File size: 12,348 Bytes
0a1db48
aa2bec3
 
 
 
1827766
aa2bec3
 
 
 
 
 
 
 
 
4a31251
7053770
20dd456
1827766
20dd456
aa2bec3
0a1db48
4a31251
 
0a1db48
4a31251
 
0a1db48
aa2bec3
6d72d65
aa2bec3
 
 
 
 
 
c8e1843
 
aa2bec3
20dd456
6f96a50
 
 
 
 
20dd456
 
 
6f96a50
c8e1843
 
20dd456
6f96a50
20dd456
 
 
 
 
 
1827766
 
 
 
 
20dd456
1827766
 
 
 
 
20dd456
1827766
 
 
 
 
20dd456
 
 
 
 
 
 
1827766
 
 
20dd456
 
 
 
6f96a50
20dd456
6f96a50
 
 
1827766
 
 
6f96a50
1827766
 
20dd456
6f96a50
1827766
 
 
 
 
 
 
6f96a50
c8e1843
 
6f96a50
 
1827766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f96a50
 
 
c8e1843
1827766
6f96a50
 
 
 
 
 
7053770
6f96a50
7053770
 
 
 
 
 
 
 
6f96a50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7053770
 
 
 
 
6f96a50
c8e1843
aa2bec3
0c25e8c
5d008ae
4a31251
31ffc5e
0a1db48
aa2bec3
 
0a1db48
c8e1843
31ffc5e
 
c8e1843
31ffc5e
 
 
 
 
 
 
4a31251
31ffc5e
c8e1843
31ffc5e
 
 
 
 
0a1db48
c8e1843
31ffc5e
 
 
4a31251
31ffc5e
 
 
 
 
0a1db48
aa2bec3
c8e1843
 
 
 
 
 
 
20dd456
0a1db48
31ffc5e
c8e1843
 
 
 
 
 
 
 
 
 
 
 
1827766
 
c8e1843
 
 
 
 
 
 
 
 
 
 
0a1db48
31ffc5e
 
 
 
 
 
4a31251
aa2bec3
31ffc5e
 
0a1db48
31ffc5e
0a1db48
31ffc5e
0a1db48
 
 
31ffc5e
0a1db48
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31ffc5e
 
 
0a1db48
c5d0599
c8e1843
0a1db48
aa2bec3
31ffc5e
aa2bec3
0a1db48
aa2bec3
20dd456
aa2bec3
0a1db48
aa2bec3
 
 
5d008ae
 
 
 
 
31ffc5e
aa2bec3
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
# app.py
import streamlit as st
import os
from io import BytesIO
from PyPDF2 import PdfReader
from PyPDF2.errors import PdfReadError
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.docstore.in_memory import InMemoryDocstore
from langchain_community.llms import HuggingFaceHub
from langchain.chains import RetrievalQA
from langchain.prompts import PromptTemplate
import faiss
import uuid
from dotenv import load_dotenv
import requests
import pandas as pd
from pandas.errors import ParserError
from docx import Document

# Load environment variables
load_dotenv()
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN", "").strip()
RAG_ACCESS_KEY = os.getenv("RAG_ACCESS_KEY")

if not HUGGINGFACEHUB_API_TOKEN:
    st.warning("Hugging Face API token not found! Please set HUGGINGFACEHUB_API_TOKEN in your .env file.")

# Initialize session state
if "vectorstore" not in st.session_state:
    st.session_state.vectorstore = None
if "history" not in st.session_state:
    st.session_state.history = []
if "authenticated" not in st.session_state:
    st.session_state.authenticated = False
if "uploaded_files" not in st.session_state:
    st.session_state.uploaded_files = []

# File processing logic
def process_input(input_data):
    # Initialize progress bar and status
    progress_bar = st.progress(0)
    status = st.empty()
    
    # Step 1: Read file in memory
    status.text("Reading file...")
    progress_bar.progress(0.20)
    
    file_name = input_data.name
    file_extension = file_name.lower().split('.')[-1]
    documents = ""
    
    # Step 2: Extract text based on file type
    status.text("Extracting text...")
    progress_bar.progress(0.40)
    
    try:
        if file_extension == 'pdf':
            try:
                pdf_reader = PdfReader(BytesIO(input_data.read()))
                documents = "".join([page.extract_text() or "" for page in pdf_reader.pages])
            except PdfReadError as e:
                raise RuntimeError(f"Failed to read PDF: {str(e)}")
        elif file_extension in ['xls', 'xlsx']:
            try:
                df = pd.read_excel(BytesIO(input_data.read()), engine='openpyxl')
                documents = df.to_string(index=False)
            except ParserError as e:
                raise RuntimeError(f"Failed to parse Excel file: {str(e)}")
        elif file_extension in ['doc', 'docx']:
            try:
                doc = Document(BytesIO(input_data.read()))
                documents = "\n".join([para.text for para in doc.paragraphs if para.text])
            except Exception as e:
                raise RuntimeError(f"Failed to read DOC/DOCX: {str(e)}")
        elif file_extension == 'txt':
            try:
                documents = input_data.read().decode('utf-8')
            except UnicodeDecodeError:
                documents = input_data.read().decode('latin-1')
        else:
            raise ValueError(f"Unsupported file type: {file_extension}")
        
        if not documents.strip():
            raise RuntimeError("No text extracted from the file.")
    except Exception as e:
        raise RuntimeError(f"Failed to process file: {str(e)}")
    
    # Step 3: Split text
    status.text("Splitting text into chunks...")
    progress_bar.progress(0.60)
    
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
    texts = text_splitter.split_text(documents)
    chunk_count = len(texts)
    if chunk_count == 0:
        raise RuntimeError("No text chunks created for embedding.")
    
    # Step 4: Create embeddings
    status.text(f"Embedding {chunk_count} chunks...")
    progress_bar.progress(0.80)
    
    try:
        hf_embeddings = HuggingFaceEmbeddings(
            model_name="sentence-transformers/all-mpnet-base-v2",
            model_kwargs={'device': 'cpu'}
        )
    except Exception as e:
        raise RuntimeError(f"Failed to initialize embeddings: {str(e)}")
    
    # Step 5: Initialize or append to FAISS vector store
    status.text("Building or updating vector store...")
    progress_bar.progress(1.0)
    
    try:
        if st.session_state.vectorstore is None:
            dimension = len(hf_embeddings.embed_query("test"))
            index = faiss.IndexFlatL2(dimension)
            vector_store = FAISS(
                embedding_function=hf_embeddings,
                index=index,
                docstore=InMemoryDocstore({}),
                index_to_docstore_id={}
            )
        else:
            vector_store = st.session_state.vectorstore
        
        # Add texts to vector store
        uuids = [str(uuid.uuid4()) for _ in texts]
        vector_store.add_texts(texts, ids=uuids)
    except Exception as e:
        raise RuntimeError(f"Failed to update vector store: {str(e)}")
    
    # Complete processing
    status.text("Processing complete!")
    st.session_state.uploaded_files.append(file_name)
    st.success(f"Embedded {chunk_count} chunks from {file_name}")
    
    return vector_store

# Question-answering logic
def answer_question(vectorstore, query):
    if not HUGGINGFACEHUB_API_TOKEN:
        raise RuntimeError("Missing Hugging Face API token. Please set it in your .env file.")
    
    try:
        llm = HuggingFaceHub(
            repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
            model_kwargs={"temperature": 0.7, "max_length": 512},
            huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN
        )
    except requests.exceptions.HTTPError as e:
        raise RuntimeError(f"Failed to initialize LLM: {str(e)}. Check model availability or API token.")
    
    retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
    prompt_template = PromptTemplate(
        template="Use the context to answer the question concisely:\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:",
        input_variables=["context", "question"]
    )
    
    qa_chain = RetrievalQA.from_chain_type(
        llm=llm,
        chain_type="stuff",
        retriever=retriever,
        return_source_documents=False,
        chain_type_kwargs={"prompt": prompt_template}
    )
    
    try:
        result = qa_chain({"query": query})
        return result["result"].split("Answer:")[-1].strip()
    except requests.exceptions.HTTPError as e:
        raise RuntimeError(f"Error querying LLM: {str(e)}. Please try again or check model endpoint.")

# Sidebar with BSNL logo, authentication, and controls
with st.sidebar:
    try:
        st.image("bsnl_logo.png", width=200)
    except Exception:
        st.warning("BSNL logo not found.")
    
    st.header("RAG Control Panel")
    api_key_input = st.text_input("Enter RAG Access Key", type="password")
    
    # Blue button styles
    st.markdown("""
        <style>
        .auth-button button, .delete-button button {
            background-color: #007BFF !important;
            color: white !important;
            font-weight: bold;
            border-radius: 8px;
            padding: 10px 20px;
            border: none;
            transition: all 0.3s ease;
            width: 100%;
        }
        .auth-button button:hover, .delete-button button:hover {
            background-color: #0056b3 !important;
            transform: scale(1.05);
        }
        </style>
    """, unsafe_allow_html=True)
    
    # Authenticate button
    with st.container():
        st.markdown('<div class="auth-button">', unsafe_allow_html=True)
        if st.button("Authenticate"):
            if api_key_input == RAG_ACCESS_KEY and RAG_ACCESS_KEY is not None:
                st.session_state.authenticated = True
                st.success("Authentication successful!")
            else:
                st.error("Invalid API key.")
        st.markdown('</div>', unsafe_allow_html=True)
    
    if st.session_state.authenticated:
        # Display uploaded files
        if st.session_state.uploaded_files:
            st.subheader("Uploaded Files")
            for file_name in st.session_state.uploaded_files:
                st.write(f"- {file_name}")
        
        # File uploader
        input_data = st.file_uploader("Upload a file (PDF, XLS/XLSX, DOC/DOCX, TXT)", type=["pdf", "xls", "xlsx", "doc", "docx", "txt"])
        
        if st.button("Process File") and input_data is not None:
            if input_data.name in st.session_state.uploaded_files:
                st.warning(f"File '{input_data.name}' has already been processed. Please upload a different file or delete the vector store.")
            else:
                try:
                    vector_store = process_input(input_data)
                    st.session_state.vectorstore = vector_store
                except PermissionError as e:
                    st.error(f"File upload failed: Permission error - {str(e)}. Check file system access.")
                except OSError as e:
                    st.error(f"File upload failed: OS error - {str(e)}. Check server configuration.")
                except ValueError as e:
                    st.error(f"File upload failed: {str(e)} (Invalid file format).")
                except RuntimeError as e:
                    st.error(f"File upload failed: {str(e)} (Exception type: {type(e).__name__}).")
                except Exception as e:
                    st.error(f"File upload failed: {str(e)} (Exception type: {type(e).__name__}). Please try again or check server logs.")
        
        # Delete vector store button
        if st.session_state.vectorstore is not None:
            st.markdown('<div class="delete-button">', unsafe_allow_html=True)
            if st.button("Delete Vector Store"):
                st.session_state.vectorstore = None
                st.session_state.uploaded_files = []
                st.success("Vector store deleted successfully.")
            st.markdown('</div>', unsafe_allow_html=True)
    
    st.subheader("Chat History")
    for i, (q, a) in enumerate(st.session_state.history):
        st.write(f"**Q{i+1}:** {q}")
        st.write(f"**A{i+1}:** {a}")
        st.markdown("---")

# Main app UI
def main():
    st.markdown("""
        <style>
        @import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
        .stApp {
            background-color: #FFFFFF;
            font-family: 'Roboto', sans-serif;
            color: #333333;
        }
        .stTextInput > div > div > input {
            background-color: #FFFFFF;
            color: #333333;
            border-radius: 8px;
            border: 1px solid #007BFF;
            padding: 10px;
            box-shadow: 0 2px 4px rgba(0,0,0,0.1);
        }
        .stButton > button {
            background-color: #007BFF;
            color: white;
            border-radius: 8px;
            padding: 10px 20px;
            border: none;
            transition: all 0.3s ease;
            box-shadow: 0 2px 4px rgba(0,0,0,0.2);
        }
        .stButton > button:hover {
            background-color: #0056b3;
            transform: scale(1.05);
        }
        .stSidebar {
            background-color: #F5F5F5;
            padding: 20px;
            border-right: 2px solid #007BFF;
        }
        </style>
    """, unsafe_allow_html=True)
    
    st.title("RAG Q&A App with Mistral AI")
    st.markdown("Welcome to the BSNL RAG App! Upload a PDF, XLS/XLSX, DOC/DOCX, or TXT file and ask questions. Files are stored in the vector store until explicitly deleted.", unsafe_allow_html=True)
    
    if not st.session_state.authenticated:
        st.warning("Please authenticate using the sidebar.")
        return
    
    if st.session_state.vectorstore is None:
        st.info("Please upload and process a file.")
        return
    
    query = st.text_input("Enter your question:")
    if st.button("Submit") and query:
        with st.spinner("Generating answer..."):
            try:
                answer = answer_question(st.session_state.vectorstore, query)
                st.session_state.history.append((query, answer))
                st.write("**Answer:**", answer)
            except Exception as e:
                st.error(f"Error generating answer: {str(e)}")

if __name__ == "__main__":
    main()