Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,41 +1,21 @@
|
|
1 |
import gradio as gr
|
2 |
-
import
|
3 |
-
import time
|
4 |
-
import datetime
|
5 |
-
import praw
|
6 |
-
import joblib
|
7 |
import torch
|
8 |
-
import scipy.sparse as sp
|
9 |
import torch.nn as nn
|
10 |
-
import pandas as pd
|
11 |
import re
|
12 |
-
import numpy as np
|
13 |
-
import matplotlib.pyplot as plt
|
14 |
-
from scipy.interpolate import make_interp_spline
|
15 |
from transformers import AutoTokenizer
|
16 |
-
import matplotlib.font_manager as fm
|
17 |
-
import pytz
|
18 |
|
19 |
-
# Load models and data (your existing code)
|
20 |
-
autovectorizer = joblib.load('AutoVectorizer.pkl')
|
21 |
-
autoclassifier = joblib.load('AutoClassifier.pkl')
|
22 |
MODEL = "cardiffnlp/xlm-twitter-politics-sentiment"
|
23 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
24 |
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
class ScorePredictor(nn.Module):
|
31 |
-
# ... (Your ScorePredictor class)
|
32 |
def __init__(self, vocab_size, embedding_dim=128, hidden_dim=256, output_dim=1):
|
33 |
super(ScorePredictor, self).__init__()
|
34 |
self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=0)
|
35 |
self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)
|
36 |
self.fc = nn.Linear(hidden_dim, output_dim)
|
37 |
self.sigmoid = nn.Sigmoid()
|
38 |
-
|
39 |
def forward(self, input_ids, attention_mask):
|
40 |
embedded = self.embedding(input_ids)
|
41 |
lstm_out, _ = self.lstm(embedded)
|
@@ -47,230 +27,92 @@ score_model = ScorePredictor(tokenizer.vocab_size)
|
|
47 |
score_model.load_state_dict(torch.load("score_predictor.pth"))
|
48 |
score_model.eval()
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
post_time = datetime.datetime.utcfromtimestamp(post.created_utc)
|
84 |
-
if post_time >= start_time: # Filter only within last 14 days
|
85 |
-
posts.append({
|
86 |
-
"subreddit": subreddit_name,
|
87 |
-
"timestamp": post.created_utc,
|
88 |
-
"date": post_time.strftime('%Y-%m-%d %H:%M:%S'),
|
89 |
-
"post_text": post.title
|
90 |
-
})
|
91 |
-
except Exception as e:
|
92 |
-
print(f"Error fetching posts from r/{subreddit_name}: {e}")
|
93 |
-
|
94 |
-
return posts
|
95 |
-
|
96 |
-
def preprocess_text(text):
|
97 |
-
# ... (Your preprocess_text function)
|
98 |
-
text = text.lower()
|
99 |
-
text = re.sub(r'http\S+', '', text)
|
100 |
-
text = re.sub(r'[^a-zA-Z0-9\s.,!?]', '', text)
|
101 |
-
text = re.sub(r'\s+', ' ', text).strip()
|
102 |
-
return text
|
103 |
-
|
104 |
-
def predict_score(text):
|
105 |
-
# ... (Your predict_score function)
|
106 |
-
if not text:
|
107 |
-
return 0.0
|
108 |
-
max_length = 512
|
109 |
-
|
110 |
-
encoded_input = tokenizer(
|
111 |
-
text.split(),
|
112 |
-
return_tensors='pt',
|
113 |
-
padding=True,
|
114 |
-
truncation=True,
|
115 |
-
max_length=max_length
|
116 |
-
)
|
117 |
-
|
118 |
-
input_ids, attention_mask = encoded_input["input_ids"], encoded_input["attention_mask"]
|
119 |
-
with torch.no_grad():
|
120 |
-
score = score_model(input_ids, attention_mask)[0].item()
|
121 |
-
return score
|
122 |
-
|
123 |
-
start_time = datetime.datetime.utcnow() - datetime.timedelta(days=14)
|
124 |
-
all_posts = []
|
125 |
-
for sub in subreddits:
|
126 |
-
print(f"Fetching posts from r/{sub}")
|
127 |
-
posts = fetch_all_recent_posts(sub, start_time)
|
128 |
-
all_posts.extend(posts)
|
129 |
-
print(f"Fetched {len(posts)} posts from r/{sub}")
|
130 |
-
|
131 |
-
filtered_posts = []
|
132 |
-
for post in all_posts:
|
133 |
-
vector = autovectorizer.transform([post['post_text']])
|
134 |
-
prediction = autoclassifier.predict(vector)
|
135 |
-
if prediction[0] == 1:
|
136 |
-
filtered_posts.append(post)
|
137 |
-
all_posts = filtered_posts
|
138 |
-
|
139 |
-
df = pd.DataFrame(all_posts)
|
140 |
-
df['date'] = pd.to_datetime(df['date'])
|
141 |
-
df['date_only'] = df['date'].dt.date
|
142 |
-
df = df.sort_values(by=['date_only'])
|
143 |
-
df['sentiment_score'] = df['post_text'].apply(predict_score)
|
144 |
-
|
145 |
-
last_14_dates = df['date_only'].unique()
|
146 |
-
num_dates = min(len(last_14_dates), 14)
|
147 |
-
last_14_dates = sorted(last_14_dates, reverse=True)[:num_dates]
|
148 |
-
|
149 |
-
filtered_df = df[df['date_only'].isin(last_14_dates)]
|
150 |
-
daily_sentiment = filtered_df.groupby('date_only')['sentiment_score'].median()
|
151 |
-
|
152 |
-
if len(daily_sentiment) < 14:
|
153 |
-
mean_sentiment = daily_sentiment.mean()
|
154 |
-
padding = [mean_sentiment] * (14 - len(daily_sentiment))
|
155 |
-
daily_sentiment = np.concatenate([daily_sentiment.values, padding])
|
156 |
-
daily_sentiment = pd.Series(daily_sentiment)
|
157 |
-
|
158 |
-
sentiment_scores_np = daily_sentiment.values.reshape(1, -1)
|
159 |
-
prediction = sentiment_model.predict(sentiment_scores_np)
|
160 |
-
pred = (prediction[0])
|
161 |
-
|
162 |
-
font_path = "AfacadFlux-VariableFont_slnt,wght[1].ttf"
|
163 |
-
custom_font = fm.FontProperties(fname=font_path)
|
164 |
-
|
165 |
-
today = datetime.date.today()
|
166 |
-
days = [today + datetime.timedelta(days=i) for i in range(7)]
|
167 |
-
days_str = [day.strftime('%a %m/%d') for day in days]
|
168 |
-
|
169 |
-
xnew = np.linspace(0, 6, 300)
|
170 |
-
spline = make_interp_spline(np.arange(7), pred, k=3)
|
171 |
-
pred_smooth = spline(xnew)
|
172 |
-
|
173 |
-
fig, ax = plt.subplots(figsize=(12, 7))
|
174 |
-
ax.fill_between(xnew, pred_smooth, color='#244B48', alpha=0.4)
|
175 |
-
ax.plot(xnew, pred_smooth, color='#244B48', lw=3, label='Forecast')
|
176 |
-
ax.scatter(np.arange(7), pred, color='#244B48', s=100, zorder=5)
|
177 |
-
|
178 |
-
est_timezone = pytz.timezone('America/New_York')
|
179 |
-
est_time = datetime.datetime.now(est_timezone)
|
180 |
-
ax.set_title(f"7-Day Political Sentiment Forecast - {est_time.strftime('%Y-%m-%d %H:%M:%S EST')}",
|
181 |
-
fontsize=70, fontweight='bold', pad=20, fontproperties=custom_font)
|
182 |
-
# ax.set_title(f"7-Day Political Sentiment Forecast - {datetime.datetime.now()}", fontsize=22, fontweight='bold', pad=20, fontproperties=custom_font)
|
183 |
-
ax.set_xlabel("Day", fontsize=16, fontproperties=custom_font)
|
184 |
-
ax.set_ylabel("Negative Sentiment (0-1)", fontsize=16, fontproperties=custom_font)
|
185 |
-
ax.set_xticks(np.arange(7))
|
186 |
-
ax.set_xticklabels(days_str, fontsize=14, fontproperties=custom_font)
|
187 |
-
|
188 |
-
# Continue from previous app.py code
|
189 |
-
|
190 |
-
ax.set_yticklabels([f"{tick:.2f}" for tick in ax.get_yticks()], fontsize=14, fontproperties=custom_font)
|
191 |
-
|
192 |
-
ax.spines['top'].set_visible(False)
|
193 |
-
ax.spines['right'].set_visible(False)
|
194 |
-
ax.spines['left'].set_visible(False)
|
195 |
-
ax.spines['bottom'].set_visible(False)
|
196 |
-
|
197 |
-
ax.legend(fontsize=14, loc='upper right', prop=custom_font)
|
198 |
-
plt.tight_layout()
|
199 |
-
|
200 |
-
import io
|
201 |
-
import base64
|
202 |
-
buffer = io.BytesIO()
|
203 |
-
plt.savefig(buffer, format='png')
|
204 |
-
buffer.seek(0)
|
205 |
-
prediction_plot_base64 = base64.b64encode(buffer.getvalue()).decode()
|
206 |
-
plt.close(fig)
|
207 |
-
|
208 |
-
def display_plot():
|
209 |
-
"""Displays the plot in the Gradio interface."""
|
210 |
-
global prediction_plot_base64
|
211 |
-
if prediction_plot_base64:
|
212 |
-
return f'<img src="data:image/png;base64,{prediction_plot_base64}" alt="Prediction Plot">'
|
213 |
-
else:
|
214 |
-
return "Processing data..."
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
process_data()
|
219 |
-
|
220 |
-
# Schedule daily refresh
|
221 |
-
def run_daily():
|
222 |
-
process_data()
|
223 |
-
print("Data refreshed at:", datetime.datetime.now())
|
224 |
-
|
225 |
-
#schedule.every().day.at("00:00").do(run_daily)
|
226 |
-
schedule.every(10).seconds.do(run_daily)
|
227 |
-
|
228 |
-
def run_schedule():
|
229 |
-
while True:
|
230 |
-
schedule.run_pending()
|
231 |
-
#time.sleep(60)
|
232 |
-
|
233 |
-
import threading
|
234 |
-
thread = threading.Thread(target=run_schedule)
|
235 |
-
thread.daemon = True
|
236 |
-
thread.start()
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
custom_css = """
|
242 |
-
body, .gradio-container {
|
243 |
-
margin: 0;
|
244 |
-
padding: 0;
|
245 |
-
}
|
246 |
-
"""
|
247 |
-
|
248 |
-
|
249 |
-
with gr.Blocks(css=custom_css) as demo:
|
250 |
-
# Initialize the HTML output with a default message
|
251 |
-
html_output = gr.HTML("Processing data...")
|
252 |
-
|
253 |
-
# Define the refresh function
|
254 |
-
def refresh_html():
|
255 |
-
if prediction_plot_base64:
|
256 |
-
return (
|
257 |
-
f'<img src="data:image/png;base64,{prediction_plot_base64}" '
|
258 |
-
'alt="Prediction Plot" '
|
259 |
-
'style="width: 100vw; height: 100vh; object-fit: contain;">'
|
260 |
-
)
|
261 |
else:
|
262 |
-
return "
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
|
|
|
|
|
|
|
|
3 |
import torch
|
|
|
4 |
import torch.nn as nn
|
|
|
5 |
import re
|
|
|
|
|
|
|
6 |
from transformers import AutoTokenizer
|
|
|
|
|
7 |
|
|
|
|
|
|
|
8 |
MODEL = "cardiffnlp/xlm-twitter-politics-sentiment"
|
9 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
10 |
|
|
|
|
|
|
|
|
|
|
|
11 |
class ScorePredictor(nn.Module):
|
|
|
12 |
def __init__(self, vocab_size, embedding_dim=128, hidden_dim=256, output_dim=1):
|
13 |
super(ScorePredictor, self).__init__()
|
14 |
self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=0)
|
15 |
self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)
|
16 |
self.fc = nn.Linear(hidden_dim, output_dim)
|
17 |
self.sigmoid = nn.Sigmoid()
|
18 |
+
|
19 |
def forward(self, input_ids, attention_mask):
|
20 |
embedded = self.embedding(input_ids)
|
21 |
lstm_out, _ = self.lstm(embedded)
|
|
|
27 |
score_model.load_state_dict(torch.load("score_predictor.pth"))
|
28 |
score_model.eval()
|
29 |
|
30 |
+
def preprocess_text(text):
|
31 |
+
text = text.lower()
|
32 |
+
text = re.sub(r'http\S+', '', text)
|
33 |
+
text = re.sub(r'[^a-zA-Z0-9\s.,!?]', '', text)
|
34 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
35 |
+
return text
|
36 |
+
|
37 |
+
def predict_sentiment(text):
|
38 |
+
if not text:
|
39 |
+
return 0.0
|
40 |
+
encoded_input = tokenizer(
|
41 |
+
text.split(),
|
42 |
+
return_tensors='pt',
|
43 |
+
padding=True,
|
44 |
+
truncation=True,
|
45 |
+
max_length=512
|
46 |
+
)
|
47 |
+
input_ids, attention_mask = encoded_input["input_ids"], encoded_input["attention_mask"]
|
48 |
+
with torch.no_grad():
|
49 |
+
score = score_model(input_ids, attention_mask)[0].item()
|
50 |
+
return score
|
51 |
+
|
52 |
+
def fetch_articles(ticker):
|
53 |
+
POLYGON_API_KEY = "cMCv7jipVvV4qLBikgzllNmW_isiODRR"
|
54 |
+
url = f"https://api.polygon.io/v2/reference/news?ticker={ticker}&limit=1&apiKey={POLYGON_API_KEY}"
|
55 |
+
try:
|
56 |
+
response = requests.get(url)
|
57 |
+
data = response.json()
|
58 |
+
if "results" in data and len(data["results"]) > 0:
|
59 |
+
article = data["results"][0]
|
60 |
+
title = article.get("title", "")
|
61 |
+
description = article.get("description", "")
|
62 |
+
return [title + " " + description]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
else:
|
64 |
+
return [f"No news articles found for {ticker}."]
|
65 |
+
except Exception as e:
|
66 |
+
return [f"Error fetching articles for {ticker}: {str(e)}"]
|
67 |
+
|
68 |
+
def analyze_ticker(ticker):
|
69 |
+
articles = fetch_articles(ticker)
|
70 |
+
sentiments = []
|
71 |
+
for article in articles:
|
72 |
+
clean_text = preprocess_text(article)
|
73 |
+
sentiment = predict_sentiment(clean_text)
|
74 |
+
|
75 |
+
# Determine sentiment label
|
76 |
+
if sentiment > 0.6:
|
77 |
+
sentiment_label = "Negative"
|
78 |
+
emoji = "😊"
|
79 |
+
elif sentiment < 0.4:
|
80 |
+
sentiment_label = "Positive"
|
81 |
+
emoji = "😞"
|
82 |
+
else:
|
83 |
+
sentiment_label = "Neutral"
|
84 |
+
emoji = "😐"
|
85 |
+
|
86 |
+
sentiments.append({
|
87 |
+
"article": article,
|
88 |
+
"sentiment": sentiment,
|
89 |
+
"sentiment_label": sentiment_label,
|
90 |
+
"emoji": emoji
|
91 |
+
})
|
92 |
+
return sentiments
|
93 |
+
|
94 |
+
def gradio_interface(ticker):
|
95 |
+
results = analyze_ticker(ticker)
|
96 |
+
output = f"""
|
97 |
+
<h2>Sentiment Analysis for {ticker}</h2>
|
98 |
+
<div style='border: 1px solid #ccc; padding: 15px; border-radius: 5px; margin-bottom: 20px;'>
|
99 |
+
<h3>Article:</h3>
|
100 |
+
<p>{results[0]['article']}</p>
|
101 |
+
<h3>Sentiment:</h3>
|
102 |
+
<p>Score: {results[0]['sentiment']:.4f}</p>
|
103 |
+
<p>Label: {results[0]['sentiment_label']} {results[0]['emoji']}</p>
|
104 |
+
</div>
|
105 |
+
"""
|
106 |
+
return output
|
107 |
+
|
108 |
+
# Create Gradio interface
|
109 |
+
iface = gr.Interface(
|
110 |
+
fn=gradio_interface,
|
111 |
+
inputs=gr.Textbox(label="Enter Stock Ticker", placeholder="AAPL, MSFT, GOOGL..."),
|
112 |
+
outputs=gr.HTML(label="Sentiment Analysis Results"),
|
113 |
+
title="Stock News Sentiment Analyzer",
|
114 |
+
description="Enter a stock ticker to analyze the sentiment of recent news articles about that company.",
|
115 |
+
examples=[["AAPL"], ["MSFT"], ["TSLA"]]
|
116 |
+
)
|
117 |
+
|
118 |
+
iface.launch()
|