File size: 16,512 Bytes
09794cb dd97a96 09794cb fec53ba 09794cb dd97a96 0ff9928 09794cb 0ff9928 09794cb 0ff9928 09794cb 08a9c69 09794cb f47e09f 0fe93da f47e09f d712cde 09794cb f47e09f 09794cb ef391ef 0ff9928 09794cb d712cde f47e09f 0ff9928 09794cb 0ff9928 09794cb 0ff9928 09794cb 0ff9928 d712cde 0ff9928 09794cb fec53ba 97dea78 09794cb 08a9c69 3235b3a d712cde dd97a96 09794cb 1bb9319 09794cb f47e09f 09794cb 6a37b4f d712cde 6a37b4f d712cde 6a37b4f d712cde 6a37b4f e2dd3f3 6a37b4f ef391ef 6a37b4f 67fd0db d712cde 6a37b4f 09794cb 6a37b4f d712cde 6a37b4f 09794cb df02454 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
import warnings
import spaces
warnings.filterwarnings("ignore")
import logging
from argparse import ArgumentParser
from pathlib import Path
import torch
import torchaudio
import gradio as gr
from transformers import AutoModel
import laion_clap
from meanaudio.eval_utils import (
ModelConfig,
all_model_cfg,
generate_mf,
generate_fm,
setup_eval_logging,
)
from meanaudio.model.flow_matching import FlowMatching
from meanaudio.model.mean_flow import MeanFlow
from meanaudio.model.networks import MeanAudio, get_mean_audio
from meanaudio.model.utils.features_utils import FeaturesUtils
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
import gc
from datetime import datetime
from huggingface_hub import snapshot_download
import numpy as np
log = logging.getLogger()
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
setup_eval_logging()
OUTPUT_DIR = Path("./output/gradio")
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
NUM_SAMPLE = 1
# Global model cache to avoid reloading
MODEL_CACHE = {}
FEATURE_UTILS_CACHE = {}
def ensure_models_downloaded():
for variant, model_cfg in all_model_cfg.items():
if not model_cfg.model_path.exists():
log.info(f'Model {variant} not found, downloading...')
snapshot_download(repo_id="AndreasXi/MeanAudio", local_dir="./weights")
break
def load_model_cache():
for variant in all_model_cfg.keys():
if variant in MODEL_CACHE:
return MODEL_CACHE[variant], FEATURE_UTILS_CACHE['default']
else:
log.info(f"Loading model {variant} for the first time...")
model_cfg = all_model_cfg[variant]
net = get_mean_audio(model_cfg.model_name, use_rope=True, text_c_dim=512)
net = net.to(device, torch.bfloat16).eval()
net.load_weights(torch.load(model_cfg.model_path, map_location=device, weights_only=True))
MODEL_CACHE[variant] = net
feature_utils = FeaturesUtils(
tod_vae_ckpt=model_cfg.vae_path,
enable_conditions=True,
encoder_name="t5_clap",
mode=model_cfg.mode,
bigvgan_vocoder_ckpt=model_cfg.bigvgan_16k_path,
need_vae_encoder=False
)
FEATURE_UTILS_CACHE['default'] = feature_utils
@spaces.GPU(duration=60)
@torch.inference_mode()
def generate_audio_gradio(
prompt,
duration,
cfg_strength,
num_steps,
variant,
):
if duration <= 0 or num_steps <= 0:
raise ValueError("Duration and number of steps must be positive.")
if variant not in all_model_cfg:
raise ValueError(f"Unknown model variant: {variant}. Available: {list(all_model_cfg.keys())}")
net, feature_utils = MODEL_CACHE[variant], FEATURE_UTILS_CACHE['default']
model = all_model_cfg[variant]
seq_cfg = model.seq_cfg
seq_cfg.duration = duration
net.update_seq_lengths(seq_cfg.latent_seq_len)
if variant == 'meanaudio_s_ac' or variant == 'meanaudio_s_full':
use_meanflow=True
elif variant == 'fluxaudio_s_full':
use_meanflow=False
if use_meanflow:
sampler = MeanFlow(steps=num_steps)
log.info("Using MeanFlow for generation.")
generation_func = generate_mf
sampler_arg_name = "mf"
cfg_strength = 0
else:
sampler = FlowMatching(
min_sigma=0, inference_mode="euler", num_steps=num_steps
)
log.info("Using FlowMatching for generation.")
generation_func = generate_fm
sampler_arg_name = "fm"
rng = torch.Generator(device=device)
# force to 42
rng.manual_seed(42)
audios = generation_func(
[prompt]*NUM_SAMPLE,
negative_text=None,
feature_utils=feature_utils,
net=net,
rng=rng,
cfg_strength=cfg_strength,
**{sampler_arg_name: sampler},
)
audio = audios[0].float().cpu()
def fade_out(x, sr, fade_ms=50):
n = len(x)
k = int(sr * fade_ms / 1000)
if k <= 0 or k >= n:
return x
w = np.linspace(1.0, 0.0, k)
x[-k:] = x[-k:] * w
return x
audio = fade_out(audio, seq_cfg.sampling_rate)
safe_prompt = (
"".join(c for c in prompt if c.isalnum() or c in (" ", "_"))
.rstrip()
.replace(" ", "_")[:50]
)
current_time_string = datetime.now().strftime("%Y%m%d_%H%M%S_%f")
filename = f"{safe_prompt}_{current_time_string}.flac"
save_path = OUTPUT_DIR / filename
torchaudio.save(str(save_path), audio, seq_cfg.sampling_rate)
log.info(f"Audio saved to {save_path}")
if device == "cuda":
torch.cuda.empty_cache()
return (
f"Generated audio for prompt: '{prompt}' using {'MeanFlow' if use_meanflow else 'FlowMatching'}",
str(save_path),
)
# Gradio input and output components
input_text = gr.Textbox(lines=2, label="Prompt")
output_audio = gr.Audio(label="Generated Audio", type="filepath")
denoising_steps = gr.Slider(minimum=1, maximum=25, value=1, step=1, label="SamplingSteps", interactive=True)
cfg_strength = gr.Slider(minimum=1, maximum=10, value=4.5, step=0.5, label="Guidance Scale (For MeanAudio, it is forced to 3 as integrated in training)", interactive=True)
duration = gr.Slider(minimum=1, maximum=30, value=10, step=1, label="Duration", interactive=True)
# seed = gr.Slider(minimum=1, maximum=1000000, value=42, step=1, label="Seed", interactive=True)
variant = gr.Dropdown(label="Model Variant", choices=list(all_model_cfg.keys()), value='meanaudio_s_full', interactive=True)
gr_interface = gr.Interface(
fn=generate_audio_gradio,
inputs=[input_text, duration, cfg_strength, denoising_steps, variant],
outputs=["text", "audio"],
title="MeanAudio: Fast and Faithful Text-to-Audio Generation with Mean Flows",
description="",
flagging_mode="never",
examples=[
["Generate the festive sounds of a fireworks show: explosions lighting up the sky, crowd cheering, and the faint music playing in the background!! Celebration of the new year!"],
["Melodic human whistling harmonizing with natural birdsong"],
["A parade marches through a town square, with drumbeats pounding, children clapping, and a horse neighing amidst the commotion"],
["Quiet speech and then and airplane flying away"],
["A soccer ball hits a goalpost with a metallic clang, followed by cheers, clapping, and the distant hum of a commentator’s voice"],
["A basketball bounces rhythmically on a court, shoes squeak against the floor, and a referee’s whistle cuts through the air"],
["Dripping water echoes sharply, a distant growl reverberates through the cavern, and soft scraping metal suggests something lurking unseen"],
["A cow is mooing whilst a lion is roaring in the background as a hunter shoots. A flock of birds subsequently fly away from the trees."],
["The deep growl of an alligator ripples through the swamp as reeds sway with a soft rustle and a turtle splashes into the murky water"],
["Gentle female voice cooing and baby responding with happy gurgles and giggles"],
['doorbell ding once followed by footsteps gradually getting louder and a door is opened '],
["A fork scrapes a plate, water drips slowly into a sink, and the faint hum of a refrigerator lingers in the background"]
],
cache_examples="lazy", # Turn on to cache.
)
if __name__ == "__main__":
ensure_models_downloaded()
load_model_cache()
gr_interface.queue(15).launch()
# theme = gr.themes.Soft(
# primary_hue="blue",
# secondary_hue="slate",
# neutral_hue="slate",
# text_size="sm",
# spacing_size="sm",
# ).set(
# background_fill_primary="*neutral_50",
# background_fill_secondary="*background_fill_primary",
# block_background_fill="*background_fill_primary",
# block_border_width="0px",
# panel_background_fill="*neutral_50",
# panel_border_width="0px",
# input_background_fill="*neutral_100",
# input_border_color="*neutral_200",
# button_primary_background_fill="*primary_300",
# button_primary_background_fill_hover="*primary_400",
# button_secondary_background_fill="*neutral_200",
# button_secondary_background_fill_hover="*neutral_300",
# )
# custom_css = """
# #main-headertitle {
# text-align: center;
# margin-top: 15px;
# margin-bottom: 10px;
# color: var(--neutral-600);
# font-weight: 600;
# }
# #main-header {
# text-align: center;
# margin-top: 5px;
# margin-bottom: 10px;
# color: var(--neutral-600);
# font-weight: 600;
# }
# #model-settings-header, #generation-settings-header {
# color: var(--neutral-600);
# margin-top: 8px;
# margin-bottom: 8px;
# font-weight: 500;
# font-size: 1.1em;
# }
# .setting-section {
# padding: 10px 12px;
# border-radius: 6px;
# background-color: var(--neutral-50);
# margin-bottom: 10px;
# border: 1px solid var(--neutral-100);
# }
# hr {
# border: none;
# height: 1px;
# background-color: var(--neutral-200);
# margin: 8px 0;
# }
# #generate-btn {
# width: 100%;
# max-width: 250px;
# margin: 10px auto;
# display: block;
# padding: 10px 15px;
# font-size: 16px;
# border-radius: 5px;
# }
# #status-box {
# min-height: 50px;
# display: flex;
# align-items: center;
# justify-content: center;
# padding: 8px;
# border-radius: 5px;
# border: 1px solid var(--neutral-200);
# color: var(--neutral-700);
# }
# #project-badges {
# text-align: center;
# margin-top: 30px;
# margin-bottom: 20px;
# }
# #project-badges #badge-container {
# display: flex;
# gap: 10px;
# align-items: center;
# justify-content: center;
# flex-wrap: wrap;
# }
# #project-badges img {
# border-radius: 5px;
# box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1);
# height: 20px;
# transition: transform 0.1s ease, box-shadow 0.1s ease;
# }
# #project-badges a:hover img {
# transform: translateY(-2px);
# box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15);
# }
# #audio-output {
# height: 200px;
# border-radius: 5px;
# border: 1px solid var(--neutral-200);
# }
# .gradio-dropdown label, .gradio-checkbox label, .gradio-number label, .gradio-textbox label {
# font-weight: 500;
# color: var(--neutral-700);
# font-size: 0.9em;
# }
# .gradio-row {
# gap: 8px;
# }
# .gradio-block {
# margin-bottom: 8px;
# }
# .setting-section .gradio-block {
# margin-bottom: 6px;
# }
# ::-webkit-scrollbar {
# width: 8px;
# height: 8px;
# }
# ::-webkit-scrollbar-track {
# background: var(--neutral-100);
# border-radius: 4px;
# }
# ::-webkit-scrollbar-thumb {
# background: var(--neutral-300);
# border-radius: 4px;
# }
# ::-webkit-scrollbar-thumb:hover {
# background: var(--neutral-400);
# }
# * {
# scrollbar-width: thin;
# scrollbar-color: var(--neutral-300) var(--neutral-100);
# }
# """
# with gr.Blocks(title="MeanAudio Generator", theme=theme, css=custom_css) as demo:
# gr.Markdown("# MeanAudio: Fast and Faithful Text-to-Audio Generation with Mean Flows", elem_id="main-header")
# badge_html = '''
# <div id="project-badges"> <!-- 使用 ID
# 以便应用 CSS -->
# <div id="badge-container"> <!-- 添加这个容器 div 并使用 ID -->
# <a href="https://huggingface.co/junxiliu/MeanAudio">
# <img src="https://img.shields.io/badge/Model-HuggingFace-violet?logo=huggingface" alt="Hugging Face Model">
# </a>
# <a href="https://huggingface.co/spaces/chenxie95/MeanAudio">
# <img src="https://img.shields.io/badge/Space-HuggingFace-8A2BE2?logo=huggingface" alt="Hugging Face Space">
# </a>
# <a href="https://meanaudio.github.io/">
# <img src="https://img.shields.io/badge/Project-Page-brightred?style=flat" alt="Project Page">
# </a>
# <a href="https://github.com/xiquan-li/MeanAudio">
# <img src="https://img.shields.io/badge/Code-GitHub-black?logo=github" alt="GitHub">
# </a>
# </div>
# </div>
# '''
# gr.HTML(badge_html)
# with gr.Column(elem_classes="setting-section"):
# with gr.Row():
# available_variants = (
# list(all_model_cfg.keys()) if all_model_cfg else []
# )
# default_variant = (
# 'meanaudio_mf'
# )
# variant = gr.Dropdown(
# label="Model Variant",
# choices=available_variants,
# value=default_variant,
# interactive=True,
# scale=3,
# )
# with gr.Column(elem_classes="setting-section"):
# with gr.Row():
# prompt = gr.Textbox(
# label="Prompt",
# placeholder="Describe the sound you want to generate...",
# scale=1,
# )
# negative_prompt = gr.Textbox(
# label="Negative Prompt",
# placeholder="Describe sounds you want to avoid...",
# value="",
# scale=1,
# )
# with gr.Row():
# duration = gr.Number(
# label="Duration (sec)", value=10.0, minimum=0.1, scale=1
# )
# cfg_strength = gr.Number(
# label="CFG (Meanflow forced to 3)", value=3, minimum=0.0, scale=1
# )
# with gr.Row():
# seed = gr.Number(
# label="Seed (-1 for random)", value=42, precision=0, scale=1
# )
# num_steps = gr.Number(
# label="Number of Steps",
# value=1,
# precision=0,
# minimum=1,
# scale=1,
# )
# generate_button = gr.Button("Generate", variant="primary", elem_id="generate-btn")
# generate_output_text = gr.Textbox(
# label="Result Status", interactive=False, elem_id="status-box"
# )
# audio_output = gr.Audio(
# label="Generated Audio", type="filepath", elem_id="audio-output"
# )
# generate_button.click(
# fn=generate_audio_gradio,
# inputs=[
# prompt,
# negative_prompt,
# duration,
# cfg_strength,
# num_steps,
# seed,
# variant,
# ],
# outputs=[generate_output_text, audio_output],
# )
# audio_examples = [
# ["Typing on a keyboard", "", 10.0, 3, 1, 42, "meanaudio_mf"],
# ["A man speaks followed by a popping noise and laughter", "", 10.0, 3, 1, 42, "meanaudio_mf"],
# ["Some humming followed by a toilet flushing", "", 10.0, 3, 2, 42, "meanaudio_mf"],
# ["Rain falling on a hard surface as thunder roars in the distance", "", 10.0, 3, 5, 42, "meanaudio_mf"],
# ["Food sizzling and oil popping", "", 10.0, 3, 25, 42, "meanaudio_mf"],
# ["Pots and dishes clanking as a man talks followed by liquid pouring into a container", "", 8.0, 3, 2, 42, "meanaudio_mf"],
# ["A few seconds of silence then a rasping sound against wood", "", 12.0, 3, 2, 42, "meanaudio_mf"],
# ["A man speaks as he gives a speech and then the crowd cheers", "", 10.0, 3, 25, 42, "fluxaudio_fm"],
# ["A goat bleating repeatedly", "", 10.0, 3, 50, 123, "fluxaudio_fm"],
# ["A speech and gunfire followed by a gun being loaded", "", 10.0, 3, 1, 42, "meanaudio_mf"],
# ["Tires squealing followed by an engine revving", "", 12.0, 4, 25, 456, "fluxaudio_fm"],
# ["Hammer slowly hitting the wooden table", "", 10.0, 3.5, 25, 42, "fluxaudio_fm"],
# ["Dog barking excitedly and man shouting as race car engine roars past", "", 10.0, 3, 1, 42, "meanaudio_mf"],
# ["A dog barking and a cat mewing and a racing car passes by", "", 12.0, 3, 5, -1, "meanaudio_mf"],
# ["Whistling with birds chirping", "", 10.0, 4, 50, 42, "fluxaudio_fm"],
# ]
# gr.Examples(
# examples=audio_examples,
# inputs=[prompt, negative_prompt, duration, cfg_strength, num_steps, seed, variant],
# #outputs=[generate_output_text, audio_output],
# #fn=generate_audio_gradio,
# examples_per_page=5,
# label="Example Prompts",
# )
# if __name__ == "__main__":
# demo.launch()
|