Spaces:
Sleeping
Sleeping
File size: 5,853 Bytes
4b283df 84dad8f 5e9e549 b73e3e2 4b283df 84dad8f 76beebb 4b283df 8e77cfc cf36af6 f8c8eb7 76beebb cf36af6 5834d19 b69e05d 77a4bbb 76beebb a08c2a4 76beebb a08c2a4 b69e05d 76beebb 5834d19 bc443f4 5834d19 bc443f4 5834d19 76beebb 5e9e549 a715cd6 5e9e549 a715cd6 3de6f45 76beebb 23348f0 3de6f45 eea9e94 3de6f45 5e9e549 3de6f45 eea9e94 3de6f45 5e9e549 23348f0 eea9e94 76beebb 4b283df ca63203 a71233a 8e77cfc a71233a 76beebb a71233a 4b283df 77a4bbb 76beebb 4b283df 76beebb 4b283df 5834d19 76beebb 4b283df 76beebb 23348f0 af4f3b0 a715cd6 af4f3b0 76beebb a715cd6 76beebb 5834d19 a715cd6 23348f0 4b283df 76beebb 4b283df 5834d19 4b283df 5834d19 4b283df 76beebb 4b283df a71233a 76beebb a71233a 4b283df 23348f0 5834d19 4b283df 23348f0 4b283df 23348f0 4b283df 23348f0 5834d19 4b283df 77a4bbb c615f5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
import streamlit as st
import torch
import torch.nn as nn
import numpy as np
import joblib
from transformers import AutoTokenizer, AutoModel
from rdkit import Chem
from rdkit.Chem import Descriptors, AllChem
from datetime import datetime
from db import get_database
import random
# Set seeds
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Load ChemBERTa
@st.cache_resource
def load_chemberta():
tokenizer = AutoTokenizer.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
model = AutoModel.from_pretrained("seyonec/ChemBERTa-zinc-base-v1").to(device).eval()
return tokenizer, model
# Load scalers
scalers = {
"Tensile Strength(Mpa)": joblib.load("scaler_Tensile_strength_Mpa_.joblib"),
"Ionization Energy(eV)": joblib.load("scaler_Ionization_Energy_eV_.joblib"),
"Electron Affinity(eV)": joblib.load("scaler_Electron_Affinity_eV_.joblib"),
"logP": joblib.load("scaler_LogP.joblib"),
"Refractive Index": joblib.load("scaler_Refractive_Index.joblib"),
"Molecular Weight(g/mol)": joblib.load("scaler_Molecular_Weight_g_mol_.joblib")
}
# Transformer model
class TransformerRegressor(nn.Module):
def __init__(self, feat_dim=2058, embedding_dim=768, ff_dim=1024, num_layers=2, output_dim=6):
super().__init__()
self.feat_proj = nn.Linear(feat_dim, embedding_dim)
encoder_layer = nn.TransformerEncoderLayer(
d_model=embedding_dim, nhead=8, dim_feedforward=ff_dim,
dropout=0.1, batch_first=True
)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
self.regression_head = nn.Sequential(
nn.Linear(embedding_dim, 256),
nn.ReLU(),
nn.Linear(256, 128),
nn.ReLU(),
nn.Linear(128, output_dim)
)
def forward(self, x,feat):
feat_emb=self.feat_proj(feat)
stacked=torch.stack([x,feat_emb],dim=1)
encoded=self.transformer_encoder(stacked)
aggregated=encoded.mean(dim=1)
return self.regression_head(aggregated)
# Load model
@st.cache_resource
def load_model():
model = TransformerRegressor()
try:
state_dict = torch.load("transformer_model.bin", map_location=device)
model.load_state_dict(state_dict)
model.eval().to(device)
except Exception as e:
raise ValueError(f"Failed to load model: {e}")
return model
# RDKit descriptors
def compute_descriptors(smiles: str):
mol = Chem.MolFromSmiles(smiles)
if mol is None:
raise ValueError("Invalid SMILES string.")
desc = [
Descriptors.MolWt(mol),
Descriptors.MolLogP(mol),
Descriptors.TPSA(mol),
Descriptors.NumRotatableBonds(mol),
Descriptors.NumHDonors(mol),
Descriptors.NumHAcceptors(mol),
Descriptors.FractionCSP3(mol),
Descriptors.HeavyAtomCount(mol),
Descriptors.RingCount(mol),
Descriptors.MolMR(mol)
]
return np.array(desc, dtype=np.float32)
# Morgan fingerprint
def get_morgan_fingerprint(smiles, radius=2, n_bits=2048):
mol = Chem.MolFromSmiles(smiles)
if mol is None:
raise ValueError("Invalid SMILES string.")
fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=n_bits)
return np.array(fp, dtype=np.float32).reshape(1,-1)
# ChemBERTa embedding
def get_chemberta_embedding(smiles: str, tokenizer, chemberta):
inputs = tokenizer(smiles, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = chemberta(**inputs)
return outputs.last_hidden_state.mean(dim=1).to(device)
# Save to DB
def save_to_db(smiles, predictions):
predictions_clean = {k: float(v) for k, v in predictions.items()}
doc = {
"smiles": smiles,
"predictions": predictions_clean,
"timestamp": datetime.now()
}
db = get_database()
db["polymer_predictions"].insert_one(doc)
# Streamlit UI
def show():
st.markdown("<h1 style='text-align: center; color: #4CAF50;'>🔬 Polymer Property Prediction</h1>", unsafe_allow_html=True)
st.markdown("<hr style='border: 1px solid #ccc;'>", unsafe_allow_html=True)
smiles_input = st.text_input("Enter SMILES Representation of Polymer")
if st.button("Predict"):
try:
model = load_model()
tokenizer, chemberta = load_chemberta()
mol = Chem.MolFromSmiles(smiles_input)
if mol is None:
st.error("Invalid SMILES string.")
return
descriptors = compute_descriptors(smiles_input)
descriptors_tensor=torch.tensor(descriptors,dtype=torch.float32).unsqueeze(0)
fingerprint = get_morgan_fingerprint(smiles_input)
fingerprint_tensor=torch.tensor(fingerprint,dtype=torch.float32)
features=torch.cat([descriptors_tensor,fingerprint_tensor],dim=1).to(device)
embedding = get_chemberta_embedding(smiles_input, tokenizer, chemberta)
with torch.no_grad():
preds = model(embedding,features)
preds_np=preds.cpu().numpy()
keys = list(scalers.keys())
preds_rescaled = np.concatenate([
scalers[keys[i]].inverse_transform(preds_np[:, [i]])
for i in range(6)
], axis=1)
results = {key: round(val, 4) for key, val in zip(keys, preds_rescaled.flatten())}
st.success("Predicted Properties:")
for key, val in results.items():
st.markdown(f"**{key}**: {val}")
save_to_db(smiles_input, results)
except Exception as e:
st.error(f"Prediction failed: {e}")
|