File size: 22,480 Bytes
a0fd130
c2a23ec
a0fd130
 
 
 
 
 
 
 
50c9b6c
a0fd130
 
50c9b6c
a0fd130
 
 
c2a23ec
a0fd130
 
 
c2a23ec
 
a0fd130
 
e788852
a0fd130
c2a23ec
 
 
 
e788852
a0fd130
 
c2a23ec
a0fd130
 
 
 
 
 
 
 
 
 
 
 
c2a23ec
a0fd130
 
 
32d7dff
 
 
a0fd130
32d7dff
 
 
 
a0fd130
 
 
332e4ba
 
a0fd130
 
 
 
 
 
 
 
 
 
 
 
 
 
c2a23ec
a0fd130
c2a23ec
 
a0fd130
 
c2a23ec
 
a0fd130
 
c2a23ec
 
a0fd130
 
c2a23ec
 
a0fd130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
332e4ba
a0fd130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2a23ec
a0fd130
e788852
a0fd130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
64fb155
 
 
 
 
 
 
 
 
50c9b6c
 
a0fd130
 
50c9b6c
 
c2a23ec
 
a0fd130
c2a23ec
50c9b6c
 
a0fd130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e788852
a0fd130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50c9b6c
a0fd130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2a23ec
a0fd130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2a23ec
 
a0fd130
 
 
c2a23ec
 
 
a0fd130
 
 
 
 
 
 
 
 
 
 
 
c2a23ec
a0fd130
 
c2a23ec
332e4ba
 
a0fd130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2a23ec
 
a0fd130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e788852
a0fd130
 
 
 
 
 
 
c2a23ec
a0fd130
 
50c9b6c
c2a23ec
a0fd130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50c9b6c
a0fd130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50c9b6c
c2a23ec
50c9b6c
a0fd130
 
 
 
 
 
 
 
 
 
 
 
 
 
c2a23ec
50c9b6c
c2a23ec
a0fd130
 
 
 
 
 
 
c2a23ec
a0fd130
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50c9b6c
a0fd130
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
import warnings

warnings.filterwarnings("ignore")
from diffusers import DiffusionPipeline, DDIMInverseScheduler, DDIMScheduler, AutoencoderKL
import torch
from typing import Optional
from tqdm import tqdm
from diffusers.models.attention_processor import Attention, AttnProcessor2_0
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import gc
import gradio as gr
import numpy as np
import os
import pickle
import argparse
from PIL import Image
import requests
import math
import torch
from safetensors.torch import load_file
from huggingface_hub import hf_hub_download
from diffusers import DiffusionPipeline
import spaces

def save_state_to_file(state):
    filename = "state.pkl"
    with open(filename, "wb") as f:
        pickle.dump(state, f)
    return filename


def load_state_from_file(filename):
    with open(filename, "rb") as f:
        state = pickle.load(f)
    return state

guidance_scale_value = 7.5
num_inference_steps = 10
weights = {}
res_list = []
foreground_mask = None
heighest_resolution = -1
signal_value = 2.0
blur_value = None
allowed_res_max = 1.0


def load_pipeline():
    
    model_id = "runwayml/stable-diffusion-v1-5"
    vae_model_id = "runwayml/stable-diffusion-v1-5"
    vae_folder = "vae"
    guidance_scale_value = 7.5
    resadapter_model_name = "resadapter_v2_sd1.5"
    res_range_min = 128 
    res_range_max = 1024
    
    torch_dtype = torch.float16

    # torch_dtype = torch.float16
    pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype)
    pipe.vae = AutoencoderKL.from_pretrained(vae_model_id, subfolder=vae_folder, torch_dtype=torch_dtype)
    pipe.load_lora_weights(
        hf_hub_download(repo_id="jiaxiangc/res-adapter", subfolder=resadapter_model_name, filename="pytorch_lora_weights.safetensors"), 
        adapter_name="res_adapter",
        ) # load lora weights
    pipe.set_adapters(["res_adapter"], adapter_weights=[1.0])
    pipe.unet.load_state_dict(
        load_file(hf_hub_download(repo_id="jiaxiangc/res-adapter", subfolder=resadapter_model_name, filename="diffusion_pytorch_model.safetensors")),
        strict=False,
        ) # load norm weights

    inverse_scheduler = DDIMInverseScheduler.from_pretrained(model_id, subfolder="scheduler")
    scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")

    return pipe, inverse_scheduler, scheduler
def weight_population(layer_type, resolution, depth, value):
    # Check if layer_type exists, if not, create it
    if layer_type not in weights:
        weights[layer_type] = {}
    
    # Check if resolution exists under layer_type, if not, create it
    if resolution not in weights[layer_type]:
        weights[layer_type][resolution] = {}

    global heighest_resolution
    if resolution > heighest_resolution:
        heighest_resolution = resolution
  
    # Add/Modify the value at the specified depth (which can be a string)
    weights[layer_type][resolution][depth] = value

def resize_image_with_aspect(image, res_range_min=128, res_range_max=1024):
    # Get the original width and height of the image
    width, height = image.size
    
    # Determine the scaling factor to maintain the aspect ratio
    scaling_factor = 1
    if width < res_range_min or height < res_range_min:
        scaling_factor = max(res_range_min / width, res_range_min / height)
    elif width > res_range_max or height > res_range_max:
        scaling_factor = min(res_range_max / width, res_range_max / height)
    
    # Calculate the new dimensions
    new_width = int(width * scaling_factor)
    new_height = int(height * scaling_factor)

    print(f'{new_width}-{new_height}')
    
    # Resize the image with the new dimensions while maintaining the aspect ratio
    resized_image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
    
    return resized_image

@spaces.GPU()
def reconstruct(input_img, caption):

    pipe, inverse_scheduler, scheduler = load_pipeline()
    pipe.to("cuda")

    global weights
    weights = {}

    prompt = caption

    img = input_img

    img = resize_image_with_aspect(img, res_range_min, res_range_max)

    transform = torchvision.transforms.Compose([
        torchvision.transforms.ToTensor()
    ])

    if torch_dtype == torch.float16:
        loaded_image = transform(img).half().to("cuda").unsqueeze(0)
    else:
        loaded_image = transform(img).to("cuda").unsqueeze(0)

    if loaded_image.shape[1] == 4:
        loaded_image = loaded_image[:,:3,:,:]
        
    with torch.no_grad():
        encoded_image = pipe.vae.encode(loaded_image*2 - 1)
        real_image_latents = pipe.vae.config.scaling_factor * encoded_image.latent_dist.sample()


    # notice we disabled the CFG here by setting guidance scale as 1
    guidance_scale = 1.0
    inverse_scheduler.set_timesteps(num_inference_steps, device="cuda")
    timesteps = inverse_scheduler.timesteps

    latents = real_image_latents

    inversed_latents = [latents]

    def store_latent(pipe, step, timestep, callback_kwargs):
        latents = callback_kwargs["latents"]

        with torch.no_grad():
            if step != num_inference_steps - 1:
                inversed_latents.append(latents)

        return callback_kwargs

    with torch.no_grad():

        replace_attention_processor(pipe.unet, True)

        pipe.scheduler = inverse_scheduler
        latents = pipe(prompt=prompt, 
            guidance_scale = guidance_scale,
            output_type="latent", 
            return_dict=False, 
            num_inference_steps=num_inference_steps, 
            latents=latents, 
            callback_on_step_end=store_latent,
            callback_on_step_end_tensor_inputs=["latents"],)[0]

    # initial state
    real_image_initial_latents = latents

    guidance_scale = guidance_scale_value
    scheduler.set_timesteps(num_inference_steps, device="cuda")
    timesteps = scheduler.timesteps

    def adjust_latent(pipe, step, timestep, callback_kwargs):

        with torch.no_grad():
            callback_kwargs["latents"] = inversed_latents[len(timesteps) - 1 - step].detach()

        return callback_kwargs
        
    with torch.no_grad():

        replace_attention_processor(pipe.unet, True)

        intermediate_values = real_image_initial_latents.clone()

        pipe.scheduler = scheduler
        intermediate_values = pipe(prompt=prompt, 
            guidance_scale = guidance_scale,
            output_type="latent", 
            return_dict=False, 
            num_inference_steps=num_inference_steps, 
            latents=intermediate_values,
            callback_on_step_end=adjust_latent,
            callback_on_step_end_tensor_inputs=["latents"],)[0]

        image = pipe.vae.decode(intermediate_values / pipe.vae.config.scaling_factor, return_dict=False)[0]
        image_np = image.squeeze(0).float().permute(1, 2, 0).detach().cpu()
        image_np = (image_np / 2 + 0.5).clamp(0, 1).numpy()
        image_np = (image_np * 255).astype(np.uint8)

        update_scale(12)

        real_cpu = real_image_initial_latents.detach().cpu()
        inversed_cpu = [x.detach().cpu() for x in inversed_latents]

        return image_np, caption, 12, [
            caption,
            real_cpu,
            inversed_cpu,
            weights
        ]

class AttnReplaceProcessor(AttnProcessor2_0):

    def __init__(self, replace_all, layer_type, layer_count, blur_sigma=None):
        super().__init__()
        self.replace_all = replace_all
        self.layer_type = layer_type
        self.layer_count = layer_count
        self.weight_populated = False
        self.blur_sigma = blur_sigma

    def __call__(
        self,
        attn: Attention,
        hidden_states: torch.FloatTensor,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        temb: Optional[torch.FloatTensor] = None,
        *args,
        **kwargs,
    ) -> torch.FloatTensor:


        dimension_squared = hidden_states.shape[1]

        is_cross = not encoder_hidden_states is None

        residual = hidden_states
        if attn.spatial_norm is not None:
            hidden_states = attn.spatial_norm(hidden_states, temb)

        input_ndim = hidden_states.ndim

        if input_ndim == 4:
            batch_size, channel, height, width = hidden_states.shape
            hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

        batch_size, sequence_length, _ = (
            hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
        )

        if attention_mask is not None:
            attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
            # scaled_dot_product_attention expects attention_mask shape to be
            # (batch, heads, source_length, target_length)
            attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

        if attn.group_norm is not None:
            hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

        query = attn.to_q(hidden_states)

        if encoder_hidden_states is None:
            encoder_hidden_states = hidden_states
        elif attn.norm_cross:
            encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

        key = attn.to_k(encoder_hidden_states)
        value = attn.to_v(encoder_hidden_states)

        inner_dim = key.shape[-1]
        head_dim = inner_dim // attn.heads

        query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

        height = width = math.isqrt(query.shape[2])

        
        if self.replace_all:
            weight_value = weights[self.layer_type][dimension_squared][self.layer_count]
            
            ucond_attn_scores, attn_scores = query.chunk(2)
            attn_scores[1].copy_(weight_value * attn_scores[0] + (1.0 - weight_value) * attn_scores[1])
            ucond_attn_scores[1].copy_(weight_value * ucond_attn_scores[0] + (1.0 - weight_value) * ucond_attn_scores[1])


            ucond_attn_scores, attn_scores = key.chunk(2)
            attn_scores[1].copy_(weight_value * attn_scores[0] + (1.0 - weight_value) * attn_scores[1])
            ucond_attn_scores[1].copy_(weight_value * ucond_attn_scores[0] + (1.0 - weight_value) * ucond_attn_scores[1])
        else:
            weight_population(self.layer_type, dimension_squared, self.layer_count, 1.0)


        hidden_states = F.scaled_dot_product_attention(
            query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False,
        )

        hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
        hidden_states = hidden_states.to(query.dtype)

        # linear proj
        hidden_states = attn.to_out[0](hidden_states)
        # dropout
        hidden_states = attn.to_out[1](hidden_states)

        if input_ndim == 4:
            hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

        if attn.residual_connection:
            hidden_states = hidden_states + residual

        hidden_states = hidden_states / attn.rescale_output_factor

        return hidden_states

def replace_attention_processor(unet, clear=False, blur_sigma=None):
    attention_count = 0


    for name, module in unet.named_modules():
        if "attn1" in name and "to" not in name:
            layer_type = name.split(".")[0].split("_")[0]
            attention_count += 1
            
            if not clear:
                if layer_type == "down":
                    module.processor = AttnReplaceProcessor(True, layer_type, attention_count, blur_sigma=blur_sigma)
                elif layer_type == "mid":
                    module.processor = AttnReplaceProcessor(True, layer_type, attention_count, blur_sigma=blur_sigma)
                elif layer_type == "up":
                    module.processor = AttnReplaceProcessor(True, layer_type, attention_count, blur_sigma=blur_sigma)
                
            else:
                module.processor = AttnReplaceProcessor(False, layer_type, attention_count, blur_sigma=blur_sigma)

@spaces.GPU()
def apply_prompt(meta_data, new_prompt):

    pipe, _, scheduler = load_pipeline()
    pipe.to("cuda")

    caption, real_image_initial_latents, inversed_latents, _ = meta_data
    negative_prompt = ""

    inference_steps = len(inversed_latents)

    guidance_scale = guidance_scale_value
    scheduler.set_timesteps(inference_steps, device="cuda")
    timesteps = scheduler.timesteps

    initial_latents = torch.cat([real_image_initial_latents] * 2)

    def adjust_latent(pipe, step, timestep, callback_kwargs):
        replace_attention_processor(pipe.unet)

        with torch.no_grad():
            callback_kwargs["latents"][1] = callback_kwargs["latents"][1] + (inversed_latents[len(timesteps) - 1 - step].detach() - callback_kwargs["latents"][0])
            callback_kwargs["latents"][0] = inversed_latents[len(timesteps) - 1 - step].detach()

        return callback_kwargs

    
    with torch.no_grad():

        replace_attention_processor(pipe.unet)

        pipe.scheduler = scheduler
        latents = pipe(prompt=[caption, new_prompt], 
            negative_prompt=[negative_prompt, negative_prompt], 
            guidance_scale = guidance_scale,
            output_type="latent", 
            return_dict=False, 
            num_inference_steps=num_inference_steps, 
            latents=initial_latents,
            callback_on_step_end=adjust_latent,
            callback_on_step_end_tensor_inputs=["latents"],)[0]
        
        replace_attention_processor(pipe.unet, True)

        image = pipe.vae.decode(latents[1].unsqueeze(0) / pipe.vae.config.scaling_factor, return_dict=False)[0]
        image_np = image.squeeze(0).float().permute(1, 2, 0).detach().cpu()
        image_np = (image_np / 2 + 0.5).clamp(0, 1).numpy()
        image_np = (image_np * 255).astype(np.uint8)

    return image_np


def on_image_change(filepath):
    # Extract the filename without extension
    filename = os.path.splitext(os.path.basename(filepath))[0]

    if filename in ["example1", "example3", "example4"]:

        meta_data_raw = load_state_from_file(f"assets/{filename}-turbo.pkl")

        global weights
        _, _, _, weights = meta_data_raw

        global num_inference_steps
        num_inference_steps = 10
        scale_value = 7

        if filename == "example1":
            scale_value = 8
            new_prompt = "a photo of a tree, summer, colourful"

        elif filename == "example3":
            scale_value = 6
            new_prompt = "a realistic photo of a female warrior, flowing dark purple or black hair, bronze shoulder armour, leather chest piece, sky background with clouds"

        elif filename == "example4":
            scale_value = 13
            new_prompt = "a photo of plastic bottle on some sand, beach background, sky background"

        update_scale(scale_value)
        img = apply_prompt(meta_data_raw, new_prompt)

    return filepath, img, meta_data_raw, num_inference_steps, scale_value, scale_value


def update_value(value, layer_type, resolution, depth):
    global weights
    weights[layer_type][resolution][depth] = value


def update_step(value):
    global num_inference_steps
    num_inference_steps = value

def adjust_ends(values, adjustment):
    # Forward loop to adjust the first valid element from the left
    for i in range(len(values)):
        if (adjustment > 0 and values[i + 1] == 1.0) or (adjustment < 0 and values[i] > 0.0):
            values[i] = values[i] + adjustment
            break

    # Backward loop to adjust the first valid element from the right
    for i in range(len(values)-1, -1, -1):
        if (adjustment > 0 and values[i - 1] == 1.0) or (adjustment < 0 and values[i] > 0.0):
            values[i] = values[i] + adjustment
            break

    return values

max_scale_value = 16

def update_scale(scale):
    global weights

    value_count = 0

    for outer_key, inner_dict in weights.items():
        for inner_key, values in inner_dict.items():
            for _, value in enumerate(values):
                value_count += 1

    list_values = [1.0] * value_count

    for _ in range(scale, max_scale_value):
        adjust_ends(list_values, -0.5)

    value_index = 0

    for outer_key, inner_dict in weights.items():
        for inner_key, values in inner_dict.items():
            for idx, value in enumerate(values):
                
                weights[outer_key][inner_key][value] = list_values[value_index]
                value_index += 1


if __name__ == "__main__":

    parser = argparse.ArgumentParser()
    parser.add_argument("--share", action="store_true", help="Enable sharing of the Gradio interface")
    args = parser.parse_args()

    num_inference_steps = 10
        
    model_id = "stabilityai/stable-diffusion-xl-base-1.0"
    vae_model_id = "madebyollin/sdxl-vae-fp16-fix"
    vae_folder = ""
    guidance_scale_value = 7.5
    resadapter_model_name = "resadapter_v2_sdxl"
    res_range_min = 256 
    res_range_max = 1536

    torch_dtype = torch.float16

with gr.Blocks(analytics_enabled=False) as demo:
    gr.Markdown(
        """
            <div style="text-align: center;">
                <div style="display: flex; justify-content: center;">
                    <img src="https://github.com/user-attachments/assets/55a38e74-ab93-4d80-91c8-0fa6130af45a" alt="Logo">
                </div>
                <h1>Out of Focus v1.0 Turbo</h1>
                <p style="font-size:16px;">Out of AI presents a flexible tool to manipulate your images. This is our first version of Image modification tool through prompt manipulation by reconstruction through diffusion inversion process</p>
            </div>
            <br>
            <div style="display: flex; justify-content: center; align-items: center; text-align: center;">
                <a href="https://www.buymeacoffee.com/outofai" target="_blank"><img src="https://img.shields.io/badge/-buy_me_a%C2%A0coffee-red?logo=buy-me-a-coffee" alt="Buy Me A Coffee"></a> &ensp;
                <a href="https://twitter.com/OutofAi" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Out"></a>
            </div>
            """
    )
    with gr.Row():
        with gr.Column():

            with gr.Row():
                example_input = gr.Image(type="filepath", visible=False)
                image_input = gr.Image(type="pil", label="Upload Source Image")
            steps_slider = gr.Slider(minimum=5, maximum=50, step=5, value=num_inference_steps, label="Steps", info="Number of inference steps required to reconstruct and modify the image")
            prompt_input = gr.Textbox(label="Prompt", info="Give an initial prompt in details, describing the image")
            reconstruct_button = gr.Button("Reconstruct")
        with gr.Column():

            with gr.Row():
                reconstructed_image = gr.Image(type="pil", label="Reconstructed")
                invisible_slider = gr.Slider(minimum=0, maximum=9, step=1, value=7, visible=False)
            interpolate_slider = gr.Slider(minimum=0, maximum=max_scale_value, step=1, value=max_scale_value, label="Cross-Attention Influence", info="Scales the related influence the source image has on the target image")
            new_prompt_input = gr.Textbox(label="New Prompt", interactive=False, info="Manipulate the image by changing the prompt or adding words at the end; swap words instead of adding or removing them for better results")

            with gr.Row():
                apply_button = gr.Button("Generate Vision", variant="primary", interactive=False)

            with gr.Row():
                show_case = gr.Examples(
                    examples=[
                        ["assets/example4.png", "a photo of plastic bottle on a rock, mountain background, sky background", "a photo of plastic bottle on some sand, beach background, sky background", 13],
                        ["assets/example1.png", "a photo of a tree, spring, foggy", "a photo of a tree, summer, colourful", 8],
                        [
                            "assets/example3.png",
                            "a digital illustration of a female warrior, flowing dark purple or black hair, bronze shoulder armour, leather chest piece, sky background with clouds",
                            "a realistic photo of a female warrior, flowing dark purple or black hair, bronze shoulder armour, leather chest piece, sky background with clouds",
                            6 ,
                        ],
                    ],
                    inputs=[example_input, prompt_input, new_prompt_input, interpolate_slider],
                    label=None,
                )

    meta_data = gr.State()

    example_input.change(fn=on_image_change, inputs=example_input, outputs=[image_input, reconstructed_image, meta_data, steps_slider, invisible_slider, interpolate_slider]).then(lambda: gr.update(interactive=True), outputs=apply_button).then(
        lambda: gr.update(interactive=True), outputs=new_prompt_input
    )
    steps_slider.release(update_step, inputs=steps_slider)
    interpolate_slider.release(update_scale, inputs=interpolate_slider)

    value_trigger = True

    def triggered():
        global value_trigger
        value_trigger = not value_trigger
        return value_trigger

    reconstruct_button.click(reconstruct, inputs=[image_input, prompt_input], outputs=[reconstructed_image, new_prompt_input, interpolate_slider, meta_data]).then(lambda: gr.update(interactive=True), outputs=reconstruct_button).then(lambda: gr.update(interactive=True), outputs=new_prompt_input).then(
        lambda: gr.update(interactive=True), outputs=apply_button
    )

    reconstruct_button.click(lambda: gr.update(interactive=False), outputs=reconstruct_button)

    reconstruct_button.click(lambda: gr.update(interactive=False), outputs=apply_button)

    apply_button.click(apply_prompt, inputs=[meta_data, new_prompt_input], outputs=reconstructed_image)

    demo.queue()
    demo.launch(share=args.share, inbrowser=True)