File size: 5,831 Bytes
a305086
facf100
a305086
facf100
 
 
 
a305086
 
3079b0f
eafe2f3
 
3079b0f
 
8f974c7
 
3079b0f
 
8f974c7
 
3079b0f
 
8f974c7
 
3079b0f
facf100
8f974c7
 
facf100
3079b0f
 
 
facf100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3079b0f
a305086
 
 
23084ee
46c0430
a305086
 
 
 
 
23084ee
6a50430
facf100
 
2e1d572
23084ee
 
 
 
 
 
6a50430
 
facf100
6a50430
 
facf100
 
 
 
3079b0f
 
23084ee
 
 
 
3079b0f
a305086
facf100
 
 
 
23084ee
46c0430
facf100
 
 
 
 
a305086
 
23084ee
8f974c7
 
 
23084ee
 
 
8f974c7
23084ee
8f974c7
 
 
23084ee
46c0430
23084ee
8f974c7
23084ee
facf100
23084ee
 
facf100
23084ee
8f974c7
facf100
 
 
 
 
 
 
 
23084ee
facf100
3079b0f
 
facf100
 
 
3079b0f
 
a305086
 
facf100
a305086
 
facf100
8f974c7
facf100
 
a305086
 
facf100
 
6a50430
facf100
 
 
 
 
a305086
 
6a50430
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import streamlit as st
import os
import time
import gc
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from peft import PeftModel
from typing import Dict, List, TypedDict
from langgraph.graph import StateGraph, END

HF_TOKEN = os.getenv("HF_TOKEN")

AGENT_MODEL_CONFIG = {
    "product_manager": {
        "base_id": "unsloth/gemma-3-1b-it",
        "adapter_id": "spandana30/project-manager-gemma"
    },
    "project_manager": {
        "base_id": "unsloth/gemma-3-1b-it",
        "adapter_id": "spandana30/project-manager-gemma"
    },
    "software_engineer": {
        "base_id": "unsloth/gemma-3-1b-it",
        "adapter_id": "spandana30/project-manager-gemma"
    },
    "qa_engineer": {
        "base_id": "unsloth/gemma-3-1b-it",
        "adapter_id": "spandana30/project-manager-gemma"
    }
}

@st.cache_resource
def load_agent_model(base_id, adapter_id):
    base_model = AutoModelForCausalLM.from_pretrained(
        base_id,
        torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
        device_map="auto" if torch.cuda.is_available() else None,
        token=HF_TOKEN
    )
    model = PeftModel.from_pretrained(base_model, adapter_id, token=HF_TOKEN)
    tokenizer = AutoTokenizer.from_pretrained(adapter_id, token=HF_TOKEN)
    return model.eval(), tokenizer

def call_model(prompt: str, model, tokenizer) -> str:
    inputs = tokenizer(prompt, return_tensors="pt", truncation=True).to(model.device)
    outputs = model.generate(
        **inputs,
        max_new_tokens=512,
        do_sample=False,
        temperature=0.3
    )
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

class AgentState(TypedDict):
    messages: List[Dict[str, str]]
    html: str
    refined_request: str
    final_prompt: str
    feedback: str
    iteration: int
    done: bool
    timings: Dict[str, float]

def agent(template: str, state: AgentState, agent_key: str, timing_label: str):
    st.write(f'πŸ›  Running agent: {agent_key}')
    start = time.time()
    model, tokenizer = load_agent_model(**AGENT_MODEL_CONFIG[agent_key])

    latest_input = (
        state.get("final_prompt")
        or state.get("refined_request")
        or state["messages"][-1]["content"]
    )
    prompt = template.format(user_input=latest_input, html=state.get("html", ""), final_prompt=state.get("final_prompt", ""))
    st.write(f'πŸ“€ Prompt for {agent_key}:', prompt)

    response = call_model(prompt, model, tokenizer)
    st.write(f'πŸ“₯ Response from {agent_key}:', response[:500])

    state["messages"].append({"role": agent_key, "content": response})
    state["timings"][timing_label] = time.time() - start
    gc.collect()
    return response

PROMPTS = {
    "product_manager": "{user_input}",
    "project_manager": "{user_input}",
    "software_engineer": "{final_prompt}",
    "qa_engineer": "{html}"
}

def generate_ui(user_prompt: str, max_iter: int):
    state: AgentState = {
        "messages": [{"role": "user", "content": user_prompt}],
        "html": "",
        "refined_request": "",
        "final_prompt": "",
        "feedback": "",
        "iteration": 0,
        "done": False,
        "timings": {}
    }

    workflow = StateGraph(AgentState)

    workflow.add_node("product_manager", lambda s: {
        "messages": s["messages"] + [{
            "role": "product_manager",
            "content": (pm := agent(PROMPTS["product_manager"], s, "product_manager", "product_manager"))
        }],
        "refined_request": pm
    })

    workflow.add_node("project_manager", lambda s: {
        "messages": s["messages"] + [{
            "role": "project_manager",
            "content": (pr := agent(PROMPTS["project_manager"], s, "project_manager", "project_manager"))
        }],
        "final_prompt": pr
    })

    workflow.add_node("software_engineer", lambda s: {
        "html": (html := agent(PROMPTS["software_engineer"], s, "software_engineer", "software_engineer")),
        "messages": s["messages"] + [{"role": "software_engineer", "content": html}]
    })

    def qa_fn(s):
        feedback = agent(PROMPTS["qa_engineer"], s, "qa_engineer", "qa_engineer")
        done = "APPROVED" in feedback or s["iteration"] >= max_iter
        return {
            "feedback": feedback,
            "done": done,
            "iteration": s["iteration"] + 1,
            "messages": s["messages"] + [{"role": "qa_engineer", "content": feedback}]
        }

    workflow.add_node("qa_engineer", qa_fn)

    workflow.add_edge("product_manager", "project_manager")
    workflow.add_edge("project_manager", "software_engineer")
    workflow.add_edge("software_engineer", "qa_engineer")
    workflow.add_conditional_edges("qa_engineer", lambda s: END if s["done"] else "software_engineer")
    workflow.set_entry_point("product_manager")

    app = workflow.compile()
    final_state = app.invoke(state)
    return final_state

def main():
    st.set_page_config(page_title="Multi-Agent UI Generator", layout="wide")
    st.title("πŸ€– Multi-Agent Collaboration (Gemma Only)")
    max_iter = st.sidebar.slider("Max QA Iterations", 1, 5, 2)
    prompt = st.text_area("Describe your UI:", "A landing page for a coffee shop with a hero image, menu, and contact form.", height=150)
    if st.button("πŸš€ Generate UI"):
        with st.spinner("Agents working..."):
            final = generate_ui(prompt, max_iter)
            st.success("βœ… UI Generated")
            st.write("🧠 Final state:", final)
            st.subheader("πŸ” Output HTML")
            st.components.v1.html(final["html"], height=600, scrolling=True)
            st.subheader("🧠 Agent Messages")
            for msg in final["messages"]:
                st.markdown(f"**{msg['role'].title()}**:\n```\n{msg['content']}\n```")

if __name__ == "__main__":
    main()