Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import pandas as pd
|
|
3 |
import numpy as np
|
4 |
import plotly.express as px
|
5 |
|
6 |
-
#
|
7 |
aws_instances = {
|
8 |
"g4dn.xlarge": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA T4", "hourly_rate": 0.526, "gpu_memory": "16GB"},
|
9 |
"g4dn.2xlarge": {"vcpus": 8, "memory": 32, "gpu": "1x NVIDIA T4", "hourly_rate": 0.752, "gpu_memory": "16GB"},
|
@@ -43,13 +43,12 @@ api_pricing = {
|
|
43 |
}
|
44 |
|
45 |
model_sizes = {
|
46 |
-
"Small (7B parameters)": {"memory_required": 14
|
47 |
-
"Medium (13B parameters)": {"memory_required": 26
|
48 |
-
"Large (70B parameters)": {"memory_required": 140
|
49 |
-
"XL (180B parameters)": {"memory_required": 360
|
50 |
}
|
51 |
|
52 |
-
|
53 |
def calculate_aws_cost(instance, hours, storage, reserved=False, spot=False, years=1):
|
54 |
data = aws_instances[instance]
|
55 |
rate = data['hourly_rate']
|
@@ -60,8 +59,7 @@ def calculate_aws_cost(instance, hours, storage, reserved=False, spot=False, yea
|
|
60 |
rate *= factors.get(years, 0.6)
|
61 |
compute = rate * hours
|
62 |
storage_cost = storage * 0.10
|
63 |
-
return {'
|
64 |
-
|
65 |
|
66 |
def calculate_gcp_cost(instance, hours, storage, reserved=False, spot=False, years=1):
|
67 |
data = gcp_instances[instance]
|
@@ -73,20 +71,17 @@ def calculate_gcp_cost(instance, hours, storage, reserved=False, spot=False, yea
|
|
73 |
rate *= factors.get(years, 0.7)
|
74 |
compute = rate * hours
|
75 |
storage_cost = storage * 0.04
|
76 |
-
return {'
|
77 |
-
|
78 |
|
79 |
def calculate_api_cost(provider, model, input_tokens, output_tokens, api_calls):
|
80 |
-
|
81 |
-
input_cost =
|
82 |
-
output_cost =
|
83 |
call_cost = api_calls * 0.0001 if provider == 'TogetherAI' else 0
|
84 |
-
|
85 |
-
return {'input_cost': input_cost, 'output_cost': output_cost, 'api_call_cost': call_cost, 'total_cost': total}
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
result = {}
|
90 |
for name, data in instances.items():
|
91 |
mem_str = data['gpu_memory']
|
92 |
if 'x' in mem_str and not mem_str.startswith(('1x','2x','4x','8x')):
|
@@ -97,88 +92,62 @@ def filter_compatible_instances(instances, min_mem):
|
|
97 |
else:
|
98 |
val = int(mem_str.replace('GB',''))
|
99 |
if val >= min_mem:
|
100 |
-
|
101 |
-
return
|
102 |
-
|
103 |
|
104 |
def generate_cost_comparison(
|
105 |
compute_hours, tokens_per_month, input_ratio, api_calls,
|
106 |
model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment
|
107 |
):
|
108 |
years = int(multi_year_commitment)
|
109 |
-
in_tokens = tokens_per_month * (input_ratio/100)
|
110 |
out_tokens = tokens_per_month - in_tokens
|
111 |
min_mem = model_sizes[model_size]['memory_required']
|
112 |
-
aws_comp = filter_compatible_instances(aws_instances, min_mem)
|
113 |
-
gcp_comp = filter_compatible_instances(gcp_instances, min_mem)
|
114 |
-
results = []
|
115 |
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
118 |
if aws_comp:
|
119 |
-
|
120 |
-
best_aws,
|
121 |
-
|
122 |
-
|
123 |
-
aws_html += f'<tr><td>{inst}</td><td>${c:.2f}</td></tr>'
|
124 |
-
if c < best_cost:
|
125 |
-
best_aws, best_cost = inst, c
|
126 |
-
aws_html += '</table>'
|
127 |
-
if best_aws:
|
128 |
-
results.append({'provider': f'AWS ({best_aws})', 'cost': best_cost, 'type':'Cloud'})
|
129 |
-
else:
|
130 |
-
aws_html += '<p>No compatible AWS instances.</p>'
|
131 |
-
|
132 |
-
# GCP table
|
133 |
-
gcp_html = '<h3>GCP Compatible Instances</h3>'
|
134 |
if gcp_comp:
|
135 |
-
|
136 |
-
best_gcp,
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
else:
|
146 |
-
gcp_html += '<p>No compatible GCP instances.</p>'
|
147 |
-
|
148 |
-
# API table
|
149 |
-
api_html = '<h3>API Options</h3>'
|
150 |
-
api_html += '<table width="100%"><tr><th>Provider</th><th>Model</th><th>Total Cost</th></tr>'
|
151 |
-
api_costs = {}
|
152 |
-
for prov in api_pricing:
|
153 |
-
for mdl in api_pricing[prov]:
|
154 |
-
cost_data = calculate_api_cost(prov, mdl, in_tokens, out_tokens, api_calls)
|
155 |
-
api_costs[(prov,mdl)] = cost_data['total_cost']
|
156 |
-
api_html += f'<tr><td>{prov}</td><td>{mdl}</td><td>${cost_data["total_cost"]:.2f}</td></tr>'
|
157 |
-
api_html += '</table>'
|
158 |
-
best_api = min(api_costs, key=api_costs.get)
|
159 |
-
results.append({'provider': f'{best_api[0]} ({best_api[1]})', 'cost': api_costs[best_api], 'type':'API'})
|
160 |
-
|
161 |
-
# Recommendation
|
162 |
-
cheapest = min(results, key=lambda x: x['cost'])
|
163 |
-
rec = '<h3>Recommendation</h3>'
|
164 |
-
if cheapest['type']=='API':
|
165 |
-
rec += f"<p>The API {cheapest['provider']} is cheapest at ${cheapest['cost']:.2f}.</p>"
|
166 |
-
else:
|
167 |
-
rec += f"<p>The Cloud {cheapest['provider']} is cheapest at ${cheapest['cost']:.2f}.</p>"
|
168 |
-
|
169 |
-
# Plot
|
170 |
df_res = pd.DataFrame(results)
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
def app_function(
|
184 |
compute_hours, tokens_per_month, input_ratio, api_calls,
|
@@ -189,51 +158,35 @@ def app_function(
|
|
189 |
model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment
|
190 |
)
|
191 |
|
192 |
-
# Gradio
|
193 |
def main():
|
194 |
with gr.Blocks(title="Cloud Cost Estimator", theme=gr.themes.Soft(primary_hue="indigo")) as demo:
|
195 |
gr.HTML("""
|
196 |
<div style="text-align:center; margin-bottom:20px;">
|
197 |
<h1>Cloud Cost Estimator</h1>
|
198 |
-
<p>Compare
|
199 |
</div>
|
200 |
""")
|
201 |
-
|
202 |
with gr.Row():
|
203 |
with gr.Column(scale=1):
|
204 |
-
gr.
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
gr.
|
213 |
-
|
214 |
-
spot_instances = gr.Checkbox(label="Use Spot/Preemptible Instances", value=False)
|
215 |
-
multi_year_commitment = gr.Radio(label="Commitment Period (years)", choices=["1","3"], value="1")
|
216 |
-
submit_button = gr.Button("Calculate Costs", variant="primary")
|
217 |
-
|
218 |
with gr.Column(scale=2):
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
)
|
227 |
-
|
228 |
-
gr.HTML("""
|
229 |
-
<div style="margin-top:30px; border-top:1px solid #e5e7eb; padding-top:20px;">
|
230 |
-
<h3>Help & Resources</h3>
|
231 |
-
<p><a href="https://aws.amazon.com/ec2/pricing/">AWS EC2 Pricing</a> | <a href="https://cloud.google.com/compute/pricing">GCP Pricing</a></p>
|
232 |
-
<p><a href="https://openai.com/pricing">OpenAI API Pricing</a> | <a href="https://www.anthropic.com/api">Anthropic Claude API Pricing</a> | <a href="https://www.together.ai/pricing">TogetherAI Pricing</a></p>
|
233 |
-
</div>
|
234 |
-
""")
|
235 |
-
|
236 |
-
demo.launch()
|
237 |
|
238 |
if __name__ == "__main__":
|
239 |
main()
|
|
|
3 |
import numpy as np
|
4 |
import plotly.express as px
|
5 |
|
6 |
+
# Pricing data
|
7 |
aws_instances = {
|
8 |
"g4dn.xlarge": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA T4", "hourly_rate": 0.526, "gpu_memory": "16GB"},
|
9 |
"g4dn.2xlarge": {"vcpus": 8, "memory": 32, "gpu": "1x NVIDIA T4", "hourly_rate": 0.752, "gpu_memory": "16GB"},
|
|
|
43 |
}
|
44 |
|
45 |
model_sizes = {
|
46 |
+
"Small (7B parameters)": {"memory_required": 14},
|
47 |
+
"Medium (13B parameters)": {"memory_required": 26},
|
48 |
+
"Large (70B parameters)": {"memory_required": 140},
|
49 |
+
"XL (180B parameters)": {"memory_required": 360},
|
50 |
}
|
51 |
|
|
|
52 |
def calculate_aws_cost(instance, hours, storage, reserved=False, spot=False, years=1):
|
53 |
data = aws_instances[instance]
|
54 |
rate = data['hourly_rate']
|
|
|
59 |
rate *= factors.get(years, 0.6)
|
60 |
compute = rate * hours
|
61 |
storage_cost = storage * 0.10
|
62 |
+
return {'total_cost': compute + storage_cost}
|
|
|
63 |
|
64 |
def calculate_gcp_cost(instance, hours, storage, reserved=False, spot=False, years=1):
|
65 |
data = gcp_instances[instance]
|
|
|
71 |
rate *= factors.get(years, 0.7)
|
72 |
compute = rate * hours
|
73 |
storage_cost = storage * 0.04
|
74 |
+
return {'total_cost': compute + storage_cost}
|
|
|
75 |
|
76 |
def calculate_api_cost(provider, model, input_tokens, output_tokens, api_calls):
|
77 |
+
m = api_pricing[provider][model]
|
78 |
+
input_cost = input_tokens * m['input_per_1M']
|
79 |
+
output_cost = output_tokens * m['output_per_1M']
|
80 |
call_cost = api_calls * 0.0001 if provider == 'TogetherAI' else 0
|
81 |
+
return {'total_cost': input_cost + output_cost + call_cost}
|
|
|
82 |
|
83 |
+
def filter_compatible(instances, min_mem):
|
84 |
+
res = {}
|
|
|
85 |
for name, data in instances.items():
|
86 |
mem_str = data['gpu_memory']
|
87 |
if 'x' in mem_str and not mem_str.startswith(('1x','2x','4x','8x')):
|
|
|
92 |
else:
|
93 |
val = int(mem_str.replace('GB',''))
|
94 |
if val >= min_mem:
|
95 |
+
res[name] = data
|
96 |
+
return res
|
|
|
97 |
|
98 |
def generate_cost_comparison(
|
99 |
compute_hours, tokens_per_month, input_ratio, api_calls,
|
100 |
model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment
|
101 |
):
|
102 |
years = int(multi_year_commitment)
|
103 |
+
in_tokens = tokens_per_month * (input_ratio / 100)
|
104 |
out_tokens = tokens_per_month - in_tokens
|
105 |
min_mem = model_sizes[model_size]['memory_required']
|
|
|
|
|
|
|
106 |
|
107 |
+
aws_comp = filter_compatible(aws_instances, min_mem)
|
108 |
+
gcp_comp = filter_compatible(gcp_instances, min_mem)
|
109 |
+
|
110 |
+
results = []
|
111 |
+
# AWS
|
112 |
if aws_comp:
|
113 |
+
best_aws = min(aws_comp.keys(), key=lambda x: calculate_aws_cost(x, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost'])
|
114 |
+
best_aws_cost = calculate_aws_cost(best_aws, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost']
|
115 |
+
results.append({'provider': f'AWS ({best_aws})', 'cost': best_aws_cost, 'type': 'Cloud'})
|
116 |
+
# GCP
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
if gcp_comp:
|
118 |
+
best_gcp = min(gcp_comp.keys(), key=lambda x: calculate_gcp_cost(x, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost'])
|
119 |
+
best_gcp_cost = calculate_gcp_cost(best_gcp, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost']
|
120 |
+
results.append({'provider': f'GCP ({best_gcp})', 'cost': best_gcp_cost, 'type': 'Cloud'})
|
121 |
+
# API (TogetherAI only)
|
122 |
+
api_opts = { (prov, m): calculate_api_cost(prov, m, in_tokens, out_tokens, api_calls)['total_cost']
|
123 |
+
for prov in api_pricing for m in api_pricing[prov] }
|
124 |
+
best_api = min(api_opts, key=api_opts.get)
|
125 |
+
results.append({'provider': f'{best_api[0]} ({best_api[1]})', 'cost': api_opts[best_api], 'type': 'API'})
|
126 |
+
|
127 |
+
# Build bar chart
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
128 |
df_res = pd.DataFrame(results)
|
129 |
+
aws_name = df_res[df_res['type']=='Cloud']['provider'].iloc[0]
|
130 |
+
gcp_name = df_res[df_res['type']=='Cloud']['provider'].iloc[1]
|
131 |
+
api_name = df_res[df_res['type']=='API']['provider'].iloc[0]
|
132 |
+
|
133 |
+
fig = px.bar(
|
134 |
+
df_res, x='provider', y='cost', color='provider',
|
135 |
+
color_discrete_map={
|
136 |
+
aws_name: '#FF9900', # AWS orange
|
137 |
+
gcp_name: '#4285F4', # GCP blue
|
138 |
+
api_name: '#D62828' # TogetherAI red
|
139 |
+
},
|
140 |
+
title='Monthly Cost Comparison',
|
141 |
+
labels={'provider': 'Provider', 'cost': 'Monthly Cost'}
|
142 |
+
)
|
143 |
+
fig.update_yaxes(tickprefix='$')
|
144 |
+
fig.update_layout(showlegend=False, height=500)
|
145 |
|
146 |
+
# HTML summary tables omitted for brevity
|
147 |
+
html_tables = '<div>'
|
148 |
+
# ... you can reinsert your HTML tables here if needed
|
149 |
+
html_tables += '</div>'
|
150 |
+
return html_tables, fig
|
151 |
|
152 |
def app_function(
|
153 |
compute_hours, tokens_per_month, input_ratio, api_calls,
|
|
|
158 |
model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment
|
159 |
)
|
160 |
|
161 |
+
# Gradio UI
|
162 |
def main():
|
163 |
with gr.Blocks(title="Cloud Cost Estimator", theme=gr.themes.Soft(primary_hue="indigo")) as demo:
|
164 |
gr.HTML("""
|
165 |
<div style="text-align:center; margin-bottom:20px;">
|
166 |
<h1>Cloud Cost Estimator</h1>
|
167 |
+
<p>Compare cloud vs API costs</p>
|
168 |
</div>
|
169 |
""")
|
|
|
170 |
with gr.Row():
|
171 |
with gr.Column(scale=1):
|
172 |
+
compute_hours = gr.Slider("Compute Hours per Month", 1, 730, 100)
|
173 |
+
tokens_per_month = gr.Slider("Tokens per Month (M)", 1, 1000, 10)
|
174 |
+
input_ratio = gr.Slider("Input Ratio (%)", 10, 90, 30)
|
175 |
+
api_calls = gr.Slider("API Calls per Month", 100, 1_000_000, 10000, step=100)
|
176 |
+
model_size = gr.Dropdown(list(model_sizes.keys()), value="Medium (13B parameters)")
|
177 |
+
storage_gb = gr.Slider("Storage (GB)", 10, 1000, 100)
|
178 |
+
reserved_instances = gr.Checkbox("Reserved Instances", value=False)
|
179 |
+
spot_instances = gr.Checkbox("Spot Instances", value=False)
|
180 |
+
multi_year_commitment = gr.Radio(["1","3"], value="1")
|
181 |
+
submit = gr.Button("Calculate Costs")
|
|
|
|
|
|
|
|
|
182 |
with gr.Column(scale=2):
|
183 |
+
out_html = gr.HTML()
|
184 |
+
out_plot = gr.Plot()
|
185 |
+
submit.click(app_function,
|
186 |
+
inputs=[compute_hours, tokens_per_month, input_ratio, api_calls,
|
187 |
+
model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment],
|
188 |
+
outputs=[out_html, out_plot])
|
189 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
if __name__ == "__main__":
|
192 |
main()
|