File size: 9,254 Bytes
09794cb dd97a96 09794cb fec53ba 09794cb 629a90b 09794cb dd97a96 0ff9928 09794cb 0ff9928 09794cb 0ff9928 09794cb 079604c 09794cb 629a90b f47e09f 2b7760c f47e09f 0fe93da f47e09f d712cde 0685a2c d712cde 09794cb 629a90b 09794cb f47e09f 09794cb 085b825 09794cb a9bb66f 0ff9928 09794cb d712cde 629a90b 0ff9928 09794cb 98c6962 0ff9928 09794cb 0ff9928 09794cb 0ff9928 085b825 0ff9928 09794cb fec53ba 97dea78 09794cb 2b7760c 51fb3d2 2b7760c 085b825 09794cb 22e35a0 079604c f47e09f 09794cb 079604c 09794cb 6a37b4f 98c6962 6a37b4f 2b7760c 6a37b4f 085b825 bbd22e4 796bea7 bbd22e4 7ba28c1 bbd22e4 6a37b4f 085b825 629a90b 079604c 629a90b e2dd3f3 085b825 19ec831 6a37b4f 085b825 f4337c3 085b825 6a37b4f 19ec831 6a37b4f d712cde 0950fa7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
import warnings
import spaces
warnings.filterwarnings("ignore")
import logging
from argparse import ArgumentParser
from pathlib import Path
import torch
import torchaudio
import gradio as gr
from transformers import AutoModel
import laion_clap
from meanaudio.eval_utils import (
ModelConfig,
all_model_cfg,
generate_mf,
generate_fm,
setup_eval_logging,
)
from meanaudio.model.flow_matching import FlowMatching
from meanaudio.model.mean_flow import MeanFlow
from meanaudio.model.networks import MeanAudio, get_mean_audio
from meanaudio.model.utils.features_utils import FeaturesUtils
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import gc
import json
from datetime import datetime
from huggingface_hub import snapshot_download
import numpy as np
log = logging.getLogger()
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
setup_eval_logging()
OUTPUT_DIR = Path("./output/gradio")
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
NUM_SAMPLE = 1
# 创建RLHF反馈数据目录
FEEDBACK_DIR = Path("./rlhf")
FEEDBACK_DIR.mkdir(exist_ok=True)
FEEDBACK_FILE = FEEDBACK_DIR / "user_preferences.jsonl"
# Global model cache to avoid reloading
MODEL_CACHE = {}
FEATURE_UTILS_CACHE = {}
def fade_out(x, sr, fade_ms=50):
n = len(x)
k = int(sr * fade_ms / 1000)
if k <= 0 or k >= n:
return x
w = np.linspace(1.0, 0.0, k)
x[-k:] = x[-k:] * w
return x
def ensure_models_downloaded():
for variant, model_cfg in all_model_cfg.items():
if not model_cfg.model_path.exists():
log.info(f'Model {variant} not found, downloading...')
snapshot_download(repo_id="AndreasXi/MeanAudio", local_dir="./weights")
break
def load_model_cache():
for variant in all_model_cfg.keys():
if variant in MODEL_CACHE:
return MODEL_CACHE[variant], FEATURE_UTILS_CACHE['default']
else:
log.info(f"Loading model {variant} for the first time...")
model_cfg = all_model_cfg[variant]
net = get_mean_audio(model_cfg.model_name, use_rope=True, text_c_dim=512)
net = net.to(device, torch.bfloat16).eval()
net.load_weights(torch.load(model_cfg.model_path, map_location=device, weights_only=True))
MODEL_CACHE[variant] = net
feature_utils = FeaturesUtils(
tod_vae_ckpt=model_cfg.vae_path,
enable_conditions=True,
encoder_name="t5_clap",
mode=model_cfg.mode,
bigvgan_vocoder_ckpt=model_cfg.bigvgan_16k_path,
need_vae_encoder=False
).to(device, torch.bfloat16).eval()
FEATURE_UTILS_CACHE['default'] = feature_utils
def save_preference_feedback(prompt, audio1_path, audio2_path, preference, additional_comment=""):
feedback_data = {
"timestamp": datetime.now().isoformat(),
"prompt": prompt,
"audio1_path": audio1_path,
"audio2_path": audio2_path,
"preference": preference, # "audio1", "audio2", "equal", "both_bad"
"additional_comment": additional_comment
}
with open(FEEDBACK_FILE, "a", encoding="utf-8") as f:
f.write(json.dumps(feedback_data, ensure_ascii=False) + "\n")
log.info(f"Preference feedback saved: {preference} for prompt: '{prompt[:50]}...'")
return f"✅ Thanks for your feedback, preference recorded: {preference}"
@spaces.GPU(duration=60)
@torch.inference_mode()
def generate_audio_gradio(
prompt,
duration,
cfg_strength,
num_steps,
variant,
seed
):
# update
if duration <= 0 or num_steps <= 0:
raise ValueError("Duration and number of steps must be positive.")
if variant not in all_model_cfg:
raise ValueError(f"Unknown model variant: {variant}. Available: {list(all_model_cfg.keys())}")
net, feature_utils = MODEL_CACHE[variant], FEATURE_UTILS_CACHE['default']
model = all_model_cfg[variant]
seq_cfg = model.seq_cfg
seq_cfg.duration = duration
net.update_seq_lengths(seq_cfg.latent_seq_len)
if variant == 'meanaudio_s_ac' or variant == 'meanaudio_s_full' or variant == 'meanaudio_l_full':
use_meanflow=True
elif variant == 'fluxaudio_s_full':
use_meanflow=False
if use_meanflow:
sampler = MeanFlow(steps=num_steps)
log.info("Using MeanFlow for generation.")
generation_func = generate_mf
sampler_arg_name = "mf"
cfg_strength = 0
else:
sampler = FlowMatching(
min_sigma=0, inference_mode="euler", num_steps=num_steps
)
log.info("Using FlowMatching for generation.")
generation_func = generate_fm
sampler_arg_name = "fm"
rng = torch.Generator(device=device)
rng.manual_seed(seed)
audios = generation_func(
[prompt]*NUM_SAMPLE,
negative_text=None,
feature_utils=feature_utils,
net=net,
rng=rng,
cfg_strength=cfg_strength,
**{sampler_arg_name: sampler},
)
save_paths = []
safe_prompt = (
"".join(c for c in prompt if c.isalnum() or c in (" ", "_"))
.rstrip()
.replace(" ", "_")[:50]
)
for i, audio in enumerate(audios):
audio = audio.float().cpu()
audio = fade_out(audio, seq_cfg.sampling_rate, fade_ms=100)
current_time_string = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = f"{safe_prompt}_{current_time_string}_{i}.flac"
save_path = OUTPUT_DIR / filename
torchaudio.save(str(save_path), audio, seq_cfg.sampling_rate)
log.info(f"Audio saved to {save_path}")
save_paths.append(str(save_path))
if device == "cuda":
torch.cuda.empty_cache()
return save_paths[0], prompt
# Gradio input and output components
input_text = gr.Textbox(lines=2, label="Prompt")
variant = gr.Dropdown(label="Model Variant", choices=list(all_model_cfg.keys()), value='meanaudio_s_full', interactive=True)
output_audio = gr.Audio(label="Generated Audio", type="filepath")
denoising_steps = gr.Slider(minimum=1, maximum=25, value=1, step=1, label="Sampling Steps", interactive=True)
cfg_strength = gr.Slider(minimum=1, maximum=10, value=4.5, step=0.5, label="Guidance Scale", interactive=True)
duration = gr.Slider(minimum=1, maximum=30, value=10, step=1, label="Duration", interactive=True)
seed = gr.Slider(minimum=1, maximum=100, value=42, step=1, label="Seed", interactive=True)
description_text = """
### **MeanAudio** is a novel text-to-audio generator that uses **MeanFlow** to synthesize realistic and faithful audio in few sampling steps. It achieves state-of-the-art performance in single-step audio generation and delivers strong performance in multi-step audio generation.
### [📖 **Arxiv**](https://arxiv.org/abs/2508.06098) | [💻 **GitHub**](https://github.com/xiquan-li/MeanAudio) | [🤗 **Model**](https://huggingface.co/AndreasXi/MeanAudio) | [🚀 **Space**](https://huggingface.co/spaces/chenxie95/MeanAudio) | [🌐 **Project Page**](https://meanaudio.github.io/)
"""
gr_interface = gr.Interface(
fn=generate_audio_gradio,
inputs=[input_text, duration, cfg_strength, denoising_steps, variant, seed],
outputs=[
gr.Audio(label="🎵 Audio Sample", type="filepath"),
gr.Textbox(label="Prompt Used", interactive=False)
],
title="MeanAudio: Fast and Faithful Text-to-Audio Generation with Mean Flows",
description=description_text,
flagging_mode="never",
examples=[
["Guitar and piano playing a warm music, with a soft and gentle melody, perfect for a romantic evening.", 10, 3, 1, "meanaudio_s_full", 42],
["Melodic human whistling harmonizing with natural birdsong", 10, 3, 1, "meanaudio_s_full", 42],
["A parade marches through a town square, with drumbeats pounding, children clapping, and a horse neighing amidst the commotion", 10, 3, 1, "meanaudio_s_full", 42],
["Quiet speech and then and airplane flying away", 10, 3, 1, "meanaudio_s_full", 42],
["A basketball bounces rhythmically on a court, shoes squeak against the floor, and a referee’s whistle cuts through the air", 10, 3, 1, "meanaudio_s_full", 42],
["Chopping meat on a wooden table.", 10, 3, 1, "meanaudio_s_full", 42],
["A vehicle engine revving then accelerating at a high rate as a metal surface is whipped followed by tires skidding.", 10, 3, 1, "meanaudio_s_full", 42],
["Battlefield scene, continuous roar of artillery and gunfire, high fidelity, the sharp crack of bullets, the thundering explosions of bombs, and the screams of wounded soldiers.", 10, 3, 1, "meanaudio_s_full", 42],
["Pop music that upbeat, catchy, and easy to listen, high fidelity, with simple melodies, electronic instruments and polished production.", 10, 3, 1, "meanaudio_s_full", 42],
["A fast-paced instrumental piece with a classical vibe featuring stringed instruments, evoking an energetic and uplifting mood.", 10, 3, 1, "meanaudio_s_full", 42]
],
cache_examples="lazy",
)
if __name__ == "__main__":
ensure_models_downloaded()
load_model_cache()
gr_interface.queue(15).launch() |