Spaces:
Sleeping
Sleeping
Rowan Martnishn
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,235 +1,3 @@
|
|
1 |
-
# import gradio as gr
|
2 |
-
# import schedule
|
3 |
-
# import time
|
4 |
-
# import datetime
|
5 |
-
# import praw
|
6 |
-
# import joblib
|
7 |
-
# import torch
|
8 |
-
# import scipy.sparse as sp
|
9 |
-
# import torch.nn as nn
|
10 |
-
# import pandas as pd
|
11 |
-
# import re
|
12 |
-
# import numpy as np
|
13 |
-
# import matplotlib.pyplot as plt
|
14 |
-
# from scipy.interpolate import make_interp_spline
|
15 |
-
# from transformers import AutoTokenizer
|
16 |
-
# import matplotlib.font_manager as fm
|
17 |
-
|
18 |
-
# # Load models and data (your existing code)
|
19 |
-
# autovectorizer = joblib.load('AutoVectorizer.pkl')
|
20 |
-
# autoclassifier = joblib.load('AutoClassifier.pkl')
|
21 |
-
# MODEL = "cardiffnlp/xlm-twitter-politics-sentiment"
|
22 |
-
# tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
23 |
-
|
24 |
-
# class ScorePredictor(nn.Module):
|
25 |
-
# # ... (Your ScorePredictor class)
|
26 |
-
# def __init__(self, vocab_size, embedding_dim=128, hidden_dim=256, output_dim=1):
|
27 |
-
# super(ScorePredictor, self).__init__()
|
28 |
-
# self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=0)
|
29 |
-
# self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True)
|
30 |
-
# self.fc = nn.Linear(hidden_dim, output_dim)
|
31 |
-
# self.sigmoid = nn.Sigmoid()
|
32 |
-
|
33 |
-
# def forward(self, input_ids, attention_mask):
|
34 |
-
# embedded = self.embedding(input_ids)
|
35 |
-
# lstm_out, _ = self.lstm(embedded)
|
36 |
-
# final_hidden_state = lstm_out[:, -1, :]
|
37 |
-
# output = self.fc(final_hidden_state)
|
38 |
-
# return self.sigmoid(output)
|
39 |
-
|
40 |
-
# score_model = ScorePredictor(tokenizer.vocab_size)
|
41 |
-
# score_model.load_state_dict(torch.load("score_predictor.pth"))
|
42 |
-
# score_model.eval()
|
43 |
-
|
44 |
-
# sentiment_model = joblib.load('sentiment_forecast_model.pkl')
|
45 |
-
|
46 |
-
# reddit = praw.Reddit(
|
47 |
-
# client_id="PH99oWZjM43GimMtYigFvA",
|
48 |
-
# client_secret="3tJsXQKEtFFYInxzLEDqRZ0s_w5z0g",
|
49 |
-
# user_agent='MyAPI/0.0.1',
|
50 |
-
# check_for_async=False)
|
51 |
-
|
52 |
-
# subreddits = [
|
53 |
-
# "florida",
|
54 |
-
# "ohio",
|
55 |
-
# # "libertarian",
|
56 |
-
# # "southpark",
|
57 |
-
# # "walkaway",
|
58 |
-
# # "truechristian",
|
59 |
-
# # "conservatives"
|
60 |
-
# ]
|
61 |
-
|
62 |
-
# # Global variables for data
|
63 |
-
# global prediction_plot_base64
|
64 |
-
|
65 |
-
# def process_data():
|
66 |
-
# """Fetches data, performs analysis, and generates the plot."""
|
67 |
-
# global prediction_plot_base64
|
68 |
-
# end_date = datetime.datetime.utcnow()
|
69 |
-
# start_date = end_date - datetime.timedelta(days=14)
|
70 |
-
|
71 |
-
# def fetch_all_recent_posts(subreddit_name, start_time, limit=500):
|
72 |
-
# # ... (Your fetch_all_recent_posts function)
|
73 |
-
# subreddit = reddit.subreddit(subreddit_name)
|
74 |
-
# posts = []
|
75 |
-
|
76 |
-
# try:
|
77 |
-
# for post in subreddit.top(limit=limit): # Fetch recent posts
|
78 |
-
# post_time = datetime.datetime.utcfromtimestamp(post.created_utc)
|
79 |
-
# if post_time >= start_time: # Filter only within last 14 days
|
80 |
-
# posts.append({
|
81 |
-
# "subreddit": subreddit_name,
|
82 |
-
# "timestamp": post.created_utc,
|
83 |
-
# "date": post_time.strftime('%Y-%m-%d %H:%M:%S'),
|
84 |
-
# "post_text": post.title
|
85 |
-
# })
|
86 |
-
# except Exception as e:
|
87 |
-
# print(f"Error fetching posts from r/{subreddit_name}: {e}")
|
88 |
-
|
89 |
-
# return posts
|
90 |
-
|
91 |
-
# def preprocess_text(text):
|
92 |
-
# # ... (Your preprocess_text function)
|
93 |
-
# text = text.lower()
|
94 |
-
# text = re.sub(r'http\S+', '', text)
|
95 |
-
# text = re.sub(r'[^a-zA-Z0-9\s.,!?]', '', text)
|
96 |
-
# text = re.sub(r'\s+', ' ', text).strip()
|
97 |
-
# return text
|
98 |
-
|
99 |
-
# def predict_score(text):
|
100 |
-
# # ... (Your predict_score function)
|
101 |
-
# if not text:
|
102 |
-
# return 0.0
|
103 |
-
# max_length = 512
|
104 |
-
|
105 |
-
# encoded_input = tokenizer(
|
106 |
-
# text.split(),
|
107 |
-
# return_tensors='pt',
|
108 |
-
# padding=True,
|
109 |
-
# truncation=True,
|
110 |
-
# max_length=max_length
|
111 |
-
# )
|
112 |
-
|
113 |
-
# input_ids, attention_mask = encoded_input["input_ids"], encoded_input["attention_mask"]
|
114 |
-
# with torch.no_grad():
|
115 |
-
# score = score_model(input_ids, attention_mask)[0].item()
|
116 |
-
# return score
|
117 |
-
|
118 |
-
# start_time = datetime.datetime.utcnow() - datetime.timedelta(days=14)
|
119 |
-
# all_posts = []
|
120 |
-
# for sub in subreddits:
|
121 |
-
# print(f"Fetching posts from r/{sub}")
|
122 |
-
# posts = fetch_all_recent_posts(sub, start_time)
|
123 |
-
# all_posts.extend(posts)
|
124 |
-
# print(f"Fetched {len(posts)} posts from r/{sub}")
|
125 |
-
|
126 |
-
# filtered_posts = []
|
127 |
-
# for post in all_posts:
|
128 |
-
# vector = autovectorizer.transform([post['post_text']])
|
129 |
-
# prediction = autoclassifier.predict(vector)
|
130 |
-
# if prediction[0] == 1:
|
131 |
-
# filtered_posts.append(post)
|
132 |
-
# all_posts = filtered_posts
|
133 |
-
|
134 |
-
# df = pd.DataFrame(all_posts)
|
135 |
-
# df['date'] = pd.to_datetime(df['date'])
|
136 |
-
# df['date_only'] = df['date'].dt.date
|
137 |
-
# df = df.sort_values(by=['date_only'])
|
138 |
-
# df['sentiment_score'] = df['post_text'].apply(predict_score)
|
139 |
-
|
140 |
-
# last_14_dates = df['date_only'].unique()
|
141 |
-
# num_dates = min(len(last_14_dates), 14)
|
142 |
-
# last_14_dates = sorted(last_14_dates, reverse=True)[:num_dates]
|
143 |
-
|
144 |
-
# filtered_df = df[df['date_only'].isin(last_14_dates)]
|
145 |
-
# daily_sentiment = filtered_df.groupby('date_only')['sentiment_score'].median()
|
146 |
-
|
147 |
-
# if len(daily_sentiment) < 14:
|
148 |
-
# mean_sentiment = daily_sentiment.mean()
|
149 |
-
# padding = [mean_sentiment] * (14 - len(daily_sentiment))
|
150 |
-
# daily_sentiment = np.concatenate([daily_sentiment.values, padding])
|
151 |
-
# daily_sentiment = pd.Series(daily_sentiment)
|
152 |
-
|
153 |
-
# sentiment_scores_np = daily_sentiment.values.reshape(1, -1)
|
154 |
-
# prediction = sentiment_model.predict(sentiment_scores_np)
|
155 |
-
# pred = (prediction[0])
|
156 |
-
|
157 |
-
# font_path = "AfacadFlux-VariableFont_slnt,wght[1].ttf"
|
158 |
-
# custom_font = fm.FontProperties(fname=font_path)
|
159 |
-
|
160 |
-
# today = datetime.date.today()
|
161 |
-
# days = [today + datetime.timedelta(days=i) for i in range(7)]
|
162 |
-
# days_str = [day.strftime('%a %m/%d') for day in days]
|
163 |
-
|
164 |
-
# xnew = np.linspace(0, 6, 300)
|
165 |
-
# spline = make_interp_spline(np.arange(7), pred, k=3)
|
166 |
-
# pred_smooth = spline(xnew)
|
167 |
-
|
168 |
-
# fig, ax = plt.subplots(figsize=(12, 7))
|
169 |
-
# ax.fill_between(xnew, pred_smooth, color='#244B48', alpha=0.4)
|
170 |
-
# ax.plot(xnew, pred_smooth, color='#244B48', lw=3, label='Forecast')
|
171 |
-
# ax.scatter(np.arange(7), pred, color='#244B48', s=100, zorder=5)
|
172 |
-
|
173 |
-
# ax.set_title("7-Day Political Sentiment Forecast", fontsize=22, fontweight='bold', pad=20, fontproperties=custom_font)
|
174 |
-
# ax.set_xlabel("Day", fontsize=16, fontproperties=custom_font)
|
175 |
-
# ax.set_ylabel("Negative Sentiment (0-1)", fontsize=16, fontproperties=custom_font)
|
176 |
-
# ax.set_xticks(np.arange(7))
|
177 |
-
# ax.set_xticklabels(days_str, fontsize=14, fontproperties=custom_font)
|
178 |
-
|
179 |
-
# # Continue from previous app.py code
|
180 |
-
|
181 |
-
# ax.set_yticklabels([f"{tick:.2f}" for tick in ax.get_yticks()], fontsize=14, fontproperties=custom_font)
|
182 |
-
|
183 |
-
# ax.spines['top'].set_visible(False)
|
184 |
-
# ax.spines['right'].set_visible(False)
|
185 |
-
# ax.spines['left'].set_visible(False)
|
186 |
-
# ax.spines['bottom'].set_visible(False)
|
187 |
-
|
188 |
-
# ax.legend(fontsize=14, loc='upper right', prop=custom_font)
|
189 |
-
# plt.tight_layout()
|
190 |
-
|
191 |
-
# import io
|
192 |
-
# import base64
|
193 |
-
# buffer = io.BytesIO()
|
194 |
-
# plt.savefig(buffer, format='png')
|
195 |
-
# buffer.seek(0)
|
196 |
-
# prediction_plot_base64 = base64.b64encode(buffer.getvalue()).decode()
|
197 |
-
# plt.close(fig)
|
198 |
-
|
199 |
-
# def display_plot():
|
200 |
-
# """Displays the plot in the Gradio interface."""
|
201 |
-
# global prediction_plot_base64
|
202 |
-
# if prediction_plot_base64:
|
203 |
-
# return f'<img src="data:image/png;base64,{prediction_plot_base64}" alt="Prediction Plot">'
|
204 |
-
# else:
|
205 |
-
# return "Processing data..."
|
206 |
-
|
207 |
-
# # Initial data processing
|
208 |
-
# process_data()
|
209 |
-
|
210 |
-
# # Schedule daily refresh
|
211 |
-
# def run_daily():
|
212 |
-
# process_data()
|
213 |
-
# print("Data refreshed at:", datetime.datetime.now())
|
214 |
-
|
215 |
-
# schedule.every().day.at("00:00").do(run_daily)
|
216 |
-
|
217 |
-
# def run_schedule():
|
218 |
-
# while True:
|
219 |
-
# schedule.run_pending()
|
220 |
-
# time.sleep(60)
|
221 |
-
|
222 |
-
# import threading
|
223 |
-
# thread = threading.Thread(target=run_schedule)
|
224 |
-
# thread.daemon = True
|
225 |
-
# thread.start()
|
226 |
-
|
227 |
-
# # Gradio Interface
|
228 |
-
# iface = gr.Interface(fn=display_plot, inputs=None, outputs="html")
|
229 |
-
# iface.launch()
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
import gradio as gr
|
234 |
import schedule
|
235 |
import time
|
@@ -246,8 +14,6 @@ import matplotlib.pyplot as plt
|
|
246 |
from scipy.interpolate import make_interp_spline
|
247 |
from transformers import AutoTokenizer
|
248 |
import matplotlib.font_manager as fm
|
249 |
-
import io
|
250 |
-
import base64
|
251 |
|
252 |
# Load models and data (your existing code)
|
253 |
autovectorizer = joblib.load('AutoVectorizer.pkl')
|
@@ -256,6 +22,7 @@ MODEL = "cardiffnlp/xlm-twitter-politics-sentiment"
|
|
256 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
257 |
|
258 |
class ScorePredictor(nn.Module):
|
|
|
259 |
def __init__(self, vocab_size, embedding_dim=128, hidden_dim=256, output_dim=1):
|
260 |
super(ScorePredictor, self).__init__()
|
261 |
self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=0)
|
@@ -273,22 +40,27 @@ class ScorePredictor(nn.Module):
|
|
273 |
score_model = ScorePredictor(tokenizer.vocab_size)
|
274 |
score_model.load_state_dict(torch.load("score_predictor.pth"))
|
275 |
score_model.eval()
|
|
|
276 |
sentiment_model = joblib.load('sentiment_forecast_model.pkl')
|
277 |
|
278 |
reddit = praw.Reddit(
|
279 |
client_id="PH99oWZjM43GimMtYigFvA",
|
280 |
client_secret="3tJsXQKEtFFYInxzLEDqRZ0s_w5z0g",
|
281 |
user_agent='MyAPI/0.0.1',
|
282 |
-
check_for_async=False
|
283 |
-
)
|
284 |
|
285 |
subreddits = [
|
286 |
"florida",
|
287 |
"ohio",
|
|
|
|
|
|
|
|
|
|
|
288 |
]
|
289 |
|
290 |
# Global variables for data
|
291 |
-
prediction_plot_base64
|
292 |
|
293 |
def process_data():
|
294 |
"""Fetches data, performs analysis, and generates the plot."""
|
@@ -297,12 +69,14 @@ def process_data():
|
|
297 |
start_date = end_date - datetime.timedelta(days=14)
|
298 |
|
299 |
def fetch_all_recent_posts(subreddit_name, start_time, limit=500):
|
|
|
300 |
subreddit = reddit.subreddit(subreddit_name)
|
301 |
posts = []
|
|
|
302 |
try:
|
303 |
-
for post in subreddit.top(limit=limit):
|
304 |
post_time = datetime.datetime.utcfromtimestamp(post.created_utc)
|
305 |
-
if post_time >= start_time:
|
306 |
posts.append({
|
307 |
"subreddit": subreddit_name,
|
308 |
"timestamp": post.created_utc,
|
@@ -311,9 +85,11 @@ def process_data():
|
|
311 |
})
|
312 |
except Exception as e:
|
313 |
print(f"Error fetching posts from r/{subreddit_name}: {e}")
|
|
|
314 |
return posts
|
315 |
|
316 |
def preprocess_text(text):
|
|
|
317 |
text = text.lower()
|
318 |
text = re.sub(r'http\S+', '', text)
|
319 |
text = re.sub(r'[^a-zA-Z0-9\s.,!?]', '', text)
|
@@ -321,9 +97,11 @@ def process_data():
|
|
321 |
return text
|
322 |
|
323 |
def predict_score(text):
|
|
|
324 |
if not text:
|
325 |
return 0.0
|
326 |
max_length = 512
|
|
|
327 |
encoded_input = tokenizer(
|
328 |
text.split(),
|
329 |
return_tensors='pt',
|
@@ -331,6 +109,7 @@ def process_data():
|
|
331 |
truncation=True,
|
332 |
max_length=max_length
|
333 |
)
|
|
|
334 |
input_ids, attention_mask = encoded_input["input_ids"], encoded_input["attention_mask"]
|
335 |
with torch.no_grad():
|
336 |
score = score_model(input_ids, attention_mask)[0].item()
|
@@ -396,9 +175,56 @@ def process_data():
|
|
396 |
ax.set_ylabel("Negative Sentiment (0-1)", fontsize=16, fontproperties=custom_font)
|
397 |
ax.set_xticks(np.arange(7))
|
398 |
ax.set_xticklabels(days_str, fontsize=14, fontproperties=custom_font)
|
|
|
|
|
|
|
399 |
ax.set_yticklabels([f"{tick:.2f}" for tick in ax.get_yticks()], fontsize=14, fontproperties=custom_font)
|
400 |
|
401 |
ax.spines['top'].set_visible(False)
|
402 |
ax.spines['right'].set_visible(False)
|
403 |
ax.spines['left'].set_visible(False)
|
404 |
-
ax.spines['bottom'].set_visible
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import schedule
|
3 |
import time
|
|
|
14 |
from scipy.interpolate import make_interp_spline
|
15 |
from transformers import AutoTokenizer
|
16 |
import matplotlib.font_manager as fm
|
|
|
|
|
17 |
|
18 |
# Load models and data (your existing code)
|
19 |
autovectorizer = joblib.load('AutoVectorizer.pkl')
|
|
|
22 |
tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
23 |
|
24 |
class ScorePredictor(nn.Module):
|
25 |
+
# ... (Your ScorePredictor class)
|
26 |
def __init__(self, vocab_size, embedding_dim=128, hidden_dim=256, output_dim=1):
|
27 |
super(ScorePredictor, self).__init__()
|
28 |
self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=0)
|
|
|
40 |
score_model = ScorePredictor(tokenizer.vocab_size)
|
41 |
score_model.load_state_dict(torch.load("score_predictor.pth"))
|
42 |
score_model.eval()
|
43 |
+
|
44 |
sentiment_model = joblib.load('sentiment_forecast_model.pkl')
|
45 |
|
46 |
reddit = praw.Reddit(
|
47 |
client_id="PH99oWZjM43GimMtYigFvA",
|
48 |
client_secret="3tJsXQKEtFFYInxzLEDqRZ0s_w5z0g",
|
49 |
user_agent='MyAPI/0.0.1',
|
50 |
+
check_for_async=False)
|
|
|
51 |
|
52 |
subreddits = [
|
53 |
"florida",
|
54 |
"ohio",
|
55 |
+
"libertarian",
|
56 |
+
"southpark",
|
57 |
+
"walkaway",
|
58 |
+
"truechristian",
|
59 |
+
"conservatives"
|
60 |
]
|
61 |
|
62 |
# Global variables for data
|
63 |
+
global prediction_plot_base64
|
64 |
|
65 |
def process_data():
|
66 |
"""Fetches data, performs analysis, and generates the plot."""
|
|
|
69 |
start_date = end_date - datetime.timedelta(days=14)
|
70 |
|
71 |
def fetch_all_recent_posts(subreddit_name, start_time, limit=500):
|
72 |
+
# ... (Your fetch_all_recent_posts function)
|
73 |
subreddit = reddit.subreddit(subreddit_name)
|
74 |
posts = []
|
75 |
+
|
76 |
try:
|
77 |
+
for post in subreddit.top(limit=limit): # Fetch recent posts
|
78 |
post_time = datetime.datetime.utcfromtimestamp(post.created_utc)
|
79 |
+
if post_time >= start_time: # Filter only within last 14 days
|
80 |
posts.append({
|
81 |
"subreddit": subreddit_name,
|
82 |
"timestamp": post.created_utc,
|
|
|
85 |
})
|
86 |
except Exception as e:
|
87 |
print(f"Error fetching posts from r/{subreddit_name}: {e}")
|
88 |
+
|
89 |
return posts
|
90 |
|
91 |
def preprocess_text(text):
|
92 |
+
# ... (Your preprocess_text function)
|
93 |
text = text.lower()
|
94 |
text = re.sub(r'http\S+', '', text)
|
95 |
text = re.sub(r'[^a-zA-Z0-9\s.,!?]', '', text)
|
|
|
97 |
return text
|
98 |
|
99 |
def predict_score(text):
|
100 |
+
# ... (Your predict_score function)
|
101 |
if not text:
|
102 |
return 0.0
|
103 |
max_length = 512
|
104 |
+
|
105 |
encoded_input = tokenizer(
|
106 |
text.split(),
|
107 |
return_tensors='pt',
|
|
|
109 |
truncation=True,
|
110 |
max_length=max_length
|
111 |
)
|
112 |
+
|
113 |
input_ids, attention_mask = encoded_input["input_ids"], encoded_input["attention_mask"]
|
114 |
with torch.no_grad():
|
115 |
score = score_model(input_ids, attention_mask)[0].item()
|
|
|
175 |
ax.set_ylabel("Negative Sentiment (0-1)", fontsize=16, fontproperties=custom_font)
|
176 |
ax.set_xticks(np.arange(7))
|
177 |
ax.set_xticklabels(days_str, fontsize=14, fontproperties=custom_font)
|
178 |
+
|
179 |
+
# Continue from previous app.py code
|
180 |
+
|
181 |
ax.set_yticklabels([f"{tick:.2f}" for tick in ax.get_yticks()], fontsize=14, fontproperties=custom_font)
|
182 |
|
183 |
ax.spines['top'].set_visible(False)
|
184 |
ax.spines['right'].set_visible(False)
|
185 |
ax.spines['left'].set_visible(False)
|
186 |
+
ax.spines['bottom'].set_visible(False)
|
187 |
+
|
188 |
+
ax.legend(fontsize=14, loc='upper right', prop=custom_font)
|
189 |
+
plt.tight_layout()
|
190 |
+
|
191 |
+
import io
|
192 |
+
import base64
|
193 |
+
buffer = io.BytesIO()
|
194 |
+
plt.savefig(buffer, format='png')
|
195 |
+
buffer.seek(0)
|
196 |
+
prediction_plot_base64 = base64.b64encode(buffer.getvalue()).decode()
|
197 |
+
plt.close(fig)
|
198 |
+
|
199 |
+
def display_plot():
|
200 |
+
"""Displays the plot in the Gradio interface."""
|
201 |
+
global prediction_plot_base64
|
202 |
+
if prediction_plot_base64:
|
203 |
+
return f'<img src="data:image/png;base64,{prediction_plot_base64}" alt="Prediction Plot">'
|
204 |
+
else:
|
205 |
+
return "Processing data..."
|
206 |
+
|
207 |
+
# Initial data processing
|
208 |
+
process_data()
|
209 |
+
|
210 |
+
# Schedule daily refresh
|
211 |
+
def run_daily():
|
212 |
+
process_data()
|
213 |
+
print("Data refreshed at:", datetime.datetime.now())
|
214 |
+
|
215 |
+
schedule.every().day.at("00:00").do(run_daily)
|
216 |
+
|
217 |
+
def run_schedule():
|
218 |
+
while True:
|
219 |
+
schedule.run_pending()
|
220 |
+
time.sleep(60)
|
221 |
+
|
222 |
+
import threading
|
223 |
+
thread = threading.Thread(target=run_schedule)
|
224 |
+
thread.daemon = True
|
225 |
+
thread.start()
|
226 |
+
|
227 |
+
# Gradio Interface
|
228 |
+
iface = gr.Interface(fn=display_plot, inputs=None, outputs="html")
|
229 |
+
iface.launch()
|
230 |
+
|