update
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import warnings
|
2 |
import spaces
|
3 |
-
warnings.filterwarnings("ignore"
|
4 |
import logging
|
5 |
from argparse import ArgumentParser
|
6 |
from pathlib import Path
|
@@ -16,7 +16,6 @@ from meanaudio.eval_utils import (
|
|
16 |
generate_fm,
|
17 |
setup_eval_logging,
|
18 |
)
|
19 |
-
|
20 |
from meanaudio.model.flow_matching import FlowMatching
|
21 |
from meanaudio.model.mean_flow import MeanFlow
|
22 |
from meanaudio.model.networks import MeanAudio, get_mean_audio
|
@@ -26,6 +25,7 @@ torch.backends.cudnn.allow_tf32 = True
|
|
26 |
import gc
|
27 |
from datetime import datetime
|
28 |
from huggingface_hub import snapshot_download
|
|
|
29 |
|
30 |
log = logging.getLogger()
|
31 |
device = "cpu"
|
@@ -137,6 +137,17 @@ def generate_audio_gradio(
|
|
137 |
**{sampler_arg_name: sampler},
|
138 |
)
|
139 |
audio = audios[0].float().cpu()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
# text_embed = laion_clap_model.get_text_embedding(prompt, use_tensor=True).squeeze()
|
141 |
# audio_embed = laion_clap_model.get_audio_embedding_from_data(audios[:,0,:].float().cpu(), use_tensor=True).squeeze()
|
142 |
# scores = torch.cosine_similarity(text_embed.expand(audio_embed.shape[0], -1),
|
|
|
1 |
import warnings
|
2 |
import spaces
|
3 |
+
warnings.filterwarnings("ignore")
|
4 |
import logging
|
5 |
from argparse import ArgumentParser
|
6 |
from pathlib import Path
|
|
|
16 |
generate_fm,
|
17 |
setup_eval_logging,
|
18 |
)
|
|
|
19 |
from meanaudio.model.flow_matching import FlowMatching
|
20 |
from meanaudio.model.mean_flow import MeanFlow
|
21 |
from meanaudio.model.networks import MeanAudio, get_mean_audio
|
|
|
25 |
import gc
|
26 |
from datetime import datetime
|
27 |
from huggingface_hub import snapshot_download
|
28 |
+
import numpy as np
|
29 |
|
30 |
log = logging.getLogger()
|
31 |
device = "cpu"
|
|
|
137 |
**{sampler_arg_name: sampler},
|
138 |
)
|
139 |
audio = audios[0].float().cpu()
|
140 |
+
|
141 |
+
def fade_out(x, sr, fade_ms=30):
|
142 |
+
n = len(x)
|
143 |
+
k = int(sr * fade_ms / 1000)
|
144 |
+
if k <= 0 or k >= n:
|
145 |
+
return x
|
146 |
+
w = np.linspace(1.0, 0.0, k)
|
147 |
+
x[-k:] = x[-k:] * w
|
148 |
+
return x
|
149 |
+
audio = fade_out(audio, seq_cfg.sampling_rate)
|
150 |
+
|
151 |
# text_embed = laion_clap_model.get_text_embedding(prompt, use_tensor=True).squeeze()
|
152 |
# audio_embed = laion_clap_model.get_audio_embedding_from_data(audios[:,0,:].float().cpu(), use_tensor=True).squeeze()
|
153 |
# scores = torch.cosine_similarity(text_embed.expand(audio_embed.shape[0], -1),
|