Update app.py
Browse files
app.py
CHANGED
@@ -1,9 +1,609 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import plotly.express as px
|
5 |
+
import plotly.graph_objects as go
|
6 |
|
7 |
+
# Initialize pricing data
|
8 |
+
# AWS pricing - Instance types and their properties
|
9 |
+
aws_instances = {
|
10 |
+
"g4dn.xlarge": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA T4", "hourly_rate": 0.526, "gpu_memory": "16GB"},
|
11 |
+
"g4dn.2xlarge": {"vcpus": 8, "memory": 32, "gpu": "1x NVIDIA T4", "hourly_rate": 0.752, "gpu_memory": "16GB"},
|
12 |
+
"g5.xlarge": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA A10G", "hourly_rate": 0.65, "gpu_memory": "24GB"},
|
13 |
+
"g5.2xlarge": {"vcpus": 8, "memory": 32, "gpu": "1x NVIDIA A10G", "hourly_rate": 1.006, "gpu_memory": "24GB"},
|
14 |
+
"p3.2xlarge": {"vcpus": 8, "memory": 61, "gpu": "1x NVIDIA V100", "hourly_rate": 3.06, "gpu_memory": "16GB"},
|
15 |
+
"p4d.24xlarge": {"vcpus": 96, "memory": 1152, "gpu": "8x NVIDIA A100", "hourly_rate": 32.77, "gpu_memory": "8x40GB"}
|
16 |
+
}
|
17 |
|
18 |
+
# GCP pricing - Instance types and their properties
|
19 |
+
gcp_instances = {
|
20 |
+
"a2-highgpu-1g": {"vcpus": 12, "memory": 85, "gpu": "1x NVIDIA A100", "hourly_rate": 1.46, "gpu_memory": "40GB"},
|
21 |
+
"a2-highgpu-2g": {"vcpus": 24, "memory": 170, "gpu": "2x NVIDIA A100", "hourly_rate": 2.93, "gpu_memory": "2x40GB"},
|
22 |
+
"a2-highgpu-4g": {"vcpus": 48, "memory": 340, "gpu": "4x NVIDIA A100", "hourly_rate": 5.86, "gpu_memory": "4x40GB"},
|
23 |
+
"n1-standard-4-t4": {"vcpus": 4, "memory": 15, "gpu": "1x NVIDIA T4", "hourly_rate": 0.49, "gpu_memory": "16GB"},
|
24 |
+
"n1-standard-8-t4": {"vcpus": 8, "memory": 30, "gpu": "1x NVIDIA T4", "hourly_rate": 0.69, "gpu_memory": "16GB"},
|
25 |
+
"g2-standard-4": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA L4", "hourly_rate": 0.59, "gpu_memory": "24GB"}
|
26 |
+
}
|
27 |
|
28 |
+
# API pricing - Models and their prices
|
29 |
+
api_pricing = {
|
30 |
+
"OpenAI": {
|
31 |
+
"GPT-3.5-Turbo": {"input_per_1M": 0.5, "output_per_1M": 1.5, "token_context": 16385},
|
32 |
+
"GPT-4o": {"input_per_1M": 5.0, "output_per_1M": 15.0, "token_context": 32768},
|
33 |
+
"GPT-4o-mini": {"input_per_1M": 2.5, "output_per_1M": 7.5, "token_context": 32768},
|
34 |
+
},
|
35 |
+
"TogetherAI": {
|
36 |
+
"Llama-3-8B": {"input_per_1M": 0.15, "output_per_1M": 0.15, "token_context": 8192},
|
37 |
+
"Llama-3-70B": {"input_per_1M": 0.9, "output_per_1M": 0.9, "token_context": 8192},
|
38 |
+
"Llama-2-13B": {"input_per_1M": 0.6, "output_per_1M": 0.6, "token_context": 4096},
|
39 |
+
"Llama-2-70B": {"input_per_1M": 2.5, "output_per_1M": 2.5, "token_context": 4096},
|
40 |
+
"DeepSeek-Coder-33B": {"input_per_1M": 2.0, "output_per_1M": 2.0, "token_context": 16384},
|
41 |
+
},
|
42 |
+
"Anthropic": {
|
43 |
+
"Claude-3-Opus": {"input_per_1M": 15.0, "output_per_1M": 75.0, "token_context": 200000},
|
44 |
+
"Claude-3-Sonnet": {"input_per_1M": 3.0, "output_per_1M": 15.0, "token_context": 200000},
|
45 |
+
"Claude-3-Haiku": {"input_per_1M": 0.25, "output_per_1M": 1.25, "token_context": 200000},
|
46 |
+
}
|
47 |
+
}
|
48 |
+
|
49 |
+
# Model sizes and memory requirements
|
50 |
+
model_sizes = {
|
51 |
+
"Small (7B parameters)": {"memory_required": 14, "throughput_factor": 1.0},
|
52 |
+
"Medium (13B parameters)": {"memory_required": 26, "throughput_factor": 0.7},
|
53 |
+
"Large (70B parameters)": {"memory_required": 140, "throughput_factor": 0.3},
|
54 |
+
"XL (180B parameters)": {"memory_required": 360, "throughput_factor": 0.15},
|
55 |
+
}
|
56 |
+
|
57 |
+
# Calculate costs
|
58 |
+
def calculate_aws_cost(instance, hours, storage, reserved=False, spot=False, years=1):
|
59 |
+
instance_data = aws_instances[instance]
|
60 |
+
base_hourly = instance_data["hourly_rate"]
|
61 |
+
|
62 |
+
# Apply discounts for reservation or spot
|
63 |
+
if spot:
|
64 |
+
hourly_rate = base_hourly * 0.3 # 70% discount for spot
|
65 |
+
elif reserved:
|
66 |
+
discount_factors = {1: 0.6, 3: 0.4} # 40% for 1 year, 60% for 3 years
|
67 |
+
hourly_rate = base_hourly * discount_factors.get(years, 0.6)
|
68 |
+
else:
|
69 |
+
hourly_rate = base_hourly
|
70 |
+
|
71 |
+
compute_cost = hourly_rate * hours
|
72 |
+
storage_cost = storage * 0.10 # $0.10 per GB for EBS
|
73 |
+
|
74 |
+
return {
|
75 |
+
"compute_cost": compute_cost,
|
76 |
+
"storage_cost": storage_cost,
|
77 |
+
"total_cost": compute_cost + storage_cost,
|
78 |
+
"instance_details": instance_data
|
79 |
+
}
|
80 |
+
|
81 |
+
def calculate_gcp_cost(instance, hours, storage, reserved=False, spot=False, years=1):
|
82 |
+
instance_data = gcp_instances[instance]
|
83 |
+
base_hourly = instance_data["hourly_rate"]
|
84 |
+
|
85 |
+
# Apply discounts
|
86 |
+
if spot:
|
87 |
+
hourly_rate = base_hourly * 0.2 # 80% discount for preemptible
|
88 |
+
elif reserved:
|
89 |
+
discount_factors = {1: 0.7, 3: 0.5} # 30% for 1 year, 50% for 3 years
|
90 |
+
hourly_rate = base_hourly * discount_factors.get(years, 0.7)
|
91 |
+
else:
|
92 |
+
hourly_rate = base_hourly
|
93 |
+
|
94 |
+
compute_cost = hourly_rate * hours
|
95 |
+
storage_cost = storage * 0.04 # $0.04 per GB for Standard SSD
|
96 |
+
|
97 |
+
return {
|
98 |
+
"compute_cost": compute_cost,
|
99 |
+
"storage_cost": storage_cost,
|
100 |
+
"total_cost": compute_cost + storage_cost,
|
101 |
+
"instance_details": instance_data
|
102 |
+
}
|
103 |
+
|
104 |
+
def calculate_api_cost(provider, model, input_tokens, output_tokens, api_calls):
|
105 |
+
model_data = api_pricing[provider][model]
|
106 |
+
|
107 |
+
input_cost = (input_tokens * model_data["input_per_1M"]) / 1
|
108 |
+
output_cost = (output_tokens * model_data["output_per_1M"]) / 1
|
109 |
+
|
110 |
+
# Add a small cost for API calls for some providers
|
111 |
+
api_call_costs = 0
|
112 |
+
if provider == "TogetherAI":
|
113 |
+
api_call_costs = api_calls * 0.0001 # $0.0001 per request
|
114 |
+
|
115 |
+
total_cost = input_cost + output_cost + api_call_costs
|
116 |
+
|
117 |
+
return {
|
118 |
+
"input_cost": input_cost,
|
119 |
+
"output_cost": output_cost,
|
120 |
+
"api_call_cost": api_call_costs,
|
121 |
+
"total_cost": total_cost,
|
122 |
+
"model_details": model_data
|
123 |
+
}
|
124 |
+
|
125 |
+
# Filter instances based on model size requirements
|
126 |
+
def filter_compatible_instances(instances_dict, min_memory_required):
|
127 |
+
compatible = {}
|
128 |
+
for name, data in instances_dict.items():
|
129 |
+
# Parse GPU memory
|
130 |
+
memory_str = data["gpu_memory"]
|
131 |
+
|
132 |
+
# Handle multiple GPUs
|
133 |
+
if "x" in memory_str and not memory_str.startswith(("1x", "2x", "4x", "8x")):
|
134 |
+
# Format: "16GB"
|
135 |
+
memory_val = int(memory_str.split("GB")[0])
|
136 |
+
elif "x" in memory_str:
|
137 |
+
# Format: "8x40GB"
|
138 |
+
parts = memory_str.split("x")
|
139 |
+
num_gpus = int(parts[0])
|
140 |
+
memory_per_gpu = int(parts[1].split("GB")[0])
|
141 |
+
memory_val = num_gpus * memory_per_gpu
|
142 |
+
else:
|
143 |
+
# Format: "40GB"
|
144 |
+
memory_val = int(memory_str.split("GB")[0])
|
145 |
+
|
146 |
+
if memory_val >= min_memory_required:
|
147 |
+
compatible[name] = data
|
148 |
+
|
149 |
+
return compatible
|
150 |
+
|
151 |
+
def generate_cost_comparison(
|
152 |
+
compute_hours,
|
153 |
+
tokens_per_month,
|
154 |
+
input_ratio,
|
155 |
+
api_calls,
|
156 |
+
model_size,
|
157 |
+
storage_gb,
|
158 |
+
reserved_instances,
|
159 |
+
spot_instances,
|
160 |
+
multi_year_commitment
|
161 |
+
):
|
162 |
+
# Calculate input and output tokens
|
163 |
+
input_tokens = tokens_per_month * (input_ratio / 100)
|
164 |
+
output_tokens = tokens_per_month * (1 - (input_ratio / 100))
|
165 |
+
|
166 |
+
# Check model memory requirements
|
167 |
+
min_memory_required = model_sizes[model_size]["memory_required"]
|
168 |
+
|
169 |
+
# Filter compatible instances
|
170 |
+
compatible_aws = filter_compatible_instances(aws_instances, min_memory_required)
|
171 |
+
compatible_gcp = filter_compatible_instances(gcp_instances, min_memory_required)
|
172 |
+
|
173 |
+
results = []
|
174 |
+
|
175 |
+
# Generate HTML for AWS options
|
176 |
+
if compatible_aws:
|
177 |
+
aws_results = "<h3>AWS Compatible Instances</h3>"
|
178 |
+
aws_results += "<table width='100%'><tr><th>Instance</th><th>vCPUs</th><th>Memory</th><th>GPU</th><th>Hourly Rate</th><th>Monthly Cost</th></tr>"
|
179 |
+
|
180 |
+
best_aws = None
|
181 |
+
best_aws_cost = float('inf')
|
182 |
+
|
183 |
+
for instance in compatible_aws:
|
184 |
+
cost_result = calculate_aws_cost(instance, compute_hours, storage_gb, reserved_instances, spot_instances, multi_year_commitment)
|
185 |
+
total_cost = cost_result["total_cost"]
|
186 |
+
|
187 |
+
if total_cost < best_aws_cost:
|
188 |
+
best_aws = instance
|
189 |
+
best_aws_cost = total_cost
|
190 |
+
|
191 |
+
aws_results += f"<tr><td>{instance}</td><td>{compatible_aws[instance]['vcpus']}</td><td>{compatible_aws[instance]['memory']}GB</td><td>{compatible_aws[instance]['gpu']}</td><td>${compatible_aws[instance]['hourly_rate']:.3f}</td><td>${total_cost:.2f}</td></tr>"
|
192 |
+
|
193 |
+
aws_results += "</table>"
|
194 |
+
|
195 |
+
if best_aws:
|
196 |
+
best_aws_data = calculate_aws_cost(best_aws, compute_hours, storage_gb, reserved_instances, spot_instances, multi_year_commitment)
|
197 |
+
results.append({
|
198 |
+
"provider": f"AWS ({best_aws})",
|
199 |
+
"cost": best_aws_data["total_cost"],
|
200 |
+
"type": "Cloud"
|
201 |
+
})
|
202 |
+
else:
|
203 |
+
aws_results = "<h3>AWS Compatible Instances</h3><p>No compatible AWS instances found for this model size.</p>"
|
204 |
+
best_aws = None
|
205 |
+
best_aws_cost = float('inf')
|
206 |
+
|
207 |
+
# Generate HTML for GCP options
|
208 |
+
if compatible_gcp:
|
209 |
+
gcp_results = "<h3>Google Cloud Compatible Instances</h3>"
|
210 |
+
gcp_results += "<table width='100%'><tr><th>Instance</th><th>vCPUs</th><th>Memory</th><th>GPU</th><th>Hourly Rate</th><th>Monthly Cost</th></tr>"
|
211 |
+
|
212 |
+
best_gcp = None
|
213 |
+
best_gcp_cost = float('inf')
|
214 |
+
|
215 |
+
for instance in compatible_gcp:
|
216 |
+
cost_result = calculate_gcp_cost(instance, compute_hours, storage_gb, reserved_instances, spot_instances, multi_year_commitment)
|
217 |
+
total_cost = cost_result["total_cost"]
|
218 |
+
|
219 |
+
if total_cost < best_gcp_cost:
|
220 |
+
best_gcp = instance
|
221 |
+
best_gcp_cost = total_cost
|
222 |
+
|
223 |
+
gcp_results += f"<tr><td>{instance}</td><td>{compatible_gcp[instance]['vcpus']}</td><td>{compatible_gcp[instance]['memory']}GB</td><td>{compatible_gcp[instance]['gpu']}</td><td>${compatible_gcp[instance]['hourly_rate']:.3f}</td><td>${total_cost:.2f}</td></tr>"
|
224 |
+
|
225 |
+
gcp_results += "</table>"
|
226 |
+
|
227 |
+
if best_gcp:
|
228 |
+
best_gcp_data = calculate_gcp_cost(best_gcp, compute_hours, storage_gb, reserved_instances, spot_instances, multi_year_commitment)
|
229 |
+
results.append({
|
230 |
+
"provider": f"GCP ({best_gcp})",
|
231 |
+
"cost": best_gcp_data["total_cost"],
|
232 |
+
"type": "Cloud"
|
233 |
+
})
|
234 |
+
else:
|
235 |
+
gcp_results = "<h3>Google Cloud Compatible Instances</h3><p>No compatible Google Cloud instances found for this model size.</p>"
|
236 |
+
best_gcp = None
|
237 |
+
best_gcp_cost = float('inf')
|
238 |
+
|
239 |
+
# Generate HTML for API options
|
240 |
+
api_results = "<h3>API Options</h3>"
|
241 |
+
api_results += "<table width='100%'><tr><th>Provider</th><th>Model</th><th>Input Cost</th><th>Output Cost</th><th>Total Cost</th><th>Context Length</th></tr>"
|
242 |
+
|
243 |
+
api_costs = {}
|
244 |
+
|
245 |
+
for provider in api_pricing:
|
246 |
+
for model in api_pricing[provider]:
|
247 |
+
cost_data = calculate_api_cost(provider, model, input_tokens, output_tokens, api_calls)
|
248 |
+
api_costs[(provider, model)] = cost_data
|
249 |
+
|
250 |
+
api_results += f"<tr><td>{provider}</td><td>{model}</td><td>${cost_data['input_cost']:.2f}</td><td>${cost_data['output_cost']:.2f}</td><td>${cost_data['total_cost']:.2f}</td><td>{api_pricing[provider][model]['token_context']:,}</td></tr>"
|
251 |
+
|
252 |
+
api_results += "</table>"
|
253 |
+
|
254 |
+
# Find best API option
|
255 |
+
best_api = min(api_costs.keys(), key=lambda x: api_costs[x]["total_cost"])
|
256 |
+
best_api_cost = api_costs[best_api]
|
257 |
+
|
258 |
+
results.append({
|
259 |
+
"provider": f"{best_api[0]} ({best_api[1]})",
|
260 |
+
"cost": best_api_cost["total_cost"],
|
261 |
+
"type": "API"
|
262 |
+
})
|
263 |
+
|
264 |
+
# Create recommendation HTML
|
265 |
+
recommendation = "<h3>Recommendation</h3>"
|
266 |
+
|
267 |
+
# Find the cheapest option
|
268 |
+
cheapest = min(results, key=lambda x: x["cost"])
|
269 |
+
|
270 |
+
if cheapest["type"] == "API":
|
271 |
+
recommendation += f"<p>Based on your usage parameters, the <strong>{cheapest['provider']}</strong> API endpoint is the most cost-effective option at <strong>${cheapest['cost']:.2f}/month</strong>.</p>"
|
272 |
+
|
273 |
+
# Calculate API vs cloud cost ratio
|
274 |
+
cheapest_cloud = None
|
275 |
+
for result in results:
|
276 |
+
if result["type"] == "Cloud":
|
277 |
+
if cheapest_cloud is None or result["cost"] < cheapest_cloud["cost"]:
|
278 |
+
cheapest_cloud = result
|
279 |
+
|
280 |
+
if cheapest_cloud:
|
281 |
+
ratio = cheapest_cloud["cost"] / cheapest["cost"]
|
282 |
+
recommendation += f"<p>This is <strong>{ratio:.1f}x cheaper</strong> than the most affordable cloud option ({cheapest_cloud['provider']}).</p>"
|
283 |
+
else:
|
284 |
+
recommendation += f"<p>Based on your usage parameters, <strong>{cheapest['provider']}</strong> is the most cost-effective option at <strong>${cheapest['cost']:.2f}/month</strong>.</p>"
|
285 |
+
|
286 |
+
# Find cheapest API
|
287 |
+
cheapest_api = None
|
288 |
+
for result in results:
|
289 |
+
if result["type"] == "API":
|
290 |
+
if cheapest_api is None or result["cost"] < cheapest_api["cost"]:
|
291 |
+
cheapest_api = result
|
292 |
+
|
293 |
+
if cheapest_api:
|
294 |
+
ratio = cheapest_api["cost"] / cheapest["cost"]
|
295 |
+
if ratio > 1:
|
296 |
+
recommendation += f"<p>This is <strong>{1/ratio:.1f}x cheaper</strong> than the most affordable API option ({cheapest_api['provider']}).</p>"
|
297 |
+
else:
|
298 |
+
recommendation += f"<p>However, the API option ({cheapest_api['provider']}) is <strong>{ratio:.1f}x cheaper</strong>.</p>"
|
299 |
+
|
300 |
+
# Additional recommendation text
|
301 |
+
if tokens_per_month > 100 and cheapest["type"] == "Cloud":
|
302 |
+
recommendation += "<p>With your high token volume, cloud hardware becomes more cost-effective despite the higher upfront costs.</p>"
|
303 |
+
elif compute_hours < 50 and cheapest["type"] == "API":
|
304 |
+
recommendation += "<p>With your low usage hours, API endpoints are more cost-effective as you only pay for what you use.</p>"
|
305 |
+
|
306 |
+
# Create breakeven analysis HTML
|
307 |
+
breakeven = "<h3>Breakeven Analysis</h3>"
|
308 |
+
|
309 |
+
if best_aws is not None and best_api_cost["total_cost"] > 0:
|
310 |
+
aws_hourly = aws_instances[best_aws]["hourly_rate"]
|
311 |
+
breakeven_hours = best_api_cost["total_cost"] / aws_hourly
|
312 |
+
|
313 |
+
breakeven += f"<p>API vs AWS: <strong>{breakeven_hours:.1f} hours</strong> is the breakeven point.</p>"
|
314 |
+
|
315 |
+
if compute_hours > breakeven_hours:
|
316 |
+
breakeven += "<p>You're past the breakeven point - AWS hardware is more cost-effective than API usage.</p>"
|
317 |
+
else:
|
318 |
+
breakeven += "<p>You're below the breakeven point - API usage is more cost-effective than AWS hardware.</p>"
|
319 |
+
|
320 |
+
if best_gcp is not None and best_api_cost["total_cost"] > 0:
|
321 |
+
gcp_hourly = gcp_instances[best_gcp]["hourly_rate"]
|
322 |
+
breakeven_hours = best_api_cost["total_cost"] / gcp_hourly
|
323 |
+
|
324 |
+
breakeven += f"<p>API vs GCP: <strong>{breakeven_hours:.1f} hours</strong> is the breakeven point.</p>"
|
325 |
+
|
326 |
+
if compute_hours > breakeven_hours:
|
327 |
+
breakeven += "<p>You're past the breakeven point - GCP hardware is more cost-effective than API usage.</p>"
|
328 |
+
else:
|
329 |
+
breakeven += "<p>You're below the breakeven point - API usage is more cost-effective than GCP hardware.</p>"
|
330 |
+
|
331 |
+
# Generate cost comparison chart
|
332 |
+
fig = px.bar(
|
333 |
+
pd.DataFrame(results),
|
334 |
+
x="provider",
|
335 |
+
y="cost",
|
336 |
+
color="type",
|
337 |
+
color_discrete_map={"Cloud": "#3B82F6", "API": "#8B5CF6"},
|
338 |
+
title="Monthly Cost Comparison",
|
339 |
+
labels={"provider": "Provider & Instance", "cost": "Monthly Cost ($)"}
|
340 |
+
)
|
341 |
+
|
342 |
+
fig.update_layout(height=500)
|
343 |
+
|
344 |
+
# Create HTML structure for the results
|
345 |
+
html_output = f"""
|
346 |
+
<div style="padding: 20px; font-family: Arial, sans-serif;">
|
347 |
+
<h2>Cost Comparison Results</h2>
|
348 |
+
|
349 |
+
<div style="margin-bottom: 20px;">
|
350 |
+
{aws_results}
|
351 |
+
</div>
|
352 |
+
|
353 |
+
<div style="margin-bottom: 20px;">
|
354 |
+
{gcp_results}
|
355 |
+
</div>
|
356 |
+
|
357 |
+
<div style="margin-bottom: 20px;">
|
358 |
+
{api_results}
|
359 |
+
</div>
|
360 |
+
|
361 |
+
<div style="margin-bottom: 20px;">
|
362 |
+
{recommendation}
|
363 |
+
</div>
|
364 |
+
|
365 |
+
<div style="margin-bottom: 20px;">
|
366 |
+
{breakeven}
|
367 |
+
</div>
|
368 |
+
|
369 |
+
<div style="margin-bottom: 20px;">
|
370 |
+
<h3>Additional Considerations</h3>
|
371 |
+
<div style="display: flex; gap: 20px;">
|
372 |
+
<div style="flex: 1; background-color: #F3F4F6; padding: 15px; border-radius: 8px;">
|
373 |
+
<h4>Cloud Hardware Pros</h4>
|
374 |
+
<ul>
|
375 |
+
<li>Full control over infrastructure and customization</li>
|
376 |
+
<li>Predictable costs for steady, high-volume workloads</li>
|
377 |
+
<li>Can run multiple models simultaneously</li>
|
378 |
+
<li>No token context limitations</li>
|
379 |
+
<li>Data stays on your infrastructure</li>
|
380 |
+
</ul>
|
381 |
+
</div>
|
382 |
+
<div style="flex: 1; background-color: #F3F4F6; padding: 15px; border-radius: 8px;">
|
383 |
+
<h4>API Endpoints Pros</h4>
|
384 |
+
<ul>
|
385 |
+
<li>No infrastructure management overhead</li>
|
386 |
+
<li>Pay-per-use model (ideal for sporadic usage)</li>
|
387 |
+
<li>Instant scalability</li>
|
388 |
+
<li>No upfront costs or commitment</li>
|
389 |
+
<li>Automatic updates to newer model versions</li>
|
390 |
+
</ul>
|
391 |
+
</div>
|
392 |
+
</div>
|
393 |
+
</div>
|
394 |
+
|
395 |
+
<div style="background-color: #FEF3C7; padding: 15px; border-radius: 8px; margin-bottom: 20px;">
|
396 |
+
<p><strong>Note:</strong> These estimates are based on current pricing as of May 2025 and may vary based on regional pricing differences, discounts, and usage patterns.</p>
|
397 |
+
</div>
|
398 |
+
</div>
|
399 |
+
"""
|
400 |
+
|
401 |
+
return html_output, fig
|
402 |
+
|
403 |
+
# Main app function
|
404 |
+
def app_function(
|
405 |
+
compute_hours,
|
406 |
+
tokens_per_month,
|
407 |
+
input_ratio,
|
408 |
+
api_calls,
|
409 |
+
model_size,
|
410 |
+
storage_gb,
|
411 |
+
batch_size,
|
412 |
+
reserved_instances,
|
413 |
+
spot_instances,
|
414 |
+
multi_year_commitment
|
415 |
+
):
|
416 |
+
html_output, fig = generate_cost_comparison(
|
417 |
+
compute_hours,
|
418 |
+
tokens_per_month,
|
419 |
+
input_ratio,
|
420 |
+
api_calls,
|
421 |
+
model_size,
|
422 |
+
storage_gb,
|
423 |
+
reserved_instances,
|
424 |
+
spot_instances,
|
425 |
+
multi_year_commitment
|
426 |
+
)
|
427 |
+
|
428 |
+
return html_output, fig
|
429 |
+
|
430 |
+
# Define the Gradio interface
|
431 |
+
with gr.Blocks(title="Cloud Cost Estimator", theme=gr.themes.Soft(primary_hue="indigo")) as demo:
|
432 |
+
gr.HTML("""
|
433 |
+
<div style="text-align: center; margin-bottom: 20px;">
|
434 |
+
<h1 style="color: #4F46E5; font-size: 2.5rem;">Cloud Cost Estimator</h1>
|
435 |
+
<p style="font-size: 1.2rem;">Compare costs between cloud hardware configurations and inference API endpoints</p>
|
436 |
+
</div>
|
437 |
+
""")
|
438 |
+
|
439 |
+
with gr.Row():
|
440 |
+
with gr.Column(scale=1):
|
441 |
+
gr.HTML("<h3>Usage Parameters</h3>")
|
442 |
+
|
443 |
+
compute_hours = gr.Slider(
|
444 |
+
label="Compute Hours per Month",
|
445 |
+
minimum=1,
|
446 |
+
maximum=730,
|
447 |
+
value=100,
|
448 |
+
info="Number of hours you'll run the model per month"
|
449 |
+
)
|
450 |
+
|
451 |
+
tokens_per_month = gr.Slider(
|
452 |
+
label="Tokens Processed per Month (millions)",
|
453 |
+
minimum=1,
|
454 |
+
maximum=1000,
|
455 |
+
value=10,
|
456 |
+
info="Total number of tokens processed per month in millions"
|
457 |
+
)
|
458 |
+
|
459 |
+
input_ratio = gr.Slider(
|
460 |
+
label="Input Token Ratio (%)",
|
461 |
+
minimum=10,
|
462 |
+
maximum=90,
|
463 |
+
value=30,
|
464 |
+
info="Percentage of total tokens that are input tokens"
|
465 |
+
)
|
466 |
+
|
467 |
+
api_calls = gr.Slider(
|
468 |
+
label="API Calls per Month",
|
469 |
+
minimum=100,
|
470 |
+
maximum=1000000,
|
471 |
+
value=10000,
|
472 |
+
step=100,
|
473 |
+
info="Number of API calls made per month"
|
474 |
+
)
|
475 |
+
|
476 |
+
model_size = gr.Dropdown(
|
477 |
+
label="Model Size",
|
478 |
+
choices=list(model_sizes.keys()),
|
479 |
+
value="Medium (13B parameters)",
|
480 |
+
info="Size of the language model you want to run"
|
481 |
+
)
|
482 |
+
|
483 |
+
storage_gb = gr.Slider(
|
484 |
+
label="Storage Required (GB)",
|
485 |
+
minimum=10,
|
486 |
+
maximum=1000,
|
487 |
+
value=100,
|
488 |
+
info="Amount of storage required for models and data"
|
489 |
+
)
|
490 |
+
|
491 |
+
batch_size = gr.Slider(
|
492 |
+
label="Batch Size",
|
493 |
+
minimum=1,
|
494 |
+
maximum=64,
|
495 |
+
value=4,
|
496 |
+
info="Batch size for inference (affects throughput)"
|
497 |
+
)
|
498 |
+
|
499 |
+
gr.HTML("<h3>Advanced Options</h3>")
|
500 |
+
|
501 |
+
reserved_instances = gr.Checkbox(
|
502 |
+
label="Use Reserved Instances",
|
503 |
+
value=False,
|
504 |
+
info="Reserved instances offer significant discounts with 1-3 year commitments"
|
505 |
+
)
|
506 |
+
|
507 |
+
spot_instances = gr.Checkbox(
|
508 |
+
label="Use Spot/Preemptible Instances",
|
509 |
+
value=False,
|
510 |
+
info="Spot instances can be 70-90% cheaper but may be terminated with little notice"
|
511 |
+
)
|
512 |
+
|
513 |
+
multi_year_commitment = gr.Radio(
|
514 |
+
label="Commitment Period (if using Reserved Instances)",
|
515 |
+
choices=["1", "3"],
|
516 |
+
value="1",
|
517 |
+
info="Length of reserved instance commitment in years"
|
518 |
+
)
|
519 |
+
|
520 |
+
submit_button = gr.Button("Calculate Costs", variant="primary")
|
521 |
+
|
522 |
+
with gr.Column(scale=2):
|
523 |
+
results_html = gr.HTML(label="Results")
|
524 |
+
plot_output = gr.Plot(label="Cost Comparison")
|
525 |
+
|
526 |
+
submit_button.click(
|
527 |
+
app_function,
|
528 |
+
inputs=[
|
529 |
+
compute_hours,
|
530 |
+
tokens_per_month,
|
531 |
+
input_ratio,
|
532 |
+
api_calls,
|
533 |
+
model_size,
|
534 |
+
storage_gb,
|
535 |
+
reserved_instances,
|
536 |
+
spot_instances,
|
537 |
+
multi_year_commitment
|
538 |
+
],
|
539 |
+
outputs=[results_html, plot_output]
|
540 |
+
)
|
541 |
+
|
542 |
+
gr.HTML("""
|
543 |
+
<div style="margin-top: 30px; border-top: 1px solid #e5e7eb; padding-top: 20px;">
|
544 |
+
<h3>Help & Resources</h3>
|
545 |
+
<p><strong>Cloud Provider Documentation:</strong>
|
546 |
+
<a href="https://aws.amazon.com/ec2/pricing/" target="_blank">AWS EC2 Pricing</a> |
|
547 |
+
<a href="https://cloud.google.com/compute/pricing" target="_blank">GCP Compute Engine Pricing</a>
|
548 |
+
</p>
|
549 |
+
<p><strong>API Provider Documentation:</strong>
|
550 |
+
<a href="https://openai.com/pricing" target="_blank">OpenAI API Pricing</a> |
|
551 |
+
<a href="https://www.anthropic.com/api" target="_blank">Anthropic Claude API Pricing</a> |
|
552 |
+
<a href="https://www.together.ai/pricing" target="_blank">TogetherAI API Pricing</a>
|
553 |
+
</p>
|
554 |
+
<p>Made with ❤️ by Cloud Cost Estimator | Data last updated: May 2025</p>
|
555 |
+
</div>
|
556 |
+
""")
|
557 |
+
|
558 |
+
demo.launch()
|
559 |
+
value=False,
|
560 |
+
info="Spot instances can be 70-90% cheaper but may be terminated with little notice"
|
561 |
+
)
|
562 |
+
|
563 |
+
multi_year_commitment = gr.Radio(
|
564 |
+
label="Commitment Period (if using Reserved Instances)",
|
565 |
+
choices=[1, 3],
|
566 |
+
value=1,
|
567 |
+
info="Length of reserved instance commitment in years"
|
568 |
+
)
|
569 |
+
|
570 |
+
submit_button = gr.Button("Calculate Costs", variant="primary")
|
571 |
+
|
572 |
+
with gr.Column(scale=2):
|
573 |
+
results_html = gr.HTML(label="Results")
|
574 |
+
plot_output = gr.Plot(label="Cost Comparison")
|
575 |
+
|
576 |
+
submit_button.click(
|
577 |
+
app_function,
|
578 |
+
inputs=[
|
579 |
+
compute_hours,
|
580 |
+
tokens_per_month,
|
581 |
+
input_ratio,
|
582 |
+
api_calls,
|
583 |
+
model_size,
|
584 |
+
storage_gb,
|
585 |
+
batch_size,
|
586 |
+
reserved_instances,
|
587 |
+
spot_instances,
|
588 |
+
multi_year_commitment
|
589 |
+
],
|
590 |
+
outputs=[results_html, plot_output]
|
591 |
+
)
|
592 |
+
|
593 |
+
gr.HTML("""
|
594 |
+
<div style="margin-top: 30px; border-top: 1px solid #e5e7eb; padding-top: 20px;">
|
595 |
+
<h3>Help & Resources</h3>
|
596 |
+
<p><strong>Cloud Provider Documentation:</strong>
|
597 |
+
<a href="https://aws.amazon.com/ec2/pricing/" target="_blank">AWS EC2 Pricing</a> |
|
598 |
+
<a href="https://cloud.google.com/compute/pricing" target="_blank">GCP Compute Engine Pricing</a>
|
599 |
+
</p>
|
600 |
+
<p><strong>API Provider Documentation:</strong>
|
601 |
+
<a href="https://openai.com/pricing" target="_blank">OpenAI API Pricing</a> |
|
602 |
+
<a href="https://www.anthropic.com/api" target="_blank">Anthropic Claude API Pricing</a> |
|
603 |
+
<a href="https://www.together.ai/pricing" target="_blank">TogetherAI API Pricing</a>
|
604 |
+
</p>
|
605 |
+
<p>Made with ❤️ by Cloud Cost Estimator | Data last updated: May 2025</p>
|
606 |
+
</div>
|
607 |
+
""")
|
608 |
+
|
609 |
+
demo.launch()
|