Spaces:
Running
Running
Rowan Martnishn
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import schedule
|
3 |
+
import time
|
4 |
+
import datetime
|
5 |
+
import praw
|
6 |
+
import joblib
|
7 |
+
import scipy.sparse as sp
|
8 |
+
import torch.nn as nn
|
9 |
+
import pandas as pd
|
10 |
+
import re
|
11 |
+
import numpy as np
|
12 |
+
import matplotlib.pyplot as plt
|
13 |
+
from scipy.interpolate import make_interp_spline
|
14 |
+
from transformers import AutoTokenizer
|
15 |
+
import matplotlib.font_manager as fm
|
16 |
+
|
17 |
+
# Load models and data (your existing code)
|
18 |
+
autovectorizer = joblib.load('AutoVectorizer.pkl')
|
19 |
+
autoclassifier = joblib.load('AutoClassifier.pkl')
|
20 |
+
MODEL = "cardiffnlp/xlm-twitter-politics-sentiment"
|
21 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
22 |
+
|
23 |
+
class ScorePredictor(nn.Module):
|
24 |
+
# ... (Your ScorePredictor class)
|
25 |
+
def __init__(self, vocab_size, embedding_dim=128, hidden_dim=256, output_dim=1):
|
26 |
+
super(ScorePredictor, self).__init__()
|
27 |
+
self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=0)
|
28 |
+
self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)
|
29 |
+
self.fc = nn.Linear(hidden_dim, output_dim)
|
30 |
+
self.sigmoid = nn.Sigmoid()
|
31 |
+
|
32 |
+
def forward(self, input_ids, attention_mask):
|
33 |
+
embedded = self.embedding(input_ids)
|
34 |
+
lstm_out, _ = self.lstm(embedded)
|
35 |
+
final_hidden_state = lstm_out[:, -1, :]
|
36 |
+
output = self.fc(final_hidden_state)
|
37 |
+
return self.sigmoid(output)
|
38 |
+
|
39 |
+
score_model = ScorePredictor(tokenizer.vocab_size)
|
40 |
+
score_model.load_state_dict(torch.load("score_predictor.pth"))
|
41 |
+
score_model.eval()
|
42 |
+
|
43 |
+
sentiment_model = joblib.load('sentiment_forecast_model.pkl')
|
44 |
+
|
45 |
+
reddit = praw.Reddit(
|
46 |
+
client_id="PH99oWZjM43GimMtYigFvA",
|
47 |
+
client_secret="3tJsXQKEtFFYInxzLEDqRZ0s_w5z0g",
|
48 |
+
user_agent='MyAPI/0.0.1',
|
49 |
+
check_for_async=False)
|
50 |
+
|
51 |
+
subreddits = [
|
52 |
+
"florida",
|
53 |
+
"ohio",
|
54 |
+
"libertarian",
|
55 |
+
"southpark",
|
56 |
+
"walkaway",
|
57 |
+
"truechristian",
|
58 |
+
"conservatives"
|
59 |
+
]
|
60 |
+
|
61 |
+
# Global variables for data
|
62 |
+
global prediction_plot_base64
|
63 |
+
|
64 |
+
def process_data():
|
65 |
+
"""Fetches data, performs analysis, and generates the plot."""
|
66 |
+
global prediction_plot_base64
|
67 |
+
end_date = datetime.datetime.utcnow()
|
68 |
+
start_date = end_date - datetime.timedelta(days=14)
|
69 |
+
|
70 |
+
def fetch_all_recent_posts(subreddit_name, start_time, limit=500):
|
71 |
+
# ... (Your fetch_all_recent_posts function)
|
72 |
+
subreddit = reddit.subreddit(subreddit_name)
|
73 |
+
posts = []
|
74 |
+
|
75 |
+
try:
|
76 |
+
for post in subreddit.new(limit=limit): # Fetch recent posts
|
77 |
+
post_time = datetime.datetime.utcfromtimestamp(post.created_utc)
|
78 |
+
if post_time >= start_time: # Filter only within last 14 days
|
79 |
+
posts.append({
|
80 |
+
"subreddit": subreddit_name,
|
81 |
+
"timestamp": post.created_utc,
|
82 |
+
"date": post_time.strftime('%Y-%m-%d %H:%M:%S'),
|
83 |
+
"post_text": post.title
|
84 |
+
})
|
85 |
+
except Exception as e:
|
86 |
+
print(f"Error fetching posts from r/{subreddit_name}: {e}")
|
87 |
+
|
88 |
+
return posts
|
89 |
+
|
90 |
+
def preprocess_text(text):
|
91 |
+
# ... (Your preprocess_text function)
|
92 |
+
text = text.lower()
|
93 |
+
text = re.sub(r'http\S+', '', text)
|
94 |
+
text = re.sub(r'[^a-zA-Z0-9\s.,!?]', '', text)
|
95 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
96 |
+
return text
|
97 |
+
|
98 |
+
def predict_score(text):
|
99 |
+
# ... (Your predict_score function)
|
100 |
+
if not text:
|
101 |
+
return 0.0
|
102 |
+
max_length = 512
|
103 |
+
|
104 |
+
encoded_input = tokenizer(
|
105 |
+
text.split(),
|
106 |
+
return_tensors='pt',
|
107 |
+
padding=True,
|
108 |
+
truncation=True,
|
109 |
+
max_length=max_length
|
110 |
+
)
|
111 |
+
|
112 |
+
input_ids, attention_mask = encoded_input["input_ids"], encoded_input["attention_mask"]
|
113 |
+
with torch.no_grad():
|
114 |
+
score = score_model(input_ids, attention_mask)[0].item()
|
115 |
+
return score
|
116 |
+
|
117 |
+
start_time = datetime.datetime.utcnow() - datetime.timedelta(days=14)
|
118 |
+
all_posts = []
|
119 |
+
for sub in subreddits:
|
120 |
+
print(f"Fetching posts from r/{sub}")
|
121 |
+
posts = fetch_all_recent_posts(sub, start_time)
|
122 |
+
all_posts.extend(posts)
|
123 |
+
print(f"Fetched {len(posts)} posts from r/{sub}")
|
124 |
+
|
125 |
+
filtered_posts = []
|
126 |
+
for post in all_posts:
|
127 |
+
vector = autovectorizer.transform([post['post_text']])
|
128 |
+
prediction = autoclassifier.predict(vector)
|
129 |
+
if prediction[0] == 1:
|
130 |
+
filtered_posts.append(post)
|
131 |
+
all_posts = filtered_posts
|
132 |
+
|
133 |
+
df = pd.DataFrame(all_posts)
|
134 |
+
df['date'] = pd.to_datetime(df['date'])
|
135 |
+
df['date_only'] = df['date'].dt.date
|
136 |
+
df = df.sort_values(by=['date_only'])
|
137 |
+
df['sentiment_score'] = df['post_text'].apply(predict_score)
|
138 |
+
|
139 |
+
last_14_dates = df['date_only'].unique()
|
140 |
+
num_dates = min(len(last_14_dates), 14)
|
141 |
+
last_14_dates = sorted(last_14_dates, reverse=True)[:num_dates]
|
142 |
+
|
143 |
+
filtered_df = df[df['date_only'].isin(last_14_dates)]
|
144 |
+
daily_sentiment = filtered_df.groupby('date_only')['sentiment_score'].median()
|
145 |
+
|
146 |
+
if len(daily_sentiment) < 14:
|
147 |
+
mean_sentiment = daily_sentiment.mean()
|
148 |
+
padding = [mean_sentiment] * (14 - len(daily_sentiment))
|
149 |
+
daily_sentiment = np.concatenate([daily_sentiment.values, padding])
|
150 |
+
daily_sentiment = pd.Series(daily_sentiment)
|
151 |
+
|
152 |
+
sentiment_scores_np = daily_sentiment.values.reshape(1, -1)
|
153 |
+
prediction = sentiment_model.predict(sentiment_scores_np)
|
154 |
+
pred = (prediction[0])
|
155 |
+
|
156 |
+
font_path = "AfacadFlux-VariableFont_slnt,wght[1].ttf"
|
157 |
+
custom_font = fm.FontProperties(fname=font_path)
|
158 |
+
|
159 |
+
today = datetime.date.today()
|
160 |
+
days = [today + datetime.timedelta(days=i) for i in range(7)]
|
161 |
+
days_str = [day.strftime('%a %m/%d') for day in days]
|
162 |
+
|
163 |
+
xnew = np.linspace(0, 6, 300)
|
164 |
+
spline = make_interp_spline(np.arange(7), pred, k=3)
|
165 |
+
pred_smooth = spline(xnew)
|
166 |
+
|
167 |
+
fig, ax = plt.subplots(figsize=(12, 7))
|
168 |
+
ax.fill_between(xnew, pred_smooth, color='#244B48', alpha=0.4)
|
169 |
+
ax.plot(xnew, pred_smooth, color='#244B48', lw=3, label='Forecast')
|
170 |
+
ax.scatter(np.arange(7), pred, color='#244B48', s=100, zorder=5)
|
171 |
+
|
172 |
+
ax.set_title("7-Day Political Sentiment Forecast", fontsize=22, fontweight='bold', pad=20, fontproperties=custom_font)
|
173 |
+
ax.set_xlabel("Day", fontsize=16, fontproperties=custom_font)
|
174 |
+
ax.set_ylabel("Negative Sentiment (0-1)", fontsize=16, fontproperties=custom_font)
|
175 |
+
ax.set_xticks(np.arange(7))
|
176 |
+
ax.set_xticklabels(days_str, fontsize=14, fontproperties=custom_font)
|