Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
# app.py
|
2 |
import streamlit as st
|
3 |
import os
|
4 |
from io import BytesIO
|
@@ -12,10 +11,18 @@ from langchain.chains import RetrievalQA
|
|
12 |
from langchain.prompts import PromptTemplate
|
13 |
import faiss
|
14 |
import uuid
|
|
|
15 |
|
16 |
-
# Load
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# Initialize session state
|
21 |
if "vectorstore" not in st.session_state:
|
@@ -25,17 +32,17 @@ if "history" not in st.session_state:
|
|
25 |
if "authenticated" not in st.session_state:
|
26 |
st.session_state.authenticated = False
|
27 |
|
28 |
-
# Sidebar with logo and authentication
|
29 |
with st.sidebar:
|
30 |
try:
|
31 |
st.image("bsnl_logo.png", width=200)
|
32 |
-
except
|
33 |
st.warning("BSNL logo not found.")
|
34 |
|
35 |
st.header("RAG Control Panel")
|
36 |
api_key_input = st.text_input("Enter RAG Access Key", type="password")
|
37 |
|
38 |
-
#
|
39 |
st.markdown("""
|
40 |
<style>
|
41 |
.auth-button button {
|
@@ -46,6 +53,7 @@ with st.sidebar:
|
|
46 |
padding: 10px 20px;
|
47 |
border: none;
|
48 |
transition: all 0.3s ease;
|
|
|
49 |
}
|
50 |
.auth-button button:hover {
|
51 |
background-color: #0056b3 !important;
|
@@ -57,7 +65,7 @@ with st.sidebar:
|
|
57 |
with st.container():
|
58 |
st.markdown('<div class="auth-button">', unsafe_allow_html=True)
|
59 |
if st.button("Authenticate"):
|
60 |
-
if api_key_input == RAG_ACCESS_KEY:
|
61 |
st.session_state.authenticated = True
|
62 |
st.success("Authentication successful!")
|
63 |
else:
|
@@ -81,7 +89,7 @@ with st.sidebar:
|
|
81 |
st.write(f"**A{i+1}:** {a}")
|
82 |
st.markdown("---")
|
83 |
|
84 |
-
# Main app
|
85 |
def main():
|
86 |
st.markdown("""
|
87 |
<style>
|
@@ -114,32 +122,32 @@ def main():
|
|
114 |
except Exception as e:
|
115 |
st.error(f"Error generating answer: {str(e)}")
|
116 |
|
117 |
-
#
|
118 |
def process_input(input_data):
|
119 |
os.makedirs("vectorstore", exist_ok=True)
|
120 |
os.chmod("vectorstore", 0o777)
|
121 |
|
122 |
progress_bar = st.progress(0)
|
123 |
-
status = st.
|
124 |
|
125 |
-
status.
|
126 |
progress_bar.progress(0.2)
|
127 |
pdf_reader = PdfReader(BytesIO(input_data.read()))
|
128 |
documents = "".join([page.extract_text() or "" for page in pdf_reader.pages])
|
129 |
|
130 |
-
status.
|
131 |
progress_bar.progress(0.4)
|
132 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
133 |
texts = text_splitter.split_text(documents)
|
134 |
|
135 |
-
status.
|
136 |
progress_bar.progress(0.6)
|
137 |
hf_embeddings = HuggingFaceEmbeddings(
|
138 |
model_name="sentence-transformers/all-mpnet-base-v2",
|
139 |
model_kwargs={'device': 'cpu'}
|
140 |
)
|
141 |
|
142 |
-
status.
|
143 |
progress_bar.progress(0.8)
|
144 |
dimension = len(hf_embeddings.embed_query("test"))
|
145 |
index = faiss.IndexFlatL2(dimension)
|
@@ -153,24 +161,24 @@ def process_input(input_data):
|
|
153 |
uuids = [str(uuid.uuid4()) for _ in texts]
|
154 |
vector_store.add_texts(texts, ids=uuids)
|
155 |
|
156 |
-
status.
|
157 |
progress_bar.progress(0.9)
|
158 |
vector_store.save_local("vectorstore/faiss_index")
|
159 |
|
160 |
-
status.
|
161 |
progress_bar.progress(1.0)
|
162 |
return vector_store
|
163 |
|
164 |
-
#
|
165 |
def answer_question(vectorstore, query):
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
|
175 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
176 |
prompt_template = PromptTemplate(
|
@@ -189,6 +197,5 @@ def answer_question(vectorstore, query):
|
|
189 |
result = qa_chain({"query": query})
|
190 |
return result["result"].split("Answer:")[-1].strip()
|
191 |
|
192 |
-
# Run the app
|
193 |
if __name__ == "__main__":
|
194 |
main()
|
|
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
from io import BytesIO
|
|
|
11 |
from langchain.prompts import PromptTemplate
|
12 |
import faiss
|
13 |
import uuid
|
14 |
+
from dotenv import load_dotenv
|
15 |
|
16 |
+
# Load local .env (only useful locally)
|
17 |
+
load_dotenv()
|
18 |
+
|
19 |
+
# Load keys
|
20 |
+
RAG_ACCESS_KEY = os.getenv("RAG_ACCESS_KEY")
|
21 |
+
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN", "").strip()
|
22 |
+
|
23 |
+
if not HUGGINGFACEHUB_API_TOKEN:
|
24 |
+
st.warning("Hugging Face API token not found in environment variables! "
|
25 |
+
"Please set it in your Hugging Face Secrets or your .env file.")
|
26 |
|
27 |
# Initialize session state
|
28 |
if "vectorstore" not in st.session_state:
|
|
|
32 |
if "authenticated" not in st.session_state:
|
33 |
st.session_state.authenticated = False
|
34 |
|
35 |
+
# Sidebar with BSNL logo and authentication
|
36 |
with st.sidebar:
|
37 |
try:
|
38 |
st.image("bsnl_logo.png", width=200)
|
39 |
+
except Exception:
|
40 |
st.warning("BSNL logo not found.")
|
41 |
|
42 |
st.header("RAG Control Panel")
|
43 |
api_key_input = st.text_input("Enter RAG Access Key", type="password")
|
44 |
|
45 |
+
# Blue authenticate button style
|
46 |
st.markdown("""
|
47 |
<style>
|
48 |
.auth-button button {
|
|
|
53 |
padding: 10px 20px;
|
54 |
border: none;
|
55 |
transition: all 0.3s ease;
|
56 |
+
width: 100%;
|
57 |
}
|
58 |
.auth-button button:hover {
|
59 |
background-color: #0056b3 !important;
|
|
|
65 |
with st.container():
|
66 |
st.markdown('<div class="auth-button">', unsafe_allow_html=True)
|
67 |
if st.button("Authenticate"):
|
68 |
+
if api_key_input == RAG_ACCESS_KEY and RAG_ACCESS_KEY is not None:
|
69 |
st.session_state.authenticated = True
|
70 |
st.success("Authentication successful!")
|
71 |
else:
|
|
|
89 |
st.write(f"**A{i+1}:** {a}")
|
90 |
st.markdown("---")
|
91 |
|
92 |
+
# Main app UI
|
93 |
def main():
|
94 |
st.markdown("""
|
95 |
<style>
|
|
|
122 |
except Exception as e:
|
123 |
st.error(f"Error generating answer: {str(e)}")
|
124 |
|
125 |
+
# PDF processing logic
|
126 |
def process_input(input_data):
|
127 |
os.makedirs("vectorstore", exist_ok=True)
|
128 |
os.chmod("vectorstore", 0o777)
|
129 |
|
130 |
progress_bar = st.progress(0)
|
131 |
+
status = st.empty()
|
132 |
|
133 |
+
status.text("Reading PDF file...")
|
134 |
progress_bar.progress(0.2)
|
135 |
pdf_reader = PdfReader(BytesIO(input_data.read()))
|
136 |
documents = "".join([page.extract_text() or "" for page in pdf_reader.pages])
|
137 |
|
138 |
+
status.text("Splitting text...")
|
139 |
progress_bar.progress(0.4)
|
140 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
141 |
texts = text_splitter.split_text(documents)
|
142 |
|
143 |
+
status.text("Creating embeddings...")
|
144 |
progress_bar.progress(0.6)
|
145 |
hf_embeddings = HuggingFaceEmbeddings(
|
146 |
model_name="sentence-transformers/all-mpnet-base-v2",
|
147 |
model_kwargs={'device': 'cpu'}
|
148 |
)
|
149 |
|
150 |
+
status.text("Building vector store...")
|
151 |
progress_bar.progress(0.8)
|
152 |
dimension = len(hf_embeddings.embed_query("test"))
|
153 |
index = faiss.IndexFlatL2(dimension)
|
|
|
161 |
uuids = [str(uuid.uuid4()) for _ in texts]
|
162 |
vector_store.add_texts(texts, ids=uuids)
|
163 |
|
164 |
+
status.text("Saving vector store...")
|
165 |
progress_bar.progress(0.9)
|
166 |
vector_store.save_local("vectorstore/faiss_index")
|
167 |
|
168 |
+
status.text("Done!")
|
169 |
progress_bar.progress(1.0)
|
170 |
return vector_store
|
171 |
|
172 |
+
# Question-answering logic
|
173 |
def answer_question(vectorstore, query):
|
174 |
+
if not HUGGINGFACEHUB_API_TOKEN:
|
175 |
+
raise RuntimeError("Missing Hugging Face API token. Please set it in your secrets.")
|
176 |
+
|
177 |
+
llm = HuggingFaceHub(
|
178 |
+
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
|
179 |
+
model_kwargs={"temperature": 0.7, "max_length": 512},
|
180 |
+
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN
|
181 |
+
)
|
182 |
|
183 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
184 |
prompt_template = PromptTemplate(
|
|
|
197 |
result = qa_chain({"query": query})
|
198 |
return result["result"].split("Answer:")[-1].strip()
|
199 |
|
|
|
200 |
if __name__ == "__main__":
|
201 |
main()
|