Update app.py
Browse files
app.py
CHANGED
@@ -4,16 +4,44 @@ import numpy as np
|
|
4 |
import plotly.express as px
|
5 |
import plotly.graph_objects as go
|
6 |
|
7 |
-
#
|
8 |
-
# Only matching T4-based instances for fair comparison:
|
9 |
aws_instances = {
|
10 |
-
|
11 |
-
"g4dn.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
}
|
13 |
|
14 |
gcp_instances = {
|
15 |
-
|
16 |
-
"n1-standard-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
}
|
18 |
|
19 |
api_pricing = {
|
@@ -69,8 +97,8 @@ def calculate_gcp_cost(instance, hours, storage, reserved=False, spot=False, yea
|
|
69 |
|
70 |
def calculate_api_cost(provider, model, in_tokens, out_tokens, calls):
|
71 |
m = api_pricing[provider][model]
|
72 |
-
input_cost = in_tokens * m['input_per_1M']
|
73 |
-
output_cost = out_tokens * m['output_per_1M']
|
74 |
call_cost = calls * 0.0001 if provider == 'TogetherAI' else 0
|
75 |
return {'total_cost': input_cost + output_cost + call_cost, 'details': m}
|
76 |
|
@@ -91,45 +119,53 @@ def filter_compatible(instances, min_mem):
|
|
91 |
|
92 |
def generate_cost_comparison(
|
93 |
compute_hours, tokens_per_month, input_ratio, api_calls,
|
94 |
-
model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment
|
|
|
95 |
):
|
96 |
years = int(multi_year_commitment)
|
97 |
-
in_tokens = tokens_per_month * (input_ratio/100)
|
98 |
-
out_tokens = tokens_per_month - in_tokens
|
99 |
min_mem = model_sizes[model_size]['memory_required']
|
100 |
|
|
|
101 |
aws_comp = filter_compatible(aws_instances, min_mem)
|
102 |
gcp_comp = filter_compatible(gcp_instances, min_mem)
|
|
|
|
|
|
|
|
|
103 |
|
104 |
results = []
|
105 |
|
106 |
# AWS table
|
107 |
aws_html = '<h3>AWS Instances</h3>'
|
108 |
-
aws_html += '<table width="100%"><tr><th>Instance</th><th>vCPUs</th><th>Memory</th><th>GPU</th><th>Monthly Cost ($)</th></tr>'
|
109 |
if aws_comp:
|
110 |
for inst in aws_comp:
|
111 |
res = calculate_aws_cost(inst, compute_hours, storage_gb, reserved_instances, spot_instances, years)
|
112 |
-
aws_html += f'<tr><td>{inst}</td><td>{res["details"]["vcpus"]}</td><td>{res["details"]["memory"]}GB</td><td>{res["details"]["gpu"]}</td><td>${res["total_cost"]:.2f}</td></tr>'
|
113 |
# best AWS
|
114 |
best_aws = min(aws_comp, key=lambda x: calculate_aws_cost(x, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost'])
|
115 |
best_aws_cost = calculate_aws_cost(best_aws, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost']
|
116 |
-
|
|
|
117 |
else:
|
118 |
-
aws_html += '<tr><td colspan="
|
119 |
aws_html += '</table>'
|
120 |
|
121 |
# GCP table
|
122 |
gcp_html = '<h3>GCP Instances</h3>'
|
123 |
-
gcp_html += '<table width="100%"><tr><th>Instance</th><th>vCPUs</th><th>Memory</th><th>GPU</th><th>Monthly Cost ($)</th></tr>'
|
124 |
if gcp_comp:
|
125 |
for inst in gcp_comp:
|
126 |
res = calculate_gcp_cost(inst, compute_hours, storage_gb, reserved_instances, spot_instances, years)
|
127 |
-
gcp_html += f'<tr><td>{inst}</td><td>{res["details"]["vcpus"]}</td><td>{res["details"]["memory"]}GB</td><td>{res["details"]["gpu"
|
128 |
best_gcp = min(gcp_comp, key=lambda x: calculate_gcp_cost(x, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost'])
|
129 |
best_gcp_cost = calculate_gcp_cost(best_gcp, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost']
|
130 |
-
|
|
|
131 |
else:
|
132 |
-
gcp_html += '<tr><td colspan="
|
133 |
gcp_html += '</table>'
|
134 |
|
135 |
# API table
|
@@ -140,28 +176,71 @@ def generate_cost_comparison(
|
|
140 |
for mdl in api_pricing[prov]:
|
141 |
res = calculate_api_cost(prov, mdl, in_tokens, out_tokens, api_calls)
|
142 |
details = api_pricing[prov][mdl]
|
143 |
-
api_html += f'<tr><td>{prov}</td><td>{mdl}</td><td>${in_tokens * details["input_per_1M"]:.2f}</td><td>${out_tokens * details["output_per_1M"]:.2f}</td><td>${res["total_cost"]:.2f}</td><td>{details["token_context"]:,}</td></tr>'
|
144 |
api_costs[(prov, mdl)] = res['total_cost']
|
145 |
api_html += '</table>'
|
146 |
-
|
147 |
-
|
|
|
|
|
148 |
|
149 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
# Chart with annotations
|
152 |
df = pd.DataFrame(results)
|
153 |
-
colors = {
|
154 |
|
155 |
# Create figure using plotly graph objects for more control
|
156 |
fig = go.Figure()
|
157 |
|
158 |
# Add bars
|
159 |
for i, row in df.iterrows():
|
|
|
160 |
fig.add_trace(go.Bar(
|
161 |
x=[row['provider']],
|
162 |
y=[row['cost']],
|
163 |
name=row['provider'],
|
164 |
-
marker_color=
|
165 |
))
|
166 |
|
167 |
# Add annotations on top of each bar
|
@@ -186,6 +265,7 @@ def generate_cost_comparison(
|
|
186 |
|
187 |
html = f"""
|
188 |
<div style='padding:20px;font-family:Arial;'>
|
|
|
189 |
{aws_html}
|
190 |
{gcp_html}
|
191 |
{api_html}
|
@@ -204,6 +284,7 @@ with gr.Blocks(title="Cloud Cost Estimator", theme=gr.themes.Soft(primary_hue="i
|
|
204 |
api_calls = gr.Slider(label="API Calls per Month", minimum=100, maximum=100000, value=5000, step=100)
|
205 |
model_size = gr.Dropdown(label="Model Size", choices=list(model_sizes.keys()), value="Medium (13B parameters)")
|
206 |
storage_gb = gr.Slider(label="Storage (GB)", minimum=10, maximum=1000, value=100)
|
|
|
207 |
reserved_instances = gr.Checkbox(label="Reserved Instances", value=False)
|
208 |
spot_instances = gr.Checkbox(label="Spot Instances", value=False)
|
209 |
multi_year_commitment = gr.Radio(label="Commitment Period (years)", choices=["1","3"], value="1")
|
@@ -213,21 +294,14 @@ with gr.Blocks(title="Cloud Cost Estimator", theme=gr.themes.Soft(primary_hue="i
|
|
213 |
|
214 |
# Create inputs list for the function
|
215 |
inputs = [compute_hours, tokens_per_month, input_ratio, api_calls,
|
216 |
-
model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment]
|
217 |
outputs = [out_html, out_plot]
|
218 |
|
219 |
# Initial calculation on load
|
220 |
demo.load(generate_cost_comparison, inputs, outputs)
|
221 |
|
222 |
# Update on each input change
|
223 |
-
|
224 |
-
|
225 |
-
input_ratio.change(generate_cost_comparison, inputs, outputs)
|
226 |
-
api_calls.change(generate_cost_comparison, inputs, outputs)
|
227 |
-
model_size.change(generate_cost_comparison, inputs, outputs)
|
228 |
-
storage_gb.change(generate_cost_comparison, inputs, outputs)
|
229 |
-
reserved_instances.change(generate_cost_comparison, inputs, outputs)
|
230 |
-
spot_instances.change(generate_cost_comparison, inputs, outputs)
|
231 |
-
multi_year_commitment.change(generate_cost_comparison, inputs, outputs)
|
232 |
|
233 |
demo.launch()
|
|
|
4 |
import plotly.express as px
|
5 |
import plotly.graph_objects as go
|
6 |
|
7 |
+
# Updated pricing data - restructured for better comparison
|
|
|
8 |
aws_instances = {
|
9 |
+
# T4 GPU Instances (entry level)
|
10 |
+
"g4dn.xlarge": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA T4", "hourly_rate": 0.526, "gpu_memory": "16GB", "tier": "Entry"},
|
11 |
+
"g4dn.2xlarge": {"vcpus": 8, "memory": 32, "gpu": "1x NVIDIA T4", "hourly_rate": 0.752, "gpu_memory": "16GB", "tier": "Entry"},
|
12 |
+
|
13 |
+
# A10G GPU Instances (mid-tier)
|
14 |
+
"g5.xlarge": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA A10G", "hourly_rate": 0.65, "gpu_memory": "24GB", "tier": "Mid"},
|
15 |
+
"g5.2xlarge": {"vcpus": 8, "memory": 32, "gpu": "1x NVIDIA A10G", "hourly_rate": 1.006, "gpu_memory": "24GB", "tier": "Mid"},
|
16 |
+
|
17 |
+
# V100 GPU Instances (high-tier)
|
18 |
+
"p3.2xlarge": {"vcpus": 8, "memory": 61, "gpu": "1x NVIDIA V100", "hourly_rate": 3.06, "gpu_memory": "16GB", "tier": "High"},
|
19 |
+
|
20 |
+
# A100 GPU Instances (premium)
|
21 |
+
"p4d.24xlarge": {"vcpus": 96, "memory": 1152, "gpu": "8x NVIDIA A100", "hourly_rate": 32.77, "gpu_memory": "8x40GB", "tier": "Premium"},
|
22 |
+
|
23 |
+
# Added comparable instances to match GCP
|
24 |
+
"p4d.xlarge": {"vcpus": 12, "memory": 85, "gpu": "1x NVIDIA A100", "hourly_rate": 4.10, "gpu_memory": "40GB", "tier": "Premium"},
|
25 |
+
"p4d.2xlarge": {"vcpus": 24, "memory": 170, "gpu": "2x NVIDIA A100", "hourly_rate": 8.20, "gpu_memory": "2x40GB", "tier": "Premium"},
|
26 |
+
"p4d.4xlarge": {"vcpus": 48, "memory": 340, "gpu": "4x NVIDIA A100", "hourly_rate": 16.40, "gpu_memory": "4x40GB", "tier": "Premium"},
|
27 |
}
|
28 |
|
29 |
gcp_instances = {
|
30 |
+
# T4 GPU Instances (entry level)
|
31 |
+
"n1-standard-4-t4": {"vcpus": 4, "memory": 15, "gpu": "1x NVIDIA T4", "hourly_rate": 0.49, "gpu_memory": "16GB", "tier": "Entry"},
|
32 |
+
"n1-standard-8-t4": {"vcpus": 8, "memory": 30, "gpu": "1x NVIDIA T4", "hourly_rate": 0.69, "gpu_memory": "16GB", "tier": "Entry"},
|
33 |
+
|
34 |
+
# L4 GPU Instances (mid-tier)
|
35 |
+
"g2-standard-4": {"vcpus": 4, "memory": 16, "gpu": "1x NVIDIA L4", "hourly_rate": 0.59, "gpu_memory": "24GB", "tier": "Mid"},
|
36 |
+
"g2-standard-8": {"vcpus": 8, "memory": 32, "gpu": "1x NVIDIA L4", "hourly_rate": 0.89, "gpu_memory": "24GB", "tier": "Mid"},
|
37 |
+
|
38 |
+
# Added comparable V100 instance
|
39 |
+
"n1-standard-8-v100": {"vcpus": 8, "memory": 60, "gpu": "1x NVIDIA V100", "hourly_rate": 2.95, "gpu_memory": "16GB", "tier": "High"},
|
40 |
+
|
41 |
+
# A100 GPU Instances (premium)
|
42 |
+
"a2-highgpu-1g": {"vcpus": 12, "memory": 85, "gpu": "1x NVIDIA A100", "hourly_rate": 1.46, "gpu_memory": "40GB", "tier": "Premium"},
|
43 |
+
"a2-highgpu-2g": {"vcpus": 24, "memory": 170, "gpu": "2x NVIDIA A100", "hourly_rate": 2.93, "gpu_memory": "2x40GB", "tier": "Premium"},
|
44 |
+
"a2-highgpu-4g": {"vcpus": 48, "memory": 340, "gpu": "4x NVIDIA A100", "hourly_rate": 5.86, "gpu_memory": "4x40GB", "tier": "Premium"},
|
45 |
}
|
46 |
|
47 |
api_pricing = {
|
|
|
97 |
|
98 |
def calculate_api_cost(provider, model, in_tokens, out_tokens, calls):
|
99 |
m = api_pricing[provider][model]
|
100 |
+
input_cost = in_tokens * m['input_per_1M'] / 1000000
|
101 |
+
output_cost = out_tokens * m['output_per_1M'] / 1000000
|
102 |
call_cost = calls * 0.0001 if provider == 'TogetherAI' else 0
|
103 |
return {'total_cost': input_cost + output_cost + call_cost, 'details': m}
|
104 |
|
|
|
119 |
|
120 |
def generate_cost_comparison(
|
121 |
compute_hours, tokens_per_month, input_ratio, api_calls,
|
122 |
+
model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment,
|
123 |
+
comparison_tier
|
124 |
):
|
125 |
years = int(multi_year_commitment)
|
126 |
+
in_tokens = tokens_per_month * 1000000 * (input_ratio/100)
|
127 |
+
out_tokens = tokens_per_month * 1000000 - in_tokens
|
128 |
min_mem = model_sizes[model_size]['memory_required']
|
129 |
|
130 |
+
# Filter by both memory requirements and tier if a tier is selected
|
131 |
aws_comp = filter_compatible(aws_instances, min_mem)
|
132 |
gcp_comp = filter_compatible(gcp_instances, min_mem)
|
133 |
+
|
134 |
+
if comparison_tier != "All":
|
135 |
+
aws_comp = {k: v for k, v in aws_comp.items() if v.get('tier', '') == comparison_tier}
|
136 |
+
gcp_comp = {k: v for k, v in gcp_comp.items() if v.get('tier', '') == comparison_tier}
|
137 |
|
138 |
results = []
|
139 |
|
140 |
# AWS table
|
141 |
aws_html = '<h3>AWS Instances</h3>'
|
142 |
+
aws_html += '<table width="100%"><tr><th>Instance</th><th>vCPUs</th><th>Memory</th><th>GPU</th><th>Tier</th><th>Monthly Cost ($)</th></tr>'
|
143 |
if aws_comp:
|
144 |
for inst in aws_comp:
|
145 |
res = calculate_aws_cost(inst, compute_hours, storage_gb, reserved_instances, spot_instances, years)
|
146 |
+
aws_html += f'<tr><td>{inst}</td><td>{res["details"]["vcpus"]}</td><td>{res["details"]["memory"]}GB</td><td>{res["details"]["gpu"]}</td><td>{res["details"].get("tier", "")}</td><td>${res["total_cost"]:.2f}</td></tr>'
|
147 |
# best AWS
|
148 |
best_aws = min(aws_comp, key=lambda x: calculate_aws_cost(x, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost'])
|
149 |
best_aws_cost = calculate_aws_cost(best_aws, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost']
|
150 |
+
best_aws_tier = aws_instances[best_aws].get('tier', '')
|
151 |
+
results.append({'provider': f'AWS ({best_aws})', 'cost': best_aws_cost, 'type': 'Cloud', 'tier': best_aws_tier})
|
152 |
else:
|
153 |
+
aws_html += '<tr><td colspan="6">No compatible instances</td></tr>'
|
154 |
aws_html += '</table>'
|
155 |
|
156 |
# GCP table
|
157 |
gcp_html = '<h3>GCP Instances</h3>'
|
158 |
+
gcp_html += '<table width="100%"><tr><th>Instance</th><th>vCPUs</th><th>Memory</th><th>GPU</th><th>Tier</th><th>Monthly Cost ($)</th></tr>'
|
159 |
if gcp_comp:
|
160 |
for inst in gcp_comp:
|
161 |
res = calculate_gcp_cost(inst, compute_hours, storage_gb, reserved_instances, spot_instances, years)
|
162 |
+
gcp_html += f'<tr><td>{inst}</td><td>{res["details"]["vcpus"]}</td><td>{res["details"]["memory"]}GB</td><td>{res["details"]["gpu"]}</td><td>{res["details"].get("tier", "")}</td><td>${res["total_cost"]:.2f}</td></tr>'
|
163 |
best_gcp = min(gcp_comp, key=lambda x: calculate_gcp_cost(x, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost'])
|
164 |
best_gcp_cost = calculate_gcp_cost(best_gcp, compute_hours, storage_gb, reserved_instances, spot_instances, years)['total_cost']
|
165 |
+
best_gcp_tier = gcp_instances[best_gcp].get('tier', '')
|
166 |
+
results.append({'provider': f'GCP ({best_gcp})', 'cost': best_gcp_cost, 'type': 'Cloud', 'tier': best_gcp_tier})
|
167 |
else:
|
168 |
+
gcp_html += '<tr><td colspan="6">No compatible instances</td></tr>'
|
169 |
gcp_html += '</table>'
|
170 |
|
171 |
# API table
|
|
|
176 |
for mdl in api_pricing[prov]:
|
177 |
res = calculate_api_cost(prov, mdl, in_tokens, out_tokens, api_calls)
|
178 |
details = api_pricing[prov][mdl]
|
179 |
+
api_html += f'<tr><td>{prov}</td><td>{mdl}</td><td>${in_tokens * details["input_per_1M"] / 1000000:.2f}</td><td>${out_tokens * details["output_per_1M"] / 1000000:.2f}</td><td>${res["total_cost"]:.2f}</td><td>{details["token_context"]:,}</td></tr>'
|
180 |
api_costs[(prov, mdl)] = res['total_cost']
|
181 |
api_html += '</table>'
|
182 |
+
|
183 |
+
if api_costs:
|
184 |
+
best_api = min(api_costs, key=api_costs.get)
|
185 |
+
results.append({'provider': f'{best_api[0]} ({best_api[1]})', 'cost': api_costs[best_api], 'type': 'API', 'tier': 'API'})
|
186 |
|
187 |
+
# Direct comparison tables for similar instances
|
188 |
+
direct_comparison_html = ""
|
189 |
+
if comparison_tier != "All" and comparison_tier != "API":
|
190 |
+
direct_comparison_html = f'<h3>Direct {comparison_tier} Tier Comparison</h3>'
|
191 |
+
direct_comparison_html += '<table width="100%"><tr><th>Provider</th><th>Instance</th><th>vCPUs</th><th>Memory</th><th>GPU</th><th>Monthly Cost ($)</th></tr>'
|
192 |
+
|
193 |
+
aws_filtered = {k: v for k, v in aws_instances.items() if v.get('tier', '') == comparison_tier}
|
194 |
+
gcp_filtered = {k: v for k, v in gcp_instances.items() if v.get('tier', '') == comparison_tier}
|
195 |
+
|
196 |
+
# Group by vCPU for comparison
|
197 |
+
vcpu_groups = {}
|
198 |
+
for inst, data in aws_filtered.items():
|
199 |
+
vcpu = data['vcpus']
|
200 |
+
if vcpu not in vcpu_groups:
|
201 |
+
vcpu_groups[vcpu] = {'aws': [], 'gcp': []}
|
202 |
+
vcpu_groups[vcpu]['aws'].append(inst)
|
203 |
+
|
204 |
+
for inst, data in gcp_filtered.items():
|
205 |
+
vcpu = data['vcpus']
|
206 |
+
if vcpu not in vcpu_groups:
|
207 |
+
vcpu_groups[vcpu] = {'aws': [], 'gcp': []}
|
208 |
+
vcpu_groups[vcpu]['gcp'].append(inst)
|
209 |
+
|
210 |
+
# Display direct comparisons
|
211 |
+
for vcpu in sorted(vcpu_groups.keys()):
|
212 |
+
group = vcpu_groups[vcpu]
|
213 |
+
for aws_inst in group['aws']:
|
214 |
+
aws_cost = calculate_aws_cost(aws_inst, compute_hours, storage_gb, reserved_instances, spot_instances, years)
|
215 |
+
aws_data = aws_cost['details']
|
216 |
+
direct_comparison_html += f'<tr><td>AWS</td><td>{aws_inst}</td><td>{aws_data["vcpus"]}</td><td>{aws_data["memory"]}GB</td><td>{aws_data["gpu"]}</td><td>${aws_cost["total_cost"]:.2f}</td></tr>'
|
217 |
+
|
218 |
+
for gcp_inst in group['gcp']:
|
219 |
+
gcp_cost = calculate_gcp_cost(gcp_inst, compute_hours, storage_gb, reserved_instances, spot_instances, years)
|
220 |
+
gcp_data = gcp_cost['details']
|
221 |
+
direct_comparison_html += f'<tr><td>GCP</td><td>{gcp_inst}</td><td>{gcp_data["vcpus"]}</td><td>{gcp_data["memory"]}GB</td><td>{gcp_data["gpu"]}</td><td>${gcp_cost["total_cost"]:.2f}</td></tr>'
|
222 |
+
|
223 |
+
# Add separator between different vCPU groups
|
224 |
+
if vcpu != sorted(vcpu_groups.keys())[-1]:
|
225 |
+
direct_comparison_html += '<tr><td colspan="6" style="border-bottom: 1px solid #ccc; height: 10px;"></td></tr>'
|
226 |
+
|
227 |
+
direct_comparison_html += '</table>'
|
228 |
|
229 |
# Chart with annotations
|
230 |
df = pd.DataFrame(results)
|
231 |
+
colors = {'Entry': '#66BB6A', 'Mid': '#42A5F5', 'High': '#FFA726', 'Premium': '#EF5350', 'API': '#AB47BC'}
|
232 |
|
233 |
# Create figure using plotly graph objects for more control
|
234 |
fig = go.Figure()
|
235 |
|
236 |
# Add bars
|
237 |
for i, row in df.iterrows():
|
238 |
+
tier_color = colors.get(row.get('tier', 'API'), '#9E9E9E')
|
239 |
fig.add_trace(go.Bar(
|
240 |
x=[row['provider']],
|
241 |
y=[row['cost']],
|
242 |
name=row['provider'],
|
243 |
+
marker_color=tier_color
|
244 |
))
|
245 |
|
246 |
# Add annotations on top of each bar
|
|
|
265 |
|
266 |
html = f"""
|
267 |
<div style='padding:20px;font-family:Arial;'>
|
268 |
+
{direct_comparison_html}
|
269 |
{aws_html}
|
270 |
{gcp_html}
|
271 |
{api_html}
|
|
|
284 |
api_calls = gr.Slider(label="API Calls per Month", minimum=100, maximum=100000, value=5000, step=100)
|
285 |
model_size = gr.Dropdown(label="Model Size", choices=list(model_sizes.keys()), value="Medium (13B parameters)")
|
286 |
storage_gb = gr.Slider(label="Storage (GB)", minimum=10, maximum=1000, value=100)
|
287 |
+
comparison_tier = gr.Radio(label="Comparison Tier", choices=["All", "Entry", "Mid", "High", "Premium", "API"], value="All")
|
288 |
reserved_instances = gr.Checkbox(label="Reserved Instances", value=False)
|
289 |
spot_instances = gr.Checkbox(label="Spot Instances", value=False)
|
290 |
multi_year_commitment = gr.Radio(label="Commitment Period (years)", choices=["1","3"], value="1")
|
|
|
294 |
|
295 |
# Create inputs list for the function
|
296 |
inputs = [compute_hours, tokens_per_month, input_ratio, api_calls,
|
297 |
+
model_size, storage_gb, reserved_instances, spot_instances, multi_year_commitment, comparison_tier]
|
298 |
outputs = [out_html, out_plot]
|
299 |
|
300 |
# Initial calculation on load
|
301 |
demo.load(generate_cost_comparison, inputs, outputs)
|
302 |
|
303 |
# Update on each input change
|
304 |
+
for input_component in inputs:
|
305 |
+
input_component.change(generate_cost_comparison, inputs, outputs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
demo.launch()
|