Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -31,6 +31,85 @@ if "history" not in st.session_state:
|
|
31 |
if "authenticated" not in st.session_state:
|
32 |
st.session_state.authenticated = False
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
# Sidebar with BSNL logo and authentication
|
35 |
with st.sidebar:
|
36 |
try:
|
@@ -152,84 +231,5 @@ def main():
|
|
152 |
except Exception as e:
|
153 |
st.error(f"Error generating answer: {str(e)}")
|
154 |
|
155 |
-
# PDF processing logic
|
156 |
-
def process_input(input_data):
|
157 |
-
# Initialize progress bar and status
|
158 |
-
progress_bar = st.progress(0)
|
159 |
-
status = st.empty()
|
160 |
-
|
161 |
-
# Step 1: Read PDF file in memory
|
162 |
-
status.text("Reading PDF file...")
|
163 |
-
progress_bar.progress(0.25)
|
164 |
-
|
165 |
-
pdf_reader = PdfReader(BytesIO(input_data.read()))
|
166 |
-
documents = "".join([page.extract_text() or "" for page in pdf_reader.pages])
|
167 |
-
|
168 |
-
# Step 2: Split text
|
169 |
-
status.text("Splitting text into chunks...")
|
170 |
-
progress_bar.progress(0.50)
|
171 |
-
|
172 |
-
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
173 |
-
texts = text_splitter.split_text(documents)
|
174 |
-
|
175 |
-
# Step 3: Create embeddings
|
176 |
-
status.text("Creating embeddings...")
|
177 |
-
progress_bar.progress(0.75)
|
178 |
-
|
179 |
-
hf_embeddings = HuggingFaceEmbeddings(
|
180 |
-
model_name="sentence-transformers/all-mpnet-base-v2",
|
181 |
-
model_kwargs={'device': 'cpu'}
|
182 |
-
)
|
183 |
-
|
184 |
-
# Step 4: Initialize FAISS vector store
|
185 |
-
status.text("Building vector store...")
|
186 |
-
progress_bar.progress(1.0)
|
187 |
-
|
188 |
-
dimension = len(hf_embeddings.embed_query("test"))
|
189 |
-
index = faiss.IndexFlatL2(dimension)
|
190 |
-
vector_store = FAISS(
|
191 |
-
embedding_function=hf_embeddings,
|
192 |
-
index=index,
|
193 |
-
docstore=InMemoryDocstore({}),
|
194 |
-
index_to_docstore_id={}
|
195 |
-
)
|
196 |
-
|
197 |
-
# Add texts to vector store
|
198 |
-
uuids = [str(uuid.uuid4()) for _ in texts]
|
199 |
-
vector_store.add_texts(texts, ids=uuids)
|
200 |
-
|
201 |
-
# Complete processing
|
202 |
-
status.text("Processing complete!")
|
203 |
-
|
204 |
-
return vector_store
|
205 |
-
|
206 |
-
# Question-answering logic
|
207 |
-
def answer_question(vectorstore, query):
|
208 |
-
if not HUGGINGFACEHUB_API_TOKEN:
|
209 |
-
raise RuntimeError("Missing Hugging Face API token. Please set it in your secrets.")
|
210 |
-
|
211 |
-
llm = HuggingFaceHub(
|
212 |
-
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
|
213 |
-
model_kwargs={"temperature": 0.7, "max_length": 512},
|
214 |
-
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN
|
215 |
-
)
|
216 |
-
|
217 |
-
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
218 |
-
prompt_template = PromptTemplate(
|
219 |
-
template="Use the context to answer the question concisely:\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:",
|
220 |
-
input_variables=["context", "question"]
|
221 |
-
)
|
222 |
-
|
223 |
-
qa_chain = RetrievalQA.from_chain_type(
|
224 |
-
llm=llm,
|
225 |
-
chain_type="stuff",
|
226 |
-
retriever=retriever,
|
227 |
-
return_source_documents=False,
|
228 |
-
chain_type_kwargs={"prompt": prompt_template}
|
229 |
-
)
|
230 |
-
|
231 |
-
result = qa_chain({"query": query})
|
232 |
-
return result["result"].split("Answer:")[-1].strip()
|
233 |
-
|
234 |
if __name__ == "__main__":
|
235 |
main()
|
|
|
31 |
if "authenticated" not in st.session_state:
|
32 |
st.session_state.authenticated = False
|
33 |
|
34 |
+
# PDF processing logic
|
35 |
+
def process_input(input_data):
|
36 |
+
# Initialize progress bar and status
|
37 |
+
progress_bar = st.progress(0)
|
38 |
+
status = st.empty()
|
39 |
+
|
40 |
+
# Step 1: Read PDF file in memory
|
41 |
+
status.text("Reading PDF file...")
|
42 |
+
progress_bar.progress(0.25)
|
43 |
+
|
44 |
+
pdf_reader = PdfReader(BytesIO(input_data.read()))
|
45 |
+
documents = "".join([page.extract_text() or "" for page in pdf_reader.pages])
|
46 |
+
|
47 |
+
# Step 2: Split text
|
48 |
+
status.text("Splitting text into chunks...")
|
49 |
+
progress_bar.progress(0.50)
|
50 |
+
|
51 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
|
52 |
+
texts = text_splitter.split_text(documents)
|
53 |
+
|
54 |
+
# Step 3: Create embeddings
|
55 |
+
status.text("Creating embeddings...")
|
56 |
+
progress_bar.progress(0.75)
|
57 |
+
|
58 |
+
hf_embeddings = HuggingFaceEmbeddings(
|
59 |
+
model_name="sentence-transformers/all-mpnet-base-v2",
|
60 |
+
model_kwargs={'device': 'cpu'}
|
61 |
+
)
|
62 |
+
|
63 |
+
# Step 4: Initialize FAISS vector store
|
64 |
+
status.text("Building vector store...")
|
65 |
+
progress_bar.progress(1.0)
|
66 |
+
|
67 |
+
dimension = len(hf_embeddings.embed_query("test"))
|
68 |
+
index = faiss.IndexFlatL2(dimension)
|
69 |
+
vector_store = FAISS(
|
70 |
+
embedding_function=hf_embeddings,
|
71 |
+
index=index,
|
72 |
+
docstore=InMemoryDocstore({}),
|
73 |
+
index_to_docstore_id={}
|
74 |
+
)
|
75 |
+
|
76 |
+
# Add texts to vector store
|
77 |
+
uuids = [str(uuid.uuid4()) for _ in texts]
|
78 |
+
vector_store.add_texts(texts, ids=uuids)
|
79 |
+
|
80 |
+
# Complete processing
|
81 |
+
status.text("Processing complete!")
|
82 |
+
|
83 |
+
return vector_store
|
84 |
+
|
85 |
+
# Question-answering logic
|
86 |
+
def answer_question(vectorstore, query):
|
87 |
+
if not HUGGINGFACEHUB_API_TOKEN:
|
88 |
+
raise RuntimeError("Missing Hugging Face API token. Please set it in your secrets.")
|
89 |
+
|
90 |
+
llm = HuggingFaceHub(
|
91 |
+
repo_id="mistralai/Mistral-7B-Instruct-v0.1",
|
92 |
+
model_kwargs={"temperature": 0.7, "max_length": 512},
|
93 |
+
huggingfacehub_api_token=HUGGINGFACEHUB_API_TOKEN
|
94 |
+
)
|
95 |
+
|
96 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
97 |
+
prompt_template = PromptTemplate(
|
98 |
+
template="Use the context to answer the question concisely:\n\nContext: {context}\n\nQuestion: {question}\n\nAnswer:",
|
99 |
+
input_variables=["context", "question"]
|
100 |
+
)
|
101 |
+
|
102 |
+
qa_chain = RetrievalQA.from_chain_type(
|
103 |
+
llm=llm,
|
104 |
+
chain_type="stuff",
|
105 |
+
retriever=retriever,
|
106 |
+
return_source_documents=False,
|
107 |
+
chain_type_kwargs={"prompt": prompt_template}
|
108 |
+
)
|
109 |
+
|
110 |
+
result = qa_chain({"query": query})
|
111 |
+
return result["result"].split("Answer:")[-1].strip()
|
112 |
+
|
113 |
# Sidebar with BSNL logo and authentication
|
114 |
with st.sidebar:
|
115 |
try:
|
|
|
231 |
except Exception as e:
|
232 |
st.error(f"Error generating answer: {str(e)}")
|
233 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
if __name__ == "__main__":
|
235 |
main()
|