spandana30 commited on
Commit
eafe2f3
·
verified ·
1 Parent(s): 6495922

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -6
app.py CHANGED
@@ -1,4 +1,4 @@
1
- # Updated multi-agent UI generation system with all agents using public base models (Gemma used for Product Manager too)
2
 
3
  import streamlit as st
4
  import time
@@ -8,9 +8,12 @@ from langgraph.graph import StateGraph, END
8
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
9
  from peft import PeftModel, PeftConfig
10
  import torch
 
11
 
12
  st.set_page_config(page_title="Multi-Agent Collaboration", layout="wide")
13
 
 
 
14
  # Agent model loading config
15
  AGENT_MODEL_CONFIG = {
16
  "product_manager": {
@@ -22,7 +25,7 @@ AGENT_MODEL_CONFIG = {
22
  "adapter": "spandana30/project-manager-gemma"
23
  },
24
  "software_architect": {
25
- "base": "cohere/command-r", # update if you have a local base version
26
  "adapter": "spandana30/software-architect-cohere"
27
  },
28
  "software_engineer": {
@@ -39,10 +42,10 @@ AGENT_MODEL_CONFIG = {
39
 
40
  def load_agent_model(base_id, adapter_id):
41
  base_model = AutoModelForCausalLM.from_pretrained(
42
- base_id, torch_dtype=torch.float16, device_map="auto"
43
  )
44
- model = PeftModel.from_pretrained(base_model, adapter_id)
45
- tokenizer = AutoTokenizer.from_pretrained(adapter_id)
46
  return pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=1024)
47
 
48
  AGENT_PIPELINES = {
@@ -177,4 +180,4 @@ def main():
177
  st.write(f"🧩 {stage.replace('_', ' ').title()} Time: {final_state['timings'].get(stage, 0):.2f}s")
178
 
179
  if __name__ == "__main__":
180
- main()
 
1
+ # Multi-agent UI generator with Hugging Face token-based gated model support
2
 
3
  import streamlit as st
4
  import time
 
8
  from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
9
  from peft import PeftModel, PeftConfig
10
  import torch
11
+ import os
12
 
13
  st.set_page_config(page_title="Multi-Agent Collaboration", layout="wide")
14
 
15
+ HF_TOKEN = os.getenv("HF_TOKEN")
16
+
17
  # Agent model loading config
18
  AGENT_MODEL_CONFIG = {
19
  "product_manager": {
 
25
  "adapter": "spandana30/project-manager-gemma"
26
  },
27
  "software_architect": {
28
+ "base": "cohere/command-r",
29
  "adapter": "spandana30/software-architect-cohere"
30
  },
31
  "software_engineer": {
 
42
 
43
  def load_agent_model(base_id, adapter_id):
44
  base_model = AutoModelForCausalLM.from_pretrained(
45
+ base_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN
46
  )
47
+ model = PeftModel.from_pretrained(base_model, adapter_id, token=HF_TOKEN)
48
+ tokenizer = AutoTokenizer.from_pretrained(adapter_id, token=HF_TOKEN)
49
  return pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=1024)
50
 
51
  AGENT_PIPELINES = {
 
180
  st.write(f"🧩 {stage.replace('_', ' ').title()} Time: {final_state['timings'].get(stage, 0):.2f}s")
181
 
182
  if __name__ == "__main__":
183
+ main()