update new model versions and test
Browse files- .DS_Store +0 -0
- __pycache__/MeanAudio.cpython-311.pyc +0 -0
- app.py +44 -131
- meanaudio/eval_utils.py +12 -6
- meanaudio/model/networks.py +7 -7
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
__pycache__/MeanAudio.cpython-311.pyc
DELETED
Binary file (8.39 kB)
|
|
app.py
CHANGED
@@ -16,6 +16,7 @@ from meanaudio.eval_utils import (
|
|
16 |
generate_fm,
|
17 |
setup_eval_logging,
|
18 |
)
|
|
|
19 |
from meanaudio.model.flow_matching import FlowMatching
|
20 |
from meanaudio.model.mean_flow import MeanFlow
|
21 |
from meanaudio.model.networks import MeanAudio, get_mean_audio
|
@@ -25,117 +26,28 @@ torch.backends.cudnn.allow_tf32 = True
|
|
25 |
import gc
|
26 |
from datetime import datetime
|
27 |
from huggingface_hub import snapshot_download
|
|
|
28 |
log = logging.getLogger()
|
29 |
device = "cpu"
|
|
|
30 |
if torch.cuda.is_available():
|
31 |
device = "cuda"
|
32 |
setup_eval_logging()
|
|
|
33 |
OUTPUT_DIR = Path("./output/gradio")
|
34 |
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
35 |
NUM_SAMPLE=7
|
36 |
-
snapshot_download(repo_id="google/flan-t5-large")
|
37 |
-
a=AutoModel.from_pretrained('bert-base-uncased')
|
38 |
-
b=AutoModel.from_pretrained('roberta-base')
|
39 |
-
snapshot_download(repo_id="junxiliu/Meanaudio", local_dir="./weights",allow_patterns=["*.pt", "*.pth"] )
|
40 |
-
_clap_ckpt_path='./weights/music_speech_audioset_epoch_15_esc_89.98.pt'
|
41 |
-
laion_clap_model = laion_clap.CLAP_Module(enable_fusion=False,
|
42 |
-
amodel='HTSAT-base').cuda().eval()
|
43 |
-
laion_clap_model.load_ckpt(_clap_ckpt_path, verbose=False)
|
44 |
-
current_model_states = {
|
45 |
-
|
46 |
-
}
|
47 |
-
|
48 |
-
def load_model_if_needed(
|
49 |
-
variant, model_path, encoder_name, use_rope, text_c_dim
|
50 |
-
):
|
51 |
-
global current_model_states
|
52 |
-
dtype = torch.float32
|
53 |
-
existing_state = current_model_states.get(variant)
|
54 |
-
needs_reload = (
|
55 |
-
existing_state is None
|
56 |
-
or existing_state["args"].variant != variant
|
57 |
-
or existing_state["args"].model_path != model_path
|
58 |
-
or existing_state["args"].encoder_name != encoder_name
|
59 |
-
or existing_state["args"].use_rope != use_rope
|
60 |
-
or existing_state["args"].text_c_dim != text_c_dim
|
61 |
-
)
|
62 |
-
if needs_reload:
|
63 |
-
log.info(f"Loading/reloading model '{variant}'.")
|
64 |
-
if variant not in all_model_cfg:
|
65 |
-
raise ValueError(f"Unknown model variant: {variant}")
|
66 |
-
model: ModelConfig = all_model_cfg[variant]
|
67 |
-
seq_cfg = model.seq_cfg
|
68 |
-
|
69 |
-
class MockArgs:
|
70 |
-
pass
|
71 |
-
mock_args = MockArgs()
|
72 |
-
mock_args.variant = variant
|
73 |
-
mock_args.model_path = model_path
|
74 |
-
mock_args.encoder_name = encoder_name
|
75 |
-
mock_args.use_rope = use_rope
|
76 |
-
mock_args.text_c_dim = text_c_dim
|
77 |
-
|
78 |
-
net: MeanAudio = (
|
79 |
-
get_mean_audio(
|
80 |
-
model.model_name,
|
81 |
-
use_rope=mock_args.use_rope,
|
82 |
-
text_c_dim=mock_args.text_c_dim,
|
83 |
-
)
|
84 |
-
.to(device, dtype)
|
85 |
-
.eval()
|
86 |
-
)
|
87 |
-
net.load_weights(
|
88 |
-
torch.load(
|
89 |
-
mock_args.model_path, map_location=device, weights_only=True
|
90 |
-
)
|
91 |
-
)
|
92 |
-
log.info(f"Loaded weights from {mock_args.model_path}")
|
93 |
-
|
94 |
-
feature_utils = FeaturesUtils(
|
95 |
-
tod_vae_ckpt=model.vae_path,
|
96 |
-
enable_conditions=True,
|
97 |
-
encoder_name=mock_args.encoder_name,
|
98 |
-
mode=model.mode,
|
99 |
-
bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
|
100 |
-
need_vae_encoder=False,
|
101 |
-
)
|
102 |
-
feature_utils = feature_utils.to(device, dtype).eval()
|
103 |
-
|
104 |
-
current_model_states[variant] = {
|
105 |
-
"net": net,
|
106 |
-
"feature_utils": feature_utils,
|
107 |
-
"seq_cfg": seq_cfg,
|
108 |
-
"args": mock_args,
|
109 |
-
}
|
110 |
-
log.info(f"Model '{variant}' loaded successfully.")
|
111 |
-
|
112 |
-
return net, feature_utils, seq_cfg, mock_args
|
113 |
-
else:
|
114 |
-
log.info(f"Model '{variant}' already loaded with current settings. Skipping reload.")
|
115 |
-
|
116 |
-
return existing_state["net"], existing_state["feature_utils"], existing_state["seq_cfg"], existing_state["args"]
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
common_params = {
|
122 |
-
"encoder_name": "t5_clap",
|
123 |
-
"use_rope": True,
|
124 |
-
"text_c_dim": 512,
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
|
130 |
-
|
131 |
-
load_model_if_needed(
|
132 |
-
variant, model_path, **common_params
|
133 |
-
)
|
134 |
-
log.info(f"Default model '{variant}' initialized successfully.")
|
135 |
-
except Exception as e:
|
136 |
-
log.error(f"Failed to initialize default model '{variant}': {e}")
|
137 |
|
138 |
-
initialize_all_default_models()
|
139 |
|
140 |
@spaces.GPU(duration=10)
|
141 |
@torch.inference_mode()
|
@@ -148,44 +60,42 @@ def generate_audio_gradio(
|
|
148 |
seed,
|
149 |
variant,
|
150 |
):
|
151 |
-
global current_model_states
|
152 |
-
|
153 |
-
model_path = f"./weights/{variant}.pth"
|
154 |
-
encoder_name = "t5_clap"
|
155 |
-
use_rope = True
|
156 |
-
text_c_dim = 512
|
157 |
-
|
158 |
-
model_state = current_model_states.get(variant)
|
159 |
-
if model_state is None:
|
160 |
-
error_msg = f"Error: Model '{variant}' is not available. It may not have been loaded correctly during startup."
|
161 |
-
log.error(error_msg)
|
162 |
-
return error_msg, None
|
163 |
-
|
164 |
-
net = model_state["net"]
|
165 |
-
feature_utils = model_state["feature_utils"]
|
166 |
-
seq_cfg = model_state["seq_cfg"]
|
167 |
-
|
168 |
-
args = model_state["args"]
|
169 |
dtype = torch.float32
|
|
|
|
|
|
|
|
|
170 |
|
171 |
-
|
172 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
-
rng = torch.Generator(device=device)
|
177 |
-
if seed >= 0:
|
178 |
-
rng.manual_seed(seed)
|
179 |
-
else:
|
180 |
-
rng.seed()
|
181 |
|
182 |
-
|
|
|
|
|
|
|
|
|
183 |
if use_meanflow:
|
184 |
sampler = MeanFlow(steps=num_steps)
|
185 |
log.info("Using MeanFlow for generation.")
|
186 |
generation_func = generate_mf
|
187 |
sampler_arg_name = "mf"
|
188 |
-
cfg_strength =
|
189 |
else:
|
190 |
sampler = FlowMatching(
|
191 |
min_sigma=0, inference_mode="euler", num_steps=num_steps
|
@@ -193,6 +103,10 @@ def generate_audio_gradio(
|
|
193 |
log.info("Using FlowMatching for generation.")
|
194 |
generation_func = generate_fm
|
195 |
sampler_arg_name = "fm"
|
|
|
|
|
|
|
|
|
196 |
audios = generation_func(
|
197 |
[prompt]*NUM_SAMPLE,
|
198 |
negative_text=[negative_prompt]*NUM_SAMPLE,
|
@@ -205,11 +119,11 @@ def generate_audio_gradio(
|
|
205 |
text_embed = laion_clap_model.get_text_embedding(prompt, use_tensor=True).squeeze()
|
206 |
audio_embed = laion_clap_model.get_audio_embedding_from_data(audios[:,0,:].float().cpu(), use_tensor=True).squeeze()
|
207 |
scores = torch.cosine_similarity(text_embed.expand(audio_embed.shape[0], -1),
|
208 |
-
|
209 |
-
|
210 |
log.info(scores)
|
211 |
log.info(torch.argmax(scores).item())
|
212 |
-
audio=audios[torch.argmax(scores).item()].float().cpu()
|
213 |
safe_prompt = (
|
214 |
"".join(c for c in prompt if c.isalnum() or c in (" ", "_"))
|
215 |
.rstrip()
|
@@ -400,7 +314,6 @@ with gr.Blocks(title="MeanAudio Generator", theme=theme, css=custom_css) as demo
|
|
400 |
interactive=True,
|
401 |
scale=3,
|
402 |
)
|
403 |
-
|
404 |
with gr.Column(elem_classes="setting-section"):
|
405 |
with gr.Row():
|
406 |
prompt = gr.Textbox(
|
|
|
16 |
generate_fm,
|
17 |
setup_eval_logging,
|
18 |
)
|
19 |
+
|
20 |
from meanaudio.model.flow_matching import FlowMatching
|
21 |
from meanaudio.model.mean_flow import MeanFlow
|
22 |
from meanaudio.model.networks import MeanAudio, get_mean_audio
|
|
|
26 |
import gc
|
27 |
from datetime import datetime
|
28 |
from huggingface_hub import snapshot_download
|
29 |
+
|
30 |
log = logging.getLogger()
|
31 |
device = "cpu"
|
32 |
+
|
33 |
if torch.cuda.is_available():
|
34 |
device = "cuda"
|
35 |
setup_eval_logging()
|
36 |
+
|
37 |
OUTPUT_DIR = Path("./output/gradio")
|
38 |
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
39 |
NUM_SAMPLE=7
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
snapshot_download(repo_id="google/flan-t5-large")
|
42 |
+
a = AutoModel.from_pretrained('bert-base-uncased')
|
43 |
+
b = AutoModel.from_pretrained('roberta-base')
|
|
|
|
|
|
|
|
|
44 |
|
45 |
+
snapshot_download(repo_id="AndreasXi/MeanAudio", local_dir="./weights",allow_patterns=["*.pt", "*.pth"] )
|
46 |
+
_clap_ckpt_path='./weights/music_speech_audioset_epoch_15_esc_89.98.pt'
|
47 |
+
laion_clap_model = laion_clap.CLAP_Module(enable_fusion=False, amodel='HTSAT-base').cuda().eval()
|
48 |
|
49 |
+
laion_clap_model.load_ckpt(_clap_ckpt_path, verbose=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
51 |
|
52 |
@spaces.GPU(duration=10)
|
53 |
@torch.inference_mode()
|
|
|
60 |
seed,
|
61 |
variant,
|
62 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
dtype = torch.float32
|
64 |
+
if duration <= 0 or num_steps <= 0:
|
65 |
+
raise ValueError("Duration and number of steps must be positive.")
|
66 |
+
if variant not in all_model_cfg:
|
67 |
+
raise ValueError(f"Unknown model variant: {variant}. Available: {list(all_model_cfg.keys())}")
|
68 |
|
69 |
+
model_path = all_model_cfg[variant].model_path # by default, this will use meanaudio_s_full.pth or fluxaudio_s_full.pth
|
70 |
+
model = all_model_cfg[variant]
|
71 |
+
seq_cfg = model.seq_cfg
|
72 |
+
seq_cfg.duration = duration
|
73 |
+
|
74 |
+
net = get_mean_audio(model.model_name, use_rope=True, text_c_dim=512)
|
75 |
+
net = net.to(device, dtype).eval()
|
76 |
+
net.load_weights(torch.load(model_path, map_location=device, weights_only=True))
|
77 |
+
net.update_seq_lengths(seq_cfg.latent_seq_len)
|
78 |
|
79 |
+
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
|
80 |
+
enable_conditions=True,
|
81 |
+
encoder_name="t5_clap",
|
82 |
+
mode=model.mode,
|
83 |
+
bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
|
84 |
+
need_vae_encoder=False)
|
85 |
+
feature_utils = feature_utils.to(device, dtype).eval()
|
86 |
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
+
if variant == 'meanaudio_s_ac' or variant == 'meanaudio_s_full':
|
89 |
+
use_meanflow=True
|
90 |
+
elif variant == 'fluxaudio_s_full':
|
91 |
+
use_meanflow=False
|
92 |
+
|
93 |
if use_meanflow:
|
94 |
sampler = MeanFlow(steps=num_steps)
|
95 |
log.info("Using MeanFlow for generation.")
|
96 |
generation_func = generate_mf
|
97 |
sampler_arg_name = "mf"
|
98 |
+
cfg_strength = 0
|
99 |
else:
|
100 |
sampler = FlowMatching(
|
101 |
min_sigma=0, inference_mode="euler", num_steps=num_steps
|
|
|
103 |
log.info("Using FlowMatching for generation.")
|
104 |
generation_func = generate_fm
|
105 |
sampler_arg_name = "fm"
|
106 |
+
|
107 |
+
rng = torch.Generator(device=device)
|
108 |
+
# rng.manual_seed(seed)
|
109 |
+
|
110 |
audios = generation_func(
|
111 |
[prompt]*NUM_SAMPLE,
|
112 |
negative_text=[negative_prompt]*NUM_SAMPLE,
|
|
|
119 |
text_embed = laion_clap_model.get_text_embedding(prompt, use_tensor=True).squeeze()
|
120 |
audio_embed = laion_clap_model.get_audio_embedding_from_data(audios[:,0,:].float().cpu(), use_tensor=True).squeeze()
|
121 |
scores = torch.cosine_similarity(text_embed.expand(audio_embed.shape[0], -1),
|
122 |
+
audio_embed,
|
123 |
+
dim=-1)
|
124 |
log.info(scores)
|
125 |
log.info(torch.argmax(scores).item())
|
126 |
+
audio = audios[torch.argmax(scores).item()].float().cpu()
|
127 |
safe_prompt = (
|
128 |
"".join(c for c in prompt if c.isalnum() or c in (" ", "_"))
|
129 |
.rstrip()
|
|
|
314 |
interactive=True,
|
315 |
scale=3,
|
316 |
)
|
|
|
317 |
with gr.Column(elem_classes="setting-section"):
|
318 |
with gr.Row():
|
319 |
prompt = gr.Textbox(
|
meanaudio/eval_utils.py
CHANGED
@@ -43,20 +43,26 @@ class ModelConfig:
|
|
43 |
download_model_if_needed(self.bigvgan_16k_path)
|
44 |
|
45 |
|
46 |
-
|
47 |
-
model_path=Path('./weights/
|
48 |
vae_path=Path('./weights/v1-16.pth'),
|
49 |
bigvgan_16k_path=Path('./weights/best_netG.pt'),
|
50 |
mode='16k')
|
51 |
-
|
52 |
-
model_path=Path('./weights/
|
|
|
|
|
|
|
|
|
|
|
53 |
vae_path=Path('./weights/v1-16.pth'),
|
54 |
bigvgan_16k_path=Path('./weights/best_netG.pt'),
|
55 |
mode='16k')
|
56 |
|
57 |
all_model_cfg: dict[str, ModelConfig] = {
|
58 |
-
'
|
59 |
-
'
|
|
|
60 |
}
|
61 |
|
62 |
|
|
|
43 |
download_model_if_needed(self.bigvgan_16k_path)
|
44 |
|
45 |
|
46 |
+
fluxaudio_s_full = ModelConfig(model_name='fluxaudio_s_full',
|
47 |
+
model_path=Path('./weights/fluxaudio_s_full.pth'), # will be specified later
|
48 |
vae_path=Path('./weights/v1-16.pth'),
|
49 |
bigvgan_16k_path=Path('./weights/best_netG.pt'),
|
50 |
mode='16k')
|
51 |
+
meanaudio_s_full = ModelConfig(model_name='meanaudio_s_full',
|
52 |
+
model_path=Path('./weights/meanaudio_s_full.pth'), # will be specified later
|
53 |
+
vae_path=Path('./weights/v1-16.pth'),
|
54 |
+
bigvgan_16k_path=Path('./weights/best_netG.pt'),
|
55 |
+
mode='16k')
|
56 |
+
meanaudio_s_ac = ModelConfig(model_name='meanaudio_s_ac',
|
57 |
+
model_path=Path('./weights/meanaudio_s_ac.pth'), # will be specified later
|
58 |
vae_path=Path('./weights/v1-16.pth'),
|
59 |
bigvgan_16k_path=Path('./weights/best_netG.pt'),
|
60 |
mode='16k')
|
61 |
|
62 |
all_model_cfg: dict[str, ModelConfig] = {
|
63 |
+
'fluxaudio_s_full': fluxaudio_s_full,
|
64 |
+
'meanaudio_s_full': meanaudio_s_full,
|
65 |
+
'meanaudio_s_ac': meanaudio_s_ac,
|
66 |
}
|
67 |
|
68 |
|
meanaudio/model/networks.py
CHANGED
@@ -577,7 +577,7 @@ class MeanAudio(nn.Module):
|
|
577 |
return self._latent_seq_len
|
578 |
|
579 |
|
580 |
-
def
|
581 |
num_heads = 7
|
582 |
return FluxAudio(latent_dim=20,
|
583 |
text_dim=1024,
|
@@ -587,7 +587,7 @@ def fluxaudio_fm(**kwargs) -> FluxAudio:
|
|
587 |
num_heads=num_heads,
|
588 |
latent_seq_len=312, # for 10s audio
|
589 |
**kwargs)
|
590 |
-
def
|
591 |
num_heads = 7
|
592 |
return MeanAudio(latent_dim=20,
|
593 |
text_dim=1024,
|
@@ -600,10 +600,10 @@ def meanaudio_mf(**kwargs) -> MeanAudio:
|
|
600 |
|
601 |
|
602 |
def get_mean_audio(name: str, **kwargs) -> MeanAudio:
|
603 |
-
if name == '
|
604 |
-
return
|
605 |
-
if name == '
|
606 |
-
return
|
607 |
|
608 |
raise ValueError(f'Unknown model name: {name}')
|
609 |
|
@@ -620,7 +620,7 @@ if __name__ == '__main__':
|
|
620 |
]
|
621 |
)
|
622 |
|
623 |
-
network: MeanAudio = get_mean_audio('
|
624 |
use_rope=False,
|
625 |
text_c_dim=512)
|
626 |
|
|
|
577 |
return self._latent_seq_len
|
578 |
|
579 |
|
580 |
+
def fluxaudio_s(**kwargs) -> FluxAudio:
|
581 |
num_heads = 7
|
582 |
return FluxAudio(latent_dim=20,
|
583 |
text_dim=1024,
|
|
|
587 |
num_heads=num_heads,
|
588 |
latent_seq_len=312, # for 10s audio
|
589 |
**kwargs)
|
590 |
+
def meanaudio_s(**kwargs) -> MeanAudio:
|
591 |
num_heads = 7
|
592 |
return MeanAudio(latent_dim=20,
|
593 |
text_dim=1024,
|
|
|
600 |
|
601 |
|
602 |
def get_mean_audio(name: str, **kwargs) -> MeanAudio:
|
603 |
+
if name == 'meanaudio_s':
|
604 |
+
return meanaudio_s(**kwargs)
|
605 |
+
if name == 'fluxaudio_s':
|
606 |
+
return fluxaudio_s(**kwargs)
|
607 |
|
608 |
raise ValueError(f'Unknown model name: {name}')
|
609 |
|
|
|
620 |
]
|
621 |
)
|
622 |
|
623 |
+
network: MeanAudio = get_mean_audio('meanaudio_s',
|
624 |
use_rope=False,
|
625 |
text_c_dim=512)
|
626 |
|