Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,16 @@
|
|
1 |
-
# Multi-agent UI generator using direct model.generate() instead of pipeline()
|
2 |
-
|
3 |
import streamlit as st
|
|
|
4 |
import time
|
5 |
-
import
|
|
|
|
|
|
|
6 |
from typing import Dict, List, TypedDict
|
7 |
from langgraph.graph import StateGraph, END
|
8 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
-
from peft import PeftModel
|
10 |
-
import torch
|
11 |
-
import os
|
12 |
-
|
13 |
-
st.set_page_config(page_title="Multi-Agent Collaboration", layout="wide")
|
14 |
|
15 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
16 |
|
|
|
17 |
AGENT_MODEL_CONFIG = {
|
18 |
"product_manager": {
|
19 |
"base": "unsloth/gemma-3-1b-it",
|
@@ -23,168 +20,115 @@ AGENT_MODEL_CONFIG = {
|
|
23 |
"base": "unsloth/gemma-3-1b-it",
|
24 |
"adapter": "spandana30/project-manager-gemma"
|
25 |
},
|
26 |
-
"software_architect": {
|
27 |
-
"base": "unsloth/c4ai-command-r-08-2024-bnb-4bit",
|
28 |
-
"adapter": "spandana30/software-architect-cohere"
|
29 |
-
},
|
30 |
"software_engineer": {
|
31 |
-
"base": "
|
32 |
-
"adapter": "spandana30/
|
33 |
-
},
|
34 |
-
"qa": {
|
35 |
-
"base": "codellama/CodeLLaMA-7b-hf",
|
36 |
-
"adapter": "spandana30/software-engineer-codellama"
|
37 |
},
|
|
|
|
|
|
|
|
|
38 |
}
|
39 |
|
40 |
@st.cache_resource
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
class AgentState(TypedDict):
|
57 |
messages: List[Dict[str, str]]
|
58 |
-
user_request: str
|
59 |
-
refined_request: str
|
60 |
-
scoped_request: str
|
61 |
-
design_specs: str
|
62 |
html: str
|
63 |
feedback: str
|
64 |
iteration: int
|
65 |
done: bool
|
66 |
timings: Dict[str, float]
|
67 |
|
68 |
-
def
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
return tokenizer.decode(output[0], skip_special_tokens=True).strip()
|
78 |
|
79 |
PROMPTS = {
|
80 |
-
"product_manager": "
|
81 |
-
{
|
82 |
-
|
83 |
-
"
|
84 |
-
{refined_request}
|
85 |
-
Break it down into scope and constraints. Output the scoped request only.""",
|
86 |
-
"designer": """You're a UI designer. Create design specs for:
|
87 |
-
{scoped_request}
|
88 |
-
Include color palette, font, layout, and component styles. No code.""",
|
89 |
-
"software_engineer": """Create a full HTML page with embedded CSS for:
|
90 |
-
{design_specs}
|
91 |
-
Requirements:
|
92 |
-
- Semantic, responsive HTML
|
93 |
-
- Embedded CSS in <style> tag
|
94 |
-
- Output complete HTML only.""",
|
95 |
-
"qa": """Review this webpage:
|
96 |
-
{html}
|
97 |
-
Is it visually appealing, responsive, and functional? Reply "APPROVED" or suggest improvements."""
|
98 |
}
|
99 |
|
100 |
-
def
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
return {"refined_request": revised, "messages": state["messages"] + [{"role": "product_manager", "content": revised}]}
|
110 |
-
|
111 |
-
def project_manager_agent(state: AgentState):
|
112 |
-
scoped = run_pipeline("project_manager", PROMPTS["project_manager"].format(refined_request=state["refined_request"]))
|
113 |
-
return {"scoped_request": scoped, "messages": state["messages"] + [{"role": "project_manager", "content": scoped}]}
|
114 |
-
|
115 |
-
def designer_agent(state: AgentState):
|
116 |
-
specs = run_pipeline("product_manager", PROMPTS["designer"].format(scoped_request=state["scoped_request"]))
|
117 |
-
return {"design_specs": specs, "messages": state["messages"] + [{"role": "designer", "content": specs}]}
|
118 |
-
|
119 |
-
def engineer_agent(state: AgentState):
|
120 |
-
html = run_pipeline("software_engineer", PROMPTS["software_engineer"].format(design_specs=state["design_specs"]))
|
121 |
-
return {"html": html, "messages": state["messages"] + [{"role": "software_engineer", "content": html}]}
|
122 |
-
|
123 |
-
def qa_agent(state: AgentState, max_iter: int):
|
124 |
-
feedback = run_pipeline("qa", PROMPTS["qa"].format(html=state["html"]))
|
125 |
-
done = "APPROVED" in feedback or state["iteration"] >= max_iter
|
126 |
-
return {"feedback": feedback, "done": done, "iteration": state["iteration"] + 1,
|
127 |
-
"messages": state["messages"] + [{"role": "qa", "content": feedback}]}
|
128 |
-
|
129 |
-
def generate_ui(user_request: str, max_iter: int):
|
130 |
-
state = {"messages": [{"role": "user", "content": user_request}],
|
131 |
-
"user_request": user_request,
|
132 |
-
"refined_request": "", "scoped_request": "", "design_specs": "",
|
133 |
-
"html": "", "feedback": "", "iteration": 0, "done": False, "timings": {}}
|
134 |
|
135 |
workflow = StateGraph(AgentState)
|
136 |
-
workflow.add_node("product_manager", lambda s:
|
137 |
-
workflow.add_node("project_manager", lambda s:
|
138 |
-
workflow.add_node("
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
workflow.add_edge("product_manager", "project_manager")
|
143 |
-
workflow.add_edge("project_manager", "
|
144 |
-
workflow.add_edge("
|
145 |
-
workflow.
|
146 |
-
workflow.add_conditional_edges("qa", lambda s: END if s["done"] else "software_engineer")
|
147 |
workflow.set_entry_point("product_manager")
|
148 |
|
149 |
app = workflow.compile()
|
150 |
-
total_start = time.time()
|
151 |
final_state = app.invoke(state)
|
152 |
-
return final_state
|
153 |
|
154 |
def main():
|
155 |
-
st.
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
prompt = st.text_area("π Describe the UI you want:", "A coffee shop landing page with hero, menu, and contact form.", height=150)
|
160 |
-
|
161 |
if st.button("π Generate UI"):
|
162 |
with st.spinner("Agents working..."):
|
163 |
-
|
164 |
-
st.success("β
UI Generated
|
165 |
-
st.
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
st.subheader("π§ Agent Communication Log")
|
171 |
-
history_text = ""
|
172 |
-
for msg in final_state["messages"]:
|
173 |
-
role = msg["role"].replace("_", " ").title()
|
174 |
-
content = msg["content"]
|
175 |
-
history_text += f"---\n{role}:\n{content}\n\n"
|
176 |
-
st.text_area("Agent Dialogue", value=history_text, height=300)
|
177 |
-
|
178 |
-
b64_hist = base64.b64encode(history_text.encode()).decode()
|
179 |
-
st.markdown(
|
180 |
-
f'<a href="data:file/txt;base64,{b64_hist}" download="agent_communication.txt">π₯ Download Communication Log</a>',
|
181 |
-
unsafe_allow_html=True)
|
182 |
-
|
183 |
-
st.subheader("π Performance")
|
184 |
-
st.write(f"β±οΈ Total Time: {total_time:.2f} seconds")
|
185 |
-
st.write(f"π Iterations: {final_state['iteration']}")
|
186 |
-
for stage in ["product_manager", "project_manager", "designer", "software_engineer", "qa"]:
|
187 |
-
st.write(f"π§© {stage.replace('_', ' ').title()} Time: {final_state['timings'].get(stage, 0):.2f}s")
|
188 |
|
189 |
if __name__ == "__main__":
|
190 |
main()
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import os
|
3 |
import time
|
4 |
+
import gc
|
5 |
+
import torch
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
7 |
+
from peft import PeftModel
|
8 |
from typing import Dict, List, TypedDict
|
9 |
from langgraph.graph import StateGraph, END
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
12 |
|
13 |
+
# Agent model config β all use Gemma
|
14 |
AGENT_MODEL_CONFIG = {
|
15 |
"product_manager": {
|
16 |
"base": "unsloth/gemma-3-1b-it",
|
|
|
20 |
"base": "unsloth/gemma-3-1b-it",
|
21 |
"adapter": "spandana30/project-manager-gemma"
|
22 |
},
|
|
|
|
|
|
|
|
|
23 |
"software_engineer": {
|
24 |
+
"base": "unsloth/gemma-3-1b-it",
|
25 |
+
"adapter": "spandana30/project-manager-gemma"
|
|
|
|
|
|
|
|
|
26 |
},
|
27 |
+
"qa_engineer": {
|
28 |
+
"base": "unsloth/gemma-3-1b-it",
|
29 |
+
"adapter": "spandana30/project-manager-gemma"
|
30 |
+
}
|
31 |
}
|
32 |
|
33 |
@st.cache_resource
|
34 |
+
def load_agent_model(base_id, adapter_id):
|
35 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
36 |
+
base_id,
|
37 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
38 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
39 |
+
token=HF_TOKEN
|
40 |
+
)
|
41 |
+
model = PeftModel.from_pretrained(base_model, adapter_id, token=HF_TOKEN)
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained(adapter_id, token=HF_TOKEN)
|
43 |
+
return model.eval(), tokenizer
|
44 |
+
|
45 |
+
def call_model(prompt: str, model, tokenizer) -> str:
|
46 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True).to(model.device)
|
47 |
+
outputs = model.generate(
|
48 |
+
**inputs,
|
49 |
+
max_new_tokens=512,
|
50 |
+
do_sample=False,
|
51 |
+
temperature=0.3
|
52 |
+
)
|
53 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
54 |
|
55 |
class AgentState(TypedDict):
|
56 |
messages: List[Dict[str, str]]
|
|
|
|
|
|
|
|
|
57 |
html: str
|
58 |
feedback: str
|
59 |
iteration: int
|
60 |
done: bool
|
61 |
timings: Dict[str, float]
|
62 |
|
63 |
+
def agent(prompt_template, state: AgentState, agent_key: str, timing_label: str):
|
64 |
+
start = time.time()
|
65 |
+
model, tokenizer = load_agent_model(**AGENT_MODEL_CONFIG[agent_key])
|
66 |
+
prompt = prompt_template.format(**state)
|
67 |
+
response = call_model(prompt, model, tokenizer)
|
68 |
+
state["messages"].append({"role": agent_key, "content": response})
|
69 |
+
state["timings"][timing_label] = time.time() - start
|
70 |
+
gc.collect()
|
71 |
+
return response
|
|
|
72 |
|
73 |
PROMPTS = {
|
74 |
+
"product_manager": "You're a Product Manager. Refine this user request:\n{messages[-1][content]}",
|
75 |
+
"project_manager": "You're a Project Manager. Break down this refined request:\n{messages[-1][content]}",
|
76 |
+
"software_engineer": "You're a Software Engineer. Generate HTML+CSS code for:\n{messages[-1][content]}",
|
77 |
+
"qa_engineer": "You're a QA Engineer. Review this HTML:\n{html}\nGive feedback or reply APPROVED."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
}
|
79 |
|
80 |
+
def generate_ui(user_prompt: str, max_iter: int):
|
81 |
+
state: AgentState = {
|
82 |
+
"messages": [{"role": "user", "content": user_prompt}],
|
83 |
+
"html": "",
|
84 |
+
"feedback": "",
|
85 |
+
"iteration": 0,
|
86 |
+
"done": False,
|
87 |
+
"timings": {}
|
88 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
workflow = StateGraph(AgentState)
|
91 |
+
workflow.add_node("product_manager", lambda s: {"messages": s["messages"] + [{"role": "product_manager", "content": agent(PROMPTS["product_manager"], s, "product_manager", "product_manager")}]})
|
92 |
+
workflow.add_node("project_manager", lambda s: {"messages": s["messages"] + [{"role": "project_manager", "content": agent(PROMPTS["project_manager"], s, "project_manager", "project_manager")}]})
|
93 |
+
workflow.add_node("software_engineer", lambda s: {
|
94 |
+
"html": agent(PROMPTS["software_engineer"], s, "software_engineer", "software_engineer"),
|
95 |
+
"messages": s["messages"] + [{"role": "software_engineer", "content": s["html"]}]
|
96 |
+
})
|
97 |
+
def qa_fn(s):
|
98 |
+
feedback = agent(PROMPTS["qa_engineer"], s, "qa_engineer", "qa_engineer")
|
99 |
+
done = "APPROVED" in feedback or s["iteration"] >= max_iter
|
100 |
+
return {
|
101 |
+
"feedback": feedback,
|
102 |
+
"done": done,
|
103 |
+
"iteration": s["iteration"] + 1,
|
104 |
+
"messages": s["messages"] + [{"role": "qa_engineer", "content": feedback}]
|
105 |
+
}
|
106 |
+
workflow.add_node("qa_engineer", qa_fn)
|
107 |
|
108 |
workflow.add_edge("product_manager", "project_manager")
|
109 |
+
workflow.add_edge("project_manager", "software_engineer")
|
110 |
+
workflow.add_edge("software_engineer", "qa_engineer")
|
111 |
+
workflow.add_conditional_edges("qa_engineer", lambda s: END if s["done"] else "software_engineer")
|
|
|
112 |
workflow.set_entry_point("product_manager")
|
113 |
|
114 |
app = workflow.compile()
|
|
|
115 |
final_state = app.invoke(state)
|
116 |
+
return final_state
|
117 |
|
118 |
def main():
|
119 |
+
st.set_page_config(page_title="Multi-Agent UI Generator", layout="wide")
|
120 |
+
st.title(" Multi-Agent Collaboration")
|
121 |
+
max_iter = st.sidebar.slider("Max QA Iterations", 1, 5, 2)
|
122 |
+
prompt = st.text_area("Describe your UI:", "A landing page for a coffee shop with a hero image, menu, and contact form.", height=150)
|
|
|
|
|
123 |
if st.button("π Generate UI"):
|
124 |
with st.spinner("Agents working..."):
|
125 |
+
final = generate_ui(prompt, max_iter)
|
126 |
+
st.success("β
UI Generated")
|
127 |
+
st.subheader("π Output HTML")
|
128 |
+
st.components.v1.html(final["html"], height=600, scrolling=True)
|
129 |
+
st.subheader("π§ Agent Messages")
|
130 |
+
for msg in final["messages"]:
|
131 |
+
st.markdown(f"**{msg['role'].title()}**:\n```\n{msg['content']}\n```")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
|
133 |
if __name__ == "__main__":
|
134 |
main()
|