Spaces:
Running
Running
File size: 7,033 Bytes
4b283df 84dad8f 5e9e549 b73e3e2 4b283df 84dad8f 5834d19 4b283df 5834d19 cf36af6 c621eb3 6c37c0f f8c8eb7 cf36af6 5834d19 b69e05d 77a4bbb cf36af6 a08c2a4 5834d19 a08c2a4 b69e05d 5834d19 5e9e549 4b283df 5e9e549 3de6f45 5834d19 3de6f45 eea9e94 3de6f45 5e9e549 3de6f45 eea9e94 3de6f45 5e9e549 eea9e94 3de6f45 eea9e94 5834d19 4b283df 5834d19 ca63203 5834d19 a71233a 23e592f a71233a 5834d19 4b283df 77a4bbb cf36af6 4b283df 5834d19 4b283df 5834d19 4b283df cf36af6 af4f3b0 cf36af6 af4f3b0 5834d19 4b283df cf36af6 4b283df 5834d19 4b283df 5834d19 4b283df 5834d19 4b283df a71233a 4b283df 5834d19 4b283df cf36af6 af4f3b0 cf36af6 4b283df 5834d19 4b283df 5834d19 cf36af6 5834d19 4b283df 5834d19 4b283df 5834d19 4b283df 5834d19 4b283df 5834d19 4b283df 5834d19 4b283df 77a4bbb c615f5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import streamlit as st
import torch
import torch.nn as nn
import numpy as np
import joblib
from transformers import AutoTokenizer, AutoModel
from rdkit import Chem
from rdkit.Chem import Descriptors
from rdkit.Chem import AllChem
from datetime import datetime
from db import get_database # Ensure this module is available
import random
# ------------------------ Ensuring Deterministic Behavior ------------------------
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Check if CUDA is available for GPU acceleration
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# ------------------------ Load ChemBERTa Model + Tokenizer ------------------------
@st.cache_resource
def load_chemberta():
tokenizer = AutoTokenizer.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
model = AutoModel.from_pretrained("seyonec/ChemBERTa-zinc-base-v1")
model.eval()
model.to(device) # Send model to GPU if available
return tokenizer, model
# ------------------------ Load Scalers ------------------------
scalers = {
"Tensile Strength": joblib.load("scaler_Tensile_strength_Mpa_.joblib"),
"Ionization Energy": joblib.load("scaler_Ionization_Energy_eV_.joblib"),
"Electron Affinity": joblib.load("scaler_Electron_Affinity_eV_.joblib"),
"logP": joblib.load("scaler_LogP.joblib"),
"Refractive Index": joblib.load("scaler_Refractive_Index.joblib"),
"Molecular Weight": joblib.load("scaler_Molecular_Weight_g_mol_.joblib")
}
# ------------------------ Transformer Model ------------------------
class TransformerRegressor(nn.Module):
def __init__(self, input_dim=2058, embedding_dim=768, ff_dim=1024, num_layers=2, output_dim=6):
super().__init__()
self.feat_proj = nn.Linear(input_dim, embedding_dim)
encoder_layer = nn.TransformerEncoderLayer(
d_model=embedding_dim,
nhead=8,
dim_feedforward=ff_dim,
dropout=0.0, # No dropout for consistency
batch_first=True
)
self.transformer_encoder = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
self.regression_head = nn.Sequential(
nn.Linear(embedding_dim, 256),
nn.ReLU(),
nn.Linear(256, 128),
nn.ReLU(),
nn.Linear(128, output_dim)
)
def forward(self, x):
x = self.feat_proj(x)
x = self.transformer_encoder(x)
x = x.mean(dim=1)
return self.regression_head(x)
# ------------------------ Load Model ------------------------
@st.cache_resource
def load_model():
# Initialize the model architecture first
model = TransformerRegressor()
# Load the state_dict (weights) from the saved model file
try:
state_dict = torch.load("transformer_model.bin", map_location=device) # Ensure loading on the correct device
model.load_state_dict(state_dict)
model.eval()
model.to(device) # Send model to GPU if available
except Exception as e:
raise ValueError(f"Failed to load model: {e}")
return model
# ------------------------ Descriptors ------------------------
def compute_descriptors(smiles: str):
mol = Chem.MolFromSmiles(smiles)
if mol is None:
raise ValueError("Invalid SMILES string.")
descriptors = [
Descriptors.MolWt(mol),
Descriptors.MolLogP(mol),
Descriptors.TPSA(mol),
Descriptors.NumRotatableBonds(mol),
Descriptors.NumHDonors(mol),
Descriptors.NumHAcceptors(mol),
Descriptors.FractionCSP3(mol),
Descriptors.HeavyAtomCount(mol),
Descriptors.RingCount(mol),
Descriptors.MolMR(mol)
]
return np.array(descriptors, dtype=np.float32)
# ------------------------ Fingerprints ------------------------
def get_morgan_fingerprint(smiles, radius=2, n_bits=1280):
mol = Chem.MolFromSmiles(smiles)
if mol is None:
raise ValueError("Invalid SMILES string.")
fp = AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=n_bits)
return np.array(fp, dtype=np.float32).reshape(1, -1)
# ------------------------ Embedding ------------------------
def get_chemberta_embedding(smiles: str, tokenizer, chemberta):
inputs = tokenizer(smiles, return_tensors="pt")
with torch.no_grad():
outputs = chemberta(**inputs)
return outputs.last_hidden_state.mean(dim=1) # Use average instead of CLS token
# ------------------------ Save to DB ------------------------
def save_to_db(smiles, predictions):
predictions_clean = {k: float(v) for k, v in predictions.items()}
doc = {
"smiles": smiles,
"predictions": predictions_clean,
"timestamp": datetime.now()
}
db = get_database()
db["polymer_predictions"].insert_one(doc)
# ------------------------ Streamlit App ------------------------
def show():
st.markdown("<h1 style='text-align: center; color: #4CAF50;'>🔬 Polymer Property Prediction</h1>", unsafe_allow_html=True)
st.markdown("<hr style='border: 1px solid #ccc;'>", unsafe_allow_html=True)
smiles_input = st.text_input("Enter SMILES Representation of Polymer")
if st.button("Predict"):
try:
# Load the model
model = load_model()
mol = Chem.MolFromSmiles(smiles_input)
if mol is None:
st.error("Invalid SMILES string.")
return
# Load the ChemBERTa tokenizer and model
tokenizer, chemberta = load_chemberta()
# Compute Descriptors, Fingerprints, and Embedding
descriptors = compute_descriptors(smiles_input)
descriptors_tensor = torch.tensor(descriptors, dtype=torch.float32).unsqueeze(0)
fingerprint = get_morgan_fingerprint(smiles_input)
fingerprint_tensor = torch.tensor(fingerprint, dtype=torch.float32)
embedding = get_chemberta_embedding(smiles_input, tokenizer, chemberta)
# Combine Inputs and Make Prediction
combined_input = torch.cat([embedding, descriptors_tensor, fingerprint_tensor], dim=1)
combined = combined_input.unsqueeze(1)
with torch.no_grad():
preds = model(combined)
preds_np = preds.numpy()
keys = list(scalers.keys())
# Rescale Predictions
preds_rescaled = np.concatenate([
scalers[keys[i]].inverse_transform(preds_np[:, [i]])
for i in range(6)
], axis=1)
results = {key: round(val, 4) for key, val in zip(keys, preds_rescaled.flatten())}
st.success("Predicted Properties:")
for key, val in results.items():
st.markdown(f"**{key}**: {val}")
# Save the results to the database
save_to_db(smiles_input, results)
except Exception as e:
st.error(f"Prediction failed: {e}")
|