Spaces:
Running
Running
Update prediction.py
Browse files- prediction.py +3 -4
prediction.py
CHANGED
@@ -17,7 +17,8 @@ np.random.seed(42)
|
|
17 |
torch.manual_seed(42)
|
18 |
torch.backends.cudnn.deterministic = True
|
19 |
torch.backends.cudnn.benchmark = False
|
20 |
-
|
|
|
21 |
# ------------------------ Load ChemBERTa Model + Tokenizer ------------------------
|
22 |
@st.cache_resource
|
23 |
def load_chemberta():
|
@@ -26,8 +27,7 @@ def load_chemberta():
|
|
26 |
model.eval()
|
27 |
model.to(device) # Send model to GPU if available
|
28 |
return tokenizer, model
|
29 |
-
|
30 |
-
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
31 |
|
32 |
# ------------------------ Load Scalers ------------------------
|
33 |
scalers = {
|
@@ -66,7 +66,6 @@ class TransformerRegressor(nn.Module):
|
|
66 |
x = x.mean(dim=1)
|
67 |
return self.regression_head(x)
|
68 |
|
69 |
-
# ------------------------ Load Model ------------------------
|
70 |
@st.cache_resource
|
71 |
def load_model():
|
72 |
# Initialize the model architecture first
|
|
|
17 |
torch.manual_seed(42)
|
18 |
torch.backends.cudnn.deterministic = True
|
19 |
torch.backends.cudnn.benchmark = False
|
20 |
+
# Check if CUDA is available for GPU acceleration
|
21 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
# ------------------------ Load ChemBERTa Model + Tokenizer ------------------------
|
23 |
@st.cache_resource
|
24 |
def load_chemberta():
|
|
|
27 |
model.eval()
|
28 |
model.to(device) # Send model to GPU if available
|
29 |
return tokenizer, model
|
30 |
+
|
|
|
31 |
|
32 |
# ------------------------ Load Scalers ------------------------
|
33 |
scalers = {
|
|
|
66 |
x = x.mean(dim=1)
|
67 |
return self.regression_head(x)
|
68 |
|
|
|
69 |
@st.cache_resource
|
70 |
def load_model():
|
71 |
# Initialize the model architecture first
|