File size: 5,375 Bytes
a305086
facf100
a305086
facf100
 
 
 
a305086
 
3079b0f
eafe2f3
 
facf100
3079b0f
 
ab6fadd
 
3079b0f
 
1d65f2d
3079b0f
 
 
facf100
 
3079b0f
facf100
 
 
 
3079b0f
 
 
facf100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3079b0f
a305086
 
 
 
 
 
 
 
facf100
 
 
 
 
 
 
 
 
3079b0f
 
facf100
 
 
 
3079b0f
a305086
facf100
 
 
 
 
 
 
 
 
a305086
 
facf100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3079b0f
 
facf100
 
 
3079b0f
 
a305086
 
facf100
a305086
 
facf100
 
 
 
a305086
 
facf100
 
 
 
 
 
 
a305086
 
52591b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import streamlit as st
import os
import time
import gc
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
from typing import Dict, List, TypedDict
from langgraph.graph import StateGraph, END

HF_TOKEN = os.getenv("HF_TOKEN")

# Agent model config β€” all use Gemma
AGENT_MODEL_CONFIG = {
    "product_manager": {
        "base": "unsloth/gemma-3-1b-it",
        "adapter": "spandana30/project-manager-gemma"
    },
    "project_manager": {
        "base": "unsloth/gemma-3-1b-it",
        "adapter": "spandana30/project-manager-gemma"
    },
    "software_engineer": {
        "base": "unsloth/gemma-3-1b-it",
        "adapter": "spandana30/project-manager-gemma"
    },
    "qa_engineer": {
        "base": "unsloth/gemma-3-1b-it",
        "adapter": "spandana30/project-manager-gemma"
    }
}

@st.cache_resource
def load_agent_model(base_id, adapter_id):
    base_model = AutoModelForCausalLM.from_pretrained(
        base_id,
        torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
        device_map="auto" if torch.cuda.is_available() else None,
        token=HF_TOKEN
    )
    model = PeftModel.from_pretrained(base_model, adapter_id, token=HF_TOKEN)
    tokenizer = AutoTokenizer.from_pretrained(adapter_id, token=HF_TOKEN)
    return model.eval(), tokenizer

def call_model(prompt: str, model, tokenizer) -> str:
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True).to(model.device)
    outputs = model.generate(
        **inputs,
        max_new_tokens=512,
        do_sample=False,
        temperature=0.3
    )
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

class AgentState(TypedDict):
    messages: List[Dict[str, str]]
    html: str
    feedback: str
    iteration: int
    done: bool
    timings: Dict[str, float]

def agent(prompt_template, state: AgentState, agent_key: str, timing_label: str):
    start = time.time()
    model, tokenizer = load_agent_model(**AGENT_MODEL_CONFIG[agent_key])
    prompt = prompt_template.format(**state)
    response = call_model(prompt, model, tokenizer)
    state["messages"].append({"role": agent_key, "content": response})
    state["timings"][timing_label] = time.time() - start
    gc.collect()
    return response

PROMPTS = {
    "product_manager": "You're a Product Manager. Refine this user request:\n{messages[-1][content]}",
    "project_manager": "You're a Project Manager. Break down this refined request:\n{messages[-1][content]}",
    "software_engineer": "You're a Software Engineer. Generate HTML+CSS code for:\n{messages[-1][content]}",
    "qa_engineer": "You're a QA Engineer. Review this HTML:\n{html}\nGive feedback or reply APPROVED."
}

def generate_ui(user_prompt: str, max_iter: int):
    state: AgentState = {
        "messages": [{"role": "user", "content": user_prompt}],
        "html": "",
        "feedback": "",
        "iteration": 0,
        "done": False,
        "timings": {}
    }

    workflow = StateGraph(AgentState)
    workflow.add_node("product_manager", lambda s: {"messages": s["messages"] + [{"role": "product_manager", "content": agent(PROMPTS["product_manager"], s, "product_manager", "product_manager")}]})
    workflow.add_node("project_manager", lambda s: {"messages": s["messages"] + [{"role": "project_manager", "content": agent(PROMPTS["project_manager"], s, "project_manager", "project_manager")}]})
    workflow.add_node("software_engineer", lambda s: {
        "html": agent(PROMPTS["software_engineer"], s, "software_engineer", "software_engineer"),
        "messages": s["messages"] + [{"role": "software_engineer", "content": s["html"]}]
    })
    def qa_fn(s): 
        feedback = agent(PROMPTS["qa_engineer"], s, "qa_engineer", "qa_engineer")
        done = "APPROVED" in feedback or s["iteration"] >= max_iter
        return {
            "feedback": feedback,
            "done": done,
            "iteration": s["iteration"] + 1,
            "messages": s["messages"] + [{"role": "qa_engineer", "content": feedback}]
        }
    workflow.add_node("qa_engineer", qa_fn)

    workflow.add_edge("product_manager", "project_manager")
    workflow.add_edge("project_manager", "software_engineer")
    workflow.add_edge("software_engineer", "qa_engineer")
    workflow.add_conditional_edges("qa_engineer", lambda s: END if s["done"] else "software_engineer")
    workflow.set_entry_point("product_manager")

    app = workflow.compile()
    final_state = app.invoke(state)
    return final_state

def main():
    st.set_page_config(page_title="Multi-Agent UI Generator", layout="wide")
    st.title(" Multi-Agent Collaboration")
    max_iter = st.sidebar.slider("Max QA Iterations", 1, 5, 2)
    prompt = st.text_area("Describe your UI:", "A landing page for a coffee shop with a hero image, menu, and contact form.", height=150)
    if st.button("πŸš€ Generate UI"):
        with st.spinner("Agents working..."):
            final = generate_ui(prompt, max_iter)
            st.success("βœ… UI Generated")
            st.subheader("πŸ” Output HTML")
            st.components.v1.html(final["html"], height=600, scrolling=True)
            st.subheader("🧠 Agent Messages")
            for msg in final["messages"]:
                st.markdown(f"**{msg['role'].title()}**:\n```\n{msg['content']}\n```")

if __name__ == "__main__":
    main()