Spaces:
Running
Running
File size: 6,062 Bytes
4b283df 84dad8f 5e9e549 b73e3e2 4b283df 84dad8f 77a4bbb 4b283df 77a4bbb cf36af6 c621eb3 cf36af6 b69e05d 77a4bbb cf36af6 a08c2a4 77a4bbb a08c2a4 b69e05d 77a4bbb 5e9e549 4b283df 5e9e549 3de6f45 77a4bbb 3de6f45 eea9e94 3de6f45 5e9e549 3de6f45 eea9e94 3de6f45 5e9e549 eea9e94 3de6f45 eea9e94 4b283df ca63203 77a4bbb ca63203 4b283df 77a4bbb 4b283df 77a4bbb cf36af6 4b283df 77a4bbb 4b283df 77a4bbb 4b283df cf36af6 af4f3b0 cf36af6 af4f3b0 cf36af6 4b283df 77a4bbb 4b283df 77a4bbb 4b283df cf36af6 4b283df 77a4bbb 4b283df 77a4bbb 4b283df cf36af6 af4f3b0 cf36af6 4b283df cf36af6 4b283df cf36af6 77a4bbb 4b283df 77a4bbb 4b283df 77a4bbb 4b283df 77a4bbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import streamlit as st
import torch
import torch.nn as nn
import numpy as np
import joblib
from transformers import AutoTokenizer, AutoModel
from rdkit import Chem
from rdkit.Chem import Descriptors, AllChem
from datetime import datetime
from db import get_database
import random
# ------------------------ Ensuring Deterministic Behavior ------------------------
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ------------------------ Load ChemBERTa Model + Tokenizer ------------------------
@st.cache_resource
def load_chemberta():
tokenizer = AutoTokenizer.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
model = AutoModel.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
model.eval()
model.to(device)
return tokenizer, model
# ------------------------ Load Transformer Model ------------------------
class TransformerRegressor(nn.Module):
def __init__(self, input_dim=2058, embedding_dim=768, ff_dim=1024, num_layers=2, output_dim=6):
super().__init__()
self.feat_proj = nn.Linear(input_dim, embedding_dim)
encoder_layer = nn.TransformerEncoderLayer(
d_model=embedding_dim, nhead=8,
dim_feedforward=ff_dim, dropout=0.0,
batch_first=True
)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
self.regression_head = nn.Sequential(
nn.Linear(embedding_dim, 256),
nn.ReLU(),
nn.Linear(256, 128),
nn.ReLU(),
nn.Linear(128, output_dim)
)
def forward(self, x):
x = self.feat_proj(x)
x = self.transformer_encoder(x)
x = x.mean(dim=1)
return self.regression_head(x)
@st.cache_resource
def load_model():
model = TransformerRegressor()
state_dict = torch.load("transformer_model(1).bin", map_location=device)
model.load_state_dict(state_dict)
model.eval()
model.to(device)
return model
# β
Load tokenizer/model globally
tokenizer, chemberta = load_chemberta()
model = load_model()
# ------------------------ Load Scalers ------------------------
scalers = {
"Tensile Strength": joblib.load("scaler_Tensile_strength_Mpa_.joblib"),
"Ionization Energy": joblib.load("scaler_Ionization_Energy_eV_.joblib"),
"Electron Affinity": joblib.load("scaler_Electron_Affinity_eV_.joblib"),
"logP": joblib.load("scaler_LogP.joblib"),
"Refractive Index": joblib.load("scaler_Refractive_Index.joblib"),
"Molecular Weight": joblib.load("scaler_Molecular_Weight_g_mol_.joblib")
}
# ------------------------ Descriptors ------------------------
def compute_descriptors(smiles: str):
mol = Chem.MolFromSmiles(smiles)
if mol is None:
raise ValueError("Invalid SMILES string.")
return np.array([
Descriptors.MolWt(mol),
Descriptors.MolLogP(mol),
Descriptors.TPSA(mol),
Descriptors.NumRotatableBonds(mol),
Descriptors.NumHDonors(mol),
Descriptors.NumHAcceptors(mol),
Descriptors.FractionCSP3(mol),
Descriptors.HeavyAtomCount(mol),
Descriptors.RingCount(mol),
Descriptors.MolMR(mol)
], dtype=np.float32)
# ------------------------ Fingerprints ------------------------
def get_morgan_fingerprint(smiles, radius=2, n_bits=1280):
mol = Chem.MolFromSmiles(smiles)
if mol is None:
raise ValueError("Invalid SMILES string.")
fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=n_bits)
return np.array(fp, dtype=np.float32).reshape(1, -1)
# ------------------------ Embedding ------------------------
def get_chemberta_embedding(smiles: str):
inputs = tokenizer(smiles, return_tensors="pt").to(device)
with torch.no_grad():
outputs = chemberta(**inputs)
return outputs.last_hidden_state.mean(dim=1).cpu()
# ------------------------ Save to DB ------------------------
def save_to_db(smiles, predictions):
doc = {
"smiles": smiles,
"predictions": {k: float(v) for k, v in predictions.items()},
"timestamp": datetime.now()
}
db = get_database()
db["polymer_predictions"].insert_one(doc)
# ------------------------ Streamlit UI ------------------------
def show():
st.markdown("<h1 style='text-align: center; color: #4CAF50;'>π¬ Polymer Property Prediction</h1>", unsafe_allow_html=True)
st.markdown("<hr style='border: 1px solid #ccc;'>", unsafe_allow_html=True)
smiles_input = st.text_input("Enter SMILES Representation of Polymer")
if st.button("Predict"):
try:
mol = Chem.MolFromSmiles(smiles_input)
if mol is None:
st.error("Invalid SMILES string.")
return
descriptors = compute_descriptors(smiles_input)
descriptors_tensor = torch.tensor(descriptors, dtype=torch.float32).unsqueeze(0)
fingerprint = get_morgan_fingerprint(smiles_input)
fingerprint_tensor = torch.tensor(fingerprint, dtype=torch.float32)
embedding = get_chemberta_embedding(smiles_input)
combined_input = torch.cat([embedding, descriptors_tensor, fingerprint_tensor], dim=1)
combined = combined_input.unsqueeze(1).to(device)
with torch.no_grad():
preds = model(combined).cpu().numpy()
keys = list(scalers.keys())
preds_rescaled = np.concatenate([
scalers[key].inverse_transform(preds[:, [i]]) for i, key in enumerate(keys)
], axis=1)
results = {key: round(val, 4) for key, val in zip(keys, preds_rescaled.flatten())}
st.success("Predicted Properties:")
for key, val in results.items():
st.markdown(f"**{key}**: {val}")
save_to_db(smiles_input, results)
except Exception as e:
st.error(f"Prediction failed: {e}")
|