Spaces:
Running
Running
Update prediction.py
Browse files- prediction.py +36 -46
prediction.py
CHANGED
@@ -5,10 +5,9 @@ import numpy as np
|
|
5 |
import joblib
|
6 |
from transformers import AutoTokenizer, AutoModel
|
7 |
from rdkit import Chem
|
8 |
-
from rdkit.Chem import Descriptors
|
9 |
-
from rdkit.Chem import AllChem
|
10 |
from datetime import datetime
|
11 |
-
from db import get_database
|
12 |
import random
|
13 |
|
14 |
# ------------------------ Ensuring Deterministic Behavior ------------------------
|
@@ -17,38 +16,25 @@ np.random.seed(42)
|
|
17 |
torch.manual_seed(42)
|
18 |
torch.backends.cudnn.deterministic = True
|
19 |
torch.backends.cudnn.benchmark = False
|
20 |
-
# Check if CUDA is available for GPU acceleration
|
21 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
22 |
# ------------------------ Load ChemBERTa Model + Tokenizer ------------------------
|
23 |
@st.cache_resource
|
24 |
def load_chemberta():
|
25 |
tokenizer = AutoTokenizer.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
|
26 |
model = AutoModel.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
|
27 |
model.eval()
|
28 |
-
model.to(device)
|
29 |
return tokenizer, model
|
30 |
|
31 |
-
|
32 |
-
# ------------------------ Load Scalers ------------------------
|
33 |
-
scalers = {
|
34 |
-
"Tensile Strength": joblib.load("scaler_Tensile_strength_Mpa_.joblib"),
|
35 |
-
"Ionization Energy": joblib.load("scaler_Ionization_Energy_eV_.joblib"),
|
36 |
-
"Electron Affinity": joblib.load("scaler_Electron_Affinity_eV_.joblib"),
|
37 |
-
"logP": joblib.load("scaler_LogP.joblib"),
|
38 |
-
"Refractive Index": joblib.load("scaler_Refractive_Index.joblib"),
|
39 |
-
"Molecular Weight": joblib.load("scaler_Molecular_Weight_g_mol_.joblib")
|
40 |
-
}
|
41 |
-
|
42 |
-
# ------------------------ Transformer Model ------------------------
|
43 |
class TransformerRegressor(nn.Module):
|
44 |
def __init__(self, input_dim=2058, embedding_dim=768, ff_dim=1024, num_layers=2, output_dim=6):
|
45 |
super().__init__()
|
46 |
self.feat_proj = nn.Linear(input_dim, embedding_dim)
|
47 |
encoder_layer = nn.TransformerEncoderLayer(
|
48 |
-
d_model=embedding_dim,
|
49 |
-
|
50 |
-
dim_feedforward=ff_dim,
|
51 |
-
dropout=0.0, # No dropout for consistency
|
52 |
batch_first=True
|
53 |
)
|
54 |
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
@@ -68,26 +54,33 @@ class TransformerRegressor(nn.Module):
|
|
68 |
|
69 |
@st.cache_resource
|
70 |
def load_model():
|
71 |
-
# Initialize the model architecture first
|
72 |
model = TransformerRegressor()
|
73 |
-
|
74 |
-
# Load the state_dict (weights) from the saved model file
|
75 |
-
state_dict = torch.load("transformer_model(1).bin", map_location=device) # Ensure loading on the correct device
|
76 |
-
|
77 |
-
# Load the state_dict into the model
|
78 |
model.load_state_dict(state_dict)
|
79 |
-
|
80 |
-
# Set the model to evaluation mode
|
81 |
model.eval()
|
82 |
-
model.to(device)
|
83 |
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
# ------------------------ Descriptors ------------------------
|
85 |
def compute_descriptors(smiles: str):
|
86 |
mol = Chem.MolFromSmiles(smiles)
|
87 |
if mol is None:
|
88 |
raise ValueError("Invalid SMILES string.")
|
89 |
-
|
90 |
-
descriptors = [
|
91 |
Descriptors.MolWt(mol),
|
92 |
Descriptors.MolLogP(mol),
|
93 |
Descriptors.TPSA(mol),
|
@@ -98,8 +91,7 @@ def compute_descriptors(smiles: str):
|
|
98 |
Descriptors.HeavyAtomCount(mol),
|
99 |
Descriptors.RingCount(mol),
|
100 |
Descriptors.MolMR(mol)
|
101 |
-
]
|
102 |
-
return np.array(descriptors, dtype=np.float32)
|
103 |
|
104 |
# ------------------------ Fingerprints ------------------------
|
105 |
def get_morgan_fingerprint(smiles, radius=2, n_bits=1280):
|
@@ -111,23 +103,22 @@ def get_morgan_fingerprint(smiles, radius=2, n_bits=1280):
|
|
111 |
|
112 |
# ------------------------ Embedding ------------------------
|
113 |
def get_chemberta_embedding(smiles: str):
|
114 |
-
inputs = tokenizer(smiles, return_tensors="pt")
|
115 |
with torch.no_grad():
|
116 |
outputs = chemberta(**inputs)
|
117 |
-
return outputs.last_hidden_state.mean(dim=1)
|
118 |
|
119 |
# ------------------------ Save to DB ------------------------
|
120 |
def save_to_db(smiles, predictions):
|
121 |
-
predictions_clean = {k: float(v) for k, v in predictions.items()}
|
122 |
doc = {
|
123 |
"smiles": smiles,
|
124 |
-
"predictions":
|
125 |
"timestamp": datetime.now()
|
126 |
}
|
127 |
db = get_database()
|
128 |
db["polymer_predictions"].insert_one(doc)
|
129 |
|
130 |
-
# ------------------------ Streamlit
|
131 |
def show():
|
132 |
st.markdown("<h1 style='text-align: center; color: #4CAF50;'>🔬 Polymer Property Prediction</h1>", unsafe_allow_html=True)
|
133 |
st.markdown("<hr style='border: 1px solid #ccc;'>", unsafe_allow_html=True)
|
@@ -150,17 +141,14 @@ def show():
|
|
150 |
embedding = get_chemberta_embedding(smiles_input)
|
151 |
|
152 |
combined_input = torch.cat([embedding, descriptors_tensor, fingerprint_tensor], dim=1)
|
153 |
-
combined = combined_input.unsqueeze(1)
|
154 |
|
155 |
with torch.no_grad():
|
156 |
-
preds = model(combined)
|
157 |
|
158 |
-
preds_np = preds.numpy()
|
159 |
keys = list(scalers.keys())
|
160 |
-
|
161 |
preds_rescaled = np.concatenate([
|
162 |
-
scalers[
|
163 |
-
for i in range(6)
|
164 |
], axis=1)
|
165 |
|
166 |
results = {key: round(val, 4) for key, val in zip(keys, preds_rescaled.flatten())}
|
@@ -172,4 +160,6 @@ def show():
|
|
172 |
save_to_db(smiles_input, results)
|
173 |
|
174 |
except Exception as e:
|
175 |
-
st.error(f"Prediction failed: {e}")
|
|
|
|
|
|
5 |
import joblib
|
6 |
from transformers import AutoTokenizer, AutoModel
|
7 |
from rdkit import Chem
|
8 |
+
from rdkit.Chem import Descriptors, AllChem
|
|
|
9 |
from datetime import datetime
|
10 |
+
from db import get_database
|
11 |
import random
|
12 |
|
13 |
# ------------------------ Ensuring Deterministic Behavior ------------------------
|
|
|
16 |
torch.manual_seed(42)
|
17 |
torch.backends.cudnn.deterministic = True
|
18 |
torch.backends.cudnn.benchmark = False
|
|
|
19 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
|
21 |
# ------------------------ Load ChemBERTa Model + Tokenizer ------------------------
|
22 |
@st.cache_resource
|
23 |
def load_chemberta():
|
24 |
tokenizer = AutoTokenizer.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
|
25 |
model = AutoModel.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
|
26 |
model.eval()
|
27 |
+
model.to(device)
|
28 |
return tokenizer, model
|
29 |
|
30 |
+
# ------------------------ Load Transformer Model ------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
class TransformerRegressor(nn.Module):
|
32 |
def __init__(self, input_dim=2058, embedding_dim=768, ff_dim=1024, num_layers=2, output_dim=6):
|
33 |
super().__init__()
|
34 |
self.feat_proj = nn.Linear(input_dim, embedding_dim)
|
35 |
encoder_layer = nn.TransformerEncoderLayer(
|
36 |
+
d_model=embedding_dim, nhead=8,
|
37 |
+
dim_feedforward=ff_dim, dropout=0.0,
|
|
|
|
|
38 |
batch_first=True
|
39 |
)
|
40 |
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
|
|
54 |
|
55 |
@st.cache_resource
|
56 |
def load_model():
|
|
|
57 |
model = TransformerRegressor()
|
58 |
+
state_dict = torch.load("transformer_model(1).bin", map_location=device)
|
|
|
|
|
|
|
|
|
59 |
model.load_state_dict(state_dict)
|
|
|
|
|
60 |
model.eval()
|
61 |
+
model.to(device)
|
62 |
return model
|
63 |
+
|
64 |
+
# ✅ Load tokenizer/model globally
|
65 |
+
tokenizer, chemberta = load_chemberta()
|
66 |
+
model = load_model()
|
67 |
+
|
68 |
+
# ------------------------ Load Scalers ------------------------
|
69 |
+
scalers = {
|
70 |
+
"Tensile Strength": joblib.load("scaler_Tensile_strength_Mpa_.joblib"),
|
71 |
+
"Ionization Energy": joblib.load("scaler_Ionization_Energy_eV_.joblib"),
|
72 |
+
"Electron Affinity": joblib.load("scaler_Electron_Affinity_eV_.joblib"),
|
73 |
+
"logP": joblib.load("scaler_LogP.joblib"),
|
74 |
+
"Refractive Index": joblib.load("scaler_Refractive_Index.joblib"),
|
75 |
+
"Molecular Weight": joblib.load("scaler_Molecular_Weight_g_mol_.joblib")
|
76 |
+
}
|
77 |
+
|
78 |
# ------------------------ Descriptors ------------------------
|
79 |
def compute_descriptors(smiles: str):
|
80 |
mol = Chem.MolFromSmiles(smiles)
|
81 |
if mol is None:
|
82 |
raise ValueError("Invalid SMILES string.")
|
83 |
+
return np.array([
|
|
|
84 |
Descriptors.MolWt(mol),
|
85 |
Descriptors.MolLogP(mol),
|
86 |
Descriptors.TPSA(mol),
|
|
|
91 |
Descriptors.HeavyAtomCount(mol),
|
92 |
Descriptors.RingCount(mol),
|
93 |
Descriptors.MolMR(mol)
|
94 |
+
], dtype=np.float32)
|
|
|
95 |
|
96 |
# ------------------------ Fingerprints ------------------------
|
97 |
def get_morgan_fingerprint(smiles, radius=2, n_bits=1280):
|
|
|
103 |
|
104 |
# ------------------------ Embedding ------------------------
|
105 |
def get_chemberta_embedding(smiles: str):
|
106 |
+
inputs = tokenizer(smiles, return_tensors="pt").to(device)
|
107 |
with torch.no_grad():
|
108 |
outputs = chemberta(**inputs)
|
109 |
+
return outputs.last_hidden_state.mean(dim=1).cpu()
|
110 |
|
111 |
# ------------------------ Save to DB ------------------------
|
112 |
def save_to_db(smiles, predictions):
|
|
|
113 |
doc = {
|
114 |
"smiles": smiles,
|
115 |
+
"predictions": {k: float(v) for k, v in predictions.items()},
|
116 |
"timestamp": datetime.now()
|
117 |
}
|
118 |
db = get_database()
|
119 |
db["polymer_predictions"].insert_one(doc)
|
120 |
|
121 |
+
# ------------------------ Streamlit UI ------------------------
|
122 |
def show():
|
123 |
st.markdown("<h1 style='text-align: center; color: #4CAF50;'>🔬 Polymer Property Prediction</h1>", unsafe_allow_html=True)
|
124 |
st.markdown("<hr style='border: 1px solid #ccc;'>", unsafe_allow_html=True)
|
|
|
141 |
embedding = get_chemberta_embedding(smiles_input)
|
142 |
|
143 |
combined_input = torch.cat([embedding, descriptors_tensor, fingerprint_tensor], dim=1)
|
144 |
+
combined = combined_input.unsqueeze(1).to(device)
|
145 |
|
146 |
with torch.no_grad():
|
147 |
+
preds = model(combined).cpu().numpy()
|
148 |
|
|
|
149 |
keys = list(scalers.keys())
|
|
|
150 |
preds_rescaled = np.concatenate([
|
151 |
+
scalers[key].inverse_transform(preds[:, [i]]) for i, key in enumerate(keys)
|
|
|
152 |
], axis=1)
|
153 |
|
154 |
results = {key: round(val, 4) for key, val in zip(keys, preds_rescaled.flatten())}
|
|
|
160 |
save_to_db(smiles_input, results)
|
161 |
|
162 |
except Exception as e:
|
163 |
+
st.error(f"Prediction failed: {e}")
|
164 |
+
|
165 |
+
|