Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,115 +1,148 @@
|
|
|
|
1 |
|
2 |
import streamlit as st
|
3 |
-
import os
|
4 |
import time
|
5 |
import base64
|
6 |
from typing import Dict, List, TypedDict
|
7 |
from langgraph.graph import StateGraph, END
|
8 |
-
from
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
class AgentState(TypedDict):
|
17 |
messages: List[Dict[str, str]]
|
|
|
|
|
|
|
18 |
design_specs: str
|
19 |
html: str
|
20 |
-
css: str
|
21 |
feedback: str
|
22 |
iteration: int
|
23 |
done: bool
|
24 |
timings: Dict[str, float]
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
{user_request}
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
{design_specs}
|
37 |
Requirements:
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
5. Ready-to-use (will work when saved as .html)
|
43 |
-
Output JUST the complete HTML file content:"""
|
44 |
-
|
45 |
-
QA_PROMPT = """Review this website:
|
46 |
{html}
|
47 |
-
|
48 |
-
|
49 |
-
2. Responsiveness
|
50 |
-
3. Functionality
|
51 |
-
Reply "APPROVED" if perfect, or suggest improvements."""
|
52 |
|
53 |
def time_agent(agent_func, state: AgentState, label: str):
|
54 |
start = time.time()
|
55 |
result = agent_func(state)
|
56 |
-
duration = time.time() - start
|
57 |
result["timings"] = state["timings"]
|
58 |
-
result["timings"][label] =
|
59 |
return result
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
def designer_agent(state: AgentState):
|
62 |
-
specs =
|
63 |
return {"design_specs": specs, "messages": state["messages"] + [{"role": "designer", "content": specs}]}
|
64 |
|
65 |
def engineer_agent(state: AgentState):
|
66 |
-
html =
|
67 |
-
if not html.strip().startswith("<!DOCTYPE"):
|
68 |
-
html = f"""<!DOCTYPE html>
|
69 |
-
<html><head><meta charset='UTF-8'><meta name='viewport' content='width=device-width, initial-scale=1.0'>
|
70 |
-
<title>Generated UI</title></head><body>{html}</body></html>"""
|
71 |
return {"html": html, "messages": state["messages"] + [{"role": "software_engineer", "content": html}]}
|
72 |
|
73 |
def qa_agent(state: AgentState, max_iter: int):
|
74 |
-
feedback =
|
75 |
done = "APPROVED" in feedback or state["iteration"] >= max_iter
|
76 |
return {"feedback": feedback, "done": done, "iteration": state["iteration"] + 1,
|
77 |
"messages": state["messages"] + [{"role": "qa", "content": feedback}]}
|
78 |
|
79 |
-
def call_model(prompt: str, max_retries=3) -> str:
|
80 |
-
for attempt in range(max_retries):
|
81 |
-
try:
|
82 |
-
return client.text_generation(
|
83 |
-
prompt,
|
84 |
-
max_new_tokens=3000,
|
85 |
-
temperature=0.3,
|
86 |
-
return_full_text=False
|
87 |
-
)
|
88 |
-
except Exception as e:
|
89 |
-
st.error(f"Model call failed (attempt {attempt+1}): {e}")
|
90 |
-
time.sleep(2)
|
91 |
-
return "<html><body><h1>Error generating UI</h1></body></html>"
|
92 |
-
|
93 |
def generate_ui(user_request: str, max_iter: int):
|
94 |
-
state = {"messages": [{"role": "user", "content": user_request}],
|
95 |
-
"
|
|
|
|
|
96 |
|
97 |
workflow = StateGraph(AgentState)
|
|
|
|
|
98 |
workflow.add_node("designer", lambda s: time_agent(designer_agent, s, "designer"))
|
99 |
workflow.add_node("software_engineer", lambda s: time_agent(engineer_agent, s, "software_engineer"))
|
100 |
workflow.add_node("qa", lambda s: time_agent(lambda x: qa_agent(x, max_iter), s, "qa"))
|
|
|
|
|
|
|
101 |
workflow.add_edge("designer", "software_engineer")
|
102 |
workflow.add_edge("software_engineer", "qa")
|
103 |
workflow.add_conditional_edges("qa", lambda s: END if s["done"] else "software_engineer")
|
104 |
-
workflow.set_entry_point("
|
|
|
105 |
app = workflow.compile()
|
106 |
total_start = time.time()
|
107 |
final_state = app.invoke(state)
|
108 |
return final_state["html"], final_state, time.time() - total_start
|
109 |
|
110 |
def main():
|
111 |
-
st.
|
112 |
-
st.title("π€ Multi-Agent Collaboration")
|
113 |
with st.sidebar:
|
114 |
max_iter = st.slider("Max QA Iterations", 1, 5, 2)
|
115 |
|
@@ -121,11 +154,9 @@ def main():
|
|
121 |
st.success("β
UI Generated Successfully!")
|
122 |
st.components.v1.html(html, height=600, scrolling=True)
|
123 |
|
124 |
-
st.subheader("π₯ Download HTML")
|
125 |
b64 = base64.b64encode(html.encode()).decode()
|
126 |
-
st.markdown(f'<a href="data:file/html;base64,{b64}" download="ui.html"
|
127 |
|
128 |
-
# Communication History
|
129 |
st.subheader("π§ Agent Communication Log")
|
130 |
history_text = ""
|
131 |
for msg in final_state["messages"]:
|
@@ -134,19 +165,16 @@ def main():
|
|
134 |
history_text += f"---\n{role}:\n{content}\n\n"
|
135 |
st.text_area("Agent Dialogue", value=history_text, height=300)
|
136 |
|
137 |
-
# Download Chat Log
|
138 |
b64_hist = base64.b64encode(history_text.encode()).decode()
|
139 |
st.markdown(
|
140 |
-
f'<a href="data:file/txt;base64,{b64_hist}" download="agent_communication.txt" '
|
141 |
-
|
142 |
-
|
143 |
-
unsafe_allow_html=True
|
144 |
-
)
|
145 |
st.subheader("π Performance")
|
146 |
st.write(f"β±οΈ Total Time: {total_time:.2f} seconds")
|
147 |
st.write(f"π Iterations: {final_state['iteration']}")
|
148 |
-
for stage in ["designer", "software_engineer", "qa"]:
|
149 |
-
st.write(f"π§© {stage.
|
150 |
|
151 |
if __name__ == "__main__":
|
152 |
main()
|
|
|
1 |
+
# Updated multi-agent UI generation system with custom fine-tuned LoRA adapters
|
2 |
|
3 |
import streamlit as st
|
|
|
4 |
import time
|
5 |
import base64
|
6 |
from typing import Dict, List, TypedDict
|
7 |
from langgraph.graph import StateGraph, END
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
9 |
+
from peft import PeftModel, PeftConfig
|
10 |
+
import torch
|
11 |
+
|
12 |
+
st.set_page_config(page_title="Multi-Agent Collaboration", layout="wide")
|
13 |
+
|
14 |
+
# Agent model loading config
|
15 |
+
AGENT_MODEL_CONFIG = {
|
16 |
+
"product_manager": {
|
17 |
+
"base": "mistralai/Mistral-7B-Instruct-v0.2",
|
18 |
+
"adapter": "spandana30/product-manager-mistral"
|
19 |
+
},
|
20 |
+
"project_manager": {
|
21 |
+
"base": "google/gemma-1.1-7b-it",
|
22 |
+
"adapter": "spandana30/project-manager-gemma"
|
23 |
+
},
|
24 |
+
"software_architect": {
|
25 |
+
"base": "cohere/command-r", # update if you have a local base version
|
26 |
+
"adapter": "spandana30/software-architect-cohere"
|
27 |
+
},
|
28 |
+
"software_engineer": {
|
29 |
+
"base": "codellama/CodeLlama-7b-Instruct-hf",
|
30 |
+
"adapter": "spandana30/software-engineer-codellama"
|
31 |
+
},
|
32 |
+
"qa": {
|
33 |
+
"base": "codellama/CodeLlama-7b-Instruct-hf",
|
34 |
+
"adapter": "spandana30/software-engineer-codellama"
|
35 |
+
},
|
36 |
+
}
|
37 |
+
|
38 |
+
@st.cache_resource
|
39 |
+
|
40 |
+
def load_agent_model(base_id, adapter_id):
|
41 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
42 |
+
base_id, torch_dtype=torch.float16, device_map="auto"
|
43 |
+
)
|
44 |
+
model = PeftModel.from_pretrained(base_model, adapter_id)
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(adapter_id)
|
46 |
+
return pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=1024)
|
47 |
+
|
48 |
+
AGENT_PIPELINES = {
|
49 |
+
role: load_agent_model(cfg["base"], cfg["adapter"])
|
50 |
+
for role, cfg in AGENT_MODEL_CONFIG.items()
|
51 |
+
}
|
52 |
|
53 |
class AgentState(TypedDict):
|
54 |
messages: List[Dict[str, str]]
|
55 |
+
user_request: str
|
56 |
+
refined_request: str
|
57 |
+
scoped_request: str
|
58 |
design_specs: str
|
59 |
html: str
|
|
|
60 |
feedback: str
|
61 |
iteration: int
|
62 |
done: bool
|
63 |
timings: Dict[str, float]
|
64 |
|
65 |
+
def run_pipeline(role: str, prompt: str):
|
66 |
+
response = AGENT_PIPELINES[role](prompt, do_sample=False)[0]['generated_text']
|
67 |
+
return response.strip()
|
68 |
+
|
69 |
+
PROMPTS = {
|
70 |
+
"product_manager": """You're a Product Manager. Refine and clarify this request:
|
71 |
{user_request}
|
72 |
+
Ensure it's clear, feasible, and user-focused. Output the revised request only.""",
|
73 |
+
"project_manager": """You're a Project Manager. Given this refined request:
|
74 |
+
{refined_request}
|
75 |
+
Break it down into scope and constraints. Output the scoped request only.""",
|
76 |
+
"designer": """You're a UI designer. Create design specs for:
|
77 |
+
{scoped_request}
|
78 |
+
Include color palette, font, layout, and component styles. No code.""",
|
79 |
+
"software_engineer": """Create a full HTML page with embedded CSS for:
|
80 |
{design_specs}
|
81 |
Requirements:
|
82 |
+
- Semantic, responsive HTML
|
83 |
+
- Embedded CSS in <style> tag
|
84 |
+
- Output complete HTML only.""",
|
85 |
+
"qa": """Review this webpage:
|
|
|
|
|
|
|
|
|
86 |
{html}
|
87 |
+
Is it visually appealing, responsive, and functional? Reply "APPROVED" or suggest improvements."""
|
88 |
+
}
|
|
|
|
|
|
|
89 |
|
90 |
def time_agent(agent_func, state: AgentState, label: str):
|
91 |
start = time.time()
|
92 |
result = agent_func(state)
|
|
|
93 |
result["timings"] = state["timings"]
|
94 |
+
result["timings"][label] = time.time() - start
|
95 |
return result
|
96 |
|
97 |
+
def product_manager_agent(state: AgentState):
|
98 |
+
revised = run_pipeline("product_manager", PROMPTS["product_manager"].format(user_request=state["user_request"]))
|
99 |
+
return {"refined_request": revised, "messages": state["messages"] + [{"role": "product_manager", "content": revised}]}
|
100 |
+
|
101 |
+
def project_manager_agent(state: AgentState):
|
102 |
+
scoped = run_pipeline("project_manager", PROMPTS["project_manager"].format(refined_request=state["refined_request"]))
|
103 |
+
return {"scoped_request": scoped, "messages": state["messages"] + [{"role": "project_manager", "content": scoped}]}
|
104 |
+
|
105 |
def designer_agent(state: AgentState):
|
106 |
+
specs = run_pipeline("product_manager", PROMPTS["designer"].format(scoped_request=state["scoped_request"]))
|
107 |
return {"design_specs": specs, "messages": state["messages"] + [{"role": "designer", "content": specs}]}
|
108 |
|
109 |
def engineer_agent(state: AgentState):
|
110 |
+
html = run_pipeline("software_engineer", PROMPTS["software_engineer"].format(design_specs=state["design_specs"]))
|
|
|
|
|
|
|
|
|
111 |
return {"html": html, "messages": state["messages"] + [{"role": "software_engineer", "content": html}]}
|
112 |
|
113 |
def qa_agent(state: AgentState, max_iter: int):
|
114 |
+
feedback = run_pipeline("qa", PROMPTS["qa"].format(html=state["html"]))
|
115 |
done = "APPROVED" in feedback or state["iteration"] >= max_iter
|
116 |
return {"feedback": feedback, "done": done, "iteration": state["iteration"] + 1,
|
117 |
"messages": state["messages"] + [{"role": "qa", "content": feedback}]}
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
def generate_ui(user_request: str, max_iter: int):
|
120 |
+
state = {"messages": [{"role": "user", "content": user_request}],
|
121 |
+
"user_request": user_request,
|
122 |
+
"refined_request": "", "scoped_request": "", "design_specs": "",
|
123 |
+
"html": "", "feedback": "", "iteration": 0, "done": False, "timings": {}}
|
124 |
|
125 |
workflow = StateGraph(AgentState)
|
126 |
+
workflow.add_node("product_manager", lambda s: time_agent(product_manager_agent, s, "product_manager"))
|
127 |
+
workflow.add_node("project_manager", lambda s: time_agent(project_manager_agent, s, "project_manager"))
|
128 |
workflow.add_node("designer", lambda s: time_agent(designer_agent, s, "designer"))
|
129 |
workflow.add_node("software_engineer", lambda s: time_agent(engineer_agent, s, "software_engineer"))
|
130 |
workflow.add_node("qa", lambda s: time_agent(lambda x: qa_agent(x, max_iter), s, "qa"))
|
131 |
+
|
132 |
+
workflow.add_edge("product_manager", "project_manager")
|
133 |
+
workflow.add_edge("project_manager", "designer")
|
134 |
workflow.add_edge("designer", "software_engineer")
|
135 |
workflow.add_edge("software_engineer", "qa")
|
136 |
workflow.add_conditional_edges("qa", lambda s: END if s["done"] else "software_engineer")
|
137 |
+
workflow.set_entry_point("product_manager")
|
138 |
+
|
139 |
app = workflow.compile()
|
140 |
total_start = time.time()
|
141 |
final_state = app.invoke(state)
|
142 |
return final_state["html"], final_state, time.time() - total_start
|
143 |
|
144 |
def main():
|
145 |
+
st.title("π€ Multi-Agent UI Generator")
|
|
|
146 |
with st.sidebar:
|
147 |
max_iter = st.slider("Max QA Iterations", 1, 5, 2)
|
148 |
|
|
|
154 |
st.success("β
UI Generated Successfully!")
|
155 |
st.components.v1.html(html, height=600, scrolling=True)
|
156 |
|
|
|
157 |
b64 = base64.b64encode(html.encode()).decode()
|
158 |
+
st.markdown(f'<a href="data:file/html;base64,{b64}" download="ui.html">π₯ Download HTML</a>', unsafe_allow_html=True)
|
159 |
|
|
|
160 |
st.subheader("π§ Agent Communication Log")
|
161 |
history_text = ""
|
162 |
for msg in final_state["messages"]:
|
|
|
165 |
history_text += f"---\n{role}:\n{content}\n\n"
|
166 |
st.text_area("Agent Dialogue", value=history_text, height=300)
|
167 |
|
|
|
168 |
b64_hist = base64.b64encode(history_text.encode()).decode()
|
169 |
st.markdown(
|
170 |
+
f'<a href="data:file/txt;base64,{b64_hist}" download="agent_communication.txt">π₯ Download Communication Log</a>',
|
171 |
+
unsafe_allow_html=True)
|
172 |
+
|
|
|
|
|
173 |
st.subheader("π Performance")
|
174 |
st.write(f"β±οΈ Total Time: {total_time:.2f} seconds")
|
175 |
st.write(f"π Iterations: {final_state['iteration']}")
|
176 |
+
for stage in ["product_manager", "project_manager", "designer", "software_engineer", "qa"]:
|
177 |
+
st.write(f"π§© {stage.replace('_', ' ').title()} Time: {final_state['timings'].get(stage, 0):.2f}s")
|
178 |
|
179 |
if __name__ == "__main__":
|
180 |
main()
|