Spaces:
Running
Running
Update prediction.py
Browse files- prediction.py +16 -23
prediction.py
CHANGED
@@ -20,15 +20,13 @@ torch.backends.cudnn.benchmark = False
|
|
20 |
# Check if CUDA is available for GPU acceleration
|
21 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
# ------------------------ Load ChemBERTa Model + Tokenizer ------------------------
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
# return tokenizer, model
|
31 |
-
# tokenizer, chemberta = load_chemberta()
|
32 |
|
33 |
|
34 |
# ------------------------ Load Scalers ------------------------
|
@@ -67,27 +65,22 @@ class TransformerRegressor(nn.Module):
|
|
67 |
x = self.transformer_encoder(x)
|
68 |
x = x.mean(dim=1)
|
69 |
return self.regression_head(x)
|
70 |
-
@st.cache_resource
|
71 |
-
def load_chemberta():
|
72 |
-
tokenizer = AutoTokenizer.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
|
73 |
-
model = AutoModel.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
|
74 |
-
model.eval()
|
75 |
-
model.to(device)
|
76 |
-
return tokenizer, model
|
77 |
|
78 |
@st.cache_resource
|
79 |
def load_model():
|
|
|
80 |
model = TransformerRegressor()
|
81 |
-
|
|
|
|
|
|
|
|
|
82 |
model.load_state_dict(state_dict)
|
|
|
|
|
83 |
model.eval()
|
84 |
-
model.to(device)
|
85 |
return model
|
86 |
-
|
87 |
-
# Call them to load the actual models
|
88 |
-
tokenizer, chemberta = load_chemberta()
|
89 |
-
model = load_model()
|
90 |
-
|
91 |
# ------------------------ Descriptors ------------------------
|
92 |
def compute_descriptors(smiles: str):
|
93 |
mol = Chem.MolFromSmiles(smiles)
|
|
|
20 |
# Check if CUDA is available for GPU acceleration
|
21 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
22 |
# ------------------------ Load ChemBERTa Model + Tokenizer ------------------------
|
23 |
+
@st.cache_resource
|
24 |
+
def load_chemberta():
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
|
26 |
+
model = AutoModel.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
|
27 |
+
model.eval()
|
28 |
+
model.to(device) # Send model to GPU if available
|
29 |
+
return tokenizer, model
|
|
|
|
|
30 |
|
31 |
|
32 |
# ------------------------ Load Scalers ------------------------
|
|
|
65 |
x = self.transformer_encoder(x)
|
66 |
x = x.mean(dim=1)
|
67 |
return self.regression_head(x)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
@st.cache_resource
|
70 |
def load_model():
|
71 |
+
# Initialize the model architecture first
|
72 |
model = TransformerRegressor()
|
73 |
+
|
74 |
+
# Load the state_dict (weights) from the saved model file
|
75 |
+
state_dict = torch.load("transformer_model(1).bin", map_location=device) # Ensure loading on the correct device
|
76 |
+
|
77 |
+
# Load the state_dict into the model
|
78 |
model.load_state_dict(state_dict)
|
79 |
+
|
80 |
+
# Set the model to evaluation mode
|
81 |
model.eval()
|
82 |
+
model.to(device) # Send model to GPU if available
|
83 |
return model
|
|
|
|
|
|
|
|
|
|
|
84 |
# ------------------------ Descriptors ------------------------
|
85 |
def compute_descriptors(smiles: str):
|
86 |
mol = Chem.MolFromSmiles(smiles)
|