File size: 15,640 Bytes
02e476c 2997c9b 46a2215 02e476c f834afc 2997c9b f834afc 2997c9b 02e476c 2997c9b f834afc 2997c9b 02e476c 2997c9b c309035 2997c9b 229a3d1 c309035 2997c9b 229a3d1 2997c9b 229a3d1 2997c9b c309035 f834afc 229a3d1 41a2f73 c309035 229a3d1 c309035 229a3d1 c309035 2997c9b c309035 f834afc 2997c9b c309035 f834afc c309035 f834afc c309035 f834afc c309035 e26b1a8 229a3d1 f834afc c309035 229a3d1 f834afc 229a3d1 f834afc 229a3d1 f834afc 229a3d1 f834afc c309035 229a3d1 f834afc 229a3d1 f834afc 229a3d1 f834afc 229a3d1 f834afc 229a3d1 f834afc 229a3d1 f834afc 229a3d1 46a2215 c309035 f834afc 46a2215 f834afc 46a2215 f834afc 46a2215 c309035 229a3d1 f834afc 229a3d1 c309035 2997c9b 229a3d1 4a3be07 229a3d1 f834afc 229a3d1 4a3be07 b185736 f834afc b185736 4a3be07 b185736 4a3be07 b185736 f834afc 229a3d1 46a2215 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import gradio as gr
import pandas as pd
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
# Updated pricing data - restructured for better comparison
aws_instances = {
# T4 GPU Instances (entry level)
"g4dn.xlarge": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA T4", "hourly_rate": 0.526, "gpu_memory": "16GB", "tier": "Entry"},
"g4dn.2xlarge": {"vcpus": 8, "memory": 32, "gpu": "1x NVIDIA T4", "hourly_rate": 0.752, "gpu_memory": "16GB", "tier": "Entry"},
# A10G GPU Instances (mid-tier)
"g5.xlarge": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA A10G", "hourly_rate": 0.65, "gpu_memory": "24GB", "tier": "Mid"},
"g5.2xlarge": {"vcpus": 8, "memory": 32, "gpu": "1x NVIDIA A10G", "hourly_rate": 1.006, "gpu_memory": "24GB", "tier": "Mid"},
# V100 GPU Instances (high-tier)
"p3.2xlarge": {"vcpus": 8, "memory": 61, "gpu": "1x NVIDIA V100", "hourly_rate": 3.06, "gpu_memory": "16GB", "tier": "High"},
# Added comparable instances to match GCP
"p4d.xlarge": {"vcpus": 12, "memory": 85, "gpu": "1x NVIDIA A100", "hourly_rate": 4.10, "gpu_memory": "40GB", "tier": "Premium"},
"p4d.2xlarge": {"vcpus": 24, "memory": 170, "gpu": "2x NVIDIA A100", "hourly_rate": 8.20, "gpu_memory": "2x40GB", "tier": "Premium"},
"p4d.4xlarge": {"vcpus": 48, "memory": 340, "gpu": "4x NVIDIA A100", "hourly_rate": 16.40, "gpu_memory": "4x40GB", "tier": "Premium"},
}
gcp_instances = {
# T4 GPU Instances (entry level)
"n1-standard-4-t4": {"vcpus": 4, "memory": 15, "gpu": "1x NVIDIA T4", "hourly_rate": 0.49, "gpu_memory": "16GB", "tier": "Entry"},
"n1-standard-8-t4": {"vcpus": 8, "memory": 30, "gpu": "1x NVIDIA T4", "hourly_rate": 0.69, "gpu_memory": "16GB", "tier": "Entry"},
# L4 GPU Instances (mid-tier)
"g2-standard-4": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA L4", "hourly_rate": 0.59, "gpu_memory": "24GB", "tier": "Mid"},
"g2-standard-8": {"vcpus": 8, "memory": 32, "gpu": "1x NVIDIA L4", "hourly_rate": 0.89, "gpu_memory": "24GB", "tier": "Mid"},
# Added comparable V100 instance
"n1-standard-8-v100": {"vcpus": 8, "memory": 60, "gpu": "1x NVIDIA V100", "hourly_rate": 2.95, "gpu_memory": "16GB", "tier": "High"},
# A100 GPU Instances (premium)
"a2-highgpu-1g": {"vcpus": 12, "memory": 85, "gpu": "1x NVIDIA A100", "hourly_rate": 1.46, "gpu_memory": "40GB", "tier": "Premium"},
"a2-highgpu-2g": {"vcpus": 24, "memory": 170, "gpu": "2x NVIDIA A100", "hourly_rate": 2.93, "gpu_memory": "2x40GB", "tier": "Premium"},
"a2-highgpu-4g": {"vcpus": 48, "memory": 340, "gpu": "4x NVIDIA A100", "hourly_rate": 5.86, "gpu_memory": "4x40GB", "tier": "Premium"},
}
api_pricing = {
"OpenAI": {
"GPT-3.5-Turbo": {"input_per_1M": 0.5, "output_per_1M": 1.5, "token_context": 16385},
"GPT-4o": {"input_per_1M": 5.0, "output_per_1M": 15.0, "token_context": 32768},
"GPT-4o-mini": {"input_per_1M": 2.5, "output_per_1M": 7.5, "token_context": 32768},
},
"TogetherAI": {
"Llama-3-8B": {"input_per_1M": 0.15, "output_per_1M": 0.15, "token_context": 8192},
"Llama-3-70B": {"input_per_1M": 0.9, "output_per_1M": 0.9, "token_context": 8192},
"Llama-2-13B": {"input_per_1M": 0.6, "output_per_1M": 0.6, "token_context": 4096},
"Llama-2-70B": {"input_per_1M": 2.5, "output_per_1M": 2.5, "token_context": 4096},
"DeepSeek-Coder-33B": {"input_per_1M": 2.0, "output_per_1M": 2.0, "token_context": 16384},
},
"Anthropic": {
"Claude-3-Opus": {"input_per_1M": 15.0, "output_per_1M": 75.0, "token_context": 200000},
"Claude-3-Sonnet": {"input_per_1M": 3.0, "output_per_1M": 15.0, "token_context": 200000},
"Claude-3-Haiku": {"input_per_1M": 0.25, "output_per_1M": 1.25, "token_context": 200000},
}
}
model_sizes = {
"Small (7B parameters)": {"memory_required": 14},
"Medium (13B parameters)": {"memory_required": 26},
"Large (70B parameters)": {"memory_required": 140},
"XL (180B parameters)": {"memory_required": 360},
}
def calculate_aws_cost(instance, hours, storage, reserved=False, spot=False, years=1):
data = aws_instances[instance]
rate = data['hourly_rate']
if spot:
rate *= 0.3
elif reserved:
factors = {1: 0.6, 3: 0.4}
rate *= factors.get(years, 0.6)
compute = rate * hours
storage_cost = storage * 0.10
return {'total_cost': compute + storage_cost, 'details': data}
def calculate_gcp_cost(instance, hours, storage, reserved=False, spot=False, years=1):
data = gcp_instances[instance]
rate = data['hourly_rate']
if spot:
rate *= 0.2
elif reserved:
factors = {1: 0.7, 3: 0.5}
rate *= factors.get(years, 0.7)
compute = rate * hours
storage_cost = storage * 0.04
return {'total_cost': compute + storage_cost, 'details': data}
def calculate_api_cost(provider, model, in_tokens, out_tokens, calls):
m = api_pricing[provider][model]
input_cost = in_tokens * m['input_per_1M'] / 1000000
output_cost = out_tokens * m['output_per_1M'] / 1000000
call_cost = calls * 0.0001 if provider == 'TogetherAI' else 0
return {'total_cost': input_cost + output_cost + call_cost, 'details': m}
def filter_compatible(instances, min_mem):
res = {}
for name, data in instances.items():
mem_str = data['gpu_memory']
if 'x' in mem_str and not mem_str.startswith(('1x','2x','4x','8x')):
val = int(mem_str.replace('GB',''))
elif 'x' in mem_str:
parts = mem_str.split('x')
val = int(parts[0]) * int(parts[1].replace('GB',''))
else:
val = int(mem_str.replace('GB',''))
if val >= min_mem:
res[name] = data
return res
def generate_cost_comparison(
compute_hours, tokens_per_month, input_ratio, api_calls,
model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment,
comparison_tier
):
years = int(multi_year_commitment)
in_tokens = tokens_per_month * 1000000 * (input_ratio/100)
out_tokens = tokens_per_month * 1000000 - in_tokens
min_mem = model_sizes[model_size]['memory_required']
# Filter by both memory requirements and tier if a tier is selected
aws_comp = filter_compatible(aws_instances, min_mem)
gcp_comp = filter_compatible(gcp_instances, min_mem)
if comparison_tier != "All":
aws_comp = {k: v for k, v in aws_comp.items() if v.get('tier', '') == comparison_tier}
gcp_comp = {k: v for k, v in gcp_comp.items() if v.get('tier', '') == comparison_tier}
results = []
# AWS table
aws_html = '<h3>AWS Instances</h3>'
aws_html += '<table width="100%"><tr><th>Instance</th><th>vCPUs</th><th>Memory</th><th>GPU</th><th>Tier</th><th>Monthly Cost ($)</th></tr>'
if aws_comp:
for inst in aws_comp:
res = calculate_aws_cost(inst, compute_hours, storage_gb, reserved_instances, spot_instances, years)
aws_html += f'<tr><td>{inst}</td><td>{res["details"]["vcpus"]}</td><td>{res["details"]["memory"]}GB</td><td>{res["details"]["gpu"]}</td><td>{res["details"].get("tier", "")}</td><td>${res["total_cost"]:.2f}</td></tr>'
# best AWS
best_aws = min(aws_comp, key=lambda x: calculate_aws_cost(x, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost'])
best_aws_cost = calculate_aws_cost(best_aws, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost']
best_aws_tier = aws_instances[best_aws].get('tier', '')
results.append({'provider': f'AWS ({best_aws})', 'cost': best_aws_cost, 'type': 'Cloud', 'tier': best_aws_tier})
else:
aws_html += '<tr><td colspan="6">No compatible instances</td></tr>'
aws_html += '</table>'
# GCP table
gcp_html = '<h3>GCP Instances</h3>'
gcp_html += '<table width="100%"><tr><th>Instance</th><th>vCPUs</th><th>Memory</th><th>GPU</th><th>Tier</th><th>Monthly Cost ($)</th></tr>'
if gcp_comp:
for inst in gcp_comp:
res = calculate_gcp_cost(inst, compute_hours, storage_gb, reserved_instances, spot_instances, years)
gcp_html += f'<tr><td>{inst}</td><td>{res["details"]["vcpus"]}</td><td>{res["details"]["memory"]}GB</td><td>{res["details"]["gpu"]}</td><td>{res["details"].get("tier", "")}</td><td>${res["total_cost"]:.2f}</td></tr>'
best_gcp = min(gcp_comp, key=lambda x: calculate_gcp_cost(x, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost'])
best_gcp_cost = calculate_gcp_cost(best_gcp, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost']
best_gcp_tier = gcp_instances[best_gcp].get('tier', '')
results.append({'provider': f'GCP ({best_gcp})', 'cost': best_gcp_cost, 'type': 'Cloud', 'tier': best_gcp_tier})
else:
gcp_html += '<tr><td colspan="6">No compatible instances</td></tr>'
gcp_html += '</table>'
# API table
api_html = '<h3>API Options</h3>'
api_html += '<table width="100%"><tr><th>Provider</th><th>Model</th><th>Input Cost</th><th>Output Cost</th><th>Total Cost ($)</th><th>Context</th></tr>'
api_costs = {}
for prov in api_pricing:
for mdl in api_pricing[prov]:
res = calculate_api_cost(prov, mdl, in_tokens, out_tokens, api_calls)
details = api_pricing[prov][mdl]
api_html += f'<tr><td>{prov}</td><td>{mdl}</td><td>${in_tokens * details["input_per_1M"] / 1000000:.2f}</td><td>${out_tokens * details["output_per_1M"] / 1000000:.2f}</td><td>${res["total_cost"]:.2f}</td><td>{details["token_context"]:,}</td></tr>'
api_costs[(prov, mdl)] = res['total_cost']
api_html += '</table>'
if api_costs:
best_api = min(api_costs, key=api_costs.get)
results.append({'provider': f'{best_api[0]} ({best_api[1]})', 'cost': api_costs[best_api], 'type': 'API', 'tier': 'API'})
# Direct comparison tables for similar instances
direct_comparison_html = ""
if comparison_tier != "All" and comparison_tier != "API":
direct_comparison_html = f'<h3>Direct {comparison_tier} Tier Comparison</h3>'
direct_comparison_html += '<table width="100%"><tr><th>Provider</th><th>Instance</th><th>vCPUs</th><th>Memory</th><th>GPU</th><th>Monthly Cost ($)</th></tr>'
aws_filtered = {k: v for k, v in aws_instances.items() if v.get('tier', '') == comparison_tier}
gcp_filtered = {k: v for k, v in gcp_instances.items() if v.get('tier', '') == comparison_tier}
# Group by vCPU for comparison
vcpu_groups = {}
for inst, data in aws_filtered.items():
vcpu = data['vcpus']
if vcpu not in vcpu_groups:
vcpu_groups[vcpu] = {'aws': [], 'gcp': []}
vcpu_groups[vcpu]['aws'].append(inst)
for inst, data in gcp_filtered.items():
vcpu = data['vcpus']
if vcpu not in vcpu_groups:
vcpu_groups[vcpu] = {'aws': [], 'gcp': []}
vcpu_groups[vcpu]['gcp'].append(inst)
# Display direct comparisons
for vcpu in sorted(vcpu_groups.keys()):
group = vcpu_groups[vcpu]
for aws_inst in group['aws']:
aws_cost = calculate_aws_cost(aws_inst, compute_hours, storage_gb, reserved_instances, spot_instances, years)
aws_data = aws_cost['details']
direct_comparison_html += f'<tr><td>AWS</td><td>{aws_inst}</td><td>{aws_data["vcpus"]}</td><td>{aws_data["memory"]}GB</td><td>{aws_data["gpu"]}</td><td>${aws_cost["total_cost"]:.2f}</td></tr>'
for gcp_inst in group['gcp']:
gcp_cost = calculate_gcp_cost(gcp_inst, compute_hours, storage_gb, reserved_instances, spot_instances, years)
gcp_data = gcp_cost['details']
direct_comparison_html += f'<tr><td>GCP</td><td>{gcp_inst}</td><td>{gcp_data["vcpus"]}</td><td>{gcp_data["memory"]}GB</td><td>{gcp_data["gpu"]}</td><td>${gcp_cost["total_cost"]:.2f}</td></tr>'
# Add separator between different vCPU groups
if vcpu != sorted(vcpu_groups.keys())[-1]:
direct_comparison_html += '<tr><td colspan="6" style="border-bottom: 1px solid #ccc; height: 10px;"></td></tr>'
direct_comparison_html += '</table>'
# Chart with annotations
df = pd.DataFrame(results)
colors = {'Entry': '#66BB6A', 'Mid': '#42A5F5', 'High': '#FFA726', 'Premium': '#EF5350', 'API': '#AB47BC'}
# Create figure using plotly graph objects for more control
fig = go.Figure()
# Add bars
for i, row in df.iterrows():
tier_color = colors.get(row.get('tier', 'API'), '#9E9E9E')
fig.add_trace(go.Bar(
x=[row['provider']],
y=[row['cost']],
name=row['provider'],
marker_color=tier_color
))
# Add annotations on top of each bar
for i, row in df.iterrows():
fig.add_annotation(
x=row['provider'],
y=row['cost'],
text=f"${row['cost']:.2f}",
showarrow=False,
yshift=10, # Position above the bar
font=dict(size=14)
)
# Update layout
fig.update_layout(
showlegend=False,
height=500,
yaxis=dict(title='Monthly Cost ($)', tickprefix='$'),
xaxis=dict(title=''),
title='Cost Comparison'
)
html = f"""
<div style='padding:20px;font-family:Arial;'>
{direct_comparison_html}
{aws_html}
{gcp_html}
{api_html}
</div>
"""
return html, fig
# UI setup
with gr.Blocks(title="Cloud Cost Estimator", theme=gr.themes.Soft(primary_hue="indigo")) as demo:
gr.HTML('<h1 style="text-align:center;">Cloud Cost Estimator</h1>')
with gr.Row():
with gr.Column(scale=1):
compute_hours = gr.Slider(label="Compute Hours per Month", minimum=1, maximum=300, value=50)
tokens_per_month = gr.Slider(label="Tokens per Month (M)", minimum=1, maximum=200, value=5)
input_ratio = gr.Slider(label="Input Ratio (%)", minimum=10, maximum=70, value=25)
api_calls = gr.Slider(label="API Calls per Month", minimum=100, maximum=100000, value=5000, step=100)
model_size = gr.Dropdown(label="Model Size", choices=list(model_sizes.keys()), value="Medium (13B parameters)")
storage_gb = gr.Slider(label="Storage (GB)", minimum=10, maximum=1000, value=100)
comparison_tier = gr.Radio(label="Comparison Tier", choices=["All", "Entry", "Mid", "High", "Premium", "API"], value="All")
reserved_instances = gr.Checkbox(label="Reserved Instances", value=False)
spot_instances = gr.Checkbox(label="Spot Instances", value=False)
multi_year_commitment = gr.Radio(label="Commitment Period (years)", choices=["1","3"], value="1")
with gr.Column(scale=2):
out_html = gr.HTML()
out_plot = gr.Plot()
# Create inputs list for the function
inputs = [compute_hours, tokens_per_month, input_ratio, api_calls,
model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment, comparison_tier]
outputs = [out_html, out_plot]
# Initial calculation on load
demo.load(generate_cost_comparison, inputs, outputs)
# Update on each input change
for input_component in inputs:
input_component.change(generate_cost_comparison, inputs, outputs)
demo.launch() |