Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1 |
import warnings
|
2 |
-
|
3 |
warnings.filterwarnings("ignore")
|
4 |
-
from diffusers import
|
5 |
import torch
|
6 |
from typing import Optional
|
7 |
from tqdm import tqdm
|
@@ -14,193 +13,205 @@ import gradio as gr
|
|
14 |
import numpy as np
|
15 |
import os
|
16 |
import pickle
|
|
|
|
|
17 |
import argparse
|
18 |
-
from PIL import Image
|
19 |
-
import requests
|
20 |
-
import math
|
21 |
-
import torch
|
22 |
-
from safetensors.torch import load_file
|
23 |
-
from huggingface_hub import hf_hub_download
|
24 |
-
from diffusers import DiffusionPipeline
|
25 |
-
import spaces
|
26 |
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def save_state_to_file(state):
|
29 |
filename = "state.pkl"
|
30 |
-
with open(filename,
|
31 |
-
pickle.dump(state, f)
|
32 |
return filename
|
33 |
|
34 |
-
@spaces.GPU()
|
35 |
def load_state_from_file(filename):
|
36 |
-
with open(filename,
|
37 |
-
state = pickle.load(f)
|
38 |
-
return state
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
res_list = []
|
44 |
-
foreground_mask = None
|
45 |
-
heighest_resolution = -1
|
46 |
-
signal_value = 2.0
|
47 |
-
blur_value = None
|
48 |
-
allowed_res_max = 1.0
|
49 |
-
|
50 |
-
# Device configuration
|
51 |
-
device = "cuda"
|
52 |
-
print(f"Using device: {device}")
|
53 |
-
|
54 |
-
@spaces.GPU()
|
55 |
-
def weight_population(layer_type, resolution, depth, value):
|
56 |
-
# Check if layer_type exists, if not, create it
|
57 |
-
if layer_type not in weights:
|
58 |
-
weights[layer_type] = {}
|
59 |
-
|
60 |
-
# Check if resolution exists under layer_type, if not, create it
|
61 |
-
if resolution not in weights[layer_type]:
|
62 |
-
weights[layer_type][resolution] = {}
|
63 |
|
64 |
-
|
65 |
-
if resolution > heighest_resolution:
|
66 |
-
heighest_resolution = resolution
|
67 |
-
|
68 |
-
# Add/Modify the value at the specified depth (which can be a string)
|
69 |
-
weights[layer_type][resolution][depth] = value
|
70 |
|
71 |
-
|
72 |
-
def resize_image_with_aspect(image, res_range_min=128, res_range_max=1024):
|
73 |
-
# Get the original width and height of the image
|
74 |
-
width, height = image.size
|
75 |
-
|
76 |
-
# Determine the scaling factor to maintain the aspect ratio
|
77 |
-
scaling_factor = 1
|
78 |
-
if width < res_range_min or height < res_range_min:
|
79 |
-
scaling_factor = max(res_range_min / width, res_range_min / height)
|
80 |
-
elif width > res_range_max or height > res_range_max:
|
81 |
-
scaling_factor = min(res_range_max / width, res_range_max / height)
|
82 |
-
|
83 |
-
# Calculate the new dimensions
|
84 |
-
new_width = int(width * scaling_factor)
|
85 |
-
new_height = int(height * scaling_factor)
|
86 |
|
87 |
-
|
88 |
-
|
89 |
-
# Resize the image with the new dimensions while maintaining the aspect ratio
|
90 |
-
resized_image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
91 |
-
|
92 |
-
return resized_image
|
93 |
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
|
100 |
-
|
101 |
|
102 |
-
|
103 |
|
104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
transform = torchvision.transforms.Compose([
|
107 |
-
torchvision.transforms.ToTensor()
|
108 |
-
])
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
else:
|
113 |
-
loaded_image = transform(img).to(device).unsqueeze(0)
|
114 |
|
115 |
-
|
116 |
-
loaded_image = loaded_image[:,:3,:,:]
|
117 |
-
|
118 |
-
with torch.no_grad():
|
119 |
-
encoded_image = pipe.vae.encode(loaded_image*2 - 1)
|
120 |
-
real_image_latents = pipe.vae.config.scaling_factor * encoded_image.latent_dist.sample()
|
121 |
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
inverse_scheduler.set_timesteps(num_inference_steps, device=device)
|
126 |
-
timesteps = inverse_scheduler.timesteps
|
127 |
|
128 |
-
|
|
|
129 |
|
130 |
-
inversed_latents = [latents]
|
131 |
|
132 |
-
|
133 |
-
|
|
|
134 |
|
135 |
-
|
136 |
-
if step != num_inference_steps - 1:
|
137 |
-
inversed_latents.append(latents)
|
138 |
|
139 |
-
|
|
|
|
|
|
|
140 |
|
141 |
-
|
142 |
|
143 |
-
|
|
|
|
|
144 |
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
callback_on_step_end_tensor_inputs=["latents"],)[0]
|
154 |
|
155 |
-
|
156 |
-
real_image_initial_latents = latents
|
157 |
|
158 |
-
guidance_scale = guidance_scale_value
|
159 |
-
scheduler.set_timesteps(num_inference_steps, device=device)
|
160 |
-
timesteps = scheduler.timesteps
|
161 |
|
162 |
-
|
|
|
163 |
|
164 |
-
|
165 |
-
callback_kwargs["latents"] = inversed_latents[len(timesteps) - 1 - step].detach()
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
with torch.no_grad():
|
170 |
|
171 |
-
|
172 |
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
guidance_scale = guidance_scale,
|
178 |
-
output_type="latent",
|
179 |
-
return_dict=False,
|
180 |
-
num_inference_steps=num_inference_steps,
|
181 |
-
latents=intermediate_values,
|
182 |
-
callback_on_step_end=adjust_latent,
|
183 |
-
callback_on_step_end_tensor_inputs=["latents"],)[0]
|
184 |
|
185 |
-
|
186 |
-
image_np = image.squeeze(0).float().permute(1, 2, 0).detach().cpu()
|
187 |
-
image_np = (image_np / 2 + 0.5).clamp(0, 1).numpy()
|
188 |
-
image_np = (image_np * 255).astype(np.uint8)
|
189 |
|
190 |
-
update_scale(12)
|
191 |
|
192 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
|
194 |
-
@spaces.GPU()
|
195 |
class AttnReplaceProcessor(AttnProcessor2_0):
|
196 |
|
197 |
-
def __init__(self, replace_all,
|
198 |
super().__init__()
|
199 |
self.replace_all = replace_all
|
200 |
-
self.
|
201 |
-
self.layer_count = layer_count
|
202 |
-
self.weight_populated = False
|
203 |
-
self.blur_sigma = blur_sigma
|
204 |
|
205 |
def __call__(
|
206 |
self,
|
@@ -213,31 +224,20 @@ class AttnReplaceProcessor(AttnProcessor2_0):
|
|
213 |
**kwargs,
|
214 |
) -> torch.FloatTensor:
|
215 |
|
216 |
-
|
217 |
-
dimension_squared = hidden_states.shape[1]
|
218 |
|
219 |
is_cross = not encoder_hidden_states is None
|
220 |
|
221 |
-
residual = hidden_states
|
222 |
-
if attn.spatial_norm is not None:
|
223 |
-
hidden_states = attn.spatial_norm(hidden_states, temb)
|
224 |
-
|
225 |
input_ndim = hidden_states.ndim
|
226 |
|
227 |
if input_ndim == 4:
|
228 |
batch_size, channel, height, width = hidden_states.shape
|
229 |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
230 |
|
231 |
-
batch_size,
|
232 |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
233 |
)
|
234 |
|
235 |
-
if attention_mask is not None:
|
236 |
-
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
237 |
-
# scaled_dot_product_attention expects attention_mask shape to be
|
238 |
-
# (batch, heads, source_length, target_length)
|
239 |
-
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
240 |
-
|
241 |
if attn.group_norm is not None:
|
242 |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
243 |
|
@@ -251,43 +251,27 @@ class AttnReplaceProcessor(AttnProcessor2_0):
|
|
251 |
key = attn.to_k(encoder_hidden_states)
|
252 |
value = attn.to_v(encoder_hidden_states)
|
253 |
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
258 |
|
259 |
-
|
260 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
261 |
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
if self.replace_all:
|
266 |
-
weight_value = weights[self.layer_type][dimension_squared][self.layer_count]
|
267 |
-
|
268 |
-
ucond_attn_scores, attn_scores = query.chunk(2)
|
269 |
-
attn_scores[1].copy_(weight_value * attn_scores[0] + (1.0 - weight_value) * attn_scores[1])
|
270 |
-
ucond_attn_scores[1].copy_(weight_value * ucond_attn_scores[0] + (1.0 - weight_value) * ucond_attn_scores[1])
|
271 |
-
|
272 |
-
|
273 |
-
ucond_attn_scores, attn_scores = key.chunk(2)
|
274 |
-
attn_scores[1].copy_(weight_value * attn_scores[0] + (1.0 - weight_value) * attn_scores[1])
|
275 |
-
ucond_attn_scores[1].copy_(weight_value * ucond_attn_scores[0] + (1.0 - weight_value) * ucond_attn_scores[1])
|
276 |
-
else:
|
277 |
-
weight_population(self.layer_type, dimension_squared, self.layer_count, 1.0)
|
278 |
|
|
|
|
|
|
|
|
|
279 |
|
280 |
-
|
281 |
-
|
282 |
-
)
|
283 |
|
284 |
-
hidden_states =
|
285 |
-
hidden_states =
|
|
|
286 |
|
287 |
-
# linear proj
|
288 |
hidden_states = attn.to_out[0](hidden_states)
|
289 |
-
# dropout
|
290 |
-
hidden_states = attn.to_out[1](hidden_states)
|
291 |
|
292 |
if input_ndim == 4:
|
293 |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
@@ -299,296 +283,289 @@ class AttnReplaceProcessor(AttnProcessor2_0):
|
|
299 |
|
300 |
return hidden_states
|
301 |
|
302 |
-
|
303 |
-
def replace_attention_processor(unet, clear=False, blur_sigma=None):
|
304 |
-
attention_count = 0
|
305 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
306 |
|
307 |
-
for name, module in unet.named_modules():
|
308 |
-
if "attn1" in name and "to" not in name:
|
309 |
-
layer_type = name.split(".")[0].split("_")[0]
|
310 |
-
attention_count += 1
|
311 |
-
|
312 |
-
if not clear:
|
313 |
-
if layer_type == "down":
|
314 |
-
module.processor = AttnReplaceProcessor(True, layer_type, attention_count, blur_sigma=blur_sigma)
|
315 |
-
elif layer_type == "mid":
|
316 |
-
module.processor = AttnReplaceProcessor(True, layer_type, attention_count, blur_sigma=blur_sigma)
|
317 |
-
elif layer_type == "up":
|
318 |
-
module.processor = AttnReplaceProcessor(True, layer_type, attention_count, blur_sigma=blur_sigma)
|
319 |
-
|
320 |
-
else:
|
321 |
-
module.processor = AttnReplaceProcessor(False, layer_type, attention_count, blur_sigma=blur_sigma)
|
322 |
-
|
323 |
-
@spaces.GPU()
|
324 |
def apply_prompt(meta_data, new_prompt):
|
325 |
|
326 |
-
|
327 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
328 |
|
329 |
-
|
330 |
|
331 |
-
|
332 |
-
|
333 |
-
timesteps = scheduler.timesteps
|
334 |
|
335 |
-
|
336 |
|
337 |
-
|
338 |
-
|
339 |
|
340 |
-
|
341 |
-
|
342 |
-
|
|
|
|
|
|
|
|
|
343 |
|
344 |
-
return callback_kwargs
|
345 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
346 |
|
347 |
-
|
348 |
-
|
349 |
-
replace_attention_processor(pipe.unet)
|
350 |
-
|
351 |
-
pipe.scheduler = scheduler
|
352 |
-
latents = pipe(prompt=[caption, new_prompt],
|
353 |
-
negative_prompt=[negative_prompt, negative_prompt],
|
354 |
-
guidance_scale = guidance_scale,
|
355 |
-
output_type="latent",
|
356 |
-
return_dict=False,
|
357 |
-
num_inference_steps=num_inference_steps,
|
358 |
-
latents=initial_latents,
|
359 |
-
callback_on_step_end=adjust_latent,
|
360 |
-
callback_on_step_end_tensor_inputs=["latents"],)[0]
|
361 |
-
|
362 |
-
replace_attention_processor(pipe.unet, True)
|
363 |
-
|
364 |
-
image = pipe.vae.decode(latents[1].unsqueeze(0) / pipe.vae.config.scaling_factor, return_dict=False)[0]
|
365 |
-
image_np = image.squeeze(0).float().permute(1, 2, 0).detach().cpu()
|
366 |
-
image_np = (image_np / 2 + 0.5).clamp(0, 1).numpy()
|
367 |
-
image_np = (image_np * 255).astype(np.uint8)
|
368 |
-
|
369 |
-
return image_np
|
370 |
-
|
371 |
-
@spaces.GPU()
|
372 |
-
def on_image_change(filepath):
|
373 |
-
# Extract the filename without extension
|
374 |
-
filename = os.path.splitext(os.path.basename(filepath))[0]
|
375 |
|
376 |
-
if filename in ["example1", "example3", "example4"]:
|
377 |
|
378 |
-
meta_data_raw = load_state_from_file(f"assets/{filename}-turbo.pkl")
|
379 |
|
380 |
-
|
381 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
|
383 |
global num_inference_steps
|
384 |
-
num_inference_steps =
|
385 |
scale_value = 7
|
|
|
386 |
|
387 |
if filename == "example1":
|
388 |
-
scale_value =
|
389 |
new_prompt = "a photo of a tree, summer, colourful"
|
|
|
|
|
|
|
|
|
390 |
|
391 |
elif filename == "example3":
|
392 |
-
scale_value =
|
393 |
new_prompt = "a realistic photo of a female warrior, flowing dark purple or black hair, bronze shoulder armour, leather chest piece, sky background with clouds"
|
394 |
-
|
395 |
elif filename == "example4":
|
396 |
-
scale_value =
|
397 |
new_prompt = "a photo of plastic bottle on some sand, beach background, sky background"
|
398 |
|
399 |
update_scale(scale_value)
|
400 |
img = apply_prompt(meta_data_raw, new_prompt)
|
401 |
-
|
402 |
return filepath, img, meta_data_raw, num_inference_steps, scale_value, scale_value
|
403 |
|
404 |
-
|
405 |
-
def update_value(value, layer_type, resolution, depth):
|
406 |
global weights
|
407 |
-
weights[
|
408 |
-
|
409 |
|
410 |
def update_step(value):
|
411 |
global num_inference_steps
|
412 |
num_inference_steps = value
|
413 |
|
414 |
-
def
|
415 |
-
|
416 |
-
for i in range(len(values)):
|
417 |
-
if (adjustment > 0 and values[i + 1] == 1.0) or (adjustment < 0 and values[i] > 0.0):
|
418 |
-
values[i] = values[i] + adjustment
|
419 |
-
break
|
420 |
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
425 |
break
|
426 |
|
427 |
-
return values
|
428 |
-
|
429 |
-
max_scale_value = 16
|
430 |
-
|
431 |
-
@spaces.GPU()
|
432 |
-
def update_scale(scale):
|
433 |
global weights
|
434 |
-
|
435 |
-
value_count = 0
|
436 |
|
437 |
for outer_key, inner_dict in weights.items():
|
438 |
-
for inner_key
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
list_values = [1.0] * value_count
|
443 |
-
|
444 |
-
for _ in range(scale, max_scale_value):
|
445 |
-
adjust_ends(list_values, -0.5)
|
446 |
-
|
447 |
-
value_index = 0
|
448 |
-
|
449 |
-
for outer_key, inner_dict in weights.items():
|
450 |
-
for inner_key, values in inner_dict.items():
|
451 |
-
for idx, value in enumerate(values):
|
452 |
-
|
453 |
-
weights[outer_key][inner_key][value] = list_values[value_index]
|
454 |
-
value_index += 1
|
455 |
-
|
456 |
-
|
457 |
-
@spaces.GPU()
|
458 |
-
def load_pipeline():
|
459 |
-
model_id = "runwayml/stable-diffusion-v1-5"
|
460 |
-
vae_model_id = "runwayml/stable-diffusion-v1-5"
|
461 |
-
vae_folder = "vae"
|
462 |
-
guidance_scale_value = 7.5
|
463 |
-
resadapter_model_name = "resadapter_v2_sd1.5"
|
464 |
-
res_range_min = 128
|
465 |
-
res_range_max = 1024
|
466 |
-
|
467 |
-
|
468 |
-
torch_dtype = torch.float16
|
469 |
-
|
470 |
-
# torch_dtype = torch.float16
|
471 |
-
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to(device)
|
472 |
-
pipe.vae = AutoencoderKL.from_pretrained(vae_model_id, subfolder=vae_folder, torch_dtype=torch_dtype).to(device)
|
473 |
-
pipe.load_lora_weights(
|
474 |
-
hf_hub_download(repo_id="jiaxiangc/res-adapter", subfolder=resadapter_model_name, filename="pytorch_lora_weights.safetensors"),
|
475 |
-
adapter_name="res_adapter",
|
476 |
-
) # load lora weights
|
477 |
-
pipe.set_adapters(["res_adapter"], adapter_weights=[1.0])
|
478 |
-
pipe.unet.load_state_dict(
|
479 |
-
load_file(hf_hub_download(repo_id="jiaxiangc/res-adapter", subfolder=resadapter_model_name, filename="diffusion_pytorch_model.safetensors")),
|
480 |
-
strict=False,
|
481 |
-
) # load norm weights
|
482 |
-
|
483 |
-
inverse_scheduler = DDIMInverseScheduler.from_pretrained(model_id, subfolder="scheduler")
|
484 |
-
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
485 |
-
|
486 |
-
return pipe, inverse_scheduler, scheduler
|
487 |
|
488 |
-
|
489 |
-
|
490 |
-
parser = argparse.ArgumentParser()
|
491 |
-
parser.add_argument("--share", action="store_true", help="Enable sharing of the Gradio interface")
|
492 |
-
args = parser.parse_args()
|
493 |
-
|
494 |
-
num_inference_steps = 10
|
495 |
-
|
496 |
-
# model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
497 |
-
# vae_model_id = "madebyollin/sdxl-vae-fp16-fix"
|
498 |
-
# vae_folder = ""
|
499 |
-
# guidance_scale_value = 7.5
|
500 |
-
# resadapter_model_name = "resadapter_v2_sdxl"
|
501 |
-
# res_range_min = 256
|
502 |
-
# res_range_max = 1536
|
503 |
-
model_id = "runwayml/stable-diffusion-v1-5"
|
504 |
-
vae_model_id = "runwayml/stable-diffusion-v1-5"
|
505 |
-
vae_folder = "vae"
|
506 |
-
guidance_scale_value = 7.5
|
507 |
-
resadapter_model_name = "resadapter_v2_sd1.5"
|
508 |
-
res_range_min = 128
|
509 |
-
res_range_max = 1024
|
510 |
-
|
511 |
-
|
512 |
-
torch_dtype = torch.float16
|
513 |
-
|
514 |
|
515 |
-
with gr.Blocks(
|
516 |
gr.Markdown(
|
517 |
-
|
518 |
<div style="text-align: center;">
|
519 |
<div style="display: flex; justify-content: center;">
|
520 |
<img src="https://github.com/user-attachments/assets/55a38e74-ab93-4d80-91c8-0fa6130af45a" alt="Logo">
|
521 |
</div>
|
522 |
-
<h1>Out of Focus
|
523 |
<p style="font-size:16px;">Out of AI presents a flexible tool to manipulate your images. This is our first version of Image modification tool through prompt manipulation by reconstruction through diffusion inversion process</p>
|
524 |
</div>
|
525 |
<br>
|
526 |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
527 |
<a href="https://www.buymeacoffee.com/outofai" target="_blank"><img src="https://img.shields.io/badge/-buy_me_a%C2%A0coffee-red?logo=buy-me-a-coffee" alt="Buy Me A Coffee"></a>  
|
528 |
-
<a href="https://twitter.com/OutofAi" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=
|
|
|
529 |
</div>
|
530 |
-
|
531 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
532 |
with gr.Row():
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
-
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
"
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
],
|
564 |
-
|
565 |
-
label=
|
566 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
567 |
|
568 |
meta_data = gr.State()
|
569 |
|
570 |
-
example_input.change(
|
571 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
572 |
)
|
573 |
steps_slider.release(update_step, inputs=steps_slider)
|
574 |
-
interpolate_slider.release(update_scale, inputs=interpolate_slider)
|
575 |
-
|
576 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
577 |
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
|
583 |
-
reconstruct_button.click(
|
584 |
-
lambda: gr.update(interactive=True),
|
|
|
585 |
)
|
586 |
|
587 |
-
reconstruct_button.click(
|
|
|
|
|
|
|
588 |
|
589 |
-
|
|
|
|
|
|
|
590 |
|
591 |
apply_button.click(apply_prompt, inputs=[meta_data, new_prompt_input], outputs=reconstructed_image)
|
|
|
592 |
|
|
|
|
|
|
|
|
|
593 |
demo.queue()
|
594 |
-
demo.launch(share=args.share
|
|
|
1 |
import warnings
|
|
|
2 |
warnings.filterwarnings("ignore")
|
3 |
+
from diffusers import StableDiffusionPipeline, DDIMInverseScheduler, DDIMScheduler
|
4 |
import torch
|
5 |
from typing import Optional
|
6 |
from tqdm import tqdm
|
|
|
13 |
import numpy as np
|
14 |
import os
|
15 |
import pickle
|
16 |
+
from transformers import CLIPImageProcessor
|
17 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
18 |
import argparse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
weights = {
|
21 |
+
'down': {
|
22 |
+
4096: 0.0,
|
23 |
+
1024: 1.0,
|
24 |
+
256: 1.0,
|
25 |
+
},
|
26 |
+
'mid': {
|
27 |
+
64: 1.0,
|
28 |
+
},
|
29 |
+
'up': {
|
30 |
+
256: 1.0,
|
31 |
+
1024: 1.0,
|
32 |
+
4096: 0.0,
|
33 |
+
}
|
34 |
+
}
|
35 |
+
num_inference_steps = 10
|
36 |
+
model_id = "stabilityai/stable-diffusion-2-1-base"
|
37 |
+
|
38 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id).to("cuda")
|
39 |
+
inverse_scheduler = DDIMInverseScheduler.from_pretrained(model_id, subfolder="scheduler")
|
40 |
+
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
41 |
+
|
42 |
+
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker").to("cuda")
|
43 |
+
feature_extractor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
44 |
+
|
45 |
+
should_stop = False
|
46 |
+
|
47 |
def save_state_to_file(state):
|
48 |
filename = "state.pkl"
|
49 |
+
with open(filename, 'wb') as f:
|
50 |
+
pickle.dump(state, f)
|
51 |
return filename
|
52 |
|
|
|
53 |
def load_state_from_file(filename):
|
54 |
+
with open(filename, 'rb') as f:
|
55 |
+
state = pickle.load(f)
|
56 |
+
return state
|
57 |
|
58 |
+
def stop_reconstruct():
|
59 |
+
global should_stop
|
60 |
+
should_stop = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
def reconstruct(input_img, caption):
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
+
img = input_img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
+
cond_prompt_embeds = pipe.encode_prompt(prompt=caption, device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
|
67 |
+
uncond_prompt_embeds = pipe.encode_prompt(prompt="", device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
prompt_embeds_combined = torch.cat([uncond_prompt_embeds, cond_prompt_embeds])
|
70 |
+
|
71 |
+
|
72 |
+
transform = torchvision.transforms.Compose([
|
73 |
+
torchvision.transforms.Resize((512, 512)),
|
74 |
+
torchvision.transforms.ToTensor()
|
75 |
+
])
|
76 |
+
|
77 |
+
loaded_image = transform(img).to("cuda").unsqueeze(0)
|
78 |
+
|
79 |
+
if loaded_image.shape[1] == 4:
|
80 |
+
loaded_image = loaded_image[:,:3,:,:]
|
81 |
+
|
82 |
+
with torch.no_grad():
|
83 |
+
encoded_image = pipe.vae.encode(loaded_image*2 - 1)
|
84 |
+
real_image_latents = pipe.vae.config.scaling_factor * encoded_image.latent_dist.sample()
|
85 |
+
|
86 |
+
guidance_scale = 1
|
87 |
+
inverse_scheduler.set_timesteps(num_inference_steps, device="cuda")
|
88 |
+
timesteps = inverse_scheduler.timesteps
|
89 |
+
|
90 |
+
latents = real_image_latents
|
91 |
+
|
92 |
+
inversed_latents = []
|
93 |
+
|
94 |
+
with torch.no_grad():
|
95 |
+
|
96 |
+
replace_attention_processor(pipe.unet, True)
|
97 |
+
|
98 |
+
for i, t in tqdm(enumerate(timesteps), total=len(timesteps), desc="Inference steps"):
|
99 |
|
100 |
+
inversed_latents.append(latents)
|
101 |
|
102 |
+
latent_model_input = torch.cat([latents] * 2)
|
103 |
|
104 |
+
noise_pred = pipe.unet(
|
105 |
+
latent_model_input,
|
106 |
+
t,
|
107 |
+
encoder_hidden_states=prompt_embeds_combined,
|
108 |
+
cross_attention_kwargs=None,
|
109 |
+
return_dict=False,
|
110 |
+
)[0]
|
111 |
|
|
|
|
|
|
|
112 |
|
113 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
114 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
|
115 |
|
116 |
+
latents = inverse_scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
|
119 |
+
# initial state
|
120 |
+
real_image_initial_latents = latents
|
|
|
|
|
121 |
|
122 |
+
W_values = uncond_prompt_embeds.repeat(num_inference_steps, 1, 1)
|
123 |
+
QT = nn.Parameter(W_values.clone())
|
124 |
|
|
|
125 |
|
126 |
+
guidance_scale = 7.5
|
127 |
+
scheduler.set_timesteps(num_inference_steps, device="cuda")
|
128 |
+
timesteps = scheduler.timesteps
|
129 |
|
130 |
+
optimizer = torch.optim.AdamW([QT], lr=0.008)
|
|
|
|
|
131 |
|
132 |
+
pipe.vae.eval()
|
133 |
+
pipe.vae.requires_grad_(False)
|
134 |
+
pipe.unet.eval()
|
135 |
+
pipe.unet.requires_grad_(False)
|
136 |
|
137 |
+
last_loss = 1
|
138 |
|
139 |
+
for epoch in range(50):
|
140 |
+
gc.collect()
|
141 |
+
torch.cuda.empty_cache()
|
142 |
|
143 |
+
if last_loss < 0.02:
|
144 |
+
break
|
145 |
+
elif last_loss < 0.03:
|
146 |
+
for param_group in optimizer.param_groups:
|
147 |
+
param_group['lr'] = 0.003
|
148 |
+
elif last_loss < 0.035:
|
149 |
+
for param_group in optimizer.param_groups:
|
150 |
+
param_group['lr'] = 0.006
|
|
|
151 |
|
152 |
+
intermediate_values = real_image_initial_latents.clone()
|
|
|
153 |
|
|
|
|
|
|
|
154 |
|
155 |
+
for i in range(num_inference_steps):
|
156 |
+
latents = intermediate_values.detach().clone()
|
157 |
|
158 |
+
t = timesteps[i]
|
|
|
159 |
|
160 |
+
prompt_embeds = torch.cat([QT[i].unsqueeze(0), cond_prompt_embeds.detach()])
|
|
|
|
|
161 |
|
162 |
+
latent_model_input = torch.cat([latents] * 2)
|
163 |
|
164 |
+
noise_pred_model = pipe.unet(
|
165 |
+
latent_model_input,
|
166 |
+
t,
|
167 |
+
encoder_hidden_states=prompt_embeds,
|
168 |
+
cross_attention_kwargs=None,
|
169 |
+
return_dict=False,
|
170 |
+
)[0]
|
171 |
|
172 |
+
noise_pred_uncond, noise_pred_text = noise_pred_model.chunk(2)
|
173 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
+
intermediate_values = scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
|
|
|
|
|
|
176 |
|
|
|
177 |
|
178 |
+
loss = F.mse_loss(inversed_latents[len(timesteps) - 1 - i].detach(), intermediate_values, reduction="mean")
|
179 |
+
last_loss = loss
|
180 |
+
|
181 |
+
optimizer.zero_grad()
|
182 |
+
loss.backward()
|
183 |
+
optimizer.step()
|
184 |
+
|
185 |
+
global should_stop
|
186 |
+
if should_stop:
|
187 |
+
should_stop = False
|
188 |
+
break
|
189 |
+
|
190 |
+
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0]
|
191 |
+
image = (image / 2.0 + 0.5).clamp(0.0, 1.0)
|
192 |
+
safety_checker_input = feature_extractor(image, return_tensors="pt", do_rescale=False).to("cuda")
|
193 |
+
image = safety_checker(images=[image], clip_input=safety_checker_input.pixel_values.to("cuda"))[0]
|
194 |
+
image_np = image[0].squeeze(0).float().permute(1,2,0).detach().cpu().numpy()
|
195 |
+
image_np = (image_np * 255).astype(np.uint8)
|
196 |
+
|
197 |
+
yield image_np, caption, [caption, real_image_initial_latents, QT]
|
198 |
+
|
199 |
+
image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0]
|
200 |
+
image = (image / 2.0 + 0.5).clamp(0.0, 1.0)
|
201 |
+
safety_checker_input = feature_extractor(image, return_tensors="pt", do_rescale=False).to("cuda")
|
202 |
+
image = safety_checker(images=[image], clip_input=safety_checker_input.pixel_values.to("cuda"))[0]
|
203 |
+
image_np = image[0].squeeze(0).float().permute(1,2,0).detach().cpu().numpy()
|
204 |
+
image_np = (image_np * 255).astype(np.uint8)
|
205 |
+
|
206 |
+
yield image_np, caption, [caption, real_image_initial_latents, QT]
|
207 |
+
|
208 |
|
|
|
209 |
class AttnReplaceProcessor(AttnProcessor2_0):
|
210 |
|
211 |
+
def __init__(self, replace_all, weight):
|
212 |
super().__init__()
|
213 |
self.replace_all = replace_all
|
214 |
+
self.weight = weight
|
|
|
|
|
|
|
215 |
|
216 |
def __call__(
|
217 |
self,
|
|
|
224 |
**kwargs,
|
225 |
) -> torch.FloatTensor:
|
226 |
|
227 |
+
residual = hidden_states
|
|
|
228 |
|
229 |
is_cross = not encoder_hidden_states is None
|
230 |
|
|
|
|
|
|
|
|
|
231 |
input_ndim = hidden_states.ndim
|
232 |
|
233 |
if input_ndim == 4:
|
234 |
batch_size, channel, height, width = hidden_states.shape
|
235 |
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
236 |
|
237 |
+
batch_size, _, _ = (
|
238 |
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
239 |
)
|
240 |
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
if attn.group_norm is not None:
|
242 |
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
243 |
|
|
|
251 |
key = attn.to_k(encoder_hidden_states)
|
252 |
value = attn.to_v(encoder_hidden_states)
|
253 |
|
254 |
+
query = attn.head_to_batch_dim(query)
|
255 |
+
key = attn.head_to_batch_dim(key)
|
256 |
+
value = attn.head_to_batch_dim(value)
|
|
|
257 |
|
258 |
+
attention_scores = attn.scale * torch.bmm(query, key.transpose(-1, -2))
|
|
|
259 |
|
260 |
+
dimension_squared = hidden_states.shape[1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
261 |
|
262 |
+
if not is_cross and (self.replace_all):
|
263 |
+
ucond_attn_scores_src, ucond_attn_scores_dst, attn_scores_src, attn_scores_dst = attention_scores.chunk(4)
|
264 |
+
attn_scores_dst.copy_(self.weight[dimension_squared] * attn_scores_src + (1.0 - self.weight[dimension_squared]) * attn_scores_dst)
|
265 |
+
ucond_attn_scores_dst.copy_(self.weight[dimension_squared] * ucond_attn_scores_src + (1.0 - self.weight[dimension_squared]) * ucond_attn_scores_dst)
|
266 |
|
267 |
+
attention_probs = attention_scores.softmax(dim=-1)
|
268 |
+
del attention_scores
|
|
|
269 |
|
270 |
+
hidden_states = torch.bmm(attention_probs, value)
|
271 |
+
hidden_states = attn.batch_to_head_dim(hidden_states)
|
272 |
+
del attention_probs
|
273 |
|
|
|
274 |
hidden_states = attn.to_out[0](hidden_states)
|
|
|
|
|
275 |
|
276 |
if input_ndim == 4:
|
277 |
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
|
|
283 |
|
284 |
return hidden_states
|
285 |
|
286 |
+
def replace_attention_processor(unet, clear = False):
|
|
|
|
|
287 |
|
288 |
+
for name, module in unet.named_modules():
|
289 |
+
if 'attn1' in name and 'to' not in name:
|
290 |
+
layer_type = name.split('.')[0].split('_')[0]
|
291 |
+
|
292 |
+
if not clear:
|
293 |
+
if layer_type == 'down':
|
294 |
+
module.processor = AttnReplaceProcessor(True, weights['down'])
|
295 |
+
elif layer_type == 'mid':
|
296 |
+
module.processor = AttnReplaceProcessor(True, weights['mid'])
|
297 |
+
elif layer_type == 'up':
|
298 |
+
module.processor = AttnReplaceProcessor(True, weights['up'])
|
299 |
+
else:
|
300 |
+
module.processor = AttnReplaceProcessor(False, 0.0)
|
301 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
302 |
def apply_prompt(meta_data, new_prompt):
|
303 |
|
304 |
+
caption, real_image_initial_latents, QT = meta_data
|
305 |
+
|
306 |
+
inference_steps = len(QT)
|
307 |
+
|
308 |
+
cond_prompt_embeds = pipe.encode_prompt(prompt=caption, device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
|
309 |
+
# uncond_prompt_embeds = pipe.encode_prompt(prompt=caption, device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
|
310 |
+
new_prompt_embeds = pipe.encode_prompt(prompt=new_prompt, device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
|
311 |
+
|
312 |
+
guidance_scale = 7.5
|
313 |
+
scheduler.set_timesteps(inference_steps, device="cuda")
|
314 |
+
timesteps = scheduler.timesteps
|
315 |
|
316 |
+
latents = torch.cat([real_image_initial_latents] * 2)
|
317 |
|
318 |
+
with torch.no_grad():
|
319 |
+
replace_attention_processor(pipe.unet)
|
|
|
320 |
|
321 |
+
for i, t in tqdm(enumerate(timesteps), total=len(timesteps), desc="Inference steps"):
|
322 |
|
323 |
+
modified_prompt_embeds = torch.cat([QT[i].unsqueeze(0), QT[i].unsqueeze(0), cond_prompt_embeds, new_prompt_embeds])
|
324 |
+
latent_model_input = torch.cat([latents] * 2)
|
325 |
|
326 |
+
noise_pred = pipe.unet(
|
327 |
+
latent_model_input,
|
328 |
+
t,
|
329 |
+
encoder_hidden_states=modified_prompt_embeds,
|
330 |
+
cross_attention_kwargs=None,
|
331 |
+
return_dict=False,
|
332 |
+
)[0]
|
333 |
|
|
|
334 |
|
335 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
336 |
+
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
337 |
+
|
338 |
+
latents = scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
339 |
+
|
340 |
+
replace_attention_processor(pipe.unet, True)
|
341 |
+
|
342 |
+
image = pipe.vae.decode(latents[1].unsqueeze(0) / pipe.vae.config.scaling_factor, return_dict=False)[0]
|
343 |
+
image = (image / 2.0 + 0.5).clamp(0.0, 1.0)
|
344 |
+
safety_checker_input = feature_extractor(image, return_tensors="pt", do_rescale=False).to("cuda")
|
345 |
+
image = safety_checker(images=[image], clip_input=safety_checker_input.pixel_values.to("cuda"))[0]
|
346 |
+
image_np = image[0].squeeze(0).float().permute(1,2,0).detach().cpu().numpy()
|
347 |
+
image_np = (image_np * 255).astype(np.uint8)
|
348 |
|
349 |
+
return image_np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
|
|
|
351 |
|
|
|
352 |
|
353 |
+
def on_image_change(filepath):
|
354 |
+
# Extract the filename without extension
|
355 |
+
filename = os.path.splitext(os.path.basename(filepath))[0]
|
356 |
+
|
357 |
+
# Check if the filename is "example1" or "example2"
|
358 |
+
if filename in ["example1", "example2", "example3", "example4"]:
|
359 |
+
meta_data_raw = load_state_from_file(f"assets/{filename}.pkl")
|
360 |
+
_, _, QT_raw = meta_data_raw
|
361 |
|
362 |
global num_inference_steps
|
363 |
+
num_inference_steps = len(QT_raw)
|
364 |
scale_value = 7
|
365 |
+
new_prompt = ""
|
366 |
|
367 |
if filename == "example1":
|
368 |
+
scale_value = 7
|
369 |
new_prompt = "a photo of a tree, summer, colourful"
|
370 |
+
|
371 |
+
elif filename == "example2":
|
372 |
+
scale_value = 8
|
373 |
+
new_prompt = "a photo of a panda, two ears, white background"
|
374 |
|
375 |
elif filename == "example3":
|
376 |
+
scale_value = 7
|
377 |
new_prompt = "a realistic photo of a female warrior, flowing dark purple or black hair, bronze shoulder armour, leather chest piece, sky background with clouds"
|
378 |
+
|
379 |
elif filename == "example4":
|
380 |
+
scale_value = 7
|
381 |
new_prompt = "a photo of plastic bottle on some sand, beach background, sky background"
|
382 |
|
383 |
update_scale(scale_value)
|
384 |
img = apply_prompt(meta_data_raw, new_prompt)
|
385 |
+
|
386 |
return filepath, img, meta_data_raw, num_inference_steps, scale_value, scale_value
|
387 |
|
388 |
+
def update_value(value, key, res):
|
|
|
389 |
global weights
|
390 |
+
weights[key][res] = value
|
|
|
391 |
|
392 |
def update_step(value):
|
393 |
global num_inference_steps
|
394 |
num_inference_steps = value
|
395 |
|
396 |
+
def update_scale(scale):
|
397 |
+
values = [1.0] * 7
|
|
|
|
|
|
|
|
|
398 |
|
399 |
+
if scale == 9:
|
400 |
+
return values
|
401 |
+
|
402 |
+
reduction_steps = (9 - scale) * 0.5
|
403 |
+
|
404 |
+
for i in range(4): # There are 4 positions to reduce symmetrically
|
405 |
+
if reduction_steps >= 1:
|
406 |
+
values[i] = 0.0
|
407 |
+
values[-(i + 1)] = 0.0
|
408 |
+
reduction_steps -= 1
|
409 |
+
elif reduction_steps > 0:
|
410 |
+
values[i] = 0.5
|
411 |
+
values[-(i + 1)] = 0.5
|
412 |
break
|
413 |
|
|
|
|
|
|
|
|
|
|
|
|
|
414 |
global weights
|
415 |
+
index = 0
|
|
|
416 |
|
417 |
for outer_key, inner_dict in weights.items():
|
418 |
+
for inner_key in inner_dict:
|
419 |
+
inner_dict[inner_key] = values[index]
|
420 |
+
index += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
421 |
|
422 |
+
return weights['down'][4096], weights['down'][1024], weights['down'][256], weights['mid'][64], weights['up'][256], weights['up'][1024], weights['up'][4096]
|
423 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
|
425 |
+
with gr.Blocks() as demo:
|
426 |
gr.Markdown(
|
427 |
+
'''
|
428 |
<div style="text-align: center;">
|
429 |
<div style="display: flex; justify-content: center;">
|
430 |
<img src="https://github.com/user-attachments/assets/55a38e74-ab93-4d80-91c8-0fa6130af45a" alt="Logo">
|
431 |
</div>
|
432 |
+
<h1>Out of Focus 1.0</h1>
|
433 |
<p style="font-size:16px;">Out of AI presents a flexible tool to manipulate your images. This is our first version of Image modification tool through prompt manipulation by reconstruction through diffusion inversion process</p>
|
434 |
</div>
|
435 |
<br>
|
436 |
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
437 |
<a href="https://www.buymeacoffee.com/outofai" target="_blank"><img src="https://img.shields.io/badge/-buy_me_a%C2%A0coffee-red?logo=buy-me-a-coffee" alt="Buy Me A Coffee"></a>  
|
438 |
+
<a href="https://twitter.com/OutofAi" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Ashleigh%20Watson"></a>  
|
439 |
+
<a href="https://twitter.com/banterless_ai" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Alex%20Nasa"></a>
|
440 |
</div>
|
441 |
+
<br>
|
442 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
443 |
+
<p style="display: flex;gap: 6px;">
|
444 |
+
<a href="https://huggingface.co/spaces/fffiloni/OutofFocus?duplicate=true">
|
445 |
+
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate this Space">
|
446 |
+
</a> to skip the queue and enjoy faster inference on the GPU of your choice
|
447 |
+
</p>
|
448 |
+
</div>
|
449 |
+
'''
|
450 |
+
)
|
451 |
with gr.Row():
|
452 |
+
with gr.Column():
|
453 |
+
|
454 |
+
with gr.Row():
|
455 |
+
example_input = gr.Image(height=512, width=512, type="filepath", visible=False)
|
456 |
+
image_input = gr.Image(height=512, width=512, type="pil", label="Upload Source Image")
|
457 |
+
steps_slider = gr.Slider(minimum=5, maximum=25, step=5, value=num_inference_steps, label="Steps", info="Number of inference steps required to reconstruct and modify the image")
|
458 |
+
prompt_input = gr.Textbox(label="Prompt", info="Give an initial prompt in details, describing the image")
|
459 |
+
reconstruct_button = gr.Button("Reconstruct")
|
460 |
+
stop_button = gr.Button("Stop", variant="stop", interactive=False)
|
461 |
+
with gr.Column():
|
462 |
+
reconstructed_image = gr.Image(type="pil", label="Reconstructed")
|
463 |
+
|
464 |
+
with gr.Row():
|
465 |
+
invisible_slider = gr.Slider(minimum=0, maximum=9, step=1, value=7, visible=False)
|
466 |
+
interpolate_slider = gr.Slider(minimum=0, maximum=9, step=1, value=7, label="Cross-Attention Influence", info="Scales the related influence the source image has on the target image")
|
467 |
+
with gr.Row():
|
468 |
+
new_prompt_input = gr.Textbox(label="New Prompt", interactive=False, info="Manipulate the image by changing the prompt or word addition at the end, achieve the best results by swapping words instead of adding or removing in between")
|
469 |
+
with gr.Row():
|
470 |
+
apply_button = gr.Button("Generate Vision", variant="primary", interactive=False)
|
471 |
+
with gr.Row():
|
472 |
+
with gr.Accordion(label="Advanced Options", open=False):
|
473 |
+
gr.Markdown(
|
474 |
+
'''
|
475 |
+
<div style="text-align: center;">
|
476 |
+
<h1>Weight Adjustment</h1>
|
477 |
+
<p style="font-size:16px;">Specific Cross-Attention Influence weights can be manually modified for given resolutions (1.0 = Fully Source Attn 0.0 = Fully Target Attn)</p>
|
478 |
+
</div>
|
479 |
+
'''
|
480 |
+
)
|
481 |
+
down_slider_4096 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights['down'][4096], label="Self-Attn Down 64x64")
|
482 |
+
down_slider_1024 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights['down'][1024], label="Self-Attn Down 32x32")
|
483 |
+
down_slider_256 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights['down'][256], label="Self-Attn Down 16x16")
|
484 |
+
mid_slider_64 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights['mid'][64], label="Self-Attn Mid 8x8")
|
485 |
+
up_slider_256 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights['up'][256], label="Self-Attn Up 16x16")
|
486 |
+
up_slider_1024 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights['up'][1024], label="Self-Attn Up 32x32")
|
487 |
+
up_slider_4096 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights['up'][4096], label="Self-Attn Up 64x64")
|
488 |
+
|
489 |
+
with gr.Row():
|
490 |
+
show_case = gr.Examples(
|
491 |
+
examples=[
|
492 |
+
["assets/example4.png", "a photo of plastic bottle on a rock, mountain background, sky background", "a photo of plastic bottle on some sand, beach background, sky background"],
|
493 |
+
["assets/example1.png", "a photo of a tree, spring, foggy", "a photo of a tree, summer, colourful"],
|
494 |
+
["assets/example2.png", "a photo of a cat, two ears, white background", "a photo of a panda, two ears, white background"],
|
495 |
+
["assets/example3.png", "a digital illustration of a female warrior, flowing dark purple or black hair, bronze shoulder armour, leather chest piece, sky background with clouds", "a realistic photo of a female warrior, flowing dark purple or black hair, bronze shoulder armour, leather chest piece, sky background with clouds"],
|
496 |
+
|
497 |
+
],
|
498 |
+
inputs=[example_input, prompt_input, new_prompt_input],
|
499 |
+
label=None
|
500 |
+
)
|
501 |
|
502 |
meta_data = gr.State()
|
503 |
|
504 |
+
example_input.change(
|
505 |
+
fn=on_image_change,
|
506 |
+
inputs=example_input,
|
507 |
+
outputs=[image_input, reconstructed_image, meta_data, steps_slider, invisible_slider, interpolate_slider]
|
508 |
+
).then(
|
509 |
+
lambda: gr.update(interactive=True),
|
510 |
+
outputs=apply_button
|
511 |
+
).then(
|
512 |
+
lambda: gr.update(interactive=True),
|
513 |
+
outputs=new_prompt_input
|
514 |
)
|
515 |
steps_slider.release(update_step, inputs=steps_slider)
|
516 |
+
interpolate_slider.release(update_scale, inputs=interpolate_slider, outputs=[down_slider_4096, down_slider_1024, down_slider_256, mid_slider_64, up_slider_256, up_slider_1024, up_slider_4096 ])
|
517 |
+
invisible_slider.change(update_scale, inputs=invisible_slider, outputs=[down_slider_4096, down_slider_1024, down_slider_256, mid_slider_64, up_slider_256, up_slider_1024, up_slider_4096 ])
|
518 |
+
|
519 |
+
up_slider_4096.change(update_value, inputs=[up_slider_4096, gr.State('up'), gr.State(4096)])
|
520 |
+
up_slider_1024.change(update_value, inputs=[up_slider_1024, gr.State('up'), gr.State(1024)])
|
521 |
+
up_slider_256.change(update_value, inputs=[up_slider_256, gr.State('up'), gr.State(256)])
|
522 |
+
|
523 |
+
down_slider_4096.change(update_value, inputs=[down_slider_4096, gr.State('down'), gr.State(4096)])
|
524 |
+
down_slider_1024.change(update_value, inputs=[down_slider_1024, gr.State('down'), gr.State(1024)])
|
525 |
+
down_slider_256.change(update_value, inputs=[down_slider_256, gr.State('down'), gr.State(256)])
|
526 |
+
|
527 |
+
mid_slider_64.change(update_value, inputs=[mid_slider_64, gr.State('mid'), gr.State(64)])
|
528 |
+
|
529 |
+
reconstruct_button.click(reconstruct, inputs=[image_input, prompt_input], outputs=[reconstructed_image, new_prompt_input, meta_data]).then(
|
530 |
+
lambda: gr.update(interactive=True),
|
531 |
+
outputs=reconstruct_button
|
532 |
+
).then(
|
533 |
+
lambda: gr.update(interactive=True),
|
534 |
+
outputs=new_prompt_input
|
535 |
+
).then(
|
536 |
+
lambda: gr.update(interactive=True),
|
537 |
+
outputs=apply_button
|
538 |
+
).then(
|
539 |
+
lambda: gr.update(interactive=False),
|
540 |
+
outputs=stop_button
|
541 |
+
)
|
542 |
|
543 |
+
reconstruct_button.click(
|
544 |
+
lambda: gr.update(interactive=False),
|
545 |
+
outputs=reconstruct_button
|
546 |
+
)
|
547 |
|
548 |
+
reconstruct_button.click(
|
549 |
+
lambda: gr.update(interactive=True),
|
550 |
+
outputs=stop_button
|
551 |
)
|
552 |
|
553 |
+
reconstruct_button.click(
|
554 |
+
lambda: gr.update(interactive=False),
|
555 |
+
outputs=apply_button
|
556 |
+
)
|
557 |
|
558 |
+
stop_button.click(
|
559 |
+
lambda: gr.update(interactive=False),
|
560 |
+
outputs=stop_button
|
561 |
+
)
|
562 |
|
563 |
apply_button.click(apply_prompt, inputs=[meta_data, new_prompt_input], outputs=reconstructed_image)
|
564 |
+
stop_button.click(stop_reconstruct)
|
565 |
|
566 |
+
if __name__ == "__main__":
|
567 |
+
parser = argparse.ArgumentParser()
|
568 |
+
parser.add_argument("--share", action="store_true")
|
569 |
+
args = parser.parse_args()
|
570 |
demo.queue()
|
571 |
+
demo.launch(share=args.share)
|