Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
from io import BytesIO
|
@@ -13,16 +14,13 @@ import faiss
|
|
13 |
import uuid
|
14 |
from dotenv import load_dotenv
|
15 |
|
16 |
-
# Load
|
17 |
load_dotenv()
|
18 |
-
|
19 |
-
# Load keys
|
20 |
-
RAG_ACCESS_KEY = os.getenv("RAG_ACCESS_KEY")
|
21 |
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN", "").strip()
|
|
|
22 |
|
23 |
if not HUGGINGFACEHUB_API_TOKEN:
|
24 |
-
st.warning("Hugging Face API token not found in
|
25 |
-
"Please set it in your Hugging Face Secrets or your .env file.")
|
26 |
|
27 |
# Initialize session state
|
28 |
if "vectorstore" not in st.session_state:
|
@@ -38,10 +36,10 @@ with st.sidebar:
|
|
38 |
st.image("bsnl_logo.png", width=200)
|
39 |
except Exception:
|
40 |
st.warning("BSNL logo not found.")
|
41 |
-
|
42 |
st.header("RAG Control Panel")
|
43 |
api_key_input = st.text_input("Enter RAG Access Key", type="password")
|
44 |
-
|
45 |
# Blue authenticate button style
|
46 |
st.markdown("""
|
47 |
<style>
|
@@ -61,7 +59,7 @@ with st.sidebar:
|
|
61 |
}
|
62 |
</style>
|
63 |
""", unsafe_allow_html=True)
|
64 |
-
|
65 |
with st.container():
|
66 |
st.markdown('<div class="auth-button">', unsafe_allow_html=True)
|
67 |
if st.button("Authenticate"):
|
@@ -71,18 +69,22 @@ with st.sidebar:
|
|
71 |
else:
|
72 |
st.error("Invalid API key.")
|
73 |
st.markdown('</div>', unsafe_allow_html=True)
|
74 |
-
|
75 |
if st.session_state.authenticated:
|
76 |
input_data = st.file_uploader("Upload a PDF file", type=["pdf"])
|
77 |
-
|
78 |
if st.button("Process File") and input_data is not None:
|
79 |
try:
|
80 |
vector_store = process_input(input_data)
|
81 |
st.session_state.vectorstore = vector_store
|
82 |
st.success("File processed successfully. You can now ask questions.")
|
|
|
|
|
|
|
|
|
83 |
except Exception as e:
|
84 |
-
st.error(f"
|
85 |
-
|
86 |
st.subheader("Chat History")
|
87 |
for i, (q, a) in enumerate(st.session_state.history):
|
88 |
st.write(f"**Q{i+1}:** {q}")
|
@@ -93,25 +95,52 @@ with st.sidebar:
|
|
93 |
def main():
|
94 |
st.markdown("""
|
95 |
<style>
|
|
|
96 |
.stApp {
|
|
|
97 |
font-family: 'Roboto', sans-serif;
|
|
|
|
|
|
|
98 |
background-color: #FFFFFF;
|
99 |
-
color: #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
}
|
101 |
</style>
|
102 |
""", unsafe_allow_html=True)
|
103 |
-
|
104 |
st.title("RAG Q&A App with Mistral AI")
|
105 |
-
st.markdown("Welcome to the BSNL RAG App! Upload a PDF and ask questions.")
|
106 |
-
|
107 |
if not st.session_state.authenticated:
|
108 |
st.warning("Please authenticate using the sidebar.")
|
109 |
return
|
110 |
-
|
111 |
if st.session_state.vectorstore is None:
|
112 |
st.info("Please upload and process a PDF file.")
|
113 |
return
|
114 |
-
|
115 |
query = st.text_input("Enter your question:")
|
116 |
if st.button("Submit") and query:
|
117 |
with st.spinner("Generating answer..."):
|
@@ -124,31 +153,37 @@ def main():
|
|
124 |
|
125 |
# PDF processing logic
|
126 |
def process_input(input_data):
|
127 |
-
|
128 |
-
os.chmod("vectorstore", 0o777)
|
129 |
-
|
130 |
progress_bar = st.progress(0)
|
131 |
status = st.empty()
|
132 |
-
|
|
|
133 |
status.text("Reading PDF file...")
|
134 |
-
progress_bar.progress(0.
|
|
|
135 |
pdf_reader = PdfReader(BytesIO(input_data.read()))
|
136 |
documents = "".join([page.extract_text() or "" for page in pdf_reader.pages])
|
137 |
-
|
138 |
-
|
139 |
-
|
|
|
|
|
140 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
141 |
texts = text_splitter.split_text(documents)
|
142 |
-
|
|
|
143 |
status.text("Creating embeddings...")
|
144 |
-
progress_bar.progress(0.
|
|
|
145 |
hf_embeddings = HuggingFaceEmbeddings(
|
146 |
model_name="sentence-transformers/all-mpnet-base-v2",
|
147 |
model_kwargs={'device': 'cpu'}
|
148 |
)
|
149 |
-
|
|
|
150 |
status.text("Building vector store...")
|
151 |
-
progress_bar.progress(0.
|
|
|
152 |
dimension = len(hf_embeddings.embed_query("test"))
|
153 |
index = faiss.IndexFlatL2(dimension)
|
154 |
vector_store = FAISS(
|
@@ -157,35 +192,34 @@ def process_input(input_data):
|
|
157 |
docstore=InMemoryDocstore({}),
|
158 |
index_to_docstore_id={}
|
159 |
)
|
160 |
-
|
|
|
161 |
uuids = [str(uuid.uuid4()) for _ in texts]
|
162 |
vector_store.add_texts(texts, ids=uuids)
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
vector_store.save_local("vectorstore/faiss_index")
|
167 |
-
|
168 |
-
status.text("Done!")
|
169 |
progress_bar.progress(1.0)
|
|
|
170 |
return vector_store
|
171 |
|
172 |
# Question-answering logic
|
173 |
def answer_question(vectorstore, query):
|
174 |
if not HUGGINGFACEHUB_API_TOKEN:
|
175 |
raise RuntimeError("Missing Hugging Face API token. Please set it in your secrets.")
|
176 |
-
|
177 |
llm = HuggingFaceHub(
|
178 |
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
|
179 |
model_kwargs={"temperature": 0.7, "max_length": 512},
|
180 |
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN
|
181 |
)
|
182 |
-
|
183 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
184 |
prompt_template = PromptTemplate(
|
185 |
template="Use the context to answer the question concisely:\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:",
|
186 |
input_variables=["context", "question"]
|
187 |
)
|
188 |
-
|
189 |
qa_chain = RetrievalQA.from_chain_type(
|
190 |
llm=llm,
|
191 |
chain_type="stuff",
|
@@ -193,7 +227,7 @@ def answer_question(vectorstore, query):
|
|
193 |
return_source_documents=False,
|
194 |
chain_type_kwargs={"prompt": prompt_template}
|
195 |
)
|
196 |
-
|
197 |
result = qa_chain({"query": query})
|
198 |
return result["result"].split("Answer:")[-1].strip()
|
199 |
|
|
|
1 |
+
# app.py
|
2 |
import streamlit as st
|
3 |
import os
|
4 |
from io import BytesIO
|
|
|
14 |
import uuid
|
15 |
from dotenv import load_dotenv
|
16 |
|
17 |
+
# Load environment variables
|
18 |
load_dotenv()
|
|
|
|
|
|
|
19 |
HUGGINGFACEHUB_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN", "").strip()
|
20 |
+
RAG_ACCESS_KEY = os.getenv("RAG_ACCESS_KEY")
|
21 |
|
22 |
if not HUGGINGFACEHUB_API_TOKEN:
|
23 |
+
st.warning("Hugging Face API token not found! Please set HUGGINGFACEHUB_API_TOKEN in your .env file.")
|
|
|
24 |
|
25 |
# Initialize session state
|
26 |
if "vectorstore" not in st.session_state:
|
|
|
36 |
st.image("bsnl_logo.png", width=200)
|
37 |
except Exception:
|
38 |
st.warning("BSNL logo not found.")
|
39 |
+
|
40 |
st.header("RAG Control Panel")
|
41 |
api_key_input = st.text_input("Enter RAG Access Key", type="password")
|
42 |
+
|
43 |
# Blue authenticate button style
|
44 |
st.markdown("""
|
45 |
<style>
|
|
|
59 |
}
|
60 |
</style>
|
61 |
""", unsafe_allow_html=True)
|
62 |
+
|
63 |
with st.container():
|
64 |
st.markdown('<div class="auth-button">', unsafe_allow_html=True)
|
65 |
if st.button("Authenticate"):
|
|
|
69 |
else:
|
70 |
st.error("Invalid API key.")
|
71 |
st.markdown('</div>', unsafe_allow_html=True)
|
72 |
+
|
73 |
if st.session_state.authenticated:
|
74 |
input_data = st.file_uploader("Upload a PDF file", type=["pdf"])
|
75 |
+
|
76 |
if st.button("Process File") and input_data is not None:
|
77 |
try:
|
78 |
vector_store = process_input(input_data)
|
79 |
st.session_state.vectorstore = vector_store
|
80 |
st.success("File processed successfully. You can now ask questions.")
|
81 |
+
except st.StreamlitAPIException as e:
|
82 |
+
st.error(f"File upload failed: Streamlit API error - {str(e)}. Check server configuration.")
|
83 |
+
except (PermissionError, OSError) as e:
|
84 |
+
st.error(f"File upload failed: Permission or OS error - {str(e)}. Check file system access.")
|
85 |
except Exception as e:
|
86 |
+
st.error(f"File upload failed: Unexpected error - {str(e)}. Please try again or check server logs.")
|
87 |
+
|
88 |
st.subheader("Chat History")
|
89 |
for i, (q, a) in enumerate(st.session_state.history):
|
90 |
st.write(f"**Q{i+1}:** {q}")
|
|
|
95 |
def main():
|
96 |
st.markdown("""
|
97 |
<style>
|
98 |
+
@import url('https://fonts.googleapis.com/css2?family=Roboto:wght@400;700&display=swap');
|
99 |
.stApp {
|
100 |
+
background-color: #FFFFFF;
|
101 |
font-family: 'Roboto', sans-serif;
|
102 |
+
color: #333333;
|
103 |
+
}
|
104 |
+
.stTextInput > div > div > input {
|
105 |
background-color: #FFFFFF;
|
106 |
+
color: #333333;
|
107 |
+
border-radius: 8px;
|
108 |
+
border: 1px solid #007BFF;
|
109 |
+
padding: 10px;
|
110 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
111 |
+
}
|
112 |
+
.stButton > button {
|
113 |
+
background-color: #007BFF;
|
114 |
+
color: white;
|
115 |
+
border-radius: 8px;
|
116 |
+
padding: 10px 20px;
|
117 |
+
border: none;
|
118 |
+
transition: all 0.3s ease;
|
119 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.2);
|
120 |
+
}
|
121 |
+
.stButton > button:hover {
|
122 |
+
background-color: #0056b3;
|
123 |
+
transform: scale(1.05);
|
124 |
+
}
|
125 |
+
.stSidebar {
|
126 |
+
background-color: #F5F5F5;
|
127 |
+
padding: 20px;
|
128 |
+
border-right: 2px solid #007BFF;
|
129 |
}
|
130 |
</style>
|
131 |
""", unsafe_allow_html=True)
|
132 |
+
|
133 |
st.title("RAG Q&A App with Mistral AI")
|
134 |
+
st.markdown("Welcome to the BSNL RAG App! Upload a PDF file and ask questions.", unsafe_allow_html=True)
|
135 |
+
|
136 |
if not st.session_state.authenticated:
|
137 |
st.warning("Please authenticate using the sidebar.")
|
138 |
return
|
139 |
+
|
140 |
if st.session_state.vectorstore is None:
|
141 |
st.info("Please upload and process a PDF file.")
|
142 |
return
|
143 |
+
|
144 |
query = st.text_input("Enter your question:")
|
145 |
if st.button("Submit") and query:
|
146 |
with st.spinner("Generating answer..."):
|
|
|
153 |
|
154 |
# PDF processing logic
|
155 |
def process_input(input_data):
|
156 |
+
# Initialize progress bar and status
|
|
|
|
|
157 |
progress_bar = st.progress(0)
|
158 |
status = st.empty()
|
159 |
+
|
160 |
+
# Step 1: Read PDF file in memory
|
161 |
status.text("Reading PDF file...")
|
162 |
+
progress_bar.progress(0.20)
|
163 |
+
|
164 |
pdf_reader = PdfReader(BytesIO(input_data.read()))
|
165 |
documents = "".join([page.extract_text() or "" for page in pdf_reader.pages])
|
166 |
+
|
167 |
+
# Step 2: Split text
|
168 |
+
status.text("Splitting text into chunks...")
|
169 |
+
progress_bar.progress(0.40)
|
170 |
+
|
171 |
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
172 |
texts = text_splitter.split_text(documents)
|
173 |
+
|
174 |
+
# Step 3: Create embeddings
|
175 |
status.text("Creating embeddings...")
|
176 |
+
progress_bar.progress(0.60)
|
177 |
+
|
178 |
hf_embeddings = HuggingFaceEmbeddings(
|
179 |
model_name="sentence-transformers/all-mpnet-base-v2",
|
180 |
model_kwargs={'device': 'cpu'}
|
181 |
)
|
182 |
+
|
183 |
+
# Step 4: Initialize FAISS vector store
|
184 |
status.text("Building vector store...")
|
185 |
+
progress_bar.progress(0.80)
|
186 |
+
|
187 |
dimension = len(hf_embeddings.embed_query("test"))
|
188 |
index = faiss.IndexFlatL2(dimension)
|
189 |
vector_store = FAISS(
|
|
|
192 |
docstore=InMemoryDocstore({}),
|
193 |
index_to_docstore_id={}
|
194 |
)
|
195 |
+
|
196 |
+
# Add texts to vector store
|
197 |
uuids = [str(uuid.uuid4()) for _ in texts]
|
198 |
vector_store.add_texts(texts, ids=uuids)
|
199 |
+
|
200 |
+
# Step 5: Complete processing
|
201 |
+
status.text("Processing complete!")
|
|
|
|
|
|
|
202 |
progress_bar.progress(1.0)
|
203 |
+
|
204 |
return vector_store
|
205 |
|
206 |
# Question-answering logic
|
207 |
def answer_question(vectorstore, query):
|
208 |
if not HUGGINGFACEHUB_API_TOKEN:
|
209 |
raise RuntimeError("Missing Hugging Face API token. Please set it in your secrets.")
|
210 |
+
|
211 |
llm = HuggingFaceHub(
|
212 |
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
|
213 |
model_kwargs={"temperature": 0.7, "max_length": 512},
|
214 |
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN
|
215 |
)
|
216 |
+
|
217 |
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
218 |
prompt_template = PromptTemplate(
|
219 |
template="Use the context to answer the question concisely:\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:",
|
220 |
input_variables=["context", "question"]
|
221 |
)
|
222 |
+
|
223 |
qa_chain = RetrievalQA.from_chain_type(
|
224 |
llm=llm,
|
225 |
chain_type="stuff",
|
|
|
227 |
return_source_documents=False,
|
228 |
chain_type_kwargs={"prompt": prompt_template}
|
229 |
)
|
230 |
+
|
231 |
result = qa_chain({"query": query})
|
232 |
return result["result"].split("Answer:")[-1].strip()
|
233 |
|