-01 -1.12882674e+00 -5.18895447e-01 8.44909251e-01 1.02066267e+00 -6.70657456e-01 4.70591336e-02 2.63928860e-01 7.56281316e-01 -7.84833670e-01 1.01719582e+00 4.63244289e-01 3.16579267e-02 -1.49778354e+00 1.35840821e+00 7.41001606e-01 -8.24728727e-01 -7.61337876e-01 -4.35895234e-01 -8.62625241e-01 1.50846183e-01 -3.24724726e-02 -1.13428986e+00 8.79736245e-01 3.63891572e-01 -5.71026683e-01 1.75044715e-01 7.81727374e-01 -8.79243612e-02 2.72478461e-01 1.25773028e-01 -1.41044170e-01 3.97347122e-01 -7.93612957e-01 1.16680928e-01 3.70430589e-01 3.68823856e-01 4.50922996e-01 2.74557889e-01 1.02729642e+00 7.47409761e-02 3.56072962e-01 -4.12059456e-01 -3.09368391e-02 1.04053366e+00 9.37748253e-01 -1.08677232e+00 -8.62215757e-02 -1.75826445e-01 2.11888641e-01 -3.69946569e-01 4.21900392e-01 -4.25936460e-01 -5.77588379e-01 4.39643890e-01 3.33248675e-01 2.33682856e-01 1.23825043e-01 -3.44741762e-01 -4.90018994e-01 -3.13771099e-01 -6.02060497e-01 1.18187480e-01 -5.92401803e-01 -8.66125047e-01 -2.09760532e-01 1.36048719e-01 -7.84387827e-01 -4.95084256e-01 -3.43635887e-01 -6.86481237e-01 1.09700525e+00 -1.43510079e+00 -5.85597336e-01 8.89870748e-02 1.97651591e-02 6.98507056e-02 -2.84060329e-01 2.70382673e-01 -3.46031398e-01 -4.02499855e-01 1.62076235e-01 3.97611707e-01 2.22181026e-02 1.99111238e-01 -1.17752743e+00 -8.49439025e-01 5.04364252e-01 -6.77910507e-01 6.88029706e-01 6.05760634e-01 -6.29907906e-01 -1.12141061e+00 -5.23674488e-01 5.72346032e-01 4.01945740e-01 5.22357643e-01 5.04954815e-01 -3.79975200e-01 6.36974096e-01 8.91548038e-01 -9.40878272e-01 7.94147015e-01 -1.12920627e-01 6.31628156e-01 -5.23730814e-01 -1.41745126e+00 5.37553668e-01 5.24242103e-01 -1.23989256e-02 -7.90155053e-01 -1.95428982e-01 2.59545624e-01 2.93910325e-01 -1.10752010e+00 -1.05358511e-01 3.70127976e-01 -1.05118012e+00 4.81120229e-01 -2.33002156e-01 1.03076383e-01 -3.26963961e-01 -5.68731092e-02 -1.38948047e+00 -6.69587076e-01 -6.35494947e-01 7.36210823e-01 1.06605089e+00 3.48514467e-01 -1.19282842e+00 7.63828874e-01 8.03950727e-01 1.85387209e-02 -4.61341470e-01 -1.11611080e+00 -8.25011790e-01 4.88144785e-01 3.77531737e-01 5.82117915e-01 9.32742238e-01 5.27305841e-01 1.10789528e-02 3.70557547e-01 1.08969763e-01 8.14298868e-01 4.65811193e-01 6.80051506e-01 -1.30432594e+00 -3.93979996e-01 -6.31669104e-01 -1.59717664e-01 -5.78894496e-01 1.76044539e-01 -5.21755457e-01 -1.56896263e-01 -1.88859427e+00 3.44696231e-02 -5.94120681e-01 -4.11555111e-01 3.36711437e-01 4.70069587e-01 -3.58414859e-01 6.16198242e-01 3.00183326e-01 -1.55743912e-01 9.47552398e-02 1.52009547e+00 1.56606600e-01 -4.92411345e-01 4.56138492e-01 -1.50221300e+00 5.91285467e-01 9.94844973e-01 -5.58928065e-02 -7.60151982e-01 8.47648233e-02 4.83182877e-01 9.19542849e-01 9.03166947e-04 -2.88291097e-01 2.61671573e-01 -9.64526176e-01 -1.36416899e-02 -2.38482237e-01 -7.67575428e-02 -9.56464291e-01 5.22180200e-01 7.80843318e-01 -2.91207671e-01 1.63211182e-01 -3.40287715e-01 2.56662220e-01 -1.75907388e-01 -8.05814683e-01 4.41920727e-01 -5.01235545e-01 -1.32165909e-01 -5.56607366e-01 -1.10697770e+00 -5.56790471e-01 1.52626491e+00 -6.97763324e-01 -4.45984155e-01 -8.80346954e-01 -6.76900685e-01 4.16687459e-01 8.59994411e-01 -1.45507812e-01 -8.78120121e-03 -7.96595156e-01 -6.60360932e-01 -6.64750338e-01 -3.90024662e-01 -2.61590093e-01 1.31356955e-01 1.00915897e+00 -4.70373690e-01 7.56939769e-01 -6.83643520e-01 1.23759300e-01 -9.13585365e-01 3.44718933e-01 5.91757774e-01 -1.44993961e-01 5.14300652e-02 1.58340037e-01 1.38869807e-01 1.46551738e-02 -2.09349856e-01 -2.02149972e-01 -1.89655796e-01 5.19045293e-01 4.67975140e-02 8.25367153e-01 -1.92965969e-01 -5.06841362e-01 -2.02106107e-02 1.62571505e-01 1.39533430e-01 -5.06984532e-01 1.06890202e+00 -4.66682523e-01 -1.00450389e-01 1.84786022e-01 -7.33935833e-03 1.96784168e-01 -1.35864902e+00 7.88756236e-02 3.05479858e-02 -8.34742069e-01 2.75143664e-02 -8.14827561e-01 -9.37336683e-01 2.28479490e-01 -5.96279763e-02 6.27178192e-01 1.13994563e+00 -3.27975392e-01 -3.30737859e-01 4.70343262e-01 9.91230905e-01 -1.62837791e+00 1.46477099e-03 3.30130309e-02 4.55263108e-01 -7.10450947e-01 -8.03699270e-02 -3.19924176e-01 -1.07376301e+00 7.95103192e-01 4.83456373e-01 7.45049678e-03 3.47349912e-01 1.22975998e-01 1.16712503e-01 2.71026880e-01 -9.16921735e-01 -2.07153633e-01 -5.31412303e-01 7.77402818e-01 1.56071290e-01 5.85902929e-01 -1.02951145e+00 8.18599761e-01 -3.74986559e-01 1.94355205e-01 1.58696139e+00 1.11731732e+00 -8.26693833e-01 -1.01278007e+00 -7.76086330e-01 2.60683000e-01 -7.07445860e-01 3.45078677e-01 -2.98112333e-01 1.28330696e+00 4.47327197e-01 1.11005569e+00 5.86865425e-01 4.32189137e-01 3.95024568e-01 -8.51246119e-02 4.16891247e-01 -5.96941590e-01 -4.37467694e-01 4.51698393e-01 1.22872656e-02 3.14079016e-01 -5.95314622e-01 -8.82026672e-01 -1.78104854e+00 -5.96138418e-01 -4.94591981e-01 7.39916146e-01 4.09282565e-01 8.19469154e-01 1.43849507e-01 3.71107489e-01 9.27489400e-01 -2.33145222e-01 -1.18627977e+00 -7.94068217e-01 -1.32669783e+00 -1.22423753e-01 -3.15693736e-01 -7.00587153e-01 -4.15729195e-01 -2.92649388e-01]
[4.260954856872559, 2.9026646614074707]
30ae32c7-7bc9-4f5a-81c2-b38f53afa5d7
amr-to-text-generation-with-graph-transformer
null
null
https://aclanthology.org/2020.tacl-1.2
https://aclanthology.org/2020.tacl-1.2.pdf
AMR-To-Text Generation with Graph Transformer
Abstract meaning representation (AMR)-to-text generation is the challenging task of generating natural language texts from AMR graphs, where nodes represent concepts and edges denote relations. The current state-of-the-art methods use graph-to-sequence models; however, they still cannot significantly outperform the previous sequence-to-sequence models or statistical approaches. In this paper, we propose a novel graph-to-sequence model (Graph Transformer) to address this task. The model directly encodes the AMR graphs and learns the node representations. A pairwise interaction function is used for computing the semantic relations between the concepts. Moreover, attention mechanisms are used for aggregating the information from the incoming and outgoing neighbors, which help the model to capture the semantic information effectively. Our model outperforms the state-of-the-art neural approach by 1.5 BLEU points on LDC2015E86 and 4.8 BLEU points on LDC2017T10 and achieves new state-of-the-art performances.
['Xiaojun Wan', 'Tianming Wang', 'Hanqi Jin']
2020-01-01
null
null
null
tacl-2020-1
['graph-to-sequence']
['natural-language-processing']
[ 6.94048345e-01 6.45857811e-01 -1.10181637e-01 -2.28670269e-01 -7.30250299e-01 -4.07041818e-01 1.00577652e+00 3.28408092e-01 -4.41347361e-02 8.92364919e-01 7.21103251e-01 -4.76421952e-01 2.78713644e-01 -1.07443428e+00 -7.75609553e-01 -2.96506733e-01 1.20698340e-01 6.77467048e-01 3.71950641e-02 -6.26514375e-01 9.61926356e-02 -2.84193635e-01 -1.24863005e+00 6.08134806e-01 1.09844589e+00 5.65292358e-01 3.14800531e-01 7.87629068e-01 -7.75219083e-01 9.30014253e-01 -7.39994884e-01 -6.78101003e-01 -3.70125562e-01 -1.09655952e+00 -8.34334612e-01 -1.88137591e-01 1.79543681e-02 1.75988674e-01 -6.11761808e-01 1.04731679e+00 5.30448973e-01 2.16929898e-01 8.80196214e-01 -1.18128347e+00 -1.30872238e+00 1.23788428e+00 -4.51391280e-01 -1.85235962e-01 8.16264391e-01 -8.66535604e-02 1.50250709e+00 -8.08604360e-01 6.86595321e-01 1.54781365e+00 1.83143079e-01 9.72795367e-01 -9.57993865e-01 -5.12214601e-01 6.36094213e-01 2.54638553e-01 -1.14726174e+00 1.74444709e-02 7.08496690e-01 -7.65132159e-02 1.33780622e+00 1.96239322e-01 7.34628618e-01 1.36434639e+00 -3.01308520e-02 9.75924253e-01 5.20646632e-01 -5.36851585e-01 2.33222693e-01 -5.42604804e-01 9.82524604e-02 7.41877675e-01 4.26909000e-01 -4.26580101e-01 -5.69992721e-01 -1.14097506e-01 5.69764435e-01 -1.13495797e-01 -3.47093076e-01 2.29648665e-01 -1.27472866e+00 9.92413104e-01 6.27835035e-01 3.86115819e-01 -4.11342084e-01 5.39659262e-01 2.53599435e-01 1.84394330e-01 4.88385260e-01 4.87423152e-01 -1.37391239e-01 -3.03978212e-02 -5.52480102e-01 3.41374993e-01 7.43264735e-01 1.44451988e+00 3.31506073e-01 1.29820719e-01 -6.99154437e-01 6.59090042e-01 4.87604201e-01 3.81171227e-01 5.63379943e-01 -3.37152988e-01 8.77599776e-01 9.00246620e-01 -1.63710907e-01 -9.73214686e-01 -1.72053337e-01 -3.16843539e-01 -1.19696581e+00 -6.73524559e-01 -1.02296825e-02 -2.88520277e-01 -1.12586844e+00 1.66219795e+00 -7.19432756e-02 4.23251808e-01 3.40084404e-01 6.45195067e-01 1.27940750e+00 1.04756916e+00 1.78398430e-01 4.40543108e-02 1.46546626e+00 -1.18906069e+00 -9.33618426e-01 -5.19521654e-01 7.53247559e-01 -4.39015687e-01 9.87187386e-01 -6.60642013e-02 -1.08461106e+00 -5.33630848e-01 -9.30564582e-01 -7.20997108e-03 -3.20270687e-01 -2.36234572e-02 4.70770687e-01 1.06123172e-01 -1.21485817e+00 4.01952416e-01 -4.45015550e-01 -2.66223639e-01 1.50404304e-01 -2.89020278e-02 -1.78980619e-01 -4.63967294e-01 -1.77837050e+00 6.78330064e-01 6.11304522e-01 1.06079392e-01 -7.40877509e-01 -4.85576659e-01 -1.26817262e+00 2.16480523e-01 3.25043261e-01 -1.07588816e+00 1.07369244e+00 -7.65766144e-01 -1.41928339e+00 4.92258400e-01 -3.31552446e-01 -6.37304068e-01 2.14941248e-01 -2.38598093e-01 -4.18731332e-01 1.32596582e-01 6.28216891e-04 9.15319383e-01 5.07993877e-01 -1.11444783e+00 -3.65286708e-01 2.31894981e-02 4.09863554e-02 4.09637570e-01 -9.92723256e-02 -1.63251474e-01 -5.99818051e-01 -9.71520960e-01 -1.16101332e-01 -9.04019713e-01 -4.68086898e-01 -5.58586240e-01 -6.47377014e-01 -6.75404549e-01 5.27631760e-01 -7.14638054e-01 1.38645935e+00 -1.74503243e+00 3.82962376e-01 -3.03962510e-02 2.44153097e-01 2.04455137e-01 -7.37457037e-01 9.03444350e-01 -1.20441556e-01 3.97970647e-01 -3.37590158e-01 -3.39164138e-01 1.63778365e-01 1.33515537e-01 -2.76518553e-01 -1.73230112e-01 5.75391352e-01 1.45556498e+00 -1.25423551e+00 -2.79716790e-01 -1.19218536e-01 6.32139266e-01 -3.11857432e-01 3.78119677e-01 -7.10824609e-01 2.99215049e-01 -6.59254730e-01 8.78019184e-02 2.39732608e-01 -5.76241374e-01 6.33523047e-01 1.70340717e-01 6.81235552e-01 6.79672837e-01 -5.91041207e-01 1.98451507e+00 -5.40865004e-01 4.43776488e-01 -5.17596185e-01 -1.05650783e+00 1.30272222e+00 4.77536798e-01 -2.14683283e-02 -5.82427084e-01 -5.30937836e-02 4.46812175e-02 3.86686139e-02 -1.07560746e-01 7.23316491e-01 4.12652716e-02 -3.05391580e-01 4.81996745e-01 7.01331720e-02 -2.85294384e-01 3.48381191e-01 7.09417462e-01 1.28843689e+00 1.38908774e-01 4.75173652e-01 -9.91611853e-02 6.14427209e-01 -3.70907456e-01 2.22677484e-01 5.68819761e-01 3.96682471e-01 7.03310847e-01 7.32722342e-01 -2.23351881e-01 -8.02561700e-01 -8.69270325e-01 7.95254052e-01 8.76384377e-01 -6.95628449e-02 -8.05432379e-01 -8.75432432e-01 -1.01975811e+00 -2.24252015e-01 1.38439763e+00 -5.96953988e-01 -4.34496731e-01 -5.22930443e-01 -4.64631289e-01 5.86344719e-01 7.06841111e-01 2.43935555e-01 -1.27878571e+00 1.64682403e-01 4.45933938e-01 -6.73968196e-01 -1.30304646e+00 -6.56359136e-01 -4.82320637e-01 -6.30777657e-01 -7.09302187e-01 -9.35414553e-01 -7.69190431e-01 8.74709189e-01 1.30201533e-01 1.65527606e+00 3.10223222e-01 -3.27616464e-03 1.22670852e-01 -9.59522963e-01 -2.85976052e-01 -6.18467629e-01 3.38345677e-01 -4.43864673e-01 1.89341716e-02 3.33134949e-01 -4.80758548e-01 -4.80349034e-01 -8.26830119e-02 -8.20313692e-01 5.18450141e-01 6.80645347e-01 8.14190030e-01 6.24252737e-01 -1.40308127e-01 9.07895386e-01 -1.02831089e+00 9.66971278e-01 -5.49324274e-01 -1.67296305e-01 4.68095988e-01 -5.16189873e-01 4.51338083e-01 7.95845687e-01 -2.18647256e-01 -1.06803429e+00 -9.30732116e-02 -8.72628540e-02 -1.22725852e-01 5.98755255e-02 6.99917555e-01 -3.54270607e-01 7.27842331e-01 3.80088478e-01 5.00146270e-01 -3.36642295e-01 -1.34623468e-01 1.01240456e+00 5.92807174e-01 4.89830613e-01 -6.34049416e-01 5.43597519e-01 -3.70203666e-02 -2.53007803e-02 -6.13716006e-01 -1.06960893e+00 -2.58132309e-01 -3.63690078e-01 -1.20380111e-02 1.14489985e+00 -1.09371769e+00 -3.07293773e-01 2.32146367e-01 -1.60864818e+00 -3.81392449e-01 -1.31097361e-01 2.14030087e-01 -4.79689479e-01 2.82310814e-01 -6.68676436e-01 -8.34509611e-01 -8.45773935e-01 -7.36147344e-01 1.29439628e+00 1.96898863e-01 -2.84218669e-01 -1.21095800e+00 -1.51198208e-01 3.15003455e-01 3.12081486e-01 3.46824348e-01 1.16816401e+00 -7.78455436e-01 -5.29239893e-01 -2.35848323e-01 -3.23350102e-01 1.29787372e-02 2.12454394e-01 -2.31579214e-01 -5.16346037e-01 -1.82468966e-01 -6.95511818e-01 -2.26966128e-01 1.07280207e+00 1.38541654e-01 1.23766184e+00 -5.88252604e-01 -3.82593304e-01 -1.30268245e-03 1.13063121e+00 3.29477638e-02 1.02098393e+00 -3.36103320e-01 1.10974693e+00 6.61781728e-01 3.06527644e-01 1.63989440e-01 8.43722880e-01 5.58335006e-01 4.42246854e-01 9.03558545e-03 -4.67598140e-01 -9.56488550e-01 5.34551144e-01 1.19452262e+00 -1.12390863e-02 -9.97407556e-01 -7.79929161e-01 5.09911299e-01 -2.15416741e+00 -8.12959075e-01 -3.73421460e-01 1.81331873e+00 8.85865450e-01 2.12551102e-01 -2.57565439e-01 -1.46249458e-01 9.63069320e-01 4.54300374e-01 -2.32226267e-01 -3.69468629e-01 -2.34591793e-02 2.46925771e-01 9.39269438e-02 5.13685524e-01 -6.63802743e-01 1.23043132e+00 5.50313759e+00 8.91890883e-01 -4.82695729e-01 -2.29819238e-01 5.88197827e-01 2.71468133e-01 -9.85621333e-01 -6.07156828e-02 -7.33171582e-01 3.90604168e-01 1.05404031e+00 -3.61170024e-01 4.11619395e-01 6.42139852e-01 -5.01593091e-02 4.31072980e-01 -1.11365676e+00 8.58848989e-01 5.29408753e-01 -1.47687531e+00 7.86596298e-01 -9.75034386e-02 8.99138689e-01 -1.95769846e-01 -4.18059021e-01 4.85104024e-01 8.59663367e-01 -1.42237413e+00 4.75970596e-01 7.72741318e-01 9.04230177e-01 -8.32674325e-01 9.29448187e-01 2.12000057e-01 -1.62507820e+00 2.53997445e-01 -3.88146043e-01 -4.98819277e-02 4.70675111e-01 6.28415108e-01 -8.14963758e-01 1.07074833e+00 6.79357499e-02 1.01984501e+00 -4.96295452e-01 3.44062746e-01 -9.75474417e-01 6.68212891e-01 2.67188519e-01 -6.44317210e-01 4.49970990e-01 -8.75492021e-02 3.51481885e-01 1.41936350e+00 5.75128734e-01 2.40687765e-02 2.06807554e-01 1.01114678e+00 -6.06614053e-01 9.70114544e-02 -7.48649180e-01 -4.86326396e-01 5.33401906e-01 1.17544365e+00 -5.47840059e-01 -5.91522932e-01 -4.27969933e-01 1.26821160e+00 4.98527378e-01 3.80789310e-01 -5.58385015e-01 -6.26820207e-01 4.09037650e-01 -1.46623710e-02 3.39649171e-01 -1.48107439e-01 8.07785466e-02 -1.10982692e+00 -5.77757694e-02 -9.17101204e-01 4.89310563e-01 -9.88285184e-01 -1.51148045e+00 7.42544293e-01 -4.05417718e-02 -9.14812505e-01 -6.46401167e-01 -4.77618277e-01 -9.10479605e-01 9.45001364e-01 -1.38253856e+00 -1.19946468e+00 -2.47300789e-01 1.98651046e-01 7.26773143e-01 -3.96045864e-01 1.04751384e+00 -1.92204729e-01 -1.86520979e-01 5.95832527e-01 -2.10448742e-01 4.41844821e-01 2.17736065e-01 -1.42615914e+00 1.47697210e+00 9.26254988e-01 4.54534471e-01 5.69518983e-01 4.47071671e-01 -7.95358121e-01 -1.29561293e+00 -1.42154860e+00 1.27210152e+00 -2.87647188e-01 6.64900124e-01 -6.08641863e-01 -8.30380082e-01 5.85759401e-01 5.37519991e-01 -1.00174040e-01 5.89476049e-01 -5.14638387e-02 -5.47132075e-01 3.52548748e-01 -5.48422575e-01 9.48673844e-01 1.51833725e+00 -5.03610015e-01 -6.09441340e-01 2.91062236e-01 1.50211728e+00 -2.40935326e-01 -5.96701503e-01 9.41989794e-02 1.24292769e-01 -3.18180442e-01 7.40759015e-01 -8.78777146e-01 8.61049056e-01 -2.88428098e-01 -1.16259106e-01 -1.79017699e+00 -2.46831089e-01 -9.81287003e-01 -4.45370883e-01 1.28103518e+00 8.75431061e-01 -4.41323429e-01 6.31689966e-01 1.06734321e-01 -2.38826588e-01 -7.78737903e-01 -6.07472181e-01 -6.31315351e-01 1.39817312e-01 -3.06708038e-01 8.57205987e-01 7.34534621e-01 1.98753655e-01 1.17877519e+00 -3.23679030e-01 -3.17681819e-01 4.95909840e-01 3.26625556e-02 4.79948401e-01 -1.13183606e+00 -3.66861314e-01 -4.18700874e-01 -2.33251080e-01 -1.22758889e+00 6.23034596e-01 -1.34542465e+00 1.07226059e-01 -2.49519181e+00 1.53971642e-01 1.53288189e-02 -8.72456506e-02 5.10610938e-01 -8.87121797e-01 -2.30206400e-01 4.64804173e-01 -3.10781419e-01 -7.83362508e-01 1.02878129e+00 1.44847810e+00 -3.25866640e-01 1.09953605e-01 -2.46916160e-01 -1.05446076e+00 2.64464647e-01 9.39991891e-01 -3.76912773e-01 -8.48519921e-01 -6.15624189e-01 5.28281212e-01 1.13280065e-01 1.06120348e-01 -5.82345724e-01 1.16274450e-02 -2.23735645e-02 6.05887733e-02 -5.27619779e-01 1.68161243e-01 -2.49589115e-01 -7.93688148e-02 4.59845275e-01 -8.41130793e-01 3.17243874e-01 -1.44160450e-01 9.27009463e-01 -1.90713823e-01 -1.11910827e-01 2.21117124e-01 -3.19949150e-01 -4.57460344e-01 3.44762534e-01 -3.82709712e-01 5.36460876e-01 6.56242251e-01 4.07240361e-01 -5.06570518e-01 -1.05749023e+00 -3.80483449e-01 4.72443223e-01 -7.79300481e-02 8.16555560e-01 9.55484509e-01 -1.64894187e+00 -1.34462953e+00 -1.46372885e-01 4.02978837e-01 2.01244280e-01 1.14482693e-01 2.26525888e-01 -1.71678618e-01 4.15785998e-01 2.44949162e-01 -1.28614053e-01 -1.09893596e+00 4.98588771e-01 2.42624190e-02 -7.12278962e-01 -7.07420588e-01 8.48603904e-01 3.10266167e-01 -5.69270551e-01 3.84742790e-03 -1.81605428e-01 -4.68669951e-01 -1.38665691e-01 7.77217448e-01 1.20909721e-01 -1.75220415e-01 -5.38701952e-01 -2.00058252e-01 3.03628623e-01 -1.75140351e-01 -1.44406170e-01 1.06998026e+00 7.63147622e-02 -1.34241968e-01 1.62136495e-01 1.05060172e+00 -3.73127997e-01 -7.66201019e-01 -3.32070708e-01 6.17674626e-02 2.49741673e-02 -3.27297807e-01 -7.91850328e-01 -9.30749476e-01 1.03716981e+00 -2.21024618e-01 1.83155864e-01 7.99856246e-01 1.60221323e-01 1.07550502e+00 4.54023689e-01 1.55436754e-01 -8.84111106e-01 3.99838805e-01 8.16256464e-01 1.23955834e+00 -7.91655302e-01 -2.53153294e-01 -6.66897833e-01 -1.05097723e+00 1.01118994e+00 4.61679667e-01 -7.63243735e-02 2.46775076e-01 5.39389066e-02 -2.54778713e-01 -4.01407667e-02 -1.15057766e+00 -3.91608238e-01 5.98752797e-01 9.00724351e-01 8.30691576e-01 3.63229692e-01 -4.71921116e-01 7.59346604e-01 -3.27894837e-01 -2.58452147e-01 4.46207970e-01 4.76301700e-01 -3.09150726e-01 -1.30137122e+00 2.58016944e-01 4.11765218e-01 -2.60925442e-01 -6.11374140e-01 -8.47534418e-01 5.03572583e-01 -4.02405113e-01 1.25033462e+00 1.09690540e-01 -4.78650451e-01 2.93954790e-01 1.88000262e-01 2.72538006e-01 -8.25491369e-01 -3.75694066e-01 -1.46826893e-01 5.95206797e-01 -3.41747731e-01 -2.08901301e-01 -3.17193002e-01 -1.68605566e+00 -1.77023485e-01 -1.80016115e-01 3.66940022e-01 4.07952189e-01 7.80887306e-01 6.17169023e-01 1.05111647e+00 4.15409029e-01 -4.98178303e-01 -3.84094238e-01 -1.24952614e+00 -3.23890418e-01 5.33413351e-01 -1.35228425e-01 -2.07593530e-01 -5.45017347e-02 -4.26583318e-03]
[10.356513977050781, 8.365818977355957]
026acdd7-1580-4960-a05d-72e0c25f0bec
comprehensive-evaluation-of-no-reference-1
2011.07950
null
https://arxiv.org/abs/2011.07950v1
https://arxiv.org/pdf/2011.07950v1.pdf
Comprehensive evaluation of no-reference image quality assessment algorithms on authentic distortions
Objective image quality assessment deals with the prediction of digital images' perceptual quality. No-reference image quality assessment predicts the quality of a given input image without any knowledge or information about its pristine (distortion free) counterpart. Machine learning algorithms are heavily used in no-reference image quality assessment because it is very complicated to model the human visual system's quality perception. Moreover, no-reference image quality assessment algorithms are evaluated on publicly available benchmark databases. These databases contain images with their corresponding quality scores. In this study, we evaluate several machine learning based NR-IQA methods and one opinion unaware method on databases consisting of authentic distortions. Specifically, LIVE In the Wild and KonIQ-10k databases were applied to evaluate the state-of-the-art. For machine learning based methods, appx. 80% were used for training and the remaining 20% were used for testing. Furthermore, average PLCC, SROCC, and KROCC values were reported over 100 random train-test splits. The statistics of PLCC, SROCC, and KROCC values were also published using boxplots. Our evaluation results may be helpful to obtain a clear understanding about the status of state-of-the-art no-reference image quality assessment methods.
['Domonkos Varga']
2020-10-26
null
null
null
null
['no-reference-image-quality-assessment']
['computer-vision']
[ 2.29968965e-01 -3.59933168e-01 -8.83348286e-02 -3.71059775e-01 -1.17200077e+00 -3.97817343e-01 3.71176124e-01 3.56915176e-01 -3.55709881e-01 6.80777133e-01 -3.10197920e-02 -1.04208015e-01 -8.13607201e-02 -5.83495796e-01 -5.13006330e-01 -9.06826496e-01 -1.47691593e-01 -2.41674930e-01 2.16944814e-01 -1.11694232e-01 4.75364864e-01 2.98763543e-01 -1.68148947e+00 4.01680887e-01 1.02146959e+00 1.52160871e+00 1.28153890e-01 1.06336713e+00 4.37097818e-01 8.48207891e-01 -1.07795250e+00 -8.47524107e-01 4.78848845e-01 -6.02129936e-01 -4.52610999e-01 1.00142695e-01 7.03864753e-01 -3.58061552e-01 -3.18925411e-01 1.29506850e+00 7.46399701e-01 -1.65768832e-01 7.54778683e-01 -1.32728887e+00 -8.19975972e-01 -5.08395582e-02 -3.14637482e-01 5.31800926e-01 4.84538704e-01 8.00153792e-01 7.88900971e-01 -6.28503621e-01 3.60478073e-01 8.80043149e-01 2.78924853e-01 1.43238723e-01 -1.19986880e+00 -4.54636395e-01 -4.96568888e-01 8.41811776e-01 -1.36876953e+00 -4.62319732e-01 4.96613026e-01 -5.01511633e-01 6.58210218e-01 3.63688499e-01 4.75497156e-01 7.09672570e-01 7.68623173e-01 2.95161754e-01 1.56236923e+00 -5.85748494e-01 3.52222025e-01 2.52777755e-01 -9.04642418e-02 4.20932382e-01 2.35246405e-01 6.03615701e-01 -4.92069483e-01 2.10582823e-01 5.36017001e-01 -6.20043874e-01 -4.84339893e-01 -1.51879281e-01 -1.25806487e+00 4.53473866e-01 4.97799248e-01 2.63719708e-01 -2.74449915e-01 -1.93002522e-01 2.85312623e-01 7.86205649e-01 2.40147799e-01 4.82772648e-01 -2.88686842e-01 -1.66468307e-01 -9.71592724e-01 -1.42061278e-01 3.73476475e-01 6.47103906e-01 7.63953567e-01 1.20301239e-01 -3.28864187e-01 9.40801203e-01 -5.77664338e-02 8.68974805e-01 6.05044782e-01 -1.41128588e+00 3.66186202e-01 2.53209978e-01 2.58248031e-01 -1.23104036e+00 1.13729186e-01 -4.91932184e-01 -1.00910890e+00 1.00365841e+00 5.02105772e-01 3.41027260e-01 -8.16812277e-01 1.09966576e+00 -2.28533477e-01 -1.28212333e-01 1.80073842e-01 1.11436808e+00 7.83082247e-01 6.44469619e-01 -5.95651828e-02 -4.80951548e-01 1.07881916e+00 -7.29847312e-01 -7.07224905e-01 2.42162868e-01 1.19111717e-01 -1.06476891e+00 1.36612082e+00 8.75503600e-01 -1.25165081e+00 -1.28893924e+00 -1.36468613e+00 2.11386636e-01 -2.33322680e-01 3.35135281e-01 -4.21252288e-02 1.05275571e+00 -1.19431531e+00 6.96198344e-01 -3.36237401e-01 5.47828376e-02 2.93438107e-01 1.07433461e-01 -5.41590869e-01 -2.37073824e-01 -9.72790360e-01 9.84269023e-01 2.37281650e-01 -1.01080097e-01 -1.00417817e+00 -6.35141313e-01 -6.12386048e-01 -2.60300368e-01 1.63222492e-01 -3.95321935e-01 9.95361507e-01 -1.32546747e+00 -1.53787744e+00 1.05291915e+00 8.68341476e-02 -2.95184284e-01 5.19659698e-01 4.11921553e-02 -9.62064922e-01 3.80972296e-01 -1.09003223e-01 3.95149529e-01 1.01196754e+00 -1.49693668e+00 -6.50837958e-01 -1.18536063e-01 1.06992543e-01 1.19866937e-01 1.94633201e-01 -1.99718513e-02 -5.92072129e-01 -6.74407482e-01 6.92283139e-02 -4.33174849e-01 2.46498019e-01 2.45568827e-01 -2.06543624e-01 2.41380736e-01 4.09516841e-01 -8.73059630e-01 1.22399890e+00 -2.06146002e+00 -4.06087250e-01 1.39798895e-01 1.34390414e-01 3.93138140e-01 -6.01814032e-01 8.28738287e-02 -1.07552379e-01 2.41598114e-01 -8.12284276e-02 1.33399665e-01 -7.11136311e-02 -1.26351133e-01 1.13649189e-01 6.30969405e-01 2.08862260e-01 5.50026119e-01 -6.71704233e-01 -7.02794790e-01 6.25900984e-01 4.10522938e-01 -2.11127743e-01 4.82761651e-01 2.28896037e-01 3.40781629e-01 3.03206086e-01 7.55078673e-01 7.56616056e-01 -2.01470475e-03 -2.73908347e-01 -7.67087519e-01 8.97004604e-02 -1.90819904e-01 -1.16658807e+00 1.39103794e+00 -5.51007867e-01 8.88984263e-01 -3.11946005e-01 -5.20013750e-01 8.78220260e-01 3.19244444e-01 1.39213845e-01 -1.55841780e+00 -4.15477641e-02 2.71475643e-01 3.05409878e-01 -5.52838504e-01 3.94347608e-01 -3.37864384e-02 3.21782291e-01 1.36532575e-01 2.01640263e-01 -4.44378942e-01 4.18904692e-01 -4.36299816e-02 8.70083213e-01 -2.33253598e-01 4.20552403e-01 2.31701997e-03 8.17102015e-01 -4.35293972e-01 4.30273861e-01 7.51534581e-01 -6.30573630e-01 1.06753814e+00 3.97326618e-01 -2.84558147e-01 -1.34144604e+00 -1.57031250e+00 -2.94343114e-01 5.99300325e-01 3.53246599e-01 -1.47869676e-01 -7.19056129e-01 -4.32739973e-01 -4.44979370e-01 6.39937282e-01 -4.58637685e-01 -1.21423334e-01 -2.17990637e-01 -6.11173511e-01 2.38992602e-01 1.04352556e-01 7.31211603e-01 -1.10945487e+00 -5.01959860e-01 -1.35106131e-01 -3.11006367e-01 -1.12331879e+00 -3.72557640e-01 -4.37278748e-01 -6.70139849e-01 -1.50616682e+00 -8.45200837e-01 -2.92804688e-01 5.00655949e-01 1.09160997e-01 1.54585922e+00 2.23870531e-01 -3.13105434e-01 1.94196895e-01 -4.90769386e-01 -7.77142495e-02 -8.18265796e-01 -4.73962128e-01 -1.44086555e-01 9.15492401e-02 -3.93885113e-02 -3.46819043e-01 -1.00020111e+00 8.09319258e-01 -1.04186893e+00 -2.55128622e-01 7.72617579e-01 6.95655644e-01 9.81762290e-01 5.26681185e-01 2.63793945e-01 -1.74310282e-01 5.57479620e-01 5.48528321e-02 -7.31976390e-01 4.59310949e-01 -1.04750121e+00 -2.09997728e-01 5.53725183e-01 -2.84602046e-01 -9.61269319e-01 -6.70103431e-01 -4.11990248e-02 -3.17775637e-01 -2.86610186e-01 1.94906622e-01 -4.86513197e-01 -1.42484501e-01 9.39410031e-01 1.79205135e-01 -1.93787009e-01 -2.52304077e-01 1.97265178e-01 7.51255512e-01 1.04716539e+00 -2.62285411e-01 9.20876086e-01 1.23912603e-01 -4.70805056e-02 -7.21296191e-01 -4.30759430e-01 -3.78928602e-01 -4.65587199e-01 -5.85038304e-01 7.07720041e-01 -7.91422665e-01 -5.83265245e-01 8.34153891e-01 -7.70286858e-01 -3.05335850e-01 -4.12471443e-01 6.28261805e-01 -6.90923154e-01 4.97011125e-01 -3.64775479e-01 -6.48887336e-01 -3.79480004e-01 -1.30177152e+00 7.94524908e-01 3.53977829e-01 1.85940098e-02 -7.72814870e-01 1.21106461e-01 4.70599085e-01 6.45237863e-01 1.07846908e-01 8.63121450e-01 -1.15267634e-01 -4.00745302e-01 -2.87349224e-01 -4.93781000e-01 1.02305913e+00 3.13162804e-01 2.58032586e-02 -1.05966163e+00 -4.53279406e-01 -1.19526666e-02 -2.76664734e-01 3.78179669e-01 4.41210508e-01 1.20574355e+00 -4.34162855e-01 3.86848152e-01 5.22792101e-01 1.84489608e+00 3.26439768e-01 1.32887924e+00 3.57309848e-01 1.35864019e-01 4.00537074e-01 8.60562265e-01 1.56345576e-01 -1.32428393e-01 9.45251524e-01 4.26376522e-01 -2.33918741e-01 -5.08946955e-01 4.27005403e-02 3.59438330e-01 7.20491230e-01 -2.12060317e-01 -4.67437416e-01 -7.38319218e-01 2.22038075e-01 -9.75161076e-01 -1.16826403e+00 -2.93361768e-02 2.42342353e+00 8.30214143e-01 2.51455516e-01 -1.36267336e-03 7.74846673e-01 6.93019748e-01 1.14788130e-01 -5.15862823e-01 -2.74977177e-01 -5.70817649e-01 2.46444494e-01 3.03592235e-01 2.66730726e-01 -1.07010829e+00 3.22669297e-01 6.62069893e+00 1.14708149e+00 -1.27280569e+00 1.61192954e-01 1.06622064e+00 1.00770835e-02 1.20405696e-01 -3.11765522e-01 -1.25797793e-01 6.67271316e-01 1.23177719e+00 -1.70839861e-01 4.49553877e-01 4.94090587e-01 5.35432935e-01 -7.62942255e-01 -8.23122859e-01 1.51672876e+00 2.20466346e-01 -1.01345146e+00 1.85492821e-02 -1.02898300e-01 8.23386252e-01 -1.18551701e-01 3.86944562e-01 -1.38315335e-01 -1.68939665e-01 -1.20546865e+00 8.18186820e-01 8.79624367e-01 1.35769010e+00 -5.97227931e-01 1.23482645e+00 -4.11725491e-02 -7.88978636e-01 7.86037892e-02 -5.39816856e-01 2.65435755e-01 1.32518010e-02 8.60531747e-01 -2.27403417e-01 8.35402727e-01 8.20305645e-01 3.79050255e-01 -1.23014796e+00 1.45512831e+00 -2.81316519e-01 5.64667404e-01 2.14775071e-01 5.67892253e-01 -3.49083185e-01 -2.03179389e-01 3.36054623e-01 1.09861505e+00 5.24041295e-01 9.02784467e-02 -3.72495264e-01 6.81618392e-01 -2.86478139e-02 2.49911472e-01 -1.62856594e-01 1.46696463e-01 6.61572516e-02 1.04335022e+00 -5.61319292e-01 -2.54583210e-01 -4.24312681e-01 9.89934981e-01 -4.70289588e-01 4.20974910e-01 -7.42695630e-01 -5.13836324e-01 4.73758757e-01 1.54308766e-01 -1.81710813e-03 9.15677249e-02 -1.50583372e-01 -1.08795047e+00 1.54835194e-01 -1.33421147e+00 2.02626169e-01 -1.35188329e+00 -1.41744375e+00 8.64760637e-01 -4.11643013e-02 -1.76239347e+00 -1.37473971e-01 -6.91318333e-01 -4.83320564e-01 1.04886460e+00 -1.58301485e+00 -6.45916283e-01 -7.26455152e-01 4.98890162e-01 4.21418726e-01 -4.28167641e-01 6.01234853e-01 2.84874201e-01 -1.30738541e-01 7.59887397e-01 1.69468015e-01 2.45879337e-01 8.80179048e-01 -1.19986629e+00 4.37109880e-02 9.81305122e-01 1.62188068e-01 2.23064609e-02 8.90109837e-01 -2.81396657e-01 -9.64460075e-01 -9.27687705e-01 3.90602261e-01 -3.64980519e-01 1.98013052e-01 4.37971681e-01 -9.71441865e-01 -1.98505491e-01 3.95534158e-01 3.96290213e-01 5.61405599e-01 -5.46981275e-01 -3.54611546e-01 -6.22249842e-01 -1.38630497e+00 2.13355333e-01 5.39086998e-01 -6.54012382e-01 -3.33149433e-01 -2.59782732e-01 3.84928912e-01 -2.04999849e-01 -1.12647450e+00 4.88981932e-01 6.77435875e-01 -1.72311616e+00 1.03127980e+00 1.06471248e-01 5.32808781e-01 -6.52087450e-01 -5.54056227e-01 -1.40622580e+00 -5.41313365e-02 -9.95755419e-02 1.87105998e-01 1.00790107e+00 4.18440938e-01 -3.17692548e-01 4.32508528e-01 1.71479955e-01 4.18165550e-02 -4.58580256e-01 -9.06913757e-01 -1.04413855e+00 1.79967508e-02 -6.31851673e-01 5.23583770e-01 5.39646685e-01 -4.55407858e-01 -1.45227686e-01 -2.22921342e-01 1.60365433e-01 9.11457598e-01 -2.01065481e-01 8.08499336e-01 -8.64955127e-01 -3.72502595e-01 -4.29469168e-01 -9.05821323e-01 -3.18272918e-01 -3.34457636e-01 -4.55905885e-01 -1.18650764e-01 -1.33103693e+00 2.51606703e-01 -1.61952555e-01 -6.02069616e-01 2.57007615e-03 -1.60146728e-01 7.19946384e-01 3.43263388e-01 3.81352454e-01 -6.52611971e-01 3.94835472e-01 1.40123320e+00 -5.29938221e-01 -8.23803842e-02 6.31308332e-02 -2.96845555e-01 4.44436044e-01 9.67721045e-01 -3.70985061e-01 -4.98592883e-01 -2.26706460e-01 8.45192522e-02 1.59135059e-01 5.54315984e-01 -1.61624575e+00 -6.04583845e-02 -1.99731261e-01 6.77583516e-01 -5.15707672e-01 9.24283415e-02 -7.64629066e-01 4.30439055e-01 3.42476130e-01 -2.91822970e-01 2.25997686e-01 1.01023940e-02 2.59781837e-01 -6.58151746e-01 -2.39852950e-01 1.25773978e+00 3.13551305e-03 -7.82849252e-01 1.66267812e-01 -1.37790898e-02 -1.77412555e-02 8.35724175e-01 -5.34155130e-01 -4.54317331e-01 -6.08142614e-01 -6.96228385e-01 -4.88952756e-01 8.74494553e-01 2.28000537e-01 1.06378031e+00 -1.30663264e+00 -8.87826025e-01 2.07115024e-01 5.06017447e-01 -7.53914058e-01 4.86470789e-01 6.95151389e-01 -6.93751752e-01 2.82480121e-01 -6.41719997e-01 -6.59099042e-01 -1.41662407e+00 6.44560814e-01 6.37352407e-01 -1.15835503e-01 -1.23036213e-01 2.64045119e-01 -6.18340187e-02 9.66595933e-02 2.07739562e-01 -2.33209237e-01 -2.18384981e-01 -2.48351112e-01 8.61180961e-01 6.61839724e-01 3.96712184e-01 -8.00573647e-01 -3.14165279e-02 7.49466956e-01 4.70706314e-01 -3.69787008e-01 8.21747303e-01 -3.98214012e-01 9.86509491e-04 4.08933252e-01 1.29518604e+00 -4.99090403e-02 -1.05890155e+00 -1.02467664e-01 -2.05240458e-01 -9.30597365e-01 2.74110675e-01 -1.41847098e+00 -1.27426124e+00 9.30841386e-01 1.55238247e+00 1.73260346e-01 1.84936333e+00 -2.90785015e-01 2.19403028e-01 -1.03077833e-02 5.28505683e-01 -1.04203594e+00 3.26573491e-01 -1.01520307e-01 1.16383612e+00 -1.46038449e+00 1.28369942e-01 -1.60348609e-01 -6.58613622e-01 1.11877143e+00 4.41856146e-01 2.84493744e-01 4.85566169e-01 -8.78483877e-02 5.46831429e-01 2.13688582e-01 -5.96948326e-01 -9.39683989e-02 6.68485940e-01 1.09543693e+00 3.16213667e-01 -1.19562559e-01 -1.31784305e-01 2.52650082e-01 -2.42311522e-01 1.30960524e-01 6.98931634e-01 3.37541163e-01 -2.83481389e-01 -9.72974360e-01 -6.45129681e-01 5.15834630e-01 -6.99237347e-01 8.76595080e-03 1.52682081e-01 6.16468191e-01 3.91336471e-01 1.48789048e+00 -3.87728997e-02 -5.97024500e-01 5.72297931e-01 -4.32262748e-01 5.01338780e-01 -5.77563196e-02 -3.93902391e-01 -1.47389174e-01 -2.37677023e-01 -8.47107053e-01 -5.89687109e-01 -3.87522012e-01 -6.89586878e-01 -4.89720196e-01 -1.51495516e-01 6.72407374e-02 8.03667784e-01 6.13478541e-01 -6.25085160e-02 4.43800360e-01 7.97710359e-01 -5.68636417e-01 -2.28975207e-01 -9.25777912e-01 -5.84832668e-01 6.27040088e-01 4.77018595e-01 -3.43073219e-01 -6.16978288e-01 4.79475290e-01]
[11.773789405822754, -1.904897689819336]
ca8ae175-279d-4de5-96ac-79bcc06d4716
lscp-locally-selective-combination-in
1812.01528
null
http://arxiv.org/abs/1812.01528v2
http://arxiv.org/pdf/1812.01528v2.pdf
LSCP: Locally Selective Combination in Parallel Outlier Ensembles
In unsupervised outlier ensembles, the absence of ground truth makes the combination of base outlier detectors a challenging task. Specifically, existing parallel outlier ensembles lack a reliable way of selecting competent base detectors, affecting accuracy and stability, during model combination. In this paper, we propose a framework---called Locally Selective Combination in Parallel Outlier Ensembles (LSCP)---which addresses the issue by defining a local region around a test instance using the consensus of its nearest neighbors in randomly selected feature subspaces. The top-performing base detectors in this local region are selected and combined as the model's final output. Four variants of the LSCP framework are compared with seven widely used parallel frameworks. Experimental results demonstrate that one of these variants, LSCP_AOM, consistently outperforms baselines on the majority of twenty real-world datasets.
['Zheng Li', 'Maciej K. Hryniewicki', 'Zain Nasrullah', 'Yue Zhao']
2018-12-04
null
null
null
null
['outlier-ensembles']
['methodology']
[-3.13261032e-01 -7.51821220e-01 1.17451914e-01 -6.42284676e-02 -1.18229377e+00 -3.56854916e-01 5.95455647e-01 4.85569119e-01 -4.03409451e-01 5.46117544e-01 3.60719077e-02 8.88446420e-02 -2.23473072e-01 -4.69433755e-01 -5.68100989e-01 -8.45146835e-01 -1.92703068e-01 5.45975566e-01 4.02571350e-01 1.83386635e-02 4.57603395e-01 4.43553627e-01 -1.59613252e+00 4.43762034e-01 1.32353890e+00 7.01387107e-01 -4.34821844e-01 3.01355839e-01 2.51867503e-01 5.08833349e-01 -5.87632418e-01 -5.82783930e-02 6.63192391e-01 -5.44956803e-01 -7.00943917e-02 -2.14253187e-01 7.37904906e-01 -1.79884046e-01 -9.42755938e-02 9.00269389e-01 5.56385458e-01 3.17139894e-01 7.17475593e-01 -1.41578913e+00 2.85875779e-02 5.77054322e-01 -4.10625696e-01 5.23739755e-01 4.51373816e-01 4.11758155e-01 1.00061095e+00 -1.50326335e+00 5.31250358e-01 9.43930447e-01 1.04809356e+00 1.47611007e-01 -1.54109371e+00 -7.76129246e-01 2.52879024e-01 2.88395714e-02 -1.85256135e+00 -4.30699110e-01 5.90625465e-01 -4.35475975e-01 1.15133297e+00 4.24836755e-01 3.98451835e-01 1.28576112e+00 4.90390986e-01 5.09692073e-01 1.06238544e+00 -1.53076753e-01 6.54849410e-01 -1.62123397e-01 3.70527744e-01 3.10381085e-01 1.09899008e+00 2.39650846e-01 -8.52679431e-01 -1.03554130e+00 1.71979219e-01 2.67224967e-01 -1.72752306e-01 -5.62549055e-01 -1.14116681e+00 5.70262551e-01 3.81171703e-01 3.24845374e-01 -5.56666732e-01 -8.66202265e-02 4.88482445e-01 3.91236901e-01 5.03095865e-01 8.08430314e-01 -3.11574250e-01 -7.17156939e-03 -1.32835090e+00 6.55958533e-01 7.52866626e-01 6.39665902e-01 6.43058121e-01 1.80934288e-03 -3.02119732e-01 6.04095101e-01 4.66597408e-01 3.22094113e-01 3.79780650e-01 -4.18303311e-01 6.95260942e-01 9.52525616e-01 2.14711532e-01 -8.57634008e-01 -5.15101612e-01 -6.81160271e-01 -7.23748565e-01 1.90481305e-01 2.46518299e-01 -2.21290197e-02 -9.86839414e-01 1.19620085e+00 3.66193950e-01 8.75403404e-01 3.90343592e-02 6.72868550e-01 4.93900955e-01 2.97724158e-01 1.47018358e-01 -2.44410023e-01 5.01633108e-01 -6.98866546e-01 -1.58570439e-01 -1.32699504e-01 6.40106738e-01 -5.58039129e-01 6.97174251e-01 5.25699556e-01 -5.47166467e-01 -3.32116216e-01 -1.10738289e+00 6.19576097e-01 -3.71287376e-01 5.71463369e-02 1.36276022e-01 3.75315189e-01 -8.98281336e-01 7.75345206e-01 -1.00367796e+00 -4.30227220e-01 1.93003207e-01 5.04708827e-01 -5.15495300e-01 -7.71698654e-02 -7.72587776e-01 7.29218960e-01 5.70964277e-01 1.14985213e-01 -9.14967000e-01 -5.63978076e-01 -6.49636269e-01 -2.26845846e-01 3.53542536e-01 -8.45235288e-01 9.34774041e-01 -5.49458742e-01 -9.29024875e-01 4.68492150e-01 -2.08378360e-01 -5.82119226e-01 8.95427227e-01 -7.36515701e-01 -7.09131420e-01 -3.69921148e-01 3.59484971e-01 -4.47091199e-02 8.97401989e-01 -1.51637721e+00 -7.51905978e-01 -4.06475008e-01 -7.14383066e-01 2.31387779e-01 5.06060719e-02 6.31188899e-02 -4.07406926e-01 -6.43904924e-01 6.59039736e-01 -9.77513194e-01 -6.93081498e-01 -6.92982554e-01 -7.74121702e-01 -2.25760162e-01 1.09942460e+00 -7.93958977e-02 1.81073475e+00 -2.23382854e+00 1.85407884e-02 9.78452742e-01 3.21460694e-01 2.73963422e-01 -2.22179383e-01 7.60985434e-01 -1.88591108e-01 7.36759156e-02 -2.03431174e-01 -5.31597674e-01 -1.07965536e-01 1.72717661e-01 -6.32900238e-01 6.68341696e-01 2.10213855e-01 4.47442889e-01 -1.16583693e+00 -2.26056933e-01 3.51471484e-01 9.65977553e-03 -6.87125504e-01 1.52108580e-01 1.23643816e-01 5.40232956e-01 -4.60576355e-01 9.32763040e-01 5.75472534e-01 2.79050171e-01 -1.50576249e-01 3.44164968e-01 5.37684932e-02 2.16179237e-01 -1.65887892e+00 1.18309915e+00 3.37585099e-02 9.16574076e-02 -5.01810849e-01 -3.95418465e-01 1.07697415e+00 1.39938846e-01 7.15475321e-01 -2.59024471e-01 -2.76793897e-01 8.38809431e-01 1.91434532e-01 -9.82650220e-02 5.45225561e-01 3.52739573e-01 -2.76440978e-01 3.20734501e-01 4.00036909e-02 1.08318314e-01 6.09659433e-01 1.80376709e-01 1.63668716e+00 6.36575744e-02 5.01575589e-01 -2.18114480e-01 3.53437424e-01 -1.16680473e-01 1.16349888e+00 1.40947664e+00 -4.80564088e-01 1.03920233e+00 4.70339209e-01 -6.49129808e-01 -9.28968966e-01 -1.59660912e+00 -3.26879591e-01 6.76097095e-01 1.49603030e-02 -1.01232064e+00 -4.98144865e-01 -1.01259768e+00 4.89170641e-01 8.84450972e-01 -4.46456730e-01 -3.50519568e-01 -5.70299089e-01 -9.73634064e-01 5.26625752e-01 4.06133592e-01 2.32591212e-01 -9.95331526e-01 -4.35240686e-01 3.40470105e-01 -9.59178209e-02 -7.72055268e-01 -1.49074048e-01 3.80989403e-01 -1.19913745e+00 -1.24096072e+00 -4.78967503e-02 -6.27309754e-02 7.19509006e-01 2.51725465e-01 1.41012204e+00 1.96512252e-01 4.80594486e-03 6.10669255e-02 -4.56922323e-01 -3.75639349e-01 -2.76605994e-01 3.50849070e-02 6.71377242e-01 8.57105926e-02 6.78128958e-01 -6.34099007e-01 -3.49087417e-01 2.73235440e-01 -7.12096274e-01 -7.84141421e-01 5.95339358e-01 9.29126322e-01 7.83498228e-01 -2.88764909e-02 5.16497910e-01 -1.07957256e+00 6.82531416e-01 -7.78262019e-01 -3.77926767e-01 8.79078284e-02 -5.99998236e-01 -1.59681857e-01 7.76785493e-01 -1.40319049e-01 -3.88907164e-01 1.50015756e-01 2.75372773e-01 -6.70600235e-01 -3.16983014e-01 4.40579623e-01 -1.36825636e-01 1.59535438e-01 1.14770710e+00 1.01434916e-01 -4.85025913e-01 -4.37735319e-01 -6.71059415e-02 3.53665531e-01 5.36561310e-01 -6.67221785e-01 1.10651398e+00 2.46405780e-01 -2.71358788e-01 -6.60817564e-01 -5.38774252e-01 -1.12751377e+00 -8.17218363e-01 -8.75515044e-02 1.63670152e-01 -1.06336844e+00 2.68955171e-01 5.81410050e-01 -8.47821236e-01 5.52632399e-02 -4.05770212e-01 5.02351940e-01 -3.93336952e-01 2.88584083e-01 -2.98908114e-01 -8.25977445e-01 -2.22204655e-01 -1.26221585e+00 1.17784810e+00 1.56812608e-01 -6.20512247e-01 -5.74049652e-01 6.04925394e-01 -4.42125052e-02 1.86706707e-01 6.95469797e-01 3.60614896e-01 -1.38004982e+00 -4.86246884e-01 -7.09674418e-01 2.60110557e-01 2.26254359e-01 -5.38989305e-02 4.69178528e-01 -1.01591754e+00 -5.21252096e-01 -2.25112870e-01 1.47310659e-01 1.12947738e+00 1.61219344e-01 9.02142286e-01 2.35156640e-02 -7.53574491e-01 5.98738730e-01 1.55517471e+00 -2.16843799e-01 5.48787594e-01 4.74922240e-01 6.39307201e-01 -2.34473959e-01 6.93448842e-01 7.12208092e-01 -6.25034282e-03 6.04513347e-01 3.33045006e-01 1.79254442e-01 3.35264295e-01 -2.55288750e-01 8.33005250e-01 8.56281936e-01 -2.40881234e-01 -1.00989841e-01 -1.37894607e+00 5.27577043e-01 -2.22966290e+00 -1.16567075e+00 -2.16792762e-01 2.64877152e+00 3.37321699e-01 3.26826692e-01 1.86781108e-01 8.80357176e-02 5.01117587e-01 5.84669337e-02 -5.49596131e-01 -1.05046526e-01 -2.11978987e-01 4.59433533e-02 3.66861045e-01 2.16626555e-01 -1.49541974e+00 6.34712815e-01 6.49638748e+00 4.98729646e-01 -7.18020201e-01 3.14111076e-02 2.83235520e-01 -3.57296914e-01 7.93414861e-02 1.65055379e-01 -9.35494959e-01 7.45482028e-01 1.20311701e+00 -1.37561873e-01 -2.14608777e-02 1.00236106e+00 3.36889952e-01 -3.23174000e-01 -1.37463915e+00 9.03960109e-01 1.35838792e-01 -8.66543174e-01 1.17360555e-01 6.12561591e-02 1.25812840e+00 5.74027359e-01 3.36989947e-02 5.78380823e-01 6.48506343e-01 -7.56829619e-01 5.63839912e-01 8.22740912e-01 2.18576625e-01 -9.11566436e-01 9.74624336e-01 3.11406583e-01 -1.11010110e+00 -5.64808130e-01 -3.15789044e-01 2.10181892e-01 -1.88342676e-01 9.63085175e-01 -7.47810066e-01 7.86942244e-01 1.05817854e+00 7.02231586e-01 -1.00615656e+00 1.70849812e+00 -8.81286040e-02 7.54419565e-01 -8.17398071e-01 4.45511222e-01 2.10653886e-01 -2.57937580e-01 1.05138195e+00 1.27357507e+00 5.58321357e-01 -3.71761769e-01 7.44167209e-01 5.98400831e-01 2.15928592e-02 2.09719405e-01 -1.08636534e+00 4.88978893e-01 7.87603319e-01 9.50981617e-01 -7.64718413e-01 -2.62314081e-01 -2.43918136e-01 7.86300957e-01 4.35799152e-01 4.44364160e-01 -8.04785430e-01 -1.72184303e-01 8.37557316e-01 3.28362733e-02 9.35141817e-02 -9.70196500e-02 -4.78838027e-01 -1.48098993e+00 3.35364372e-01 -1.40399027e+00 7.57894158e-01 -1.74538553e-01 -1.68517661e+00 5.46986878e-01 -1.39556199e-01 -1.85911787e+00 -1.84194922e-01 -4.02074039e-01 -1.20368111e+00 5.76315582e-01 -7.59937346e-01 -9.12688017e-01 -4.12570059e-01 4.15764362e-01 3.42964441e-01 -3.32582623e-01 7.78015971e-01 1.87137470e-01 -1.09323835e+00 7.37005293e-01 6.15878522e-01 -2.12563574e-02 1.11337721e+00 -1.35490191e+00 5.29937506e-01 1.40756679e+00 5.18457949e-01 8.41423690e-01 7.87519157e-01 -9.57251072e-01 -1.00914431e+00 -1.50836241e+00 6.78023219e-01 -1.00814676e+00 4.97004896e-01 -1.50066748e-01 -1.11296320e+00 6.89020634e-01 -3.27406198e-01 3.03732634e-01 7.70763636e-01 3.25889796e-01 -4.97723877e-01 -3.17063004e-01 -1.14477396e+00 6.95746839e-01 9.71283674e-01 -3.95279169e-01 -6.19980395e-01 3.28151822e-01 2.00417694e-02 -5.25375903e-01 -6.94545329e-01 6.88439369e-01 2.68761870e-02 -1.38756156e+00 9.24652994e-01 -5.72971880e-01 -3.61407623e-02 -8.51115048e-01 -2.83785015e-01 -1.51642942e+00 -3.00891489e-01 -5.26708245e-01 -3.27161103e-01 1.05478179e+00 4.72162038e-01 -9.77109611e-01 4.10246432e-01 3.94891620e-01 -3.22941452e-01 -7.09227324e-01 -1.19840360e+00 -9.66614425e-01 -1.15014382e-01 -5.25953174e-01 6.00698352e-01 8.33121121e-01 -5.29695675e-02 -1.11365244e-01 -5.02456464e-02 6.03420079e-01 7.77777970e-01 -2.07502037e-01 1.22928560e+00 -1.48501885e+00 -6.10441752e-02 -4.11464900e-01 -7.94366896e-01 -1.90184206e-01 -1.06187731e-01 -7.77208447e-01 1.57798633e-01 -1.13697946e+00 1.58069745e-01 -5.87328315e-01 -1.05783737e+00 3.13438505e-01 -6.32068753e-01 3.03029120e-01 5.02954684e-02 6.95402563e-01 -1.13483357e+00 3.98468465e-01 2.36409351e-01 2.28031129e-01 -5.48592269e-01 1.26257176e-02 -3.52980644e-01 8.90532076e-01 7.42934108e-01 -7.40845084e-01 -2.01160833e-02 5.75933754e-02 -1.00772917e-01 -6.03196084e-01 2.99013346e-01 -1.84243941e+00 3.34484100e-01 -1.15677200e-01 6.60636663e-01 -8.22831929e-01 -1.23970464e-01 -7.85877705e-01 3.01309198e-01 5.41524947e-01 6.07971251e-02 6.45551324e-01 9.50711444e-02 8.00482452e-01 -3.69024038e-01 7.29459301e-02 7.06907511e-01 1.95279121e-01 -7.76498735e-01 2.07858533e-01 -1.37109786e-01 1.28089011e-01 1.40923035e+00 -3.00043970e-01 -2.13400543e-01 9.44795460e-02 -6.06579244e-01 4.14948463e-01 9.04667675e-01 5.60617805e-01 7.01661646e-01 -1.32422423e+00 -9.19650972e-01 4.98480886e-01 5.85422933e-01 6.36742264e-02 3.74989808e-02 1.07743931e+00 -4.82668132e-01 1.54003277e-01 9.29210261e-02 -9.16648984e-01 -1.04646444e+00 2.99570978e-01 5.38350224e-01 -6.25566661e-01 -7.87828207e-01 5.72335362e-01 -2.60574073e-01 -6.06751978e-01 3.22348997e-02 -3.17083359e-01 2.31312990e-01 -1.62672698e-01 4.20513719e-01 5.99225879e-01 4.43270206e-01 -8.13352287e-01 -5.39895952e-01 2.47473761e-01 -2.43523359e-01 2.69270718e-01 1.21042132e+00 3.14601928e-01 -3.16101789e-01 7.40262270e-01 5.78323066e-01 2.50343263e-01 -9.79521632e-01 -1.86077103e-01 5.47936022e-01 -5.90054631e-01 -2.92433053e-01 -5.52021801e-01 -5.84254682e-01 1.75686434e-01 5.07376671e-01 -6.13370761e-02 1.00974977e+00 -4.52308327e-01 3.78840387e-01 5.50988436e-01 5.26080906e-01 -1.24570012e+00 -5.64972311e-02 6.62096202e-01 7.78763890e-01 -1.23409235e+00 2.62514234e-01 -4.04506661e-02 -5.02128720e-01 8.35357666e-01 1.13714063e+00 -6.74942851e-01 5.87873459e-01 1.15361333e-01 2.01232538e-01 -1.64002523e-01 -9.79326606e-01 -1.68610495e-02 4.11829472e-01 3.17865789e-01 1.87084213e-01 5.39840981e-02 -2.19720677e-01 4.00920391e-01 -1.61203556e-02 -2.79651374e-01 3.56890112e-01 9.13571775e-01 -4.15227503e-01 -1.04607224e+00 -7.60769129e-01 1.00484896e+00 -2.85724878e-01 1.12095840e-01 -5.60132146e-01 7.26548254e-01 4.89377558e-01 9.22276139e-01 1.42474666e-01 -5.83233953e-01 6.28306866e-01 5.08678615e-01 -1.19014017e-01 -8.26344311e-01 -9.94106174e-01 -1.18348233e-01 -1.36564717e-01 -8.81673038e-01 1.68579876e-01 -1.01388741e+00 -9.33991730e-01 -1.58711076e-01 -6.24146163e-01 2.50983328e-01 9.92962420e-02 8.00142586e-01 5.87330341e-01 2.45790496e-01 6.41545475e-01 -9.67470109e-01 -8.92897367e-01 -9.27866399e-01 -5.69894373e-01 7.75391996e-01 3.05041164e-01 -7.84487605e-01 -6.72175407e-01 -5.40224612e-01]
[7.586382865905762, 2.691741466522217]
744229a7-f64f-41c7-a797-30cce148808d
neural-program-repair-systems-challenges-and
2202.10868
null
https://arxiv.org/abs/2202.10868v2
https://arxiv.org/pdf/2202.10868v2.pdf
Neural Program Repair: Systems, Challenges and Solutions
Automated Program Repair (APR) aims to automatically fix bugs in the source code. Recently, as advances in Deep Learning (DL) field, there is a rise of Neural Program Repair (NPR) studies, which formulate APR as a translation task from buggy code to correct code and adopt neural networks based on encoder-decoder architecture. Compared with other APR techniques, NPR approaches have a great advantage in applicability because they do not need any specification (i.e., a test suite). Although NPR has been a hot research direction, there isn't any overview on this field yet. In order to help interested readers understand architectures, challenges and corresponding solutions of existing NPR systems, we conduct a literature review on latest studies in this paper. We begin with introducing the background knowledge on this field. Next, to be understandable, we decompose the NPR procedure into a series of modules and explicate various design choices on each module. Furthermore, we identify several challenges and discuss the effect of existing solutions. Finally, we conclude and provide some promising directions for future research.
['Bin Luo', 'Jidong Ge', 'Chuanyi Li', 'Wenkang Zhong']
2022-02-22
null
null
null
null
['program-repair', 'program-repair']
['computer-code', 'reasoning']
[-0.05321573 0.191861 -0.5353088 -0.35074255 -0.7286398 -0.33887127 -0.09774721 0.15763718 0.15543945 0.53853405 0.07489485 -0.61450356 0.19576462 -0.7736008 -1.1116349 -0.13514072 -0.00898371 -0.37688515 0.11187957 -0.27539384 0.48292577 -0.05001323 -1.4239157 0.39636245 0.9998652 0.6039018 0.32473534 0.49847057 -0.19941562 1.1177436 -0.9461697 -0.6624966 -0.18642072 -0.31897286 -0.93268263 -0.56903726 0.22858682 -0.34993985 -0.5104187 1.5393279 0.3151166 -0.3285179 0.10373767 -1.2051448 -1.3095971 0.90449244 -0.41183943 0.23434599 0.56733793 0.19658034 1.1510241 -0.7876232 0.38677844 0.9904155 0.9708603 0.6515229 -0.87042207 -0.3861637 0.2740777 0.28500777 -1.1827017 -0.1836105 0.91607225 -0.5369667 1.5939256 0.09508027 0.461187 1.1891474 0.741326 0.80561566 0.5017949 -0.45349094 0.15879907 -0.13995612 0.66320294 1.0671355 0.4084342 0.2456449 -0.27607572 -0.1496597 0.39916286 -0.13673542 -0.41946363 -0.05296808 -0.865606 0.9109188 0.5673662 0.25920954 -0.10593642 0.47199437 0.70558405 0.4296135 0.10980594 0.68690854 -0.343552 -0.2380043 -0.7460688 0.28164712 0.73713416 1.0843965 0.46980175 0.6099621 -0.1738547 0.813734 0.36228096 0.11305877 0.6525923 -0.5582268 0.6531863 0.81344604 -0.17388411 -1.3416226 -0.24866064 -0.2912286 -0.778361 -0.10478557 -0.18112554 -0.15571693 -0.5692241 1.6360213 -0.34613982 0.08364254 -0.04988154 0.76710546 1.2048115 0.8570772 -0.29223704 0.16230616 1.2001277 -1.2854073 -0.74911046 -0.38222995 0.72775304 -0.48351502 1.2571547 0.37979865 -1.0391034 -0.59940255 -1.270167 -0.29029617 -0.32224968 0.55720466 0.7158672 0.70625895 -1.2564424 0.56460696 -0.9616497 -0.3071554 0.19922471 0.32162517 -0.19641936 -0.08943658 -1.1108061 0.9538779 0.44070676 0.36421737 -1.2457325 -0.5500032 -1.1261328 0.20340261 0.3095956 -0.54149306 1.7946309 -0.8620941 -1.4853235 0.67484224 -0.25101987 -0.6418015 -0.21802008 -0.22217995 -0.45766363 -0.35942298 -0.20751755 0.42669323 0.4105074 -0.932251 -0.4817159 0.11991496 0.7427592 -0.4381832 -0.36114663 0.3631611 -0.34625202 -0.74088925 -0.23726965 -0.79714364 -0.14519466 -0.43276647 -0.5423849 -0.3162753 0.4168542 -0.97950804 2.0263903 -2.240975 0.30334264 -0.3277097 0.47636336 0.40159273 -0.31103572 0.6600674 -0.42873332 0.2923023 -0.27863303 -0.09562572 0.26647392 0.10196088 -0.67245805 0.32133985 0.48929068 1.1502236 -0.8335673 -0.08056559 -0.2626081 0.16822122 -0.8592177 0.3472522 -0.66136515 -0.12669562 -0.30756527 1.031439 0.45491984 -0.1671289 -0.1122776 0.03938538 -0.3480876 0.7227411 -0.68394774 1.5681152 -0.46239042 0.7739956 -0.04694 -1.2292392 1.165965 0.2762416 -0.14855023 -0.5876455 0.04432822 0.39673164 0.129169 -0.9561644 0.76378244 0.37954536 -0.4318419 0.3240674 0.04908695 0.3189121 0.16323777 -0.11248837 1.6344385 0.10436822 0.507461 0.01396786 0.60289603 0.20225891 0.77219087 0.7385992 -0.1549082 0.44650832 0.9547394 -0.7429786 -0.93417144 -0.64446884 0.271097 0.68529123 -0.15485983 -0.7795771 -0.9548326 -0.81464505 -0.2540602 0.6255162 -0.572478 -0.47631183 -0.80164 -0.82823044 0.89918065 0.6204358 0.5169865 -1.2527423 -0.53322184 -0.00846785 -0.3327901 -0.43460223 -0.2676339 0.21625336 -0.90476096 -0.96782434 -0.4283637 -1.2704934 0.7414655 0.3232677 1.3220584 0.7016686 -0.17797321 0.11136922 -0.7128669 -0.09305968 -0.6745148 0.3046966 -0.14768825 -0.6910503 0.50932056 -0.32082134 -0.02887959 -0.10801737 -0.83646405 -0.10392258 0.7427682 0.91510355 0.34644577 0.33739582 0.6857389 -0.782783 1.1119727 -0.71295714 -0.89225686 0.45414993 -0.51842356 0.06178696 0.87369806 -0.12246682 -0.9049828 -0.14865877 -0.5818116 -0.22733538 -0.00894115 1.1752652 -0.17984176 -0.2848694 0.7385229 0.19048649 -0.3897769 -0.4781481 0.01305835 0.8186959 0.4541172 -0.6536489 0.6464767 -0.34811866 -0.58417773 -0.29207888 -0.7759329 0.11022112 -0.2702723 0.00903609 0.58659905 -0.7362173 -0.64777356 0.34778252 -1.6736298 -0.24948838 0.10902081 0.01028145 -0.34311745 0.48577687 -0.89532566 -0.42727283 -0.4132703 -1.6607813 0.74956876 0.25687256 -0.37254354 -0.88639903 0.17777137 0.16155833 0.44985554 -0.01336614 1.339512 -0.33332798 -0.89566875 -0.35634017 -0.13079365 0.4784962 0.04508226 0.16557297 -0.8103085 -0.2780086 0.2729249 -0.19489847 0.7239167 0.24851944 1.4560419 -0.6089582 -0.36463308 0.5449681 1.6411096 0.42843315 0.81640804 0.442031 0.6887562 0.4479092 0.5106383 0.07407711 0.5625551 0.5424867 0.6952115 0.24767978 -0.15380523 -0.44595018 0.9271685 1.1348699 0.25131217 -0.29351363 -1.203597 0.42630002 -1.7831646 -0.6691084 -0.31373462 1.9929354 0.8568394 0.05605876 -0.12537113 0.08766621 0.7158609 0.0212555 -0.36286983 -0.7331991 0.19351637 0.15423484 0.11933587 0.44476622 -0.95297116 0.9763221 6.886136 0.5130306 -1.1458635 0.15860493 0.31289914 0.2226099 -0.3507953 0.15078756 -0.8109204 0.5227659 1.1293811 -0.16912192 0.62577635 1.2504653 0.03684419 -0.04073936 -1.3572037 0.86754566 0.2437699 -1.4909078 -0.2790012 -0.27689573 0.57275987 0.03067705 0.11524366 0.8268561 0.2354482 -1.0719919 0.64693105 0.41249302 0.5396983 -0.7339924 1.0520248 0.35849908 -0.91422284 -0.5421182 -0.6217718 -0.39483607 -0.08853017 0.74700814 -0.3764833 0.5886781 0.92172444 0.9186274 -0.85527664 1.3345399 -0.60845345 0.71943414 0.38206086 -0.28938788 0.01977823 0.27105755 0.3549309 1.2107617 0.4704428 -0.2753893 -0.00983923 1.4376457 -0.2235916 -0.32892123 -0.734202 -0.29514444 0.4172186 0.83061975 -0.37251517 -0.04068417 -0.7372531 0.7590059 0.521491 0.19242401 -1.1250331 -0.7393766 0.4337199 -0.17844024 0.04697481 -0.26134372 -0.45914972 -1.2425601 0.35069904 -1.3471898 -0.04634919 -0.82728714 -0.94751936 0.63631064 -0.09672394 -1.2087748 -0.06665944 -0.6290779 -0.71477336 0.6781761 -1.4482038 -0.7775789 -0.14665475 -0.30146873 0.5319248 -0.27168414 0.9713025 0.5205582 -1.1223799 0.86913294 -0.11697479 0.28623095 0.33338448 -0.9421191 0.84074736 1.3403183 -0.2565535 1.1873734 0.58101875 -0.83311766 -1.8784618 -1.2860785 1.103652 -0.4155845 0.6559326 -0.37499845 -1.1129593 0.94005066 0.46304598 -0.24005418 0.4772818 0.1451068 -0.44148695 -0.12353303 -0.8991551 0.65450066 0.7659718 -0.54555845 -0.6869761 0.14730518 1.1794891 -0.7794508 -0.6406816 0.37655985 0.05903256 -1.0670973 0.55384094 -0.30756974 0.9169884 -0.58499074 -0.11326847 -1.2049822 -0.41346994 -0.51270264 -0.39610454 1.2700498 0.34452885 -0.4713845 0.5902393 0.41046447 -0.924918 -1.0015849 -0.64316595 -0.7238976 0.01796892 -0.52486616 0.66016483 0.79558086 0.4294881 0.23982225 -0.49345052 0.36076605 -0.13023295 0.18755212 0.5337839 -0.9098685 -0.55470514 -0.46829733 -0.15173416 -0.9801457 0.50471574 -1.1576706 0.30695835 -1.5086066 0.25106296 -0.07580555 -0.03545702 0.9727402 0.05049247 -0.16691066 -0.14525275 0.01551419 -0.511789 0.48399425 0.7225203 -0.40596035 -0.1691954 -0.06363284 -1.0298718 0.6138745 0.9918874 -0.67705 -0.3621858 -1.1191992 0.857297 0.20940647 0.39304456 -1.0405004 0.24550577 0.03066354 -0.2262465 -0.3987475 -0.28692126 -0.48556828 0.02729417 0.5924082 -0.38794446 0.6987338 0.37284875 0.35978708 -0.46888366 -0.90269667 0.67201567 -0.17143512 -0.88748777 0.01496055 -0.6797752 -0.3742612 0.92523205 0.09365834 -0.5484356 -0.05150444 -0.02859754 0.19510855 0.43586832 0.738918 0.7959159 -1.1560875 -0.23752865 0.1922295 0.29031602 0.01627672 0.30906796 0.61944485 -0.6729337 0.81698525 -0.07480188 -0.17640811 -1.0113621 0.82938945 0.48377824 -0.12809739 -0.6019519 0.7800945 -0.10530933 -0.6042999 0.5786599 -0.69254804 -0.32099804 -0.49988964 0.6877849 0.05625316 0.41252968 -0.09725304 -0.27831832 0.22231042 -0.17326355 0.5967302 1.3105283 0.30271867 -0.6596564 0.29500458 1.0143336 -0.14071907 -0.7033378 0.0712574 0.2367699 -0.1567619 0.0125481 -0.86470467 -1.208127 1.0146716 0.36200476 0.15971488 1.2483362 -0.18944505 0.76829034 0.57773274 0.50036126 -0.76012516 0.24892096 1.0449256 0.9743097 -0.9301011 -0.41977337 -0.20477441 -0.14535059 1.32122 0.98321986 -0.26813716 0.3745103 0.5369301 -0.37113294 -0.0918272 -0.9037528 0.28467873 -0.04766983 0.6848823 0.8793912 -0.27790445 -0.3454047 1.1533862 -0.44193482 0.28266668 0.92468214 0.9297876 -0.501228 -1.3681108 -0.31855518 0.43045017 -0.4245963 -0.30460754 -0.27489108 0.5642734 0.10813608 0.7954948 -0.31882307 -0.8488234 0.4116615 -0.06607208 0.34417102 -1.1066027 -0.64930326 -0.53532356 -0.00980501 -0.54927665 0.12916836 -0.26965186 -1.0309812 -0.3922892 -0.3059064 0.00962749 0.4402792 0.6989608 0.47415566 0.958419 0.2385101 -0.44608223 -0.63674647 -0.6855782 -0.08789552 -0.5627288 0.55497026 -0.42469448 -0.10216448 0.0114427 ]
[7.597423076629639, 7.752069473266602]
5069a673-e4c1-4484-81af-1029dde7378f
open-set-recognition-with-gradient-based
2206.08229
null
https://arxiv.org/abs/2206.08229v1
https://arxiv.org/pdf/2206.08229v1.pdf
Open-Set Recognition with Gradient-Based Representations
Neural networks for image classification tasks assume that any given image during inference belongs to one of the training classes. This closed-set assumption is challenged in real-world applications where models may encounter inputs of unknown classes. Open-set recognition aims to solve this problem by rejecting unknown classes while classifying known classes correctly. In this paper, we propose to utilize gradient-based representations obtained from a known classifier to train an unknown detector with instances of known classes only. Gradients correspond to the amount of model updates required to properly represent a given sample, which we exploit to understand the model's capability to characterize inputs with its learned features. Our approach can be utilized with any classifier trained in a supervised manner on known classes without the need to model the distribution of unknown samples explicitly. We show that our gradient-based approach outperforms state-of-the-art methods by up to 11.6% in open-set classification.
['Ghassan AlRegib', 'Jinsol Lee']
2022-06-16
null
null
null
null
['open-set-learning']
['miscellaneous']
[ 6.83935702e-01 2.42557779e-01 -4.81039345e-01 -6.79565847e-01 -6.53683186e-01 -6.93617642e-01 4.07603234e-01 2.15483367e-01 -4.90967542e-01 7.01049805e-01 -5.96046686e-01 -3.26785803e-01 -1.52533501e-01 -8.66410613e-01 -1.12437427e+00 -5.65782309e-01 4.22157384e-02 8.98230076e-01 1.47180527e-01 2.54637897e-01 1.72845900e-01 7.94820249e-01 -2.00314212e+00 7.00129688e-01 6.18472338e-01 1.40938425e+00 6.53044730e-02 8.86054695e-01 -1.57171503e-01 6.27959907e-01 -5.29796481e-01 -1.38658300e-01 4.68373060e-01 -2.71991104e-01 -6.51734054e-01 4.06206906e-01 9.43890631e-01 -3.87684375e-01 -2.06977308e-01 1.22016323e+00 6.86835451e-03 -3.06233335e-02 1.16968489e+00 -1.22318494e+00 -6.28946602e-01 2.74155200e-01 -9.68107656e-02 3.09870571e-01 -1.68397359e-03 1.02936246e-01 8.61613512e-01 -8.27545583e-01 5.18345416e-01 9.43210244e-01 5.08674979e-01 7.40982890e-01 -1.45083046e+00 -5.53072870e-01 5.04694581e-01 4.74706382e-01 -1.25545764e+00 -4.68149394e-01 6.18969798e-01 -5.30324638e-01 7.40028977e-01 2.07854688e-01 4.43798423e-01 1.06968212e+00 -7.65379295e-02 9.02686059e-01 1.18893039e+00 -5.01851320e-01 4.83823210e-01 7.08595872e-01 8.40987563e-01 8.23238134e-01 5.02543330e-01 3.50581884e-01 -1.48926139e-01 -1.09488182e-01 4.52382773e-01 1.36688605e-01 -2.46530145e-01 -5.28469622e-01 -7.34623909e-01 8.25568438e-01 5.72754622e-01 1.79924130e-01 -3.31987113e-01 -6.37385473e-02 2.19839320e-01 4.09689486e-01 6.77530408e-01 4.67169762e-01 -7.10719645e-01 3.01148444e-01 -8.66351128e-01 -7.82750174e-02 1.11012173e+00 8.62960994e-01 9.53760684e-01 -9.55757871e-03 4.53372486e-02 8.29311550e-01 1.65861621e-01 5.56741595e-01 5.30863881e-01 -6.07851982e-01 6.50414452e-02 6.35638237e-01 -9.27138627e-02 -5.63930035e-01 -2.23329455e-01 -7.88870811e-01 -7.28761911e-01 3.13706577e-01 8.89841259e-01 4.09144908e-02 -1.19402146e+00 1.52574623e+00 1.79351598e-01 4.47574019e-01 3.14502090e-01 6.09371245e-01 4.84133095e-01 5.80332637e-01 -4.98824298e-01 -1.45379260e-01 9.19834554e-01 -5.39406836e-01 -2.08294198e-01 -4.86070961e-01 5.10678351e-01 -2.20008478e-01 8.72963428e-01 5.91204524e-01 -4.75782156e-01 -5.09412885e-01 -1.28470767e+00 4.17522877e-01 -6.44808948e-01 4.91876125e-01 4.00993526e-01 8.04949284e-01 -6.38028860e-01 7.87841797e-01 -7.61072874e-01 -1.72375455e-01 9.92846608e-01 5.68088531e-01 -2.81964362e-01 -3.52167159e-01 -5.35430849e-01 8.70144546e-01 3.79301161e-01 1.57331824e-01 -1.18692780e+00 -5.14760911e-01 -8.40103388e-01 1.90220103e-01 5.46807289e-01 -3.05492789e-01 1.16684747e+00 -1.29313266e+00 -1.00505233e+00 9.20706809e-01 -3.57109845e-01 -8.44324827e-01 5.62354684e-01 -3.25359441e-02 -1.49889126e-01 1.40864819e-01 -1.82205752e-01 4.07675415e-01 1.29082489e+00 -1.35288680e+00 -5.43557405e-01 -5.74011087e-01 4.06240299e-02 -1.27221853e-01 -4.66085374e-01 -3.98605853e-01 -6.84604142e-03 -1.36614777e-02 3.87422144e-01 -9.28231895e-01 -1.54910132e-01 4.13088739e-01 -4.71537411e-01 -9.96323898e-02 9.18421209e-01 -1.40645713e-01 7.97940791e-01 -1.89814639e+00 -2.35809684e-01 3.57428223e-01 2.75541157e-01 4.31752384e-01 -5.69159128e-02 -6.31015152e-02 -3.32826078e-02 -4.69735228e-02 -4.45447057e-01 -2.51258790e-01 -1.63704678e-01 6.45284593e-01 -6.08050346e-01 6.73444152e-01 5.16926169e-01 3.95118505e-01 -8.05027962e-01 -2.41782397e-01 3.05008739e-01 2.74200618e-01 -3.68801385e-01 2.34210491e-01 -3.64421070e-01 1.23343758e-01 -2.54787296e-01 5.68760216e-01 6.29905403e-01 -4.23376054e-01 1.82345986e-01 5.75924739e-02 4.52484488e-01 1.94535814e-02 -1.48854959e+00 9.02772248e-01 -5.98758101e-01 7.53815830e-01 -2.86417276e-01 -1.47489595e+00 9.07574952e-01 -7.97759928e-03 -9.12530571e-02 -1.11360952e-01 2.46030137e-01 3.90314668e-01 3.48016411e-01 -2.76201844e-01 -8.38222504e-02 3.42938825e-02 4.03859735e-01 3.01568985e-01 4.80241776e-01 1.23489708e-01 2.51207411e-01 -2.70284656e-02 1.01831317e+00 -6.12448603e-02 2.36055732e-01 -2.19622672e-01 4.35261756e-01 -1.32376477e-01 4.50476289e-01 1.33538949e+00 -1.28178254e-01 5.62835515e-01 2.98843026e-01 -6.91912770e-01 -8.25849354e-01 -1.14498997e+00 -5.82949102e-01 7.09834576e-01 -9.05122682e-02 2.27852121e-01 -6.26325130e-01 -1.10541523e+00 9.79984775e-02 5.93271017e-01 -9.08582509e-01 -2.30141833e-01 -1.13811634e-01 -6.21156871e-01 2.76111960e-01 5.02821624e-01 1.91081479e-01 -7.82585025e-01 -7.63763428e-01 2.53825379e-03 2.28666723e-01 -9.06884789e-01 -4.15534638e-02 6.51395619e-01 -9.39501464e-01 -1.64512837e+00 -5.16122162e-01 -7.31230795e-01 1.27101970e+00 -2.67239958e-02 1.00139725e+00 5.79258986e-02 -4.61510986e-01 3.74794364e-01 -1.25838369e-01 -7.37247586e-01 -5.97907841e-01 -3.77597585e-02 2.79295474e-01 4.54938143e-01 5.80059469e-01 -3.27163398e-01 -2.24116221e-01 3.51446867e-01 -8.36184621e-01 -2.72816271e-01 5.20024419e-01 1.18839037e+00 6.54141903e-01 6.85979426e-02 7.24988878e-01 -1.22282708e+00 1.92040399e-01 -4.89828855e-01 -7.80556500e-01 4.26093876e-01 -7.04752803e-01 2.61398196e-01 1.06186736e+00 -1.00089633e+00 -6.95285678e-01 3.85794222e-01 1.55509636e-01 -6.84615195e-01 -5.22777259e-01 3.62603545e-01 -9.42574814e-02 -1.95749640e-01 9.71071720e-01 3.62145036e-01 5.57951331e-02 -3.43504757e-01 8.13086107e-02 8.15278769e-01 4.12732869e-01 -5.11739373e-01 6.63714111e-01 5.57510197e-01 1.20702669e-01 -8.58577907e-01 -1.44297969e+00 -5.77898204e-01 -8.51646602e-01 -2.86935449e-01 2.59125620e-01 -6.44890845e-01 -5.61206281e-01 4.41341668e-01 -9.82149959e-01 -2.29423523e-01 -3.98093730e-01 5.07948279e-01 -4.72258568e-01 7.69674182e-02 -4.08678830e-01 -1.05521739e+00 -6.02341816e-02 -1.03173923e+00 7.69873857e-01 2.44205117e-01 5.73365774e-04 -9.38341856e-01 -3.45551074e-01 9.68975723e-02 1.73193812e-01 -1.49240077e-01 7.17529774e-01 -1.48814106e+00 -4.51993287e-01 -6.76660597e-01 -9.21578109e-02 8.55963111e-01 1.64101079e-01 -4.15726490e-02 -1.34348214e+00 -2.36508936e-01 9.95209366e-02 -7.01938093e-01 1.16633987e+00 3.48050803e-01 1.42191875e+00 -4.91405576e-01 -3.12165886e-01 4.40453440e-01 1.38255167e+00 2.14720652e-01 3.69955182e-01 -1.09517965e-02 3.78338873e-01 5.65050304e-01 4.36107039e-01 3.63934010e-01 -1.76601425e-01 1.09297737e-01 4.31248844e-01 1.59159854e-01 2.36010864e-01 -1.87753707e-01 4.62662475e-03 3.29968594e-02 5.08142054e-01 -2.92300671e-01 -8.42709243e-01 5.68975568e-01 -1.74218440e+00 -9.95617449e-01 1.74094699e-02 2.46050882e+00 7.58410096e-01 6.38647199e-01 -2.47876838e-01 4.92737591e-01 6.67418301e-01 -2.95318425e-01 -9.77419972e-01 -1.61476925e-01 -7.60019571e-02 2.41585135e-01 5.33443809e-01 4.57941175e-01 -1.23400402e+00 5.30357897e-01 6.04601717e+00 6.53782368e-01 -1.26207185e+00 -2.55831331e-01 9.36731279e-01 2.49470562e-01 1.22278757e-01 6.22542836e-02 -1.18241489e+00 2.76668310e-01 1.03895962e+00 -9.91792884e-04 3.03409249e-01 1.12979949e+00 -3.13953042e-01 -2.33403146e-01 -1.80436397e+00 7.92881906e-01 3.38380337e-01 -1.38053322e+00 1.21455848e-01 1.12326153e-01 5.94502151e-01 4.77854759e-02 1.95812911e-01 5.48451006e-01 6.30921796e-02 -8.92013490e-01 5.01469076e-01 5.22000790e-01 5.93558788e-01 -5.42101622e-01 7.26927221e-01 9.15993512e-01 -6.09182835e-01 -2.83288568e-01 -4.44160223e-01 -3.71210694e-01 -5.54770887e-01 5.33711255e-01 -1.34000075e+00 5.12536988e-02 2.70265251e-01 6.95245385e-01 -5.92218876e-01 1.14850795e+00 -4.33729887e-02 1.03759038e+00 -7.38189638e-01 -1.02136128e-01 2.18138322e-01 -5.13829291e-02 2.77837485e-01 8.03843915e-01 -7.66533753e-03 -1.47458032e-01 4.82591778e-01 9.28845704e-01 -1.52586013e-01 -2.37318292e-01 -8.34401369e-01 -1.27871171e-01 3.30608606e-01 8.39131773e-01 -9.08872008e-01 -7.15805888e-01 -3.12839746e-01 9.17989016e-01 5.04094243e-01 2.97602117e-01 -4.60926116e-01 -4.01385427e-01 3.85413915e-01 6.37797564e-02 3.36398184e-01 -4.19520698e-02 -2.07401186e-01 -1.25200689e+00 2.36475348e-01 -5.60501873e-01 4.38754469e-01 -3.61254930e-01 -1.55887365e+00 6.20838881e-01 2.31209025e-02 -1.30096507e+00 -4.83658731e-01 -1.23706043e+00 -4.79021400e-01 6.67468011e-01 -1.66819572e+00 -8.98006618e-01 -8.86376575e-02 3.32878649e-01 6.38444066e-01 -1.19318888e-01 1.00303042e+00 -1.58313643e-02 -4.77120757e-01 5.52500606e-01 4.63486135e-01 4.47722316e-01 4.18365479e-01 -1.34195030e+00 3.87857519e-02 8.17886591e-01 6.53930426e-01 4.33859676e-01 7.21428394e-01 -3.36581945e-01 -1.20429540e+00 -1.14002144e+00 6.12412989e-01 -4.65678185e-01 5.07756531e-01 -4.89902794e-01 -1.15313601e+00 8.13269019e-01 -5.20441115e-01 9.25269961e-01 6.50091290e-01 1.51085883e-01 -7.05049992e-01 -2.75534749e-01 -1.26278543e+00 1.60487279e-01 6.36962414e-01 -6.01542950e-01 -6.31065309e-01 5.59635580e-01 1.94638684e-01 -3.70962024e-01 -5.24605691e-01 2.85355151e-01 4.86120433e-01 -6.48063362e-01 7.96400428e-01 -1.00773585e+00 3.05465430e-01 -1.72607079e-01 -3.15716356e-01 -1.30679274e+00 1.95109665e-01 5.47307208e-02 -3.50804538e-01 7.52833366e-01 6.23668373e-01 -8.33163559e-01 1.07472157e+00 5.47521174e-01 8.24333131e-02 -9.07022595e-01 -9.45856214e-01 -8.80409122e-01 3.71673852e-02 -6.93998754e-01 -1.74028929e-02 8.37113857e-01 -3.07241678e-01 3.46903294e-01 -1.29581422e-01 5.11595666e-01 7.72425294e-01 3.06513339e-01 4.88371730e-01 -1.54787433e+00 -5.22207618e-01 -1.45108968e-01 -8.09571981e-01 -9.76470470e-01 5.42514384e-01 -8.51921439e-01 7.75339082e-02 -1.22342157e+00 2.05971137e-01 -7.15084672e-01 -3.81540865e-01 4.57400709e-01 -2.67004557e-02 2.49984369e-01 4.13202271e-02 9.79029089e-02 -5.08655906e-01 3.14381897e-01 7.11187243e-01 -4.37284231e-01 -2.18375959e-02 5.88957489e-01 -4.78271395e-01 8.90438080e-01 6.58244789e-01 -5.56545854e-01 -5.34452915e-01 -1.25859261e-01 -1.67762205e-01 -1.24420457e-01 5.77775955e-01 -1.21830654e+00 2.28213951e-01 -9.95564461e-02 8.52274001e-01 -3.37836117e-01 5.52564025e-01 -1.02911460e+00 -3.71655196e-01 5.95553637e-01 -6.61684513e-01 -7.10974038e-01 2.13682801e-01 8.41591895e-01 -9.92539451e-02 -6.72659814e-01 9.83009636e-01 -9.78631303e-02 -6.84225500e-01 3.22715342e-01 -4.87443507e-01 4.49936166e-02 1.06434011e+00 -3.05116147e-01 -1.98109657e-01 -2.88843364e-01 -1.02013326e+00 1.74956486e-01 1.90901741e-01 1.57058761e-01 9.40820992e-01 -7.52969086e-01 -5.24567127e-01 4.49064642e-01 4.45238143e-01 -4.24553156e-02 -7.58068040e-02 2.83652902e-01 -1.49702415e-01 1.02731198e-01 4.95210588e-02 -9.77019668e-01 -1.34287846e+00 6.68364406e-01 6.57735288e-01 -1.43319085e-01 -2.57994473e-01 7.78634906e-01 8.88222754e-02 -7.62848318e-01 4.89237696e-01 -4.79732603e-01 -5.94987422e-02 -8.85063559e-02 7.00817049e-01 3.19071785e-02 2.17321783e-01 -3.82675797e-01 -2.02442482e-01 1.17076844e-01 -4.56940800e-01 2.32625142e-01 1.13971555e+00 3.74005705e-01 4.34081137e-01 9.54578936e-01 1.47510684e+00 -4.75853503e-01 -1.36029565e+00 -6.09016716e-01 4.53236187e-03 -4.76747960e-01 2.58022677e-02 -9.57937717e-01 -6.08296990e-01 1.01457667e+00 9.56477642e-01 -7.89681226e-02 8.29199076e-01 2.86772139e-02 1.53257430e-01 1.05763984e+00 5.27962863e-01 -8.57018530e-01 -1.40762717e-01 5.87245643e-01 6.10011399e-01 -1.68180537e+00 -2.03428239e-01 -4.45301503e-01 -2.01597229e-01 1.35528481e+00 7.52955019e-01 -3.87157261e-01 9.06998277e-01 9.85433832e-02 -1.01373293e-01 1.50074050e-01 -1.01477599e+00 -2.05696225e-01 5.30658126e-01 5.78466535e-01 4.20930795e-02 7.05489516e-02 3.19415927e-01 3.24493766e-01 2.40560174e-01 -7.22517669e-02 6.99616790e-01 1.13318181e+00 -6.20106339e-01 -8.33991706e-01 -4.32715595e-01 1.24321747e+00 -2.64884412e-01 -5.11656590e-02 -4.69060779e-01 6.03058875e-01 8.45678821e-02 7.88060784e-01 3.00526649e-01 -2.56289870e-01 1.00104369e-01 1.81921303e-01 6.01157784e-01 -9.04050231e-01 -1.99865118e-01 -3.66117150e-01 6.07234472e-03 -2.33833209e-01 -2.18414247e-01 -6.21928334e-01 -1.01764894e+00 3.46803904e-01 -6.42375648e-01 2.43731327e-02 7.36599803e-01 1.04682958e+00 6.76753595e-02 3.95267755e-01 6.71888590e-01 -8.76338303e-01 -1.23775971e+00 -9.04141724e-01 -5.29722750e-01 2.72400945e-01 6.94131315e-01 -6.74859881e-01 -6.74036086e-01 9.94280651e-02]
[9.544711112976074, 3.0263195037841797]
606ddf0c-ba63-4770-9857-bee53c8beb35
crystal-transformer-self-learning-neural
2204.11953
null
https://arxiv.org/abs/2204.11953v1
https://arxiv.org/pdf/2204.11953v1.pdf
Crystal Transformer: Self-learning neural language model for Generative and Tinkering Design of Materials
Self-supervised neural language models have recently achieved unprecedented success, from natural language processing to learning the languages of biological sequences and organic molecules. These models have demonstrated superior performance in the generation, structure classification, and functional predictions for proteins and molecules with learned representations. However, most of the masking-based pre-trained language models are not designed for generative design, and their black-box nature makes it difficult to interpret their design logic. Here we propose BLMM Crystal Transformer, a neural network based probabilistic generative model for generative and tinkering design of inorganic materials. Our model is built on the blank filling language model for text generation and has demonstrated unique advantages in learning the "materials grammars" together with high-quality generation, interpretability, and data efficiency. It can generate chemically valid materials compositions with as high as 89.7\% charge neutrality and 84.8\% balanced electronegativity, which are more than 4 and 8 times higher compared to a pseudo random sampling baseline. The probabilistic generation process of BLMM allows it to recommend tinkering operations based on learned materials chemistry and makes it useful for materials doping. Combined with the TCSP crysal structure prediction algorithm, We have applied our model to discover a set of new materials as validated using DFT calculations. Our work thus brings the unsupervised transformer language models based generative artificial intelligence to inorganic materials. A user-friendly web app has been developed for computational materials doping and can be accessed freely at \url{www.materialsatlas.org/blmtinker}.
['Jianjun Hu', 'Fanglin Chen', 'Edirisuriya M. D. Siriwardane', 'Stanislav Stefanov', 'Yuqi Song', 'Qinyang Li', 'Lai Wei']
2022-04-25
null
null
null
null
['self-learning']
['natural-language-processing']
[ 5.15445411e-01 2.33826712e-01 -6.89911544e-02 -2.36502439e-01 -6.15465641e-01 -4.70497131e-01 5.83073199e-01 1.11522801e-01 1.15686506e-01 1.32673275e+00 1.59164533e-01 -6.14455342e-01 1.94051534e-01 -1.23529112e+00 -1.04387343e+00 -1.11725104e+00 3.63116831e-01 9.80538070e-01 -8.51172507e-02 -2.72588581e-01 3.90080124e-01 3.44761461e-01 -1.71611214e+00 8.33580732e-01 1.11450899e+00 7.29021132e-01 8.40805829e-01 3.25816751e-01 -4.44880813e-01 6.60105526e-01 -4.00449187e-01 -2.04058230e-01 -2.31833130e-01 -5.50930977e-01 -6.32771313e-01 -4.95833129e-01 -1.67822614e-01 6.99213594e-02 1.43551064e-04 6.74899817e-01 7.20576406e-01 -1.48344904e-01 1.23846006e+00 -5.97865641e-01 -1.30776441e+00 1.07954419e+00 -7.53828324e-03 -4.01834190e-01 4.42764193e-01 4.25000101e-01 1.14494121e+00 -1.04551256e+00 7.64705658e-01 1.07835412e+00 4.61972058e-01 1.03567135e+00 -1.39826345e+00 -9.87328708e-01 -2.89153844e-01 3.59499070e-04 -1.13445854e+00 -3.66118491e-01 6.46400094e-01 -6.01989150e-01 1.57301259e+00 1.89050764e-01 6.89726591e-01 1.38835728e+00 6.34015560e-01 5.93208194e-01 1.11971629e+00 -4.91344035e-01 4.35943663e-01 1.93533137e-01 -3.37206453e-01 6.58180654e-01 4.48908061e-01 2.05355123e-01 -7.72603273e-01 -1.47469029e-01 3.90680045e-01 -7.12005571e-02 1.02536678e-01 -1.68956295e-01 -8.63146663e-01 9.68607247e-01 3.80751431e-01 3.09063941e-01 -4.00535703e-01 1.80097818e-01 -3.43310758e-02 -3.57979357e-01 2.93668389e-01 9.31392133e-01 -4.52057511e-01 1.49995059e-01 -6.44341052e-01 4.45358872e-01 6.85555220e-01 9.57248390e-01 7.40258634e-01 4.88957554e-01 -9.96773914e-02 7.45483518e-01 4.44169283e-01 6.33680582e-01 4.24540162e-01 -5.16852498e-01 -1.34433468e-03 5.74953735e-01 -8.36345181e-02 -3.78372252e-01 -3.53721261e-01 -3.08692902e-01 -8.78123641e-01 8.41010287e-02 -1.47895843e-01 -7.79721653e-03 -1.05400622e+00 1.63227534e+00 4.48295139e-02 -6.12202227e-01 3.72174382e-01 3.74778122e-01 1.23928404e+00 1.15940845e+00 3.09473038e-01 -2.47435361e-01 1.15746140e+00 -3.84123147e-01 -4.85500753e-01 1.20359875e-01 4.83414680e-01 -6.09984159e-01 9.81539428e-01 4.81406331e-01 -1.10621428e+00 -4.24485624e-01 -1.13737476e+00 -3.13587068e-03 -6.44216597e-01 8.94891396e-02 1.19860697e+00 9.05934393e-01 -9.38238025e-01 8.14489722e-01 -8.38125885e-01 -9.61430222e-02 6.24192059e-01 6.32796466e-01 -2.61260029e-02 1.39985263e-01 -1.13657606e+00 4.91363078e-01 8.54103148e-01 -2.48536482e-01 -9.49477255e-01 -8.15034032e-01 -5.47050118e-01 -1.61162466e-01 -3.23326699e-02 -9.83176351e-01 1.11275649e+00 -5.07365584e-01 -1.76252210e+00 7.04762042e-01 -3.16521674e-01 -4.64063972e-01 -3.70274894e-02 1.65020332e-01 -2.58379072e-01 -1.94703713e-01 1.63292691e-01 1.03025615e+00 3.42439115e-01 -1.25380516e+00 -9.82944518e-02 -5.96493930e-02 -4.80496556e-01 -1.25449970e-01 -2.68357009e-01 -1.92047060e-01 2.79894441e-01 -7.88432896e-01 4.08109874e-02 -7.05400050e-01 -3.42178702e-01 -4.22963828e-01 -5.51987350e-01 -2.59437114e-01 4.27149713e-01 -3.98141235e-01 9.08698082e-01 -1.39103317e+00 -9.25842375e-02 3.34866583e-01 1.09435767e-01 2.47525573e-01 1.75670125e-02 8.28607559e-01 -2.56359190e-01 3.45923841e-01 -3.15913856e-01 3.54699671e-01 1.15164742e-02 -7.33142272e-02 -3.75664711e-01 -1.25823095e-01 3.58622879e-01 1.28406751e+00 -8.34789038e-01 1.50362268e-01 7.14755431e-02 5.98160207e-01 -9.22973216e-01 1.71445817e-01 -1.01382875e+00 6.00764930e-01 -4.03196990e-01 7.29068220e-01 6.17417216e-01 -4.69220161e-01 5.66949069e-01 -1.90010026e-01 -2.95654714e-01 7.66041994e-01 -5.86726189e-01 1.51822662e+00 -7.31669739e-02 1.13924138e-01 -7.01315165e-01 -7.26811588e-01 1.33569872e+00 1.54305413e-01 4.97200608e-01 -8.91100109e-01 -6.59687072e-02 2.88172185e-01 1.70452863e-01 -3.96978706e-01 4.43626255e-01 -5.63442886e-01 1.15346849e-01 5.20382106e-01 1.10716343e-01 -4.10772681e-01 3.04176480e-01 6.59513399e-02 8.40896606e-01 5.99291980e-01 1.47184134e-01 -4.50497150e-01 2.71563381e-01 9.92663354e-02 3.48141789e-01 7.12646484e-01 7.37921655e-01 3.40973139e-01 1.54970393e-01 -4.35198337e-01 -1.35443985e+00 -1.24282908e+00 -9.96631756e-02 1.00721550e+00 -2.70646960e-01 -7.57500529e-01 -7.62215614e-01 1.13538086e-01 -2.09588185e-01 1.03502095e+00 -2.49485165e-01 -4.57663059e-01 -3.17067623e-01 -1.34155393e+00 3.95308942e-01 5.35260856e-01 2.42222443e-01 -1.44804490e+00 4.52352539e-02 4.61413711e-01 9.65326875e-02 -6.07368171e-01 -7.51779974e-02 7.16424465e-01 -7.26459622e-01 -7.05577970e-01 -3.94908696e-01 -8.50742877e-01 7.35946774e-01 -3.05129081e-01 9.47777748e-01 -2.32920736e-01 -4.52493489e-01 -1.40020952e-01 -1.22225126e-02 -7.31811106e-01 -1.20520103e+00 2.49752715e-01 3.39876324e-01 -5.40476322e-01 3.21417838e-01 -8.17614377e-01 -5.83222806e-01 -4.51733060e-02 -9.87175226e-01 6.09480321e-01 7.70868361e-01 9.10887778e-01 9.13061917e-01 1.47947490e-01 8.63636136e-01 -1.19511008e+00 6.18348718e-01 -2.57940233e-01 -5.35338938e-01 2.96322823e-01 -1.11520529e+00 6.50375783e-01 7.91431963e-01 -2.14833751e-01 -1.14326918e+00 1.71115860e-01 -6.17207706e-01 2.27101326e-01 -1.99474722e-01 3.64059150e-01 -6.74282432e-01 1.49817213e-01 8.13365936e-01 6.13054097e-01 3.42164487e-02 -2.31976792e-01 4.13642198e-01 5.37868202e-01 2.33401984e-01 -1.05948246e+00 5.60153127e-01 9.37091187e-02 -5.87716140e-02 -9.08034027e-01 -3.97779882e-01 1.97066590e-01 -3.17875236e-01 1.53346136e-01 8.97556245e-01 -7.90681779e-01 -1.08384740e+00 4.56620932e-01 -9.47228909e-01 -2.54084915e-01 -2.24715307e-01 1.55917585e-01 -6.84573770e-01 1.97810948e-01 -6.61878645e-01 -9.13589358e-01 -8.05698931e-01 -1.18594277e+00 8.59064996e-01 1.39120653e-01 -5.15348494e-01 -7.73611426e-01 -6.52955696e-02 3.50375772e-01 4.72976983e-01 2.53289580e-01 1.60203731e+00 -5.29093862e-01 -8.33746016e-01 2.71392077e-01 1.67077780e-01 1.79155186e-01 4.36405897e-01 -5.92276305e-02 -9.23751533e-01 6.49348833e-03 -2.38640174e-01 -3.79865915e-01 9.90279257e-01 3.35341781e-01 1.33298111e+00 -4.84566718e-01 -5.38925648e-01 4.64035243e-01 1.22603881e+00 8.42290401e-01 9.45300221e-01 8.59242231e-02 8.23025703e-01 3.17673266e-01 6.17136061e-02 4.21164930e-01 -2.99864420e-04 3.29435647e-01 1.86112970e-01 1.05430655e-01 3.42427045e-02 -7.28100598e-01 5.96480370e-01 8.43970835e-01 -3.08517456e-01 -5.09921849e-01 -9.96076405e-01 -1.48427160e-02 -1.34169638e+00 -1.05505741e+00 -1.07899047e-01 2.02485633e+00 1.27776349e+00 3.22153896e-01 2.88328901e-02 -6.03728145e-02 5.22478044e-01 -2.57852703e-01 -8.69779348e-01 -5.79402089e-01 -4.85381246e-01 9.49594498e-01 4.00230944e-01 1.80389225e-01 -6.13511086e-01 1.20318484e+00 6.67434692e+00 1.05312181e+00 -1.21306038e+00 -1.76591396e-01 8.57441068e-01 1.11212358e-01 -1.05525923e+00 8.92327949e-02 -1.17464745e+00 4.45829719e-01 1.05179811e+00 6.20950647e-02 4.47599739e-01 5.60863554e-01 2.63974994e-01 1.94502369e-01 -1.09457874e+00 9.22805071e-01 -2.23644525e-01 -2.29032850e+00 7.14873195e-01 1.54689878e-01 8.42092395e-01 -1.01317331e-01 1.28996328e-01 8.42400491e-02 4.11602944e-01 -1.40796506e+00 7.73100972e-01 6.16085470e-01 1.02614474e+00 -6.86770260e-01 1.17059819e-01 1.88737333e-01 -8.19328547e-01 8.44091028e-02 -4.03655678e-01 6.08140193e-02 2.57524271e-02 6.25977278e-01 -1.28790164e+00 3.83625299e-01 4.68709052e-01 4.77021337e-01 -6.98841810e-02 4.03639466e-01 -1.46595448e-01 6.63529634e-01 -1.69248268e-01 -6.46123946e-01 -1.10425457e-01 -4.74598795e-01 1.90476149e-01 9.74482059e-01 5.27139008e-01 9.01208222e-02 -4.96716648e-02 1.49938869e+00 -2.37375349e-01 1.39967009e-01 -6.15106285e-01 -7.33165443e-01 2.77691543e-01 7.66041517e-01 -7.92227745e-01 -2.81834453e-01 1.04427323e-01 6.53533161e-01 -5.88678867e-02 2.37781897e-01 -7.47927368e-01 -1.42382130e-01 4.39138591e-01 5.07072806e-01 4.78550762e-01 -1.46416739e-01 -3.51940453e-01 -7.21576214e-01 -2.85214961e-01 -9.14600670e-01 -1.36171699e-01 -1.01186538e+00 -1.36989594e+00 4.75317419e-01 -1.96431443e-01 -7.58094132e-01 -2.39234090e-01 -1.07756627e+00 -4.16366220e-01 7.56710708e-01 -9.07672346e-01 -1.21995246e+00 2.90884763e-01 -5.74938804e-02 2.01462910e-01 -4.72187519e-01 1.18353820e+00 -5.40802740e-02 -3.95586640e-01 5.44033885e-01 5.28441370e-01 -4.12773639e-01 3.26391369e-01 -1.10357523e+00 4.85620916e-01 2.06308171e-01 2.54049823e-02 8.75761390e-01 8.09105158e-01 -1.01115668e+00 -1.55633557e+00 -1.19478261e+00 7.53263593e-01 -4.86634374e-01 3.47753167e-01 -8.56131554e-01 -7.92022228e-01 1.42250180e-01 2.30165094e-01 -8.72136176e-01 1.14516509e+00 -2.46498004e-01 -2.32528880e-01 4.00780290e-02 -1.06734407e+00 6.43789768e-01 1.20294166e+00 -3.28940272e-01 -2.10967228e-01 8.34488928e-01 9.31204915e-01 -3.97406727e-01 -9.24111247e-01 5.25383949e-01 5.35409033e-01 -7.80768037e-01 1.04471540e+00 -6.80125892e-01 6.56074405e-01 -2.78977633e-01 -2.03119904e-01 -7.55661190e-01 -4.13300931e-01 -7.97327340e-01 5.07064350e-03 1.17982137e+00 9.70835805e-01 -7.54302800e-01 9.20699179e-01 4.76964653e-01 -3.71639729e-01 -9.57418740e-01 -5.17581403e-01 -5.43672800e-01 2.77481288e-01 -4.12269175e-01 8.49887848e-01 5.31664073e-01 -1.70931220e-01 6.67107344e-01 -2.67903179e-01 -2.44088009e-01 4.16500807e-01 2.41504103e-01 3.75952840e-01 -1.13261366e+00 -5.46999395e-01 -4.01393086e-01 -6.33917451e-02 -8.29463840e-01 1.50767356e-01 -1.50527501e+00 -1.35640070e-01 -1.62643194e+00 2.81519353e-01 -5.78915775e-01 -1.81631178e-01 6.02594018e-01 3.68931442e-01 9.66002420e-03 -3.80968809e-01 1.43441841e-01 -1.88626930e-01 8.44236314e-01 1.10659611e+00 -4.13826138e-01 -3.32921773e-01 -3.07988506e-02 -1.22115183e+00 2.24782288e-01 1.04011333e+00 -4.93842244e-01 -4.47978556e-01 4.53516394e-02 7.07618117e-01 -3.85014206e-01 -1.36567196e-02 -1.08514261e+00 -1.96827188e-01 -2.11926371e-01 6.49363995e-01 -6.62645578e-01 3.65746677e-01 -2.15117887e-01 8.02407563e-01 6.68217838e-01 -3.41276735e-01 -2.68722087e-01 2.08692878e-01 3.34095389e-01 3.77063870e-01 -1.96141049e-01 5.05795717e-01 -5.27879953e-01 -3.20116013e-01 3.84247333e-01 -8.22391927e-01 -2.71491021e-01 7.03652740e-01 -4.33954298e-01 -2.48100013e-01 -8.34995359e-02 -5.71268439e-01 -2.81187534e-01 6.11915052e-01 2.64717966e-01 7.46532500e-01 -1.14869380e+00 -3.29903632e-01 3.58766824e-01 1.60534173e-01 6.42120019e-02 1.23849660e-01 2.51339078e-01 -7.00747311e-01 7.30023265e-01 -2.69735843e-01 -5.43108761e-01 -7.25070238e-01 5.67835927e-01 2.06061989e-01 -7.53019154e-02 -2.67459750e-01 6.43643558e-01 4.00547594e-01 -4.90591079e-01 -2.48398080e-01 -4.25992072e-01 8.15786887e-03 -3.68263304e-01 2.59383917e-01 -7.81378746e-02 2.87780404e-01 -2.36861497e-01 -1.45896241e-01 2.90291011e-01 -2.78189063e-01 2.10815325e-01 1.81212056e+00 5.65993547e-01 -3.73619288e-01 3.87044400e-01 8.26454222e-01 1.36210825e-02 -8.91574681e-01 9.74004269e-02 -1.21530909e-02 3.91435266e-01 -4.67249423e-01 -9.05284286e-01 -5.60052693e-01 6.30404174e-01 5.60806155e-01 -3.02897722e-01 7.97270477e-01 2.20276549e-01 8.50068688e-01 7.03017473e-01 4.24264342e-01 -9.91210043e-01 1.35930017e-01 4.99361485e-01 7.80406535e-01 -8.87889624e-01 5.52868880e-02 -3.90775681e-01 -4.38697726e-01 1.06851673e+00 5.51581681e-01 2.67022759e-01 2.95187056e-01 4.69960451e-01 -3.20648879e-01 -4.40355957e-01 -9.90389109e-01 9.48216990e-02 6.44153953e-02 9.32547808e-01 8.78437638e-01 2.39240244e-01 -2.05624253e-01 8.36846828e-01 -5.14360964e-01 -7.56116817e-03 2.14282468e-01 8.45793307e-01 -5.25507331e-01 -1.73012066e+00 -1.59386709e-01 5.77928007e-01 -2.13329285e-01 -5.16272247e-01 -6.12272203e-01 1.71507537e-01 2.65016258e-01 5.38310170e-01 -2.51109302e-01 -4.74454433e-01 -1.09387845e-01 3.58108819e-01 6.52524471e-01 -7.23656595e-01 -4.42011148e-01 -4.84103151e-02 1.06351793e-01 -3.84254917e-03 -4.07751024e-01 -5.03932595e-01 -1.70831048e+00 -2.85769850e-01 -3.57532442e-01 4.62932378e-01 6.51618779e-01 7.87751794e-01 7.43710995e-01 5.70304453e-01 2.58162141e-01 -7.76860297e-01 -5.66492938e-02 -7.07155108e-01 -3.41672748e-01 1.76666733e-02 -4.62203473e-01 -5.60737669e-01 2.09756047e-01 1.15759797e-01]
[5.127840042114258, 5.408814907073975]
8541c411-88fc-4fc0-87be-453c4bda3496
clear-the-fog-combat-value-assessment-in
1811.12627
null
http://arxiv.org/abs/1811.12627v2
http://arxiv.org/pdf/1811.12627v2.pdf
Clear the Fog: Combat Value Assessment in Incomplete Information Games with Convolutional Encoder-Decoders
StarCraft, one of the most popular real-time strategy games, is a compelling environment for artificial intelligence research for both micro-level unit control and macro-level strategic decision making. In this study, we address an eminent problem concerning macro-level decision making, known as the 'fog-of-war', which rises naturally from the fact that information regarding the opponent's state is always provided in the incomplete form. For intelligent agents to play like human players, it is obvious that making accurate predictions of the opponent's status under incomplete information will increase its chance of winning. To reflect this fact, we propose a convolutional encoder-decoder architecture that predicts potential counts and locations of the opponent's units based on only partially visible and noisy information. To evaluate the performance of our proposed method, we train an additional classifier on the encoder-decoder output to predict the game outcome (win or lose). Finally, we designed an agent incorporating the proposed method and conducted simulation games against rule-based agents to demonstrate both effectiveness and practicality. All experiments were conducted on actual game replay data acquired from professional players.
['Changhyeon Bae', 'Hyungu Kahng', 'Young Joon Park', 'Yoon Sang Cho', 'Junseung Lee', 'Iljoo Yoon', 'Hyunjin Choi', 'Hyunjae Lee', 'Gonie Ahn', 'Yonghyun Jeong', 'Seoung Bum Kim', 'Hyungrok Do', 'Uk Jo', 'Hankyu Lee', 'Daehun Jun']
2018-11-30
null
null
null
null
['real-time-strategy-games']
['playing-games']
[ 3.22207771e-02 6.68475851e-02 -3.14809307e-02 -1.37316748e-01 -3.11200827e-01 -4.57349956e-01 5.30661345e-01 -4.17945050e-02 -8.88483405e-01 8.86781931e-01 8.68018866e-02 -4.05971408e-01 2.42566857e-02 -1.01888704e+00 -4.89674777e-01 -5.79787791e-01 -1.63198307e-01 3.38282347e-01 4.30889398e-01 -8.60633194e-01 5.09867728e-01 -1.56871546e-02 -1.52288926e+00 3.46289605e-01 5.20632863e-01 1.19453883e+00 3.34217072e-01 8.14248204e-01 3.86735678e-01 1.58620608e+00 -1.05151010e+00 -7.56825745e-01 5.63218236e-01 -4.76689935e-01 -4.02462870e-01 -3.37971121e-01 -6.31222546e-01 -4.88339871e-01 -5.70131242e-01 1.18693697e+00 5.72394073e-01 8.11919272e-02 3.39348584e-01 -1.09951758e+00 5.74913155e-03 7.94856250e-01 -3.44531685e-01 5.79915583e-01 2.81732649e-01 6.28340721e-01 1.10863507e+00 -9.97043550e-02 4.89484489e-01 9.54936504e-01 2.54129559e-01 5.08974671e-01 -5.34513354e-01 -6.45986319e-01 2.04408497e-01 5.13277113e-01 -1.24036264e+00 -3.25747788e-01 8.29600930e-01 -1.77859575e-01 8.60085785e-01 1.22046228e-02 9.32360888e-01 1.08480048e+00 7.08129525e-01 9.53370988e-01 1.15278995e+00 -1.91954225e-01 6.14613652e-01 -1.38430580e-01 -3.61451209e-01 5.87961972e-01 1.07483417e-01 6.64763629e-01 -6.13161325e-01 6.78002983e-02 8.38421881e-01 -2.47917980e-01 5.16730770e-02 5.13836928e-02 -9.53919649e-01 8.01937878e-01 4.16446745e-01 1.34358913e-01 -6.42279088e-01 1.84897467e-01 4.23917800e-01 4.49723423e-01 -6.90463558e-02 6.02854431e-01 -7.93886259e-02 -8.62750828e-01 -5.60179353e-01 4.24266696e-01 8.87921274e-01 4.33296472e-01 3.00232202e-01 3.25400770e-01 -1.19091973e-01 2.64943063e-01 2.15697616e-01 4.92444783e-02 7.81376243e-01 -8.62717807e-01 5.60978711e-01 7.02124655e-01 3.15036893e-01 -1.17258120e+00 -4.36544776e-01 -8.68694663e-01 -5.60800970e-01 5.67925155e-01 4.04670179e-01 -5.40323019e-01 -4.43821996e-01 1.83082843e+00 -4.40726392e-02 4.11722302e-01 3.98216039e-01 1.23701024e+00 4.32407290e-01 5.47401130e-01 -2.45489225e-01 -8.83094743e-02 1.14766347e+00 -5.85822880e-01 -6.34977043e-01 -5.66111803e-01 3.12428504e-01 -2.52447933e-01 5.40230095e-01 5.79522252e-01 -1.06391251e+00 -2.94794112e-01 -1.25121450e+00 5.27526915e-01 -8.08253363e-02 -1.23224318e-01 8.56058538e-01 4.58755016e-01 -7.12006330e-01 5.19737184e-01 -7.92147577e-01 4.08603922e-02 2.13551089e-01 5.19276321e-01 -2.00903878e-01 4.48150963e-01 -1.63305295e+00 1.11227238e+00 5.37652731e-01 3.25837463e-01 -1.25691378e+00 8.77135247e-02 -7.18965411e-01 2.70200193e-01 8.33844900e-01 -2.62800992e-01 1.55302882e+00 -8.90635848e-01 -1.79113400e+00 5.91189861e-01 3.91354889e-01 -9.26672459e-01 5.76902688e-01 2.70085305e-01 -3.05544078e-01 -3.02542448e-01 2.96856444e-02 1.72596991e-01 5.87100267e-01 -7.63068080e-01 -1.09249353e+00 -5.45780122e-01 7.10513055e-01 7.95206189e-01 1.64084136e-01 -2.04526648e-01 -7.91362301e-02 -3.86799932e-01 -1.51091889e-01 -5.92315435e-01 -4.60377812e-01 -7.02980280e-01 -3.04931760e-01 -1.46905854e-01 2.07754031e-01 -4.15694386e-01 1.35774183e+00 -2.04414296e+00 2.18366832e-02 1.00640796e-01 2.87888378e-01 3.08349997e-01 1.10711493e-01 4.89125043e-01 3.28768671e-01 -3.63275141e-01 1.97283849e-01 1.36679605e-01 4.67639528e-02 2.58493543e-01 -1.54901996e-01 3.03467274e-01 -8.25253949e-02 9.09680843e-01 -7.84064591e-01 -1.07698321e-01 1.55696064e-01 -2.20847711e-01 -6.92691028e-01 3.51309806e-01 -1.38416454e-01 3.08043897e-01 -7.07204103e-01 5.02065063e-01 9.64789540e-02 8.35570768e-02 4.03236061e-01 2.51353085e-01 -2.52770662e-01 5.50175011e-01 -1.20068097e+00 1.49654937e+00 -1.52799651e-01 5.28288841e-01 2.06989661e-01 -1.27861285e+00 9.12212193e-01 2.88540006e-01 2.92914212e-01 -1.11176157e+00 8.26853514e-01 4.68976274e-02 7.39494562e-01 -2.01050714e-01 6.44604504e-01 -2.78710991e-01 -7.00020492e-01 4.63074118e-01 -1.00951999e-01 -1.41732313e-03 2.12638274e-01 7.24262968e-02 1.43821096e+00 -1.74900085e-01 6.16610229e-01 -5.13279950e-03 3.06177050e-01 1.23115756e-01 8.09917629e-01 1.11238503e+00 -6.89414203e-01 4.81178984e-02 9.27011132e-01 -6.82149470e-01 -7.08773673e-01 -7.89599478e-01 5.05293489e-01 9.50482488e-01 5.17710209e-01 -3.83476138e-01 -7.29237735e-01 -3.03394586e-01 -3.05616200e-01 7.40377367e-01 -7.05803573e-01 -5.89181423e-01 -3.95022005e-01 -7.25442708e-01 6.29815280e-01 2.28462636e-01 8.52290928e-01 -1.23328841e+00 -1.30135739e+00 5.94182312e-01 -2.06604570e-01 -9.80603278e-01 -1.39824674e-02 3.34190607e-01 -2.34815538e-01 -1.25709355e+00 -6.17187805e-02 -4.67052549e-01 9.94743779e-02 -1.03881480e-02 8.77027333e-01 5.44651644e-03 -3.08895353e-02 -2.84722149e-01 -3.26711565e-01 -5.48759103e-01 -4.44471449e-01 6.07160926e-02 2.42108732e-01 1.61212236e-02 4.11190510e-01 -4.60975707e-01 -5.85586131e-01 2.69227505e-01 -6.65723026e-01 2.96415687e-01 7.01233864e-01 9.66485143e-01 -7.10189417e-02 6.13819242e-01 5.11584342e-01 -6.97910786e-01 1.29213405e+00 -2.93182313e-01 -8.12507629e-01 -1.14970142e-03 -1.84712052e-01 5.14354110e-02 7.42111206e-01 -2.49514565e-01 -1.00759304e+00 -2.35299304e-01 -2.43843511e-01 -4.03278992e-02 6.08357452e-02 7.11249232e-01 -1.50497764e-01 1.96961522e-01 6.08232796e-01 4.73753452e-01 5.40250465e-02 -4.65283468e-02 5.28743900e-02 8.97141814e-01 7.61250615e-01 -3.37518662e-01 3.80861580e-01 2.22255841e-01 -2.24494979e-01 -2.77443141e-01 -5.07167459e-01 -9.81835350e-02 -1.31066412e-01 -5.39888501e-01 5.06612718e-01 -1.00966036e+00 -1.49347830e+00 7.37770677e-01 -9.56362069e-01 -2.49379411e-01 -1.79809704e-01 4.10784334e-01 -7.11968005e-01 -3.18793096e-02 -5.74665010e-01 -1.06222999e+00 7.96163280e-04 -1.35571826e+00 4.88729239e-01 4.92727101e-01 5.35394996e-02 -7.28951156e-01 9.68521684e-02 3.95257592e-01 3.52936029e-01 1.75973922e-02 4.37109292e-01 -7.99450934e-01 -4.61544245e-01 -5.24374604e-01 2.12262422e-01 7.06192292e-03 -3.99070866e-02 -5.79569757e-01 -6.76261365e-01 -1.37979880e-01 3.84510159e-01 -2.45540053e-01 4.64614421e-01 3.00827354e-01 6.27291501e-01 -3.53722185e-01 5.72590977e-02 2.06877455e-01 1.19337475e+00 6.98783457e-01 7.13332355e-01 5.30804634e-01 7.70362839e-02 3.18676591e-01 6.98349059e-01 1.01200509e+00 5.87915659e-01 8.76001835e-01 1.00046992e+00 3.43889147e-01 3.87429655e-01 -4.92182910e-01 6.75370276e-01 6.05233014e-01 -3.33736092e-01 -4.66094851e-01 -5.58402002e-01 2.20096856e-01 -1.95573449e+00 -1.34457099e+00 4.63818133e-01 2.19454312e+00 6.40515268e-01 7.56378710e-01 1.59537464e-01 2.58969963e-01 7.11204946e-01 2.28998885e-01 -6.22358203e-01 -5.63311100e-01 -1.37006864e-01 9.53890532e-02 6.12745047e-01 4.37860101e-01 -9.53182161e-01 1.27250576e+00 5.97475910e+00 1.04571092e+00 -1.04114044e+00 -9.88431973e-04 6.51005983e-01 -3.48792821e-01 1.85903683e-01 -1.73381165e-01 -6.09577537e-01 6.97659016e-01 8.32158744e-01 -3.75376105e-01 6.96357846e-01 7.36971378e-01 4.25209701e-01 -5.35657585e-01 -7.02343345e-01 9.32448983e-01 -9.67223793e-02 -1.42807090e+00 -3.91238600e-01 1.63848907e-01 4.65278238e-01 -6.46039620e-02 1.18139565e-01 6.50533020e-01 1.01127219e+00 -1.04218435e+00 9.83568847e-01 3.09584826e-01 3.55934024e-01 -9.04882610e-01 1.16551733e+00 9.33036804e-01 -9.15988922e-01 -5.37597120e-01 -4.29632455e-01 -1.02516592e+00 9.80068073e-02 -6.43084571e-02 -9.64603484e-01 3.57271254e-01 2.43970901e-01 4.38228816e-01 -2.47786909e-01 8.88938129e-01 -4.33734506e-01 5.06352186e-01 -3.84435296e-01 -5.21060407e-01 5.87714553e-01 -1.10123552e-01 4.80067343e-01 4.87444013e-01 1.75131604e-01 5.93858421e-01 1.15274385e-01 5.83976865e-01 1.90472960e-01 -4.01121318e-01 -6.36112392e-01 -4.29726653e-02 4.51199591e-01 8.64171207e-01 -6.76061511e-01 -1.85926538e-02 -6.81613684e-02 7.64186502e-01 2.63722628e-01 7.10031688e-02 -9.31549072e-01 -1.15512848e-01 7.66604662e-01 -5.96353337e-02 4.84526567e-02 -1.15495451e-01 -2.88201243e-01 -1.16921413e+00 -1.59875870e-01 -1.04095793e+00 2.65918911e-01 -5.47104120e-01 -8.37487996e-01 7.04065204e-01 -5.10233343e-01 -1.26829576e+00 -7.36230016e-01 -6.62047923e-01 -8.42535615e-01 5.07744312e-01 -1.07375383e+00 -6.05250180e-01 1.04940154e-01 5.44661701e-01 4.46904659e-01 -6.83026373e-01 5.29474974e-01 2.75091752e-02 -6.49328530e-01 5.44083595e-01 -1.30147427e-01 5.18425882e-01 4.21882123e-02 -9.21704888e-01 2.15925172e-01 8.91023993e-01 8.74414667e-02 7.59564154e-03 9.39105630e-01 -5.51482379e-01 -1.56600201e+00 -4.34826374e-01 3.81755233e-01 -2.17704475e-01 7.23632395e-01 -3.04562628e-01 -2.21289188e-01 4.13783640e-01 1.84374135e-02 -4.33895767e-01 3.94497246e-01 -1.73202142e-01 2.58719712e-01 -9.19471495e-03 -9.88012195e-01 9.39999759e-01 8.66033614e-01 -2.97175914e-01 -8.14617813e-01 -1.82840765e-01 2.32209727e-01 -5.59825659e-01 -2.79801756e-01 1.48944959e-01 4.13085997e-01 -1.38998258e+00 5.64412057e-01 -8.19882393e-01 5.34034014e-01 -2.67314941e-01 -3.41543972e-01 -1.58696139e+00 -2.21453622e-01 -6.89690888e-01 1.23098925e-01 4.88013357e-01 3.02699417e-01 -4.13315862e-01 1.21583474e+00 5.20977259e-01 3.54179367e-03 -7.85295963e-01 -1.41736150e+00 -3.71479243e-01 -2.01058373e-01 -6.63939118e-01 5.84852040e-01 5.32206178e-01 6.92189336e-01 4.54332322e-01 -6.99007213e-01 1.20992362e-01 2.67202377e-01 3.13848769e-03 8.09184253e-01 -8.41063380e-01 -6.00172698e-01 -6.06612086e-01 -9.72094178e-01 -1.16157377e+00 6.35641664e-02 -5.01248479e-01 1.82273909e-01 -1.22559011e+00 -1.87787469e-02 -2.27066368e-01 -4.75790858e-01 3.12461853e-01 7.83153810e-03 1.38361707e-01 3.93358111e-01 8.62841159e-02 -8.79261613e-01 5.57456791e-01 1.28426611e+00 -5.65356910e-02 -3.50023285e-02 4.56955701e-01 -9.06813622e-01 7.50262201e-01 7.80356228e-01 -9.30395126e-02 -3.41099858e-01 -2.06458941e-01 5.17975271e-01 7.10677385e-01 1.19237080e-01 -1.22607374e+00 6.52911246e-01 -4.28851962e-01 -6.62651733e-02 -7.89755434e-02 7.03726649e-01 -7.16002762e-01 -6.21531568e-02 7.76747167e-01 -4.08294976e-01 1.62117109e-01 -7.10998848e-02 5.10936379e-01 -4.08509046e-01 -2.00783819e-01 4.88414377e-01 -3.56968939e-01 -1.04390156e+00 1.33365363e-01 -8.81559551e-01 -4.92160991e-02 1.27259982e+00 -3.26496184e-01 -2.71869361e-01 -9.40411866e-01 -5.40495336e-01 4.26348716e-01 1.64521873e-01 3.45857650e-01 6.12410545e-01 -1.01162219e+00 -8.12327087e-01 2.97329068e-01 -2.00662628e-01 -3.62832516e-01 2.51488328e-01 4.71999407e-01 -6.28565490e-01 5.00820637e-01 -5.34105122e-01 -1.50926886e-02 -8.53754103e-01 2.92093307e-01 6.98634148e-01 -6.63697302e-01 -2.92405576e-01 8.23944509e-01 1.81383997e-01 -2.76678294e-01 1.22191250e-01 -1.92294419e-02 -4.48897153e-01 -1.38333261e-01 5.45034051e-01 4.88469638e-02 -2.18388699e-02 -5.86916864e-01 -2.62358308e-01 -3.04431170e-01 -5.03219813e-02 -4.44684625e-01 1.13343513e+00 1.02788098e-01 3.17321837e-01 3.32380652e-01 3.44055265e-01 -2.63798147e-01 -1.50518000e+00 -2.23534063e-01 -1.13248609e-01 -5.45514166e-01 1.94108397e-01 -9.24832523e-01 -1.04726589e+00 8.29518616e-01 3.03701371e-01 2.75181115e-01 1.01230299e+00 -4.37336057e-01 5.07524490e-01 3.93498331e-01 9.47712123e-01 -1.26797175e+00 -3.37834060e-02 7.91748226e-01 3.70888621e-01 -1.19176733e+00 -3.26591760e-01 1.33064672e-01 -1.04986095e+00 7.28785992e-01 8.78666043e-01 -2.82918483e-01 4.69535291e-01 5.52098811e-01 1.20122269e-01 -1.67944729e-01 -1.39693272e+00 -2.33132944e-01 -3.42534810e-01 5.44374168e-01 -1.19049929e-01 3.73337388e-01 -2.59903580e-01 1.14012718e+00 -7.15960205e-01 1.32258549e-01 9.27055180e-01 9.49481606e-01 -6.60843432e-01 -8.60582471e-01 -2.32703477e-01 6.02830589e-01 -6.54845655e-01 1.57699157e-02 -3.91483575e-01 5.78374743e-01 1.83127850e-01 1.11448348e+00 2.65271157e-01 -8.40294302e-01 3.45163256e-01 -3.67156804e-01 2.54809946e-01 -4.67683047e-01 -7.73553252e-01 -2.45355502e-01 1.11722678e-01 -5.62431574e-01 -1.35969864e-02 -4.28321719e-01 -1.19358242e+00 -6.54321849e-01 -1.95343062e-01 3.88114095e-01 4.68408763e-01 1.23993003e+00 7.89196268e-02 6.79591060e-01 7.16804087e-01 -6.17441893e-01 -9.59993064e-01 -8.37183475e-01 -8.33792031e-01 1.51815280e-01 -2.42230538e-02 -8.59891951e-01 -1.66870922e-01 -6.11453414e-01]
[3.5622565746307373, 1.555107831954956]
9bb74dce-917f-4257-8629-87028db0f45d
user-satisfaction-modeling-with-domain
null
null
https://aclanthology.org/2022.sigdial-1.59
https://aclanthology.org/2022.sigdial-1.59.pdf
User Satisfaction Modeling with Domain Adaptation in Task-oriented Dialogue Systems
User Satisfaction Estimation (USE) is crucial in helping measure the quality of a task-oriented dialogue system. However, the complex nature of implicit responses poses challenges in detecting user satisfaction, and most datasets are limited in size or not available to the public due to user privacy policies. Unlike task-oriented dialogue, large-scale annotated chitchat with emotion labels is publicly available. Therefore, we present a novel user satisfaction model with domain adaptation (USMDA) to utilize this chitchat. We adopt a dialogue Transformer encoder to capture contextual features from the dialogue. And we reduce domain discrepancy to learn dialogue-related invariant features. Moreover, USMDA jointly learns satisfaction signals in the chitchat context with user satisfaction estimation, and user actions in task-oriented dialogue with dialogue action recognition. Experimental results on two benchmarks show that our proposed framework for the USE task outperforms existing unsupervised domain adaptation methods. To the best of our knowledge, this is the first work to study user satisfaction estimation with unsupervised domain adaptation from chitchat to task-oriented dialogue.
['Georg Groh', 'Bernhard Pflugfelder', 'Mingyang Ma', 'Yan Pan']
null
null
null
null
sigdial-acl-2022-9
['task-oriented-dialogue-systems']
['natural-language-processing']
[ 2.56180108e-01 2.54357487e-01 -2.55232513e-01 -1.00490093e+00 -9.71724868e-01 -4.90180433e-01 5.24610579e-01 7.53184855e-02 -5.20057797e-01 9.75404203e-01 6.06322944e-01 1.62674591e-01 2.92365462e-01 -4.41993028e-01 2.27986854e-02 -3.19557875e-01 3.78352642e-01 7.45337427e-01 7.00854063e-02 -8.19876790e-01 3.82826179e-01 -2.33268812e-01 -9.00394201e-01 4.55242038e-01 1.22237873e+00 1.18709147e+00 2.91869957e-02 5.80857515e-01 -2.25361332e-01 9.02571619e-01 -6.53097093e-01 -6.59960091e-01 -1.36734173e-01 -7.21996486e-01 -1.37274325e+00 5.61606586e-01 1.06973266e-02 -5.41960120e-01 -2.32484713e-01 8.49005342e-01 6.16039813e-01 4.65060443e-01 5.78837097e-01 -1.40630031e+00 -4.28918988e-01 2.96459645e-01 -2.24477495e-03 -1.74211010e-01 8.70589972e-01 -9.44208354e-03 1.17982459e+00 -9.82276022e-01 5.55386782e-01 1.22852361e+00 4.11542356e-01 8.10947478e-01 -8.92551780e-01 -3.44337940e-01 -2.58193873e-02 1.18208766e-01 -8.53308856e-01 -6.06964111e-01 1.01442695e+00 -3.14149082e-01 8.80868673e-01 2.47548580e-01 1.98813945e-01 1.26326263e+00 -2.34594926e-01 1.13439393e+00 1.36542034e+00 -3.97359967e-01 3.23306978e-01 6.68709993e-01 3.77298892e-01 5.84626257e-01 -7.22872019e-01 -7.43786931e-01 -6.78725839e-01 -4.62664962e-01 4.69535083e-01 -4.49584313e-02 -2.27415338e-01 -4.28681076e-01 -7.64762700e-01 1.06681907e+00 -1.10205866e-01 2.69509673e-01 -2.97101647e-01 -6.89619303e-01 1.04434896e+00 9.18345571e-01 7.59558797e-01 5.39876282e-01 -9.75839674e-01 -6.94361866e-01 -9.98931378e-02 1.96725011e-01 1.49994063e+00 1.15819323e+00 7.50034392e-01 -1.38992310e-01 -2.66613603e-01 1.54452848e+00 -1.29028156e-01 4.14646357e-01 6.70313001e-01 -1.17510152e+00 4.58875716e-01 8.91004264e-01 2.15868995e-01 -6.80200636e-01 -4.47198510e-01 3.69853601e-02 -8.01973462e-01 -5.50659835e-01 2.74047762e-01 -6.17319882e-01 6.32902905e-02 1.57323492e+00 1.02785051e-01 -2.10346952e-01 4.47110444e-01 9.79835927e-01 1.12588418e+00 5.23211598e-01 2.99074072e-02 -5.77010989e-01 1.45031023e+00 -1.01878178e+00 -1.08122694e+00 -2.05331072e-01 9.52181935e-01 -5.45616210e-01 1.28504956e+00 3.81374568e-01 -9.99018550e-01 -4.11960334e-01 -4.52446580e-01 -1.54423833e-01 -1.78759262e-01 2.14482788e-02 5.96120238e-01 5.37927508e-01 -5.81432402e-01 -1.85890663e-02 -2.71831632e-01 -5.12630105e-01 7.30623975e-02 3.85824144e-01 -3.40689123e-01 -8.25293511e-02 -1.60027254e+00 1.05749238e+00 -3.53391692e-02 -1.71924144e-01 -3.23518276e-01 -8.32979232e-02 -1.20292044e+00 -1.76631555e-01 5.62621057e-01 -1.96944043e-01 1.93391371e+00 -1.37562251e+00 -2.05713797e+00 8.27827930e-01 -4.95766282e-01 -3.48131865e-01 2.57424980e-01 -2.82203913e-01 -2.96324581e-01 -1.74447805e-01 9.59064513e-02 2.09838882e-01 4.22731847e-01 -9.09044266e-01 -6.67368650e-01 -4.00434852e-01 2.88676381e-01 6.75519049e-01 -6.98691905e-01 2.22404048e-01 -4.04471517e-01 1.63449475e-03 -1.81070611e-01 -7.67401338e-01 -2.14382529e-01 -5.89254439e-01 -1.85205843e-02 -7.90684462e-01 8.03002179e-01 -6.30038977e-01 1.16180766e+00 -1.92446733e+00 2.19691694e-01 -1.28900051e-01 1.68688059e-01 3.14721048e-01 -5.92952929e-02 6.22495830e-01 4.15558994e-01 -4.13091391e-01 -3.91285628e-01 -4.62099522e-01 2.35914439e-01 4.14864123e-01 7.83226278e-04 2.08284333e-01 2.64197201e-01 7.69246519e-01 -1.07909024e+00 -5.44503570e-01 1.73552543e-01 -8.03341195e-02 -7.99870014e-01 1.01370811e+00 -2.38723159e-01 5.45748413e-01 -8.12998295e-01 4.28411484e-01 5.55653036e-01 -4.78739217e-02 4.72551525e-01 -1.12301685e-01 8.36637337e-03 5.70514381e-01 -5.89166522e-01 1.84828949e+00 -8.57056677e-01 4.53967541e-01 1.46969289e-01 -1.35818708e+00 1.31523621e+00 7.24749446e-01 6.30805790e-01 -9.97666240e-01 2.78884917e-01 1.46048114e-01 -1.43692181e-01 -8.00755918e-01 7.87318110e-01 -9.28573683e-02 -7.37842083e-01 4.68680680e-01 4.32552725e-01 -3.60986203e-01 -1.15508568e-02 2.41590872e-01 1.02984750e+00 -1.01426281e-01 6.10042274e-01 7.83929750e-02 9.23480272e-01 -5.45247411e-03 7.87978470e-01 3.88303161e-01 -6.90285683e-01 2.81172812e-01 7.75861502e-01 -1.13671996e-01 -6.20728195e-01 -4.44250435e-01 -7.55430833e-02 1.77346611e+00 -4.50200886e-02 -4.31633741e-01 -8.10917318e-01 -1.08295286e+00 -4.25491989e-01 6.32707238e-01 -3.43684733e-01 -2.24693939e-01 -4.13400501e-01 -3.23110312e-01 2.96424180e-01 3.21991920e-01 8.78450334e-01 -1.12697005e+00 -2.17978194e-01 3.29182476e-01 -7.96834886e-01 -1.43147457e+00 -6.88258231e-01 1.18398316e-01 -5.15060306e-01 -1.02031040e+00 -6.25040948e-01 -1.10541546e+00 4.11893159e-01 9.94882658e-02 1.27212512e+00 -3.17483753e-01 3.32782000e-01 6.66649759e-01 -7.13139772e-01 -1.90826043e-01 -3.25481713e-01 1.05352104e-01 1.27202153e-01 1.28609031e-01 9.35916901e-01 -1.15696706e-01 -3.38266879e-01 5.85702598e-01 -5.39903402e-01 -6.83205575e-02 2.17041269e-01 1.24330163e+00 -6.96868449e-02 -1.24962606e-01 1.05333841e+00 -1.37062442e+00 1.26659584e+00 -6.02591813e-01 8.10717344e-02 6.76880851e-02 -5.07767558e-01 -2.46536538e-01 6.79885030e-01 -2.00516075e-01 -1.52697444e+00 1.67969130e-02 -3.82617980e-01 1.35614738e-01 -4.33864564e-01 4.13420916e-01 -3.91126692e-01 2.67239273e-01 5.57478368e-01 2.61272371e-01 7.59854214e-03 -3.58068436e-01 1.81103453e-01 1.36963117e+00 3.79166335e-01 -6.62450969e-01 1.73138693e-01 -1.27283350e-01 -6.85701907e-01 -9.40838575e-01 -1.00381327e+00 -1.06662881e+00 -8.35660696e-01 -2.12903410e-01 7.49083459e-01 -8.68687868e-01 -7.72941470e-01 3.72853458e-01 -1.12036681e+00 -2.86179096e-01 -8.46824422e-03 2.16849029e-01 -8.51731777e-01 5.60859382e-01 -7.11118162e-01 -1.22351921e+00 -3.32891315e-01 -1.00432026e+00 9.52937424e-01 1.60199374e-01 -5.68918347e-01 -1.23479939e+00 1.22024536e-01 8.55960608e-01 2.60370016e-01 -1.11353181e-01 3.95404011e-01 -1.19681120e+00 3.37635666e-01 -2.83504516e-01 -2.02669606e-01 6.88515723e-01 3.23064983e-01 -8.03940833e-01 -9.25663173e-01 -1.16156332e-01 4.23449159e-01 -1.17748368e+00 2.73748487e-01 4.79503833e-02 8.40908766e-01 -6.19731188e-01 2.14660570e-01 -2.42405191e-01 6.98874652e-01 2.59271979e-01 4.88364458e-01 1.34641510e-02 3.46273929e-01 1.02669930e+00 1.37155843e+00 9.32077110e-01 7.93216467e-01 8.04298639e-01 -7.33714998e-02 -2.70214915e-01 4.97128755e-01 1.68255977e-02 5.77486336e-01 1.12978816e+00 1.22074500e-01 -1.99007601e-01 -6.87041163e-01 4.32737112e-01 -2.09922433e+00 -6.87363744e-01 -1.55748963e-01 1.84540367e+00 1.33028722e+00 8.96111596e-03 3.10969144e-01 -8.20882842e-02 5.58810592e-01 3.88159379e-02 -4.52646196e-01 -8.23343813e-01 1.05153777e-01 1.25312015e-01 7.13128448e-02 5.83314419e-01 -1.06479084e+00 1.05475748e+00 4.99875259e+00 4.54840362e-01 -6.37710214e-01 4.05861557e-01 5.21057546e-01 4.51102614e-01 -6.53528646e-02 -1.57450825e-01 -3.61439049e-01 2.65553862e-01 8.48804176e-01 -2.20533088e-01 2.17121411e-02 1.02408767e+00 4.03747082e-01 1.49206817e-02 -1.05328298e+00 8.77834320e-01 3.29582334e-01 -3.71603519e-01 -7.13012815e-01 -2.27180004e-01 5.72146475e-01 -3.76226395e-01 -6.39414415e-02 9.66641128e-01 4.07527715e-01 -6.15621209e-01 -2.91908205e-01 4.64739412e-01 6.97654068e-01 -8.60046268e-01 1.18309152e+00 5.51572502e-01 -7.48702228e-01 1.42658696e-01 -3.97610009e-01 -1.86107725e-01 7.08059669e-02 1.84146374e-01 -1.33022571e+00 1.81846604e-01 2.80990779e-01 8.76650035e-01 -1.62367150e-01 3.66512865e-01 2.16422930e-01 6.15641892e-01 2.64064699e-01 -2.51267701e-01 2.52620190e-01 -2.93335825e-01 2.42481589e-01 1.45723236e+00 -8.07581469e-02 4.67858732e-01 6.32414639e-01 4.20195103e-01 -2.51151353e-01 4.60527748e-01 -7.54268944e-01 -6.25010282e-02 3.32483321e-01 1.33516669e+00 1.92058593e-01 -2.89337307e-01 -8.35292459e-01 1.58085072e+00 2.55633622e-01 1.78768992e-01 -4.61411446e-01 -3.54839385e-01 6.30939186e-01 -2.67079145e-01 -2.99323678e-01 -6.59227744e-02 -8.84769261e-02 -1.28994083e+00 -2.13917926e-01 -1.15857959e+00 4.42479640e-01 -4.77698803e-01 -1.50171268e+00 4.02441978e-01 -4.03358221e-01 -1.23665273e+00 -5.05839586e-01 -4.09037083e-01 -4.45950121e-01 7.48675942e-01 -1.40300965e+00 -9.09012675e-01 -3.00510347e-01 8.77651453e-01 1.34112859e+00 -3.85933340e-01 1.29090071e+00 4.28093225e-02 -5.75238466e-01 6.61593318e-01 6.26270846e-02 2.92168885e-01 1.41370285e+00 -1.45306802e+00 -5.00355475e-02 -2.70421356e-02 -6.27290666e-01 4.29010242e-01 6.78580463e-01 -4.02013570e-01 -1.45164549e+00 -8.65132511e-01 1.24410939e+00 -5.00170887e-01 5.35744250e-01 -3.84376675e-01 -1.12255418e+00 5.04174113e-01 6.13083720e-01 -4.79708999e-01 1.18487096e+00 6.29843473e-01 -1.48166865e-01 6.87187165e-02 -1.30381024e+00 3.66614968e-01 6.46958709e-01 -6.60642266e-01 -8.08121502e-01 4.97336149e-01 6.22068048e-01 -4.26850736e-01 -1.25912404e+00 3.51922214e-01 2.67047197e-01 -8.86669993e-01 4.88170922e-01 -6.70046508e-01 5.02857387e-01 4.85611826e-01 -2.43046507e-01 -1.48698807e+00 -6.06596805e-02 -5.68130434e-01 9.18011069e-02 1.40110409e+00 2.05943093e-01 -4.61190343e-01 7.20755219e-01 1.22453129e+00 -2.83329844e-01 -4.11626250e-01 -5.88408589e-01 -2.66199529e-01 4.06758264e-02 -1.78565249e-01 2.71947354e-01 1.36135507e+00 9.36333597e-01 9.88642216e-01 -8.46128643e-01 -2.90761501e-01 2.19155535e-01 -4.51250374e-02 1.03914201e+00 -1.24765003e+00 -2.15208247e-01 1.33439787e-02 4.15676832e-02 -1.40648472e+00 5.74642539e-01 -3.67657572e-01 3.09325963e-01 -1.25846601e+00 1.91802964e-01 -3.06694448e-01 -1.12992458e-01 3.11240107e-01 -2.43022680e-01 -1.44847363e-01 -2.82436401e-01 -1.36950472e-02 -1.28357124e+00 8.60006690e-01 1.18850088e+00 -1.15758441e-01 -3.62104595e-01 2.34458044e-01 -7.21068621e-01 7.54808009e-01 1.08119118e+00 -6.92212656e-02 -4.92116153e-01 -2.95833293e-02 -2.44216532e-01 7.67984450e-01 -2.20505029e-01 -5.02597690e-01 1.44928053e-01 -5.34424663e-01 -1.44263849e-01 -2.45447367e-01 5.92443645e-01 -7.84226835e-01 -8.64504337e-01 6.63610101e-02 -8.31808865e-01 -4.07855392e-01 -1.94808900e-01 2.87510514e-01 -4.87310648e-01 -2.76444256e-01 6.93861246e-01 -2.27168381e-01 -8.85362566e-01 1.44884676e-01 -7.37586737e-01 3.68599266e-01 6.24497652e-01 1.19012438e-01 -1.10444725e-01 -1.05697572e+00 -4.98670906e-01 5.54836810e-01 1.46096408e-01 5.17088056e-01 7.38567173e-01 -1.25364375e+00 -7.96908379e-01 -3.96840982e-02 5.81125438e-01 -1.42639786e-01 2.29491889e-01 7.11000979e-01 3.18298906e-01 5.77793479e-01 -1.09564193e-01 -4.11152154e-01 -1.54536307e+00 1.20523967e-01 2.02212587e-01 -3.07974309e-01 -1.19144723e-01 6.57532752e-01 2.84263909e-01 -1.13365424e+00 4.12985921e-01 1.93066150e-01 -5.70924938e-01 1.46951243e-01 2.95852423e-01 2.66663820e-01 -3.07794977e-02 -7.81864226e-01 -7.94373900e-02 -7.67646916e-03 -1.95976898e-01 -1.77459106e-01 1.14005280e+00 -6.21708632e-01 1.61097571e-02 6.18383288e-01 1.31114352e+00 -2.22741619e-01 -9.53840613e-01 -1.00881076e+00 4.15445976e-02 -4.71052587e-01 -1.76186755e-01 -8.09739649e-01 -6.23405337e-01 8.28255832e-01 3.11924934e-01 3.51702839e-01 1.16852522e+00 -1.84229061e-01 1.16346359e+00 9.79945779e-01 3.55285406e-01 -1.77417207e+00 5.68678737e-01 1.08908653e+00 9.60909128e-01 -1.75244498e+00 -5.24156690e-01 -3.96333069e-01 -1.67413735e+00 8.71427417e-01 1.19927502e+00 2.05198690e-01 3.07548702e-01 -1.23698801e-01 3.28483552e-01 -3.12702656e-02 -1.04582202e+00 -3.89645994e-01 7.52426982e-02 6.48199260e-01 9.27157700e-01 -3.24081592e-02 -6.84019327e-01 9.35227931e-01 -1.19985089e-01 -1.90463867e-02 4.92424846e-01 9.82442498e-01 -6.43326938e-01 -1.47482586e+00 -3.61473076e-02 4.29831356e-01 -3.33643824e-01 -2.72655673e-02 -9.04357493e-01 2.39786848e-01 -2.91240305e-01 1.52252400e+00 -2.06478551e-01 -4.13691700e-01 8.14879060e-01 5.45206547e-01 6.66569024e-02 -8.46565187e-01 -7.83820808e-01 7.78924674e-02 6.75264359e-01 -3.06381196e-01 -4.45346981e-01 -5.62505126e-01 -1.21404815e+00 -1.34178624e-01 -3.42393965e-01 6.78226113e-01 4.27743047e-01 9.32619214e-01 1.23189777e-01 2.35689908e-01 1.36212373e+00 -3.00074667e-01 -5.89518309e-01 -1.23846030e+00 -5.75026274e-01 8.71680558e-01 1.65280595e-01 -4.85844642e-01 -7.88105726e-02 -5.87233640e-02]
[12.784561157226562, 7.934021472930908]
81f60e72-24bf-4e75-8b76-de5bb1794d11
modeling-and-recognition-of-smart-grid-faults
1407.7008
null
http://arxiv.org/abs/1407.7008v2
http://arxiv.org/pdf/1407.7008v2.pdf
Modeling and Recognition of Smart Grid Faults by a Combined Approach of Dissimilarity Learning and One-Class Classification
Detecting faults in electrical power grids is of paramount importance, either from the electricity operator and consumer viewpoints. Modern electric power grids (smart grids) are equipped with smart sensors that allow to gather real-time information regarding the physical status of all the component elements belonging to the whole infrastructure (e.g., cables and related insulation, transformers, breakers and so on). In real-world smart grid systems, usually, additional information that are related to the operational status of the grid itself are collected such as meteorological information. Designing a suitable recognition (discrimination) model of faults in a real-world smart grid system is hence a challenging task. This follows from the heterogeneity of the information that actually determine a typical fault condition. The second point is that, for synthesizing a recognition model, in practice only the conditions of observed faults are usually meaningful. Therefore, a suitable recognition model should be synthesized by making use of the observed fault conditions only. In this paper, we deal with the problem of modeling and recognizing faults in a real-world smart grid system, which supplies the entire city of Rome, Italy. Recognition of faults is addressed by following a combined approach of multiple dissimilarity measures customization and one-class classification techniques. We provide here an in-depth study related to the available data and to the models synthesized by the proposed one-class classifier. We offer also a comprehensive analysis of the fault recognition results by exploiting a fuzzy set based reliability decision rule.
['Enrico De Santis', 'Alireza Sadeghian', 'Antonello Rizzi', 'Lorenzo Livi']
2014-07-25
null
null
null
null
['one-class-classifier']
['methodology']
[ 1.45465480e-02 -3.38967413e-01 2.71808922e-01 -1.48775578e-01 -3.28712195e-01 -5.66706777e-01 4.67728645e-01 6.67927861e-01 -4.01173756e-02 8.89311790e-01 -5.13175726e-01 -3.39435071e-01 -6.67253733e-01 -9.78768885e-01 -1.01028932e-02 -1.09202087e+00 -1.97079271e-01 8.10030341e-01 -5.60286529e-02 -2.22368360e-01 3.14579546e-01 1.03762507e+00 -1.80503607e+00 1.07635930e-02 1.18757808e+00 1.35941017e+00 3.59140664e-01 3.25145274e-01 2.37476736e-01 3.09434295e-01 -1.16982174e+00 5.06944597e-01 -9.73337982e-03 -4.79739964e-01 -4.95120108e-01 5.93667686e-01 -3.30187589e-01 -1.34142399e-01 3.17439944e-01 1.22041941e+00 2.19771504e-01 2.30195135e-01 8.83575618e-01 -1.30884719e+00 1.60677463e-01 4.86719757e-01 -2.46742237e-02 3.53317350e-01 3.86693954e-01 -1.92308389e-02 8.99758160e-01 -4.74640518e-01 1.90110564e-01 4.89161134e-01 -8.82315636e-02 -2.34256670e-01 -1.04454851e+00 -4.84275166e-03 -8.13440979e-03 8.71511042e-01 -1.40225101e+00 -6.52162880e-02 8.63155186e-01 -5.78831494e-01 7.90502727e-01 4.79872823e-01 6.20369196e-01 5.23112059e-01 2.43081227e-01 1.06763259e-01 1.30113971e+00 -3.83569330e-01 6.64096594e-01 2.56429285e-01 1.68876410e-01 5.16457111e-02 4.92261678e-01 -1.40972510e-01 2.83939421e-01 3.00196167e-02 1.73037454e-01 -1.29861042e-01 -7.09114671e-01 -1.76068485e-01 -4.86120582e-01 6.01949453e-01 1.12161338e-01 1.33706224e+00 -4.69309270e-01 -7.56133318e-01 3.83760363e-01 5.15988231e-01 2.92177528e-01 4.08317059e-01 -3.89095545e-01 -1.26773104e-01 -9.46381450e-01 -2.56758004e-01 8.74087870e-01 4.79162663e-01 7.45258689e-01 4.59937990e-01 5.30821741e-01 3.13839644e-01 -9.86955613e-02 3.24773580e-01 6.98940933e-01 -1.17147200e-01 7.78570920e-02 6.46906018e-01 1.90896377e-01 -9.84651625e-01 -5.13860047e-01 -7.90196240e-01 -9.00198579e-01 5.54840565e-01 4.22012419e-01 -1.21640280e-01 -1.89547181e-01 1.10685861e+00 2.01618746e-01 -6.97554797e-02 1.24957614e-01 6.99944854e-01 2.33371317e-01 5.10288060e-01 -3.27186435e-01 -6.87518537e-01 1.32569504e+00 -1.84105471e-01 -7.51475036e-01 5.08550107e-01 6.15624070e-01 -5.63826442e-01 5.47147334e-01 1.14890850e+00 -6.81069791e-01 -5.33084095e-01 -1.30501616e+00 7.77596891e-01 -5.72350144e-01 4.04752105e-01 -1.15633376e-01 5.45816660e-01 -6.12661302e-01 8.97713184e-01 -5.26348710e-01 -3.06755722e-01 -3.04691136e-01 1.62028745e-01 -5.22381365e-01 1.43130571e-01 -1.11043513e+00 1.38677907e+00 5.87391853e-01 2.94124812e-01 -6.14086747e-01 -2.29397476e-01 -5.19723415e-01 4.04560030e-01 5.24098396e-01 1.09985374e-01 6.66147947e-01 -9.44530904e-01 -1.14048338e+00 1.89602852e-01 2.03474373e-01 -4.85392213e-01 5.46650589e-01 3.86313766e-01 -1.00179887e+00 4.73254770e-01 -8.42386261e-02 -7.14173734e-01 6.89689875e-01 -1.20409548e+00 -7.73449719e-01 -2.28181586e-01 -1.62605152e-01 -2.09080055e-01 -2.08861262e-01 -3.61400604e-01 5.98019123e-01 -3.35594177e-01 -6.88943788e-02 -4.50627953e-01 -6.01724312e-02 -6.87427163e-01 -3.69518131e-01 -3.91529202e-01 1.03334403e+00 -8.90955269e-01 1.10197973e+00 -2.06998396e+00 2.12198481e-01 8.56309831e-01 -1.50720090e-01 2.75960624e-01 4.09060925e-01 6.86616242e-01 -4.48705137e-01 -4.22297627e-01 -4.23519999e-01 2.51658499e-01 4.84174453e-02 4.13971931e-01 -1.24233313e-01 7.17577696e-01 8.72006938e-02 5.06037511e-02 -6.44489527e-01 -2.10847184e-01 7.71651804e-01 3.15800577e-01 6.73650131e-02 1.83703437e-01 -1.06150500e-01 6.38454914e-01 -4.61200953e-01 3.29962760e-01 5.30268133e-01 8.49828422e-02 3.44843745e-01 -4.30644989e-01 -1.93466648e-01 -5.39181791e-02 -1.70034909e+00 9.25469458e-01 -7.46000648e-01 7.14731365e-02 1.35769146e-02 -1.82989001e+00 1.28689539e+00 8.16430449e-01 8.28233361e-01 -5.98496854e-01 3.69711995e-01 5.16992092e-01 1.82130069e-01 -4.01208222e-01 9.51145068e-02 4.26806025e-02 1.74829498e-01 3.41053545e-01 1.27723515e-01 -1.41522586e-01 8.17652345e-01 -4.45091158e-01 8.69569063e-01 -2.76034355e-01 6.67052984e-01 -7.43187547e-01 9.99143839e-01 -2.65349984e-01 4.42526311e-01 -7.24759549e-02 1.76922530e-01 5.00261895e-02 5.86341500e-01 -3.35322112e-01 -7.20476151e-01 -6.71966732e-01 -5.54123104e-01 -1.73178777e-01 -1.61533743e-01 1.90242138e-02 -6.29613996e-01 -6.65089190e-01 -8.56339000e-03 9.04459119e-01 -3.48004341e-01 -1.50907502e-01 -2.72374064e-01 -9.78503764e-01 -6.11811392e-02 3.29796821e-02 2.23297790e-01 -8.68418276e-01 -9.76225019e-01 5.17018318e-01 -3.55825461e-02 -9.30412650e-01 3.74662131e-01 5.45736313e-01 -8.60450804e-01 -1.50254607e+00 -2.01367110e-01 -4.17778224e-01 8.83363247e-01 -2.23747924e-01 1.11820388e+00 3.79297704e-01 -4.69287962e-01 -1.47219658e-01 -7.05331624e-01 1.61353856e-01 -6.98581815e-01 -2.54188240e-01 1.31648645e-01 2.53630638e-01 2.55864784e-02 -8.91335011e-01 -7.28623495e-02 5.26181519e-01 -1.08609486e+00 -6.02871120e-01 4.39735472e-01 7.07858026e-01 1.73106983e-01 1.27061903e+00 8.33673835e-01 -5.57492912e-01 4.60087895e-01 -5.39521456e-01 -1.08361793e+00 4.04696405e-01 -7.67265618e-01 -2.42075518e-01 1.26195371e+00 -1.18037686e-01 -8.11026692e-01 -1.91346586e-01 -3.43999654e-01 9.34922546e-02 -8.52140367e-01 5.23015320e-01 -8.79263103e-01 -1.20012917e-01 2.86315560e-01 2.12252080e-01 -2.84250617e-01 -8.19495142e-01 -1.61511555e-01 7.87510991e-01 4.14205551e-01 -4.82389182e-01 8.40873122e-01 6.49521649e-02 3.57284755e-01 -1.03036916e+00 -3.05112340e-02 -3.74690413e-01 -7.35778809e-01 -3.61010909e-01 2.85466701e-01 -3.73753190e-01 -8.07847679e-01 4.96489435e-01 -8.29059541e-01 -1.61627680e-03 -7.33835757e-01 5.14418721e-01 -3.51797998e-01 6.91175878e-01 -4.40588295e-01 -8.51955414e-01 -2.04392765e-02 -1.42574990e+00 5.00387371e-01 2.90392917e-02 -1.28450513e-01 -1.20199549e+00 -2.52929211e-01 -1.01507485e-01 1.87435150e-01 3.91428918e-01 1.22456825e+00 -1.00326180e+00 -1.39066324e-01 -3.76499683e-01 2.77888954e-01 8.84180725e-01 7.26277947e-01 1.35124549e-01 -5.33946157e-01 -5.08949578e-01 5.58826685e-01 3.27363044e-01 2.74650156e-01 1.37993485e-01 8.36329460e-01 -9.53925550e-02 -1.72017235e-02 1.07911192e-01 1.87013173e+00 6.17843807e-01 4.98022884e-01 2.41975591e-01 1.46889597e-01 6.12099826e-01 7.92912304e-01 9.33104932e-01 3.19049461e-04 8.81011426e-01 4.51154023e-01 -5.57729751e-02 4.06465918e-01 5.10999203e-01 1.06505156e-01 7.60164142e-01 -6.89613968e-02 -3.76188844e-01 -4.84951407e-01 4.75073010e-01 -1.40739202e+00 -8.71508002e-01 -2.45624572e-01 2.30339289e+00 3.73992413e-01 3.05509359e-01 1.96559075e-02 1.41143513e+00 7.65147567e-01 -3.77512187e-01 -2.23937750e-01 -3.04280549e-01 -4.65445340e-01 2.12428585e-01 4.89908680e-02 5.17588377e-01 -8.39184046e-01 -2.00364664e-01 4.29391718e+00 9.53539610e-01 -1.25240552e+00 -1.45611867e-01 4.05438334e-01 3.65590453e-01 -2.99407970e-02 -7.23609105e-02 -3.68108004e-01 8.00409079e-01 8.59689057e-01 -2.66492218e-01 2.69043058e-01 7.20196486e-01 4.13507789e-01 -7.34058499e-01 -1.06159055e+00 6.43271327e-01 1.27928272e-01 -5.68021417e-01 -6.29865155e-02 1.19367108e-01 5.81865489e-01 -4.92333591e-01 -5.21313608e-01 -4.79903758e-01 -1.76127404e-01 -5.95121622e-01 6.25454485e-01 5.70922852e-01 4.27204251e-01 -9.11019385e-01 1.11914349e+00 3.11911106e-01 -1.20648062e+00 -3.43306988e-01 1.06547751e-01 2.57387012e-02 5.45803249e-01 1.37290752e+00 -5.51685870e-01 1.37578893e+00 6.00830615e-01 6.46386981e-01 -3.93532395e-01 1.11169577e+00 -4.08412129e-01 5.12690663e-01 -3.59318435e-01 2.41566271e-01 -4.61062491e-02 -5.31540036e-01 4.96720195e-01 7.19018519e-01 6.65792525e-01 -1.46220759e-01 1.43187419e-01 5.50568402e-01 5.95326722e-01 2.91573554e-01 -4.13223892e-01 3.20067972e-01 3.11291486e-01 1.46305919e+00 -1.04486859e+00 -6.38505161e-01 -2.72744864e-01 4.73695934e-01 -3.44640106e-01 2.06103608e-01 -2.97295451e-01 -5.55457056e-01 5.36513269e-01 3.62416692e-02 3.15216541e-01 -1.68850169e-01 -1.48643225e-01 -1.03967488e+00 1.98114693e-01 -8.50096822e-01 2.92975128e-01 -5.20118892e-01 -1.39058578e+00 9.29550886e-01 9.15272608e-02 -1.52721584e+00 -7.45956004e-01 -6.42574370e-01 -6.86466217e-01 1.10105228e+00 -1.42954338e+00 -5.62752366e-01 -1.29369289e-01 7.35167444e-01 2.84689397e-01 -1.24477699e-01 8.78129840e-01 4.88481373e-01 -6.63795233e-01 6.32224604e-02 3.52872670e-01 -7.97882453e-02 7.74688646e-02 -1.33793485e+00 -2.08780736e-01 1.15486062e+00 1.54733017e-01 -1.08649127e-01 1.01601493e+00 -4.53307599e-01 -1.00989211e+00 -4.68972385e-01 9.69969571e-01 4.03150648e-01 7.57710218e-01 1.13497779e-01 -1.02986634e+00 1.84227362e-01 2.51867741e-01 -3.78315039e-02 4.37895477e-01 -3.11714262e-01 2.60723561e-01 -3.87272775e-01 -1.49600661e+00 -1.75406206e-02 3.92247811e-02 -4.18730527e-01 -6.75643504e-01 2.18954280e-01 -4.31454748e-01 1.94655120e-01 -1.40209961e+00 4.42014992e-01 1.85741894e-02 -1.06384242e+00 4.93643522e-01 6.81067631e-02 -2.26150662e-01 -6.54937148e-01 9.88487080e-02 -1.81665456e+00 -7.30647743e-02 -4.85155992e-02 1.39451250e-01 1.13596582e+00 -7.88894948e-03 -1.14288723e+00 2.87039787e-01 2.91093420e-02 -1.40248433e-01 -5.20763695e-01 -1.24437523e+00 -7.60131657e-01 -3.30103487e-01 -1.36780396e-01 9.04302478e-01 1.01384687e+00 4.95402187e-01 -6.21883161e-02 1.37444600e-01 5.03722131e-01 6.40160203e-01 4.23796713e-01 9.52661633e-02 -1.57087994e+00 -4.26888824e-01 -4.79284167e-01 -7.85499334e-01 -1.21586584e-01 1.40251547e-01 -4.15506363e-01 -8.28741565e-02 -1.39395142e+00 -6.47189081e-01 -5.24956822e-01 -4.42896903e-01 1.99218512e-01 2.22312972e-01 2.51660705e-01 1.11799203e-01 5.34156077e-02 1.82280004e-01 2.50592053e-01 6.95124388e-01 -6.26524165e-02 3.46139312e-01 2.48437166e-01 5.51101156e-02 5.41568756e-01 9.56310451e-01 8.71530399e-02 -3.77257794e-01 9.78770107e-02 -3.05328015e-02 4.44881827e-01 9.17837694e-02 -1.40013409e+00 1.32595420e-01 -1.11570004e-02 2.64724731e-01 -5.33794284e-01 -8.46630894e-03 -1.47930157e+00 6.57530725e-01 7.39204049e-01 3.92076105e-01 2.25811988e-01 -1.68435290e-01 -3.66373248e-02 -5.60626388e-01 -7.10522890e-01 6.72585964e-01 4.12584096e-02 -6.32259130e-01 -2.03789324e-01 -7.60364234e-01 -4.80069637e-01 1.17392123e+00 -8.12533349e-02 -2.24291801e-01 -1.88010052e-01 -1.02046776e+00 -1.58342142e-02 4.61769938e-01 1.34605899e-01 2.74543285e-01 -9.35339153e-01 -5.95755160e-01 5.38654566e-01 5.70704788e-02 -3.08899641e-01 3.91833037e-01 9.25495386e-01 -3.24788451e-01 4.83810335e-01 -4.39257085e-01 -3.40331942e-01 -1.11814272e+00 6.97862506e-01 3.33973825e-01 -3.35720330e-01 -3.48558486e-01 -9.38159451e-02 -4.69609261e-01 4.59359258e-01 -1.74712732e-01 -6.23868525e-01 -8.16563308e-01 5.99030972e-01 3.77010107e-01 6.90615594e-01 1.02469659e+00 -8.76775861e-01 -2.63957113e-01 5.58317244e-01 5.99225044e-01 2.68762559e-01 1.21276915e+00 -6.90038130e-02 -3.70726138e-01 5.29323578e-01 8.68302524e-01 -1.79403946e-01 -8.60009730e-01 4.83003370e-02 1.97190478e-01 -2.72473663e-01 -1.31636835e-03 -8.41179907e-01 -1.32114601e+00 7.11496234e-01 4.64119673e-01 1.06151688e+00 1.58309269e+00 -3.51935148e-01 2.71626949e-01 9.98648927e-02 8.73684824e-01 -1.00988913e+00 -6.30380750e-01 -1.37696132e-01 6.27236843e-01 -6.28895700e-01 4.03663032e-02 -4.30107206e-01 -1.30151406e-01 1.37958229e+00 -2.64722351e-02 -1.64990664e-01 8.76003325e-01 5.30010641e-01 -7.99689889e-02 1.26340166e-01 -5.16454756e-01 -2.44336545e-01 5.88765889e-02 5.11811197e-01 8.50547999e-02 4.09451038e-01 -8.12069237e-01 4.72600132e-01 -5.72029278e-02 -9.25030187e-02 6.67080641e-01 7.92874575e-01 -3.73283446e-01 -1.47935927e+00 -7.19967723e-01 6.02616370e-01 -3.23784351e-01 2.79146791e-01 2.97012389e-01 5.15965462e-01 3.95250320e-01 1.45003164e+00 6.62912503e-02 -2.09008351e-01 5.89982212e-01 -9.13874432e-02 4.29938763e-01 -2.26991594e-01 -5.12862504e-01 -1.17984593e-01 -2.58052889e-02 -8.67606997e-02 -3.42080772e-01 -9.23534989e-01 -1.15987813e+00 -1.38838097e-01 -5.58646381e-01 1.05095792e+00 1.02463770e+00 1.28670096e+00 -3.04651529e-01 7.29676127e-01 1.23372602e+00 -9.10189450e-01 -6.43875122e-01 -1.08269835e+00 -1.51932907e+00 4.73741502e-01 1.80009753e-01 -8.23237956e-01 -7.42654920e-01 -1.05959967e-01]
[6.465163707733154, 2.4062306880950928]
c2d81f18-db3c-4b10-bf7f-7f29a0f364bb
monocular-real-time-full-body-capture-with
2012.06087
null
https://arxiv.org/abs/2012.06087v2
https://arxiv.org/pdf/2012.06087v2.pdf
Monocular Real-time Full Body Capture with Inter-part Correlations
We present the first method for real-time full body capture that estimates shape and motion of body and hands together with a dynamic 3D face model from a single color image. Our approach uses a new neural network architecture that exploits correlations between body and hands at high computational efficiency. Unlike previous works, our approach is jointly trained on multiple datasets focusing on hand, body or face separately, without requiring data where all the parts are annotated at the same time, which is much more difficult to create at sufficient variety. The possibility of such multi-dataset training enables superior generalization ability. In contrast to earlier monocular full body methods, our approach captures more expressive 3D face geometry and color by estimating the shape, expression, albedo and illumination parameters of a statistical face model. Our method achieves competitive accuracy on public benchmarks, while being significantly faster and providing more complete face reconstructions.
['Feng Xu', 'Christian Theobalt', 'Ayush Tewari', 'Ikhsanul Habibie', 'Marc Habermann', 'Yuxiao Zhou']
2020-12-11
null
http://openaccess.thecvf.com//content/CVPR2021/html/Zhou_Monocular_Real-Time_Full_Body_Capture_With_Inter-Part_Correlations_CVPR_2021_paper.html
http://openaccess.thecvf.com//content/CVPR2021/papers/Zhou_Monocular_Real-Time_Full_Body_Capture_With_Inter-Part_Correlations_CVPR_2021_paper.pdf
cvpr-2021-1
['face-model']
['computer-vision']
[-7.79646933e-02 -1.40222525e-02 7.19006360e-02 -4.23767358e-01 -4.47510719e-01 -5.88790894e-01 4.07139778e-01 -8.98428977e-01 -6.77003190e-02 5.22758722e-01 7.89606050e-02 2.66429067e-01 4.01079863e-01 -4.89370435e-01 -6.59319162e-01 -7.07407415e-01 2.61827037e-02 7.74863303e-01 -2.90819436e-01 -6.30686283e-02 -4.64347243e-01 9.39118981e-01 -1.63763666e+00 -9.61959437e-02 1.52545348e-01 1.18853390e+00 -4.87575352e-01 8.23497534e-01 2.31244385e-01 3.38387191e-01 -2.81178206e-01 -7.58102596e-01 6.76559746e-01 -2.82521814e-01 -4.68422204e-01 4.11508828e-01 1.33366668e+00 -7.04837024e-01 -2.63248354e-01 6.00507796e-01 9.40418243e-01 -3.28391939e-02 5.05972683e-01 -1.23837900e+00 -2.92519450e-01 -1.15460657e-01 -9.05314088e-01 -5.29677331e-01 6.30150735e-01 2.76852965e-01 5.23862660e-01 -9.67478335e-01 6.62304461e-01 1.54459107e+00 1.00397503e+00 9.32381570e-01 -1.36557877e+00 -1.00120580e+00 9.22380760e-02 -4.31921124e-01 -1.51195669e+00 -9.89281714e-01 8.70124638e-01 -2.82271892e-01 6.49430513e-01 5.82783855e-02 1.08055580e+00 1.20219469e+00 -2.81553477e-01 5.42862713e-01 9.51599121e-01 -4.12466556e-01 -2.63061404e-01 -2.18033880e-01 -4.58866119e-01 1.21555936e+00 6.95097446e-03 4.52976562e-02 -7.09384859e-01 -1.56087726e-01 1.15620840e+00 -3.18124406e-02 -2.08989710e-01 -8.63312125e-01 -8.40256929e-01 4.15632159e-01 8.21711197e-02 -8.12793151e-02 -1.96415201e-01 5.36074579e-01 1.11781619e-01 6.15348443e-02 5.54077387e-01 -2.74109006e-01 -5.51218212e-01 -2.81532691e-03 -1.19739962e+00 3.21679860e-01 1.03431141e+00 9.21296179e-01 6.88243449e-01 3.34957629e-01 1.05959915e-01 6.92154288e-01 4.44152653e-01 1.11477816e+00 8.75447765e-02 -1.36392057e+00 5.97840548e-02 5.26143312e-01 7.64876083e-02 -7.72790372e-01 -5.99580646e-01 -2.48318583e-01 -7.34970987e-01 6.91661298e-01 8.16716254e-01 -2.94251084e-01 -1.04512429e+00 1.90357101e+00 9.27973688e-01 1.09195448e-01 -2.26842299e-01 9.57545698e-01 1.00677633e+00 7.71297440e-02 -1.64498940e-01 -6.81833327e-02 1.28759170e+00 -8.51281226e-01 -4.67379391e-01 -3.13876748e-01 1.43336896e-02 -7.13936806e-01 7.36242354e-01 5.18106043e-01 -1.38109410e+00 -4.78884667e-01 -6.72736347e-01 -2.86159694e-01 -9.28038657e-02 3.78066152e-01 9.44562316e-01 1.05680549e+00 -1.51722074e+00 4.81459260e-01 -8.49439263e-01 -4.00705695e-01 3.71906966e-01 8.16955984e-01 -8.03180337e-01 -5.71621656e-02 -5.75976610e-01 6.61067367e-01 -2.61895180e-01 2.52899170e-01 -7.70293474e-01 -6.59191191e-01 -1.14928651e+00 -1.82389170e-01 2.17256024e-01 -7.63962805e-01 1.18159020e+00 -1.35453653e+00 -2.07450414e+00 1.34878504e+00 -2.17661038e-01 1.15386009e-01 8.43017519e-01 -2.98083395e-01 -1.45729899e-01 8.01182836e-02 -4.57347095e-01 9.64478135e-01 1.13281131e+00 -1.38007760e+00 5.27371727e-02 -7.91769385e-01 -9.55703035e-02 3.09616357e-01 -2.21535116e-01 1.06263310e-01 -1.15264285e+00 -3.02356809e-01 1.71263758e-02 -1.05143881e+00 1.27093717e-01 8.23838592e-01 -2.26755321e-01 1.99915230e-01 7.76737034e-01 -8.78727198e-01 5.81023157e-01 -2.05663490e+00 1.85500190e-01 1.07738905e-01 2.40735307e-01 1.71429679e-01 -2.02025875e-01 -4.76231128e-02 3.70634943e-02 -3.07449967e-01 -1.21843427e-01 -9.49762702e-01 9.85795707e-02 1.94900990e-01 1.39720812e-01 8.81063819e-01 -3.37109901e-02 9.31579947e-01 -5.26770055e-01 -6.98523819e-01 1.16724797e-01 9.73247707e-01 -6.59342408e-01 4.55784351e-02 -1.37318792e-02 5.31094432e-01 4.53883223e-02 1.13223910e+00 9.92175519e-01 -1.41633213e-01 4.71918076e-01 -3.14838350e-01 3.31731290e-01 -3.51453453e-01 -1.32675242e+00 2.00411844e+00 -5.80087841e-01 5.18316448e-01 6.29190981e-01 -5.09588659e-01 7.17018068e-01 5.58477402e-01 8.00827920e-01 -4.74260718e-01 2.34627783e-01 -2.86620259e-02 -2.89582223e-01 -2.68084943e-01 2.76508108e-02 -4.08849269e-01 1.66140765e-01 6.03877068e-01 1.40780434e-01 -2.90018380e-01 -2.97709644e-01 -1.84862435e-01 5.30437529e-01 8.73356402e-01 5.13889901e-02 -2.38944311e-02 3.03495705e-01 -5.17956913e-01 5.96827686e-01 1.70389876e-01 -2.26239204e-01 8.93126488e-01 1.61037222e-01 -6.15254998e-01 -8.04215670e-01 -1.14746964e+00 6.46071928e-03 1.14530253e+00 -1.28219342e-02 -1.56246737e-01 -7.35768855e-01 -5.29493034e-01 3.96221191e-01 -1.54160842e-01 -9.35249686e-01 2.50822574e-01 -6.83161139e-01 -5.52790880e-01 7.00435877e-01 7.03603327e-01 4.11184996e-01 -8.44550192e-01 -6.53392971e-01 -2.27673963e-01 -1.45259835e-02 -1.15512657e+00 -6.33160770e-01 -1.86572850e-01 -8.08314264e-01 -1.06475115e+00 -9.00408566e-01 -5.48677206e-01 6.71275735e-01 -1.35619462e-01 1.31647754e+00 2.61116475e-01 -6.67793155e-01 6.53859377e-01 1.83508217e-01 -3.65187049e-01 2.04916974e-03 -3.76416415e-01 2.94244856e-01 1.24976344e-01 2.22769063e-02 -7.10600138e-01 -6.87691510e-01 2.53438860e-01 -4.25460994e-01 5.61152473e-02 2.58448571e-01 6.49907053e-01 3.34225953e-01 -5.19465864e-01 -3.56800146e-02 -5.14095664e-01 -1.61312521e-01 -2.14349814e-02 -6.03808641e-01 2.64381319e-01 -2.20161781e-01 -1.99258804e-01 3.72377187e-01 -5.55173099e-01 -1.27792990e+00 5.70158780e-01 -8.01523924e-02 -7.24562466e-01 -2.62911767e-01 -3.00103366e-01 -3.15957725e-01 -5.03519833e-01 5.39866865e-01 5.53964116e-02 4.32874382e-01 -6.09763265e-01 4.29840595e-01 1.92425877e-01 7.84761071e-01 -6.69745862e-01 9.11936164e-01 1.01158023e+00 3.75072181e-01 -7.50930727e-01 -6.33614779e-01 -3.39669883e-01 -1.26703060e+00 -4.52239722e-01 5.48710227e-01 -1.07728601e+00 -1.02557027e+00 7.92507708e-01 -1.01653636e+00 -6.39848888e-01 -1.19194694e-01 3.03099424e-01 -4.92828280e-01 3.52300227e-01 -6.37247562e-01 -1.02549887e+00 -5.43758214e-01 -7.56615281e-01 1.71992838e+00 7.67490342e-02 -1.92865551e-01 -9.81866479e-01 1.77350268e-01 4.18394297e-01 2.92380452e-01 7.45314837e-01 3.15855742e-01 1.03269145e-01 -2.84183949e-01 -3.84269416e-01 -9.60333645e-02 3.95135134e-02 1.64663061e-01 3.00203413e-01 -1.37325180e+00 -5.52396476e-01 -4.45042998e-01 -7.13256240e-01 5.27285457e-01 4.06121075e-01 9.63442564e-01 -2.48670250e-01 -2.52789110e-01 1.22591221e+00 1.36982834e+00 -2.07101494e-01 3.65210980e-01 -3.58367473e-01 9.50500488e-01 6.92742348e-01 4.61723050e-03 6.25933051e-01 3.73391926e-01 8.20701241e-01 4.37155068e-01 -4.12500739e-01 -4.89850700e-01 -2.09504757e-02 4.93108660e-01 3.01333398e-01 -5.33928275e-01 6.31178841e-02 -8.56785715e-01 2.76702911e-01 -1.27319860e+00 -8.03851187e-01 2.11722896e-01 2.19979763e+00 8.06041896e-01 -5.91557384e-01 5.38863301e-01 -1.53435051e-01 3.44164491e-01 -1.28966242e-01 -6.73638582e-01 -9.64151323e-02 -1.81469902e-01 6.24779642e-01 2.35655442e-01 3.56662750e-01 -9.89253402e-01 1.00764596e+00 7.29021311e+00 3.36036295e-01 -1.27803767e+00 7.79638514e-02 5.02333105e-01 -8.72047961e-01 -1.00669026e-01 -3.70274723e-01 -6.73440516e-01 8.30860250e-03 4.82058167e-01 5.19763529e-01 6.90607786e-01 6.47934258e-01 -1.80078939e-01 -8.90176371e-02 -1.12215197e+00 1.38255107e+00 5.12687862e-01 -8.23698461e-01 -1.70028314e-01 2.44451180e-01 6.57917440e-01 -1.56699330e-01 9.78068337e-02 -2.85458751e-02 4.75908875e-01 -1.20424521e+00 9.23980474e-01 6.37878358e-01 1.40305340e+00 -5.94568789e-01 2.26249307e-01 9.21538770e-02 -1.07710195e+00 2.99513284e-02 -5.98917864e-02 3.71322148e-02 -8.82288516e-02 2.13192716e-01 -3.51961076e-01 3.72859836e-01 8.49241436e-01 4.54120159e-01 -4.74957734e-01 6.31649315e-01 -1.86929777e-02 2.61551797e-01 -6.76538408e-01 4.11809564e-01 -3.81678551e-01 -7.39284083e-02 2.38391116e-01 1.11391497e+00 2.88906932e-01 7.42614269e-02 1.93198636e-01 5.96717715e-01 -3.41524214e-01 1.74255759e-01 -5.76553166e-01 2.21287742e-01 6.17118850e-02 1.57353902e+00 -6.63333595e-01 -1.63524300e-01 -4.07958627e-01 1.19140708e+00 3.33037376e-01 2.71028489e-01 -7.08399832e-01 3.16636831e-01 7.73928046e-01 1.75248101e-01 2.34493032e-01 -2.45789960e-01 -3.40403207e-02 -1.25233483e+00 1.36401467e-02 -7.99266040e-01 2.79689580e-01 -8.71104181e-01 -1.15200615e+00 4.08018947e-01 -1.89078152e-01 -7.62988508e-01 -4.03599560e-01 -8.78240049e-01 -3.74589324e-01 8.57898533e-01 -1.30243492e+00 -1.81215751e+00 -6.55473888e-01 9.10160244e-01 9.54532102e-02 7.98811316e-02 1.00245237e+00 3.55185509e-01 -6.54188991e-01 9.04159307e-01 -1.42742664e-01 3.56515557e-01 1.00783122e+00 -1.18940675e+00 3.68739039e-01 4.18360740e-01 1.86602101e-01 5.14893293e-01 2.99298733e-01 -4.51920629e-01 -1.87990010e+00 -6.63142562e-01 3.45221549e-01 -7.86894202e-01 1.84993986e-02 -6.87892020e-01 -3.58040690e-01 6.69546127e-01 3.93534750e-02 4.66917723e-01 6.88744068e-01 3.31419259e-01 -5.91987550e-01 -3.70432973e-01 -1.30419922e+00 4.33944315e-01 1.33960271e+00 -5.09368181e-01 6.18942864e-02 1.36539370e-01 4.03217934e-02 -8.51354957e-01 -7.60705590e-01 2.66308606e-01 1.34324062e+00 -1.09262466e+00 1.20499372e+00 -3.74846429e-01 1.37778014e-01 -1.22380622e-01 -1.94501176e-01 -9.19588506e-01 -1.00568935e-01 -6.56207085e-01 -4.57503825e-01 1.06399465e+00 -6.15164042e-02 -2.71436036e-01 1.12271810e+00 8.46775055e-01 4.20822650e-01 -6.20195150e-01 -8.85626376e-01 -6.27424061e-01 8.05180073e-02 -3.52912396e-01 8.65787685e-01 8.58241796e-01 -5.29931486e-01 -1.38016164e-01 -7.24673748e-01 5.50584570e-02 8.51330817e-01 5.09492636e-01 1.28505337e+00 -1.52231872e+00 -2.71845043e-01 -2.81070352e-01 -2.87982643e-01 -6.71124518e-01 4.73071754e-01 -7.97300518e-01 2.29361765e-02 -1.14616859e+00 3.94541860e-01 -2.29691893e-01 2.15823904e-01 9.07604218e-01 1.36484236e-01 1.05126989e+00 8.79770368e-02 -7.51891807e-02 -3.27126414e-01 4.12430108e-01 1.27306890e+00 -9.14091524e-03 -5.61851375e-02 -2.30958372e-01 -4.32332337e-01 1.04168046e+00 3.11401367e-01 4.75193486e-02 -1.69408426e-01 -5.93956113e-01 1.08938307e-01 2.32889310e-01 7.87494123e-01 -9.78582025e-01 1.95303187e-02 -8.45089704e-02 1.21448064e+00 -2.92431623e-01 8.86560261e-01 -9.13346469e-01 5.83709121e-01 2.14375108e-01 2.63096303e-01 -1.21376105e-01 4.07999814e-01 3.08557630e-01 2.59764969e-01 3.43539983e-01 9.41891611e-01 -4.13923711e-01 -4.07364160e-01 7.66538620e-01 1.31606326e-01 -6.60835803e-02 7.20395982e-01 -3.61541390e-01 3.10910016e-01 -6.43759727e-01 -7.92046309e-01 -1.42999627e-02 9.03514147e-01 2.10249603e-01 4.23086673e-01 -1.35903811e+00 -6.67117059e-01 4.95294064e-01 -1.59622371e-01 -2.39641070e-02 3.06625664e-01 6.49144650e-01 -6.38821006e-01 3.80747207e-02 -2.95110971e-01 -6.85667455e-01 -1.73626900e+00 1.87897727e-01 8.36562753e-01 6.29924014e-02 -6.69111311e-01 9.46388006e-01 1.75253212e-01 -7.45613813e-01 3.29524487e-01 2.14024127e-01 1.75897941e-01 1.14159286e-02 3.48876297e-01 2.06492573e-01 -8.85752887e-02 -1.14086044e+00 -4.48294282e-01 1.20068729e+00 5.76002479e-01 -2.69607276e-01 1.36565423e+00 -1.61196485e-01 -1.84355557e-01 1.25117257e-01 1.07273149e+00 3.12938660e-01 -1.72105587e+00 -2.04854950e-01 -6.65885985e-01 -6.02210224e-01 7.08596259e-02 -9.50955391e-01 -1.58737516e+00 1.03112018e+00 7.01834857e-01 -5.88746428e-01 1.22626674e+00 1.01924082e-03 6.54756486e-01 3.18107009e-01 4.47149783e-01 -9.26253319e-01 1.33048519e-01 2.53313363e-01 9.07850266e-01 -1.36771476e+00 3.12710494e-01 -3.36480498e-01 -3.15965056e-01 1.23827779e+00 8.14708531e-01 2.92900562e-01 6.57823205e-01 5.79395235e-01 3.08189511e-01 -3.27211767e-01 -2.86673367e-01 -2.26729691e-01 6.24332607e-01 6.17823362e-01 4.88257498e-01 -4.20680121e-02 5.63379705e-01 1.79057896e-01 -3.62060815e-01 7.56218238e-03 -5.13955466e-02 8.25307667e-01 2.56632984e-01 -1.11046970e+00 -6.21141672e-01 1.23608872e-01 -5.58956206e-01 1.38297096e-01 -5.20174444e-01 9.40519154e-01 2.96683431e-01 5.12730658e-01 1.67707101e-01 -6.02071062e-02 5.09313382e-02 4.90331292e-01 1.23822498e+00 -4.58111584e-01 -4.88262832e-01 3.08718950e-01 -2.61050947e-02 -8.37016821e-01 -7.07607627e-01 -6.95853412e-01 -9.61438894e-01 -4.21739757e-01 -2.16080800e-01 -4.97735292e-01 7.45650351e-01 8.32487822e-01 2.73592830e-01 -1.95863675e-02 4.97495830e-01 -1.46690679e+00 -1.28114820e-01 -7.82997489e-01 -8.30300570e-01 4.80372876e-01 5.81366122e-01 -8.13338041e-01 -1.06545515e-01 3.29939544e-01]
[13.105039596557617, -0.06154513359069824]
d7370e65-6cae-462e-893a-53207ccef749
celebv-hq-a-large-scale-video-facial
2207.12393
null
https://arxiv.org/abs/2207.12393v1
https://arxiv.org/pdf/2207.12393v1.pdf
CelebV-HQ: A Large-Scale Video Facial Attributes Dataset
Large-scale datasets have played indispensable roles in the recent success of face generation/editing and significantly facilitated the advances of emerging research fields. However, the academic community still lacks a video dataset with diverse facial attribute annotations, which is crucial for the research on face-related videos. In this work, we propose a large-scale, high-quality, and diverse video dataset with rich facial attribute annotations, named the High-Quality Celebrity Video Dataset (CelebV-HQ). CelebV-HQ contains 35,666 video clips with the resolution of 512x512 at least, involving 15,653 identities. All clips are labeled manually with 83 facial attributes, covering appearance, action, and emotion. We conduct a comprehensive analysis in terms of age, ethnicity, brightness stability, motion smoothness, head pose diversity, and data quality to demonstrate the diversity and temporal coherence of CelebV-HQ. Besides, its versatility and potential are validated on two representative tasks, i.e., unconditional video generation and video facial attribute editing. Furthermore, we envision the future potential of CelebV-HQ, as well as the new opportunities and challenges it would bring to related research directions. Data, code, and models are publicly available. Project page: https://celebv-hq.github.io.
['Chen Change Loy', 'Ziwei Liu', 'Li Zhang', 'Siwei Tang', 'Liming Jiang', 'Wentao Zhu', 'Wayne Wu', 'Hao Zhu']
2022-07-25
null
null
null
null
['video-generation', 'unconditional-video-generation']
['computer-vision', 'computer-vision']
[-1.97889790e-01 -4.37164724e-01 -1.50202483e-01 -5.93456924e-01 -5.13628006e-01 -1.84843823e-01 4.00305122e-01 -4.56357002e-01 -4.02293392e-02 7.05101252e-01 3.98026884e-01 4.40405756e-01 1.75975990e-02 -4.84173566e-01 -5.19554377e-01 -8.99953008e-01 -9.15562883e-02 -1.25036687e-01 -3.00706685e-01 -1.81345433e-01 -1.28502250e-01 3.16235334e-01 -1.84366894e+00 1.42314538e-01 6.77111030e-01 1.41348839e+00 -2.64553756e-01 2.37657040e-01 4.27169323e-01 5.76143980e-01 -2.35961333e-01 -9.72968698e-01 2.02080518e-01 -3.01192075e-01 -4.22633439e-01 2.84141660e-01 9.23156142e-01 -5.24731159e-01 -5.81330061e-01 9.59778070e-01 7.68625855e-01 6.98026419e-02 3.15351397e-01 -1.80685234e+00 -9.15131629e-01 -6.41517416e-02 -6.25940025e-01 1.41882570e-02 6.07045770e-01 3.56770873e-01 7.35108435e-01 -1.14111507e+00 9.11569595e-01 1.22824228e+00 6.77724779e-01 8.42247784e-01 -9.32016075e-01 -1.20338666e+00 9.68930349e-02 5.72086155e-01 -1.86449492e+00 -1.02067101e+00 6.59819186e-01 -5.37003100e-01 1.35541365e-01 2.95390755e-01 9.40747142e-01 1.39156628e+00 -2.43039370e-01 7.09729552e-01 9.85855699e-01 1.34254605e-01 -1.31294027e-01 -1.23599209e-01 -5.15830040e-01 6.59510016e-01 -5.45849912e-02 -3.48947421e-02 -9.09823537e-01 -3.80799398e-02 8.13165486e-01 -1.91264264e-02 -3.69256496e-01 -1.54317737e-01 -1.26932919e+00 6.26635790e-01 6.22004196e-02 -3.10710929e-02 -3.17861080e-01 -9.37375426e-02 6.13073885e-01 2.48923749e-01 6.78997576e-01 -6.48533404e-02 -2.00947523e-01 -2.63855785e-01 -7.91291118e-01 3.65824938e-01 2.74951190e-01 1.42332804e+00 4.64555949e-01 2.78517693e-01 -3.99808407e-01 9.93843675e-01 8.69911835e-02 6.82676196e-01 1.84878737e-01 -1.27911520e+00 1.19701982e-01 2.81409740e-01 -6.27731979e-02 -1.31531560e+00 -2.45389745e-01 1.72650158e-01 -1.07126749e+00 -1.98778838e-01 2.12208703e-01 -1.33647308e-01 -4.49865401e-01 2.04946375e+00 6.51845992e-01 4.74478424e-01 -3.34681600e-01 1.04894185e+00 1.30491292e+00 4.80973482e-01 1.98222771e-01 -4.94524837e-01 1.41382003e+00 -6.76302254e-01 -8.31474304e-01 3.74564886e-01 1.00575246e-01 -9.16013777e-01 1.03012717e+00 3.75997216e-01 -1.07464004e+00 -6.45288706e-01 -4.52687889e-01 -1.18225086e-02 1.35683879e-01 5.10252833e-01 8.38592350e-01 6.19989872e-01 -1.25906038e+00 1.83209836e-01 -3.64507526e-01 -3.88327122e-01 8.90584469e-01 2.67638981e-01 -8.39341581e-01 -2.15742826e-01 -1.19051218e+00 2.86373466e-01 -3.99544789e-03 1.22301333e-01 -9.24524188e-01 -7.30742753e-01 -8.08053970e-01 -2.93584079e-01 4.54103440e-01 -5.50118625e-01 1.09233642e+00 -1.21584511e+00 -1.37221658e+00 1.03939271e+00 -2.75853306e-01 1.05064951e-01 6.07927322e-01 -1.79118544e-01 -7.70158768e-01 3.20014685e-01 1.58118293e-01 7.95882523e-01 1.02515256e+00 -8.40176582e-01 -5.45164287e-01 -5.42395890e-01 -9.99596044e-02 5.98297119e-02 -8.95998836e-01 2.94370681e-01 -9.82142746e-01 -9.68145370e-01 -3.24630409e-01 -1.02755475e+00 2.47103736e-01 4.27683830e-01 -1.28702000e-01 -2.38126695e-01 6.31937385e-01 -8.56983244e-01 1.37073541e+00 -2.51169825e+00 7.52362311e-02 -9.59800556e-02 2.62885094e-01 2.13103130e-01 -3.09184849e-01 8.84679332e-02 -4.03808840e-02 6.69360831e-02 1.48336247e-01 -3.38115573e-01 -6.35293499e-02 -1.29015580e-01 8.82012919e-02 6.20670140e-01 1.11767031e-01 7.53296554e-01 -7.25657880e-01 -8.46131742e-01 -2.18778406e-03 8.28706980e-01 -7.16061294e-01 1.70010030e-01 1.16455063e-01 6.95158958e-01 -6.25859022e-01 1.12187266e+00 8.38254511e-01 5.50824627e-02 -2.13447273e-01 -5.39198339e-01 3.60007510e-02 -5.16464174e-01 -8.78363371e-01 1.76067340e+00 -1.16833188e-01 7.72674203e-01 3.39455843e-01 -4.28358823e-01 8.99632692e-01 5.01445234e-01 9.32795405e-01 -8.57026756e-01 1.55158088e-01 1.15303047e-01 -3.90849382e-01 -8.42547953e-01 5.34653425e-01 -3.24750952e-02 9.70327780e-02 3.69635448e-02 6.69729710e-02 3.12883139e-01 4.28992212e-01 2.28950530e-01 5.35980999e-01 2.65577286e-01 1.41217768e-01 -3.69808562e-02 5.62618315e-01 -4.90165412e-01 9.34666693e-01 -3.88730168e-02 -5.52178144e-01 7.24013686e-01 4.56733584e-01 -4.43681002e-01 -1.13346350e+00 -8.84920835e-01 -4.36278671e-01 1.20583332e+00 8.01782608e-02 -6.64815903e-01 -8.59197021e-01 -2.70370513e-01 1.99616943e-02 1.67042166e-02 -8.26319456e-01 -1.25000626e-01 -3.09749484e-01 -6.75346136e-01 6.21528745e-01 4.55547541e-01 7.87284851e-01 -1.09018064e+00 1.16613530e-01 -1.57508865e-01 -6.49124384e-01 -1.42675877e+00 -9.01089370e-01 -1.25032938e+00 -5.29440939e-01 -1.09679163e+00 -8.85031521e-01 -6.19908452e-01 6.07825398e-01 2.94109851e-01 1.09584570e+00 1.23627067e-01 -3.99485052e-01 5.59734404e-01 -4.84552979e-01 -1.49870858e-01 1.72110140e-01 -2.40794048e-01 4.40005571e-01 6.04302585e-01 3.01592350e-01 -5.35385609e-01 -8.52577865e-01 6.43707395e-01 -6.98967397e-01 1.32729977e-01 4.80546415e-01 6.96030676e-01 6.99972451e-01 -1.59401029e-01 6.53125823e-01 -5.55160522e-01 3.69425058e-01 -5.77240050e-01 -2.43690997e-01 1.07369900e-01 -2.72049010e-01 -6.99010491e-01 3.94028395e-01 -5.03688872e-01 -1.22758961e+00 -9.19244345e-03 -3.00751597e-01 -6.16429985e-01 -2.39362463e-01 1.01994708e-01 -5.94976008e-01 -1.08582996e-01 2.41442382e-01 2.27571651e-01 1.64726958e-01 -3.01702529e-01 1.35882542e-01 7.12311149e-01 7.01328337e-01 -7.41122901e-01 5.65731704e-01 5.02192914e-01 -1.26129866e-01 -1.02014184e+00 -6.37154877e-01 -2.10671082e-01 -4.53279793e-01 -6.21736169e-01 8.95238757e-01 -1.27716851e+00 -9.90473509e-01 9.31132436e-01 -8.65918458e-01 -1.75356474e-02 -2.11296324e-03 4.07332510e-01 -4.80147690e-01 1.91181019e-01 -6.05780423e-01 -5.54824054e-01 -2.83471525e-01 -1.02694297e+00 1.08391786e+00 4.48934197e-01 -4.68558893e-02 -5.58480382e-01 -2.67851502e-01 6.94028735e-01 4.20483977e-01 4.33176339e-01 3.73210311e-01 -1.59058064e-01 -4.92699414e-01 -4.31938730e-02 -3.68702173e-01 2.80764937e-01 1.02195859e-01 4.51305896e-01 -1.01108992e+00 -4.05637920e-01 -3.99031281e-01 -5.17321706e-01 5.02287686e-01 4.44433391e-01 1.45299971e+00 -4.14805710e-01 8.65210127e-03 8.93136919e-01 9.31036174e-01 1.04422383e-01 7.73653030e-01 1.13460712e-01 8.57553720e-01 6.20645761e-01 9.29738760e-01 8.65338027e-01 4.51450795e-01 9.28705812e-01 3.17978412e-01 -7.79081061e-02 -8.74433666e-02 -2.02754304e-01 4.53746468e-01 8.53330433e-01 -7.46678114e-01 8.16981494e-02 -5.36026835e-01 4.24422026e-01 -1.50500190e+00 -1.28302932e+00 -6.79564057e-03 2.13808966e+00 8.64580274e-01 -5.32226264e-01 4.23979133e-01 -1.53181210e-01 9.31774557e-01 2.33471587e-01 -5.69663405e-01 1.12323225e-01 -3.27817440e-01 -1.92500532e-01 -1.17057160e-01 -8.06211606e-02 -1.21996140e+00 8.03234398e-01 5.31791687e+00 1.08429801e+00 -1.06769514e+00 1.62983760e-01 1.04888546e+00 -4.64494973e-01 -8.74761194e-02 -4.84351426e-01 -8.08596194e-01 7.97012925e-01 6.45021498e-01 -4.00585681e-01 4.28070992e-01 9.27469075e-01 4.07056153e-01 2.68776357e-01 -8.86347055e-01 1.45830500e+00 5.06493628e-01 -1.20052588e+00 1.66070119e-01 3.41514051e-02 7.67689466e-01 -3.88450295e-01 3.20127845e-01 1.84765786e-01 -3.30096871e-01 -1.03930390e+00 7.13509083e-01 5.76345026e-01 1.51414418e+00 -7.94832587e-01 5.73346555e-01 -2.74320304e-01 -1.52674818e+00 1.78326759e-02 -3.34159136e-01 2.57737309e-01 1.08506843e-01 2.91955471e-01 -8.85149650e-03 5.40251791e-01 1.08223367e+00 1.25080168e+00 -6.82117939e-01 9.54351425e-01 6.35723397e-02 3.53520602e-01 -5.90242632e-02 2.94468164e-01 -2.48914912e-01 -3.31051201e-01 2.94458419e-01 9.36458051e-01 5.96231461e-01 4.90216672e-01 1.07789598e-02 3.15365940e-01 -4.55031365e-01 4.62273657e-01 -4.25408036e-01 -1.70942962e-01 7.52410591e-01 1.49476242e+00 -2.58864701e-01 -1.99285179e-01 -6.63826346e-01 8.28006327e-01 -9.77748632e-02 3.61798882e-01 -1.15705824e+00 4.71029722e-04 1.16200161e+00 1.83167234e-01 4.35580648e-02 9.19244736e-02 2.82140762e-01 -1.32471108e+00 1.34897768e-01 -1.21983635e+00 3.88242811e-01 -9.53218699e-01 -1.39017248e+00 8.27909529e-01 -9.91727561e-02 -1.48762190e+00 1.72631621e-01 -3.65172267e-01 -2.94049472e-01 4.26834285e-01 -1.18352151e+00 -1.36817527e+00 -9.51544344e-01 1.16058731e+00 5.71689785e-01 -4.37518209e-01 7.32036769e-01 9.31200981e-01 -9.13132966e-01 9.57565546e-01 -8.61990303e-02 3.26687813e-01 1.18181992e+00 -4.31804091e-01 8.07285905e-02 4.57431555e-01 -7.97529221e-02 3.90654802e-01 3.99064928e-01 -3.81801993e-01 -1.52903962e+00 -1.25726771e+00 5.77912748e-01 -2.62049913e-01 5.11336684e-01 -2.95431077e-01 -7.27329314e-01 5.91734588e-01 3.17082033e-02 3.30695868e-01 8.39458644e-01 -5.72882853e-02 -2.89790154e-01 -4.56604332e-01 -1.03612745e+00 5.91294467e-01 1.30723500e+00 -4.76393819e-01 2.23517820e-01 2.28973135e-01 4.38136607e-01 -4.39634234e-01 -1.20725310e+00 4.75965947e-01 9.69270408e-01 -1.11431289e+00 9.68860447e-01 -4.53454882e-01 5.32888949e-01 -1.78031567e-02 -2.10856989e-01 -9.94315982e-01 -2.77123332e-01 -7.65978515e-01 4.61427718e-02 1.73640037e+00 -5.98938800e-02 -3.79563063e-01 7.33806431e-01 7.44548738e-01 -1.84221659e-02 -9.05474842e-01 -8.99226189e-01 -5.03173530e-01 -3.09452772e-01 -2.67288744e-01 9.30014789e-01 1.07790625e+00 -4.57008034e-01 -1.75896659e-02 -1.00441134e+00 -2.28827953e-01 5.43710172e-01 6.03932925e-02 1.02398300e+00 -1.17693317e+00 2.16869548e-01 -3.77072215e-01 -6.78783238e-01 -7.52084792e-01 3.09527993e-01 -4.48966354e-01 -4.62899566e-01 -1.00086153e+00 4.76049513e-01 -3.88514936e-01 -6.90311864e-02 5.49569666e-01 -1.75307304e-01 7.38067746e-01 1.42438799e-01 2.88936257e-01 -8.49255502e-01 9.34239864e-01 1.55444467e+00 3.25376876e-02 2.02989236e-01 -7.02747479e-02 -6.78870618e-01 7.60217369e-01 7.60209084e-01 -2.34448686e-02 -3.72561753e-01 -2.96808720e-01 5.92995510e-02 7.95157254e-02 4.08718437e-01 -7.64827073e-01 -3.61219645e-02 -4.03064698e-01 6.22724056e-01 -4.43804227e-02 6.45631313e-01 -6.09223425e-01 4.25549060e-01 -2.99701327e-03 -1.26605660e-01 2.74841309e-01 1.03191093e-01 4.02912349e-01 -5.02754748e-01 4.44230825e-01 7.69722760e-01 1.72430068e-01 -1.17924798e+00 1.17360544e+00 1.33052289e-01 2.67163962e-01 1.34981978e+00 -2.37785488e-01 -1.70303151e-01 -6.04167700e-01 -7.37227261e-01 1.74474239e-01 7.14863360e-01 7.29885578e-01 7.85000563e-01 -1.90887487e+00 -1.11468470e+00 4.76155937e-01 3.85986090e-01 -3.88905823e-01 8.06411743e-01 1.13668692e+00 -2.87954628e-01 -2.06168909e-02 -7.59824097e-01 -5.15359223e-01 -1.74180973e+00 3.49186927e-01 -1.40033187e-02 5.79786301e-01 -4.89939094e-01 8.91040146e-01 2.40293190e-01 -5.65684885e-02 1.74940646e-01 5.05071998e-01 -3.11432123e-01 3.40820283e-01 8.12599063e-01 5.04718423e-01 -2.25600779e-01 -1.32903600e+00 -3.89205605e-01 7.67645776e-01 1.34307235e-01 3.03994715e-01 1.29927516e+00 -3.99982125e-01 -1.61457315e-01 3.01271062e-02 1.11305165e+00 1.07107393e-01 -1.38745546e+00 -8.49478245e-02 -5.34452379e-01 -1.05401421e+00 -3.28261793e-01 -2.86868602e-01 -1.73881829e+00 6.88107193e-01 6.22638047e-01 -3.18336934e-01 1.56836724e+00 -7.02140555e-02 8.40459049e-01 -1.56388983e-01 5.72428584e-01 -9.81025338e-01 2.06483006e-01 1.30423054e-01 1.04498434e+00 -1.42036462e+00 1.25507325e-01 -5.07320702e-01 -1.00968099e+00 7.86294639e-01 9.23165083e-01 3.89547765e-01 5.17785668e-01 -5.11846803e-02 4.87918779e-02 3.34132574e-02 -6.36210203e-01 9.57735553e-02 2.80314505e-01 6.74399555e-01 6.85355067e-01 -3.50958481e-02 -2.49548674e-01 6.99350953e-01 -3.68896008e-01 2.44317979e-01 9.71235186e-02 4.33887213e-01 2.91159227e-02 -8.71087193e-01 -2.54903823e-01 4.40910220e-01 -5.64962149e-01 -4.08116914e-02 -1.84408560e-01 7.99929321e-01 3.65150720e-01 8.31030488e-01 -5.26580922e-02 -6.00820541e-01 2.34434605e-01 -2.91833222e-01 4.24402595e-01 -9.57296416e-02 -1.22239187e-01 6.92424476e-02 1.77287266e-01 -9.10385966e-01 -6.22100413e-01 -7.61600912e-01 -7.71614969e-01 -9.51819479e-01 5.44749200e-02 9.08391178e-02 3.71607274e-01 3.64079773e-01 6.57315314e-01 1.33808568e-01 8.21826100e-01 -9.39460754e-01 -8.56777579e-02 -8.67775142e-01 -6.67434037e-01 8.00063908e-01 4.74444591e-02 -8.87310624e-01 -1.57059029e-01 4.53677684e-01]
[12.935416221618652, 0.17907829582691193]
d561b245-7242-4300-bfed-ac9a9e19f025
global-norm-aware-pooling-for-pose-robust
1808.00435
null
http://arxiv.org/abs/1808.00435v1
http://arxiv.org/pdf/1808.00435v1.pdf
Global Norm-Aware Pooling for Pose-Robust Face Recognition at Low False Positive Rate
In this paper, we propose a novel Global Norm-Aware Pooling (GNAP) block, which reweights local features in a convolutional neural network (CNN) adaptively according to their L2 norms and outputs a global feature vector with a global average pooling layer. Our GNAP block is designed to give dynamic weights to local features in different spatial positions without losing spatial symmetry. We use a GNAP block in a face feature embedding CNN to produce discriminative face feature vectors for pose-robust face recognition. The GNAP block is of very cheap computational cost, but it is very powerful for frontal-profile face recognition. Under the CFP frontal-profile protocol, the GNAP block can not only reduce EER dramatically but also boost TPR@FPR=0.1% (TPR i.e. True Positive Rate, FPR i.e. False Positive Rate) substantially. Our experiments show that the GNAP block greatly promotes pose-robust face recognition over the base model especially at low false positive rate.
['Zhen Han', 'Xiang Gao', 'Jia Guo', 'Yang Liu', 'Sheng Chen']
2018-08-01
null
null
null
null
['robust-face-recognition']
['computer-vision']
[ 4.16923203e-02 -2.51266688e-01 -1.38943508e-01 -5.74438870e-01 -5.13089538e-01 -3.32203507e-01 4.09248054e-01 -7.18904138e-01 -4.09428149e-01 2.96081662e-01 1.55212536e-01 1.36565328e-01 3.76811773e-02 -7.63426900e-01 -8.08939815e-01 -9.73080039e-01 -1.99523523e-01 -4.18542027e-01 7.05515966e-02 9.74779353e-02 4.66667935e-02 1.25862420e+00 -1.59845591e+00 4.76437151e-01 1.15369879e-01 1.46187794e+00 -1.12186195e-02 4.82023746e-01 1.77037552e-01 2.62599409e-01 -5.43775856e-01 -6.40732050e-01 6.07024729e-01 -1.00012027e-01 -5.30050814e-01 -4.57364507e-02 7.87219524e-01 -2.53054529e-01 -5.13862669e-01 1.06498003e+00 9.09269631e-01 9.36582237e-02 3.96432728e-01 -1.31881154e+00 -5.56350827e-01 9.38500743e-03 -6.78312242e-01 2.64169037e-01 9.75218415e-02 1.58769578e-01 6.75892532e-01 -1.57564056e+00 3.59776437e-01 1.38444185e+00 7.63924658e-01 7.99503505e-01 -1.20700240e+00 -9.56528068e-01 -2.27901200e-03 2.94907521e-02 -1.82612216e+00 -7.31401980e-01 7.12285161e-01 -1.94323007e-02 9.19262111e-01 3.35347503e-01 3.62876713e-01 8.46938789e-01 4.13302571e-01 4.47946817e-01 6.25870168e-01 -5.27645685e-02 -4.25793380e-02 -2.13388577e-01 -3.33298981e-01 9.14782882e-01 -1.06568197e-02 -2.06578299e-02 -9.37387943e-01 -8.67968053e-02 1.07067370e+00 3.01673532e-01 -4.46285218e-01 -1.52165532e-01 -8.56204093e-01 6.42099857e-01 8.60220492e-01 2.15684056e-01 -3.90372097e-01 2.72769898e-01 2.72995323e-01 4.10713643e-01 1.50480136e-01 3.35285872e-01 -6.18118346e-01 2.14134738e-01 -1.00744629e+00 1.39598757e-01 5.54593861e-01 8.69254291e-01 7.48769104e-01 1.00856908e-01 -4.82044607e-01 1.24163747e+00 4.63255644e-01 7.19605625e-01 2.61729777e-01 -9.10595596e-01 2.45561019e-01 5.21501899e-01 -2.28730202e-01 -1.42299747e+00 -4.64654982e-01 -2.85544872e-01 -8.54325593e-01 1.44128844e-01 1.97764650e-01 -1.34455264e-01 -1.01256001e+00 1.87108243e+00 1.62197948e-01 9.20786485e-02 -2.58678883e-01 7.04675198e-01 9.82195556e-01 6.44300401e-01 6.34758361e-03 -2.03621373e-01 1.48293591e+00 -8.32697570e-01 -4.93020236e-01 -2.06452146e-01 2.38262117e-01 -8.60432267e-01 7.87378490e-01 1.32285297e-01 -9.15686727e-01 -5.73552489e-01 -1.08126771e+00 2.31895726e-02 -3.59048814e-01 5.36440492e-01 3.60890388e-01 9.64905679e-01 -1.30131316e+00 6.42928839e-01 -7.13501871e-01 8.91274028e-03 8.68435979e-01 8.18417728e-01 -9.32788789e-01 -4.39591676e-01 -7.95227766e-01 4.73094106e-01 3.68877091e-02 5.89717984e-01 -8.58798265e-01 -6.84878170e-01 -9.00721729e-01 2.15058476e-01 2.50188351e-01 -6.32842183e-02 7.79358804e-01 -8.33096445e-01 -1.67621386e+00 6.24909580e-01 -5.58514595e-01 1.34392276e-01 2.48254597e-01 1.59123670e-02 -5.94622970e-01 1.34936646e-01 -1.34305552e-01 9.62619483e-01 1.21554708e+00 -8.38225424e-01 -2.11588204e-01 -6.15074098e-01 -2.82624871e-01 -1.49115279e-01 -4.93059605e-01 3.99186432e-01 -6.71436667e-01 -6.67417526e-01 3.18952024e-01 -8.11344028e-01 1.11613490e-01 4.67193812e-01 -4.36343215e-02 -3.03859264e-01 1.11543524e+00 -5.04489422e-01 1.03602087e+00 -2.38119411e+00 -1.94237977e-01 4.18247432e-01 8.31682533e-02 5.27232885e-01 -6.02427304e-01 -5.49999415e-04 -3.58083010e-01 1.27836823e-01 6.87544607e-03 -1.63060144e-01 -2.60261208e-01 9.96939465e-02 -6.66579232e-02 5.49172878e-01 6.01056218e-01 1.08967924e+00 -5.52615047e-01 -7.49657601e-02 -1.51729047e-01 1.05871856e+00 -8.78016949e-01 -4.06546071e-02 4.16873515e-01 -1.03950545e-01 -9.70038846e-02 9.69580173e-01 1.23731267e+00 6.94682971e-02 1.15513772e-01 -5.85262775e-01 7.77433366e-02 -1.37690425e-01 -1.11275101e+00 1.25836563e+00 -2.71232426e-01 6.93273127e-01 1.81013674e-01 -6.27095103e-01 1.10466170e+00 3.29117417e-01 1.21286623e-01 -7.40395069e-01 1.97346836e-01 3.16824108e-01 -1.67734966e-01 -2.05295578e-01 1.86477572e-01 -5.94788976e-02 1.48862645e-01 -1.48545712e-01 4.92449343e-01 4.37085927e-01 -2.15508133e-01 -4.15015817e-01 8.69713306e-01 -1.94104031e-01 6.36118129e-02 -6.78660214e-01 7.43048012e-01 -9.74991500e-01 8.57442796e-01 4.02831078e-01 -4.43058968e-01 9.41693366e-01 5.87604642e-01 -7.25126088e-01 -6.62941456e-01 -9.55999255e-01 -3.75574678e-01 1.09635794e+00 -2.10867882e-01 -4.11852568e-01 -6.25844002e-01 -9.54710603e-01 6.02913834e-02 -2.86270320e-01 -7.77119458e-01 -3.27409238e-01 -6.94593191e-01 -7.98376203e-01 6.53433383e-01 8.30052972e-01 1.00955534e+00 -1.02181864e+00 -2.46053368e-01 -5.11840060e-02 1.73353538e-01 -9.31903720e-01 -9.35625732e-01 7.41705522e-02 -5.85332632e-01 -8.90956581e-01 -9.94332790e-01 -9.76404607e-01 9.66675222e-01 2.61303842e-01 5.62576234e-01 -1.22418262e-01 -4.71583337e-01 1.77298691e-02 -1.55350670e-01 -2.25076094e-01 3.42611641e-01 -2.27502644e-01 2.27592394e-01 4.00222003e-01 5.45265079e-01 -3.38629991e-01 -8.71616364e-01 7.81599998e-01 -7.69996881e-01 -5.69060564e-01 3.44309032e-01 1.03382456e+00 5.09425938e-01 -9.13018882e-02 5.41873932e-01 -3.30633640e-01 3.45405608e-01 -9.86496825e-03 -4.94326025e-01 1.19298384e-01 -1.51550546e-01 -1.06770560e-01 5.54592490e-01 -4.05580074e-01 -6.95869088e-01 1.03086680e-01 -3.27986628e-01 -5.19328594e-01 2.09238321e-01 1.21713378e-01 -5.90372264e-01 -7.32387066e-01 6.46975100e-01 2.44261116e-01 1.20418407e-01 -4.58246291e-01 -1.11583741e-02 5.86292803e-01 3.83550406e-01 -2.25106329e-01 7.06573367e-01 3.37993234e-01 2.82621384e-01 -1.00370812e+00 -4.12261307e-01 -2.41382286e-01 -5.48670530e-01 -8.12925920e-02 5.03122807e-01 -1.00808358e+00 -1.02288282e+00 6.46892548e-01 -9.52163160e-01 -3.10784131e-02 3.04327272e-02 2.61102647e-01 -7.01329261e-02 9.62341949e-03 -4.59548593e-01 -3.96786243e-01 -3.64347219e-01 -1.30290604e+00 9.70850170e-01 5.31728208e-01 1.29460648e-01 -5.20055413e-01 -5.63383520e-01 1.67335942e-02 7.61199236e-01 1.28158793e-01 4.82204556e-01 -2.91156858e-01 -2.53668964e-01 -5.24969339e-01 -6.21451139e-01 7.72717893e-01 2.52122313e-01 -5.76604391e-03 -1.32763970e+00 -6.47825897e-01 -1.16680816e-01 -1.85273767e-01 9.00353849e-01 2.85775572e-01 1.40158153e+00 -5.94853103e-01 -2.01662928e-01 7.89930999e-01 1.35718358e+00 2.21803084e-01 9.66394186e-01 -1.09276921e-01 6.53409958e-01 3.82461250e-01 9.34814066e-02 2.77508676e-01 -1.93657070e-01 8.14004660e-01 1.40344962e-01 9.39748213e-02 -4.35055792e-01 -1.07855275e-01 5.79842985e-01 3.05692554e-01 -1.00588031e-01 3.53289917e-02 -6.61319137e-01 3.07286859e-01 -1.25555396e+00 -8.61358285e-01 5.72117388e-01 2.18749547e+00 7.16907799e-01 -4.13606912e-01 -3.82224172e-02 -3.56053561e-02 6.82713032e-01 3.26110870e-01 -2.00375125e-01 -4.13792670e-01 -1.08543232e-01 4.96892095e-01 5.85525870e-01 3.75296503e-01 -1.08752191e+00 7.21804142e-01 6.23208570e+00 9.67167258e-01 -1.54530311e+00 1.13696806e-01 7.86122024e-01 -3.84401947e-01 1.92897424e-01 -6.88205898e-01 -1.04787695e+00 4.39203441e-01 8.67924869e-01 1.21001966e-01 4.26234037e-01 9.95862305e-01 -8.34941864e-02 2.83476561e-01 -9.93129551e-01 1.35810721e+00 3.51146966e-01 -1.16121197e+00 3.48516047e-01 1.26817539e-01 6.50361955e-01 -5.01841344e-02 4.25025970e-01 1.61675334e-01 -3.39866370e-01 -1.51016092e+00 4.17629510e-01 2.73899049e-01 1.17503595e+00 -1.20163786e+00 8.78996193e-01 -3.40714008e-01 -1.40129447e+00 -2.03082338e-01 -8.05282354e-01 3.36528748e-01 -4.37204182e-01 4.44149077e-01 -4.73483771e-01 1.96320564e-01 8.96370947e-01 3.39344054e-01 -4.91518408e-01 9.91818249e-01 -1.41397133e-01 2.29752764e-01 -5.46799183e-01 9.92083177e-02 2.44983509e-01 3.47564846e-01 2.64061034e-01 1.30010426e+00 3.57212931e-01 8.99757221e-02 -1.65433347e-01 7.33530760e-01 -7.14089572e-01 1.29642084e-01 -4.86713231e-01 5.28307408e-02 4.76032436e-01 1.44970000e+00 -6.44409895e-01 1.05160587e-01 -2.17531249e-01 1.11259568e+00 1.20820291e-01 3.48744780e-01 -5.64729750e-01 -8.29731345e-01 1.01471651e+00 6.06696717e-02 6.20186269e-01 4.12043035e-02 5.70784733e-02 -9.55076158e-01 2.86073029e-01 -8.15790415e-01 -2.58759707e-02 -2.16148347e-01 -1.00978446e+00 7.64226496e-01 -3.47497761e-01 -1.01490986e+00 1.63024753e-01 -1.09484637e+00 -5.35241604e-01 1.00789595e+00 -1.36953855e+00 -1.07396090e+00 -4.04329211e-01 7.93647826e-01 2.08784431e-01 -2.29718089e-01 8.46604347e-01 5.15257776e-01 -7.92511344e-01 1.45937216e+00 -8.16027354e-03 4.72119540e-01 6.59821212e-01 -5.37990153e-01 3.73780906e-01 7.45754123e-01 -9.37922448e-02 1.06503987e+00 1.81442291e-01 -2.51123220e-01 -1.52950609e+00 -1.41719508e+00 9.90188062e-01 -2.26168171e-01 -3.03434525e-02 -4.71233428e-01 -7.71284103e-01 4.50242311e-01 -3.74901116e-01 8.22746038e-01 6.92208827e-01 -4.02673036e-02 -9.27469611e-01 -5.46885729e-01 -1.71682489e+00 5.93173802e-01 9.80561256e-01 -6.95009530e-01 -2.40236819e-02 1.65033624e-01 2.70978630e-01 -1.64963260e-01 -8.80225062e-01 6.18134856e-01 1.00269115e+00 -7.21000433e-01 1.13891542e+00 -2.39473209e-01 1.68892354e-01 -4.29652780e-01 -4.59173650e-01 -9.34953153e-01 -6.56808138e-01 -5.39648771e-01 9.66414288e-02 1.11295414e+00 5.07659137e-01 -8.22968781e-01 8.36046875e-01 5.16995430e-01 1.93062067e-01 -8.51765037e-01 -1.43694246e+00 -1.05172336e+00 -9.65846032e-02 -2.70281553e-01 5.87919533e-01 5.88808835e-01 -1.32277951e-01 -2.13371292e-01 -2.66765326e-01 3.11273903e-01 4.28461194e-01 -3.59546244e-01 3.44494700e-01 -9.51999187e-01 9.04289559e-02 -4.10365343e-01 -9.86267984e-01 -9.13671315e-01 -6.81528226e-02 -9.05000091e-01 1.14019655e-01 -7.33330011e-01 3.16341907e-01 1.95647534e-02 -5.13993680e-01 8.91455770e-01 2.97448523e-02 1.14812160e+00 2.03779489e-01 -1.29258543e-01 -1.77377596e-01 5.19155145e-01 1.11759293e+00 -1.42495811e-01 -1.60179168e-01 -2.29461923e-01 -6.94712460e-01 5.37469864e-01 8.33371937e-01 -3.61779958e-01 -1.10353790e-01 -4.16433960e-01 -2.96769738e-01 -5.17654061e-01 3.93092036e-01 -1.13244557e+00 1.46876305e-01 4.01640646e-02 1.23211110e+00 -8.25517625e-02 4.93383706e-01 -6.42053425e-01 -6.10830896e-02 4.99173850e-01 6.67773634e-02 -4.18172292e-02 6.06728196e-01 2.85485834e-01 -2.46801555e-01 9.83032361e-02 1.07092464e+00 1.79641441e-01 -4.52901930e-01 6.55191004e-01 -3.53509299e-02 -4.95634407e-01 8.96668971e-01 -4.29127872e-01 -1.06283329e-01 -5.86730987e-02 -5.14163196e-01 -4.04532664e-02 1.19430654e-01 5.48966646e-01 9.26173627e-01 -1.76110566e+00 -5.50617695e-01 9.60102439e-01 2.08781913e-01 -4.44122463e-01 3.50151002e-01 6.31550491e-01 -5.13536096e-01 5.04712224e-01 -4.50564265e-01 -3.96154612e-01 -1.58952987e+00 2.29865149e-01 5.42153418e-01 2.73501754e-01 -3.21062803e-01 1.54382968e+00 2.59150624e-01 -3.22480977e-01 2.62214631e-01 7.16677383e-02 -1.64720397e-02 1.35838538e-01 1.19540632e+00 2.60026753e-01 3.39799821e-01 -8.58816028e-01 -6.89457417e-01 8.30457091e-01 -4.40706640e-01 9.94310081e-02 1.35920012e+00 2.82898962e-01 -2.81739026e-01 -2.34661087e-01 1.87672222e+00 -3.88476346e-03 -1.38713837e+00 -1.18793443e-01 -3.82572234e-01 -8.56193006e-01 3.80138069e-01 -7.18317091e-01 -1.62323534e+00 8.47622693e-01 8.78198504e-01 -4.40742612e-01 1.24705338e+00 -9.09553021e-02 3.55125844e-01 3.54429543e-01 2.92141050e-01 -8.34527969e-01 7.34363422e-02 5.49749553e-01 1.33314490e+00 -9.33362126e-01 -1.29299179e-01 -4.13124442e-01 -2.79269636e-01 1.35548937e+00 6.48321331e-01 -9.56611335e-02 9.52505887e-01 3.34673166e-01 -1.01811774e-01 -2.63469577e-01 -3.52096707e-01 1.79826453e-01 5.94980061e-01 5.46334505e-01 4.32798564e-01 4.67382744e-02 -4.05595601e-02 5.76952755e-01 1.09320953e-02 6.49665892e-02 -5.60328476e-02 8.75944555e-01 -5.15719593e-01 -8.59061718e-01 -2.51079798e-01 4.14993137e-01 -6.07440829e-01 -3.02939601e-02 -2.21885011e-01 4.61023092e-01 2.08685875e-01 7.15962827e-01 2.43259117e-01 -7.41065502e-01 4.96148884e-01 2.32832819e-01 5.91508150e-01 -3.21055174e-01 -5.40866256e-01 -9.19436291e-02 -3.88409704e-01 -1.06683278e+00 1.35334237e-02 -4.10307556e-01 -8.42714310e-01 -6.25794172e-01 -1.78530186e-01 -2.82255560e-01 6.16068065e-01 4.78206217e-01 5.76467216e-01 2.30011284e-01 9.33862507e-01 -1.01120174e+00 -2.86214441e-01 -9.33695018e-01 -6.45124555e-01 -5.53018861e-02 4.06498611e-01 -6.34406805e-01 -3.43704045e-01 -2.44063333e-01]
[13.25134563446045, 0.6959513425827026]
81f960ba-a365-45ad-b6c5-3f75d3d80ba8
generative-modeling-for-small-data-object
1910.07169
null
https://arxiv.org/abs/1910.07169v1
https://arxiv.org/pdf/1910.07169v1.pdf
Generative Modeling for Small-Data Object Detection
This paper explores object detection in the small data regime, where only a limited number of annotated bounding boxes are available due to data rarity and annotation expense. This is a common challenge today with machine learning being applied to many new tasks where obtaining training data is more challenging, e.g. in medical images with rare diseases that doctors sometimes only see once in their life-time. In this work we explore this problem from a generative modeling perspective by learning to generate new images with associated bounding boxes, and using these for training an object detector. We show that simply training previously proposed generative models does not yield satisfactory performance due to them optimizing for image realism rather than object detection accuracy. To this end we develop a new model with a novel unrolling mechanism that jointly optimizes the generative model and a detector such that the generated images improve the performance of the detector. We show this method outperforms the state of the art on two challenging datasets, disease detection and small data pedestrian detection, improving the average precision on NIH Chest X-ray by a relative 20% and localization accuracy by a relative 50%.
['Li-Jia Li', 'Jia Deng', 'Tomas Pfister', 'Michael Muelly', 'Lanlan Liu']
2019-10-16
generative-modeling-for-small-data-object-1
http://openaccess.thecvf.com/content_ICCV_2019/html/Liu_Generative_Modeling_for_Small-Data_Object_Detection_ICCV_2019_paper.html
http://openaccess.thecvf.com/content_ICCV_2019/papers/Liu_Generative_Modeling_for_Small-Data_Object_Detection_ICCV_2019_paper.pdf
iccv-2019-10
['small-data']
['computer-vision']
[ 4.38489646e-01 3.53559226e-01 1.47564799e-01 -2.33205333e-01 -9.53389406e-01 -4.23439026e-01 4.56875831e-01 4.48852241e-01 -8.33291829e-01 6.80110574e-01 -1.18730284e-01 -2.75419623e-01 2.35197857e-01 -6.81333780e-01 -7.62201607e-01 -9.01295841e-01 1.29024103e-01 8.59597862e-01 5.37349701e-01 5.24266176e-02 -1.48922443e-01 5.29108107e-01 -1.49445486e+00 2.80033439e-01 6.87383771e-01 7.35318661e-01 3.31389129e-01 1.08780885e+00 4.11035687e-01 5.17875075e-01 -6.47137463e-01 -3.23021352e-01 3.37630421e-01 -3.88805568e-01 -5.43827713e-01 5.26018620e-01 4.72300112e-01 -4.25153792e-01 2.51693204e-02 9.23445582e-01 7.66413391e-01 -5.38189001e-02 8.04397285e-01 -9.68728721e-01 -3.43334705e-01 2.79961795e-01 -8.24658513e-01 2.99658209e-01 4.22187857e-02 1.32485196e-01 7.46973693e-01 -7.29112685e-01 6.33274376e-01 1.10679483e+00 5.01611888e-01 8.18976343e-01 -1.41419554e+00 -3.18513662e-01 5.31649799e-04 -8.09775367e-02 -1.44135177e+00 -2.05693796e-01 4.02596414e-01 -5.66798091e-01 6.42771006e-01 3.51539016e-01 4.22378063e-01 8.40733409e-01 -8.58306419e-03 6.72945321e-01 1.05767620e+00 -5.67280054e-01 2.40769461e-01 5.38614213e-01 -1.07758135e-01 8.86774659e-01 4.65727925e-01 6.84546381e-02 -1.86922178e-02 -2.83829626e-02 8.71174991e-01 1.04725517e-01 -8.80135894e-02 -6.06608927e-01 -1.19024897e+00 9.22679186e-01 6.96910679e-01 3.57070029e-01 -4.21542227e-01 5.04787713e-02 1.59644157e-01 -1.80477500e-01 4.77554798e-01 3.78782451e-01 -1.22585595e-01 2.48484805e-01 -9.56226110e-01 3.24097931e-01 6.16934001e-01 7.35004306e-01 4.20764059e-01 -2.26041988e-01 -3.18322808e-01 6.55827284e-01 1.25687465e-01 4.61352170e-01 2.64768332e-01 -4.15891021e-01 2.86495745e-01 6.66889608e-01 1.98462456e-01 -7.10103214e-01 -6.18778646e-01 -7.39604771e-01 -8.44900727e-01 3.44034225e-01 7.83996880e-01 -1.71628550e-01 -1.16119587e+00 1.51129305e+00 6.66602194e-01 -1.31110117e-01 -1.90014750e-01 1.04120827e+00 5.50615132e-01 4.10311669e-01 2.19390750e-01 -1.17125966e-01 1.63726723e+00 -8.82263064e-01 -3.31679642e-01 -2.77215123e-01 8.47896159e-01 -7.61239111e-01 1.00015199e+00 4.45412308e-01 -1.05795205e+00 -5.10759115e-01 -9.86559212e-01 -9.33817923e-02 -2.33953223e-01 5.63848019e-01 3.15638840e-01 9.24788117e-01 -8.03045750e-01 4.36870486e-01 -1.01354349e+00 -6.15241051e-01 8.15948486e-01 4.86167073e-01 -1.82681948e-01 -3.25868540e-02 -5.10090292e-01 9.72433329e-01 3.81156564e-01 -3.05316895e-01 -8.21718097e-01 -7.08479762e-01 -5.73217452e-01 -2.52920482e-02 6.05883360e-01 -9.08719063e-01 1.16974449e+00 -6.35271132e-01 -9.94365513e-01 1.04318261e+00 2.54887819e-01 -7.00704515e-01 1.05048192e+00 -2.40072742e-01 6.15694150e-02 5.39296195e-02 6.02031238e-02 9.25695360e-01 8.46512794e-01 -1.22838247e+00 -7.70128429e-01 -5.62836111e-01 2.97519714e-02 1.16510257e-01 -2.92381734e-01 -8.21657777e-02 -5.22549987e-01 -5.30560076e-01 -5.26147224e-02 -1.01925123e+00 -6.20878756e-01 1.90215349e-01 -5.42213380e-01 -6.53756559e-02 8.24591994e-01 -4.54674810e-01 1.02205086e+00 -1.82804251e+00 2.09738791e-01 9.11964029e-02 4.53931928e-01 3.62025917e-01 1.24631658e-01 -8.76550227e-02 1.13212325e-01 -1.35847390e-01 -4.22470450e-01 -5.52257001e-01 -2.10203812e-01 3.02170247e-01 -9.84077901e-02 6.12871349e-01 4.16989088e-01 7.59602427e-01 -8.28393281e-01 -7.84364164e-01 3.49721342e-01 6.25054598e-01 -7.66577363e-01 1.79581210e-01 -1.85405418e-01 6.92686319e-01 -3.32170904e-01 5.40356219e-01 5.76725662e-01 -5.54095745e-01 6.43619746e-02 -8.63363221e-02 3.61236930e-02 -1.91448137e-01 -1.27550089e+00 1.34864128e+00 -4.33945745e-01 4.13030952e-01 -1.44102737e-01 -9.80557561e-01 5.79292238e-01 7.13778809e-02 4.91498321e-01 -3.49689573e-01 3.44035655e-01 2.01934054e-01 3.28172266e-01 -4.79177564e-01 2.16957986e-01 -3.93985152e-01 6.95004463e-02 3.80380332e-01 -1.67827263e-01 -1.49426565e-01 3.74937564e-01 1.35705322e-01 1.17946064e+00 -1.80839315e-01 5.54399669e-01 -1.67669103e-01 4.41477537e-01 1.32058844e-01 2.12406561e-01 9.44584906e-01 -4.00043763e-02 9.48539376e-01 4.06909138e-01 -3.83631796e-01 -1.43353772e+00 -1.02812445e+00 -3.94435912e-01 1.04313624e+00 -1.47049397e-01 -1.07829362e-01 -1.02246737e+00 -9.58886206e-01 -9.27158222e-02 3.97443801e-01 -9.04867768e-01 -4.37053479e-02 -6.80054963e-01 -1.18758869e+00 3.75508338e-01 7.49739408e-01 3.46437395e-01 -8.34133685e-01 -1.18531835e+00 1.80561706e-01 8.88571069e-02 -1.27262759e+00 -3.24042380e-01 2.16866240e-01 -8.32443237e-01 -1.07442367e+00 -1.13837564e+00 -5.81630349e-01 1.08311784e+00 4.90890704e-02 1.07005727e+00 2.80890882e-01 -1.08316231e+00 8.50974098e-02 -2.88081199e-01 -6.00235820e-01 -6.07910454e-01 1.60455063e-01 -9.90088880e-02 -9.91231352e-02 1.15801863e-01 -6.96309134e-02 -7.71572053e-01 3.30688685e-01 -1.06130016e+00 1.96716100e-01 8.62589121e-01 9.96540487e-01 6.52374446e-01 -1.79259852e-01 3.09020996e-01 -1.20093846e+00 1.93962306e-01 -2.91981190e-01 -8.03460181e-01 1.69618696e-01 -4.07435715e-01 5.28254434e-02 3.32794875e-01 -5.84161043e-01 -7.95307219e-01 5.46364427e-01 -1.87734187e-01 -3.28491271e-01 -2.37516597e-01 -1.51589334e-01 4.56018113e-02 -6.88901022e-02 1.00684524e+00 6.40335400e-03 -1.21467307e-01 -4.69350964e-01 3.16660136e-01 4.99132305e-01 5.61926842e-01 -1.68088391e-01 7.37572610e-01 7.63240635e-01 3.15749496e-01 -6.98898733e-01 -9.34830189e-01 -6.88736081e-01 -9.14329350e-01 -1.37417123e-01 1.04201138e+00 -6.30027175e-01 -4.90901113e-01 -5.58631904e-02 -1.10127592e+00 -1.14040978e-01 -4.75511461e-01 4.70520377e-01 -5.99878132e-01 1.89883053e-01 -3.26251745e-01 -8.06012154e-01 -3.30218136e-01 -1.28437698e+00 1.49108315e+00 1.35509700e-01 -5.15087061e-02 -7.93634593e-01 -4.01934329e-03 2.49028012e-01 2.41355419e-01 4.27127391e-01 7.73554444e-01 -5.57367623e-01 -7.25057006e-01 -4.04935122e-01 -5.18427372e-01 2.58516967e-01 7.43989348e-02 -2.86430836e-01 -1.01009536e+00 -3.66926789e-01 -1.02025144e-01 -6.50473088e-02 8.89070809e-01 4.94770020e-01 1.26656258e+00 -9.61082280e-02 -6.21692598e-01 2.31892422e-01 1.37608552e+00 1.04063503e-01 4.77436453e-01 1.11295752e-01 6.87117279e-01 6.74602091e-01 5.79645813e-01 5.57704508e-01 -2.54408810e-02 8.68575335e-01 4.20578182e-01 -4.61702168e-01 -3.32655370e-01 1.24321021e-01 -2.40612552e-01 -2.07287520e-02 -1.72219902e-01 -2.26508796e-01 -1.17599404e+00 7.23121643e-01 -1.89897335e+00 -6.76667333e-01 -1.87520236e-01 2.37573099e+00 7.64713168e-01 1.87804520e-01 4.62126315e-01 2.23758280e-01 6.51678383e-01 -4.24353838e-01 -4.24964011e-01 1.91346765e-01 2.00723469e-01 3.11071873e-01 5.63565493e-01 4.46424216e-01 -1.37325585e+00 5.39877176e-01 5.81582546e+00 5.98210096e-01 -9.38246071e-01 4.10865933e-01 8.96658421e-01 -1.84530005e-01 3.86819661e-01 -2.50088900e-01 -9.99450266e-01 3.62019897e-01 6.03677690e-01 1.39921367e-01 -1.43635213e-01 9.99252677e-01 1.16233863e-01 -4.80642110e-01 -1.25162494e+00 1.03335297e+00 1.90289199e-01 -1.21009147e+00 1.63308643e-02 2.53626138e-01 5.96948385e-01 -2.21970528e-01 2.70345777e-01 -2.46179067e-02 9.12920833e-02 -1.00053060e+00 5.67990184e-01 2.63314694e-01 4.97118026e-01 -6.06384218e-01 7.67732084e-01 6.03349268e-01 -8.60967040e-01 -3.02629210e-02 -3.28972280e-01 3.39473456e-01 2.45054543e-01 5.95491648e-01 -1.36404335e+00 1.24400683e-01 4.84521240e-01 2.22272202e-01 -8.34656775e-01 1.39463246e+00 -8.58941227e-02 3.27900440e-01 -4.49380487e-01 -7.92163759e-02 2.13454306e-01 2.14816049e-01 6.14595294e-01 1.34712565e+00 3.04588675e-01 1.42285556e-01 2.65976816e-01 9.01926398e-01 -8.29780847e-02 2.25109652e-01 -4.49069053e-01 4.00134444e-01 1.03789549e-02 1.41688061e+00 -1.21113789e+00 -4.87061501e-01 -1.80650353e-01 9.08296049e-01 1.77721888e-01 -9.99650210e-02 -9.97024655e-01 -3.58357392e-02 1.22109853e-01 6.47940218e-01 3.86486441e-01 -7.27765188e-02 -2.87873358e-01 -9.30691719e-01 -1.75336339e-02 -5.45055211e-01 4.23519045e-01 -5.48907518e-01 -1.02417588e+00 7.56116450e-01 1.84999034e-01 -1.21241164e+00 -3.89265448e-01 -7.70995378e-01 -1.46371543e-01 6.36287868e-01 -1.23171759e+00 -1.16525459e+00 -4.53895032e-01 3.18631709e-01 5.93444407e-01 8.86726528e-02 6.16288066e-01 6.24472141e-01 -5.24463952e-01 5.16234875e-01 5.59498603e-03 7.81910866e-02 5.88344514e-01 -1.49598134e+00 3.01650494e-01 8.33890736e-01 3.92228335e-01 2.90790528e-01 9.41014946e-01 -4.88983572e-01 -9.43366230e-01 -1.17977214e+00 6.64060831e-01 -8.03876400e-01 3.47684264e-01 -5.75022161e-01 -7.57086277e-01 3.79271775e-01 -1.94137499e-01 4.94447976e-01 4.44252223e-01 -1.57013610e-01 -5.53882867e-02 9.96096209e-02 -1.33460379e+00 3.67926866e-01 8.87997985e-01 4.75594494e-03 -1.60575837e-01 6.57707155e-01 3.07880610e-01 -6.66879475e-01 -4.65678275e-01 3.55962336e-01 3.53591114e-01 -8.29041958e-01 1.03815866e+00 -5.90874553e-01 1.87851399e-01 -3.74433905e-01 -4.24280502e-02 -9.96241808e-01 8.61194432e-02 -2.22613662e-01 1.52884955e-02 7.30461478e-01 3.73734623e-01 -3.38088930e-01 9.63266671e-01 3.40074867e-01 1.93951532e-01 -8.12409282e-01 -9.59499300e-01 -7.06463456e-01 -1.12767763e-01 -2.32644960e-01 1.39470726e-01 3.90450686e-01 -4.29583520e-01 2.90334880e-01 -2.96369731e-01 1.90769911e-01 7.30993807e-01 -3.22315916e-02 9.10902977e-01 -1.12169123e+00 -5.32309651e-01 -3.15817744e-01 -6.26812935e-01 -8.26070428e-01 -5.38513958e-01 -6.57233298e-01 1.45320877e-01 -1.30136681e+00 5.81538796e-01 -5.14379323e-01 1.46861479e-01 3.34251791e-01 -3.63155782e-01 6.83822691e-01 2.12745845e-01 1.37040794e-01 -6.13831401e-01 2.38719434e-02 1.21910846e+00 -2.05843691e-02 -1.35433555e-01 2.90377438e-01 -5.13775587e-01 8.40083063e-01 5.07339299e-01 -7.03869998e-01 -1.84754550e-01 -2.57757783e-01 -3.44951376e-02 -1.71492547e-01 8.42739522e-01 -1.22460008e+00 1.07381582e-01 3.10425520e-01 5.97196639e-01 -5.05536079e-01 3.22990060e-01 -7.99499929e-01 -7.07643628e-02 7.76381195e-01 -1.91090673e-01 -9.75486338e-02 1.09011590e-01 7.32199609e-01 1.10220127e-01 -2.72382110e-01 1.23317766e+00 -1.52022630e-01 -4.14183617e-01 1.57082602e-01 -2.62064673e-02 -6.00658134e-02 1.37180698e+00 -1.67861387e-01 -1.16372913e-01 -1.31667376e-01 -1.09201288e+00 -1.17654711e-01 3.05769145e-01 2.74151117e-01 4.53687131e-01 -1.07266760e+00 -8.10154378e-01 1.93412155e-01 1.74138114e-01 1.96087569e-01 1.70708671e-01 1.13098407e+00 -5.55360079e-01 3.50552589e-01 -4.79913084e-03 -1.06574416e+00 -1.71007121e+00 6.97230518e-01 3.48293751e-01 -5.92137039e-01 -8.11134815e-01 8.78628314e-01 6.72254503e-01 3.22051235e-02 2.75566727e-01 -5.27165949e-01 -6.94260225e-02 -2.28165071e-02 5.40594578e-01 3.28300983e-01 3.10931861e-01 -6.23986483e-01 -2.52350569e-01 5.02977073e-01 -4.56531763e-01 5.73082715e-02 1.13270938e+00 5.27040325e-02 4.13727343e-01 1.22843049e-01 9.87350762e-01 -2.19563216e-01 -1.23714685e+00 -2.24567279e-01 -7.94109479e-02 -6.67876005e-01 7.48521322e-03 -7.16268837e-01 -8.50489318e-01 1.05568302e+00 1.06380546e+00 2.29906380e-01 1.07725585e+00 5.22523403e-01 5.11948645e-01 3.13166440e-01 3.20442587e-01 -8.83959234e-01 3.13880652e-01 -2.48190500e-02 6.76134288e-01 -1.52090096e+00 2.30737418e-01 -5.33091903e-01 -6.42717779e-01 8.48802328e-01 4.60663676e-01 -2.51281917e-01 4.53329146e-01 4.26095903e-01 -1.75079077e-01 -1.99042723e-01 -5.02756715e-01 -5.21016896e-01 5.79427481e-01 5.26527762e-01 3.55920374e-01 2.12124661e-01 -3.13330770e-01 3.49520296e-01 -5.14915735e-02 -1.66319638e-01 3.85991782e-01 9.92065012e-01 -6.67598844e-01 -1.23744953e+00 -6.66004837e-01 6.09303951e-01 -6.94905758e-01 1.13192402e-01 -1.86267614e-01 9.68973339e-01 3.62201303e-01 6.48674071e-01 1.65508986e-01 1.57247320e-01 3.86741549e-01 -2.43900299e-01 6.52847767e-01 -9.97538209e-01 -4.59322751e-01 2.61309028e-01 -1.44441783e-01 -3.29218894e-01 -4.71691728e-01 -7.71395862e-01 -1.15709829e+00 1.01406492e-01 -5.65211475e-01 -2.21042767e-01 7.01070130e-01 8.64445508e-01 5.54261245e-02 7.17748463e-01 2.67412335e-01 -8.20229471e-01 -6.46251619e-01 -7.77129591e-01 -3.99490863e-01 3.39723796e-01 4.48827147e-01 -7.64633298e-01 3.88480723e-02 3.62970293e-01]
[15.010220527648926, -2.423823356628418]
52964014-da4f-4834-a19b-1d211f943472
visual-relationship-detection-with-language
1608.00187
null
http://arxiv.org/abs/1608.00187v1
http://arxiv.org/pdf/1608.00187v1.pdf
Visual Relationship Detection with Language Priors
Visual relationships capture a wide variety of interactions between pairs of objects in images (e.g. "man riding bicycle" and "man pushing bicycle"). Consequently, the set of possible relationships is extremely large and it is difficult to obtain sufficient training examples for all possible relationships. Because of this limitation, previous work on visual relationship detection has concentrated on predicting only a handful of relationships. Though most relationships are infrequent, their objects (e.g. "man" and "bicycle") and predicates (e.g. "riding" and "pushing") independently occur more frequently. We propose a model that uses this insight to train visual models for objects and predicates individually and later combines them together to predict multiple relationships per image. We improve on prior work by leveraging language priors from semantic word embeddings to finetune the likelihood of a predicted relationship. Our model can scale to predict thousands of types of relationships from a few examples. Additionally, we localize the objects in the predicted relationships as bounding boxes in the image. We further demonstrate that understanding relationships can improve content based image retrieval.
['Li Fei-Fei', 'Michael Bernstein', 'Cewu Lu', 'Ranjay Krishna']
2016-07-31
null
null
null
null
['visual-relationship-detection']
['computer-vision']
[-7.13536702e-03 -1.27408892e-01 -4.56321865e-01 -6.81303859e-01 -2.57250309e-01 -6.86032712e-01 9.10989404e-01 3.13487560e-01 -1.82523802e-01 4.12393421e-01 2.09093675e-01 -3.64008874e-01 -1.09171867e-01 -7.75397241e-01 -9.90331829e-01 -2.22081915e-01 -2.89964527e-01 5.77285945e-01 5.02316833e-01 -2.43860990e-01 5.91907501e-02 4.97812867e-01 -1.72412086e+00 5.85298240e-01 1.75081253e-01 7.17901468e-01 5.43789506e-01 4.93191451e-01 -1.39900625e-01 7.92472005e-01 -5.76623440e-01 -4.35827821e-01 6.45059422e-02 -1.35700643e-01 -8.78707051e-01 2.96749204e-01 7.56718278e-01 -5.91096699e-01 -5.75297236e-01 8.70613039e-01 -1.41111791e-01 3.78914207e-01 6.67111278e-01 -1.69991362e+00 -1.08427536e+00 3.33057165e-01 -8.44567955e-01 4.97207433e-01 6.01330996e-01 -5.78606538e-02 1.51362789e+00 -9.82062340e-01 8.23713183e-01 1.53497922e+00 1.75190270e-01 2.76016712e-01 -1.24573696e+00 -8.57017457e-01 6.36960149e-01 5.38198292e-01 -1.41175103e+00 -2.13106826e-01 4.99712169e-01 -4.81542796e-01 1.25840557e+00 2.71325290e-01 8.51236284e-01 8.51513624e-01 2.45391950e-02 9.27229702e-01 5.88524997e-01 -4.60246861e-01 -3.09714735e-01 4.02039528e-01 2.53174514e-01 6.45802617e-01 2.88694799e-01 -1.93986028e-01 -6.48797095e-01 -5.54675385e-02 8.01275313e-01 2.03217849e-01 5.39102331e-02 -6.76083088e-01 -1.28245676e+00 6.93777561e-01 6.79979861e-01 8.22381750e-02 -3.37995328e-02 4.48520720e-01 -3.64287607e-02 -2.34151483e-02 2.60278285e-01 3.68338197e-01 -2.01824531e-01 1.99716270e-01 -4.47069466e-01 4.82421547e-01 6.75075591e-01 1.43294609e+00 1.05308807e+00 -6.47186935e-01 7.65108243e-02 9.64533031e-01 3.37100893e-01 2.24684700e-01 -3.86796556e-02 -7.58465886e-01 6.10375583e-01 5.41456521e-01 4.56308007e-01 -1.35622251e+00 -3.21578532e-01 1.00617178e-01 -1.44756466e-01 -1.34581223e-01 3.05002183e-01 3.76244187e-01 -9.46175814e-01 1.61066961e+00 3.09764624e-01 2.03084320e-01 -3.03033143e-01 1.01643872e+00 9.48571563e-01 8.01716924e-01 5.30074596e-01 2.81421453e-01 1.75960767e+00 -1.16129804e+00 -5.96586227e-01 -6.56325400e-01 5.07319391e-01 -9.23486352e-01 1.30020547e+00 -9.35780033e-02 -8.96952331e-01 -5.35629153e-01 -7.18177378e-01 -4.35477734e-01 -8.29537570e-01 -6.97697997e-02 1.00209570e+00 1.45627424e-01 -9.66772914e-01 2.85877794e-01 -7.92019129e-01 -7.09602833e-01 5.33350587e-01 3.96166384e-01 -5.06298482e-01 -3.23704213e-01 -1.04294956e+00 1.11723065e+00 3.48165125e-01 -1.46474093e-01 -6.55639112e-01 -4.56321925e-01 -9.95142043e-01 5.66286482e-02 4.01143700e-01 -7.49506176e-01 1.10114551e+00 -8.07674170e-01 -4.27728564e-01 1.19065690e+00 -5.87576687e-01 -3.36741418e-01 2.89411284e-02 -3.90139490e-01 -5.31186998e-01 3.39742094e-01 3.94850582e-01 1.34690666e+00 6.64278090e-01 -1.54489756e+00 -7.43902981e-01 -1.32519811e-01 5.33648133e-01 5.07078648e-01 -4.18654203e-01 5.85130155e-01 -8.32908571e-01 -5.20677328e-01 1.88762590e-01 -8.95330667e-01 1.46709278e-01 4.70652610e-01 -4.05174494e-01 -5.05092740e-01 1.21443999e+00 -3.28440636e-01 1.01655209e+00 -2.19346499e+00 -2.65837520e-01 9.00728330e-02 2.67640769e-01 -4.38436195e-02 -2.26929292e-01 5.66737056e-01 -3.08177590e-01 3.05717647e-01 3.90332252e-01 -3.38233650e-01 -1.32731527e-01 7.77438700e-01 -4.40748900e-01 2.32067838e-01 3.35610390e-01 9.92387474e-01 -1.17308331e+00 -7.25181639e-01 2.46502668e-01 5.72153151e-01 -5.28077483e-01 1.77578449e-01 -3.27714771e-01 2.00324491e-01 -3.52829993e-01 6.12856865e-01 5.89676738e-01 -6.48663640e-01 2.01325968e-01 -4.50576782e-01 -5.94851598e-02 5.23227632e-01 -8.87166381e-01 1.04601550e+00 -4.19062108e-01 8.92759383e-01 -4.45952922e-01 -8.93295407e-01 7.84078956e-01 8.18522125e-02 3.53117645e-01 -4.86095726e-01 -1.62961707e-01 -3.03068250e-01 1.24273300e-02 -8.08697224e-01 7.23594487e-01 -1.15546688e-01 5.29874563e-02 4.49997365e-01 -2.14890838e-01 -2.13493198e-01 3.71069372e-01 5.35846829e-01 8.13356042e-01 2.75663823e-01 4.51408803e-01 9.09090936e-02 8.50037932e-02 2.81963587e-01 2.84378588e-01 8.07253540e-01 -2.78955311e-01 5.24680197e-01 6.97024047e-01 -4.79476601e-01 -1.10622740e+00 -1.25795209e+00 7.37103522e-02 1.26559258e+00 9.13258493e-01 -6.96645558e-01 1.61711901e-01 -5.68112075e-01 2.37373620e-01 7.34639823e-01 -5.94825745e-01 5.94768785e-02 -7.10077822e-01 -3.05366933e-01 -5.66825196e-02 8.51895213e-01 1.70866132e-01 -1.06138778e+00 -5.13931870e-01 -1.17775992e-01 -1.45971656e-01 -1.50972497e+00 -4.39318836e-01 -8.92068148e-02 -4.20306116e-01 -1.10388124e+00 -1.21933170e-01 -1.11388731e+00 9.07561302e-01 7.96334386e-01 1.48496318e+00 2.83952832e-01 -3.86924207e-01 6.33341312e-01 -3.61860633e-01 -4.17654455e-01 -1.03005737e-01 -6.10616028e-01 -1.78341269e-02 -1.97914764e-01 6.08222783e-01 -3.76272023e-01 -7.40041733e-01 4.50062245e-01 -5.85881710e-01 2.17519477e-01 4.04483765e-01 7.31143355e-01 6.44927979e-01 2.32206583e-01 1.68648139e-01 -8.47046018e-01 2.14023620e-01 -8.37893069e-01 -3.18509191e-01 4.79201615e-01 -1.44915521e-01 -3.23585927e-01 4.09984410e-01 -8.07490528e-01 -9.72562373e-01 8.94598365e-02 4.38562423e-01 -6.01692677e-01 -3.06541651e-01 2.69886851e-01 3.78602222e-02 3.10697705e-01 3.81738842e-01 -6.59175366e-02 -3.27405304e-01 -2.02785745e-01 6.83524191e-01 2.54535675e-01 4.94378120e-01 -4.72247124e-01 7.61734068e-01 7.43431807e-01 -4.07471955e-02 -7.24927068e-01 -9.11509991e-01 -8.38422477e-01 -4.94777679e-01 -2.56178349e-01 9.51625526e-01 -1.10268879e+00 -7.06299245e-01 -1.01991668e-01 -1.32220328e+00 -1.09541200e-01 1.24001779e-01 5.48148990e-01 -3.71652782e-01 3.77189100e-01 -5.12177289e-01 -6.60678685e-01 3.43527198e-01 -9.17800784e-01 1.13302910e+00 2.23013803e-01 -6.12039089e-01 -9.58956599e-01 -4.90787268e-01 4.68478829e-01 -7.49358460e-02 -1.74007758e-01 1.11899018e+00 -4.89582777e-01 -1.05266476e+00 -1.33719042e-01 -6.45142019e-01 -8.25829804e-02 3.94207805e-01 2.23279044e-01 -4.15652782e-01 -1.53498966e-02 -5.07033885e-01 -3.11880648e-01 6.98153317e-01 1.41240031e-01 1.34371877e+00 -3.52932960e-01 -9.23301518e-01 1.29745081e-01 1.16847301e+00 2.95288354e-01 5.60554922e-01 2.58918703e-01 8.24649572e-01 7.33385921e-01 9.25335646e-01 2.77859181e-01 7.73817003e-01 8.56539369e-01 4.65473354e-01 -5.53537123e-02 -2.59350717e-01 -3.63190114e-01 5.28871566e-02 -2.88786590e-02 1.82390735e-01 -4.67401534e-01 -1.04328454e+00 8.78735542e-01 -1.83366287e+00 -1.04121506e+00 -1.79302990e-01 1.81922734e+00 7.25427926e-01 2.73194145e-02 -2.20605009e-03 -4.57241625e-01 8.31533670e-01 2.72999555e-01 -3.96024913e-01 -2.73841321e-01 2.29462944e-02 -4.39139605e-02 2.47189730e-01 3.71219307e-01 -1.25305009e+00 1.28011334e+00 6.80845451e+00 4.39833254e-01 -7.39675879e-01 -1.74709678e-01 4.99718964e-01 -1.03795141e-01 -4.53912079e-01 4.09155190e-01 -1.10975742e+00 1.81494087e-01 2.76731759e-01 1.13108195e-01 3.38878185e-01 8.15398633e-01 9.00704861e-02 -4.55876708e-01 -1.34014785e+00 1.10978222e+00 2.58692235e-01 -1.23905957e+00 4.70478475e-01 -1.87249482e-01 5.62472999e-01 -3.15177232e-01 1.14688516e-01 1.37014329e-01 4.18506891e-01 -1.18238902e+00 8.32845211e-01 2.88121819e-01 5.07747889e-01 -3.79633278e-01 8.74619633e-02 2.26500720e-01 -1.28928936e+00 -8.88014734e-02 -3.76438797e-01 -2.84898281e-01 3.09970260e-01 2.09824160e-01 -9.84614849e-01 3.57171781e-02 9.02804852e-01 9.64127183e-01 -5.53610861e-01 8.25313210e-01 -4.76839155e-01 1.58543274e-01 -4.25919771e-01 -1.95596740e-01 1.83077365e-01 3.24340258e-03 4.35514212e-01 1.02585614e+00 1.35103375e-01 2.53305018e-01 2.37574682e-01 9.80636299e-01 -1.87222138e-02 -7.17605203e-02 -8.69422257e-01 -1.42246783e-01 7.62894750e-01 1.12452579e+00 -9.28196847e-01 -4.94272202e-01 -8.97760868e-01 7.95445383e-01 5.59959471e-01 4.72421288e-01 -9.76859987e-01 -6.96657151e-02 9.23274338e-01 3.81373644e-01 4.98804927e-01 -5.05768716e-01 -8.30907375e-02 -9.81613040e-01 1.46606177e-01 -4.58657473e-01 5.34735143e-01 -1.35622323e+00 -1.38256109e+00 2.18615636e-01 4.94961351e-01 -1.21681762e+00 -1.11210734e-01 -6.91356540e-01 -5.11460304e-01 7.46345401e-01 -1.41694748e+00 -1.38078070e+00 -3.33762765e-01 5.17572343e-01 5.27011216e-01 2.78200865e-01 6.87184274e-01 2.43532434e-01 -3.03878307e-01 3.39156389e-01 -5.61898589e-01 1.31478474e-01 7.36463368e-01 -1.02426398e+00 4.70285296e-01 6.85204864e-01 5.19519091e-01 1.00540149e+00 7.48780847e-01 -7.34021068e-01 -1.01673353e+00 -8.89822245e-01 1.32420743e+00 -7.04333842e-01 1.06717849e+00 -4.52587157e-01 -9.34955299e-01 1.22442794e+00 1.49256095e-01 2.78714567e-01 5.88713527e-01 3.34388256e-01 -8.78966868e-01 6.28449842e-02 -7.00857759e-01 1.01931238e+00 1.24838829e+00 -7.21830666e-01 -7.06656098e-01 6.75623775e-01 6.07208967e-01 -4.00738806e-01 -4.92682189e-01 1.87746048e-01 5.86721182e-01 -8.86144698e-01 1.51883531e+00 -8.91893923e-01 6.80584669e-01 -3.83335948e-01 -6.20429777e-02 -9.49623168e-01 -2.20903769e-01 -8.89331028e-02 -3.21211219e-01 1.06020617e+00 3.87601048e-01 -3.87943536e-01 6.23852551e-01 9.64974582e-01 7.34437034e-02 -6.98589206e-01 -5.85320354e-01 -9.03956413e-01 -2.75477141e-01 -2.76175708e-01 4.89840478e-01 1.02470517e+00 1.74336970e-01 2.42745623e-01 -4.70644146e-01 2.96318620e-01 3.22929740e-01 3.33874851e-01 7.50666499e-01 -7.32467949e-01 -4.56546426e-01 -3.24783474e-01 -5.89032054e-01 -1.43995357e+00 1.86243787e-01 -6.67665303e-01 -7.40379766e-02 -1.75017715e+00 5.58282971e-01 -7.68903196e-01 -7.42267519e-02 7.85072803e-01 -3.74152482e-01 3.58193129e-01 2.24894211e-01 3.19928795e-01 -7.54513860e-01 8.76849294e-02 1.31317735e+00 -2.00168848e-01 3.29304710e-02 -2.22941473e-01 -6.26163304e-01 7.42502153e-01 6.13309741e-01 -3.35294604e-01 -6.67132378e-01 -6.98965847e-01 4.55327630e-01 -1.73285827e-02 8.47573340e-01 -4.84408408e-01 2.07112774e-01 -3.98284316e-01 4.39450681e-01 -7.25149214e-01 8.47095609e-01 -7.75271535e-01 7.39440694e-02 2.55477950e-02 -4.08843756e-01 9.83814150e-03 1.14923395e-01 8.13750803e-01 -3.21314424e-01 -7.24170208e-02 4.25941885e-01 -1.54310346e-01 -1.23220146e+00 2.44085863e-01 -2.55942255e-01 -1.91865236e-01 1.33422792e+00 -3.99662316e-01 -5.34614921e-01 -6.45379126e-01 -9.99020040e-01 4.90587473e-01 3.09029669e-01 8.48719895e-01 7.22421169e-01 -1.25299668e+00 -2.19755217e-01 -2.77175941e-02 6.06194079e-01 -4.62112390e-03 1.71679273e-01 4.90072787e-01 -3.63629490e-01 2.55484313e-01 -1.13395758e-01 -4.90183771e-01 -1.66280019e+00 8.29184651e-01 1.21644363e-01 8.21739361e-02 -7.53718436e-01 1.13424599e+00 5.82985640e-01 3.49998772e-02 3.13576967e-01 -2.10930869e-01 -3.99290264e-01 1.96110420e-02 4.22004879e-01 -2.09282830e-01 -5.93811393e-01 -9.01528776e-01 -6.37873113e-01 5.73630631e-01 -2.97603101e-01 1.78274065e-01 1.16253805e+00 -2.39473954e-01 -3.70133251e-01 4.24238294e-01 1.37847173e+00 -2.39305332e-01 -1.16748905e+00 -2.11406678e-01 -7.30305463e-02 -9.37305033e-01 -4.46705818e-01 -4.74181116e-01 -6.48061693e-01 8.22998703e-01 1.29691422e-01 1.06626913e-01 8.83800983e-01 8.26054454e-01 5.88026226e-01 3.24426830e-01 3.52956802e-01 -7.59984910e-01 5.24419725e-01 2.66115993e-01 8.73588979e-01 -1.38469112e+00 3.39082897e-01 -1.05868948e+00 -7.34523952e-01 9.61835742e-01 8.70917618e-01 -7.77208209e-02 7.37404943e-01 6.71181679e-02 -1.16963819e-01 -4.96225983e-01 -9.00142193e-01 -2.97908336e-01 4.85813469e-01 5.97749531e-01 4.37440753e-01 2.37079889e-01 -1.82263568e-01 6.18210919e-02 -4.26428020e-02 -3.38268846e-01 3.88765514e-01 8.87310982e-01 -3.65253299e-01 -1.13889658e+00 -2.95648187e-01 4.83543694e-01 -1.54084936e-01 -2.40142331e-01 -3.60042840e-01 9.89390016e-01 3.03975523e-01 9.47186708e-01 5.88942409e-01 -2.01553106e-01 1.41329899e-01 -2.16878980e-01 5.48381567e-01 -9.40405965e-01 -1.46732911e-01 -1.64350480e-01 2.30449408e-01 -5.14790773e-01 -6.54537797e-01 -5.20627260e-01 -1.39158964e+00 -1.65569320e-01 -1.86241359e-01 -3.14868599e-01 2.66476959e-01 8.39964986e-01 1.53924003e-01 1.35883763e-01 1.68328509e-01 -5.33891261e-01 -2.24057119e-03 -4.69208509e-01 -4.81113851e-01 9.96994972e-01 1.77029818e-01 -1.00342488e+00 -8.34456384e-02 3.11380953e-01]
[10.2926664352417, 1.592879056930542]
6104635e-8262-445d-9d06-7c2f4ff9b438
algorithmic-trading-in-a-microstructural
1705.01446
null
https://arxiv.org/abs/1705.01446v3
https://arxiv.org/pdf/1705.01446v3.pdf
Algorithmic trading in a microstructural limit order book model
We propose a microstructural modeling framework for studying optimal market making policies in a FIFO (first in first out) limit order book (LOB). In this context, the limit orders, market orders, and cancel orders arrivals in the LOB are modeled as Cox point processes with intensities that only depend on the state of the LOB. These are high-dimensional models which are realistic from a micro-structure point of view and have been recently developed in the literature. In this context, we consider a market maker who stands ready to buy and sell stock on a regular and continuous basis at a publicly quoted price, and identifies the strategies that maximize her P\&L penalized by her inventory. We apply the theory of Markov Decision Processes and dynamic programming method to characterize analytically the solutions to our optimal market making problem. The second part of the paper deals with the numerical aspect of the high-dimensional trading problem. We use a control randomization method combined with quantization method to compute the optimal strategies. Several computational tests are performed on simulated data to illustrate the efficiency of the computed optimal strategy. In particular, we simulated an order book with constant/ symmet-ric/ asymmetrical/ state dependent intensities, and compared the computed optimal strategy with naive strategies. Some codes are available on https://github.com/comeh.
['Huyên Pham', 'Côme Huré', 'Frédéric Abergel']
2017-05-03
null
null
null
null
['algorithmic-trading']
['time-series']
[-4.49363589e-01 -2.81315178e-01 -2.41716087e-01 2.38834117e-02 -4.06683236e-01 -8.35421324e-01 5.98949790e-01 1.44392192e-01 -4.72972393e-01 7.58774281e-01 -5.99460416e-02 -3.27951640e-01 -5.72940886e-01 -9.16322887e-01 -6.55476511e-01 -6.94780946e-01 -3.44720602e-01 1.31251812e+00 7.78825358e-02 -3.12503567e-03 7.03391254e-01 6.99662983e-01 -1.16852605e+00 -1.25005931e-01 5.39208531e-01 1.30264354e+00 4.45648059e-02 5.29632628e-01 -3.21405292e-01 9.62513626e-01 -3.67892891e-01 -4.88114029e-01 8.09539914e-01 -3.76141071e-01 -3.46799642e-01 2.02924326e-01 -6.21746063e-01 -5.20260155e-01 -7.95319080e-02 1.02788568e+00 2.00637549e-01 3.29469629e-02 1.07360959e+00 -1.17028964e+00 -3.82170767e-01 7.57671177e-01 -6.64205968e-01 7.04660773e-01 -2.54191160e-01 1.13566421e-01 1.21396303e+00 -4.80527610e-01 4.22431171e-01 1.08790398e+00 -4.54014651e-02 2.00528339e-01 -1.42342472e+00 -4.70317602e-01 -4.48395796e-02 7.33847916e-02 -1.00004423e+00 -1.40197620e-01 6.15007520e-01 -5.69808722e-01 4.39458877e-01 2.06026420e-01 9.00790274e-01 5.83334804e-01 1.00549138e+00 8.05755436e-01 1.53420770e+00 -2.01176882e-01 7.20490098e-01 6.26734421e-02 3.76266122e-01 -6.05813153e-02 4.25074905e-01 3.70909721e-01 -1.81284592e-01 -4.15049016e-01 9.99352038e-01 3.06061536e-01 3.53497207e-01 -3.91594738e-01 -9.19323325e-01 9.63824987e-01 -9.95662957e-02 2.27523088e-01 -8.50231886e-01 6.57027289e-02 -1.88370302e-01 5.51345050e-01 4.31939721e-01 2.66840488e-01 -1.51068792e-01 -9.12274420e-03 -9.67562437e-01 5.73897719e-01 1.36862385e+00 8.84010136e-01 2.44135857e-01 -2.87184536e-01 -4.23884660e-01 1.86540753e-01 3.11896592e-01 7.92221248e-01 -7.85613507e-02 -1.18731225e+00 4.16995615e-01 -1.76979721e-01 6.60254359e-01 -5.77660382e-01 -3.08698326e-01 -5.81933141e-01 -8.02750885e-01 1.09451927e-01 6.30654514e-01 -2.76056468e-01 -2.69816756e-01 1.25518656e+00 -1.02488399e-01 -1.74223427e-02 -2.01632571e-03 6.53135478e-01 -5.87583423e-01 9.76119399e-01 -4.56308931e-01 -8.81800950e-01 1.40582573e+00 -5.05893707e-01 -9.47629333e-01 4.87962484e-01 -4.22323542e-03 -9.58144367e-01 4.28720742e-01 6.64287925e-01 -1.44197047e+00 1.70497835e-01 -4.98999357e-01 6.20247662e-01 9.07364413e-02 -2.26768538e-01 9.66240913e-02 1.59410238e-01 -1.05092514e+00 7.24564195e-01 -9.25370753e-01 2.56950203e-02 9.02110562e-02 2.24047065e-01 6.32402837e-01 4.38498586e-01 -1.05267048e+00 6.42794907e-01 6.14806591e-03 1.51282102e-01 -1.07362545e+00 -4.79107797e-01 2.20573425e-01 3.54651362e-01 9.28951502e-01 -5.47587693e-01 1.70476258e+00 -6.41920507e-01 -1.44180667e+00 2.85791397e-01 2.39340767e-01 -8.14893901e-01 9.53985095e-01 -3.40626240e-02 -8.22962299e-02 1.43781811e-01 1.92715153e-01 -1.38187751e-01 7.43927479e-01 -9.88937974e-01 -7.44168043e-01 -4.08501953e-01 -1.07780069e-01 2.73199588e-01 3.39604884e-01 1.92340225e-01 6.56867996e-02 -8.17608058e-01 -8.07452872e-02 -9.78758872e-01 -3.73340517e-01 -6.99390709e-01 -4.40314710e-01 -1.80869997e-02 -4.28427868e-02 -4.51076716e-01 1.02738595e+00 -1.92983687e+00 -8.39913171e-03 5.34815371e-01 -2.47991625e-02 -5.62370837e-01 4.99715924e-01 1.12682223e+00 3.71976167e-01 3.00881535e-01 3.03366948e-02 -7.88475126e-02 4.39436495e-01 1.89647421e-01 -5.16821563e-01 5.32558441e-01 -4.61305648e-01 5.60944498e-01 -3.43925536e-01 -3.72939825e-01 -1.10916547e-01 -3.04363251e-01 -5.06533444e-01 1.19721420e-01 -3.02995503e-01 2.17143029e-01 -7.03524053e-01 5.45331776e-01 6.82694256e-01 -1.97062492e-01 3.52659196e-01 1.87637210e-01 -6.85942471e-01 -1.12172164e-01 -1.47796857e+00 5.73551953e-01 -2.33295247e-01 2.82893777e-02 4.35302407e-01 -8.05505216e-01 5.40804088e-01 1.87812865e-01 5.36409974e-01 -5.87204099e-01 4.54580069e-01 4.16541994e-01 1.24439299e-01 -6.44043088e-02 4.83440816e-01 -7.24570155e-01 -2.27895543e-01 9.76943851e-01 -3.89462382e-01 8.03428292e-02 5.38438082e-01 1.55550495e-01 8.82606864e-01 -5.15029848e-01 1.51536360e-01 -8.92653525e-01 9.55651179e-02 -5.53206615e-02 5.93225241e-01 9.52607691e-01 -2.70277634e-02 -1.40083674e-02 1.24143016e+00 -9.49726347e-03 -1.23057520e+00 -1.29108655e+00 -1.53828487e-01 5.49719214e-01 3.32475632e-01 3.04540128e-01 -7.26168394e-01 2.43439171e-02 4.17713761e-01 9.62827742e-01 -4.00344998e-01 5.50348818e-01 -3.38362664e-01 -9.31316733e-01 -1.92030713e-01 1.27999216e-01 4.90690023e-01 -1.00656176e+00 -6.83385968e-01 4.67919946e-01 2.76907206e-01 -6.88207865e-01 -5.48659027e-01 1.70633182e-01 -8.81908655e-01 -9.88105118e-01 -9.61961508e-01 -3.20966899e-01 5.11494994e-01 -2.97761321e-01 7.73569763e-01 -4.82358903e-01 1.82910949e-01 5.31595647e-01 5.95333129e-02 -3.47600609e-01 -4.15116996e-01 2.35169102e-02 2.67389208e-01 6.08090997e-01 -5.44087263e-03 -1.75557956e-01 -8.10282767e-01 4.51634973e-01 -1.14737582e+00 -1.83554620e-01 6.69305563e-01 5.65573454e-01 9.32702720e-01 4.45479900e-01 3.41290355e-01 -6.29097342e-01 1.01096284e+00 -4.54317540e-01 -1.44533265e+00 2.91667104e-01 -7.93888688e-01 4.28085685e-01 4.30612683e-01 -1.42196223e-01 -1.10951710e+00 -3.68844390e-01 4.40886110e-01 -3.43072206e-01 1.69195816e-01 2.96414584e-01 -4.91683371e-02 5.07194340e-01 -4.87482846e-01 2.54942358e-01 3.16234171e-01 -9.33456421e-01 1.13240823e-01 4.22203809e-01 1.36967227e-01 -6.03352368e-01 6.26402795e-01 6.11091316e-01 3.05474132e-01 -5.32460034e-01 -2.32710987e-01 -3.09043042e-02 -3.39250445e-01 -1.81262538e-01 7.40542352e-01 -2.99367309e-01 -1.35508597e+00 7.55240619e-01 -8.69260609e-01 -5.19944906e-01 -6.08463824e-01 6.82685316e-01 -1.04118204e+00 -5.07945307e-02 -1.18782139e+00 -1.32505512e+00 1.11265406e-01 -9.56971765e-01 5.11618793e-01 7.50750229e-02 2.45392278e-01 -9.74709332e-01 2.85977989e-01 1.15802653e-01 4.47211951e-01 -4.17854935e-02 1.04230130e+00 -1.04918957e+00 -1.24727881e+00 3.99296992e-02 2.29960591e-01 3.52640778e-01 -9.81506556e-02 -3.89271080e-02 -4.71577756e-02 -2.14226723e-01 6.75598919e-01 5.61274290e-01 4.70003068e-01 7.97698200e-01 5.73935509e-01 -7.05371261e-01 -3.29619855e-01 6.81992397e-02 1.52521801e+00 7.21871912e-01 1.23595320e-01 3.68086517e-01 -1.72915041e-01 8.48426044e-01 8.99537742e-01 9.79637980e-01 2.43513525e-01 6.07957602e-01 2.56230980e-01 5.41177154e-01 8.15836251e-01 -2.79720873e-01 2.16567203e-01 7.35593498e-01 5.30659296e-02 -4.34481502e-01 -8.24094713e-01 3.35783511e-01 -1.73933303e+00 -1.13928771e+00 7.94670135e-02 2.30652595e+00 4.95240390e-01 3.16542983e-01 3.91038656e-01 -1.81575686e-01 9.11783755e-01 -1.23782448e-01 -5.44533432e-01 -3.83450925e-01 -1.32120430e-01 -9.76564642e-03 1.14916754e+00 6.23421311e-01 -5.56379735e-01 4.87097949e-01 6.02934122e+00 9.29064393e-01 -8.25289547e-01 1.47340417e-01 9.57315981e-01 -6.00499153e-01 -3.31601113e-01 1.92965567e-01 -1.05762649e+00 9.82254028e-01 1.08781660e+00 -6.74901187e-01 6.48553252e-01 4.22823638e-01 6.09149933e-01 -3.64197791e-01 -9.99607384e-01 8.28093886e-01 -5.69623828e-01 -1.41202259e+00 -2.67796487e-01 8.84136081e-01 6.17823720e-01 -2.70121872e-01 4.47387815e-01 -1.51825070e-01 4.13217068e-01 -4.94184494e-01 1.00744474e+00 1.12085700e+00 5.85225485e-02 -1.00674534e+00 8.15810382e-01 6.25965774e-01 -9.06672478e-01 -2.92509824e-01 2.40548421e-02 -1.95557818e-01 7.89525986e-01 5.94927490e-01 -3.80716324e-01 4.03185487e-01 4.14640099e-01 1.52224258e-01 4.73768450e-02 9.45356667e-01 1.38925061e-01 5.32967567e-01 -7.02449381e-01 -4.23076302e-01 2.64196008e-01 -8.22174072e-01 5.55381894e-01 3.43845010e-01 5.93371391e-01 2.71290958e-01 -5.67502752e-02 1.10263693e+00 3.00469548e-02 2.06726447e-01 -2.45864555e-01 -2.27743268e-01 3.01896811e-01 8.13958287e-01 -1.36731231e+00 -3.56159091e-01 -1.67355686e-01 7.16201782e-01 -4.77666140e-01 4.01921570e-01 -6.46700025e-01 -1.10214494e-01 3.76447290e-01 5.63837171e-01 4.77166265e-01 -2.94770777e-01 -2.19517559e-01 -1.09759641e+00 -1.09827733e-02 -6.19468272e-01 3.65071774e-01 -1.34868383e-01 -1.51431072e+00 1.43168166e-01 4.17156965e-01 -9.76694345e-01 -4.73792106e-01 -2.94333041e-01 -3.95007700e-01 7.37284482e-01 -1.16395080e+00 -8.90583247e-02 7.81899869e-01 4.25633252e-01 3.87200952e-01 -1.59488708e-01 -1.86558366e-01 7.49404877e-02 -4.73946214e-01 -1.98653921e-01 1.04266417e+00 -1.61006734e-01 -5.58350459e-02 -1.36588001e+00 1.81653932e-01 5.48404098e-01 -1.49507383e-02 4.81624991e-01 8.48527491e-01 -1.02482522e+00 -1.42406440e+00 -4.50773358e-01 7.75412858e-01 -2.56683588e-01 1.12814474e+00 -3.53710651e-01 -6.69592500e-01 5.85314989e-01 4.59019363e-01 -5.17847061e-01 3.41353565e-01 -5.35476208e-01 6.15144372e-01 -3.84059876e-01 -1.08857810e+00 4.06831384e-01 4.91812915e-01 -6.46843091e-02 -4.96263206e-01 3.03586394e-01 1.54302731e-01 1.14722237e-01 -8.28612030e-01 -6.24447577e-02 4.11610365e-01 -1.07054031e+00 4.54495192e-01 -1.24989592e-01 -1.39310837e-01 6.01862371e-02 -1.44526377e-01 -1.05446994e+00 -1.49823755e-01 -1.06994784e+00 1.45066485e-01 1.28131616e+00 3.17291439e-01 -1.14043629e+00 5.46022236e-01 5.19014299e-01 6.24412477e-01 -6.85602069e-01 -1.40324807e+00 -1.17066169e+00 4.33929145e-01 -6.34497106e-02 7.85612822e-01 1.63627908e-01 -2.44832084e-01 4.74538878e-02 -3.08653474e-01 -3.93739864e-02 1.24941468e+00 5.19712031e-01 1.58794373e-01 -1.13697004e+00 -5.32482266e-01 -6.12367988e-01 2.67253965e-01 -1.07874656e+00 -3.90223302e-02 -6.29900753e-01 -7.86269009e-02 -1.12867582e+00 2.57116050e-01 -5.03649235e-01 -3.58230889e-01 -4.29706037e-01 7.87668288e-01 -4.76138741e-01 7.49841213e-01 8.40601087e-01 -5.06779611e-01 5.77947080e-01 1.07214534e+00 1.56587988e-01 -7.91569576e-02 6.14991009e-01 -4.22665060e-01 3.56864244e-01 9.32298899e-01 -5.16264379e-01 -1.43940195e-01 1.11594439e-01 3.64904404e-01 7.23628938e-01 2.26502180e-01 -5.24132609e-01 2.88609803e-01 -4.53825623e-01 -2.57409304e-01 -9.70506966e-01 1.32963359e-01 -9.11911845e-01 6.32343531e-01 8.40039909e-01 -6.05264306e-01 5.18513799e-01 -4.03639138e-01 8.06258261e-01 -1.54429927e-01 -4.58828688e-01 6.00483119e-01 -2.02421919e-01 -4.05447744e-02 3.38004053e-01 -7.47280061e-01 1.16293140e-01 1.37071538e+00 4.27366674e-01 8.12939089e-03 -7.09762871e-01 -9.31086957e-01 4.66748804e-01 5.07772148e-01 -5.25218993e-02 1.84350014e-01 -1.03726268e+00 -4.54345137e-01 -3.44469249e-02 -7.49184310e-01 -5.72935462e-01 1.81918904e-01 1.05978286e+00 -6.81748033e-01 6.53174579e-01 -1.84099153e-01 -3.70009452e-01 -6.72129929e-01 9.30060804e-01 4.39460963e-01 -6.28664076e-01 -1.48941875e-01 1.05274692e-01 2.59371907e-01 2.14636058e-01 -1.38773471e-01 -6.18173182e-01 -3.38062532e-02 5.65354109e-01 3.21313560e-01 8.78517866e-01 -3.00691694e-01 -3.42863858e-01 -9.75271463e-02 5.32760501e-01 -1.02124505e-01 -9.13565218e-01 1.17279875e+00 -3.98976028e-01 -3.06850165e-01 8.10829103e-01 6.77663982e-01 5.30135557e-02 -1.29636836e+00 -9.29829702e-02 3.93805385e-01 -3.75097126e-01 -1.90430209e-01 -3.70935649e-01 -1.06926179e+00 7.06693351e-01 3.43529075e-01 1.08351767e+00 6.95352495e-01 1.74762458e-01 5.35688758e-01 1.39242189e-03 6.09650433e-01 -1.28374267e+00 -1.73883602e-01 2.93089002e-01 7.65159369e-01 -4.85123426e-01 -3.71119469e-01 9.79532371e-04 -7.60782242e-01 8.03834975e-01 -2.25908518e-01 -5.52490115e-01 1.18848562e+00 6.03235006e-01 -2.22235277e-01 -7.20017403e-02 -1.03091276e+00 -1.51313841e-01 -4.11225408e-01 -1.72153845e-01 -1.03046529e-01 4.07214046e-01 -7.76381850e-01 7.38606155e-01 -1.41235128e-01 2.14339942e-01 8.88541937e-01 1.09234142e+00 -4.09588873e-01 -1.12278354e+00 -5.48002779e-01 6.64283216e-01 -9.26484466e-01 -7.44495913e-02 -1.34082690e-01 7.50842214e-01 -5.07809877e-01 6.92803800e-01 5.67609012e-01 2.40135506e-01 3.91584039e-01 6.85334057e-02 2.65784770e-01 -3.37745279e-01 -5.39680243e-01 7.72283435e-01 -3.78819376e-01 -2.39295125e-01 -3.72422002e-02 -1.18176341e+00 -1.04361832e+00 -8.18505287e-01 -3.58317979e-02 6.17194831e-01 4.63860661e-01 7.07046747e-01 2.62154013e-01 2.02451721e-01 8.47017467e-01 -5.46748102e-01 -1.59620333e+00 -6.31458342e-01 -1.63142729e+00 -1.26868993e-01 2.37013310e-01 -7.20990539e-01 -7.04023242e-01 -3.68251950e-01]
[4.849298477172852, 3.956382989883423]
f8e7d834-1ed3-47cf-bb81-25a649b0c857
chemical-detection-and-indexing-in-pubmed
null
null
https://biocreative.bioinformatics.udel.edu/media/store/files/2021/TRACK2_pos_03_BC7_submission_136.pdf
https://biocreative.bioinformatics.udel.edu/media/store/files/2021/TRACK2_pos_03_BC7_submission_136.pdf
Chemical detection and indexing in PubMed full text articles using deep learning and rule-based methods
Identifying chemicals in biomedical scientific literature is a crucial task for drug development research. The BioCreative NLM-Chem challenge promoted the development of automatic systems that can identify chemicals in full-text articles and decide which chemical concepts are relevant to be indexed. This work describes the participation of the BIT.UA team from the University of Aveiro, where we propose a three-stage automatic pipeline that individually tackles (i) chemical mention detection, (ii) entity normalization and (iii) indexing. We adopted a deep learning solution based on a biomedical BERT variant for chemical identification. For normalization we used a rule-based approach and a hybrid version that explores a dense retrieval mechanism. Similarly, for indexing we also followed two distinct approaches: a rule-based, and a TF-IDF based method. Our best official results are consistently above the official median and benchmark in the three subtasks, with respectively 0.8454, 0.8136, and 0.4664 F1-scores.
['Sérgio Matos', 'João Rafael Almeida', 'João Figueira Silva', 'Rui Antunes', 'Tiago Almeida']
2021-11-08
null
null
null
biocreative-vii-challenge-evaluation-workshop
['chemical-indexing']
['natural-language-processing']
[ 2.87756294e-01 2.03003377e-01 -1.90168217e-01 -6.22632615e-02 -9.40467358e-01 -8.60179722e-01 1.00218081e+00 1.12622988e+00 -7.78217673e-01 1.07700217e+00 2.86921620e-01 -3.51853251e-01 -4.21455503e-01 -7.60455668e-01 -7.88142145e-01 -8.88639867e-01 2.25402117e-01 7.58791983e-01 -1.09161705e-01 1.06928855e-01 3.38642359e-01 8.94146383e-01 -1.32435501e+00 4.28563178e-01 7.50895679e-01 8.26668680e-01 -5.72276711e-02 4.45042551e-01 -2.42971376e-01 6.97352171e-01 -5.10024965e-01 -3.45550776e-01 7.69007951e-02 -1.75358921e-01 -9.82834816e-01 -5.79437852e-01 1.78028837e-01 2.64754474e-01 -1.21343844e-02 9.29311037e-01 7.49666095e-01 4.39995676e-02 9.07937706e-01 -6.76832914e-01 -2.67199099e-01 6.86136067e-01 -3.45392168e-01 -1.59869883e-02 5.92399538e-01 -8.25939775e-02 8.69193196e-01 -8.81676853e-01 1.02959740e+00 9.88234878e-01 6.93623602e-01 4.63077277e-01 -1.20000041e+00 -7.45348930e-01 -1.98805183e-01 2.11612329e-01 -1.50689197e+00 -6.01284742e-01 1.98353864e-02 -7.62330234e-01 1.26694167e+00 3.29471469e-01 2.03277498e-01 9.68467057e-01 3.75462711e-01 2.27819115e-01 1.03871500e+00 -5.28346419e-01 6.12237215e-01 2.24026069e-01 1.62027314e-01 4.42073166e-01 6.77994967e-01 -2.23425671e-01 -4.91070509e-01 -3.05518210e-01 4.25467081e-02 -4.63969596e-02 -1.15077056e-01 1.82276696e-01 -1.15274823e+00 7.89453268e-01 1.54688075e-01 9.80030656e-01 -9.00071263e-01 -2.32380971e-01 5.27808011e-01 2.74546072e-02 5.23423314e-01 1.11355090e+00 -8.21884215e-01 3.65540087e-01 -1.23896039e+00 5.22799373e-01 1.12875664e+00 7.05083549e-01 3.92608047e-01 -7.17132866e-01 -6.73565030e-01 6.22688293e-01 3.56671095e-01 1.53057963e-01 5.10161638e-01 -5.45373619e-01 1.49696797e-01 6.32293880e-01 4.26925570e-02 -8.06708395e-01 -7.10790336e-01 -4.65462416e-01 -5.84112823e-01 -3.60350341e-01 3.20942611e-01 -1.87885925e-01 -1.13458180e+00 1.41688895e+00 3.68021458e-01 8.85232016e-02 1.23477772e-01 4.84486580e-01 1.23225725e+00 4.07242656e-01 8.76031578e-01 -2.55407989e-01 1.67504489e+00 -5.79798043e-01 -9.89529669e-01 4.28650588e-01 6.90747261e-01 -9.79184449e-01 2.29931742e-01 5.77251375e-01 -9.92348850e-01 -1.63064510e-01 -1.16410410e+00 -2.40361065e-01 -1.29243481e+00 2.52255678e-01 4.81097370e-01 5.64735711e-01 -1.05441916e+00 8.49524319e-01 -5.22747993e-01 -4.61815357e-01 4.60417241e-01 6.85361505e-01 -6.85536623e-01 -1.11971959e-01 -1.33252513e+00 1.11398995e+00 6.23290241e-01 -1.66091278e-01 -8.04423690e-01 -1.01562381e+00 -4.59293783e-01 1.16713062e-01 1.77818999e-01 -7.17774630e-01 9.19430435e-01 -1.82656869e-01 -1.13573718e+00 1.14094079e+00 -5.82026578e-02 -6.11580253e-01 4.55007315e-01 -1.54480696e-01 -3.97462785e-01 2.20902786e-01 5.17097533e-01 6.09582067e-01 1.24620907e-01 -8.86512101e-01 -6.71302855e-01 -5.64659953e-01 -1.44263610e-01 1.23938704e-02 -4.23454881e-01 1.45983815e-01 -4.38240856e-01 -4.82668996e-01 -3.46238554e-01 -8.32580507e-01 -3.73241544e-01 -4.91245925e-01 -6.56713724e-01 -4.42076325e-01 6.74841031e-02 -8.21205199e-01 1.28525043e+00 -1.61237800e+00 1.81663364e-01 3.47354710e-01 4.25311863e-01 3.75868231e-01 -1.75023917e-02 6.20379448e-01 -3.97892326e-01 4.45696235e-01 -4.62318882e-02 -9.66324955e-02 1.85806490e-02 -2.78676629e-01 -4.45109159e-02 4.19048965e-01 2.94326752e-01 7.10429072e-01 -1.06693769e+00 -5.18610001e-01 -9.09293070e-02 6.33804560e-01 -2.33373627e-01 -1.18536558e-02 -2.89354116e-01 1.90177202e-01 -5.86561143e-01 7.66149819e-01 5.19725144e-01 -1.28896758e-01 4.38487589e-01 -5.51899850e-01 -5.64930379e-01 4.10495043e-01 -9.36197877e-01 1.61104405e+00 -1.07041478e-01 1.36901051e-01 5.60454233e-03 -8.68909955e-01 7.13903606e-01 6.98335826e-01 9.67657268e-01 -5.87833226e-01 1.89711258e-01 5.22392213e-01 1.73438732e-02 -4.12295043e-01 3.50499600e-01 -1.30201846e-01 2.26953372e-01 -5.69875464e-02 5.45646846e-01 3.52542698e-01 7.33080268e-01 1.09454520e-01 1.50337958e+00 3.42716902e-01 6.27563179e-01 -7.27219582e-01 9.79897738e-01 1.97969481e-01 4.28543627e-01 5.41601956e-01 1.18507132e-01 2.11987823e-01 4.94515508e-01 -3.58717501e-01 -7.49110162e-01 -3.84300828e-01 -5.06089866e-01 9.73649204e-01 -4.06523436e-01 -5.07769108e-01 -1.02207458e+00 -6.02413237e-01 4.38767597e-02 5.92999935e-01 -9.00494337e-01 -1.72838792e-01 -3.09071958e-01 -1.10846472e+00 8.55388403e-01 8.65267683e-03 4.56655510e-02 -1.03486669e+00 -1.23208374e-01 4.88712043e-01 -1.49747264e-02 -9.88316774e-01 -8.68212432e-02 7.73267090e-01 -4.62704748e-01 -1.18123698e+00 -8.82082641e-01 -4.23649967e-01 2.91138530e-01 -3.82344246e-01 1.01281500e+00 -2.72403628e-01 -5.05772293e-01 -6.87089860e-02 -2.45394126e-01 -9.73158956e-01 -4.83152181e-01 4.86825854e-01 -8.13823938e-02 -1.95230782e-01 7.69499242e-01 -1.10341750e-01 -7.09483385e-01 -2.35825971e-01 -9.90603924e-01 -4.73858207e-01 1.03364575e+00 4.11153346e-01 8.64952624e-01 -2.21975341e-01 7.25631773e-01 -1.15275753e+00 6.70309365e-01 -7.27439046e-01 -5.56737781e-01 4.67610359e-01 -1.03182280e+00 2.65156776e-01 4.19952095e-01 -2.27592945e-01 -7.45282292e-01 6.43998623e-01 -5.64827561e-01 3.20393592e-02 -5.20771384e-01 6.61597371e-01 -2.77204454e-01 -6.86399043e-02 7.53232002e-01 -1.67998001e-01 -3.36147398e-01 -6.39645815e-01 3.57765287e-01 6.84183836e-01 2.40694836e-01 -5.30269802e-01 4.32501525e-01 1.08852483e-01 3.37691724e-01 -6.60690308e-01 -7.17246771e-01 -9.42484021e-01 -5.61663449e-01 1.79174989e-01 1.31451416e+00 -9.81057525e-01 -8.36379528e-01 1.37315020e-01 -1.29356575e+00 1.14847183e-01 -1.67520031e-01 4.20083880e-01 -7.90885910e-02 2.14908123e-01 -5.81630886e-01 -2.95047641e-01 -8.61735523e-01 -1.03406489e+00 1.20165372e+00 8.45364034e-02 -4.99048859e-01 -8.55831087e-01 5.94284058e-01 3.09941530e-01 2.19356313e-01 5.75792611e-01 1.06487632e+00 -1.50245082e+00 1.97661556e-02 -2.79406726e-01 -1.99073181e-01 -7.32135773e-02 2.06675649e-01 -8.22442397e-02 -1.20407927e+00 -3.22478637e-02 -2.33113274e-01 9.56334025e-02 9.63395596e-01 3.25872391e-01 8.65071714e-01 -2.70035625e-01 -7.73045659e-01 2.77603835e-01 1.45853901e+00 5.03694952e-01 6.74083292e-01 6.46243155e-01 6.42880857e-01 5.91360390e-01 4.42112297e-01 2.34933838e-01 8.93465281e-02 5.27088761e-01 1.01134442e-01 -2.53404260e-01 -1.85427368e-02 3.39676030e-02 -2.55173743e-02 2.69264698e-01 -1.82101995e-01 -2.17038304e-01 -1.12685502e+00 6.04014397e-01 -1.64815617e+00 -7.59465754e-01 -3.28580350e-01 2.01609230e+00 1.30583596e+00 -8.18923563e-02 -1.38420695e-02 1.09228052e-01 5.26225269e-01 -5.41134119e-01 -4.04018819e-01 -3.58392030e-01 -9.90310535e-02 8.34318876e-01 8.30641806e-01 1.65200770e-01 -1.47242105e+00 8.65733624e-01 5.76830101e+00 9.46887016e-01 -9.65866864e-01 1.16326027e-02 6.43782079e-01 2.06690416e-01 7.76480511e-02 -4.28408474e-01 -1.04759169e+00 3.31443489e-01 1.45875657e+00 -2.09647357e-01 3.17454413e-02 4.54787076e-01 1.06009245e-01 4.55626026e-02 -1.25237536e+00 5.47313750e-01 -1.54379860e-01 -1.73762226e+00 3.31800401e-01 3.83306473e-01 6.10627651e-01 2.59829104e-01 -2.69232810e-01 1.49475217e-01 1.43405214e-01 -1.19716787e+00 5.26757896e-01 7.20315635e-01 7.14221299e-01 -5.48860669e-01 8.78690302e-01 5.76717546e-03 -9.64046597e-01 1.51156723e-01 -1.24068424e-01 6.40540779e-01 -4.09196228e-01 8.85956109e-01 -8.43541801e-01 1.04840958e+00 6.67947173e-01 7.42929518e-01 -5.19863188e-01 1.15590286e+00 -4.93717864e-02 3.07162762e-01 -8.77046678e-03 4.03187657e-03 2.44573593e-01 1.35273606e-01 3.28257471e-01 1.89013898e+00 1.59630731e-01 -3.17125092e-03 -1.65282972e-02 7.53810525e-01 -3.78332525e-01 6.48189306e-01 -4.17605937e-01 -3.83420736e-01 5.07421672e-01 1.56175840e+00 -9.81931865e-01 -4.15679038e-01 -8.87539834e-02 6.59312487e-01 -8.79805833e-02 1.17434286e-01 -5.49245834e-01 -6.81611896e-01 4.79821980e-01 -4.96026613e-02 2.65481651e-01 4.21352625e-01 -1.34544909e-01 -7.87884533e-01 -5.40634155e-01 -9.99907076e-01 5.99663019e-01 -2.71682054e-01 -1.22825503e+00 6.44661725e-01 -1.09376937e-01 -8.51131499e-01 -1.67504683e-01 -8.19192290e-01 -3.14950906e-02 1.03420639e+00 -1.45577645e+00 -9.60666597e-01 1.36435568e-01 3.13317001e-01 6.07918166e-02 -1.53696224e-01 1.27942705e+00 8.36421490e-01 -6.21623039e-01 3.11721832e-01 2.53349036e-01 -3.74823436e-02 9.37045097e-01 -1.45952702e+00 6.84492290e-02 3.25273424e-01 -6.42055348e-02 1.06526649e+00 7.49835312e-01 -6.60731614e-01 -1.31512451e+00 -1.39651072e+00 1.47656238e+00 -3.75829995e-01 6.37331963e-01 -1.90001115e-01 -8.43418598e-01 2.30716854e-01 3.31408143e-01 -4.89548713e-01 1.10825193e+00 -6.78864643e-02 -2.50045329e-01 5.10986596e-02 -1.34920382e+00 1.95384651e-01 5.74051261e-01 -3.47760499e-01 -4.56241578e-01 7.77357697e-01 5.54192603e-01 -2.20924780e-01 -1.45934939e+00 2.97720999e-01 5.89547515e-01 -2.15114832e-01 1.01493287e+00 -7.40365148e-01 2.76109129e-01 -4.37059015e-01 1.07208878e-01 -9.27811265e-01 -5.35399854e-01 -4.48299944e-01 4.00188416e-02 1.32659400e+00 7.31352806e-01 -4.46458519e-01 3.20944190e-01 4.50549215e-01 -5.08355685e-02 -6.94461942e-01 -8.02809060e-01 -5.02547681e-01 3.53475660e-01 2.06138834e-01 5.85818887e-01 1.20087624e+00 -2.84236167e-02 7.25502968e-01 2.67313451e-01 -1.13446787e-01 3.14611882e-01 -2.51709402e-01 1.38944715e-01 -1.62272406e+00 8.71293023e-02 -7.62745321e-01 -2.76494354e-01 -1.99938826e-02 1.50175542e-01 -1.16927600e+00 2.26152912e-02 -1.81043935e+00 4.38774407e-01 5.93800582e-02 -7.80484021e-01 7.92674303e-01 -4.31404971e-02 1.29627764e-01 -3.26396376e-01 1.76635578e-01 -5.76933086e-01 -2.04031676e-01 4.43139404e-01 -2.84095109e-01 -9.27814841e-02 -4.53154057e-01 -1.02480507e+00 3.60507816e-01 7.59401023e-01 -7.96711683e-01 1.17063135e-01 3.58311944e-02 4.40980434e-01 -4.07585144e-01 -1.02472551e-01 -9.17931557e-01 3.56507927e-01 1.06180813e-02 5.38058400e-01 -4.77324754e-01 -1.54254749e-01 -6.25455976e-01 4.83902812e-01 8.31158876e-01 -6.00078225e-01 -1.80295736e-01 5.07999003e-01 4.21694338e-01 -5.87966070e-02 -3.21749181e-01 6.25919938e-01 -2.94680715e-01 -2.23907918e-01 2.16294840e-01 -5.41334033e-01 -3.72711360e-01 8.64121258e-01 1.82361975e-01 -3.95411164e-01 3.11863393e-01 -8.55916858e-01 8.64275768e-02 2.13568043e-02 1.53978914e-01 1.03239797e-01 -9.64696527e-01 -8.75267506e-01 -4.35993850e-01 2.79432803e-01 -3.93969327e-01 -2.25743473e-01 9.11179543e-01 -5.77254832e-01 9.94831324e-01 -3.10653523e-02 -2.12189913e-01 -1.27081680e+00 6.19424641e-01 3.90594095e-01 -8.07296276e-01 -6.91341236e-02 6.45833552e-01 3.70977260e-02 -3.37658226e-01 3.11202854e-01 -2.58990347e-01 -8.25347126e-01 6.68537021e-01 6.51141703e-01 4.17324156e-01 9.37022924e-01 -6.76059246e-01 -6.96381390e-01 4.68362629e-01 -2.66530067e-01 9.89238918e-02 1.58991539e+00 5.18824875e-01 -5.55496812e-01 1.48093477e-01 1.25368178e+00 -7.39534721e-02 -3.10303450e-01 8.55912864e-02 7.60977924e-01 4.73461181e-01 3.35666686e-01 -1.46557403e+00 -7.64062941e-01 5.27350843e-01 6.45844400e-01 1.32576481e-01 9.29149985e-01 -1.40203699e-01 3.85715514e-01 6.50383294e-01 -1.41277969e-01 -1.07775378e+00 -6.81896865e-01 4.72374350e-01 9.03564632e-01 -7.98349679e-01 4.72712755e-01 -3.24722975e-01 -2.34107319e-02 1.11573160e+00 -4.22256105e-02 2.69120365e-01 6.14758193e-01 2.88406670e-01 -1.04857482e-01 -5.90261400e-01 -7.63247132e-01 -3.47710520e-01 6.98525310e-01 2.13927954e-01 1.08581066e+00 -2.75729708e-02 -1.05369604e+00 7.32719660e-01 2.94594288e-01 1.99743718e-01 8.84553492e-02 8.55898082e-01 -1.33206353e-01 -1.47923291e+00 -2.52209544e-01 4.63118136e-01 -1.26360273e+00 -4.65553582e-01 -1.03318322e+00 7.30082870e-01 4.21298444e-01 1.03096414e+00 -5.22622943e-01 -2.68658072e-01 6.27925754e-01 3.99348378e-01 3.98240089e-01 -7.26830065e-01 -1.29976583e+00 2.82183737e-01 1.85757667e-01 -5.70464194e-01 -6.71826959e-01 -7.38017797e-01 -1.35978687e+00 8.84919912e-02 -1.90596849e-01 5.65842807e-01 1.01508093e+00 8.34514201e-01 6.40542388e-01 8.07493210e-01 1.57106161e-01 -5.50083876e-01 -1.27289578e-01 -1.04540384e+00 -2.71511316e-01 1.53203353e-01 1.11175440e-01 -4.29205179e-01 -5.06616943e-02 2.20289171e-01]
[8.509193420410156, 8.733352661132812]
098072cd-02df-4afe-97c5-b6adb7751526
identifying-trades-using-technical-analysis
2304.09936
null
https://arxiv.org/abs/2304.09936v1
https://arxiv.org/pdf/2304.09936v1.pdf
Identifying Trades Using Technical Analysis and ML/DL Models
The importance of predicting stock market prices cannot be overstated. It is a pivotal task for investors and financial institutions as it enables them to make informed investment decisions, manage risks, and ensure the stability of the financial system. Accurate stock market predictions can help investors maximize their returns and minimize their losses, while financial institutions can use this information to develop effective risk management policies. However, stock market prediction is a challenging task due to the complex nature of the stock market and the multitude of factors that can affect stock prices. As a result, advanced technologies such as deep learning are being increasingly utilized to analyze vast amounts of data and provide valuable insights into the behavior of the stock market. While deep learning has shown promise in accurately predicting stock prices, there is still much research to be done in this area.
['Prof. Pramila M. Chawan', 'Nirmit Deliwala', 'Meet Parekh', 'Mann Doshi', 'Aayush Shah']
2023-04-12
null
null
null
null
['stock-market-prediction']
['time-series']
[-7.60105491e-01 -5.27899027e-01 -6.00241601e-01 -5.11510558e-02 -1.53273612e-01 -5.85039556e-01 2.97234356e-01 3.17455590e-01 -3.55242133e-01 5.62963605e-01 2.64960587e-01 -7.37041891e-01 1.25068560e-01 -1.07105744e+00 -4.51239124e-02 -4.87188339e-01 -4.04226296e-02 1.90858662e-01 7.16790408e-02 -2.34697998e-01 6.71135962e-01 8.02677333e-01 -9.39341486e-01 -3.64127904e-01 5.63237607e-01 1.46143997e+00 -1.12325348e-01 1.04426794e-01 -5.06998122e-01 1.15235472e+00 -2.25951418e-01 -5.53812623e-01 6.33705258e-01 -1.81610256e-01 -1.04866773e-01 -2.13439912e-01 -4.41781759e-01 -7.68632650e-01 -1.49205908e-01 1.14037812e+00 1.29050184e-02 -7.01596364e-02 3.81969392e-01 -7.97165573e-01 -4.62820292e-01 4.85140920e-01 -5.92949092e-01 7.13269114e-01 -2.84591585e-01 9.68752056e-02 1.49281490e+00 -5.07923007e-01 -7.20253512e-02 6.08105004e-01 1.53267428e-01 1.04872659e-02 -9.38810945e-01 -1.03779519e+00 2.45324984e-01 1.27123594e-01 -7.59814501e-01 -9.95843336e-02 7.82166839e-01 -7.13580310e-01 7.38162756e-01 -6.06326154e-03 9.28192496e-01 3.54695708e-01 6.94267333e-01 5.37379503e-01 8.54259133e-01 -3.13672945e-02 2.24907592e-01 1.44875899e-01 -2.76329797e-02 -5.43836178e-03 5.87270021e-01 2.77998894e-01 -3.02949607e-01 1.71207618e-02 8.28665614e-01 4.01682585e-01 -2.12502591e-02 1.14051802e-02 -7.99098969e-01 1.05671263e+00 4.60345596e-01 4.69911605e-01 -7.24647462e-01 7.43355229e-02 1.46864146e-01 5.76094925e-01 4.03529197e-01 6.46529794e-01 -3.67458403e-01 -4.18675959e-01 -8.63490403e-01 7.03543186e-01 7.98426092e-01 -1.17308609e-01 2.83029556e-01 5.48228025e-01 4.56919760e-01 3.42485994e-01 2.52771854e-01 5.65768898e-01 5.60255647e-01 -8.24968815e-01 5.99470556e-01 7.75903046e-01 4.92749035e-01 -1.20511532e+00 -2.18349949e-01 -7.03658700e-01 -6.06626749e-01 7.40170717e-01 4.80271667e-01 -1.47682846e-01 -3.37060899e-01 1.25270617e+00 -1.60471588e-01 -9.90686268e-02 -6.99119791e-02 7.64937699e-01 -2.62706012e-01 9.15683925e-01 -1.43238544e-01 -1.01830989e-01 9.36638117e-01 -2.50943631e-01 -5.13562858e-01 -4.05589432e-01 2.68729180e-01 -6.77954793e-01 4.09274876e-01 2.89306045e-01 -9.65145528e-01 -2.10785624e-02 -1.06836748e+00 5.20655930e-01 -2.56408453e-01 -4.98769760e-01 7.09507406e-01 2.79144436e-01 -4.73975271e-01 7.99494386e-01 -9.51074243e-01 7.37996817e-01 4.82108116e-01 3.28141868e-01 1.45198509e-01 3.05406809e-01 -1.34584546e+00 1.24843109e+00 4.78598654e-01 2.17380121e-01 -3.28635097e-01 -6.75329447e-01 -5.01212239e-01 5.07059395e-01 4.81401145e-01 -6.10602833e-02 1.46431088e+00 -6.95962131e-01 -9.58992362e-01 7.57551715e-02 3.66974205e-01 -1.03382337e+00 5.36545396e-01 -1.68513730e-01 -2.19967857e-01 -2.06432864e-01 -1.07357927e-01 -2.11995140e-01 4.95128363e-01 -4.87899363e-01 -1.03868961e+00 -5.54141283e-01 -8.97462964e-02 7.64738172e-02 -4.27210271e-01 2.74960458e-01 4.74366784e-01 -1.01138949e+00 2.84638584e-01 -7.34468341e-01 -3.31088185e-01 -3.26829344e-01 -7.33660087e-02 8.39709491e-02 4.80295599e-01 -9.51616347e-01 1.25641382e+00 -1.70243394e+00 -4.08165067e-01 3.49117786e-01 2.00186834e-01 3.40117842e-01 5.02212346e-01 5.69611609e-01 -1.45062909e-01 3.68745029e-01 -8.74606967e-02 1.48059845e-01 4.69576009e-02 -1.40594974e-01 -7.57814467e-01 2.34596774e-01 3.86856496e-01 9.12387073e-01 -3.87921959e-01 3.09608191e-01 3.95024359e-01 2.86760721e-02 -1.19878665e-01 2.09682181e-01 -3.69303912e-01 1.22101465e-02 -8.30327213e-01 6.65765047e-01 3.33222002e-01 -3.05202097e-01 -4.68867980e-02 4.70708251e-01 -4.98152941e-01 5.63122034e-01 -1.14653873e+00 2.60552347e-01 -2.74172664e-01 7.27612972e-01 -6.48150817e-02 -1.21990561e+00 9.77478206e-01 2.93060690e-01 5.69056511e-01 -1.10893869e+00 2.89660573e-01 4.69659418e-01 3.15800667e-01 -4.20837291e-02 4.80038792e-01 -8.54971945e-01 6.32925779e-02 8.99275720e-01 -8.38050604e-01 1.90789476e-01 1.67624414e-01 -1.64126381e-01 8.21445644e-01 -4.36508417e-01 4.72176582e-01 3.37603651e-02 7.93704093e-02 -1.20281786e-01 8.49000752e-01 2.88844872e-02 -5.10439314e-02 2.22401116e-02 8.66670012e-01 -8.25237215e-01 -9.53510463e-01 -7.50924468e-01 8.03700183e-03 3.71020526e-01 -4.11750853e-01 3.97404462e-01 -1.30909503e-01 -2.67025769e-01 7.45065928e-01 7.03173041e-01 -4.57818866e-01 7.46382549e-02 -3.34913373e-01 -8.88711214e-01 -2.51880676e-01 8.21561933e-01 5.51422119e-01 -9.51304376e-01 -9.39396441e-01 5.72626770e-01 3.34238350e-01 -8.78397942e-01 -8.22753534e-02 3.35199609e-02 -8.64142001e-01 -1.25485945e+00 -7.84509897e-01 -4.17781137e-02 2.48667836e-01 1.82252377e-01 9.73444879e-01 -5.01905009e-02 8.83919224e-02 -1.97710991e-01 -1.96206681e-02 -9.22876954e-01 -3.77894670e-01 5.55001386e-02 -9.14412588e-02 3.16002071e-02 3.27924967e-01 -5.49644053e-01 -6.06773973e-01 9.34672728e-02 -7.50729740e-01 -1.76567242e-01 4.27769691e-01 6.42453015e-01 2.29340807e-01 7.91393280e-01 1.10390651e+00 -5.42522788e-01 7.50295997e-01 -5.98006725e-01 -1.59897840e+00 6.61729127e-02 -1.02440119e+00 8.45576227e-02 4.85386997e-01 5.49417324e-02 -1.15279675e+00 -4.30341452e-01 -6.49511218e-02 -7.96736479e-02 3.90555799e-01 1.17310119e+00 1.00311175e-01 1.63124472e-01 -2.74790794e-01 6.45552948e-02 1.17915183e-01 -6.34277701e-01 -3.20252806e-01 2.02047125e-01 2.88382053e-01 -2.98517179e-02 9.95853424e-01 2.13044301e-01 1.48817196e-01 -4.55220431e-01 -7.70708025e-01 -2.25101352e-01 -3.86013031e-01 -1.16521209e-01 6.68537676e-01 -9.05047417e-01 -5.31998277e-01 6.35890722e-01 -6.62822545e-01 -3.34772617e-02 -1.09646274e-02 5.49473047e-01 7.82172680e-02 -8.65180790e-02 -7.17959404e-01 -1.18974936e+00 -1.93406269e-01 -1.00737631e+00 -1.22161202e-01 4.52445358e-01 -3.02911311e-01 -1.25544429e+00 1.55382715e-02 4.66151267e-01 6.34151459e-01 4.47345316e-01 9.70241785e-01 -8.05580378e-01 -1.15871131e+00 -9.90884364e-01 -1.57443479e-01 5.89646101e-01 3.86834264e-01 1.26894370e-01 -4.02285844e-01 3.22100408e-02 3.97523671e-01 -6.12032637e-02 8.92541945e-01 5.42779684e-01 5.51727295e-01 -3.78555566e-01 2.33291745e-01 1.93234652e-01 1.24583924e+00 7.84418166e-01 4.17649835e-01 8.66932392e-01 3.05666566e-01 6.91467643e-01 5.94761431e-01 7.81397641e-01 5.08347571e-01 2.21976429e-01 5.84267259e-01 3.19874883e-01 8.31749678e-01 -1.85357153e-01 1.43157199e-01 5.86006403e-01 3.31755728e-02 2.00469598e-01 -1.17550623e+00 2.89827108e-01 -1.64911842e+00 -1.39064717e+00 2.98003167e-01 2.17565513e+00 4.90669876e-01 7.70860255e-01 3.55060786e-01 5.25576174e-01 3.88199508e-01 3.07217956e-01 -8.30385208e-01 -2.19331637e-01 -2.29977891e-01 -9.15299505e-02 6.60394490e-01 1.50216833e-01 -8.61435235e-01 5.99074125e-01 5.85456705e+00 1.82794452e-01 -1.47412586e+00 -7.41230488e-01 1.17118430e+00 2.94785481e-03 -5.16899705e-01 -1.08300559e-01 -8.88527930e-01 6.80201411e-01 7.02680767e-01 -7.88743317e-01 2.77996421e-01 9.19552326e-01 5.46916604e-01 -3.41338128e-01 -5.36680281e-01 4.90245461e-01 -6.44890010e-01 -1.67585421e+00 -2.83277571e-01 5.57692349e-01 5.58789551e-01 -1.48421571e-01 4.50394779e-01 1.70294531e-02 3.90758574e-01 -1.05368853e+00 6.98751807e-01 5.89598835e-01 -1.70658588e-01 -1.19557583e+00 9.29016292e-01 5.22817791e-01 -1.24073315e+00 -5.72625756e-01 -3.98884922e-01 -7.81630993e-01 1.97567433e-01 7.99089134e-01 -4.37102973e-01 1.91032924e-02 4.85679120e-01 6.14260912e-01 -1.35191873e-01 1.04414392e+00 -1.82959750e-01 6.15282476e-01 -1.90281779e-01 -8.43854845e-02 4.07287687e-01 -6.61477149e-01 6.03141263e-02 1.69059768e-01 4.33253825e-01 2.40183949e-01 -1.11224644e-01 8.69993806e-01 -2.06252962e-01 6.17158413e-02 -4.39359665e-01 -7.90815175e-01 4.21231985e-01 8.06084514e-01 -8.12866390e-01 -6.78688381e-03 -7.46726096e-01 1.19610049e-01 3.60520445e-02 5.67843504e-02 -3.15524876e-01 -1.78633798e-02 1.10676777e+00 3.82723689e-01 2.04789326e-01 -5.96831262e-01 -6.37184381e-01 -1.09744728e+00 2.36445025e-01 -8.02902102e-01 4.29896861e-01 -1.14085510e-01 -1.00725889e+00 -8.87074694e-02 -3.20288062e-01 -1.00550437e+00 -6.52748704e-01 -6.12559080e-01 -9.70651209e-01 1.00832903e+00 -2.00317717e+00 -2.43866444e-01 3.88321728e-01 -8.92829448e-02 2.75820285e-01 -4.81333256e-01 3.33793133e-01 -2.56609052e-01 -8.05527210e-01 -1.39348000e-01 6.23746097e-01 5.56404471e-01 -3.79121751e-02 -1.14070702e+00 7.04088390e-01 9.43774760e-01 2.77659029e-01 3.14372808e-01 2.33171597e-01 -8.64458919e-01 -1.26530623e+00 -6.37279034e-01 7.87889063e-01 -1.12126566e-01 1.24164581e+00 1.86841428e-01 -1.13441765e+00 5.74760675e-01 -8.68441537e-02 -3.06081027e-01 8.23675811e-01 -9.45406109e-02 -2.17651457e-01 -4.62071389e-01 -6.49089813e-01 5.56955159e-01 -2.66696751e-01 -2.89553612e-01 -4.91960227e-01 -3.00955266e-01 3.28385115e-01 3.91809940e-02 -8.32820714e-01 8.78682658e-02 6.88434124e-01 -1.16405487e+00 7.85928369e-01 -3.78261238e-01 3.53104621e-01 1.97475925e-01 6.83744177e-02 -1.31329298e+00 -2.60916501e-01 -3.86508226e-01 -7.13163316e-02 1.11179435e+00 5.25268137e-01 -1.01713896e+00 1.06550479e+00 1.53941035e+00 4.33611572e-01 -9.23547029e-01 -8.77627730e-01 -6.77393198e-01 4.09250021e-01 -6.25645697e-01 1.06591856e+00 8.18586051e-01 -2.47382969e-02 -2.08167434e-01 -4.09252286e-01 -5.66679910e-02 7.57121623e-01 6.21372342e-01 4.22162741e-01 -1.35500300e+00 -6.12271130e-02 -1.04836702e+00 -1.82611570e-01 -4.38344061e-01 2.72503555e-01 -3.92789871e-01 -7.04871237e-01 -1.37503529e+00 -1.48353502e-01 -3.92275512e-01 -8.47378373e-01 2.25403905e-01 -1.37139663e-01 -1.56025380e-01 5.12770832e-01 4.45109874e-01 2.25367337e-01 5.30888259e-01 9.68504727e-01 2.24622339e-02 -9.79682580e-02 6.95995152e-01 -9.04262364e-01 8.65916193e-01 1.38661051e+00 -1.40163213e-01 -8.79344419e-02 -1.66764021e-01 7.09761918e-01 3.78630459e-01 1.63541704e-01 -6.39248788e-01 2.02977727e-03 -8.15690875e-01 5.81393600e-01 -8.12475145e-01 1.07493855e-01 -7.71009445e-01 1.15877137e-01 7.31213093e-01 -2.09772617e-01 6.65240288e-01 1.00591674e-01 2.96977013e-01 -6.43592000e-01 -1.86142445e-01 6.48555696e-01 -3.29528511e-01 -6.56340241e-01 3.87376696e-01 -6.15904748e-01 -5.69152739e-03 1.15081263e+00 9.25235301e-02 -7.42074102e-03 -7.57569194e-01 -2.00934604e-01 5.65447152e-01 5.49650609e-01 4.34353948e-01 5.28846920e-01 -1.16703594e+00 -6.47542000e-01 1.37147605e-01 -4.18659955e-01 -2.24584892e-01 8.41022953e-02 2.50387192e-01 -6.47159815e-01 6.84824109e-01 -1.63108572e-01 2.95446724e-01 -6.00972176e-01 2.89647728e-01 5.15050590e-01 -4.29058582e-01 -5.75632513e-01 6.65562153e-01 3.14749405e-02 5.95149755e-01 1.52523726e-01 -3.48435581e-01 -2.71349162e-01 6.39040947e-01 1.08283699e+00 5.25595129e-01 -5.80222383e-02 -4.46522027e-01 -1.12670682e-01 2.58387208e-01 -2.54918009e-01 4.62694047e-03 1.68944824e+00 1.22992262e-01 -7.20416522e-03 5.35434484e-01 7.66130507e-01 -1.45843208e-01 -1.46208358e+00 -9.92608890e-02 7.36049592e-01 -6.81425512e-01 4.22880560e-01 -4.66282904e-01 -1.54391646e+00 1.07802343e+00 5.80217950e-02 4.39105958e-01 8.28898370e-01 -4.61502314e-01 1.18884969e+00 2.55118042e-01 1.32444903e-01 -1.23522747e+00 1.57272130e-01 1.70590222e-01 6.54272079e-01 -1.34599829e+00 7.75033683e-02 3.83684278e-01 -6.79790139e-01 1.09209907e+00 1.27408057e-01 -2.20359713e-01 1.06178927e+00 4.67024863e-01 4.41971958e-01 2.06589267e-01 -6.79875374e-01 3.63012627e-02 1.38890386e-01 -4.05854918e-02 3.57927173e-01 8.68120119e-02 -3.37475613e-02 7.55995274e-01 -3.47069144e-01 -1.00695580e-01 6.33203566e-01 9.72189963e-01 -7.49706566e-01 -1.21428442e+00 -4.00523156e-01 9.89964843e-01 -1.05240214e+00 -3.18572074e-02 -1.76008940e-01 8.43666434e-01 -6.40373826e-01 5.65805733e-01 1.81820512e-01 -1.86857074e-01 2.70560026e-01 1.52633950e-01 -1.87939987e-01 -4.79547054e-01 -4.02183592e-01 7.11433366e-02 -1.85105085e-01 -1.88740179e-01 1.90374061e-01 -1.10477614e+00 -1.24406338e+00 -6.38437331e-01 -1.75119609e-01 1.33587599e-01 6.30056560e-01 1.01228225e+00 2.97352690e-02 1.85016260e-01 1.07287133e+00 -5.01140118e-01 -1.26944661e+00 -3.16007257e-01 -1.09271979e+00 -1.54849673e-02 3.89337420e-01 -6.96798980e-01 -4.08045053e-01 -4.67814654e-01]
[4.481984615325928, 4.196460247039795]
b3bccf0c-17d7-4403-b8ff-207005039fc3
multi-crossre-a-multi-lingual-multi-domain
2305.10985
null
https://arxiv.org/abs/2305.10985v1
https://arxiv.org/pdf/2305.10985v1.pdf
Multi-CrossRE A Multi-Lingual Multi-Domain Dataset for Relation Extraction
Most research in Relation Extraction (RE) involves the English language, mainly due to the lack of multi-lingual resources. We propose Multi-CrossRE, the broadest multi-lingual dataset for RE, including 26 languages in addition to English, and covering six text domains. Multi-CrossRE is a machine translated version of CrossRE (Bassignana and Plank, 2022), with a sub-portion including more than 200 sentences in seven diverse languages checked by native speakers. We run a baseline model over the 26 new datasets and--as sanity check--over the 26 back-translations to English. Results on the back-translated data are consistent with the ones on the original English CrossRE, indicating high quality of the translation and the resulting dataset.
['Barbara Plank', 'Rob van der Goot', 'Sampo Pyysalo', 'Filip Ginter', 'Elisa Bassignana']
2023-05-18
null
null
null
null
['relation-extraction']
['natural-language-processing']
[-2.99167901e-01 2.60549992e-01 -7.06481338e-01 -1.35745555e-01 -1.30130816e+00 -8.90844166e-01 6.72710180e-01 -7.50142187e-02 -5.76904595e-01 1.45654416e+00 5.50284505e-01 -4.20709431e-01 1.53192624e-01 -6.80549562e-01 -7.01208055e-01 6.46210238e-02 1.81168765e-01 7.62767494e-01 7.79716447e-02 -5.54593623e-01 -3.96001458e-01 1.10249355e-01 -6.02676570e-01 5.72948158e-01 8.48773718e-01 3.52918267e-01 -5.54524437e-02 3.21971834e-01 1.60397366e-02 7.06148446e-01 -4.04587716e-01 -1.28154504e+00 1.66908428e-01 -4.73676950e-01 -1.18416154e+00 -1.78082466e-01 3.38236898e-01 1.25080898e-01 -2.60877311e-01 8.80357265e-01 4.87526178e-01 -3.10794890e-01 4.42804456e-01 -8.42207253e-01 -1.11051035e+00 1.25749934e+00 -4.60844040e-01 3.49854678e-01 7.53959537e-01 -6.39786899e-01 1.25428760e+00 -1.33523095e+00 1.30862296e+00 1.14485466e+00 8.69630456e-01 4.55152601e-01 -1.05419600e+00 -6.84918702e-01 -3.16033959e-01 1.03291653e-01 -1.70618331e+00 -8.19601774e-01 1.92212537e-01 -1.65342435e-01 1.82831538e+00 2.23042756e-01 2.03122750e-01 1.25558722e+00 3.94076526e-01 3.20659339e-01 1.25802088e+00 -9.40340221e-01 -3.86756927e-01 4.65428054e-01 -1.61147550e-01 4.80896801e-01 4.80315477e-01 -1.28775209e-01 -7.47569621e-01 -3.51199433e-02 3.01324576e-01 -7.75153399e-01 -1.60328686e-01 2.08562985e-01 -1.38265383e+00 4.28850770e-01 -1.81035578e-01 6.24629200e-01 -2.64492959e-01 -5.84732890e-01 6.53378189e-01 7.27743804e-01 9.37366247e-01 5.69182873e-01 -1.33818829e+00 -2.34507918e-01 -7.02562928e-01 5.01047894e-02 1.11926186e+00 1.52927577e+00 5.85382700e-01 -3.03972572e-01 3.62341888e-02 1.07624543e+00 7.47894719e-02 6.48392320e-01 6.96609974e-01 -3.80136400e-01 1.43997407e+00 7.18104362e-01 -1.00605980e-01 -8.11666250e-01 -3.12419292e-02 -3.83769244e-01 -8.84428561e-01 -5.77333331e-01 -2.30371002e-02 -4.55976248e-01 -3.88316065e-01 1.51781511e+00 5.22133224e-02 -5.77722728e-01 7.67146826e-01 1.86795548e-01 1.19123256e+00 4.42844123e-01 4.87524830e-02 -3.81914943e-01 1.40685868e+00 -1.10164499e+00 -8.74321401e-01 -6.06316030e-01 8.65550280e-01 -1.05584550e+00 9.78683352e-01 2.51340568e-01 -8.94375384e-01 -3.55838716e-01 -9.44077194e-01 -3.96030664e-01 -8.00144434e-01 6.88596368e-01 4.23213214e-01 4.21565205e-01 -8.85488808e-01 3.48818511e-01 -4.37753737e-01 -6.56081021e-01 -1.08227879e-01 6.47633299e-02 -1.07130408e+00 -4.39300090e-02 -1.75613725e+00 1.59131920e+00 8.36484730e-01 -6.30315468e-02 -2.39324659e-01 -4.21891689e-01 -9.72043574e-01 -4.95231390e-01 5.58552504e-01 -2.84146518e-01 1.08955479e+00 -4.11205590e-01 -1.31752598e+00 1.26317811e+00 -4.50399339e-01 -3.79131615e-01 5.65655351e-01 -6.06635273e-01 -1.03084421e+00 -3.82332474e-01 4.39079434e-01 1.34235904e-01 8.91982391e-02 -9.40790594e-01 -6.01493895e-01 -1.25529170e-01 -2.10536361e-01 1.81821093e-01 -1.39573827e-01 6.82143569e-01 -6.07415855e-01 -8.56463373e-01 -2.13259280e-01 -9.74065840e-01 -9.68868285e-02 -1.01003838e+00 -7.85432339e-01 -3.35816324e-01 4.56730008e-01 -1.25329721e+00 1.68212485e+00 -1.83056867e+00 5.43437935e-02 -2.18153179e-01 -1.15186438e-01 2.84960061e-01 -2.71263659e-01 8.51018369e-01 -5.01421452e-01 5.43073356e-01 -1.62658900e-01 -4.63952035e-01 -2.04425022e-01 2.91856796e-01 -1.10487081e-01 1.92889243e-01 4.03709233e-01 1.39603853e+00 -9.03369427e-01 -7.00847983e-01 -4.72922809e-02 2.71767199e-01 -2.87820101e-02 -8.41199234e-02 9.54723135e-02 2.61759281e-01 -3.64941061e-01 6.47892654e-01 3.31773996e-01 1.45450011e-01 4.62369800e-01 -1.02112077e-01 -2.68629417e-02 1.02495587e+00 -9.23057795e-01 1.58742309e+00 -8.24181736e-01 6.19887412e-01 -4.44413036e-01 -2.11307690e-01 1.05277312e+00 8.32770169e-01 3.76743078e-01 -6.39598846e-01 -2.57753278e-03 8.11223149e-01 2.17143297e-02 -5.05894423e-01 6.89492106e-01 -4.88287285e-02 -3.91567826e-01 3.21792215e-01 2.26638392e-01 -2.61141449e-01 7.71048367e-01 3.37724909e-02 9.20566678e-01 6.23596132e-01 1.00645959e+00 -2.61187822e-01 7.24845469e-01 4.22802806e-01 7.22503304e-01 4.70169149e-02 3.14723551e-01 4.86320406e-01 2.40144268e-01 -9.84291136e-02 -1.02661276e+00 -5.94892085e-01 -4.06986684e-01 7.24000335e-01 -3.57733518e-01 -9.68087554e-01 -6.77644551e-01 -1.00036013e+00 -2.46979535e-01 9.45264697e-01 -3.86052698e-01 2.18875289e-01 -8.64544749e-01 -9.88908410e-01 9.29441154e-01 2.51304150e-01 6.13827705e-01 -1.19956946e+00 1.05965631e-02 5.29394805e-01 -7.59664714e-01 -1.90718472e+00 -3.52498621e-01 3.09873819e-01 -4.71794754e-01 -9.81849909e-01 -3.17654192e-01 -9.95207667e-01 1.08682118e-01 -4.28173512e-01 1.86317706e+00 -5.17743826e-01 1.36815339e-01 -3.35068315e-01 -7.09451199e-01 -1.96735919e-01 -8.81281078e-01 5.70284665e-01 1.15317963e-01 -6.29395664e-01 1.04309082e+00 -3.35147679e-01 5.18313885e-01 1.67953730e-01 -2.90619135e-01 -6.32903650e-02 6.29292309e-01 5.69966912e-01 6.17270231e-01 7.56595209e-02 7.09258676e-01 -1.33143508e+00 7.47218668e-01 -5.11371195e-01 -2.44007662e-01 7.65971243e-01 -6.53803229e-01 4.75477055e-02 6.61906719e-01 -3.14465910e-01 -8.39966297e-01 -3.16672355e-01 -1.54430836e-01 3.47598881e-01 7.49318898e-02 8.11225772e-01 -4.94485587e-01 2.61522651e-01 6.84943318e-01 -6.61276728e-02 -8.02119911e-01 -7.12843716e-01 5.23154557e-01 1.08457947e+00 7.39545524e-01 -7.86648750e-01 6.86949492e-01 -4.15270597e-01 -1.70386568e-01 -5.50285161e-01 -9.64004636e-01 -1.63110033e-01 -1.16210914e+00 4.42239761e-01 8.26396465e-01 -1.10446203e+00 1.57243878e-01 3.36073458e-01 -1.40286767e+00 -2.18819723e-01 -2.87924379e-01 5.66780627e-01 -3.64032388e-02 1.19090796e-01 -9.33402121e-01 -2.97381908e-01 -5.43166459e-01 -8.79342914e-01 1.03830647e+00 -3.47696185e-01 -5.72337508e-01 -1.27733648e+00 4.64740396e-01 1.95894703e-01 1.37881096e-03 2.11392194e-01 9.85249639e-01 -7.66196191e-01 2.31219694e-01 -1.51893437e-01 -1.73066020e-01 4.05491561e-01 6.35486543e-01 1.42107964e-01 -6.33525908e-01 -1.02412149e-01 -2.92046219e-01 -5.61974764e-01 4.19754595e-01 -2.33222336e-01 3.29906434e-01 -2.78630376e-01 -2.54644394e-01 2.26688653e-01 1.50088894e+00 5.94803803e-02 6.76811576e-01 6.75978601e-01 7.42206573e-01 6.02760673e-01 7.00842917e-01 -7.57583752e-02 8.86228561e-01 7.51967788e-01 -3.39155763e-01 -3.37919891e-01 -2.97273368e-01 -5.57114840e-01 6.99045241e-01 1.79606545e+00 -2.39785388e-01 -4.32613790e-01 -9.83665824e-01 8.01892638e-01 -1.51595938e+00 -5.41742682e-01 -4.51175630e-01 1.87533355e+00 1.67640078e+00 5.51049039e-02 -6.21894971e-02 -5.05344458e-02 5.42814612e-01 -1.30245790e-01 1.97132695e-02 -6.60462499e-01 -6.57925904e-01 6.19801044e-01 6.66446447e-01 7.29075193e-01 -1.11226928e+00 1.54060102e+00 6.79535246e+00 9.34729815e-01 -7.83362031e-01 3.04141700e-01 4.14402217e-01 4.18230921e-01 -1.83098376e-01 2.44683266e-01 -1.34639227e+00 1.04154117e-01 1.28550053e+00 -4.68270838e-01 2.91296601e-01 4.74888265e-01 -5.53756021e-02 4.15466949e-02 -1.39941287e+00 7.29190230e-01 3.29204977e-01 -9.84502435e-01 -9.39213410e-02 -1.27829965e-02 8.98586631e-01 4.17289406e-01 -5.16108871e-01 4.75831509e-01 7.83433855e-01 -1.03493690e+00 7.41357505e-01 1.72755525e-01 1.49118876e+00 -6.39906108e-01 1.02451658e+00 3.40985000e-01 -1.39121640e+00 6.52842879e-01 -3.06461751e-01 2.21556410e-01 2.83838779e-01 6.21949852e-01 -6.73465669e-01 1.13268423e+00 7.68219471e-01 1.14464414e+00 -1.00120938e+00 9.74988863e-02 -7.26306081e-01 5.53353488e-01 -2.76870251e-01 1.70596346e-01 -2.13122815e-01 -3.40776801e-01 4.86984730e-01 1.77000844e+00 2.84947067e-01 -3.10508132e-01 7.61723220e-02 2.88827717e-01 -3.55008572e-01 4.78209972e-01 -6.50521398e-01 -1.88113466e-01 5.69845259e-01 1.21088183e+00 -1.64725825e-01 -5.07450402e-01 -7.30169833e-01 1.05269051e+00 5.90853691e-01 2.95480222e-01 -4.68973517e-01 -6.05284691e-01 1.64483249e-01 -1.93608984e-01 7.59262145e-02 -3.42693299e-01 -2.30704755e-01 -1.53327179e+00 3.57805878e-01 -1.37869573e+00 2.59945273e-01 -5.53691924e-01 -1.55518055e+00 1.36203361e+00 4.31438014e-02 -1.13903332e+00 -5.38503587e-01 -5.58203161e-01 3.01199585e-01 1.18701243e+00 -1.62114370e+00 -1.49380815e+00 4.47769016e-01 4.54575837e-01 6.13266885e-01 -4.90831673e-01 1.26840019e+00 8.38358760e-01 -6.70490086e-01 8.84245276e-01 -8.37177634e-02 5.97287953e-01 1.17144310e+00 -1.18051565e+00 8.95850718e-01 1.12692392e+00 5.95654011e-01 8.10243547e-01 2.79799402e-01 -1.01228476e+00 -9.86235321e-01 -1.28463113e+00 2.31575632e+00 -1.02046251e+00 1.12808108e+00 -5.24231076e-01 -8.44955921e-01 1.18970048e+00 6.50059998e-01 -1.35632366e-01 5.34665167e-01 2.04983830e-01 -2.39865303e-01 1.66832134e-01 -1.07971287e+00 5.51904380e-01 1.16281164e+00 -8.15494061e-01 -1.02716923e+00 3.06240022e-01 6.05261862e-01 -6.19366705e-01 -1.54199624e+00 5.21338761e-01 2.61798888e-01 -2.77678251e-01 6.22051239e-01 -7.33135283e-01 6.67585552e-01 -1.11045539e-01 -4.14472759e-01 -1.42303097e+00 -1.81843311e-01 -6.41378045e-01 -1.83622986e-02 1.87716389e+00 1.23692322e+00 -8.14612150e-01 1.64833739e-01 1.61013544e-01 4.75620478e-02 -6.72011733e-01 -9.42671180e-01 -9.46287632e-01 4.56422240e-01 -4.59402889e-01 7.40796864e-01 1.19291735e+00 2.91665215e-02 1.01078486e+00 -4.22481120e-01 -9.47901085e-02 1.56461865e-01 -1.26258537e-01 7.07145572e-01 -9.54120278e-01 -2.54051536e-01 1.28628835e-01 9.83205810e-02 -7.41921663e-01 4.49459434e-01 -1.28933144e+00 -5.68107842e-03 -1.70658863e+00 3.13230753e-01 -5.24788320e-01 6.98053166e-02 1.04404199e+00 -2.16856614e-01 5.50830126e-01 -2.34545678e-01 2.12831989e-01 -1.77867532e-01 4.21952844e-01 1.12086701e+00 2.22189277e-01 -1.66444987e-01 -2.79191345e-01 -6.59534276e-01 6.44526720e-01 6.12343669e-01 -1.00984931e+00 -9.12454128e-02 -6.57212555e-01 6.69900000e-01 -2.73440152e-01 -3.21659327e-01 -5.33252239e-01 -1.47683620e-01 -2.06200942e-01 9.22652185e-02 -4.94442880e-01 -1.28780484e-01 -7.11821079e-01 1.94244117e-01 -8.17217585e-03 -1.69647619e-01 7.80685365e-01 3.00570935e-01 -1.19865805e-01 -6.21701300e-01 -2.61004478e-01 3.98868799e-01 -2.62563169e-01 -6.23076975e-01 5.62244561e-03 -2.26901814e-01 8.02531421e-01 6.73239470e-01 8.87356251e-02 -4.86004472e-01 4.52236384e-02 -4.80160981e-01 -4.70356382e-02 2.70192862e-01 7.08869338e-01 -8.36617686e-03 -1.38180637e+00 -1.35791373e+00 3.54556218e-02 2.05656186e-01 -1.04836181e-01 -7.33983517e-01 6.02728188e-01 -4.42880839e-01 5.99976063e-01 1.18169390e-01 1.14183113e-01 -1.19638658e+00 2.17109084e-01 2.89342016e-01 -7.83505440e-01 -6.46940112e-01 6.13112450e-01 -7.10058033e-01 -9.20758605e-01 -3.41549814e-01 -4.25332308e-01 -3.38459283e-01 -3.54382992e-02 1.41572371e-01 3.24265003e-01 5.72933674e-01 -9.90128517e-01 -7.92573869e-01 7.09824383e-01 7.20969588e-02 -4.43124294e-01 1.43320560e+00 -3.65553707e-01 -7.19716012e-01 6.54956460e-01 9.92717981e-01 1.00730228e+00 -2.70641148e-01 -5.82539797e-01 7.06474543e-01 -6.12706654e-02 -2.85639554e-01 -1.18922651e+00 -8.60690415e-01 3.75553936e-01 -1.10703044e-01 -2.18296409e-01 8.74764860e-01 1.30508885e-01 9.28292215e-01 4.79171425e-01 6.82222307e-01 -1.03790438e+00 -6.64496720e-01 1.07357252e+00 9.47397470e-01 -1.30463982e+00 3.72671485e-01 -7.72163332e-01 -8.35012376e-01 9.24430609e-01 4.87916470e-01 1.22935221e-01 7.23909020e-01 6.25376582e-01 4.61301208e-01 6.59789890e-02 -7.86653936e-01 -2.30345987e-02 5.53920984e-01 5.89149833e-01 1.03007960e+00 2.40697220e-01 -7.48245478e-01 8.81444514e-01 -8.78408968e-01 1.46828100e-01 2.93282509e-01 8.02942693e-01 5.47740340e-01 -1.80524588e+00 1.94021508e-01 1.46461487e-01 -9.26095843e-01 -6.77285433e-01 -9.24044430e-01 1.14258480e+00 4.41714942e-01 1.30696869e+00 -4.12460476e-01 -4.28088009e-01 5.69703758e-01 5.08828387e-02 5.20821214e-01 -1.14715278e+00 -8.57747376e-01 -3.92369628e-02 1.09222472e+00 -1.74562544e-01 -6.10609829e-01 -6.40903592e-01 -8.94875765e-01 -2.97023803e-01 -4.25273776e-01 3.68352711e-01 3.76196653e-01 1.16298771e+00 1.24947101e-01 3.70041996e-01 4.06636834e-01 7.51194134e-02 -1.51920512e-01 -1.47899902e+00 -3.39770854e-01 9.41774473e-02 -2.11594235e-02 -3.74896497e-01 -2.40328804e-01 3.10163826e-01]
[10.550929069519043, 9.441484451293945]
ac93416c-847f-4f19-b9de-46ab14a35145
multi-level-contrast-network-for-wearables
2208.07547
null
https://arxiv.org/abs/2208.07547v1
https://arxiv.org/pdf/2208.07547v1.pdf
Multi-level Contrast Network for Wearables-based Joint Activity Segmentation and Recognition
Human activity recognition (HAR) with wearables is promising research that can be widely adopted in many smart healthcare applications. In recent years, the deep learning-based HAR models have achieved impressive recognition performance. However, most HAR algorithms are susceptible to the multi-class windows problem that is essential yet rarely exploited. In this paper, we propose to relieve this challenging problem by introducing the segmentation technology into HAR, yielding joint activity segmentation and recognition. Especially, we introduce the Multi-Stage Temporal Convolutional Network (MS-TCN) architecture for sample-level activity prediction to joint segment and recognize the activity sequence. Furthermore, to enhance the robustness of HAR against the inter-class similarity and intra-class heterogeneity, a multi-level contrastive loss, containing the sample-level and segment-level contrast, has been proposed to learn a well-structured embedding space for better activity segmentation and recognition performance. Finally, with comprehensive experiments, we verify the effectiveness of the proposed method on two public HAR datasets, achieving significant improvements in the various evaluation metrics.
['Robert C. Qiu', 'Wenxian Yu', 'Ling Pei', 'Lei Chu', 'Songpengcheng Xia']
2022-08-16
null
null
null
null
['activity-prediction', 'activity-prediction']
['computer-vision', 'time-series']
[ 3.15922976e-01 -4.73241746e-01 -3.26599479e-01 -2.35644639e-01 -7.73304880e-01 -9.16230772e-03 2.38583490e-01 1.13940522e-01 -3.69803369e-01 6.64830387e-01 4.96368855e-01 3.16303849e-01 -1.09935813e-01 -5.21020651e-01 -3.65919918e-01 -9.63494003e-01 -1.31651342e-01 -4.37697709e-01 2.36074135e-01 3.59119445e-01 -1.52730510e-01 1.36072800e-01 -1.27108645e+00 1.19883686e-01 9.56502497e-01 1.24443126e+00 -1.81857228e-01 2.74598867e-01 1.15060531e-01 7.73259342e-01 -5.41189432e-01 -9.88708511e-02 5.28587624e-02 -7.93259203e-01 -3.75263929e-01 1.38430417e-01 1.00874733e-02 -6.40344247e-02 -3.31120223e-01 7.55217314e-01 7.56020010e-01 1.32711247e-01 4.03025210e-01 -9.28824842e-01 -2.15198621e-01 2.82092750e-01 -6.57245874e-01 3.30630481e-01 3.93649220e-01 3.29435587e-01 7.15539694e-01 -7.69583881e-01 1.76895455e-01 8.08315158e-01 8.10683489e-01 1.30647957e-01 -1.14342666e+00 -6.18579388e-01 -4.78539802e-02 5.17809749e-01 -1.57174003e+00 -1.11999959e-01 1.07618904e+00 -3.75415146e-01 6.87496662e-01 2.71461487e-01 1.12055051e+00 1.38411343e+00 3.57363373e-01 1.00902331e+00 1.05434275e+00 -9.28314924e-02 1.89342931e-01 -2.18044966e-01 4.48604226e-02 6.80294931e-01 2.67161310e-01 -1.80962518e-01 -4.86330509e-01 -1.55308768e-02 8.21502030e-01 3.31398726e-01 -3.54105204e-01 -3.80013466e-01 -1.44313514e+00 5.42190790e-01 5.61064482e-01 5.74999809e-01 -5.74702203e-01 -2.29314622e-03 6.58748448e-01 -4.54277813e-01 3.01750422e-01 1.34671092e-01 -8.78235027e-02 -3.48780304e-01 -1.13947570e+00 -1.57197297e-01 5.06378293e-01 4.20408845e-01 2.73142278e-01 2.48002201e-01 -7.39624739e-01 9.95345771e-01 3.83731186e-01 2.82377869e-01 7.12875426e-01 -6.08893275e-01 3.59551340e-01 7.37339735e-01 -7.66156688e-02 -1.17977381e+00 -6.75622463e-01 -9.51716006e-01 -1.27886009e+00 -4.86653090e-01 2.47378051e-01 -5.15033193e-02 -7.08642125e-01 1.60860538e+00 4.71695483e-01 8.18665564e-01 -7.19706640e-02 9.19155300e-01 6.57409668e-01 6.82289183e-01 5.20009279e-01 -6.67773902e-01 1.65280604e+00 -1.16736245e+00 -1.05855322e+00 -1.58330247e-01 5.84235966e-01 -4.34794605e-01 9.33957040e-01 3.81113023e-01 -8.52027595e-01 -6.83554530e-01 -1.41349816e+00 8.74343663e-02 -2.60470398e-02 2.99897045e-01 5.34816146e-01 6.66176915e-01 -2.50563860e-01 2.87676156e-01 -1.09034181e+00 -3.21063876e-01 8.07878196e-01 1.72162294e-01 -1.52697086e-01 -1.80661753e-02 -1.37743068e+00 4.75769311e-01 4.54917282e-01 5.15629292e-01 -8.89853895e-01 -5.24696112e-01 -8.01356852e-01 8.23685452e-02 1.99602067e-01 -4.37755853e-01 8.33754480e-01 -7.32819915e-01 -1.26962197e+00 4.64891195e-01 -8.17368366e-03 -5.28248131e-01 5.22012055e-01 -2.82081991e-01 -8.14004004e-01 1.79915771e-01 -4.66258675e-02 6.93752542e-02 6.30141437e-01 -7.37723947e-01 -3.28201741e-01 -5.53645432e-01 -4.85098034e-01 2.66414344e-01 -5.81463814e-01 -3.11730653e-01 -5.07509530e-01 -1.01369560e+00 1.73530392e-02 -7.05212891e-01 -4.17615362e-02 -2.07028165e-01 -3.09212774e-01 -1.54191241e-01 5.91466188e-01 -9.35453653e-01 1.65277565e+00 -2.41096783e+00 -9.17904377e-02 1.71529293e-01 1.30117804e-01 4.73991603e-01 1.18996471e-01 2.25108266e-01 2.01182291e-01 -2.33430192e-01 -4.76946443e-01 -2.07087710e-01 -1.17761418e-01 1.05368957e-01 2.43478060e-01 6.81688726e-01 9.08359587e-02 1.00689209e+00 -7.41677046e-01 -6.75959647e-01 2.63646781e-01 7.52725899e-01 -3.10311913e-01 2.52288997e-01 1.41726524e-01 6.28678560e-01 -6.02296352e-01 6.45556211e-01 4.12984729e-01 -3.94505531e-01 2.56417632e-01 -5.39483905e-01 7.96295181e-02 -3.47055458e-02 -1.24268293e+00 1.81400990e+00 -1.35701746e-01 1.79372013e-01 -3.61889780e-01 -1.29517305e+00 9.37703013e-01 3.60662550e-01 1.03062797e+00 -9.48876083e-01 1.76112816e-01 2.48003006e-01 -4.96690460e-02 -6.02905810e-01 4.19275239e-02 4.38490920e-02 -1.52887434e-01 9.54939649e-02 -1.00750424e-01 7.72558033e-01 -7.95030519e-02 -3.27398181e-01 1.11975658e+00 1.91500053e-01 4.69295621e-01 -4.49342690e-02 7.07068682e-01 -4.48040456e-01 1.04796898e+00 4.05324370e-01 -7.04592466e-01 5.17411053e-01 2.01129302e-01 -3.90174925e-01 -6.96795523e-01 -1.04846537e+00 -2.21500963e-01 7.40535796e-01 4.39571768e-01 -1.91340238e-01 -8.66013765e-01 -7.29867280e-01 -3.12995136e-01 2.26993635e-01 -5.68431616e-01 -4.68925804e-01 -7.28431821e-01 -1.23359966e+00 8.59006107e-01 8.05222750e-01 1.13242376e+00 -1.17458165e+00 -7.00932920e-01 6.33220851e-01 -4.85284567e-01 -1.13131130e+00 -6.54789686e-01 5.68667464e-02 -7.96571493e-01 -1.07437515e+00 -9.23295856e-01 -9.24273551e-01 2.10470766e-01 1.18263707e-01 5.42395771e-01 4.78733256e-02 -5.84304273e-01 1.83664709e-01 -3.96315366e-01 -1.34965509e-01 3.45921546e-01 2.09868625e-01 -1.55650869e-01 5.43989360e-01 4.79751080e-01 -6.99244380e-01 -1.18782330e+00 3.85087162e-01 -9.33481216e-01 -6.76456047e-03 8.24266732e-01 8.99796247e-01 7.87983358e-01 -5.25188185e-02 7.68266499e-01 -4.07271206e-01 5.17951369e-01 -4.25216317e-01 5.86018013e-03 3.55811864e-01 -7.12572098e-01 -2.16619596e-01 6.24903798e-01 -5.09212673e-01 -1.05260849e+00 9.83174443e-02 -2.29623139e-01 -1.55294359e-01 -1.33655388e-02 5.35253227e-01 -4.18340117e-01 1.64764717e-01 4.12492871e-01 6.09338403e-01 -1.74836516e-01 -4.88273323e-01 2.55396403e-02 5.91324270e-01 5.29465973e-01 -2.80690610e-01 3.62569928e-01 4.06645179e-01 -8.43927562e-02 -8.53479862e-01 -8.30010355e-01 -5.98024070e-01 -3.40660691e-01 -1.44151583e-01 1.32839477e+00 -1.12190437e+00 -4.88341242e-01 7.80019701e-01 -8.68230164e-01 -1.45206541e-01 -1.89513937e-01 6.97595775e-01 -3.95970523e-01 5.86398482e-01 -5.39292693e-01 -8.08994234e-01 -6.65570378e-01 -1.08825076e+00 9.66044247e-01 6.73104107e-01 -3.99399623e-02 -7.94548988e-01 2.20258042e-01 6.20578945e-01 2.57956803e-01 6.14920259e-01 6.04837298e-01 -7.62919009e-01 -4.86960858e-01 -1.50636762e-01 -1.10845923e-01 4.31295246e-01 2.51222134e-01 -4.09640282e-01 -8.44683766e-01 -2.16435537e-01 1.18151782e-02 -1.32633358e-01 7.09066212e-01 3.73839617e-01 1.35675693e+00 -2.12668240e-01 -4.15114135e-01 6.65935993e-01 1.15125358e+00 3.30505371e-01 9.37920511e-01 3.08873713e-01 9.13237154e-01 1.49040088e-01 7.62098610e-01 6.66930556e-01 4.38228726e-01 8.24851871e-01 -1.56057226e-02 -3.37314457e-01 -1.39461115e-01 -1.78910390e-01 4.54480648e-01 1.07772541e+00 -1.10284753e-01 8.05348009e-02 -5.86144924e-01 4.55769956e-01 -1.93696320e+00 -1.02037132e+00 -6.27133716e-03 2.07443142e+00 7.95324862e-01 8.89912024e-02 3.44341427e-01 3.17001134e-01 5.36848783e-01 5.71230769e-01 -6.72310650e-01 4.31398749e-02 -2.19049558e-01 1.66515902e-01 2.60623425e-01 -3.47428694e-02 -1.40927875e+00 3.69795114e-01 5.20071840e+00 1.06727421e+00 -1.09162772e+00 1.97563305e-01 5.65333247e-01 5.23263291e-02 8.31000507e-03 -4.29381371e-01 -5.50241649e-01 8.67016435e-01 7.77823448e-01 1.87418342e-01 2.62593299e-01 7.18414009e-01 4.06831950e-01 -6.43194914e-02 -7.48095393e-01 1.26113844e+00 9.13580582e-02 -9.71041083e-01 -2.61430919e-01 2.95359157e-02 5.56521475e-01 -3.79341483e-01 -1.81924641e-01 5.04462123e-01 -5.77327549e-01 -8.54500890e-01 2.90010303e-01 6.43885612e-01 5.24208784e-01 -7.65868366e-01 8.95206869e-01 1.95779085e-01 -1.63666987e+00 -2.17160165e-01 1.06484279e-01 2.87564099e-01 1.73396736e-01 6.29913032e-01 -4.18290824e-01 8.32438827e-01 7.24507809e-01 9.86874819e-01 -6.09288216e-01 1.31925511e+00 -2.73446105e-02 6.79293156e-01 -1.01669475e-01 8.40176549e-03 6.78396299e-02 -2.51603723e-01 2.82112449e-01 1.39639556e+00 2.79867947e-01 7.00655058e-02 4.05783057e-01 4.31371450e-01 -3.37544568e-02 3.49815428e-01 -1.38516888e-01 -2.70904064e-01 2.87266523e-01 1.14772010e+00 -6.71331227e-01 -1.79965422e-01 -4.53005970e-01 1.07625473e+00 1.26981074e-02 3.14200044e-01 -1.16846573e+00 -5.66135585e-01 5.01007140e-01 1.47311911e-01 2.99685895e-01 -2.15124980e-01 -3.15994263e-01 -1.24268723e+00 1.74457312e-01 -9.47387815e-01 6.32593513e-01 -2.50847191e-01 -1.02286851e+00 1.77175939e-01 -2.19329864e-01 -1.41839015e+00 2.32730463e-01 -1.03476480e-01 -6.34775341e-01 4.12002623e-01 -1.29549658e+00 -1.29148328e+00 -5.39041817e-01 7.21092939e-01 5.52520394e-01 1.64947644e-01 6.41794682e-01 8.87673080e-01 -1.12635720e+00 9.15316761e-01 1.71962231e-02 3.95572215e-01 5.66575348e-01 -8.36716890e-01 -1.66920602e-01 9.64942873e-01 2.08693370e-02 6.14922225e-01 3.75180930e-01 -5.11999786e-01 -1.27458119e+00 -1.15098298e+00 4.51436728e-01 -2.62618773e-02 3.35354358e-01 -3.04011226e-01 -1.07949841e+00 4.68829632e-01 -2.60982681e-02 2.70139307e-01 9.16840672e-01 -1.94860876e-01 -1.16523124e-01 -6.67518735e-01 -1.13580000e+00 4.56893623e-01 1.10589015e+00 -3.94546002e-01 -5.10930538e-01 3.04659549e-02 4.27213788e-01 -1.63609743e-01 -1.29050267e+00 7.76705980e-01 9.00176585e-01 -8.28248382e-01 9.85239506e-01 -2.86167800e-01 2.54031047e-02 -5.40051758e-01 -2.14456413e-02 -8.90897036e-01 -2.61605442e-01 -3.65933806e-01 -5.40949345e-01 1.19348288e+00 -1.23374619e-01 -4.66838479e-01 7.38515973e-01 1.24322861e-01 -1.74992964e-01 -9.87035692e-01 -1.17878079e+00 -7.48937607e-01 -5.05449474e-01 -2.05766901e-01 4.19341087e-01 8.28843772e-01 8.97035655e-03 2.42689937e-01 -7.98347414e-01 5.73559627e-02 6.63776636e-01 2.72021741e-02 5.79130888e-01 -1.06427455e+00 -2.39317670e-01 -2.53316760e-01 -5.08517206e-01 -1.01442897e+00 -3.67061585e-01 -6.69648290e-01 2.10130051e-01 -1.57102287e+00 3.66222888e-01 -4.84441184e-02 -9.53763545e-01 3.00658554e-01 -2.73699224e-01 3.76913279e-01 -1.08401380e-01 3.16615373e-01 -9.95483637e-01 9.55184996e-01 1.29250491e+00 -1.61678880e-01 -3.51928920e-01 -1.71395421e-01 -4.71676350e-01 4.90255952e-01 8.02453756e-01 -3.45861971e-01 -3.92529368e-01 4.72698212e-02 -2.80825675e-01 9.08210650e-02 3.42145383e-01 -1.48471725e+00 1.11686334e-01 -8.27730000e-02 7.04294026e-01 -5.15386403e-01 4.18597162e-01 -7.95744598e-01 3.08207929e-01 7.43227303e-01 -2.13746250e-01 -3.34525049e-01 -4.88515310e-02 9.09394741e-01 -2.37682775e-01 3.81918490e-01 9.72172916e-01 1.76837683e-01 -5.87119460e-01 5.44530749e-01 -2.26889044e-01 6.63222373e-02 1.23963141e+00 -3.92416358e-01 -1.15120314e-01 6.96174949e-02 -6.15855575e-01 2.61982709e-01 -7.33855926e-03 4.82989937e-01 5.75011313e-01 -1.66540110e+00 -3.18397880e-01 2.37031445e-01 4.40302610e-01 -1.95560202e-01 8.15233588e-01 1.50964904e+00 -3.54701966e-01 2.38142461e-01 -1.99743778e-01 -5.12768269e-01 -1.06589401e+00 3.72147918e-01 3.67513895e-01 -5.53696871e-01 -7.12490916e-01 4.12683964e-01 3.07545979e-02 5.14807627e-02 4.09282357e-01 -2.49537662e-01 -3.59188914e-01 1.06776789e-01 6.41730189e-01 5.66988587e-01 -9.50230584e-02 -5.96474349e-01 -6.61354959e-01 5.19778788e-01 1.13386884e-01 3.16110730e-01 1.14294708e+00 -1.18509457e-01 1.73037767e-01 4.93948370e-01 1.23410964e+00 -2.11910799e-01 -1.47549784e+00 -2.09475204e-01 1.35928378e-01 -1.62972018e-01 -4.81055398e-03 -7.27509439e-01 -9.61761594e-01 9.48576152e-01 1.13286448e+00 4.53954488e-02 1.23554718e+00 -4.09702599e-01 1.42379010e+00 -3.06763612e-02 1.51358336e-01 -1.23913443e+00 4.80911404e-01 3.50449122e-02 4.51688886e-01 -1.04621243e+00 5.53766340e-02 -1.23444565e-01 -6.42489195e-01 8.06918502e-01 5.30126750e-01 -9.34758559e-02 6.04048133e-01 -1.69447020e-01 -6.30390272e-02 -1.41170278e-01 -8.90770704e-02 4.52298224e-02 3.86975765e-01 4.86820579e-01 3.36205631e-01 1.81889802e-01 -8.13718259e-01 9.95999813e-01 4.28862721e-01 3.26323301e-01 8.25192258e-02 8.96163642e-01 -4.88680094e-01 -9.07289922e-01 -1.59384742e-01 4.98827457e-01 -6.83017671e-01 1.95100784e-01 1.05652057e-01 4.68017250e-01 2.96002060e-01 7.62993157e-01 -3.37565750e-01 -5.19102275e-01 4.84499753e-01 1.31919384e-01 3.32415998e-01 -3.20414156e-01 -5.27101219e-01 3.50001574e-01 -6.77017421e-02 -6.75903618e-01 -6.44062221e-01 -6.36550784e-01 -1.29317391e+00 1.51570141e-01 -6.33137599e-02 1.35434762e-01 3.18921685e-01 9.94852185e-01 4.17468131e-01 6.92501247e-01 6.38963819e-01 -4.41159248e-01 -4.54710543e-01 -8.70273054e-01 -7.85328686e-01 4.93377030e-01 2.50067532e-01 -7.69407809e-01 -1.71464145e-01 1.02301054e-02]
[7.736607074737549, 0.850323498249054]
bffd2a61-0d88-4a06-9f35-2aea90f47671
text-to-audio-grounding-based-novel-metric
2210.06354
null
https://arxiv.org/abs/2210.06354v1
https://arxiv.org/pdf/2210.06354v1.pdf
Text-to-Audio Grounding Based Novel Metric for Evaluating Audio Caption Similarity
Automatic Audio Captioning (AAC) refers to the task of translating an audio sample into a natural language (NL) text that describes the audio events, source of the events and their relationships. Unlike NL text generation tasks, which rely on metrics like BLEU, ROUGE, METEOR based on lexical semantics for evaluation, the AAC evaluation metric requires an ability to map NL text (phrases) that correspond to similar sounds in addition lexical semantics. Current metrics used for evaluation of AAC tasks lack an understanding of the perceived properties of sound represented by text. In this paper, wepropose a novel metric based on Text-to-Audio Grounding (TAG), which is, useful for evaluating cross modal tasks like AAC. Experiments on publicly available AAC data-set shows our evaluation metric to perform better compared to existing metrics used in NL text and image captioning literature.
['Sunil Kumar Kopparapu', 'Rupayan Chakraborty', 'Swapnil Bhosale']
2022-10-03
null
null
null
null
['audio-captioning']
['audio']
[ 6.58478916e-01 2.41576493e-01 1.32845163e-01 -1.84139639e-01 -1.23745441e+00 -6.26273453e-01 9.29897666e-01 5.99997461e-01 -1.65183157e-01 9.79864836e-01 1.13460243e+00 4.42126133e-02 1.13879731e-02 -3.99660796e-01 -5.54017067e-01 -1.75507545e-01 3.89184840e-02 2.53354818e-01 1.68621495e-01 -1.78873558e-02 1.40419036e-01 -1.76711455e-01 -1.75973082e+00 8.49312842e-01 4.90147412e-01 1.09189939e+00 3.30404580e-01 1.11872840e+00 -4.95281249e-01 8.48051786e-01 -9.13093209e-01 -1.06458120e-01 -3.60819459e-01 -9.24556494e-01 -1.00217998e+00 -3.42847914e-01 3.95558089e-01 2.18101636e-01 1.53240755e-01 7.90862679e-01 5.44062674e-01 4.46404293e-02 9.77650404e-01 -1.51207042e+00 -4.15089875e-01 9.88011003e-01 2.48913869e-01 -1.17434969e-03 1.24675167e+00 -3.53637666e-01 1.24931669e+00 -7.09639847e-01 5.91082335e-01 1.26330233e+00 7.62432337e-01 5.39130747e-01 -1.10802376e+00 -4.90015417e-01 -2.82573104e-01 1.16662286e-01 -1.23724711e+00 -4.20898706e-01 5.93061507e-01 -7.01749086e-01 6.56838834e-01 4.77377385e-01 5.02465189e-01 1.39884913e+00 -7.59832980e-03 3.93450469e-01 9.37804937e-01 -8.07552695e-01 3.26082677e-01 1.29173324e-01 -1.49882808e-01 2.33754031e-02 -2.38331228e-01 -1.67813107e-01 -1.05495429e+00 -2.59079099e-01 3.05679530e-01 -8.67509663e-01 -3.48380953e-01 1.09032542e-01 -1.60961902e+00 6.63669407e-01 -3.90722975e-02 4.29910630e-01 -4.69530612e-01 4.24304962e-01 8.24914157e-01 2.46901900e-01 1.67662814e-01 5.82470715e-01 -1.78356633e-01 -6.35365009e-01 -1.04881167e+00 3.61310452e-01 8.80826592e-01 9.32997942e-01 3.02778631e-01 -2.58973520e-02 -6.46315336e-01 7.26655602e-01 5.59609175e-01 6.61358833e-01 8.79883707e-01 -8.18957865e-01 3.29269290e-01 1.44995943e-01 3.15523267e-01 -6.53119862e-01 -9.63686183e-02 -6.66451007e-02 -5.40775716e-01 -1.94164574e-01 6.02311119e-02 -1.22125082e-01 -8.57715786e-01 1.69677663e+00 -1.43340573e-01 3.29861224e-01 2.94810027e-01 6.83099151e-01 1.18918121e+00 1.06402898e+00 4.48951721e-01 -3.30266744e-01 1.58256376e+00 -6.23096764e-01 -9.63612974e-01 8.23295563e-02 2.31736526e-01 -1.35729337e+00 1.58578253e+00 3.51360977e-01 -9.39352989e-01 -8.28791022e-01 -1.10018468e+00 3.19420062e-02 -4.65745240e-01 -9.67742410e-03 2.36991793e-01 7.23687470e-01 -1.19813049e+00 2.11300895e-01 -1.24661401e-01 -5.98523140e-01 -1.43874973e-01 -1.08901188e-01 -2.38490999e-01 5.70641398e-01 -1.32081974e+00 4.37756985e-01 6.50076270e-01 -4.87521082e-01 -1.17338610e+00 -6.03977144e-01 -8.56526792e-01 -5.75012416e-02 -1.49863958e-01 -7.45864153e-01 1.70536196e+00 -1.18576097e+00 -1.73440933e+00 7.65874684e-01 -1.83501184e-01 -7.77164996e-01 2.86444426e-01 -2.80527771e-01 -6.41061187e-01 4.10895348e-01 2.77395517e-01 1.18419027e+00 8.99818659e-01 -1.29053199e+00 -6.98991954e-01 2.97723353e-01 -8.29501450e-02 3.77565771e-01 -2.19194651e-01 2.41102844e-01 -1.05517417e-01 -9.92095232e-01 -1.84698284e-01 -7.28181303e-01 4.13034618e-01 -1.91221699e-01 -5.79314590e-01 -1.29243314e-01 5.48241854e-01 -5.79899609e-01 1.36003435e+00 -2.37094569e+00 -1.41929567e-01 -2.37033912e-03 -3.20712596e-01 -1.08417504e-01 -1.99262440e-01 7.11317241e-01 -1.46203950e-01 3.14317405e-01 -1.46494240e-01 -2.87941366e-01 3.53669912e-01 1.06787467e-02 -8.88787031e-01 -2.70751953e-01 2.41815690e-02 4.13088709e-01 -1.06416166e+00 -7.67995477e-01 1.66727111e-01 5.37886798e-01 -3.09972614e-01 3.43592584e-01 -5.90776682e-01 4.42644030e-01 -4.01408762e-01 1.79104283e-01 -4.37402874e-02 2.32435405e-01 -3.48260880e-01 -3.04601222e-01 1.65974151e-03 5.42200506e-01 -1.05148852e+00 1.91424835e+00 -8.20385754e-01 1.08272755e+00 -4.05747920e-01 -2.91513503e-01 8.39367628e-01 1.12135923e+00 3.77073795e-01 -2.69484401e-01 7.10772946e-02 3.58782321e-01 -4.22384739e-01 -4.63950843e-01 5.38210571e-01 -8.53307918e-02 -3.49102110e-01 4.46668416e-01 1.60567209e-01 -6.19947672e-01 3.07337165e-01 1.06252700e-01 7.58119047e-01 3.09311420e-01 4.75594789e-01 -1.30927548e-01 7.64881492e-01 3.51812877e-02 -3.39011788e-01 8.70098293e-01 2.91763786e-02 1.00713360e+00 2.61075020e-01 1.05199181e-02 -1.18361652e+00 -1.28452456e+00 -1.39338821e-01 1.13050640e+00 -1.67457759e-01 -8.08077395e-01 -8.94506514e-01 -2.03485236e-01 -5.52603662e-01 8.72380018e-01 -5.11131883e-01 5.30662872e-02 -1.64608896e-01 -2.71968633e-01 1.07448697e+00 3.30146581e-01 1.93059817e-01 -1.32742107e+00 -5.09298563e-01 4.32267219e-01 -7.35802650e-01 -1.28192115e+00 -5.90344667e-01 -1.45095482e-01 -4.74320620e-01 -6.46369159e-01 -8.22386324e-01 -9.27693963e-01 -1.08974939e-02 -3.58830541e-01 1.29972839e+00 -4.73650426e-01 -2.14274392e-01 5.87486982e-01 -9.63554382e-01 -1.00036573e+00 -9.63927209e-01 -1.19156033e-01 -3.16976011e-02 -6.22965535e-03 2.21561477e-01 -5.75404346e-01 -2.78955251e-01 7.87103847e-02 -9.82165933e-01 3.30754787e-01 3.85304660e-01 3.72165561e-01 6.90926492e-01 -3.14958632e-01 8.39569628e-01 -2.56176502e-01 1.12808323e+00 -2.23003522e-01 1.25879422e-01 1.16700083e-01 -2.42564335e-01 1.33781567e-01 5.62042177e-01 -5.45243442e-01 -8.17797720e-01 -4.47110496e-02 -1.43328041e-01 -3.04061174e-02 -6.48355126e-01 3.90068799e-01 -1.16395861e-01 3.92784804e-01 9.20331776e-01 2.66901582e-01 -3.61837298e-01 -3.13649863e-01 4.21780676e-01 1.07043350e+00 7.61707664e-01 -6.78430200e-01 4.12001431e-01 2.88127333e-01 5.55346571e-02 -9.37608719e-01 -8.68501067e-01 -5.11102438e-01 -2.25560248e-01 -4.30331409e-01 1.27295196e+00 -8.95206094e-01 -3.53229076e-01 2.22084820e-02 -1.40971375e+00 1.87206001e-03 -6.31109476e-01 8.97625506e-01 -1.14157760e+00 2.00696766e-01 -2.58447677e-01 -8.89653623e-01 -6.03943586e-01 -7.53995180e-01 1.41461265e+00 -7.30001181e-02 -8.07088912e-01 -7.71567106e-01 4.12226409e-01 2.03170389e-01 3.36697698e-01 3.14953059e-01 1.03779459e+00 -7.13443935e-01 7.54695535e-02 -9.49120596e-02 -1.23863824e-01 4.17143732e-01 2.02923343e-01 -5.57294451e-02 -1.33466673e+00 3.71152610e-01 -4.30384338e-01 -4.31271464e-01 5.77742219e-01 4.09835935e-01 9.22368288e-01 -3.24029088e-01 2.70965938e-02 4.79610142e-04 1.30404007e+00 3.35137814e-01 6.68020666e-01 2.04170078e-01 3.29413772e-01 5.01827300e-01 6.86972618e-01 4.10847843e-01 2.34322205e-01 7.74388313e-01 2.55507290e-01 8.23424384e-02 -6.39723241e-01 -6.16735518e-01 6.63181961e-01 8.30810189e-01 1.60798237e-01 -6.76295817e-01 -9.64267790e-01 5.16629100e-01 -1.69069052e+00 -8.21243823e-01 -1.64676949e-01 2.17596459e+00 1.11255157e+00 1.76031575e-01 2.01656535e-01 4.82890725e-01 7.34162331e-01 -7.99380988e-02 2.64406741e-01 -6.09836936e-01 -1.33014023e-01 2.11450383e-01 -1.35376275e-01 6.53800249e-01 -1.05818117e+00 6.79024994e-01 6.77776146e+00 8.40102136e-01 -8.53373706e-01 2.31853545e-01 1.85999289e-01 1.95320264e-01 -2.90646225e-01 -1.66323438e-01 -4.19277877e-01 3.68711978e-01 1.44767344e+00 -4.45240527e-01 2.76922345e-01 4.52008694e-01 6.46136224e-01 1.45438179e-01 -1.45204091e+00 1.15987396e+00 3.42076600e-01 -1.00433588e+00 7.49180377e-01 -4.12717462e-01 5.31010568e-01 -2.44506896e-01 4.08311039e-02 1.65325403e-02 6.27902970e-02 -1.03841734e+00 1.22779715e+00 5.47823966e-01 9.58965302e-01 -4.56084251e-01 8.78404260e-01 -3.49148482e-01 -1.28774071e+00 3.55327576e-01 5.07350825e-02 2.77327579e-02 3.41209501e-01 1.57682836e-01 -1.40165818e+00 6.21381342e-01 5.21024883e-01 3.11435580e-01 -4.06184971e-01 1.24790919e+00 -2.53297538e-01 7.52665877e-01 -1.40235454e-01 -3.05382133e-01 3.19905043e-01 3.56672764e-01 8.51681948e-01 1.68323934e+00 7.52453744e-01 -5.12705207e-01 8.87108147e-02 5.52620471e-01 8.20539668e-02 7.67411470e-01 -4.82891917e-01 -4.82724458e-01 5.18196642e-01 7.06021965e-01 -6.27963603e-01 -2.85310864e-01 -6.56921938e-02 9.94785488e-01 -7.54135311e-01 2.08412394e-01 -9.15353417e-01 -5.89334488e-01 2.89035827e-01 1.79296389e-01 -2.04291493e-01 -1.91420410e-02 -1.92667022e-02 -5.27145982e-01 -7.62680173e-03 -7.51801252e-01 2.98591167e-01 -1.57994640e+00 -1.11880350e+00 1.02876484e+00 2.56134331e-01 -1.61816561e+00 -6.97618902e-01 -4.48628634e-01 -5.37004411e-01 7.11797476e-01 -1.24805117e+00 -1.28281546e+00 -4.54516679e-01 6.29423499e-01 8.46472561e-01 -2.22836539e-01 1.29591846e+00 2.33701810e-01 3.46283466e-01 1.69120163e-01 -3.39089185e-01 -1.47328913e-01 1.01218987e+00 -1.36580086e+00 1.04273774e-01 4.13692445e-01 5.82081854e-01 5.60371988e-02 1.32021737e+00 -5.32243431e-01 -5.20880282e-01 -1.06757247e+00 1.24239194e+00 -4.34445888e-01 8.62755537e-01 -2.23017707e-01 -3.91761661e-01 3.96841437e-01 6.03170395e-01 -6.44045413e-01 1.06203616e+00 -2.35695273e-01 -2.84525365e-01 2.86234729e-02 -7.74036765e-01 5.28148592e-01 7.42492318e-01 -9.11884904e-01 -9.34772670e-01 5.38282931e-01 1.08627355e+00 7.93869421e-03 -6.93305373e-01 1.29585490e-01 5.56268871e-01 -5.98982751e-01 8.91010821e-01 -5.22489905e-01 4.41772759e-01 -5.13690293e-01 -4.40035641e-01 -1.24733841e+00 2.32034072e-01 -9.89045382e-01 1.67997748e-01 1.36401105e+00 6.10034764e-01 7.10402802e-02 3.66344899e-01 -2.31802598e-01 -3.50539416e-01 1.42563924e-01 -9.91928279e-01 -7.39966333e-01 -3.72789413e-01 -8.58335316e-01 6.69135332e-01 6.63169742e-01 8.10504183e-02 5.41085958e-01 -2.84349024e-01 8.40300992e-02 2.92447388e-01 -2.58496016e-01 5.87217569e-01 -1.49121511e+00 -5.13434894e-02 -4.97296065e-01 -8.24009895e-01 -2.97115594e-01 9.64551196e-02 -8.03333879e-01 3.43352139e-01 -1.68648803e+00 -7.27569638e-03 7.26170698e-03 -2.49859750e-01 3.15592021e-01 2.42279470e-01 5.89763165e-01 2.53612965e-01 8.34689811e-02 -6.15301669e-01 4.53913182e-01 9.00335312e-01 -1.70128196e-01 -2.53588229e-01 -2.10819617e-01 -1.82991281e-01 7.29436159e-01 7.33220875e-01 -5.96744478e-01 -5.27582884e-01 -2.02295244e-01 4.04559642e-01 1.45461019e-02 5.22141874e-01 -1.55114472e+00 6.44502714e-02 -4.54128068e-03 -2.40125656e-02 -3.68978500e-01 5.30192852e-01 -7.72881746e-01 3.33040923e-01 3.00475150e-01 -7.39487469e-01 3.56854796e-02 1.79318994e-01 4.66489583e-01 -7.79487252e-01 -6.27116680e-01 4.48745281e-01 3.00223846e-02 -5.56480467e-01 -2.33205840e-01 -7.22991645e-01 2.26360545e-01 7.39122927e-01 -2.47858778e-01 -3.61589044e-02 -1.03885508e+00 -1.14350581e+00 -3.62725526e-01 1.12579368e-01 6.54686689e-01 5.83050013e-01 -1.48995161e+00 -1.07012475e+00 -2.32151166e-01 4.61569667e-01 -6.03722513e-01 -9.68015194e-02 4.07001048e-01 -6.97536409e-01 7.88432837e-01 -2.29886919e-01 -5.04097223e-01 -1.35743058e+00 1.24094009e-01 8.30108896e-02 -3.79890064e-03 -3.23678136e-01 6.69668257e-01 7.41235539e-02 1.42052561e-01 5.50926268e-01 -6.14896357e-01 -5.07690430e-01 2.51851946e-01 7.33411729e-01 7.08039626e-02 2.66063586e-03 -7.45047212e-01 -2.33307794e-01 4.14739251e-01 5.59128463e-01 -9.48240638e-01 7.95822144e-01 -2.08757415e-01 9.85308960e-02 8.86319399e-01 9.68483150e-01 2.32010797e-01 -4.88069534e-01 9.08620805e-02 1.91613674e-01 -7.12442324e-02 1.05634779e-01 -9.01067197e-01 -3.44372988e-02 7.97498703e-01 1.05199075e+00 5.02359211e-01 1.04383183e+00 6.68703243e-02 6.05087519e-01 3.72354954e-01 1.56760037e-01 -1.13390589e+00 4.14831936e-01 5.01183391e-01 1.21130753e+00 -8.03634226e-01 -4.60460216e-01 -3.83871913e-01 -7.22255290e-01 1.31251478e+00 1.49903432e-01 4.05550867e-01 5.93552530e-01 1.66137770e-01 2.13290513e-01 1.42487049e-01 -5.59515893e-01 -3.90525371e-01 5.90619147e-01 8.58415544e-01 6.86196566e-01 1.47434145e-01 -2.56007612e-01 6.36861444e-01 -8.62128854e-01 8.97360370e-02 5.96650720e-01 7.12759733e-01 -6.05133593e-01 -1.05078745e+00 -4.37090099e-01 1.14172265e-01 -6.64009988e-01 -3.05146247e-01 -6.99444592e-01 4.36036885e-01 1.93178400e-01 1.23223007e+00 2.01516151e-01 -2.62619346e-01 2.58184165e-01 3.69122952e-01 3.16072673e-01 -9.28070247e-01 -5.42133272e-01 9.85412300e-02 4.17684287e-01 -1.54592246e-01 -7.95024455e-01 -5.33844054e-01 -1.28657806e+00 4.73944277e-01 7.51185557e-03 5.89069605e-01 9.35268760e-01 8.49691570e-01 1.53044134e-01 7.27151394e-01 2.42615610e-01 -7.00890183e-01 -1.46026192e-02 -1.25733042e+00 -3.37763399e-01 6.32873952e-01 3.67543668e-01 -2.44998783e-01 -3.12858641e-01 8.40275705e-01]
[15.336762428283691, 4.831185817718506]
7d463332-cb81-4d1b-b8f9-36d42d3d9993
factual-a-benchmark-for-faithful-and
2305.17497
null
https://arxiv.org/abs/2305.17497v2
https://arxiv.org/pdf/2305.17497v2.pdf
FACTUAL: A Benchmark for Faithful and Consistent Textual Scene Graph Parsing
Textual scene graph parsing has become increasingly important in various vision-language applications, including image caption evaluation and image retrieval. However, existing scene graph parsers that convert image captions into scene graphs often suffer from two types of errors. First, the generated scene graphs fail to capture the true semantics of the captions or the corresponding images, resulting in a lack of faithfulness. Second, the generated scene graphs have high inconsistency, with the same semantics represented by different annotations. To address these challenges, we propose a novel dataset, which involves re-annotating the captions in Visual Genome (VG) using a new intermediate representation called FACTUAL-MR. FACTUAL-MR can be directly converted into faithful and consistent scene graph annotations. Our experimental results clearly demonstrate that the parser trained on our dataset outperforms existing approaches in terms of faithfulness and consistency. This improvement leads to a significant performance boost in both image caption evaluation and zero-shot image retrieval tasks. Furthermore, we introduce a novel metric for measuring scene graph similarity, which, when combined with the improved scene graph parser, achieves state-of-the-art (SOTA) results on multiple benchmark datasets for the aforementioned tasks. The code and dataset are available at https://github.com/zhuang-li/FACTUAL .
['Terry Yue Zhuo', 'Quan Hung Tran', 'Donghong Ji', 'Fei Li', 'Gholamreza Haffari', 'Lizhen Qu', 'Yuyang Chai', 'Zhuang Li']
2023-05-27
null
null
null
null
['image-captioning', 'graph-similarity']
['computer-vision', 'graphs']
[ 5.37250876e-01 2.10404575e-01 -1.22292139e-01 -5.64519763e-01 -1.03709209e+00 -7.20468700e-01 5.60749829e-01 3.30741554e-01 6.12187723e-04 4.17471170e-01 2.73014635e-01 -1.00054115e-01 3.62690955e-01 -7.51752496e-01 -1.12065530e+00 -4.40358996e-01 5.56471825e-01 3.97866338e-01 4.61322874e-01 -6.62939772e-02 4.71336618e-02 -1.56294703e-01 -1.46084130e+00 4.70676184e-01 8.59824657e-01 7.85735786e-01 4.90866572e-01 5.41102648e-01 -4.13672805e-01 1.05396831e+00 -3.86004329e-01 -9.09924209e-01 -3.81451212e-02 -6.34360909e-01 -8.46687019e-01 1.60312518e-01 8.84927332e-01 -3.07096034e-01 -4.58752453e-01 1.46096766e+00 2.21681356e-01 -1.35327667e-01 2.58955479e-01 -1.51308393e+00 -1.15346336e+00 5.70234835e-01 -5.55973113e-01 -8.15246776e-02 4.83610511e-01 1.38872415e-01 1.16265142e+00 -7.24146366e-01 8.41956258e-01 1.30634630e+00 3.26673657e-01 5.64261198e-01 -9.83154058e-01 -3.01485598e-01 8.09015185e-02 3.56308222e-01 -1.29544830e+00 -3.27090532e-01 7.33712971e-01 -4.94312286e-01 6.99024081e-01 3.20775479e-01 3.70527178e-01 9.22999263e-01 -8.86472389e-02 6.02429092e-01 7.87603140e-01 -3.20403129e-01 9.93408263e-02 -8.54866207e-02 1.82851315e-01 9.33091283e-01 3.94175529e-01 -3.68638754e-01 -2.84325033e-01 8.77688229e-02 5.29036224e-01 -9.62893590e-02 -4.17214304e-01 -5.75514555e-01 -1.29863870e+00 7.73304343e-01 7.45104253e-01 1.48695409e-01 -1.34405077e-01 4.45490688e-01 6.10483944e-01 -2.20536068e-01 2.49814719e-01 2.93980151e-01 1.15654826e-01 1.19906448e-01 -4.14377034e-01 2.13824529e-02 4.26120251e-01 1.28398633e+00 6.65608227e-01 -1.32979408e-01 -5.00362754e-01 7.35900283e-01 3.61035854e-01 7.46718645e-01 3.03570628e-01 -7.98996747e-01 6.40697598e-01 6.70586944e-01 -2.31514290e-01 -1.37008703e+00 6.54983297e-02 -1.49391234e-01 -7.62462258e-01 -4.86122280e-01 2.18774095e-01 5.44120073e-01 -1.11063826e+00 1.92397940e+00 3.76443803e-01 4.59674835e-01 3.12523305e-01 1.05749416e+00 1.53779757e+00 8.18398833e-01 4.37990040e-01 4.84317504e-02 1.68804586e+00 -1.34878957e+00 -8.44326377e-01 -6.85243487e-01 5.33598781e-01 -8.05505991e-01 1.40809548e+00 -1.86997950e-01 -8.95491540e-01 -6.51187778e-01 -9.88607466e-01 -5.12229800e-01 -2.53894508e-01 2.81156730e-02 5.58611095e-01 3.07958186e-01 -1.04610729e+00 6.53226152e-02 -5.80527067e-01 -5.07484376e-01 5.43064415e-01 -2.21470714e-01 -5.17309189e-01 -5.36208153e-01 -1.04285467e+00 5.39127767e-01 6.09588206e-01 3.49088758e-02 -8.71647894e-01 -4.89571095e-01 -1.30654788e+00 7.83490911e-02 4.04388458e-01 -7.75112748e-01 1.18411505e+00 -9.24680650e-01 -8.92575264e-01 1.28457522e+00 -2.14352757e-01 -3.25961739e-01 3.01166773e-01 7.04867998e-04 -2.71664500e-01 3.41849327e-01 4.89549786e-01 8.35395813e-01 4.61408973e-01 -1.42079532e+00 -2.59417266e-01 -2.40397856e-01 2.00200394e-01 2.52857506e-01 -7.81875625e-02 -8.02613571e-02 -1.16628039e+00 -4.93509531e-01 -6.50730915e-03 -8.84247601e-01 -9.48912352e-02 -3.39901112e-02 -7.44999707e-01 -1.06518775e-01 6.21553779e-01 -6.47938609e-01 9.47115302e-01 -2.22336364e+00 1.00514226e-01 -2.40188196e-01 2.27701783e-01 4.09208119e-01 -4.74023104e-01 3.71894181e-01 -6.65947869e-02 1.89494208e-01 -5.96906662e-01 -3.59730750e-01 -1.53866455e-01 3.68355751e-01 -5.69426835e-01 2.03396246e-01 2.79175580e-01 1.38080263e+00 -1.27806091e+00 -7.80245125e-01 3.94256473e-01 4.22305018e-01 -2.23157167e-01 5.33500552e-01 -4.41183776e-01 3.56708467e-01 -5.35913467e-01 5.10482669e-01 7.22020864e-01 -7.58323550e-01 2.68457264e-01 -4.77288693e-01 3.69526565e-01 -2.79513393e-02 -6.87278569e-01 1.95017195e+00 -4.30074669e-02 6.63979411e-01 -6.07446313e-01 -8.85139167e-01 8.34094226e-01 6.40425365e-04 1.42552629e-01 -9.12798584e-01 8.55090842e-03 1.20928578e-01 -4.99833465e-01 -6.35256052e-01 5.30122876e-01 1.90153390e-01 -3.51165771e-01 4.77283150e-02 4.11821641e-02 -3.74817550e-01 4.57126498e-01 7.24567056e-01 8.74996006e-01 2.18510330e-01 2.97497541e-01 6.61592782e-02 5.15399158e-01 3.25486839e-01 5.21937013e-01 6.10463679e-01 -2.04922989e-01 9.64058757e-01 7.42632926e-01 -2.67807424e-01 -1.18344700e+00 -1.18112099e+00 2.43505150e-01 8.02881956e-01 7.23571360e-01 -5.98690987e-01 -9.59703743e-01 -6.13268852e-01 -3.66300076e-01 7.98630059e-01 -4.80634868e-01 -3.30135614e-01 -3.58325124e-01 -4.16425198e-01 6.31832361e-01 3.98940802e-01 7.26351142e-01 -1.07253397e+00 -4.24996614e-01 -1.20487653e-01 -6.09066010e-01 -1.79442084e+00 -7.24487901e-01 -4.89812106e-01 -4.33228850e-01 -1.18396962e+00 -5.37245333e-01 -1.07708967e+00 8.96628439e-01 6.69169128e-01 1.37533700e+00 2.50436336e-01 -3.17541748e-01 4.84410077e-01 -5.59660435e-01 -2.05200419e-01 -6.83803916e-01 -3.78796577e-01 -4.72572982e-01 -2.37873085e-02 1.60198316e-01 8.95190332e-03 -4.97562468e-01 9.61133912e-02 -1.23936653e+00 6.82104528e-01 4.10026848e-01 6.69583201e-01 1.09636509e+00 -3.47364604e-01 2.83726662e-01 -1.22214437e+00 3.31136137e-01 -4.33315903e-01 -7.68534482e-01 7.51758218e-01 -2.76844919e-01 1.05809487e-01 5.87998867e-01 -2.94955689e-02 -1.02343249e+00 2.39871308e-01 2.01800950e-02 -5.47061563e-01 -5.54009341e-02 5.09098947e-01 -2.14830190e-01 7.71934092e-02 4.49568391e-01 3.15123737e-01 -1.58835486e-01 -7.12537616e-02 7.80481696e-01 5.49781799e-01 1.05232036e+00 -2.86670893e-01 7.11532652e-01 4.02523547e-01 -2.36326493e-02 -5.58399022e-01 -1.22237301e+00 -5.54509640e-01 -2.76067615e-01 -2.54083067e-01 1.25427127e+00 -1.15868890e+00 -2.10265398e-01 5.01173079e-01 -1.46857560e+00 -1.90314442e-01 -1.17370345e-01 1.51816219e-01 -6.06405318e-01 7.76877582e-01 -4.05287951e-01 -4.11817908e-01 -5.49360752e-01 -1.34812236e+00 1.51146519e+00 4.36246783e-01 2.35137478e-01 -7.72975028e-01 -2.96751373e-02 6.69518173e-01 8.08179900e-02 5.58214366e-01 1.12425411e+00 -3.45633209e-01 -7.61715531e-01 -6.37539029e-02 -8.00778627e-01 7.34561384e-02 9.86153111e-02 -7.54154772e-02 -8.79645526e-01 -2.22574458e-01 -4.40728277e-01 -5.15983343e-01 6.50681496e-01 1.46767572e-01 1.10541117e+00 -1.65648729e-01 -1.94820642e-01 6.01549745e-01 1.75616872e+00 -9.00785625e-02 8.72855425e-01 2.01543003e-01 1.20575964e+00 5.47081828e-01 7.16952205e-01 3.59575637e-02 6.41538799e-01 8.80272627e-01 6.21335387e-01 -2.80363262e-01 -7.03408241e-01 -7.70648837e-01 2.13100597e-01 8.98938239e-01 3.53856117e-01 -6.78969562e-01 -9.64868903e-01 6.92762911e-01 -2.20868635e+00 -7.79692471e-01 -4.74996179e-01 2.11698318e+00 5.94541967e-01 -1.57765806e-01 -2.55694211e-01 -4.82111901e-01 1.09040093e+00 2.97994554e-01 -5.88157296e-01 -1.09039135e-01 -3.53100508e-01 -3.25960398e-01 5.15241027e-01 4.06599432e-01 -1.01559079e+00 1.31592417e+00 5.30808640e+00 6.20018542e-01 -1.02857745e+00 2.56950289e-01 7.31610000e-01 4.03600037e-01 -4.74377632e-01 1.83172166e-01 -4.58697140e-01 4.90547895e-01 6.21327579e-01 -4.17198330e-01 3.11299652e-01 9.58316326e-01 -1.20559767e-01 1.11963011e-01 -9.86384332e-01 1.32272696e+00 5.44731200e-01 -1.46880651e+00 6.06466234e-01 -2.76026607e-01 7.13377178e-01 1.53990045e-01 -1.39292374e-01 8.92760605e-02 1.95298985e-01 -8.46142173e-01 8.55114102e-01 3.38303000e-01 9.86318767e-01 -2.72832572e-01 8.91475141e-01 -1.39029622e-01 -1.35013545e+00 4.23419684e-01 -5.42141974e-01 3.44895571e-01 4.53076363e-01 4.41316426e-01 -8.69115591e-01 8.45635533e-01 6.50737286e-01 8.45308781e-01 -9.32755828e-01 9.37596381e-01 -5.76579452e-01 3.82491738e-01 1.22947320e-01 1.27366623e-02 1.91147208e-01 -1.22886114e-01 4.28476930e-01 1.04063451e+00 2.27635190e-01 3.26311849e-02 1.68957815e-01 1.00102878e+00 -3.63217443e-01 2.51235753e-01 -8.73006999e-01 -3.95563871e-01 4.43799645e-01 1.24138534e+00 -9.02262628e-01 -5.20048738e-01 -4.75256324e-01 1.21792924e+00 4.80373025e-01 3.71789217e-01 -1.13323486e+00 -2.76616424e-01 3.82665694e-01 -1.12730287e-01 1.20172165e-01 -4.43912745e-02 7.13782012e-02 -1.35357201e+00 2.86338717e-01 -7.23783314e-01 5.23004055e-01 -1.32896173e+00 -1.28127468e+00 8.39649200e-01 8.76352265e-02 -1.13169992e+00 -1.29913062e-01 -4.79830176e-01 -4.27245229e-01 2.75013387e-01 -1.55205369e+00 -1.42969120e+00 -9.09019887e-01 4.64654505e-01 6.09976113e-01 1.25022203e-01 6.83108449e-01 3.58479261e-01 -5.64354181e-01 5.17982483e-01 -2.30492398e-01 2.42208585e-01 5.95032871e-01 -1.09620988e+00 7.27020800e-01 1.22048092e+00 5.35732687e-01 2.24720448e-01 6.80731416e-01 -6.12351000e-01 -1.51329994e+00 -1.60104752e+00 8.15944850e-01 -4.30696547e-01 4.87644941e-01 -4.64774370e-01 -1.00994205e+00 6.44204736e-01 2.29468778e-01 1.84783474e-01 4.38062757e-01 -5.03713489e-01 -6.26900375e-01 1.69772029e-01 -9.02918756e-01 6.36498153e-01 1.25467134e+00 -6.07046843e-01 -3.83458734e-01 7.27067649e-01 1.22832155e+00 -6.29000545e-01 -6.00558817e-01 3.95746887e-01 1.32068336e-01 -8.36824119e-01 9.50454414e-01 -5.51357329e-01 6.90969110e-01 -6.02060199e-01 -3.88050109e-01 -9.08918738e-01 -2.29403779e-01 -2.21868411e-01 2.64087379e-01 1.44744396e+00 2.01907665e-01 -4.34890270e-01 5.27323186e-01 5.22083163e-01 -2.67085344e-01 -3.76941174e-01 -7.18229353e-01 -7.55557656e-01 -4.20166433e-01 -2.73433894e-01 6.51746511e-01 9.94402826e-01 -2.79724479e-01 6.66110814e-01 -3.97312015e-01 2.35469639e-01 8.14072728e-01 4.17198300e-01 8.45733643e-01 -8.10048103e-01 -2.11717248e-01 -2.13246837e-01 -7.53926694e-01 -8.84006083e-01 1.97262168e-01 -1.14124501e+00 4.00169104e-01 -2.04682612e+00 7.25415528e-01 -2.75335491e-01 -6.32709116e-02 6.17053807e-01 -4.90194768e-01 5.87075889e-01 3.59945536e-01 2.75166214e-01 -1.09818363e+00 5.70009410e-01 1.23232019e+00 -2.89417177e-01 1.48921728e-01 -7.34919071e-01 -7.37184763e-01 5.86895764e-01 6.38763547e-01 -4.44030404e-01 -6.29766643e-01 -9.38988805e-01 2.58525431e-01 -1.51301753e-02 6.43262267e-01 -8.36722970e-01 8.61972421e-02 -1.98417798e-01 -1.18351184e-01 -2.34841883e-01 2.05629990e-01 -4.29091722e-01 3.94812822e-01 3.99118870e-01 -2.77431935e-01 8.38154331e-02 2.68628925e-01 7.95447767e-01 -3.90165746e-01 -2.11982623e-01 6.93562448e-01 -2.76649576e-02 -1.20278418e+00 3.68580967e-01 2.79897273e-01 3.27738971e-01 1.17187405e+00 5.24953939e-02 -8.91808331e-01 -4.59741592e-01 -2.38934949e-01 3.14965785e-01 7.77597964e-01 7.56909132e-01 7.65450895e-01 -1.40740144e+00 -8.20341349e-01 -1.12525530e-01 8.22805047e-01 1.64843380e-01 4.30325329e-01 4.72217321e-01 -8.40415299e-01 4.38423127e-01 -2.01910853e-01 -8.47561121e-01 -1.51681244e+00 6.67366743e-01 1.10735528e-01 -8.82716626e-02 -5.78683317e-01 7.56245375e-01 7.24790990e-01 -2.37513512e-01 -1.17533123e-02 -2.63160050e-01 -6.33476898e-02 -4.50024277e-01 4.05886382e-01 -2.13218242e-01 -1.68327630e-01 -1.10408545e+00 -4.29384768e-01 7.87698686e-01 5.21660075e-02 2.81250536e-01 9.96227026e-01 -1.83720022e-01 -2.76359409e-01 1.01035833e-01 1.20068312e+00 -2.24192590e-01 -9.56940830e-01 -1.96588352e-01 -8.57871547e-02 -6.20132208e-01 -8.01889822e-02 -4.75343227e-01 -1.08295071e+00 7.94964969e-01 5.74747741e-01 9.80580375e-02 1.13331044e+00 5.17945468e-01 9.23989952e-01 2.85396963e-01 3.01931769e-01 -5.38958013e-01 3.21204394e-01 2.83693492e-01 8.86326492e-01 -1.47103131e+00 -1.11433499e-01 -1.06476665e+00 -9.65109169e-01 6.79791629e-01 7.08853304e-01 1.54331461e-01 -1.11879013e-01 -2.55588949e-01 9.89496931e-02 -3.84398431e-01 -4.79698330e-01 -4.82537329e-01 4.28622991e-01 6.08788669e-01 3.66475552e-01 1.12562418e-01 -1.94067731e-01 3.66597384e-01 -8.87340829e-02 -1.96357578e-01 5.62648714e-01 6.76241219e-01 -2.89928854e-01 -9.35144842e-01 -2.00355356e-03 1.85231149e-01 -2.08665431e-01 -3.18698019e-01 -5.96001565e-01 5.08918226e-01 -1.41119033e-01 1.00361359e+00 1.50522783e-01 -2.21554443e-01 3.17078054e-01 -2.85234243e-01 4.57473010e-01 -7.88634479e-01 6.83504045e-02 -2.09077597e-01 1.24058597e-01 -7.17256486e-01 -4.54602689e-01 -1.94697157e-01 -1.52445221e+00 3.83574627e-02 -1.09834775e-01 1.27585083e-01 5.32035351e-01 6.99089229e-01 5.79225183e-01 5.71141183e-01 3.76023084e-01 -2.56069005e-01 4.39598523e-02 -6.19209766e-01 -8.50168541e-02 1.08943868e+00 -5.51287420e-02 -4.51022327e-01 -7.62213916e-02 4.86332864e-01]
[10.499361991882324, 1.5132032632827759]
dd7401de-56ae-4eae-b4bf-1aeefb548903
deep-rgb-d-saliency-detection-with-depth
2103.11832
null
https://arxiv.org/abs/2103.11832v1
https://arxiv.org/pdf/2103.11832v1.pdf
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion
RGB-D salient object detection (SOD) is usually formulated as a problem of classification or regression over two modalities, i.e., RGB and depth. Hence, effective RGBD feature modeling and multi-modal feature fusion both play a vital role in RGB-D SOD. In this paper, we propose a depth-sensitive RGB feature modeling scheme using the depth-wise geometric prior of salient objects. In principle, the feature modeling scheme is carried out in a depth-sensitive attention module, which leads to the RGB feature enhancement as well as the background distraction reduction by capturing the depth geometry prior. Moreover, to perform effective multi-modal feature fusion, we further present an automatic architecture search approach for RGB-D SOD, which does well in finding out a feasible architecture from our specially designed multi-modal multi-scale search space. Extensive experiments on seven standard benchmarks demonstrate the effectiveness of the proposed approach against the state-of-the-art.
['Xi Li', 'Songyuan Li', 'Huanyu Wang', 'Wenhu Zhang', 'Peng Sun']
2021-03-22
null
http://openaccess.thecvf.com//content/CVPR2021/html/Sun_Deep_RGB-D_Saliency_Detection_With_Depth-Sensitive_Attention_and_Automatic_Multi-Modal_CVPR_2021_paper.html
http://openaccess.thecvf.com//content/CVPR2021/papers/Sun_Deep_RGB-D_Saliency_Detection_With_Depth-Sensitive_Attention_and_Automatic_Multi-Modal_CVPR_2021_paper.pdf
cvpr-2021-1
['rgb-d-salient-object-detection']
['computer-vision']
[ 1.53497830e-01 3.71346064e-02 8.88197124e-02 -1.38836980e-01 -1.04332149e+00 -1.12687133e-01 2.97842711e-01 1.80030428e-02 -3.17463964e-01 3.27842563e-01 3.24393898e-01 6.57324269e-02 -2.30338916e-01 -7.59119034e-01 -4.95945364e-01 -9.95889187e-01 5.31977892e-01 -2.79532629e-03 6.03887856e-01 -4.60848302e-01 3.42749447e-01 7.39129543e-01 -1.88499320e+00 7.86888227e-02 7.37027109e-01 1.53965414e+00 5.89906037e-01 4.34677273e-01 -2.71560669e-01 7.61956215e-01 -2.75068611e-01 -2.30380014e-01 4.40100431e-01 -1.96192563e-01 -7.08113194e-01 4.81507331e-01 1.95147917e-01 -2.86069036e-01 -3.92750174e-01 1.00533640e+00 6.60159767e-01 2.29764774e-01 2.91338682e-01 -1.22557104e+00 -3.29956651e-01 -5.74252121e-02 -9.68197823e-01 4.32583690e-01 2.94987321e-01 1.72911406e-01 1.01461995e+00 -1.02478158e+00 3.05922598e-01 1.15054798e+00 2.82786459e-01 3.30063999e-01 -7.53959000e-01 -2.50239909e-01 1.64541006e-01 3.38064641e-01 -1.18872929e+00 -1.20659389e-01 1.66456807e+00 -7.84247741e-02 7.32978404e-01 5.92462599e-01 9.24555600e-01 4.55155224e-01 7.59049878e-02 1.13463771e+00 1.20182526e+00 -5.45498013e-01 1.86525539e-01 1.69099808e-01 -1.00503169e-01 9.26225960e-01 1.12546861e-01 -4.08010818e-02 -7.05708563e-01 -5.64991171e-03 9.65548694e-01 3.28652024e-01 -3.38101774e-01 -6.41328514e-01 -9.70874250e-01 6.97962940e-01 8.83526623e-01 2.31169179e-01 -5.88444173e-01 2.17948675e-01 6.50967732e-02 -3.49543661e-01 5.44324338e-01 2.53574044e-01 -4.76237386e-01 1.98699519e-01 -7.18454182e-01 -6.03589453e-02 -1.20210527e-02 8.06230783e-01 9.55789864e-01 -1.71612322e-01 -2.27690578e-01 4.91478652e-01 6.09602213e-01 5.02862453e-01 4.92194176e-01 -9.62763309e-01 4.68680978e-01 1.15572369e+00 1.35197759e-01 -1.14215195e+00 -6.63816988e-01 -2.76414424e-01 -6.37758434e-01 1.94259331e-01 2.81730980e-01 2.86280960e-01 -7.07430542e-01 1.46375811e+00 8.72206390e-01 -4.08672504e-02 -5.28195985e-02 1.20485389e+00 9.87728834e-01 3.51278067e-01 -7.18897507e-02 -2.43751124e-01 1.55083978e+00 -9.01752472e-01 -5.88684499e-01 -4.01440144e-01 3.25034410e-01 -6.41806066e-01 1.14843237e+00 2.21220121e-01 -1.23454809e+00 -6.23271823e-01 -9.26852465e-01 -5.40565491e-01 -3.95237565e-01 3.05533081e-01 1.03417838e+00 6.67654991e-01 -9.45210934e-01 1.89315632e-01 -9.29134846e-01 -2.38125086e-01 4.69318956e-01 4.01404977e-01 -2.70172358e-01 -1.01963021e-01 -9.63006735e-01 7.44643509e-01 2.76345015e-01 3.82640690e-01 -5.45846760e-01 -4.30049986e-01 -7.85409272e-01 -1.21577024e-01 4.99023646e-01 -8.17412853e-01 8.54629695e-01 -6.36396646e-01 -1.29907036e+00 9.45554316e-01 -2.67096728e-01 1.18324004e-01 2.66739964e-01 -2.25677177e-01 1.07584007e-01 5.73433161e-01 -3.46040092e-02 4.95901227e-01 8.53351831e-01 -1.45619833e+00 -9.67401683e-01 -8.63050163e-01 3.94771487e-01 6.22218788e-01 -6.91990554e-01 -7.41376653e-02 -7.41045296e-01 -3.73471826e-01 6.50281608e-01 -6.58005059e-01 -3.51125479e-01 2.70895034e-01 -4.36924726e-01 -2.49134481e-01 6.62850082e-01 -7.78391063e-01 9.65714753e-01 -2.23583770e+00 3.42944622e-01 7.43324161e-02 2.67672807e-01 -2.03226164e-01 3.46245259e-01 -2.30318323e-01 7.22555816e-02 -1.86504081e-01 -9.17204916e-02 -5.89307308e-01 -1.10784017e-01 2.02681613e-03 -5.40114641e-02 7.32803345e-01 3.52764457e-01 9.26592290e-01 -7.74460793e-01 -7.45030582e-01 5.18985569e-01 5.08438349e-01 -4.75176483e-01 1.38615668e-01 -6.96826801e-02 3.63429308e-01 -1.00140369e+00 1.23375964e+00 7.44081199e-01 -2.33180001e-01 -4.55590963e-01 -5.84126711e-01 -2.40764096e-01 -8.58586803e-02 -1.09871519e+00 2.11742878e+00 -4.39881921e-01 2.99025625e-01 -2.53529307e-02 -7.30918348e-01 9.60511923e-01 -1.36388376e-01 7.57590950e-01 -9.53561962e-01 4.23422813e-01 1.63351312e-01 -5.80056846e-01 -3.79542500e-01 7.30488598e-01 4.71416973e-02 -1.59290865e-01 2.35067233e-01 -3.17969412e-01 -2.84443051e-01 -3.17917436e-01 -4.69730683e-02 8.94602776e-01 7.52878934e-02 2.83157289e-01 -1.93138998e-02 7.51291573e-01 1.20292366e-01 3.73968124e-01 4.40974146e-01 -3.57859761e-01 5.91175616e-01 7.64058977e-02 -3.22925299e-01 -6.63101971e-01 -8.02331030e-01 1.10817410e-01 8.34251106e-01 8.66139650e-01 -8.79809931e-02 -4.35635656e-01 -6.23134553e-01 -2.12778851e-01 3.17178369e-01 -7.49687195e-01 -3.80119950e-01 -4.43163604e-01 -7.89769471e-01 -5.94643168e-02 6.48576617e-01 8.05777490e-01 -8.76700699e-01 -1.42058659e+00 1.75968766e-01 -2.96845943e-01 -1.05615222e+00 -2.21487999e-01 6.38768017e-01 -1.00961912e+00 -1.01208270e+00 -7.92111874e-01 -7.17746675e-01 4.87648338e-01 8.68859112e-01 8.20583045e-01 9.80025828e-02 -6.20009542e-01 5.98801374e-01 -5.26779234e-01 -2.82568932e-01 3.25596094e-01 -7.61248991e-02 -2.77071029e-01 4.46586451e-03 1.63428009e-01 -3.41141105e-01 -1.02486312e+00 2.68714339e-01 -9.33285713e-01 2.30370998e-01 9.78207171e-01 4.86336350e-01 9.59855080e-01 3.07217866e-01 -4.86054504e-03 -1.03298903e-01 -3.33868153e-03 -7.61062056e-02 -5.19856215e-01 3.57256532e-01 -1.12955213e-01 -1.24283805e-02 6.63761720e-02 -1.49660453e-01 -1.23962176e+00 5.42241096e-01 -4.59801517e-02 -6.60797417e-01 -9.19116810e-02 8.48970115e-02 -5.85550606e-01 -3.79583597e-01 3.15037042e-01 5.88326991e-01 -2.76131362e-01 -4.62975711e-01 3.99487823e-01 5.73310971e-01 2.08458140e-01 -3.77114534e-01 8.28225195e-01 9.70532894e-01 2.80368388e-01 -7.79865324e-01 -8.59145641e-01 -7.72707701e-01 -6.27849400e-01 -2.87740976e-01 9.64253426e-01 -1.04163027e+00 -6.80459321e-01 4.82564688e-01 -1.08144379e+00 -8.10444355e-04 -3.41332346e-01 2.46425524e-01 -6.29449248e-01 2.65990496e-01 -3.49364668e-01 -1.07971561e+00 -4.05687243e-01 -1.32653749e+00 1.77451861e+00 4.96733814e-01 3.86857420e-01 -6.61020517e-01 -2.54084200e-01 6.16680145e-01 1.38545677e-01 2.89029390e-01 7.74755180e-01 -8.50281641e-02 -9.67219651e-01 -1.40354276e-01 -5.31502962e-01 -5.31789847e-02 1.11056842e-01 -3.67869705e-01 -1.13236785e+00 6.27539828e-02 2.38084450e-01 -2.12839127e-01 8.18347156e-01 5.13033092e-01 1.27980220e+00 1.45037174e-01 -3.21298987e-01 7.69671142e-01 1.75526488e+00 1.40119540e-02 5.86508870e-01 5.35654962e-01 9.72539127e-01 4.46748108e-01 1.19919562e+00 8.01476777e-01 5.96790135e-01 8.50416720e-01 1.01542699e+00 -5.43272138e-01 -1.33801296e-01 9.44607481e-02 4.94934916e-02 3.48415732e-01 -1.05714269e-01 -1.39655396e-02 -7.47000635e-01 4.24844265e-01 -1.70916522e+00 -6.30542040e-01 -2.45937034e-01 1.96460629e+00 6.36104107e-01 9.75285769e-02 2.96594471e-01 4.05103534e-01 5.97351730e-01 1.80422142e-02 -6.00948036e-01 1.09455734e-01 -3.95990938e-01 7.02451244e-02 5.82935631e-01 8.66064429e-02 -1.18974602e+00 6.45353734e-01 4.57434940e+00 9.98689473e-01 -1.10044050e+00 1.61446929e-01 7.16841519e-01 -1.93925261e-01 -3.81475359e-01 -2.21258923e-01 -9.38104808e-01 2.46808663e-01 1.67524144e-01 1.52903602e-01 8.85491371e-02 9.89502251e-01 1.28077075e-01 -5.16609490e-01 -6.76395237e-01 1.34280920e+00 9.61125121e-02 -1.05948436e+00 -1.79780707e-01 3.08410048e-01 5.79355180e-01 -2.22320601e-01 4.87963296e-02 -1.86594110e-02 -2.35107139e-01 -3.94238561e-01 1.02533400e+00 5.81411600e-01 3.34230691e-01 -9.29504812e-01 5.34105361e-01 2.25855649e-01 -1.44800842e+00 -3.48983198e-01 -4.78974819e-01 3.31060201e-01 8.05960223e-02 6.73675358e-01 -1.29603967e-01 7.85196126e-01 1.01957703e+00 6.84690297e-01 -8.89664173e-01 1.11682951e+00 -1.19058095e-01 -5.17797209e-02 -4.45787102e-01 -3.85108031e-02 1.12727188e-01 1.52071893e-01 3.85261685e-01 7.67051220e-01 3.18864852e-01 3.42005163e-01 5.71445711e-02 6.78705513e-01 2.75237262e-01 1.47649184e-01 -1.85696438e-01 3.75546724e-01 1.65776655e-01 1.49275482e+00 -1.09052372e+00 6.92012981e-02 -4.80336428e-01 1.20623243e+00 2.70107418e-01 1.04549967e-01 -1.02721536e+00 -8.45311210e-02 5.33174217e-01 -2.86083925e-03 5.42289913e-01 -6.87157512e-02 -5.07282019e-01 -9.62756693e-01 1.51671186e-01 -4.97934937e-01 3.40356946e-01 -1.13443518e+00 -1.01164746e+00 5.82426727e-01 -2.47659728e-01 -1.45904791e+00 2.76552081e-01 -6.09369814e-01 -3.28221411e-01 8.45024049e-01 -2.04432535e+00 -1.45009267e+00 -7.65371382e-01 1.05451465e+00 5.26795030e-01 2.64113307e-01 3.94101709e-01 2.00081274e-01 -5.05806863e-01 3.05017442e-01 -2.39621639e-01 -3.03418845e-01 2.48586223e-01 -1.09043956e+00 -2.44846523e-01 8.57979774e-01 -1.29045561e-01 2.65385479e-01 4.42653805e-01 -4.36665297e-01 -1.81704581e+00 -9.35714066e-01 2.57498860e-01 -2.55599618e-01 4.23157305e-01 -1.88375399e-01 -4.90679413e-01 1.00775599e-01 -2.56763071e-01 3.13411981e-01 4.57737356e-01 -4.16530460e-01 1.02913640e-01 -3.05806369e-01 -1.12355757e+00 3.91036779e-01 1.09461510e+00 -5.50380290e-01 -4.96846676e-01 2.35616609e-01 8.70335400e-01 -5.08319795e-01 -7.51447976e-01 4.09328550e-01 4.22133237e-01 -1.16464841e+00 1.48520029e+00 -1.06311418e-01 5.51895618e-01 -3.96749139e-01 -5.77280045e-01 -8.30908358e-01 -1.83543846e-01 -1.95590377e-01 -4.25730616e-01 1.30680227e+00 -1.44623503e-01 -1.88233182e-01 9.52632606e-01 7.17830658e-01 -2.49344900e-01 -9.62835133e-01 -1.08365119e+00 -3.63744706e-01 -5.85605800e-01 -5.52654862e-01 5.18077612e-01 5.17743409e-01 -3.06455880e-01 -1.06561065e-01 -1.29395097e-01 4.40760523e-01 7.32487440e-01 6.06888950e-01 5.68544388e-01 -1.16357327e+00 -3.07552308e-01 -5.23860157e-01 -6.65727794e-01 -1.07155669e+00 -2.09047869e-01 -4.25962448e-01 1.11945920e-01 -1.53454435e+00 2.33148292e-01 -5.06056309e-01 -4.77219582e-01 4.04406279e-01 -4.86679882e-01 5.06536663e-01 7.67583251e-02 6.66324645e-02 -7.50129998e-01 9.49219525e-01 1.43058288e+00 -1.25035658e-01 -3.55520487e-01 -1.10855587e-01 -9.57037449e-01 6.80596769e-01 6.94804013e-01 -2.74508476e-01 -3.33492130e-01 -3.04299206e-01 2.20650867e-01 2.07588837e-01 6.90822184e-01 -1.03126550e+00 2.25211576e-01 -2.68548787e-01 5.86017430e-01 -9.25511539e-01 8.94173920e-01 -1.10938311e+00 -3.62057686e-01 3.15181971e-01 1.35044158e-01 -2.11526945e-01 2.26181135e-01 6.24477327e-01 -2.21153736e-01 1.47863388e-01 7.78693497e-01 -3.03621650e-01 -1.24097002e+00 1.97688162e-01 1.67914391e-01 -1.94006726e-01 1.10429370e+00 -5.74532449e-01 -1.92030236e-01 -5.38590690e-03 -5.40937722e-01 4.51864116e-02 4.95238066e-01 3.01755458e-01 9.67690408e-01 -1.25873637e+00 -1.95462540e-01 2.48818442e-01 3.41109991e-01 2.49639034e-01 4.93844599e-01 1.07859099e+00 -3.39869410e-01 3.86225730e-01 -1.84846714e-01 -6.93054616e-01 -1.19288719e+00 6.33584857e-01 2.81186640e-01 -2.39455938e-01 -3.70771080e-01 1.16527998e+00 2.81707525e-01 2.51470450e-02 2.73096770e-01 -4.51048493e-01 -1.59801915e-01 1.26850352e-01 4.40813988e-01 2.62519866e-01 2.05115721e-01 -8.23891938e-01 -7.61725903e-01 9.78265345e-01 3.45705241e-01 1.13627113e-01 1.43441355e+00 -7.10866928e-01 3.77611592e-02 2.15011403e-01 1.11655617e+00 -3.86871286e-02 -1.37075555e+00 -1.97746396e-01 -2.53840536e-01 -6.87255561e-01 6.27180815e-01 -4.30986434e-01 -1.31472147e+00 9.11239147e-01 1.00047505e+00 6.88549802e-02 1.68461609e+00 3.10816139e-01 7.77206242e-01 1.24672025e-01 5.60389578e-01 -8.75021636e-01 4.67684031e-01 -3.77246775e-02 8.99008811e-01 -1.56589520e+00 2.62112707e-01 -6.25323176e-01 -5.24158001e-01 9.13231373e-01 7.34077871e-01 -1.69760063e-02 5.83255112e-01 -3.71985584e-02 -2.20434144e-01 -3.51043463e-01 -3.02130908e-01 -7.44806945e-01 4.95521396e-01 4.03779745e-01 3.63957919e-02 -3.05260271e-01 1.15705281e-01 7.10716426e-01 1.15253352e-01 -2.04359949e-01 1.00478537e-01 1.03132105e+00 -6.04219735e-01 -7.07443535e-01 -6.95722640e-01 1.33011043e-01 -7.90886059e-02 -3.79666686e-02 -3.19865733e-01 8.64663184e-01 3.45573932e-01 9.61311817e-01 -1.64763987e-01 -4.23768729e-01 3.40090483e-01 -1.75860479e-01 6.91680431e-01 -3.02699596e-01 -4.52255517e-01 3.37350965e-01 -3.48404408e-01 -8.73982608e-01 -7.29916036e-01 -7.10203886e-01 -1.25234878e+00 1.07122302e-01 -5.71216822e-01 -4.07538176e-01 8.80166113e-01 1.01698411e+00 1.32861093e-01 6.29894137e-01 8.40991020e-01 -1.20733249e+00 -9.02425423e-02 -5.93723774e-01 -7.14345753e-01 2.46183634e-01 3.98488671e-01 -9.71685648e-01 -3.41335267e-01 -2.92741448e-01]
[9.69139575958252, -0.8251104950904846]
437d4d72-0c9c-4948-b27a-0c951c03fe0a
improving-dialogue-act-classification-for
1806.00522
null
http://arxiv.org/abs/1806.00522v1
http://arxiv.org/pdf/1806.00522v1.pdf
Improving Dialogue Act Classification for Spontaneous Arabic Speech and Instant Messages at Utterance Level
The ability to model and automatically detect dialogue act is an important step toward understanding spontaneous speech and Instant Messages. However, it has been difficult to infer a dialogue act from a surface utterance because it highly depends on the context of the utterance and speaker linguistic knowledge; especially in Arabic dialects. This paper proposes a statistical dialogue analysis model to recognize utterance's dialogue acts using a multi-classes hierarchical structure. The model can automatically acquire probabilistic discourse knowledge from a dialogue corpus were collected and annotated manually from multi-genre Egyptian call-centers. Extensive experiments were conducted using Support Vector Machines classifier to evaluate the system performance. The results attained in the term of average F-measure scores of 0.912; showed that the proposed approach has moderately improved F-measure by approximately 20%.
['AbdelRahim Elmadany', 'Sherif Abdou', 'Mervat Gheith']
2018-05-30
improving-dialogue-act-classification-for-2
https://aclanthology.org/L18-1020
https://aclanthology.org/L18-1020.pdf
lrec-2018-5
['dialogue-act-classification']
['natural-language-processing']
[ 5.61866723e-03 6.56082511e-01 1.73814744e-01 -7.19714761e-01 -6.45638943e-01 -6.89126432e-01 9.79371250e-01 3.42974931e-01 -1.72634438e-01 1.00347841e+00 6.22039914e-01 -2.96590924e-01 -1.90567616e-02 -5.28072774e-01 2.57889122e-01 -4.77988422e-01 4.86362390e-02 8.19706976e-01 1.67586073e-01 -6.71723068e-01 7.74011850e-01 2.38776967e-01 -1.10525751e+00 6.15188420e-01 8.17907810e-01 5.36882579e-01 1.71685189e-01 1.20473123e+00 -4.69878584e-01 1.48545969e+00 -1.15575218e+00 -1.06693484e-01 -3.17902863e-01 -7.55674422e-01 -1.57476807e+00 5.86095810e-01 -3.06788504e-01 -3.91813070e-01 7.23836794e-02 7.63515055e-01 8.95084217e-02 2.34405428e-01 1.02957511e+00 -8.58768106e-01 -1.17119849e-01 8.08894098e-01 -8.02157074e-02 3.08532417e-01 9.11090016e-01 -1.96631446e-01 9.38702285e-01 -5.38850784e-01 2.98927754e-01 1.60822129e+00 2.40661532e-01 5.88494599e-01 -1.02092171e+00 -2.55177617e-01 -3.67421657e-01 -5.78919128e-02 -1.00563169e+00 -4.23700452e-01 7.00612485e-01 -5.73313892e-01 1.12807977e+00 3.36064368e-01 1.18522100e-01 6.38093591e-01 7.05860332e-02 8.04263294e-01 1.45934474e+00 -9.05544221e-01 -6.33419603e-02 7.22908974e-01 8.03381503e-01 7.18924344e-01 -6.03942215e-01 -6.04106545e-01 -4.44598824e-01 -3.52550179e-01 4.99381304e-01 -7.97628164e-01 7.57348680e-05 6.12686813e-01 -8.75036716e-01 1.19111454e+00 -3.75941455e-01 9.03203428e-01 -4.57078665e-01 -9.05617237e-01 6.14733279e-01 4.60256845e-01 3.38831425e-01 5.24520993e-01 -4.98970360e-01 -8.20729315e-01 -4.37472522e-01 5.98992258e-02 1.43118334e+00 6.63366854e-01 2.80301929e-01 9.34238881e-02 4.65921825e-03 1.23212290e+00 3.89791489e-01 2.57099599e-01 5.56851089e-01 -7.42015183e-01 3.80940944e-01 8.64565492e-01 1.71843290e-01 -1.05404139e+00 -5.39884269e-01 4.32947099e-01 -4.41903502e-01 -2.20492497e-01 7.54935324e-01 -5.19938767e-01 -3.24304700e-01 1.21237075e+00 4.58073825e-01 -6.31567657e-01 6.15763545e-01 5.38882315e-01 1.05999017e+00 1.16240597e+00 1.27892971e-01 -5.68455458e-01 1.44888175e+00 -7.67156005e-01 -1.17377806e+00 1.25401929e-01 5.55255175e-01 -1.09829497e+00 1.01059997e+00 6.15984559e-01 -9.29331839e-01 -5.72980702e-01 -8.45795274e-01 2.51863778e-01 -5.20965606e-02 3.88411999e-01 4.22177583e-01 9.28061545e-01 -6.43744826e-01 -1.17686503e-01 -3.82988304e-01 -2.92227149e-01 -2.35757276e-01 3.36653411e-01 -2.80900091e-01 4.37945873e-01 -1.25609565e+00 1.08363616e+00 6.42937779e-01 -2.58161575e-02 -5.03993452e-01 2.29479611e-01 -7.66730309e-01 -1.44313529e-01 1.14101447e-01 2.81339973e-01 1.51984334e+00 -1.01964140e+00 -1.99198294e+00 7.22330511e-01 -3.03405493e-01 -3.75712395e-01 2.74366081e-01 -7.00181425e-02 -4.73935246e-01 3.46755296e-01 -1.20220423e-01 -3.58252674e-02 3.99395674e-01 -9.88632798e-01 -8.87290776e-01 -3.91134322e-01 2.16061756e-01 4.80552852e-01 -1.19696923e-01 4.79884088e-01 1.71790719e-01 -1.88976318e-01 1.22717410e-01 -8.10345531e-01 2.98098266e-01 -9.99097586e-01 -2.91640669e-01 -7.32643485e-01 8.32249522e-01 -1.06173146e+00 1.32756639e+00 -1.78102672e+00 -7.69347548e-02 1.08230382e-01 -4.89760302e-02 3.09190810e-01 5.71186900e-01 6.64772809e-01 3.25150996e-01 -1.62465781e-01 -1.05794087e-01 2.59733260e-01 1.72435716e-02 2.34093294e-01 -1.74792573e-01 6.05966523e-02 1.12430669e-01 6.29544333e-02 -7.53123045e-01 -7.29416788e-01 4.58454460e-01 2.79088974e-01 -1.23060457e-01 6.98321164e-01 -1.81680679e-01 5.38341641e-01 -6.31344497e-01 2.30977550e-01 1.82494491e-01 1.43246993e-01 6.00261927e-01 2.44844053e-02 -1.71129882e-01 5.56594372e-01 -1.04789305e+00 1.05256331e+00 -5.00166059e-01 9.78518546e-01 2.62821257e-01 -1.21321905e+00 1.21275353e+00 9.45511460e-01 7.87839293e-02 -1.54161587e-01 5.01099288e-01 8.55321661e-02 3.58915687e-01 -9.19570029e-01 7.69081891e-01 -3.58268052e-01 -3.62270832e-01 5.10994434e-01 1.68995216e-01 -1.68328404e-01 2.54747033e-01 1.61769763e-01 5.43465734e-01 -3.86846185e-01 7.24702299e-01 -2.96566069e-01 1.33228600e+00 2.10048437e-01 1.70704886e-01 4.35374498e-01 -2.89321452e-01 -6.05130605e-02 7.78989911e-01 -2.06042230e-01 -5.58245301e-01 -6.61726952e-01 -3.05221707e-01 1.35760295e+00 -4.15334284e-01 -2.00031046e-02 -1.02653873e+00 -8.65221798e-01 -4.70066398e-01 1.20138693e+00 -2.24508837e-01 3.71255726e-01 -6.21207178e-01 -7.86949039e-01 8.25105965e-01 -6.17548078e-02 7.43875444e-01 -1.08700275e+00 -2.33904392e-01 4.92150038e-01 -4.84195262e-01 -1.18317676e+00 -6.98194057e-02 -1.46554753e-01 -4.64345604e-01 -1.24779618e+00 -3.27464581e-01 -1.08302748e+00 4.78093028e-01 -1.92827687e-01 6.80693924e-01 -6.70957565e-03 -4.96327989e-02 2.70900667e-01 -6.93964243e-01 -5.76604486e-01 -1.32623303e+00 -2.83879470e-02 -4.14799377e-02 1.11429334e-01 8.98215473e-01 4.76755463e-02 5.92464916e-02 4.29219693e-01 -5.79403579e-01 -1.10856622e-01 2.35224158e-01 9.71280038e-01 -4.41167384e-01 4.27515984e-01 1.00094783e+00 -1.00650334e+00 1.28410077e+00 -3.76276970e-01 -3.71065110e-01 3.74655992e-01 -2.70074815e-01 1.11041591e-01 4.93108630e-01 -1.51223242e-02 -1.67112446e+00 -1.64310038e-01 -3.90867501e-01 8.13650906e-01 -6.51748478e-01 3.50411773e-01 -6.75370693e-02 2.50481665e-01 5.51543355e-01 3.86160821e-01 3.52368414e-01 -2.35805973e-01 3.75864543e-02 1.67390406e+00 2.60508567e-01 -6.76305473e-01 -1.01867281e-02 -1.96974456e-01 -5.13426483e-01 -1.61795604e+00 -6.96499705e-01 -7.46385098e-01 -8.41606259e-01 -6.67947531e-01 1.04395723e+00 -5.91610610e-01 -1.01936603e+00 6.47282958e-01 -1.16284370e+00 -1.09781832e-01 5.78954756e-01 6.51792526e-01 -3.68270189e-01 5.34140587e-01 -8.30273569e-01 -1.45317709e+00 -2.54325539e-01 -1.01841342e+00 4.65474725e-01 3.72983992e-01 -8.75020087e-01 -1.33626568e+00 -8.90446901e-02 9.09428477e-01 2.01542839e-01 7.82813877e-02 1.07210970e+00 -1.45486474e+00 2.66415954e-01 -2.58830398e-01 7.65355527e-02 5.88060677e-01 6.20010734e-01 1.77679658e-01 -1.06805229e+00 1.76259920e-01 5.41547537e-01 -7.67116189e-01 -1.20589219e-01 1.14841096e-01 3.59147042e-01 -6.39116824e-01 1.55432388e-01 -7.66857028e-01 8.69975209e-01 8.03590000e-01 2.48597398e-01 6.14409372e-02 1.64881498e-01 1.20920241e+00 9.66747224e-01 5.52446783e-01 3.62578034e-01 3.67990613e-01 -3.45801711e-01 4.66327190e-01 2.99205303e-01 1.48441538e-01 4.14428025e-01 1.38148594e+00 2.25914046e-02 -1.21456474e-01 -1.16925168e+00 3.86745512e-01 -1.63667274e+00 -1.05819166e+00 -2.88751543e-01 1.68458116e+00 1.31794047e+00 2.96401441e-01 3.96784216e-01 5.83077610e-01 8.08844626e-01 6.78810403e-02 1.80397153e-01 -8.87032032e-01 7.90354684e-02 -4.22500372e-02 -2.20181569e-01 1.27445757e+00 -1.03057730e+00 8.81090283e-01 5.90241146e+00 6.70256793e-01 -8.70078266e-01 -5.07376939e-02 6.69448197e-01 4.54717427e-01 2.37584904e-01 -3.05405676e-01 -7.83313632e-01 2.86505699e-01 1.26980007e+00 -3.41596186e-01 1.64483398e-01 6.38424993e-01 3.51880580e-01 -5.22195816e-01 -8.24866652e-01 5.44883132e-01 3.57016981e-01 -9.29827929e-01 1.08648062e-01 -1.00977719e-01 4.26585466e-01 -5.22541940e-01 -5.85674345e-01 4.99731481e-01 4.56376463e-01 -9.45892990e-01 1.56203404e-01 3.11745524e-01 1.35193095e-01 -8.93137693e-01 9.54965532e-01 9.47982967e-01 -6.88558817e-01 1.58971250e-01 -1.13477454e-01 -3.46294224e-01 1.05696447e-01 -9.63079631e-02 -1.89562154e+00 1.76788732e-01 5.06863818e-02 -3.04623879e-02 -1.42789796e-01 3.01371574e-01 -2.45667204e-01 1.10415065e+00 -1.76827282e-01 -7.77834833e-01 4.36494768e-01 -3.15463930e-01 5.67530930e-01 1.46375000e+00 -2.19245628e-01 6.50495410e-01 2.52150536e-01 1.32199511e-01 4.25943255e-01 6.16616666e-01 -5.21921277e-01 -1.27486318e-01 4.83515114e-01 9.34915364e-01 -7.37153769e-01 -4.52180117e-01 -3.56565654e-01 5.96635342e-01 -5.16294576e-02 -9.31536481e-02 -5.64399064e-01 -5.70250809e-01 -5.44393901e-03 -2.53232121e-01 -2.16247633e-01 -2.09483951e-01 -1.89593613e-01 -6.87596321e-01 -3.27547759e-01 -1.14330018e+00 3.78017604e-01 -3.46057802e-01 -1.09108412e+00 9.08619165e-01 1.64182380e-01 -7.37162590e-01 -7.61962831e-01 -7.06956863e-01 -4.58995730e-01 9.73311245e-01 -7.18362153e-01 -8.44398797e-01 -3.22801918e-02 4.55365330e-01 1.31049109e+00 -6.80505514e-01 1.41489899e+00 -1.17083468e-01 -4.13926512e-01 2.98192173e-01 -1.87206361e-02 6.88188732e-01 5.04580736e-01 -1.51185727e+00 -4.18877900e-01 3.28373492e-01 1.20425075e-02 5.37036538e-01 9.75234210e-01 -4.59118903e-01 -8.53016317e-01 -3.24364781e-01 1.24476278e+00 -3.97948414e-01 6.66971028e-01 1.27338115e-02 -9.43504035e-01 4.92014259e-01 7.39778519e-01 -1.08007038e+00 1.21440029e+00 2.77336299e-01 1.75490171e-01 2.05980524e-01 -1.34059834e+00 2.42436394e-01 -2.25868031e-01 -6.79154634e-01 -1.51513827e+00 4.15896118e-01 1.70617044e-01 -2.96426892e-01 -1.12799501e+00 -3.57809477e-02 3.79133105e-01 -8.94457400e-01 4.36999440e-01 -6.86795533e-01 1.45565689e-01 -6.33432567e-02 -2.43328825e-01 -9.98134196e-01 2.93899328e-01 -6.26344919e-01 2.32376263e-01 1.52485168e+00 7.29173183e-01 -4.95923966e-01 5.27142584e-01 9.38147843e-01 1.97071105e-01 -2.24098638e-01 -7.14879632e-01 -1.66665569e-01 -5.28038964e-02 -2.45817184e-01 1.85079545e-01 1.10607135e+00 7.38414645e-01 1.12397063e+00 -2.19999656e-01 -2.09289268e-04 3.05735618e-01 -2.77349651e-01 8.34226787e-01 -1.17793262e+00 -1.63703427e-01 -3.38348508e-01 -2.91724920e-01 -1.05771279e+00 2.96998799e-01 -2.28629291e-01 2.50285387e-01 -1.26317775e+00 -1.81030899e-01 -1.65849626e-01 3.22623521e-01 1.72543123e-01 -2.59513378e-01 -3.95895571e-01 -1.03739947e-01 2.04838067e-01 -2.56607920e-01 4.75001842e-01 8.17169309e-01 -5.07383831e-02 -4.45686042e-01 6.06040657e-01 -2.86355853e-01 9.78871226e-01 1.06153166e+00 -2.75656730e-01 -7.23092258e-01 7.73696154e-02 -4.70623165e-01 7.39520133e-01 -4.46657389e-01 -5.13736367e-01 8.79843235e-02 -3.31146181e-01 -1.19740196e-01 -6.39411747e-01 4.40671116e-01 -5.35669863e-01 -4.23993379e-01 3.94218147e-01 -8.19066405e-01 -9.96756777e-02 1.26846001e-01 3.35934252e-01 -6.39067471e-01 -7.43740916e-01 7.81141520e-01 -2.46579200e-01 -5.34483731e-01 -7.14815199e-01 -1.13176560e+00 1.47362677e-02 1.24029624e+00 -1.31039187e-01 -1.20377928e-01 -6.69254422e-01 -8.89169812e-01 9.46666673e-02 -1.12731859e-01 3.46601874e-01 4.04678583e-01 -7.85146713e-01 -8.90650511e-01 2.35438952e-03 -1.85732633e-01 -2.96183467e-01 5.00335693e-02 4.73230809e-01 -9.43494499e-01 8.81213248e-01 -3.15942407e-01 -4.93322253e-01 -1.92891872e+00 -2.91898757e-01 7.92761073e-02 -2.43921936e-01 -1.02878571e-01 7.74056256e-01 -2.77056485e-01 -6.02827609e-01 3.46102834e-01 1.01164214e-01 -1.09380054e+00 2.18912631e-01 6.99632287e-01 4.23388571e-01 -1.83557749e-01 -1.17638075e+00 -7.04316273e-02 -2.94542983e-02 -2.84019232e-01 -7.06852853e-01 9.75693345e-01 -4.26249981e-01 -3.97874862e-01 9.28573489e-01 9.59925473e-01 1.76250279e-01 -5.85585177e-01 -3.24392438e-01 4.13738936e-01 -3.03373367e-01 -1.61757886e-01 -9.19814944e-01 -9.06232670e-02 6.98292255e-01 1.16615765e-01 9.85434830e-01 5.90910256e-01 -1.54071391e-01 4.54553336e-01 7.62448668e-01 2.74449974e-01 -1.59698200e+00 -6.64867926e-03 9.54874456e-01 9.25660312e-01 -1.49074543e+00 -2.00686261e-01 -5.24161637e-01 -1.19991779e+00 1.52089357e+00 6.78484619e-01 2.54648030e-01 8.08419883e-01 -6.99427873e-02 5.50029457e-01 -2.68179357e-01 -7.13280380e-01 2.34675884e-01 1.72228321e-01 3.91894847e-01 1.09284377e+00 2.41876483e-01 -7.38870084e-01 5.17216384e-01 -4.64688987e-01 -4.22960252e-01 8.15167367e-01 9.67807114e-01 -9.04414475e-01 -1.05333602e+00 -5.89312792e-01 3.72024208e-01 -8.37270975e-01 1.49396226e-01 -8.87552977e-01 7.70409942e-01 -5.43543160e-01 1.68439341e+00 -1.54049352e-01 -3.05534124e-01 1.29853159e-01 5.39372444e-01 1.10100158e-01 -8.15235376e-01 -8.30153465e-01 6.64525405e-02 9.96452987e-01 3.17249924e-01 -8.14712167e-01 -7.13225245e-01 -1.35338056e+00 -2.63074994e-01 -5.07619202e-01 1.10161054e+00 6.58777058e-01 1.35359335e+00 -4.20185804e-01 2.87792653e-01 1.03766298e+00 -1.89916775e-01 -7.09811568e-01 -1.71988630e+00 -4.24911201e-01 2.61323333e-01 1.16590850e-01 -2.80817986e-01 -3.39317381e-01 3.91376048e-01]
[12.808451652526855, 7.897951126098633]
776fddf9-a53b-4d35-9e76-573d3a869739
multi-level-context-ultra-aggregation-for
null
null
http://openaccess.thecvf.com/content_CVPR_2019/html/Nie_Multi-Level_Context_Ultra-Aggregation_for_Stereo_Matching_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/papers/Nie_Multi-Level_Context_Ultra-Aggregation_for_Stereo_Matching_CVPR_2019_paper.pdf
Multi-Level Context Ultra-Aggregation for Stereo Matching
Exploiting multi-level context information to cost volume can improve the performance of learning-based stereo matching methods. In recent years, 3-D Convolution Neural Networks (3-D CNNs) show the advantages in regularizing cost volume but are limited by unary features learning in matching cost computation. However, existing methods only use features from plain convolution layers or a simple aggregation of multi-level features to calculate cost volume, which is insufficient because stereo matching requires discriminative features to identify corresponding pixels in rectified stereo image pairs. In this paper, we propose a unary features descriptor using multi-level context ultra-aggregation (MCUA), which encapsulates all convolutional features into a more discriminative representation by intra- and inter-level features combination. Specifically, a child module that takes low-resolution images as input captures larger context information; the larger context information from each layer is densely connected to the main branch of the network. MCUA makes good usage of multi-level features with richer context and performs the image-to-image prediction holistically. We introduce our MCUA scheme for cost volume calculation and test it on PSM-Net. We also evaluate our method on Scene Flow and KITTI 2012/2015 stereo datasets. Experimental results show that our method outperforms state-of-the-art methods by a notable margin and effectively improves the accuracy of stereo matching.
[' Yongtian Wang', ' Yue Liu', ' Deng-Ping Fan', ' Zhengfa Liang', ' Yun Liu', ' Ming-Ming Cheng', 'Guang-Yu Nie']
2019-06-01
null
null
null
cvpr-2019-6
['stereo-matching']
['computer-vision']
[ 1.08089916e-01 -6.71106100e-01 -2.17219695e-01 -6.07946157e-01 -3.76005977e-01 -5.37758023e-02 5.82104325e-01 -2.54532024e-02 -5.94753861e-01 5.08784413e-01 3.85832250e-01 6.78685531e-02 -4.19948483e-03 -1.24612820e+00 -7.67639697e-01 -5.42322040e-01 4.44655456e-02 8.09648037e-02 5.19379020e-01 -3.06124657e-01 3.47539067e-01 8.66260529e-01 -1.99521101e+00 5.86630642e-01 8.81924450e-01 1.63053060e+00 4.02216911e-01 3.37228626e-01 -3.42492133e-01 9.37311709e-01 -8.16923380e-02 -9.39775482e-02 7.67718136e-01 -5.07184714e-02 -7.75409877e-01 -2.07703486e-01 1.18645179e+00 -7.16054857e-01 -8.77226174e-01 9.15543258e-01 6.06265187e-01 1.64532304e-01 4.13529426e-01 -1.10504138e+00 -2.46916339e-01 4.32145409e-02 -5.69192111e-01 5.44151068e-01 2.32446149e-01 3.48752528e-01 8.96477401e-01 -9.36548889e-01 5.20005584e-01 1.41936815e+00 8.53776932e-01 2.61061072e-01 -8.98707628e-01 -8.30926955e-01 -1.46508012e-02 4.54820514e-01 -1.32159710e+00 -2.12361515e-01 9.36038256e-01 -4.67490166e-01 1.27790201e+00 1.22660235e-01 9.08069074e-01 3.71729970e-01 1.14539489e-01 6.73422873e-01 1.27011132e+00 -7.27704912e-02 -2.77952194e-01 -3.49285126e-01 3.96737009e-02 9.35980856e-01 3.21358144e-02 6.03125215e-01 -6.10544264e-01 1.15644388e-01 1.20732057e+00 4.24568564e-01 -3.65389347e-01 -5.31335652e-01 -1.17483723e+00 7.36932158e-01 1.07890654e+00 2.14805201e-01 -2.53199935e-01 3.14429671e-01 4.20438111e-01 2.03337327e-01 2.83964306e-01 -7.88092613e-03 -5.35574496e-01 -1.04342699e-02 -9.03604627e-01 2.34640956e-01 3.00651819e-01 9.03929651e-01 1.46537220e+00 -1.86654851e-01 -3.25613648e-01 9.67873812e-01 -1.55017167e-01 4.08874184e-01 3.90749991e-01 -1.13543379e+00 7.46012747e-01 1.04481280e+00 -3.39837462e-01 -9.19263959e-01 -4.20050085e-01 -2.24863976e-01 -1.07801080e+00 3.55559051e-01 3.39770883e-01 2.58162200e-01 -7.95164347e-01 1.39409161e+00 2.45079070e-01 4.17814225e-01 -2.20956177e-01 1.26415718e+00 1.22429800e+00 6.08698666e-01 -5.21796802e-03 1.38255954e-01 1.10411906e+00 -1.06616771e+00 -1.24306440e-01 2.75927149e-02 5.36044002e-01 -8.28192770e-01 9.00007188e-01 -9.16505083e-02 -1.02309453e+00 -1.00272155e+00 -9.79310215e-01 -4.17872041e-01 -4.98328984e-01 1.50012346e-02 9.20675218e-01 2.47648984e-01 -9.70599294e-01 9.72232223e-01 -3.61769736e-01 -7.38609731e-02 7.98365474e-01 5.16895592e-01 -6.02160931e-01 -3.21630180e-01 -1.20738506e+00 8.07959735e-01 1.27409205e-01 -4.42267023e-02 -6.71668589e-01 -9.51742768e-01 -1.23665690e+00 1.38828084e-01 3.78273726e-02 -9.64155793e-01 8.76123309e-01 -8.43474209e-01 -1.20040071e+00 9.76089239e-01 -1.79459110e-01 -2.29318738e-01 4.89595890e-01 -7.21430704e-02 -4.76225987e-02 2.87018389e-01 1.99026108e-01 1.10590637e+00 6.51828945e-01 -8.60544264e-01 -1.09562278e+00 -2.91928887e-01 3.53813618e-01 1.98723838e-01 -2.24127650e-01 -2.04639405e-01 -5.12176692e-01 -5.98799050e-01 1.68730333e-01 -4.66533840e-01 -3.25909615e-01 3.64259452e-01 1.28467456e-01 -3.15550715e-01 8.83771122e-01 -3.34384769e-01 1.07514155e+00 -1.93727314e+00 -1.77518830e-01 1.73197761e-01 2.63876110e-01 3.90995681e-01 -1.71436250e-01 3.20107900e-02 -1.10458441e-01 -3.04697335e-01 -1.43459871e-01 -1.88612565e-01 -1.77160844e-01 2.71269172e-01 -1.11020759e-01 4.22911376e-01 3.20063680e-01 1.00180364e+00 -8.84989381e-01 -8.94660115e-01 1.00654304e+00 5.61143816e-01 -8.55816841e-01 2.84776986e-01 3.99023801e-01 3.07600230e-01 -2.54841596e-01 8.08249831e-01 1.12644780e+00 -3.28630321e-02 -3.60099047e-01 -7.38716960e-01 -3.50297004e-01 3.56767476e-01 -1.15164018e+00 1.96763813e+00 -8.96263063e-01 8.18259835e-01 -3.26839179e-01 -1.09795964e+00 8.86910796e-01 -2.13264555e-01 7.10387766e-01 -1.08680463e+00 1.96654961e-01 4.04212356e-01 -2.13282824e-01 -3.24622661e-01 3.70372266e-01 1.35311231e-01 -1.95710007e-02 -6.61244690e-02 1.85442299e-01 -1.25492185e-01 7.07573891e-02 -7.69774541e-02 8.68625581e-01 1.65469661e-01 2.75863826e-01 -3.24377239e-01 1.07252729e+00 -2.34482139e-01 8.55988860e-01 5.92449367e-01 -4.05917376e-01 7.83665180e-01 7.32904896e-02 -1.04290843e+00 -1.06309962e+00 -9.74068224e-01 -4.83269304e-01 6.81471884e-01 5.64481854e-01 -3.46991539e-01 -4.73426163e-01 -6.29996121e-01 3.88902843e-01 -2.00162411e-01 -7.16422319e-01 7.87571445e-02 -9.56682742e-01 -3.43548775e-01 2.57394612e-01 9.25738513e-01 1.22149301e+00 -1.00658357e+00 -7.99835861e-01 3.64831209e-01 -1.56854987e-01 -1.25012207e+00 -7.48851836e-01 -1.42562645e-03 -1.05734062e+00 -1.20949233e+00 -6.72012687e-01 -8.88064921e-01 6.48794055e-01 4.86752063e-01 1.16349256e+00 3.53250951e-01 -6.70089066e-01 4.56494913e-02 8.25784579e-02 7.87994340e-02 2.25191429e-01 -1.44301951e-01 -2.18779504e-01 -1.27557009e-01 4.13961887e-01 -9.00012374e-01 -1.05747914e+00 4.51098114e-01 -7.85340369e-01 2.88886458e-01 5.75183690e-01 9.61748421e-01 6.25059485e-01 -3.54020894e-01 -7.12522939e-02 -3.98666114e-01 -1.27313519e-02 1.04433283e-01 -7.56266057e-01 7.14432681e-03 -3.85894358e-01 1.26389071e-01 6.19278967e-01 -1.92970753e-01 -9.81098533e-01 2.64430285e-01 -2.21243590e-01 -7.15940654e-01 -1.61283940e-01 -1.67112108e-02 -1.86746761e-01 -6.18545115e-01 3.39972466e-01 3.04594666e-01 -1.84711710e-01 -3.57994229e-01 1.90411717e-01 4.96131122e-01 6.05924487e-01 -6.38234556e-01 7.32508004e-01 5.89967489e-01 4.58240658e-01 -5.21536648e-01 -7.39905179e-01 -6.50907815e-01 -7.99510777e-01 -4.11668628e-01 6.05934501e-01 -1.16660237e+00 -9.20566201e-01 7.07038522e-01 -1.15788221e+00 -7.52497166e-02 -3.48634303e-01 4.74910676e-01 -6.08712971e-01 3.86011928e-01 -7.65421689e-01 -1.53686032e-01 -4.54473197e-01 -1.41562331e+00 1.24033654e+00 4.58151400e-01 3.33813697e-01 -7.77614295e-01 -6.68734089e-02 3.50691736e-01 5.47271848e-01 2.16754034e-01 6.51542306e-01 1.35418162e-01 -9.38525438e-01 2.96800826e-02 -8.94142210e-01 4.93805379e-01 8.83051306e-02 -2.46015713e-01 -1.18676293e+00 -2.24790424e-02 -4.61404979e-01 -2.61859924e-01 1.37533855e+00 6.12033010e-01 1.65278292e+00 1.67529937e-02 -2.60430962e-01 1.25232887e+00 1.81961346e+00 -1.50377661e-01 8.44555974e-01 5.78603506e-01 9.78974700e-01 5.70073247e-01 5.34235775e-01 3.66292775e-01 5.56459427e-01 7.50502944e-01 4.85790521e-01 -3.74449134e-01 -5.52385688e-01 -2.66765714e-01 1.02679797e-01 5.98630846e-01 -4.38106567e-01 5.13164520e-01 -6.63605750e-01 4.41247016e-01 -1.80728841e+00 -1.08474803e+00 -1.58702016e-01 2.15927219e+00 6.66357517e-01 7.79711753e-02 -1.26493707e-01 7.83898160e-02 6.64373219e-01 3.14774245e-01 -2.76487887e-01 -3.33457053e-01 -4.49594975e-01 5.49282491e-01 8.06862473e-01 4.74455118e-01 -1.37550962e+00 8.87404442e-01 5.13994217e+00 1.18393183e+00 -1.11249554e+00 -8.43918696e-02 6.69120908e-01 4.30716835e-02 -1.09821916e-01 8.97973925e-02 -7.65287220e-01 4.24342126e-01 1.39314279e-01 1.08153120e-01 2.32290134e-01 9.60396171e-01 2.71480549e-02 -2.28967860e-01 -1.18905663e+00 1.48372567e+00 -1.21553659e-01 -1.77940607e+00 2.74516314e-01 5.82498610e-02 9.28543091e-01 2.55325198e-01 -2.64757484e-01 1.95328563e-01 -1.49658203e-01 -9.84885812e-01 4.78230685e-01 4.33685184e-01 9.28747892e-01 -8.55246603e-01 9.51574326e-01 -1.43422429e-02 -1.89114249e+00 -1.40951931e-01 -7.41241038e-01 -3.93355161e-01 2.19321903e-02 6.77557707e-01 -8.32145661e-02 7.24713504e-01 9.70600069e-01 1.20608282e+00 -5.23115337e-01 1.26427162e+00 9.84843522e-02 -1.16084002e-01 -3.06349099e-01 3.19107413e-01 5.01629829e-01 -1.91958934e-01 2.02005237e-01 1.41316688e+00 2.42803276e-01 1.78512320e-01 2.20470056e-01 7.14447796e-01 -2.11613268e-01 1.39375433e-01 -6.64908826e-01 8.21345747e-01 2.05715656e-01 1.31377780e+00 -3.80138993e-01 -6.52976453e-01 -6.54222369e-01 8.76634181e-01 4.21441495e-01 -3.96367982e-02 -6.40521705e-01 -4.63698626e-01 1.10281992e+00 2.01278791e-01 4.12449449e-01 -6.54191151e-02 -3.54715645e-01 -1.22105098e+00 5.06931283e-02 -3.08690488e-01 4.16422188e-01 -7.01403856e-01 -1.32023954e+00 5.00803351e-01 -1.52523622e-01 -1.77893460e+00 1.17885526e-02 -6.97265804e-01 -6.95378780e-01 1.05752456e+00 -2.19039297e+00 -1.15836871e+00 -8.70071530e-01 9.60146904e-01 5.21335304e-01 -7.26466626e-02 5.62076509e-01 6.31169319e-01 -3.60992223e-01 5.18356085e-01 -3.21970642e-01 3.74641269e-01 5.74966311e-01 -9.70884323e-01 2.35838130e-01 5.94534397e-01 -2.46226817e-01 2.41973206e-01 -1.96022056e-02 -2.95197546e-01 -1.04022288e+00 -1.21331668e+00 1.06220436e+00 -9.92120579e-02 2.97674447e-01 -3.89081165e-02 -6.45363271e-01 1.45483702e-01 1.51192248e-02 6.74727261e-01 2.99627542e-01 -3.70137542e-01 -5.09141982e-01 -6.37018979e-01 -1.23619080e+00 3.06525588e-01 1.62344909e+00 -5.65202773e-01 -6.03958368e-01 -8.22354034e-02 5.73367715e-01 -5.35296023e-01 -1.00309205e+00 7.97779620e-01 6.74874723e-01 -1.52575839e+00 1.33343577e+00 -2.35160157e-01 8.26626122e-01 -4.07715589e-01 -3.75678748e-01 -8.19066167e-01 -3.08303356e-01 -1.51565269e-01 1.82134047e-01 9.83709812e-01 -2.07091242e-01 -5.55550754e-01 7.85495162e-01 3.77477348e-01 -3.66438746e-01 -9.54311430e-01 -1.09025788e+00 -7.21074998e-01 -1.93483382e-02 -5.08615553e-01 8.17130864e-01 9.38819349e-01 -2.19166368e-01 -6.20510280e-02 -2.65199751e-01 -1.05122119e-01 7.78862357e-01 6.69954717e-01 8.27606320e-01 -1.17328763e+00 4.64939363e-02 -7.83975780e-01 -9.55885708e-01 -1.36690080e+00 1.18475154e-01 -9.07663167e-01 -2.32791513e-01 -1.28594172e+00 4.18133348e-01 -6.62828863e-01 -3.27607155e-01 4.01731342e-01 -2.32441723e-01 5.59235573e-01 3.03998530e-01 2.09417462e-01 -3.52048725e-01 6.28416836e-01 1.58094728e+00 -3.33188266e-01 -8.37590545e-02 -2.65075594e-01 -1.30779520e-01 7.28805959e-01 6.34439290e-01 -1.22134693e-01 -6.58706129e-02 -4.67066675e-01 -2.29571298e-01 -5.91150997e-03 6.86960578e-01 -1.37655818e+00 1.91561967e-01 -1.56173959e-01 7.97477067e-01 -8.48192692e-01 2.99372703e-01 -9.78974164e-01 -4.25350340e-03 5.60043752e-01 -5.66084087e-02 -2.26557832e-02 1.73291087e-01 7.80668855e-02 -6.22833908e-01 1.04124114e-01 8.93803537e-01 -2.94743806e-01 -1.33431566e+00 9.27814007e-01 2.08530515e-01 -5.34133017e-02 6.91337585e-01 -4.78233844e-01 -2.61668712e-01 -2.04554610e-02 -2.16856331e-01 2.09583476e-01 5.62826157e-01 4.16542560e-01 8.14274311e-01 -1.77191412e+00 -5.28570175e-01 3.76332492e-01 3.35053861e-01 3.12758625e-01 5.25832176e-01 6.81807995e-01 -8.57125342e-01 5.43031096e-01 -7.23816335e-01 -1.02337921e+00 -1.18130672e+00 3.33435059e-01 5.88442743e-01 -2.67193615e-01 -6.86896145e-01 8.26951981e-01 5.32476306e-01 -3.71924520e-01 2.05121607e-01 -5.13567984e-01 -3.22794527e-01 -6.88442662e-02 4.19338614e-01 3.46903801e-01 7.32293651e-02 -8.76043916e-01 -4.41679835e-01 1.32280815e+00 2.15069711e-01 5.29280126e-01 1.39316237e+00 -8.25212374e-02 -1.67287380e-01 -1.24602109e-01 1.73693538e+00 -3.80424052e-01 -1.57343519e+00 -6.30208969e-01 -4.98387218e-01 -1.01045811e+00 3.37330103e-01 -3.25631231e-01 -1.74493325e+00 1.18198466e+00 7.82905042e-01 -4.99121130e-01 1.46313143e+00 -1.17017306e-01 1.18341565e+00 1.14062689e-01 5.37943661e-01 -1.06697416e+00 3.80123369e-02 5.06633699e-01 7.49377608e-01 -1.53095627e+00 5.32510318e-02 -6.02789938e-01 -2.44615227e-01 1.42918360e+00 1.04531026e+00 -3.99872035e-01 8.19990098e-01 1.69664815e-01 -8.78105238e-02 -1.11593552e-01 -3.55910301e-01 -5.73056221e-01 5.42568803e-01 4.73274022e-01 2.20732778e-01 -4.40159813e-02 -2.47322947e-01 2.37914652e-01 -1.34637907e-01 4.80882414e-02 8.97215009e-02 8.73189390e-01 -4.35864121e-01 -1.12451506e+00 -2.10088715e-01 5.20715237e-01 -6.68267906e-02 -3.68392766e-01 1.64914981e-01 7.78828025e-01 6.75631881e-01 5.08720636e-01 4.87540156e-01 -6.25380158e-01 5.79479694e-01 -3.83905292e-01 6.90221012e-01 -2.10475057e-01 -6.80336893e-01 -1.50869131e-01 -8.66991356e-02 -1.18635809e+00 -8.15312028e-01 -5.00235915e-01 -1.13519239e+00 -6.32915080e-01 -1.28169907e-02 -4.13529873e-01 3.93456787e-01 7.58794487e-01 2.20611632e-01 2.90321797e-01 9.59076822e-01 -1.37455654e+00 -9.15939212e-02 -7.40073860e-01 -3.10941875e-01 6.80055141e-01 5.28043091e-01 -8.74919176e-01 -2.13905111e-01 -9.06292498e-02]
[8.89608383178711, -2.2205333709716797]
ac471f66-38f9-4f54-bb57-eaf26a77c8dc
spherical-convolutional-neural-network-for-3d
1805.07872
null
http://arxiv.org/abs/1805.07872v2
http://arxiv.org/pdf/1805.07872v2.pdf
Spherical Convolutional Neural Network for 3D Point Clouds
We propose a neural network for 3D point cloud processing that exploits `spherical' convolution kernels and octree partitioning of space. The proposed metric-based spherical kernels systematically quantize point neighborhoods to identify local geometric structures in data, while maintaining the properties of translation-invariance and asymmetry. The network architecture itself is guided by octree data structuring that takes full advantage of the sparse nature of irregular point clouds. We specify spherical kernels with the help of neurons in each layer that in turn are associated with spatial locations. We exploit this association to avert dynamic kernel generation during network training, that enables efficient learning with high resolution point clouds. We demonstrate the utility of the spherical convolutional neural network for 3D object classification on standard benchmark datasets.
['Ajmal Mian', 'Huan Lei', 'Naveed Akhtar']
2018-05-21
null
null
null
null
['3d-object-classification']
['computer-vision']
[-3.21035951e-01 -1.67488337e-01 2.74889544e-02 -3.63353819e-01 -6.06434569e-02 -6.86670601e-01 5.67740738e-01 3.04324865e-01 -3.39855701e-01 7.07942108e-03 -1.38701499e-01 -3.68159175e-01 -4.42351371e-01 -1.16812909e+00 -9.04931724e-01 -4.17809427e-01 -7.94892490e-01 5.90338349e-01 4.59685862e-01 -5.58738895e-02 4.10322547e-01 1.65892947e+00 -1.59109330e+00 4.31498736e-01 8.28712940e-01 1.33826637e+00 3.00186928e-02 5.16417861e-01 -3.42317194e-01 4.61182058e-01 -1.76949248e-01 8.27868730e-02 4.88994092e-01 7.28142381e-01 -5.00198364e-01 -1.52522281e-01 5.93764603e-01 -1.58373326e-01 -4.17353332e-01 7.65517890e-01 2.52139837e-01 2.35983968e-01 8.82563591e-01 -1.06937313e+00 -1.00247681e+00 1.16679214e-01 -2.40576863e-01 4.15654331e-01 -2.16529801e-01 1.12272874e-01 8.32220256e-01 -1.18294919e+00 3.19240957e-01 9.78169560e-01 9.42205846e-01 1.50836051e-01 -1.07911789e+00 -3.87725204e-01 -1.34182693e-02 -2.24896953e-01 -1.67749834e+00 -2.69969553e-01 9.67778623e-01 -6.15801394e-01 1.36899137e+00 3.59377801e-01 7.57801712e-01 4.29820716e-01 3.33424538e-01 4.23136145e-01 5.43751001e-01 -1.65339008e-01 4.10526931e-01 -2.21372440e-01 4.48740572e-02 7.73232460e-01 3.01175416e-01 2.62555242e-01 -3.17965657e-01 -3.50453436e-01 1.47416520e+00 2.97844917e-01 -1.68808132e-01 -1.16577184e+00 -1.32528651e+00 7.94101536e-01 1.02030027e+00 1.53068691e-01 -5.89200258e-01 2.51811087e-01 2.64332831e-01 2.17007875e-01 7.22708642e-01 6.00132406e-01 -4.11044657e-01 1.73627689e-01 -9.03397441e-01 2.28702545e-01 4.51117486e-01 9.76532578e-01 1.01739776e+00 9.38914195e-02 -4.86263856e-02 7.26653039e-01 1.76488832e-01 4.11379158e-01 1.95600525e-01 -8.64301980e-01 3.14792722e-01 1.13239944e+00 -1.68670416e-02 -1.21208537e+00 -6.01886451e-01 -4.91228163e-01 -1.04910922e+00 6.97225332e-01 -1.00280508e-01 3.85338455e-01 -9.17559147e-01 1.17810392e+00 5.34246922e-01 5.58534622e-01 -1.30599737e-01 7.15908468e-01 8.66024792e-01 3.35832179e-01 -3.48153830e-01 6.43558919e-01 9.88239527e-01 -3.98377806e-01 2.80469626e-01 3.14523548e-01 6.38618529e-01 -3.60976636e-01 9.31461334e-01 -5.73284067e-02 -1.10022759e+00 -5.23133576e-01 -1.08482933e+00 -1.95198461e-01 -6.10256970e-01 1.09723717e-01 8.28429341e-01 4.62633967e-01 -1.50289297e+00 8.16328168e-01 -1.00817847e+00 -4.36326973e-02 8.33102584e-01 6.86846972e-01 -3.58395934e-01 3.42730224e-01 -6.06926858e-01 4.86152351e-01 3.40583295e-01 1.06458433e-01 -4.71074164e-01 -1.12472010e+00 -9.89672184e-01 2.66962320e-01 -2.51915872e-01 -8.40644419e-01 8.92125547e-01 -2.63654113e-01 -1.19076061e+00 1.10329676e+00 -7.85016418e-02 -4.35810536e-01 1.39234543e-01 -1.97393522e-02 -1.01362646e-01 2.75843620e-01 5.52292652e-02 6.17632926e-01 1.03942025e+00 -1.06468296e+00 -5.21628678e-01 -7.54970014e-01 1.34703830e-01 3.45387340e-01 -1.87692448e-01 -1.10857502e-01 -3.10321152e-01 -5.98943830e-01 5.85446239e-01 -7.87411153e-01 -3.42678368e-01 1.64810747e-01 -3.22557360e-01 -5.03414810e-01 8.84124160e-01 2.54932612e-01 7.57577300e-01 -2.29342413e+00 -1.06790304e-01 7.63042212e-01 7.93592751e-01 -8.88255015e-02 -8.45467150e-02 2.80805323e-02 -3.81393343e-01 7.40546510e-02 9.06703100e-02 -1.71373770e-01 -1.44195557e-02 -9.68602765e-03 -4.21280682e-01 7.12859929e-01 4.20802057e-01 1.19857931e+00 -6.53124154e-01 -1.61374569e-01 5.14936507e-01 7.19217598e-01 -7.16556907e-01 -1.40166674e-02 -1.86766118e-01 -2.87155006e-02 -7.22787559e-01 7.75195241e-01 9.83280718e-01 -4.70822901e-01 -6.77629113e-01 -3.62844467e-01 -3.22148889e-01 4.19147283e-01 -1.12161064e+00 1.63877439e+00 -3.02586108e-01 3.38943422e-01 -1.69005967e-03 -7.28956223e-01 1.10231352e+00 1.37642457e-03 8.32327366e-01 -2.31522828e-01 3.63642946e-02 9.45002064e-02 -2.66312420e-01 1.23176768e-01 5.07725537e-01 3.52128625e-01 2.02971354e-01 5.25148511e-01 -5.34753874e-02 -4.13289011e-01 -3.08901042e-01 1.92001816e-02 1.09789610e+00 -1.54665470e-01 -8.56218785e-02 -5.58058321e-01 3.33366126e-01 5.86868147e-04 -2.73425598e-02 7.35316277e-01 6.04897253e-02 6.85021639e-01 2.17971250e-01 -1.12815964e+00 -1.08963895e+00 -1.54076529e+00 -3.57373506e-01 1.03032374e+00 1.23237632e-01 -2.12113276e-01 -3.12597156e-01 -4.83546764e-01 5.28650701e-01 3.09603333e-01 -8.42437744e-01 -1.20420754e-01 -6.47600532e-01 -3.37516695e-01 5.22174358e-01 6.31456673e-01 2.01856270e-01 -1.02025652e+00 -9.31063890e-01 -3.01971491e-02 6.49098217e-01 -1.03380024e+00 -3.90633553e-01 5.42092741e-01 -1.24400067e+00 -1.06635284e+00 -3.21642339e-01 -7.76696801e-01 8.20696175e-01 5.38229823e-01 1.31489551e+00 3.32319252e-02 -1.07513152e-01 4.27413523e-01 -2.29809925e-01 -4.29105729e-01 7.30763003e-03 3.37087512e-01 2.50510812e-01 -1.71370655e-01 6.17439628e-01 -1.17092133e+00 -5.66544235e-01 8.73415470e-02 -8.49825084e-01 -1.21704467e-01 5.71552694e-01 5.22683203e-01 6.82943642e-01 9.19624940e-02 -2.61501014e-01 -5.97922146e-01 5.89385629e-01 -3.24762583e-01 -8.90256941e-01 -1.23876818e-02 -5.14549538e-02 1.83476046e-01 3.68833184e-01 -1.94838926e-01 -2.95984030e-01 1.18491411e-01 1.24708615e-01 -9.98371780e-01 -4.13989991e-01 2.10654482e-01 1.90886796e-01 -7.37332940e-01 9.02697086e-01 3.75553429e-01 -6.58135787e-02 -2.98916757e-01 5.97667694e-01 3.59619290e-01 3.85313481e-01 -8.52702260e-01 1.09546649e+00 8.71802628e-01 1.51492134e-01 -9.92299616e-01 -3.53192747e-01 -4.57254380e-01 -1.19283938e+00 1.21447608e-01 8.30606997e-01 -9.29353476e-01 -1.08034635e+00 2.32999608e-01 -1.40898120e+00 -1.47914872e-01 -6.73418760e-01 3.33380550e-01 -7.71960080e-01 -1.77989807e-02 -5.52785754e-01 -5.11208475e-01 -3.94829005e-01 -1.03699338e+00 1.33840406e+00 -9.50153768e-02 5.89484116e-03 -8.32273185e-01 8.14291090e-02 -4.64151919e-01 4.39403921e-01 2.52652228e-01 1.15652490e+00 -5.61440229e-01 -1.04716289e+00 -1.74222738e-01 -5.62461853e-01 8.41537938e-02 2.32360274e-01 -1.22470282e-01 -7.96627939e-01 -2.24944994e-01 -5.85062914e-02 5.36770783e-02 7.84308076e-01 5.75770259e-01 1.65469444e+00 -5.34426160e-02 -3.32475871e-01 1.27069271e+00 1.37595141e+00 -1.71550408e-01 3.53935331e-01 3.45757514e-01 9.34551656e-01 1.97668239e-01 -1.37743950e-01 4.25106347e-01 3.06592464e-01 2.82459795e-01 8.20528924e-01 -2.83480525e-01 3.41139346e-01 -1.08003337e-02 -3.15312952e-01 4.84396577e-01 -4.98107612e-01 3.27275634e-01 -1.11412883e+00 6.09354854e-01 -1.55195415e+00 -7.77416766e-01 6.97553754e-02 2.03794813e+00 4.00446951e-01 2.53963232e-01 -4.79164459e-02 -2.36334562e-01 3.52109104e-01 3.33440810e-01 -4.76080239e-01 -3.96139234e-01 -1.30344272e-01 6.31010473e-01 8.18278432e-01 2.46602267e-01 -1.41537273e+00 9.29679215e-01 6.35171032e+00 5.24868011e-01 -1.25116777e+00 -3.08337837e-01 3.80324304e-01 -1.48464203e-01 -2.78016537e-01 -4.95130271e-01 -5.94751596e-01 2.02974737e-01 4.46568191e-01 2.46278737e-02 3.43065113e-01 1.09660017e+00 1.27594233e-01 5.27741313e-01 -1.11358607e+00 1.00043464e+00 -2.78729230e-01 -1.88781035e+00 3.79753619e-01 8.91302824e-02 5.86403012e-01 8.50653887e-01 3.61863792e-01 -1.20423943e-01 5.71588516e-01 -1.33076406e+00 6.22666001e-01 2.95831978e-01 9.34409618e-01 -1.06424427e+00 2.38687471e-01 2.43682191e-01 -1.43319631e+00 -2.32572611e-02 -8.89764905e-01 9.25247371e-02 -3.34028572e-01 7.09028602e-01 -1.10734248e+00 4.16803479e-01 1.01813352e+00 8.59570861e-01 -4.94054049e-01 1.17296040e+00 1.80639714e-01 1.83826461e-02 -7.89545238e-01 3.88176814e-02 4.68682736e-01 -4.38510984e-01 6.19173229e-01 1.09053087e+00 4.10153955e-01 6.75826967e-02 -3.83460894e-02 1.25526917e+00 -2.34496947e-02 -9.15265232e-02 -1.14334893e+00 2.27584004e-01 7.20890880e-01 1.00192904e+00 -8.13912570e-01 -2.12188605e-02 -2.91046351e-01 7.86015570e-01 7.39158869e-01 4.32355702e-01 -3.71595114e-01 -4.02452528e-01 1.33206785e+00 3.51157576e-01 7.23391831e-01 -7.92704821e-01 -7.19848633e-01 -9.43486333e-01 9.67330933e-02 -3.31361443e-01 -6.98611215e-02 -6.63844109e-01 -1.21831429e+00 7.81732261e-01 -2.61886090e-01 -1.30035281e+00 7.85175711e-02 -9.18378055e-01 -8.17722738e-01 9.74589646e-01 -1.61179733e+00 -1.33219314e+00 -2.68849015e-01 8.51183295e-01 1.30659752e-02 -1.77391201e-01 8.80083382e-01 -2.12714472e-03 1.00462027e-01 3.71598035e-01 1.56476587e-01 3.35269153e-01 3.66694182e-02 -1.40429688e+00 9.78991032e-01 3.62057835e-01 2.77765453e-01 1.05088139e+00 2.37519406e-02 -5.69322526e-01 -1.35977852e+00 -1.42424583e+00 5.88053644e-01 -7.87241220e-01 6.35831535e-01 -6.01175487e-01 -1.02146471e+00 6.31897569e-01 -4.09467846e-01 3.82884830e-01 5.71875930e-01 2.59523809e-01 -6.40256345e-01 -2.99464464e-02 -1.08863151e+00 4.87111926e-01 1.25146127e+00 -7.98511863e-01 -4.83577341e-01 3.54198635e-01 9.78035867e-01 -7.08377957e-01 -8.59480619e-01 7.67252624e-01 2.04440340e-01 -1.05928278e+00 1.54910636e+00 -8.11684072e-01 2.17867792e-01 -4.59804863e-01 -1.39502794e-01 -1.20532191e+00 -7.50319064e-01 -2.29621261e-01 -6.97662309e-02 3.27464163e-01 3.82230908e-01 -5.32825053e-01 1.32487392e+00 3.28409076e-01 -4.06770796e-01 -9.23751235e-01 -1.22222137e+00 -6.92333639e-01 1.28069460e-01 -7.47943461e-01 1.04939592e+00 1.08867300e+00 -4.39525902e-01 -1.09118789e-01 4.18502510e-01 7.75907218e-01 7.16852725e-01 2.93140888e-01 6.27277374e-01 -1.65190411e+00 2.02195510e-01 -7.69651711e-01 -9.44546223e-01 -1.16481078e+00 1.23572171e-01 -1.14324284e+00 -3.39924246e-01 -1.10740912e+00 -3.53406012e-01 -9.74542499e-01 -4.55141068e-01 3.78298640e-01 2.16172099e-01 4.56813216e-01 -1.62875041e-01 3.03875834e-01 -5.05954325e-01 6.27499998e-01 1.00624216e+00 -3.23502682e-02 -4.72504646e-01 1.20227531e-01 -3.07965428e-01 6.51745975e-01 7.27887452e-01 -8.77252594e-02 -3.88482541e-01 -9.41588759e-01 2.31237248e-01 -5.61565638e-01 7.11541653e-01 -1.17093110e+00 4.96953636e-01 -8.48823190e-02 7.50079572e-01 -1.07084656e+00 5.06899893e-01 -1.11081111e+00 -3.49930264e-02 7.58046806e-02 -3.29560675e-02 3.01154375e-01 3.85341048e-01 3.72941822e-01 5.29566966e-02 4.25646693e-01 7.40423620e-01 -1.19748175e-01 -5.50526083e-01 9.10943091e-01 6.33953884e-02 -3.86032075e-01 8.91746879e-01 -6.97212577e-01 1.80696324e-01 1.94309801e-01 -6.71361685e-01 1.73448831e-01 8.67059171e-01 2.95502007e-01 1.08513677e+00 -1.58320010e+00 -5.36436617e-01 8.05712044e-01 1.71356991e-01 6.75662935e-01 1.31037712e-01 4.99679565e-01 -9.26231027e-01 4.59826052e-01 -2.50271142e-01 -1.17448294e+00 -8.78144324e-01 5.53383112e-01 5.83037913e-01 5.85944392e-02 -8.82204950e-01 1.03268397e+00 3.47299367e-01 -8.55596542e-01 9.72730145e-02 -8.83463144e-01 -8.34498778e-02 -5.47655880e-01 2.38187805e-01 7.28706196e-02 4.19499487e-01 -4.67207193e-01 -3.91466200e-01 6.79269433e-01 3.76135670e-02 3.78326446e-01 1.59956944e+00 2.69355923e-01 -4.19197112e-01 2.89982498e-01 1.21777654e+00 -9.16173384e-02 -1.03481185e+00 -3.64336640e-01 6.84038401e-02 -5.84732652e-01 1.46973684e-01 -1.82069331e-01 -8.82574975e-01 7.48398066e-01 4.87130046e-01 3.17556620e-01 8.11659336e-01 2.52806067e-01 3.97953480e-01 5.94968915e-01 3.04997861e-01 -5.85637331e-01 -2.46446863e-01 9.97669160e-01 8.33935976e-01 -1.04937804e+00 -2.22772196e-01 -4.59766090e-01 1.37252584e-02 1.34902442e+00 4.39025253e-01 -6.53532743e-01 1.13160050e+00 3.65992963e-01 -1.32509843e-01 -7.88156807e-01 -4.72051919e-01 -8.25549141e-02 6.04261577e-01 8.97588849e-01 1.18699290e-01 1.49628237e-01 6.08833790e-01 2.18835175e-01 -5.74318051e-01 -1.40027910e-01 -1.39985457e-01 7.47587681e-01 -6.77591324e-01 -5.73710442e-01 -4.20425206e-01 6.53057992e-01 9.60327834e-02 -1.87445059e-01 -2.61248678e-01 6.78422987e-01 1.28079414e-01 7.76987970e-02 8.08943868e-01 -3.22143465e-01 4.66383845e-01 -1.59133226e-01 4.18395966e-01 -7.32545614e-01 -2.51299024e-01 -2.91373461e-01 -5.96160412e-01 -8.00002933e-01 -2.21779644e-01 -3.43079120e-01 -1.26504791e+00 -5.11204004e-01 1.10076733e-01 2.56184816e-01 6.56528592e-01 5.54859042e-01 8.38232219e-01 3.64934474e-01 7.23761499e-01 -1.28403652e+00 -3.71421516e-01 -5.67724645e-01 -6.43727422e-01 1.35949522e-01 5.30182064e-01 -6.77103996e-01 -1.13726169e-01 -3.06945890e-01]
[7.944940090179443, -3.6841373443603516]
6edabdae-ed99-4332-864c-d2951f05477d
hybrid-classical-quantum-deep-learning-models
2108.01125
null
https://arxiv.org/abs/2108.01125v1
https://arxiv.org/pdf/2108.01125v1.pdf
Hybrid Classical-Quantum Deep Learning Models for Autonomous Vehicle Traffic Image Classification Under Adversarial Attack
Image classification must work for autonomous vehicles (AV) operating on public roads, and actions performed based on image misclassification can have serious consequences. Traffic sign images can be misclassified by an adversarial attack on machine learning models used by AVs for traffic sign recognition. To make classification models resilient against adversarial attacks, we used a hybrid deep-learning model with both the quantum and classical layers. Our goal is to study the hybrid deep-learning architecture for classical-quantum transfer learning models to support the current era of intermediate-scale quantum technology. We have evaluated the impacts of various white box adversarial attacks on these hybrid models. The classical part of hybrid models includes a convolution network from the pre-trained Resnet18 model, which extracts informative features from a high dimensional LISA traffic sign image dataset. The output from the classical processor is processed further through the quantum layer, which is composed of various quantum gates and provides support to various quantum mechanical features like entanglement and superposition. We have tested multiple combinations of quantum circuits to provide better classification accuracy with decreasing training data and found better resiliency for our hybrid classical-quantum deep learning model during attacks compared to the classical-only machine learning models.
['Mashrur Chowdhury', 'Dimitra Michalaka', 'Judith Mwakalonge', 'Gurcan Comert', 'Frank Ngeni', 'Zadid Khan', 'Fahim Ahmed', 'Sakib Mahmud Khan', 'Reek Majumder']
2021-08-02
null
null
null
null
['traffic-sign-recognition']
['computer-vision']
[ 3.52526754e-01 2.97322929e-01 1.17381059e-01 -2.02756017e-01 -7.71158516e-01 -6.02405787e-01 6.55407429e-01 -6.33756340e-01 -6.10842645e-01 4.57010239e-01 -6.03636801e-01 -1.05228019e+00 3.45110357e-01 -1.24035740e+00 -9.70522523e-01 -9.07754898e-01 1.80528332e-02 2.49412477e-01 7.50425577e-01 -6.96230412e-01 4.74483520e-01 8.22634876e-01 -1.53332853e+00 6.56229556e-01 6.15589261e-01 9.17351425e-01 -6.61016643e-01 1.30578899e+00 1.40836552e-01 1.11715102e+00 -7.14569747e-01 -7.46858895e-01 7.47319162e-01 -4.99418199e-01 -6.77062333e-01 -7.30880022e-01 8.58039558e-01 -4.31149840e-01 -1.30531156e+00 1.48667109e+00 3.72246206e-01 -1.67264089e-01 6.59282982e-01 -1.87782538e+00 -6.10144496e-01 1.61135718e-01 5.82644999e-01 2.91892141e-01 -1.36465609e-01 1.09901714e+00 6.91617846e-01 -5.16166277e-02 7.39790082e-01 1.22237873e+00 7.93616474e-01 9.08582866e-01 -1.10669732e+00 -1.26010656e+00 -1.06722486e+00 1.03916347e+00 -1.03209782e+00 -5.36341071e-01 2.24553213e-01 -7.29760751e-02 1.42288184e+00 -5.75262047e-02 2.50932604e-01 9.30270612e-01 9.97896254e-01 3.49923670e-01 1.36118186e+00 -1.63434878e-01 2.86937147e-01 2.25640163e-01 2.13596761e-01 1.12287772e+00 1.89359844e-01 1.05372608e+00 -2.20522299e-01 1.15004519e-03 1.13742910e-01 -3.40979666e-01 4.31024581e-01 7.41326287e-02 -6.02565885e-01 8.68504584e-01 9.56533074e-01 -9.21150595e-02 -1.03325270e-01 9.51401055e-01 5.92782319e-01 1.02122235e+00 -4.74512607e-01 5.08802116e-01 -2.97883123e-01 -8.38039741e-02 -4.75841492e-01 1.91740498e-01 8.42673361e-01 6.98127687e-01 1.15212715e+00 1.57347307e-01 -2.41952851e-01 -3.57660621e-01 2.36898184e-01 1.42245054e+00 1.83797181e-01 -9.78907168e-01 3.06127518e-01 2.41409495e-01 -2.73527175e-01 -6.25025630e-01 -4.71239835e-01 7.72790685e-02 -5.60960948e-01 9.26182926e-01 5.05766273e-01 -1.92183688e-01 -1.47418714e+00 1.42737496e+00 -1.41082913e-01 5.08810103e-01 7.28298843e-01 6.57523572e-01 7.67496169e-01 5.69309711e-01 2.70625412e-01 6.38372421e-01 1.10297894e+00 -6.27209306e-01 -5.15880048e-01 1.33308917e-01 1.36870682e+00 -5.82598507e-01 4.07539159e-01 -8.91841725e-02 -6.09596670e-01 -5.35572708e-01 -1.55948508e+00 -1.31469265e-01 -1.13749039e+00 -4.80945379e-01 4.63874251e-01 1.50205803e+00 -1.03879333e+00 1.00338531e+00 -7.80696511e-01 -1.41503602e-01 7.39131212e-01 8.07999134e-01 -5.08247316e-01 -1.13838933e-01 -1.85207832e+00 1.51676607e+00 1.96823403e-01 9.36621204e-02 -9.56592500e-01 -1.42843261e-01 -6.58493042e-01 -8.79658163e-02 -1.64517075e-01 -6.29147708e-01 1.17008626e+00 -8.56162786e-01 -1.64024365e+00 7.81376362e-01 -1.50419967e-02 -1.05728018e+00 3.67750943e-01 6.28196359e-01 -7.40430415e-01 3.32621723e-01 -2.37553671e-01 6.31340623e-01 1.08964276e+00 -6.90178573e-01 -5.28588295e-01 -2.18163729e-01 2.17024490e-01 -4.41746324e-01 3.01834732e-01 -6.09191619e-02 5.69528639e-01 3.66751939e-01 -6.37838468e-02 -1.51096916e+00 -1.92469612e-01 -2.21981928e-01 -1.75265580e-01 6.48701414e-02 1.16406250e+00 -1.74732193e-01 5.11492074e-01 -2.08928847e+00 -5.96808672e-01 5.76318324e-01 -3.64165567e-02 9.31286335e-01 -4.60963309e-01 4.50361550e-01 -1.10870980e-01 2.67623693e-01 2.55733300e-02 1.28896222e-01 2.64966100e-01 5.42223692e-01 -6.34395063e-01 7.22068191e-01 5.96569657e-01 1.54326797e+00 -8.25774491e-01 -2.63641775e-01 2.54934996e-01 1.53737113e-01 -4.40362126e-01 -2.35678107e-01 7.18488246e-02 2.85758018e-01 -4.52878326e-01 4.70128179e-01 9.00118351e-01 1.23142086e-01 -2.86486328e-01 -1.28300563e-01 1.47526562e-01 5.01018047e-01 -7.59046733e-01 8.63130450e-01 -3.19145828e-01 1.16332603e+00 -3.38172406e-01 -7.94617951e-01 4.76830751e-01 1.73120871e-01 -1.31839901e-01 -1.33461893e+00 5.39805770e-01 5.27178168e-01 6.76239312e-01 -5.96536100e-01 3.80111158e-01 -3.93300593e-01 -2.58446842e-01 4.06744421e-01 1.80786729e-01 -5.21879792e-01 4.22690921e-02 2.53236920e-01 1.65692604e+00 -1.59075618e-01 -5.30897081e-01 2.14405492e-01 7.04802036e-01 3.47821116e-01 2.49371260e-01 1.20809007e+00 -9.72248375e-01 1.09185264e-01 6.70269847e-01 -6.03956163e-01 -1.29642677e+00 -1.24653792e+00 -2.96421796e-01 7.10535347e-01 4.41397458e-01 -2.60857251e-02 -5.08288920e-01 -7.90666878e-01 8.19168240e-02 9.61922944e-01 -5.06637990e-01 -1.11885166e+00 -6.23521507e-01 -7.20084012e-01 1.63775253e+00 3.32782716e-01 1.00874996e+00 -1.12247670e+00 -5.59384704e-01 -3.31627168e-02 4.69765812e-01 -1.32758760e+00 1.92684352e-01 4.54193771e-01 -4.22635406e-01 -1.39737415e+00 2.93164074e-01 -5.54114401e-01 5.21602333e-01 -8.85547325e-02 3.85287911e-01 1.53377101e-01 -1.94971576e-01 9.60825011e-03 -5.03171504e-01 -4.69535917e-01 -1.63925457e+00 -1.26229107e-01 1.16842516e-01 2.71891756e-03 7.43750632e-01 -6.24313653e-02 -3.18920523e-01 1.98286220e-01 -1.12453449e+00 -3.50534499e-01 7.60184526e-01 9.52846646e-01 -1.70855865e-01 1.27718464e-01 1.29799113e-01 -6.74288571e-01 2.25186557e-01 -5.92264533e-02 -7.79738784e-01 1.07545905e-01 -4.47048813e-01 6.19556367e-01 8.77392769e-01 -1.52758822e-01 -6.18954122e-01 -2.47272407e-03 -3.88160348e-01 -2.63336629e-01 -7.04326853e-02 -8.51411521e-02 1.11639768e-01 -1.10947430e+00 1.06270707e+00 2.04886943e-01 3.07130486e-01 6.86915219e-01 5.23941040e-01 9.02403176e-01 3.69570762e-01 1.99362278e-01 1.60752928e+00 6.06230319e-01 9.14352715e-01 -8.49279225e-01 -3.25144738e-01 7.61560276e-02 -6.37793183e-01 -2.30976030e-01 1.04399371e+00 -3.93701196e-01 -1.09346080e+00 1.01337266e+00 -1.19138396e+00 -4.97926861e-01 -2.10815325e-01 4.89607304e-01 -6.14667833e-01 2.83375114e-01 -8.92227113e-01 -6.33928001e-01 -6.41746596e-02 -1.44223666e+00 7.36499310e-01 3.58944416e-01 4.34639007e-01 -6.86062932e-01 -5.10222018e-02 4.81827110e-01 7.65349269e-01 -1.87091921e-02 9.37749147e-01 -7.57390022e-01 -1.07470155e+00 -7.14997113e-01 -4.21271801e-01 6.91675127e-01 -5.37091136e-01 4.71405163e-02 -1.39623082e+00 -1.50199071e-01 -3.83817047e-01 -6.28105938e-01 1.16769755e+00 -2.11960554e-01 5.63347518e-01 -4.43858206e-02 -7.62595013e-02 7.90972173e-01 1.13257563e+00 2.72093385e-01 1.31066418e+00 4.23795760e-01 5.02716184e-01 -4.52158004e-02 3.04434121e-01 -4.45146322e-01 1.84533343e-01 3.80548567e-01 6.69711113e-01 1.05216287e-01 -2.59468347e-01 -7.08476231e-02 8.71850133e-01 2.05285311e-01 1.55863941e-01 1.71837732e-01 -9.23616409e-01 -1.75496563e-01 -1.45297790e+00 -1.57529235e+00 -4.44810539e-01 1.99650466e+00 3.81572932e-01 5.80615282e-01 -3.27177495e-01 1.17341511e-01 3.81090850e-01 -7.30442107e-02 -5.76694965e-01 -1.21170080e+00 -2.77663052e-01 7.60443211e-01 1.60055721e+00 4.21877474e-01 -1.36306262e+00 1.41283333e+00 6.21433640e+00 7.79291153e-01 -1.39070523e+00 2.78072953e-01 1.11883141e-01 4.09120977e-01 7.91087896e-02 3.11133832e-01 -5.93210280e-01 2.62180597e-01 1.96613610e+00 1.26342356e-01 5.70983231e-01 3.81630808e-01 -1.72187120e-01 2.04571653e-02 -8.54164422e-01 5.32928705e-01 -1.41270667e-01 -1.45260417e+00 -8.47895741e-02 1.33735448e-01 8.48302066e-01 8.04446638e-01 3.05505067e-01 8.83503616e-01 4.30894196e-01 -1.10729098e+00 5.18486500e-01 5.18863082e-01 9.11015153e-01 -5.95164716e-01 1.17439616e+00 9.77304205e-02 -6.52627885e-01 -4.49129283e-01 -3.47249776e-01 -3.57950665e-02 -7.40200877e-02 -5.43404937e-01 -9.46567118e-01 3.32387626e-01 2.81927198e-01 1.84765413e-01 -7.71473765e-01 7.51833260e-01 -4.36261266e-01 7.46834040e-01 -3.63192618e-01 -4.11503762e-01 7.90011227e-01 -3.59588489e-02 5.28644562e-01 9.66051638e-01 -1.31080464e-01 -4.62273546e-02 -2.99517244e-01 9.35357392e-01 1.98021457e-02 -5.30451000e-01 -9.77848470e-01 -2.32669279e-01 1.14901513e-01 8.17821622e-01 -5.69501698e-01 -6.39945090e-01 -2.63998896e-01 1.12722540e+00 -2.88181782e-01 3.43075246e-01 -1.10770941e+00 -7.27301776e-01 6.75512016e-01 -2.35602483e-01 2.75460094e-01 -3.03202957e-01 -2.65912414e-01 -1.03007376e+00 -5.06203175e-01 -6.20814264e-01 -4.04073037e-02 -6.78593934e-01 -1.02390873e+00 3.70041072e-01 -4.84230518e-01 -1.22789693e+00 -1.23486593e-01 -1.19911742e+00 -7.72975862e-01 1.01229489e+00 -1.68393314e+00 -1.16570842e+00 1.54375643e-01 6.20046675e-01 -4.03690577e-01 -5.12195706e-01 1.02446628e+00 1.70627043e-01 -3.85038525e-01 9.37679708e-01 2.94728637e-01 4.89957005e-01 4.95541155e-01 -9.95128155e-01 8.58634472e-01 1.05075276e+00 -1.49081517e-02 2.95220345e-01 6.44001961e-01 -5.43198824e-01 -1.84436667e+00 -1.16148305e+00 8.74301314e-01 -7.78797567e-01 1.07473564e+00 -7.34950528e-02 -4.87678707e-01 5.78736246e-01 -1.12217247e-01 2.96465218e-01 4.13988352e-01 -5.65117657e-01 -8.20830047e-01 -2.02749640e-01 -1.39006543e+00 6.19991720e-01 5.76632798e-01 -1.41668046e+00 -6.74800456e-01 3.18896711e-01 3.63669544e-01 -2.89636374e-01 -3.31014901e-01 9.03669670e-02 6.63800240e-01 -7.32254028e-01 6.59166157e-01 -1.14202964e+00 -3.25830095e-03 -5.18902361e-01 -1.09437540e-01 -1.07145476e+00 4.47209477e-02 -7.36799955e-01 3.01292807e-01 8.79755169e-02 6.03291214e-01 -1.28013825e+00 1.04025197e+00 7.91914821e-01 -2.52978534e-01 1.50039166e-01 -1.51894772e+00 -9.95497406e-01 4.26822871e-01 -8.48789871e-01 3.11574340e-01 4.49464411e-01 -1.05835944e-01 2.03202963e-01 -4.66286987e-02 5.64491332e-01 7.12818146e-01 -2.72784382e-01 1.00996494e+00 -6.27718091e-01 1.18734509e-01 -6.76718533e-01 -1.57968593e+00 -4.63853002e-01 3.61914217e-01 -1.44202352e+00 4.10261601e-02 -8.01060319e-01 -2.81544656e-01 -3.26587588e-01 -4.96574908e-01 4.77675200e-01 1.56619236e-01 6.78639114e-01 3.52153689e-01 7.72856921e-02 -4.04474527e-01 3.33716452e-01 1.22415400e+00 -6.17168367e-01 1.87669218e-01 1.03138730e-01 6.99420646e-02 3.66312802e-01 7.59419441e-01 -8.70840728e-01 8.56248960e-02 3.23272981e-02 2.01853335e-01 -2.51618415e-01 8.82440448e-01 -1.41807163e+00 6.27623737e-01 1.96973130e-01 -4.20136191e-02 -2.08603173e-01 2.40273193e-01 -8.24912190e-01 -2.65293241e-01 1.24199474e+00 -9.57267284e-02 -4.78346825e-01 2.12653428e-01 3.33511293e-01 -2.05084812e-02 -2.47103617e-01 1.05344915e+00 2.25689858e-01 -1.00335979e+00 2.66741991e-01 -7.14257717e-01 -4.64414597e-01 1.08321679e+00 -4.36674207e-01 -8.55881095e-01 -1.27501518e-01 -6.55843019e-01 1.49604917e-01 4.88137275e-01 3.23210716e-01 4.71556783e-01 -1.10108030e+00 -4.96482104e-01 6.07018054e-01 2.01234698e-01 -9.28458512e-01 2.58937299e-01 8.29530478e-01 -1.24964011e+00 7.64775574e-01 -6.86953366e-01 -3.61035556e-01 -9.87715840e-01 5.37351549e-01 9.86940265e-01 9.90619138e-02 -2.48345852e-01 5.60769081e-01 -5.58447659e-01 -5.48892319e-01 -1.36868462e-01 -2.91872829e-01 2.20516801e-01 -3.91828209e-01 3.09413433e-01 4.52743292e-01 2.75424987e-01 -1.07897878e+00 -3.85713100e-01 3.71354282e-01 1.49880871e-01 -1.94306299e-01 7.05522895e-01 3.85946065e-01 7.93271661e-02 3.59796882e-02 1.61523736e+00 -6.32982790e-01 -8.14498723e-01 -4.25174758e-02 -1.74228340e-01 -6.45568371e-02 2.09771082e-01 -7.19780862e-01 -6.96896195e-01 1.27095175e+00 1.10531795e+00 4.18169558e-01 6.85960889e-01 -4.70828921e-01 1.10093939e+00 1.22104633e+00 5.39300203e-01 -1.12592757e+00 -3.34657162e-01 8.96049201e-01 9.97247472e-02 -1.41072857e+00 -4.66087550e-01 1.43871352e-01 -3.32798690e-01 1.46226311e+00 3.19248378e-01 -5.51244974e-01 7.60861158e-01 3.90277505e-02 4.24604386e-01 -3.04061890e-01 -6.08760595e-01 -5.70839286e-01 8.49879440e-03 5.94621778e-01 -4.10595983e-01 2.41131186e-01 9.15263966e-02 -2.73515344e-01 -3.33688647e-01 -2.60921419e-02 8.17370892e-01 1.00883985e+00 -5.03985345e-01 -1.18577433e+00 -4.27682579e-01 4.33535576e-01 -1.64234236e-01 -1.50440574e-01 -4.01947528e-01 6.55468047e-01 4.56955403e-01 1.04362917e+00 -3.86834666e-02 -1.01436317e+00 3.62440825e-01 4.42357183e-01 5.30002117e-01 -1.38386846e-01 -6.41316533e-01 -1.10767233e+00 1.89351499e-01 -8.76307309e-01 -7.62441829e-02 -6.69203460e-01 -1.69162929e+00 -7.87098587e-01 -4.51546818e-01 -2.37243488e-01 9.84851360e-01 1.14453733e+00 2.44421586e-01 4.25053716e-01 7.84555674e-01 -7.28547156e-01 -1.16082489e+00 -7.81824291e-01 -3.72010618e-01 5.19882917e-01 6.09035492e-01 -3.42479527e-01 -5.36995053e-01 -1.78652272e-01]
[5.628922462463379, 5.051033020019531]
65a96c84-e0f4-4c28-9c5a-3e7b3651c970
a-comprehensive-empirical-analysis-on-cross
2106.12797
null
https://arxiv.org/abs/2106.12797v1
https://arxiv.org/pdf/2106.12797v1.pdf
A comprehensive empirical analysis on cross-domain semantic enrichment for detection of depressive language
We analyze the process of creating word embedding feature representations designed for a learning task when annotated data is scarce, for example, in depressive language detection from Tweets. We start with a rich word embedding pre-trained from a large general dataset, which is then augmented with embeddings learned from a much smaller and more specific domain dataset through a simple non-linear mapping mechanism. We also experimented with several other more sophisticated methods of such mapping including, several auto-encoder based and custom loss-function based methods that learn embedding representations through gradually learning to be close to the words of similar semantics and distant to dissimilar semantics. Our strengthened representations better capture the semantics of the depression domain, as it combines the semantics learned from the specific domain coupled with word coverage from the general language. We also present a comparative performance analyses of our word embedding representations with a simple bag-of-words model, well known sentiment and psycholinguistic lexicons, and a general pre-trained word embedding. When used as feature representations for several different machine learning methods, including deep learning models in a depressive Tweets identification task, we show that our augmented word embedding representations achieve a significantly better F1 score than the others, specially when applied to a high quality dataset. Also, we present several data ablation tests which confirm the efficacy of our augmentation techniques.
['Osmar Zaiane', 'Randy Goebel', 'Nawshad Farruque']
2021-06-24
null
null
null
null
['data-ablation']
['computer-vision']
[ 3.73815969e-02 4.75711197e-01 -2.25454494e-01 -5.74930429e-01 -7.92598128e-01 -1.71756238e-01 7.36230314e-01 7.94455886e-01 -8.35182667e-01 5.80122650e-01 8.01586986e-01 7.55296424e-02 1.12122901e-01 -1.03632176e+00 -3.56024176e-01 -4.76782739e-01 -8.02930072e-02 7.20157623e-01 -8.42376798e-02 -8.67239714e-01 -1.07712433e-01 2.39880621e-01 -1.40896511e+00 2.07335517e-01 5.00386298e-01 5.16041577e-01 -9.91735458e-02 4.19604152e-01 -4.45205063e-01 3.47136468e-01 -5.27181983e-01 -5.27823329e-01 -1.15550399e-01 -2.33002037e-01 -7.60564804e-01 -1.98695600e-01 5.38754724e-02 -6.17675483e-02 -4.38598752e-01 8.43042910e-01 7.94953585e-01 2.39748824e-02 8.49499404e-01 -9.70193923e-01 -1.16629899e+00 6.85538888e-01 -3.55363041e-01 1.85636163e-01 3.89043659e-01 -6.96772709e-02 1.37462962e+00 -9.28530931e-01 6.47631764e-01 1.36392784e+00 9.02112961e-01 7.49822319e-01 -1.42175364e+00 -6.14366710e-01 1.36734158e-01 -3.15917097e-02 -1.21818233e+00 -1.25858471e-01 6.66079402e-01 -4.61621135e-01 1.21537519e+00 -7.62592405e-02 5.17732799e-01 1.51584208e+00 7.76619688e-02 6.28416657e-01 6.02773011e-01 -5.81016541e-01 -6.47932962e-02 7.82997370e-01 5.14539003e-01 7.18609333e-01 3.89283687e-01 -1.16558030e-01 -4.44590390e-01 -4.88875479e-01 7.65706226e-02 2.43577495e-01 -4.69999462e-02 -3.53595644e-01 -1.01025391e+00 1.52541196e+00 4.01096135e-01 6.85975194e-01 -3.11767042e-01 1.22825436e-01 8.25714529e-01 3.58879924e-01 9.65545058e-01 5.25388658e-01 -6.15117550e-01 1.67284012e-01 -5.81363261e-01 2.39611298e-01 6.63913190e-01 5.60478091e-01 1.00859571e+00 -9.03498977e-02 -3.71799797e-01 1.03420746e+00 2.19913065e-01 3.62888396e-01 1.32494092e+00 -2.71828379e-02 2.50830710e-01 8.02044988e-01 -1.61334962e-01 -1.06905639e+00 -7.17126787e-01 -2.82901943e-01 -6.51017606e-01 -1.86371610e-01 -2.73515675e-02 -2.07153812e-01 -6.65681541e-01 2.20859218e+00 9.79654714e-02 -1.06157251e-02 3.61075014e-01 5.34037888e-01 1.02739644e+00 5.56015968e-01 2.67965287e-01 1.46918103e-01 1.81176984e+00 -7.70817339e-01 -7.63698220e-01 -5.32355487e-01 1.33980227e+00 -3.49432141e-01 1.37150586e+00 -3.08477227e-02 -6.68415964e-01 -5.17196894e-01 -1.05900419e+00 -3.68724018e-01 -1.08985639e+00 -1.23524494e-01 7.25341082e-01 6.83049440e-01 -1.12676680e+00 4.25205708e-01 -3.93791288e-01 -7.43839443e-01 3.06043267e-01 3.53227943e-01 -7.27019012e-01 -9.96198654e-02 -1.78113556e+00 1.05921710e+00 4.92652804e-01 -6.36199594e-01 -5.69664299e-01 -8.09068680e-01 -1.41318572e+00 1.70993507e-01 -2.42700502e-01 -6.27289772e-01 7.47659326e-01 -1.00195408e+00 -1.00926459e+00 1.53697658e+00 1.60183273e-02 -5.36025584e-01 -1.41145319e-01 -2.22373873e-01 -5.17069161e-01 -1.33676469e-01 3.26932758e-01 6.81401253e-01 7.30767131e-01 -8.67554784e-01 -1.17899612e-01 -3.40040654e-01 1.40148088e-01 1.54469525e-02 -1.17989171e+00 -2.96363775e-02 -5.09246485e-03 -8.69198501e-01 -4.71815377e-01 -6.81933165e-01 -2.80417860e-01 6.97848573e-02 -2.13727921e-01 -3.90541852e-01 5.10954618e-01 -5.49942672e-01 1.17486429e+00 -2.37635803e+00 1.17737390e-01 1.48015961e-01 5.42132080e-01 2.55692333e-01 -6.40344381e-01 8.32015693e-01 -5.79165161e-01 2.22023711e-01 -2.49615341e-01 -5.00568807e-01 1.61920443e-01 3.73983860e-01 -1.99098840e-01 5.10223746e-01 5.96462250e-01 9.44199741e-01 -1.18150795e+00 -2.31776834e-01 -3.19129527e-02 6.12853050e-01 -8.64736080e-01 1.89256966e-01 1.19694196e-01 -1.77383631e-01 -3.45496505e-01 1.83449343e-01 3.42801273e-01 -1.97024629e-01 1.48284882e-01 -2.05520466e-02 3.88497710e-01 3.54158461e-01 -7.48951495e-01 1.80055928e+00 -9.34272587e-01 6.93466127e-01 -3.66257429e-01 -1.33214080e+00 1.15692496e+00 2.89315373e-01 4.99095082e-01 -6.42628968e-01 1.87963605e-01 3.69866304e-02 2.68247537e-02 -5.67729115e-01 6.16831064e-01 -5.55641353e-01 -4.01940316e-01 7.78738737e-01 6.05533957e-01 2.89410278e-02 9.72051453e-03 4.19132948e-01 1.28985560e+00 -4.57451433e-01 6.44114196e-01 -3.83633703e-01 5.69466233e-01 -2.06159666e-01 1.56995893e-01 4.87826675e-01 -9.25836191e-02 6.54213548e-01 7.23486006e-01 -4.94165808e-01 -9.80857849e-01 -8.45244646e-01 -4.81439114e-01 1.38596332e+00 -2.30523422e-01 -9.31386828e-01 -3.73770058e-01 -7.44818687e-01 3.01885217e-01 7.57884920e-01 -1.19342530e+00 -9.52362359e-01 -1.08602270e-01 -1.11413205e+00 6.35642052e-01 6.10188425e-01 -1.66242003e-01 -1.21157038e+00 -1.81575358e-01 2.47950971e-01 8.83958191e-02 -1.00174701e+00 -2.23199040e-01 5.35091162e-01 -5.30085087e-01 -8.00097823e-01 -6.81294501e-01 -9.66589987e-01 5.39887130e-01 -1.99987143e-01 1.46994615e+00 2.11035565e-01 -4.04945433e-01 4.68391627e-01 -6.64416432e-01 -6.36976898e-01 -4.90355521e-01 2.06629470e-01 3.70815963e-01 6.92862421e-02 1.06878734e+00 -4.23654765e-01 -4.07931536e-01 -3.30148906e-01 -1.20946980e+00 -3.78413260e-01 3.66092294e-01 1.18997729e+00 1.69283807e-01 -3.50757688e-01 8.20749164e-01 -1.14878392e+00 1.17460322e+00 -9.78301883e-01 2.25874782e-01 -1.64151877e-01 -5.15523612e-01 3.33296776e-01 4.30658489e-01 -6.44700408e-01 -2.90979117e-01 -1.69180438e-01 -5.98329604e-01 -1.01375654e-01 1.53198969e-02 4.87041235e-01 9.52626243e-02 3.49563897e-01 9.89446282e-01 2.77445257e-01 2.83176452e-01 -4.31524873e-01 6.91810787e-01 8.61783981e-01 3.59523371e-02 -3.37006539e-01 7.75539637e-01 4.16158140e-01 -5.15221179e-01 -9.51680839e-01 -8.25782716e-01 -5.77270508e-01 -5.32567084e-01 5.51043749e-01 9.96916473e-01 -9.77519095e-01 -2.24792883e-01 -9.89301130e-02 -1.18800128e+00 -2.38799043e-02 -7.67065108e-01 4.83252883e-01 -3.82846773e-01 2.38803566e-01 -5.31958938e-01 -4.60073382e-01 -4.31692421e-01 -8.16119432e-01 1.28480816e+00 -2.16416985e-01 -7.90088236e-01 -1.55861855e+00 7.39404619e-01 -2.48201698e-01 3.72149259e-01 1.96040154e-01 1.34457040e+00 -1.48578060e+00 7.76174724e-01 -6.19241476e-01 -3.10268462e-01 6.55282795e-01 3.54146183e-01 -3.83200735e-01 -1.11516333e+00 -3.05968374e-01 -2.24240288e-01 -6.59723103e-01 1.07555437e+00 8.89257342e-02 1.03711772e+00 -2.33339131e-01 -3.77932698e-01 4.84449089e-01 1.56235182e+00 -4.00291771e-01 4.92567003e-01 4.76895601e-01 5.28482556e-01 7.49691784e-01 1.81492150e-01 5.99148035e-01 3.21807981e-01 5.19828022e-01 2.50266403e-01 -4.70936239e-01 1.67524531e-01 -1.66602224e-01 4.69946057e-01 8.44404578e-01 4.53711271e-01 -2.09575266e-01 -8.69735718e-01 9.59210992e-01 -1.59351420e+00 -6.72023654e-01 1.63777053e-01 1.77011836e+00 1.00973940e+00 1.17548637e-01 1.95239201e-01 2.71442473e-01 4.04286951e-01 2.70037055e-01 -2.66372412e-01 -1.02445889e+00 -1.67464629e-01 8.11013401e-01 2.50232756e-01 4.19986576e-01 -1.02826142e+00 1.10044384e+00 6.69369173e+00 7.03747511e-01 -9.24850225e-01 4.70937133e-01 3.01062286e-01 -2.43960191e-02 -7.32852399e-01 -4.35318977e-01 -6.38515115e-01 3.72621775e-01 1.16504514e+00 -3.79171729e-01 -1.48491353e-01 8.63184929e-01 6.41386211e-02 4.40203130e-01 -1.39375794e+00 9.84901786e-01 3.24954003e-01 -1.17066514e+00 2.94911712e-01 5.69017008e-02 4.64982241e-01 1.54347658e-01 7.91076943e-02 7.27164149e-01 2.99608558e-01 -1.27867496e+00 2.77434260e-01 3.57661486e-01 8.19856584e-01 -7.61881709e-01 1.08910370e+00 1.74914986e-01 -7.74591088e-01 -5.75712360e-02 -7.07014620e-01 -1.72423735e-01 -1.31869987e-01 7.43838251e-01 -6.74482286e-01 3.03053409e-01 4.64371204e-01 9.96316314e-01 -6.11018836e-01 2.54774779e-01 -1.63909510e-01 3.25075924e-01 -3.26661244e-02 -2.79400915e-01 5.26194334e-01 1.37780765e-02 3.14312607e-01 1.63233817e+00 1.52866304e-01 -2.11255088e-01 -1.58067673e-01 9.18369532e-01 -3.37859601e-01 6.15178704e-01 -1.18151617e+00 -4.07907218e-01 7.18112513e-02 1.30968332e+00 -2.15360135e-01 -4.74996209e-01 -6.60578847e-01 1.07885993e+00 5.68182528e-01 1.27254963e-01 -6.91622376e-01 -6.50186777e-01 1.35793281e+00 1.53370067e-01 9.57883373e-02 5.97953089e-02 7.45749846e-02 -1.26390350e+00 -2.81808585e-01 -6.13172114e-01 4.02805060e-01 -6.27569795e-01 -1.78131223e+00 7.64309704e-01 -1.06812268e-01 -9.99390900e-01 -4.16635036e-01 -8.88372123e-01 -6.76113248e-01 1.05256116e+00 -1.64459205e+00 -9.84508097e-01 6.17946163e-02 6.06538236e-01 4.58957970e-01 -5.56094587e-01 1.45752859e+00 3.79678071e-01 -3.49019617e-01 8.12899768e-01 1.32354677e-01 3.14802974e-01 8.64060462e-01 -1.27475619e+00 3.50372881e-01 2.47276574e-01 3.09445560e-01 7.23340988e-01 4.99084115e-01 -3.17864746e-01 -8.42893064e-01 -1.14974868e+00 1.28964126e+00 -6.85490251e-01 9.57024336e-01 -8.25367510e-01 -1.06476414e+00 6.98130667e-01 2.21400201e-01 2.22964045e-02 1.22172523e+00 5.10556579e-01 -3.77381951e-01 5.05800406e-03 -1.11512172e+00 4.56038743e-01 8.28707516e-01 -8.02019656e-01 -1.02918756e+00 7.42628396e-01 1.11964285e+00 2.96642929e-01 -6.93270802e-01 3.28150280e-02 3.63154024e-01 -5.37123382e-01 1.20805120e+00 -1.34802067e+00 6.91237986e-01 4.20295656e-01 -3.70757580e-01 -1.62724459e+00 -5.51651895e-01 -9.47180688e-02 1.65365025e-01 1.27561510e+00 4.60399479e-01 -7.94589639e-01 4.98815209e-01 1.54351264e-01 1.66170850e-01 -8.09901357e-01 -7.03757167e-01 -6.94328308e-01 5.09167790e-01 -4.25177097e-01 4.50834662e-01 1.28658843e+00 1.98164448e-01 7.21848488e-01 -2.88787663e-01 -1.78415015e-01 1.54221088e-01 -2.88305372e-01 4.23349708e-01 -1.32307804e+00 3.51383798e-02 -3.22061419e-01 -9.41085517e-01 -4.25434202e-01 7.17806280e-01 -1.53279305e+00 -3.69883925e-01 -1.47925138e+00 3.12787145e-01 -2.00670645e-01 -6.03810966e-01 5.99905968e-01 -1.71417847e-01 4.85028267e-01 -1.91721812e-01 -2.83623457e-01 -1.41274020e-01 9.44406152e-01 7.97026455e-01 -3.94665688e-01 -1.21432863e-01 -4.68450934e-01 -1.23748827e+00 7.52622724e-01 7.23798513e-01 -9.40197289e-01 -4.94785905e-01 -3.52250278e-01 5.49353182e-01 -6.55412912e-01 1.44487798e-01 -5.98234475e-01 -3.79185617e-01 2.82471329e-01 2.66246378e-01 3.11133987e-03 4.01245415e-01 -6.99967384e-01 -6.70159161e-01 6.31138682e-01 -5.33495784e-01 1.42437980e-01 3.74605298e-01 5.79191089e-01 -2.49448687e-01 -4.81015623e-01 7.21910000e-01 -5.08019999e-02 -7.78730035e-01 1.85152084e-01 -4.90768135e-01 3.92072439e-01 8.51585031e-01 -9.38285738e-02 8.85994062e-02 -4.24058676e-01 -1.02079976e+00 1.01386653e-02 1.71047121e-01 8.01894724e-01 6.53041005e-01 -1.61605072e+00 -9.49550033e-01 4.68480676e-01 7.36556709e-01 -6.32151067e-01 -1.92202672e-01 5.58459044e-01 -3.49766642e-01 3.11150312e-01 -2.07681239e-01 -4.48089600e-01 -9.25089419e-01 7.30154335e-01 1.84917614e-01 -4.00264382e-01 -7.01813102e-01 7.69578934e-01 5.37994564e-01 -9.70637739e-01 -4.52980446e-03 -4.77943987e-01 -5.31910837e-01 4.82241303e-01 6.72966003e-01 -7.85028115e-02 1.51315868e-01 -6.52140737e-01 -6.43480718e-01 5.46424866e-01 -2.54220199e-02 2.75517013e-02 1.56290078e+00 1.95618588e-02 -1.14871599e-01 5.63750923e-01 1.73904145e+00 -4.20109890e-02 -1.94409773e-01 -4.84814495e-01 6.21783473e-02 -1.41380757e-01 -7.14137731e-03 -2.96039373e-01 -8.83383632e-01 9.72668350e-01 7.40877092e-01 3.18744987e-01 7.60982633e-01 2.50602871e-01 7.01857448e-01 3.64054620e-01 -7.40371123e-02 -9.89489794e-01 4.34633702e-01 6.11567378e-01 8.97936821e-01 -1.41106153e+00 -2.17707515e-01 1.26276016e-01 -7.15857804e-01 1.08937824e+00 2.91422844e-01 -4.10681129e-01 9.86471534e-01 1.78236812e-01 4.87705134e-03 -4.00275975e-01 -7.18363702e-01 -6.01827383e-01 2.82232493e-01 8.19639862e-01 5.92938185e-01 -1.28900081e-01 -5.57897627e-01 1.05998731e+00 -2.95081198e-01 -4.10342723e-01 4.40988749e-01 4.77127910e-01 -3.43522012e-01 -1.31249154e+00 8.28670934e-02 5.74321747e-01 -4.18038428e-01 -4.28534210e-01 -5.20767391e-01 1.00398052e+00 2.44952992e-01 6.04304433e-01 4.26833868e-01 -4.79344338e-01 3.55254829e-01 4.95920807e-01 7.80048314e-03 -1.29032910e+00 -6.59757674e-01 -4.66206700e-01 6.37391061e-02 -4.93970633e-01 -2.62057841e-01 -3.21141362e-01 -1.22475767e+00 -1.62160277e-01 -1.31147683e-01 2.76815239e-02 5.75434029e-01 8.95922899e-01 2.52228439e-01 6.00077331e-01 5.06161749e-01 -6.34473562e-01 -4.24247622e-01 -1.10770845e+00 -9.08720672e-01 9.46767390e-01 3.93675953e-01 -5.64822257e-01 -3.68346274e-01 -3.11521024e-01]
[10.458312034606934, 8.711012840270996]
cfa7723f-59bc-42f4-8f68-670adc72868d
scops-self-supervised-co-part-segmentation
1905.01298
null
https://arxiv.org/abs/1905.01298v1
https://arxiv.org/pdf/1905.01298v1.pdf
SCOPS: Self-Supervised Co-Part Segmentation
Parts provide a good intermediate representation of objects that is robust with respect to the camera, pose and appearance variations. Existing works on part segmentation is dominated by supervised approaches that rely on large amounts of manual annotations and can not generalize to unseen object categories. We propose a self-supervised deep learning approach for part segmentation, where we devise several loss functions that aids in predicting part segments that are geometrically concentrated, robust to object variations and are also semantically consistent across different object instances. Extensive experiments on different types of image collections demonstrate that our approach can produce part segments that adhere to object boundaries and also more semantically consistent across object instances compared to existing self-supervised techniques.
['Ming-Hsuan Yang', 'Varun Jampani', 'Wei-Chih Hung', 'Sifei Liu', 'Jan Kautz', 'Pavlo Molchanov']
2019-05-03
scops-self-supervised-co-part-segmentation-1
http://openaccess.thecvf.com/content_CVPR_2019/html/Hung_SCOPS_Self-Supervised_Co-Part_Segmentation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/papers/Hung_SCOPS_Self-Supervised_Co-Part_Segmentation_CVPR_2019_paper.pdf
cvpr-2019-6
['unsupervised-facial-landmark-detection']
['computer-vision']
[-7.27536099e-04 2.83239502e-02 -3.22389275e-01 -6.76652372e-01 -5.70609689e-01 -8.08356941e-01 2.76466578e-01 6.26502186e-02 1.08934671e-01 3.79810363e-01 -1.03916824e-01 4.66592640e-01 5.51495627e-02 -5.54337621e-01 -1.07455635e+00 -1.86135098e-01 3.20484750e-02 8.48036647e-01 9.49805439e-01 3.04459292e-03 -9.78996530e-02 8.76994908e-01 -1.54414499e+00 -6.74865916e-02 6.10714257e-01 1.09075582e+00 -3.31706703e-02 3.94823134e-01 -4.70342785e-01 4.99711901e-01 -7.25403726e-01 -3.73437345e-01 7.38547504e-01 -2.52277195e-01 -1.18161809e+00 9.68216419e-01 8.29063177e-01 7.22085731e-03 -3.11845373e-02 1.13103926e+00 3.03278901e-02 3.76279764e-02 8.63326609e-01 -1.37348223e+00 -5.88711977e-01 7.18734980e-01 -6.42547250e-01 -1.76219478e-01 2.17374027e-01 -2.92737521e-02 6.85118258e-01 -4.40567225e-01 8.67739558e-01 1.32491410e+00 1.07703817e+00 5.70258379e-01 -1.36819839e+00 -3.45073819e-01 5.74007750e-01 -2.62312084e-01 -1.25849617e+00 -2.19791010e-01 1.03136802e+00 -4.21090662e-01 4.50704992e-01 7.94705078e-02 7.47135103e-01 7.72953033e-01 4.46540266e-02 1.31064546e+00 7.85988033e-01 -1.96114853e-01 3.92577261e-01 -2.08462263e-03 4.35002953e-01 6.00328803e-01 5.02773643e-01 -4.74749327e-01 3.12989168e-02 4.69773747e-02 8.56110096e-01 2.84240752e-01 -3.25536460e-01 -1.09652913e+00 -1.14006817e+00 4.62976784e-01 7.14848816e-01 3.13741237e-01 -3.22160453e-01 3.44516069e-01 3.58751625e-01 -8.07599574e-02 3.80844921e-01 2.86063582e-01 -9.69888926e-01 3.83269489e-01 -1.00001192e+00 2.34501302e-01 9.67324197e-01 1.69169641e+00 9.88484144e-01 -1.26214311e-01 -1.39552385e-01 1.03569090e+00 5.06096303e-01 4.21393037e-01 5.27053356e-01 -9.97029305e-01 3.12627107e-02 1.17725158e+00 -7.00219199e-02 -3.82445276e-01 -3.82648975e-01 -1.72031313e-01 -5.57025731e-01 2.08625451e-01 1.32741392e-01 -1.39542657e-03 -1.61393857e+00 1.48183775e+00 5.95290005e-01 -2.34622240e-01 -2.43480802e-01 5.94059408e-01 1.03926015e+00 1.13938637e-01 1.98467627e-01 1.69207484e-01 1.23846364e+00 -1.24090409e+00 -6.11209691e-01 -4.29426163e-01 8.09677467e-02 -9.30000961e-01 6.80997729e-01 1.47526771e-01 -1.10812628e+00 -8.42425704e-01 -1.01948452e+00 -5.91650419e-02 -5.24984837e-01 5.99328801e-02 7.51680732e-01 6.21486008e-01 -8.43430400e-01 7.50013769e-01 -9.01912153e-01 -4.57049578e-01 1.05791354e+00 5.89140832e-01 -6.11360788e-01 4.07595858e-02 -1.95053875e-01 5.74498117e-01 8.88259530e-01 -4.95681092e-02 -8.61142159e-01 -4.46186453e-01 -1.04121840e+00 -2.98028708e-01 3.13784212e-01 -8.48314285e-01 1.46060050e+00 -1.65273678e+00 -1.24572599e+00 9.64557230e-01 5.93928844e-02 -4.10887361e-01 6.89415157e-01 -3.45838964e-01 -8.05573687e-02 2.58232057e-01 2.40681514e-01 1.26567829e+00 1.06927693e+00 -1.77090561e+00 -5.24317682e-01 -3.98337245e-01 -6.28327951e-02 1.02681004e-01 1.89339563e-01 -2.33590394e-01 -7.63844728e-01 -6.35857463e-01 6.24666154e-01 -9.75477219e-01 -4.46278661e-01 3.46983999e-01 -7.98393488e-01 -2.71813750e-01 1.33487606e+00 -1.13068342e-01 4.31017756e-01 -1.71359193e+00 -5.61663695e-02 -8.22878536e-03 -4.97357957e-02 3.56675625e-01 -3.77068669e-02 1.23638265e-01 -8.96437000e-03 1.83820248e-01 -4.77310419e-01 -4.35530543e-01 -6.16474152e-02 3.27788621e-01 4.80756834e-02 5.88269651e-01 2.61034817e-01 1.12412429e+00 -5.54818690e-01 -8.62335980e-01 3.24077785e-01 1.74293384e-01 -2.47236565e-01 4.21046853e-01 -6.64324284e-01 2.13038623e-01 -4.52150673e-01 1.13700461e+00 8.82885814e-01 -3.26431453e-01 -3.38219196e-01 -2.38361597e-01 2.50140339e-01 -1.56931862e-01 -1.22161329e+00 1.81054688e+00 8.03471431e-02 3.14848155e-01 1.15072541e-01 -8.57179880e-01 8.92921507e-01 1.21698335e-01 6.18745208e-01 4.37571332e-02 4.40066844e-01 -4.79575852e-03 -1.84152484e-01 -3.14231277e-01 2.62783855e-01 2.42882725e-02 6.85035288e-02 3.58330756e-01 3.73927206e-01 -6.06401443e-01 2.48408452e-01 1.65677734e-03 7.21572995e-01 4.67053056e-01 2.58598894e-01 -3.55341315e-01 3.21046472e-01 4.18021023e-01 6.81088328e-01 6.11572742e-01 -4.15290326e-01 1.11594653e+00 3.81930657e-02 -4.96551812e-01 -1.01941848e+00 -1.05626130e+00 -3.59785140e-01 7.05276489e-01 7.90768206e-01 6.74959421e-02 -1.13724387e+00 -1.10292900e+00 1.69114694e-01 1.92734852e-01 -5.77009618e-01 4.24859673e-02 -4.50349331e-01 -4.20408785e-01 2.25903556e-01 1.09779692e+00 8.38554382e-01 -1.20580125e+00 -4.32658285e-01 1.18691131e-01 9.36445072e-02 -1.35687292e+00 -5.80434322e-01 2.55400926e-01 -1.24140000e+00 -1.46834671e+00 -8.09217453e-01 -1.20608974e+00 1.11512446e+00 4.43263680e-01 1.39230347e+00 1.02029033e-01 -5.15789688e-01 7.04707205e-01 -4.74285185e-01 -7.21556425e-01 -4.10206735e-01 -1.13261631e-03 -2.58142442e-01 -4.71255369e-02 1.95200369e-01 -3.26803237e-01 -6.26244187e-01 5.26143134e-01 -1.02732706e+00 -2.03786150e-01 7.83157706e-01 4.49655026e-01 1.10776711e+00 5.54513335e-02 1.49272323e-01 -1.09472275e+00 -5.01669422e-02 -3.00660998e-01 -5.75822115e-01 4.14092332e-01 -2.54062444e-01 7.30693340e-03 3.62508774e-01 -6.36176825e-01 -1.01018536e+00 7.58342445e-01 7.83099532e-02 -6.94200516e-01 -7.80529201e-01 -4.35437381e-01 -5.07022917e-01 -2.24663973e-01 4.45460945e-01 1.35618642e-01 -9.17365775e-02 -6.28981948e-01 5.31087041e-01 3.50376636e-01 4.83341664e-01 -5.17463326e-01 1.08623350e+00 8.88629675e-01 -1.04812704e-01 -7.27379143e-01 -9.00266111e-01 -8.56903791e-01 -1.32637846e+00 -7.20538199e-02 1.02671432e+00 -9.05776978e-01 -2.18404844e-01 7.47022808e-01 -1.02993906e+00 -3.01684737e-01 -5.82176089e-01 2.26572037e-01 -7.04515696e-01 5.61436415e-01 -5.21036565e-01 -4.92925376e-01 -5.06853580e-01 -9.51937973e-01 1.46306217e+00 5.09118855e-01 -1.78636357e-01 -9.33123589e-01 -8.29964206e-02 3.80699128e-01 -2.96963789e-02 4.68751580e-01 5.50099790e-01 -8.64087641e-01 -9.10399377e-01 -4.40190732e-01 -2.70205624e-02 5.06448567e-01 2.98226714e-01 3.30773145e-01 -8.58198166e-01 -1.36776507e-01 -1.53815761e-01 -4.33363438e-01 7.09448874e-01 5.82021713e-01 1.38947141e+00 -3.67503911e-01 -6.89535141e-01 6.28505170e-01 1.43622136e+00 2.40262840e-02 5.57681441e-01 2.37702727e-01 9.62007880e-01 5.28596222e-01 5.96259058e-01 -3.28048803e-02 1.83450148e-01 4.38036710e-01 5.23801088e-01 -4.34013247e-01 -2.67407864e-01 -3.87424290e-01 -7.93272555e-02 2.81638235e-01 3.01692963e-01 -2.13637963e-01 -5.98487973e-01 8.74992311e-01 -1.76558828e+00 -6.99913561e-01 -4.73011494e-01 1.82584739e+00 6.27849162e-01 2.88684726e-01 4.18579549e-01 4.09333371e-02 9.41288531e-01 -1.30897567e-01 -7.71093428e-01 -1.60083845e-01 -1.30616903e-01 2.00560123e-01 7.58718729e-01 -1.18488014e-01 -1.57245779e+00 1.22096515e+00 7.68625927e+00 5.41791320e-01 -6.71027124e-01 -1.09174728e-01 5.81080616e-01 3.93798441e-01 -8.25602263e-02 2.49806643e-02 -7.59509385e-01 1.98277771e-01 6.65547177e-02 2.89846569e-01 -1.91000640e-01 1.46231735e+00 -3.27288777e-01 -1.56351298e-01 -1.30609512e+00 7.71610618e-01 1.54492512e-01 -1.12409675e+00 5.48025519e-02 -2.78086692e-01 1.34190071e+00 -1.65909901e-02 -3.91798586e-01 7.72806108e-02 5.33747196e-01 -8.39529157e-01 1.04655480e+00 3.01026314e-01 4.01498377e-02 -4.82383430e-01 7.55137682e-01 2.91655362e-01 -1.34478986e+00 1.89063117e-01 -5.22170246e-01 3.75050813e-01 6.70401379e-02 2.10455284e-01 -8.46866131e-01 3.44809115e-01 9.37061131e-01 6.30171180e-01 -9.08009529e-01 1.50468540e+00 -2.07728967e-01 3.54691744e-01 -3.22217524e-01 7.00036809e-02 1.26740500e-01 -2.84790285e-02 3.33027184e-01 1.06657529e+00 -2.87654430e-01 -5.82883060e-02 6.27453566e-01 1.04674983e+00 -2.69215196e-01 1.71048284e-01 -5.35345376e-01 6.28886670e-02 3.46753865e-01 1.26919127e+00 -1.43462408e+00 -4.62589920e-01 -2.43510634e-01 1.20166171e+00 2.06238449e-01 2.60475278e-01 -6.76126301e-01 -2.04565510e-01 5.65714598e-01 1.64802760e-01 8.77949119e-01 -1.99993588e-02 -4.59409922e-01 -9.26958084e-01 1.89809307e-01 -4.80097294e-01 3.23028773e-01 -7.13730097e-01 -1.59744239e+00 6.19150877e-01 2.62146860e-01 -1.47306728e+00 8.27855244e-02 -6.23315692e-01 -7.71944404e-01 1.13640770e-01 -1.27831221e+00 -1.62840700e+00 -3.12405497e-01 5.91327488e-01 8.68939996e-01 3.51838656e-02 5.70059121e-01 -1.68973297e-01 -5.24412811e-01 3.73856962e-01 -1.65898278e-01 5.09540617e-01 2.90562600e-01 -1.51127815e+00 4.05493438e-01 9.00206029e-01 4.27644074e-01 6.18593156e-01 5.01724899e-01 -6.70875788e-01 -1.23945081e+00 -1.44216025e+00 1.87635198e-01 -5.44550955e-01 1.67969242e-01 -2.93206096e-01 -8.80962014e-01 9.58210647e-01 9.60041061e-02 4.73678708e-01 5.18638968e-01 -1.05800547e-01 -3.94529194e-01 -6.16841950e-02 -1.49657834e+00 3.37005138e-01 1.11551595e+00 -8.87573734e-02 -8.76519024e-01 5.58211029e-01 5.95637977e-01 -5.74461281e-01 -8.34914923e-01 7.18653083e-01 3.03518653e-01 -9.96851444e-01 9.69245553e-01 -6.67693734e-01 1.53801348e-02 -5.74994683e-01 1.00042261e-01 -7.85760641e-01 -3.48767132e-01 -4.57158267e-01 7.08623305e-02 1.49088299e+00 1.90454036e-01 -1.72731757e-01 9.68675554e-01 8.11038375e-01 -2.86704957e-01 -5.85869968e-01 -4.80319798e-01 -1.03583860e+00 -2.11349074e-02 -2.11320713e-01 6.45235062e-01 5.91823339e-01 -5.81170857e-01 9.67836529e-02 2.16362894e-01 2.24538818e-01 6.87776446e-01 6.33976042e-01 1.07593429e+00 -1.46611154e+00 -7.86710123e-04 -6.13650382e-01 -9.35684443e-01 -9.87772942e-01 3.36641401e-01 -6.09812558e-01 6.10976577e-01 -1.92402720e+00 3.80009383e-01 -4.83949572e-01 1.25404224e-01 7.09455788e-01 -1.52080223e-01 5.97823560e-01 -7.58658275e-02 3.60139221e-01 -9.83567178e-01 4.14801896e-01 1.26624489e+00 -4.41514701e-01 -1.81478277e-01 3.41809750e-01 -5.70421934e-01 1.08442736e+00 6.23105049e-01 -4.96838987e-01 -2.92272091e-01 -3.46640766e-01 -8.13380241e-01 -6.08076692e-01 1.97114080e-01 -1.17272103e+00 -1.01132490e-01 -8.07796493e-02 8.85340333e-01 -9.83486354e-01 2.54838586e-01 -1.16333103e+00 3.04491699e-01 3.90667915e-01 -2.36622617e-02 -2.38873065e-01 3.44340652e-01 7.05968499e-01 -1.69375569e-01 -4.61412102e-01 1.14853108e+00 -5.70147514e-01 -8.55667055e-01 6.51576579e-01 -8.73053074e-03 2.41798088e-01 1.40681660e+00 -7.13570297e-01 1.80268958e-01 4.27266676e-03 -6.03799760e-01 2.26918012e-01 9.45743859e-01 5.31085014e-01 3.52877468e-01 -1.27782083e+00 -3.49295855e-01 2.94447131e-02 2.77589172e-01 5.56584120e-01 5.60045242e-03 2.88193673e-01 -7.89346755e-01 2.38183975e-01 -2.42420703e-01 -1.01057589e+00 -1.32550931e+00 7.26306260e-01 4.86994058e-01 3.11685175e-01 -8.48326206e-01 1.14872849e+00 1.60730064e-01 -5.39162636e-01 4.31849509e-01 -6.05381966e-01 8.57252255e-02 -1.52568251e-01 1.11588025e-02 2.81705707e-01 -3.44188660e-02 -1.03952444e+00 -4.54152524e-01 1.06483006e+00 -1.84211776e-01 3.52956355e-01 1.11267269e+00 4.82761450e-02 8.18132311e-02 3.26179266e-01 1.24535525e+00 -2.01261401e-01 -1.64850986e+00 -2.04865277e-01 1.73044488e-01 -4.51955199e-01 -3.17587942e-01 -5.86468399e-01 -1.36114252e+00 4.96365666e-01 6.60656154e-01 1.95437491e-01 9.85485494e-01 3.98741543e-01 8.51931870e-01 2.83178896e-01 4.39712584e-01 -1.20608842e+00 2.14710608e-01 2.26143271e-01 7.50885785e-01 -1.47869170e+00 2.60113895e-01 -7.82125354e-01 -7.53068030e-01 1.10162950e+00 8.65741313e-01 -4.44479764e-01 7.35745192e-01 1.89773127e-01 3.95198524e-01 -3.15989107e-01 -8.25646967e-02 -6.15409076e-01 6.21492743e-01 9.21653748e-01 2.38156319e-01 3.75348702e-02 -4.38342243e-02 2.38972709e-01 -5.67780547e-02 -3.89171958e-01 1.58772141e-01 1.17928255e+00 -4.41329569e-01 -1.21400464e+00 -4.48175222e-01 2.62590528e-01 -4.22333002e-01 6.52375042e-01 -9.68578041e-01 1.08025968e+00 3.90365154e-01 6.69880152e-01 8.22554380e-02 1.03022359e-01 4.42585170e-01 1.51829928e-01 6.23473644e-01 -9.31235969e-01 -5.93560576e-01 3.17239493e-01 -3.49546015e-01 -5.14724493e-01 -7.95216024e-01 -7.03392506e-01 -1.42465115e+00 3.89968812e-01 -6.66825116e-01 -1.89029351e-01 5.57948291e-01 9.52609360e-01 1.21757381e-01 3.49931121e-01 5.82978308e-01 -1.13183498e+00 -2.17294723e-01 -9.20502007e-01 -6.05070949e-01 8.90310824e-01 9.75618809e-02 -5.59355676e-01 -9.44118798e-02 3.91932189e-01]
[9.304349899291992, 0.5434898138046265]