File size: 7,339 Bytes
e574b74
1831c48
c1ea7de
e574b74
 
5a3607d
9521f84
e574b74
158ea16
ddf7c1a
 
 
 
9521f84
e574b74
5a3607d
e574b74
 
ddf7c1a
 
 
e574b74
5a3607d
e574b74
 
 
 
 
 
 
5a3607d
e574b74
 
 
 
 
 
 
5a3607d
e574b74
 
 
af88ed0
5a3607d
1831c48
 
 
5cd2ea8
 
 
1831c48
 
 
 
5cd2ea8
5a3607d
1831c48
 
 
897e852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b63c04
 
 
 
 
 
 
 
897e852
 
 
 
 
 
 
2cbfc6f
897e852
 
 
2cbfc6f
38c4b60
027fc46
9521f84
 
1831c48
9521f84
 
 
 
 
 
 
 
 
 
 
bf08959
9521f84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a3607d
 
70690ce
5a3607d
 
70690ce
5a3607d
 
 
 
 
 
 
43d3525
70690ce
9521f84
70690ce
 
 
9521f84
70690ce
9521f84
 
 
 
 
 
 
70690ce
 
9521f84
 
 
 
bf08959
 
9521f84
 
 
5cd2ea8
 
 
70690ce
9521f84
70690ce
9521f84
70690ce
9521f84
70690ce
 
 
9521f84
 
 
 
 
 
 
 
70690ce
 
 
 
 
 
bf08959
 
 
 
 
 
70690ce
 
9521f84
bf08959
70690ce
 
 
5a3607d
bf08959
5a3607d
70690ce
 
5a3607d
70690ce
 
 
 
 
 
 
 
 
0438422
5a3607d
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import gradio as gr
import requests
import torch
import torch.nn as nn
import re
import datetime
import yfinance as yf
from transformers import AutoTokenizer
import numpy as np
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoConfig
from scipy.special import softmax
from newspaper import Article

# Load tokenizer and sentiment model
MODEL = "cardiffnlp/xlm-twitter-politics-sentiment"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
config = AutoConfig.from_pretrained(MODEL)
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
model.save_pretrained(MODEL)


class ScorePredictor(nn.Module):
    def __init__(self, vocab_size, embedding_dim=128, hidden_dim=256, output_dim=1):
        super(ScorePredictor, self).__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=0)
        self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)
        self.fc = nn.Linear(hidden_dim, output_dim)
        self.sigmoid = nn.Sigmoid()

    def forward(self, input_ids, attention_mask):
        embedded = self.embedding(input_ids)
        lstm_out, _ = self.lstm(embedded)
        final_hidden_state = lstm_out[:, -1, :]
        output = self.fc(final_hidden_state)
        return self.sigmoid(output)

# Load trained score predictor model
score_model = ScorePredictor(tokenizer.vocab_size)
score_model.load_state_dict(torch.load("score_predictor.pth"))
score_model.eval()

# preprocesses text
def preprocess_text(text):
    text = text.lower()
    text = re.sub(r'http\S+', '', text)
    text = re.sub(r'\d{1,2}:\d{2}', '', text)  
    text = re.sub(r'speaker\s+[a-z]', '', text)  
    text = re.sub(r'\b[a-z]{2,20}\s+howley\b', '', text)  
    text = re.sub(r'[^a-zA-Z0-9\s.,!?]', '', text)
    text = re.sub(r'\s+', ' ', text).strip()
    return text


# predicts sentiment
def predict_sentiment(text):
    if not text:
        return 0.0
    # encoded_input = tokenizer(
    #     text.split(),
    #     return_tensors='pt',
    #     padding=True,
    #     truncation=True,
    #     max_length=512
    # )
    # input_ids, attention_mask = encoded_input["input_ids"], encoded_input["attention_mask"]
    # with torch.no_grad():
    #     score = score_model(input_ids, attention_mask)[0].item()


    # k = 20   
    # midpoint = 0.7 

    # scaled_score = 1 / (1 + np.exp(-k * (score - midpoint)))
    # final_output = scaled_score * 100 

    # return 1-final_output
    text = preprocess_text(text)
    # encoded_input = tokenizer(text, return_tensors='pt')
    encoded_input = tokenizer(
    text,
    return_tensors='pt',
    truncation=True,
    padding=True,
    max_length=512
    )
    output = model(**encoded_input)
    scores = output[0][0].detach().numpy()
    scores = softmax(scores)
    ranking = np.argsort(scores)
    ranking = ranking[::-1]
    negative_id = -1
    for idx, label in config.id2label.items():
        if label.lower() == 'negative':
            negative_id = idx
            negative_score = scores[negative_id]
    
    return (1-(float(negative_score)))*100


# extracts article text
def extract_article_text(url: str):
    try:
        article = Article(url)
        article.download()
        article.parse()
        return {
            "title": article.title or "",
            "text": article.text or "",
            "publish_date": article.publish_date,  
            "url": url
        }
    except Exception as e:
        print(f"[ERROR] newspaper3k failed for URL {url}: {e}")
        return None

# fetch article based on ticker
def fetch_article_for_ticker(ticker: str):
    ticker_obj = yf.Ticker(ticker)
    news_items = ticker_obj.news or []

    if not news_items:
        return None

    for item in news_items:
        if item is None:
            continue
        # tries both fields where yfinance might store a URL
        url = item.get("link") or item.get("content", {}).get("clickThroughUrl", {}).get("url")
        if not url:
            continue

        parsed = extract_article_text(url)
        if parsed:
            return parsed

    return None

# initialize cache
sentiment_cache = {}

# checks if cache is valid 
def is_cache_valid(cached_time, max_age_minutes=10):
    if cached_time is None:
        return False
    now = datetime.datetime.utcnow()
    age = now - cached_time
    return age.total_seconds() < max_age_minutes * 60

# analyzes the tikcers
def analyze_ticker(user_ticker: str):
    user_ticker = user_ticker.upper().strip()
    tickers_to_check = [user_ticker, "SPY"] if user_ticker != "SPY" else ["SPY"]
    results = []

    for tk in tickers_to_check:
        cached = sentiment_cache.get(tk)
        if cached and is_cache_valid(cached.get("timestamp")):
            # reuse cached entry
            results.append({
                "ticker": tk,
                "article_blurb": cached["article_blurb"],
                "sentiment": cached["sentiment"],
                "timestamp": cached["timestamp"],
            })
            continue

        # fetch fresh article via yfinance + newspaper3k
        article_data = fetch_article_for_ticker(tk)
        if not article_data:
            blurb = f"No news articles found for {tk}."
            sentiment_score = None
        else:
            full_text = article_data["title"] + " " + article_data["text"]
            sentiment_score = predict_sentiment(full_text)

            cleaned_text = preprocess_text(article_data["text"])
            short_blurb = cleaned_text[:300] + "..." if len(cleaned_text) > 300 else cleaned_text
            blurb = f"{article_data['title']}\n\n{short_blurb}"

        timestamp = datetime.datetime.utcnow()
        cache_entry = {
            "article_blurb": blurb,
            "sentiment": sentiment_score,
            "timestamp": timestamp
        }
        sentiment_cache[tk] = cache_entry

        results.append({
            "ticker": tk,
            "article_blurb": blurb,
            "sentiment": sentiment_score,
            "timestamp": timestamp
        })

    # has user_ticker appears first in the list
    results.sort(key=lambda x: 0 if x["ticker"] == user_ticker else 1)
    return results

def display_sentiment(results):
    html = "<h2>Sentiment Analysis</h2><ul>"
    for r in results:
        ts_str = r["timestamp"].strftime("%Y-%m-%d %H:%M:%S UTC")
        score_display = (
            f"{r['sentiment']:.2f}"
            if r['sentiment'] is not None else
            "—"
        )
        html += (
            f"<li><b>{r['ticker']}</b> &nbsp;({ts_str})<br>"
            f"{r['article_blurb']}<br>"
            f"<i>Sentiment score:</i> {score_display}</li>"
        )
    html += "</ul>"
    return html


with gr.Blocks() as demo:
    gr.Markdown("# Ticker vs. SPY Sentiment Tracker")
    input_box = gr.Textbox(label="Enter any ticker symbol (e.g., AAPL)")
    output_html = gr.HTML()
    run_btn = gr.Button("Analyze")

    def _placeholder(t):
        return f"<h3>Gathering latest articles for {t.upper()} and SPY … please wait.</h3>"

    run_btn.click(_placeholder, inputs=input_box, outputs=output_html, queue=False).then(
        lambda t: display_sentiment(analyze_ticker(t)),
        inputs=input_box,
        outputs=output_html,
    )

demo.launch()