update
Browse files
app.py
CHANGED
@@ -38,18 +38,48 @@ OUTPUT_DIR = Path("./output/gradio")
|
|
38 |
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
39 |
NUM_SAMPLE = 1
|
40 |
|
41 |
-
#
|
42 |
-
|
43 |
-
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
|
|
|
|
|
|
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
|
52 |
-
@spaces.GPU(duration=
|
53 |
@torch.inference_mode()
|
54 |
def generate_audio_gradio(
|
55 |
prompt,
|
@@ -66,29 +96,14 @@ def generate_audio_gradio(
|
|
66 |
if variant not in all_model_cfg:
|
67 |
raise ValueError(f"Unknown model variant: {variant}. Available: {list(all_model_cfg.keys())}")
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
log.info(f'Model not found at {model_path}')
|
72 |
-
log.info('Downloading models to "./weights/"...')
|
73 |
-
snapshot_download(repo_id="AndreasXi/MeanAudio", local_dir="./weights",allow_patterns=["*.pt", "*.pth"] )
|
74 |
-
|
75 |
model = all_model_cfg[variant]
|
76 |
seq_cfg = model.seq_cfg
|
77 |
seq_cfg.duration = duration
|
78 |
|
79 |
-
net = get_mean_audio(model.model_name, use_rope=True, text_c_dim=512)
|
80 |
-
net = net.to(device, dtype).eval()
|
81 |
-
net.load_weights(torch.load(model_path, map_location=device, weights_only=True))
|
82 |
net.update_seq_lengths(seq_cfg.latent_seq_len)
|
83 |
|
84 |
-
feature_utils = FeaturesUtils(tod_vae_ckpt=model.vae_path,
|
85 |
-
enable_conditions=True,
|
86 |
-
encoder_name="t5_clap",
|
87 |
-
mode=model.mode,
|
88 |
-
bigvgan_vocoder_ckpt=model.bigvgan_16k_path,
|
89 |
-
need_vae_encoder=False)
|
90 |
-
feature_utils = feature_utils.to(device, dtype).eval()
|
91 |
-
|
92 |
|
93 |
if variant == 'meanaudio_s_ac' or variant == 'meanaudio_s_full':
|
94 |
use_meanflow=True
|
@@ -141,7 +156,8 @@ def generate_audio_gradio(
|
|
141 |
torchaudio.save(str(save_path), audio, seq_cfg.sampling_rate)
|
142 |
log.info(f"Audio saved to {save_path}")
|
143 |
|
144 |
-
|
|
|
145 |
|
146 |
return (
|
147 |
f"Generated audio for prompt: '{prompt}' using {'MeanFlow' if use_meanflow else 'FlowMatching'}",
|
|
|
38 |
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
39 |
NUM_SAMPLE = 1
|
40 |
|
41 |
+
# Global model cache to avoid reloading
|
42 |
+
MODEL_CACHE = {}
|
43 |
+
FEATURE_UTILS_CACHE = {}
|
44 |
|
45 |
+
def ensure_models_downloaded():
|
46 |
+
for variant, model_cfg in all_model_cfg.items():
|
47 |
+
if not model_cfg.model_path.exists():
|
48 |
+
log.info(f'Model {variant} not found, downloading...')
|
49 |
+
snapshot_download(repo_id="AndreasXi/MeanAudio", local_dir="./weights", allow_patterns=["*.pt", "*.pth"])
|
50 |
+
break
|
51 |
|
52 |
+
def load_model_if_needed(variant: str):
|
53 |
+
if variant in MODEL_CACHE:
|
54 |
+
return MODEL_CACHE[variant], FEATURE_UTILS_CACHE[variant]
|
55 |
+
|
56 |
+
log.info(f"Loading model {variant} for the first time...")
|
57 |
+
model_cfg = all_model_cfg[variant]
|
58 |
+
|
59 |
+
net = get_mean_audio(model_cfg.model_name, use_rope=True, text_c_dim=512)
|
60 |
+
net = net.to(device, torch.bfloat16).eval()
|
61 |
+
net.load_weights(torch.load(model_cfg.model_path, map_location=device, weights_only=True))
|
62 |
+
|
63 |
+
feature_utils = FeaturesUtils(
|
64 |
+
tod_vae_ckpt=model_cfg.vae_path,
|
65 |
+
enable_conditions=True,
|
66 |
+
encoder_name="t5_clap",
|
67 |
+
mode=model_cfg.mode,
|
68 |
+
bigvgan_vocoder_ckpt=model_cfg.bigvgan_16k_path,
|
69 |
+
need_vae_encoder=False
|
70 |
+
)
|
71 |
+
feature_utils = feature_utils.to(device, torch.bfloat16).eval()
|
72 |
+
|
73 |
+
MODEL_CACHE[variant] = net
|
74 |
+
FEATURE_UTILS_CACHE[variant] = feature_utils
|
75 |
+
|
76 |
+
log.info(f"Model {variant} loaded and cached successfully")
|
77 |
+
return net, feature_utils
|
78 |
+
|
79 |
+
ensure_models_downloaded()
|
80 |
|
81 |
|
82 |
+
@spaces.GPU(duration=60)
|
83 |
@torch.inference_mode()
|
84 |
def generate_audio_gradio(
|
85 |
prompt,
|
|
|
96 |
if variant not in all_model_cfg:
|
97 |
raise ValueError(f"Unknown model variant: {variant}. Available: {list(all_model_cfg.keys())}")
|
98 |
|
99 |
+
net, feature_utils = load_model_if_needed(variant)
|
100 |
+
|
|
|
|
|
|
|
|
|
101 |
model = all_model_cfg[variant]
|
102 |
seq_cfg = model.seq_cfg
|
103 |
seq_cfg.duration = duration
|
104 |
|
|
|
|
|
|
|
105 |
net.update_seq_lengths(seq_cfg.latent_seq_len)
|
106 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
if variant == 'meanaudio_s_ac' or variant == 'meanaudio_s_full':
|
109 |
use_meanflow=True
|
|
|
156 |
torchaudio.save(str(save_path), audio, seq_cfg.sampling_rate)
|
157 |
log.info(f"Audio saved to {save_path}")
|
158 |
|
159 |
+
if device == "cuda":
|
160 |
+
torch.cuda.empty_cache()
|
161 |
|
162 |
return (
|
163 |
f"Generated audio for prompt: '{prompt}' using {'MeanFlow' if use_meanflow else 'FlowMatching'}",
|