Spaces:
Build error
Build error
File size: 5,375 Bytes
a305086 facf100 a305086 facf100 a305086 3079b0f eafe2f3 facf100 3079b0f ab6fadd 3079b0f 1d65f2d 3079b0f facf100 3079b0f facf100 3079b0f facf100 3079b0f a305086 facf100 3079b0f facf100 3079b0f a305086 facf100 a305086 facf100 3079b0f facf100 3079b0f a305086 facf100 a305086 facf100 a305086 facf100 a305086 52591b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
import streamlit as st
import os
import time
import gc
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
from typing import Dict, List, TypedDict
from langgraph.graph import StateGraph, END
HF_TOKEN = os.getenv("HF_TOKEN")
# Agent model config β all use Gemma
AGENT_MODEL_CONFIG = {
"product_manager": {
"base": "unsloth/gemma-3-1b-it",
"adapter": "spandana30/project-manager-gemma"
},
"project_manager": {
"base": "unsloth/gemma-3-1b-it",
"adapter": "spandana30/project-manager-gemma"
},
"software_engineer": {
"base": "unsloth/gemma-3-1b-it",
"adapter": "spandana30/project-manager-gemma"
},
"qa_engineer": {
"base": "unsloth/gemma-3-1b-it",
"adapter": "spandana30/project-manager-gemma"
}
}
@st.cache_resource
def load_agent_model(base_id, adapter_id):
base_model = AutoModelForCausalLM.from_pretrained(
base_id,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto" if torch.cuda.is_available() else None,
token=HF_TOKEN
)
model = PeftModel.from_pretrained(base_model, adapter_id, token=HF_TOKEN)
tokenizer = AutoTokenizer.from_pretrained(adapter_id, token=HF_TOKEN)
return model.eval(), tokenizer
def call_model(prompt: str, model, tokenizer) -> str:
inputs = tokenizer(prompt, return_tensors="pt", truncation=True).to(model.device)
outputs = model.generate(
**inputs,
max_new_tokens=512,
do_sample=False,
temperature=0.3
)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
class AgentState(TypedDict):
messages: List[Dict[str, str]]
html: str
feedback: str
iteration: int
done: bool
timings: Dict[str, float]
def agent(prompt_template, state: AgentState, agent_key: str, timing_label: str):
start = time.time()
model, tokenizer = load_agent_model(**AGENT_MODEL_CONFIG[agent_key])
prompt = prompt_template.format(**state)
response = call_model(prompt, model, tokenizer)
state["messages"].append({"role": agent_key, "content": response})
state["timings"][timing_label] = time.time() - start
gc.collect()
return response
PROMPTS = {
"product_manager": "You're a Product Manager. Refine this user request:\n{messages[-1][content]}",
"project_manager": "You're a Project Manager. Break down this refined request:\n{messages[-1][content]}",
"software_engineer": "You're a Software Engineer. Generate HTML+CSS code for:\n{messages[-1][content]}",
"qa_engineer": "You're a QA Engineer. Review this HTML:\n{html}\nGive feedback or reply APPROVED."
}
def generate_ui(user_prompt: str, max_iter: int):
state: AgentState = {
"messages": [{"role": "user", "content": user_prompt}],
"html": "",
"feedback": "",
"iteration": 0,
"done": False,
"timings": {}
}
workflow = StateGraph(AgentState)
workflow.add_node("product_manager", lambda s: {"messages": s["messages"] + [{"role": "product_manager", "content": agent(PROMPTS["product_manager"], s, "product_manager", "product_manager")}]})
workflow.add_node("project_manager", lambda s: {"messages": s["messages"] + [{"role": "project_manager", "content": agent(PROMPTS["project_manager"], s, "project_manager", "project_manager")}]})
workflow.add_node("software_engineer", lambda s: {
"html": agent(PROMPTS["software_engineer"], s, "software_engineer", "software_engineer"),
"messages": s["messages"] + [{"role": "software_engineer", "content": s["html"]}]
})
def qa_fn(s):
feedback = agent(PROMPTS["qa_engineer"], s, "qa_engineer", "qa_engineer")
done = "APPROVED" in feedback or s["iteration"] >= max_iter
return {
"feedback": feedback,
"done": done,
"iteration": s["iteration"] + 1,
"messages": s["messages"] + [{"role": "qa_engineer", "content": feedback}]
}
workflow.add_node("qa_engineer", qa_fn)
workflow.add_edge("product_manager", "project_manager")
workflow.add_edge("project_manager", "software_engineer")
workflow.add_edge("software_engineer", "qa_engineer")
workflow.add_conditional_edges("qa_engineer", lambda s: END if s["done"] else "software_engineer")
workflow.set_entry_point("product_manager")
app = workflow.compile()
final_state = app.invoke(state)
return final_state
def main():
st.set_page_config(page_title="Multi-Agent UI Generator", layout="wide")
st.title(" Multi-Agent Collaboration")
max_iter = st.sidebar.slider("Max QA Iterations", 1, 5, 2)
prompt = st.text_area("Describe your UI:", "A landing page for a coffee shop with a hero image, menu, and contact form.", height=150)
if st.button("π Generate UI"):
with st.spinner("Agents working..."):
final = generate_ui(prompt, max_iter)
st.success("β
UI Generated")
st.subheader("π Output HTML")
st.components.v1.html(final["html"], height=600, scrolling=True)
st.subheader("π§ Agent Messages")
for msg in final["messages"]:
st.markdown(f"**{msg['role'].title()}**:\n```\n{msg['content']}\n```")
if __name__ == "__main__":
main()
|