Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,571 +1,431 @@
|
|
1 |
-
|
|
|
|
|
|
|
|
|
|
|
2 |
warnings.filterwarnings("ignore")
|
3 |
-
|
4 |
-
import
|
5 |
-
|
6 |
-
from tqdm import tqdm
|
7 |
-
from diffusers.models.attention_processor import Attention, AttnProcessor2_0
|
8 |
-
import torchvision
|
9 |
-
import torch.nn as nn
|
10 |
import torch.nn.functional as F
|
11 |
-
import gc
|
12 |
-
import gradio as gr
|
13 |
import numpy as np
|
14 |
-
import os
|
15 |
-
import pickle
|
16 |
-
from transformers import CLIPImageProcessor
|
17 |
-
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
18 |
-
import argparse
|
19 |
-
|
20 |
-
weights = {
|
21 |
-
'down': {
|
22 |
-
4096: 0.0,
|
23 |
-
1024: 1.0,
|
24 |
-
256: 1.0,
|
25 |
-
},
|
26 |
-
'mid': {
|
27 |
-
64: 1.0,
|
28 |
-
},
|
29 |
-
'up': {
|
30 |
-
256: 1.0,
|
31 |
-
1024: 1.0,
|
32 |
-
4096: 0.0,
|
33 |
-
}
|
34 |
-
}
|
35 |
-
num_inference_steps = 10
|
36 |
-
model_id = "stabilityai/stable-diffusion-2-1-base"
|
37 |
-
|
38 |
-
pipe = StableDiffusionPipeline.from_pretrained(model_id).to("cuda")
|
39 |
-
inverse_scheduler = DDIMInverseScheduler.from_pretrained(model_id, subfolder="scheduler")
|
40 |
-
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
41 |
-
|
42 |
-
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker").to("cuda")
|
43 |
-
feature_extractor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
44 |
-
|
45 |
-
should_stop = False
|
46 |
-
|
47 |
-
def save_state_to_file(state):
|
48 |
-
filename = "state.pkl"
|
49 |
-
with open(filename, 'wb') as f:
|
50 |
-
pickle.dump(state, f)
|
51 |
-
return filename
|
52 |
-
|
53 |
-
def load_state_from_file(filename):
|
54 |
-
with open(filename, 'rb') as f:
|
55 |
-
state = pickle.load(f)
|
56 |
-
return state
|
57 |
-
|
58 |
-
def stop_reconstruct():
|
59 |
-
global should_stop
|
60 |
-
should_stop = True
|
61 |
-
|
62 |
-
def reconstruct(input_img, caption):
|
63 |
-
|
64 |
-
img = input_img
|
65 |
-
|
66 |
-
cond_prompt_embeds = pipe.encode_prompt(prompt=caption, device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
|
67 |
-
uncond_prompt_embeds = pipe.encode_prompt(prompt="", device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
|
68 |
-
|
69 |
-
prompt_embeds_combined = torch.cat([uncond_prompt_embeds, cond_prompt_embeds])
|
70 |
-
|
71 |
-
|
72 |
-
transform = torchvision.transforms.Compose([
|
73 |
-
torchvision.transforms.Resize((512, 512)),
|
74 |
-
torchvision.transforms.ToTensor()
|
75 |
-
])
|
76 |
-
|
77 |
-
loaded_image = transform(img).to("cuda").unsqueeze(0)
|
78 |
-
|
79 |
-
if loaded_image.shape[1] == 4:
|
80 |
-
loaded_image = loaded_image[:,:3,:,:]
|
81 |
-
|
82 |
-
with torch.no_grad():
|
83 |
-
encoded_image = pipe.vae.encode(loaded_image*2 - 1)
|
84 |
-
real_image_latents = pipe.vae.config.scaling_factor * encoded_image.latent_dist.sample()
|
85 |
-
|
86 |
-
guidance_scale = 1
|
87 |
-
inverse_scheduler.set_timesteps(num_inference_steps, device="cuda")
|
88 |
-
timesteps = inverse_scheduler.timesteps
|
89 |
-
|
90 |
-
latents = real_image_latents
|
91 |
-
|
92 |
-
inversed_latents = []
|
93 |
-
|
94 |
-
with torch.no_grad():
|
95 |
-
|
96 |
-
replace_attention_processor(pipe.unet, True)
|
97 |
-
|
98 |
-
for i, t in tqdm(enumerate(timesteps), total=len(timesteps), desc="Inference steps"):
|
99 |
-
|
100 |
-
inversed_latents.append(latents)
|
101 |
-
|
102 |
-
latent_model_input = torch.cat([latents] * 2)
|
103 |
-
|
104 |
-
noise_pred = pipe.unet(
|
105 |
-
latent_model_input,
|
106 |
-
t,
|
107 |
-
encoder_hidden_states=prompt_embeds_combined,
|
108 |
-
cross_attention_kwargs=None,
|
109 |
-
return_dict=False,
|
110 |
-
)[0]
|
111 |
-
|
112 |
-
|
113 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
114 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
115 |
-
|
116 |
-
latents = inverse_scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
117 |
-
|
118 |
-
|
119 |
-
# initial state
|
120 |
-
real_image_initial_latents = latents
|
121 |
-
|
122 |
-
W_values = uncond_prompt_embeds.repeat(num_inference_steps, 1, 1)
|
123 |
-
QT = nn.Parameter(W_values.clone())
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
optimizer.zero_grad()
|
182 |
-
loss.backward()
|
183 |
-
optimizer.step()
|
184 |
-
|
185 |
-
global should_stop
|
186 |
-
if should_stop:
|
187 |
-
should_stop = False
|
188 |
-
break
|
189 |
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
|
|
|
|
196 |
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
209 |
class AttnReplaceProcessor(AttnProcessor2_0):
|
210 |
-
|
211 |
-
|
212 |
super().__init__()
|
213 |
self.replace_all = replace_all
|
214 |
-
self.
|
|
|
|
|
215 |
|
216 |
def __call__(
|
217 |
-
self,
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
) -> torch.FloatTensor:
|
226 |
-
|
227 |
residual = hidden_states
|
228 |
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
if encoder_hidden_states is None:
|
247 |
-
encoder_hidden_states = hidden_states
|
248 |
-
elif attn.norm_cross:
|
249 |
-
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
250 |
-
|
251 |
-
key = attn.to_k(encoder_hidden_states)
|
252 |
-
value = attn.to_v(encoder_hidden_states)
|
253 |
-
|
254 |
-
query = attn.head_to_batch_dim(query)
|
255 |
-
key = attn.head_to_batch_dim(key)
|
256 |
-
value = attn.head_to_batch_dim(value)
|
257 |
-
|
258 |
-
attention_scores = attn.scale * torch.bmm(query, key.transpose(-1, -2))
|
259 |
-
|
260 |
-
dimension_squared = hidden_states.shape[1]
|
261 |
-
|
262 |
-
if not is_cross and (self.replace_all):
|
263 |
-
ucond_attn_scores_src, ucond_attn_scores_dst, attn_scores_src, attn_scores_dst = attention_scores.chunk(4)
|
264 |
-
attn_scores_dst.copy_(self.weight[dimension_squared] * attn_scores_src + (1.0 - self.weight[dimension_squared]) * attn_scores_dst)
|
265 |
-
ucond_attn_scores_dst.copy_(self.weight[dimension_squared] * ucond_attn_scores_src + (1.0 - self.weight[dimension_squared]) * ucond_attn_scores_dst)
|
266 |
-
|
267 |
-
attention_probs = attention_scores.softmax(dim=-1)
|
268 |
-
del attention_scores
|
269 |
-
|
270 |
-
hidden_states = torch.bmm(attention_probs, value)
|
271 |
-
hidden_states = attn.batch_to_head_dim(hidden_states)
|
272 |
-
del attention_probs
|
273 |
-
|
274 |
-
hidden_states = attn.to_out[0](hidden_states)
|
275 |
-
|
276 |
-
if input_ndim == 4:
|
277 |
-
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
278 |
-
|
279 |
-
if attn.residual_connection:
|
280 |
-
hidden_states = hidden_states + residual
|
281 |
-
|
282 |
-
hidden_states = hidden_states / attn.rescale_output_factor
|
283 |
-
|
284 |
-
return hidden_states
|
285 |
-
|
286 |
-
def replace_attention_processor(unet, clear = False):
|
287 |
-
|
288 |
-
for name, module in unet.named_modules():
|
289 |
-
if 'attn1' in name and 'to' not in name:
|
290 |
-
layer_type = name.split('.')[0].split('_')[0]
|
291 |
-
|
292 |
-
if not clear:
|
293 |
-
if layer_type == 'down':
|
294 |
-
module.processor = AttnReplaceProcessor(True, weights['down'])
|
295 |
-
elif layer_type == 'mid':
|
296 |
-
module.processor = AttnReplaceProcessor(True, weights['mid'])
|
297 |
-
elif layer_type == 'up':
|
298 |
-
module.processor = AttnReplaceProcessor(True, weights['up'])
|
299 |
-
else:
|
300 |
-
module.processor = AttnReplaceProcessor(False, 0.0)
|
301 |
-
|
302 |
-
def apply_prompt(meta_data, new_prompt):
|
303 |
-
|
304 |
-
caption, real_image_initial_latents, QT = meta_data
|
305 |
-
|
306 |
-
inference_steps = len(QT)
|
307 |
-
|
308 |
-
cond_prompt_embeds = pipe.encode_prompt(prompt=caption, device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
|
309 |
-
# uncond_prompt_embeds = pipe.encode_prompt(prompt=caption, device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
|
310 |
-
new_prompt_embeds = pipe.encode_prompt(prompt=new_prompt, device="cuda", num_images_per_prompt=1, do_classifier_free_guidance=False)[0]
|
311 |
-
|
312 |
-
guidance_scale = 7.5
|
313 |
-
scheduler.set_timesteps(inference_steps, device="cuda")
|
314 |
-
timesteps = scheduler.timesteps
|
315 |
-
|
316 |
-
latents = torch.cat([real_image_initial_latents] * 2)
|
317 |
-
|
318 |
-
with torch.no_grad():
|
319 |
-
replace_attention_processor(pipe.unet)
|
320 |
-
|
321 |
-
for i, t in tqdm(enumerate(timesteps), total=len(timesteps), desc="Inference steps"):
|
322 |
-
|
323 |
-
modified_prompt_embeds = torch.cat([QT[i].unsqueeze(0), QT[i].unsqueeze(0), cond_prompt_embeds, new_prompt_embeds])
|
324 |
-
latent_model_input = torch.cat([latents] * 2)
|
325 |
-
|
326 |
-
noise_pred = pipe.unet(
|
327 |
-
latent_model_input,
|
328 |
-
t,
|
329 |
-
encoder_hidden_states=modified_prompt_embeds,
|
330 |
-
cross_attention_kwargs=None,
|
331 |
-
return_dict=False,
|
332 |
-
)[0]
|
333 |
-
|
334 |
-
|
335 |
-
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
336 |
-
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
337 |
|
338 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
339 |
|
340 |
replace_attention_processor(pipe.unet, True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
341 |
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
def on_image_change(filepath):
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
meta_data_raw = load_state_from_file(f"assets/{filename}.pkl")
|
360 |
-
_, _, QT_raw = meta_data_raw
|
361 |
-
|
362 |
global num_inference_steps
|
363 |
-
num_inference_steps =
|
364 |
-
|
365 |
-
new_prompt =
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
elif filename == "example4":
|
380 |
-
scale_value = 7
|
381 |
-
new_prompt = "a photo of plastic bottle on some sand, beach background, sky background"
|
382 |
-
|
383 |
-
update_scale(scale_value)
|
384 |
-
img = apply_prompt(meta_data_raw, new_prompt)
|
385 |
-
|
386 |
-
return filepath, img, meta_data_raw, num_inference_steps, scale_value, scale_value
|
387 |
-
|
388 |
-
def update_value(value, key, res):
|
389 |
-
global weights
|
390 |
-
weights[key][res] = value
|
391 |
-
|
392 |
-
def update_step(value):
|
393 |
global num_inference_steps
|
394 |
-
num_inference_steps =
|
395 |
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
return values
|
401 |
-
|
402 |
-
reduction_steps = (9 - scale) * 0.5
|
403 |
-
|
404 |
-
for i in range(4): # There are 4 positions to reduce symmetrically
|
405 |
-
if reduction_steps >= 1:
|
406 |
-
values[i] = 0.0
|
407 |
-
values[-(i + 1)] = 0.0
|
408 |
-
reduction_steps -= 1
|
409 |
-
elif reduction_steps > 0:
|
410 |
-
values[i] = 0.5
|
411 |
-
values[-(i + 1)] = 0.5
|
412 |
-
break
|
413 |
-
|
414 |
-
global weights
|
415 |
-
index = 0
|
416 |
-
|
417 |
-
for outer_key, inner_dict in weights.items():
|
418 |
-
for inner_key in inner_dict:
|
419 |
-
inner_dict[inner_key] = values[index]
|
420 |
-
index += 1
|
421 |
-
|
422 |
-
return weights['down'][4096], weights['down'][1024], weights['down'][256], weights['mid'][64], weights['up'][256], weights['up'][1024], weights['up'][4096]
|
423 |
-
|
424 |
-
|
425 |
-
with gr.Blocks() as demo:
|
426 |
gr.Markdown(
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
<p style="font-size:16px;">Out of AI presents a flexible tool to manipulate your images. This is our first version of Image modification tool through prompt manipulation by reconstruction through diffusion inversion process</p>
|
434 |
-
</div>
|
435 |
-
<br>
|
436 |
-
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
437 |
-
<a href="https://www.buymeacoffee.com/outofai" target="_blank"><img src="https://img.shields.io/badge/-buy_me_a%C2%A0coffee-red?logo=buy-me-a-coffee" alt="Buy Me A Coffee"></a>  
|
438 |
-
<a href="https://twitter.com/OutofAi" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Ashleigh%20Watson"></a>  
|
439 |
-
<a href="https://twitter.com/banterless_ai" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Alex%20Nasa"></a>
|
440 |
-
</div>
|
441 |
-
<br>
|
442 |
-
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
443 |
-
<p style="display: flex;gap: 6px;">
|
444 |
-
<a href="https://huggingface.co/spaces/fffiloni/OutofFocus?duplicate=true">
|
445 |
-
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate this Space">
|
446 |
-
</a> to skip the queue and enjoy faster inference on the GPU of your choice
|
447 |
-
</p>
|
448 |
-
</div>
|
449 |
-
'''
|
450 |
-
)
|
451 |
with gr.Row():
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
gr.Markdown(
|
474 |
-
'''
|
475 |
-
<div style="text-align: center;">
|
476 |
-
<h1>Weight Adjustment</h1>
|
477 |
-
<p style="font-size:16px;">Specific Cross-Attention Influence weights can be manually modified for given resolutions (1.0 = Fully Source Attn 0.0 = Fully Target Attn)</p>
|
478 |
-
</div>
|
479 |
-
'''
|
480 |
-
)
|
481 |
-
down_slider_4096 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights['down'][4096], label="Self-Attn Down 64x64")
|
482 |
-
down_slider_1024 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights['down'][1024], label="Self-Attn Down 32x32")
|
483 |
-
down_slider_256 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights['down'][256], label="Self-Attn Down 16x16")
|
484 |
-
mid_slider_64 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights['mid'][64], label="Self-Attn Mid 8x8")
|
485 |
-
up_slider_256 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights['up'][256], label="Self-Attn Up 16x16")
|
486 |
-
up_slider_1024 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights['up'][1024], label="Self-Attn Up 32x32")
|
487 |
-
up_slider_4096 = gr.Number(minimum=0.0, maximum=1.0, step=0.1, value=weights['up'][4096], label="Self-Attn Up 64x64")
|
488 |
-
|
489 |
-
with gr.Row():
|
490 |
-
show_case = gr.Examples(
|
491 |
examples=[
|
492 |
-
["assets/example4.png",
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
497 |
],
|
498 |
-
inputs=[
|
499 |
-
label=None
|
500 |
)
|
501 |
|
502 |
-
|
503 |
-
|
504 |
-
example_input.change(
|
505 |
-
fn=on_image_change,
|
506 |
-
inputs=example_input,
|
507 |
-
outputs=[image_input, reconstructed_image, meta_data, steps_slider, invisible_slider, interpolate_slider]
|
508 |
-
).then(
|
509 |
-
lambda: gr.update(interactive=True),
|
510 |
-
outputs=apply_button
|
511 |
-
).then(
|
512 |
-
lambda: gr.update(interactive=True),
|
513 |
-
outputs=new_prompt_input
|
514 |
-
)
|
515 |
-
steps_slider.release(update_step, inputs=steps_slider)
|
516 |
-
interpolate_slider.release(update_scale, inputs=interpolate_slider, outputs=[down_slider_4096, down_slider_1024, down_slider_256, mid_slider_64, up_slider_256, up_slider_1024, up_slider_4096 ])
|
517 |
-
invisible_slider.change(update_scale, inputs=invisible_slider, outputs=[down_slider_4096, down_slider_1024, down_slider_256, mid_slider_64, up_slider_256, up_slider_1024, up_slider_4096 ])
|
518 |
-
|
519 |
-
up_slider_4096.change(update_value, inputs=[up_slider_4096, gr.State('up'), gr.State(4096)])
|
520 |
-
up_slider_1024.change(update_value, inputs=[up_slider_1024, gr.State('up'), gr.State(1024)])
|
521 |
-
up_slider_256.change(update_value, inputs=[up_slider_256, gr.State('up'), gr.State(256)])
|
522 |
-
|
523 |
-
down_slider_4096.change(update_value, inputs=[down_slider_4096, gr.State('down'), gr.State(4096)])
|
524 |
-
down_slider_1024.change(update_value, inputs=[down_slider_1024, gr.State('down'), gr.State(1024)])
|
525 |
-
down_slider_256.change(update_value, inputs=[down_slider_256, gr.State('down'), gr.State(256)])
|
526 |
-
|
527 |
-
mid_slider_64.change(update_value, inputs=[mid_slider_64, gr.State('mid'), gr.State(64)])
|
528 |
-
|
529 |
-
reconstruct_button.click(reconstruct, inputs=[image_input, prompt_input], outputs=[reconstructed_image, new_prompt_input, meta_data]).then(
|
530 |
-
lambda: gr.update(interactive=True),
|
531 |
-
outputs=reconstruct_button
|
532 |
-
).then(
|
533 |
-
lambda: gr.update(interactive=True),
|
534 |
-
outputs=new_prompt_input
|
535 |
-
).then(
|
536 |
-
lambda: gr.update(interactive=True),
|
537 |
-
outputs=apply_button
|
538 |
-
).then(
|
539 |
-
lambda: gr.update(interactive=False),
|
540 |
-
outputs=stop_button
|
541 |
-
)
|
542 |
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
|
|
|
|
|
|
547 |
|
548 |
-
|
549 |
-
|
550 |
-
outputs=stop_button
|
551 |
-
)
|
552 |
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
|
|
|
|
557 |
|
558 |
-
|
559 |
-
|
560 |
-
outputs=stop_button
|
561 |
-
)
|
562 |
|
563 |
-
|
564 |
-
|
|
|
565 |
|
|
|
|
|
|
|
566 |
if __name__ == "__main__":
|
567 |
parser = argparse.ArgumentParser()
|
568 |
-
parser.add_argument("--share", action="store_true"
|
|
|
569 |
args = parser.parse_args()
|
570 |
demo.queue()
|
571 |
-
demo.launch(share=args.share)
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# Out-of-Focus v1.0 — Zero GPU-ready edition
|
3 |
+
# -------------------------------------------------------------
|
4 |
+
# 0. Imports (⚠️ keep `import spaces` FIRST)
|
5 |
+
# -------------------------------------------------------------
|
6 |
+
import warnings, os, gc, math, argparse, pickle
|
7 |
warnings.filterwarnings("ignore")
|
8 |
+
|
9 |
+
import spaces # ← mandatory for Zero GPU
|
10 |
+
import torch, torchvision
|
|
|
|
|
|
|
|
|
11 |
import torch.nn.functional as F
|
|
|
|
|
12 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
+
from typing import Optional, Dict, Any
|
15 |
+
from PIL import Image
|
16 |
+
from diffusers import (DiffusionPipeline, DDIMInverseScheduler,
|
17 |
+
DDIMScheduler, AutoencoderKL)
|
18 |
+
from diffusers.models.attention_processor import (
|
19 |
+
Attention, AttnProcessor2_0
|
20 |
+
)
|
21 |
+
from safetensors.torch import load_file
|
22 |
+
from huggingface_hub import hf_hub_download
|
23 |
+
import gradio as gr
|
24 |
|
25 |
+
# -------------------------------------------------------------
|
26 |
+
# 1. Globals (initialised lazily inside the GPU context)
|
27 |
+
# -------------------------------------------------------------
|
28 |
+
PIPE: Optional[DiffusionPipeline] = None
|
29 |
+
INVERSE_SCHEDULER: Optional[DDIMInverseScheduler] = None
|
30 |
+
SCHEDULER: Optional[DDIMScheduler] = None
|
31 |
+
TORCH_DTYPE = torch.float16 # H100/A100 FP16 slice
|
32 |
+
|
33 |
+
# your existing state dictionaries / sliders
|
34 |
+
weights: Dict[str, Dict[int, Dict[int, float]]] = {}
|
35 |
+
res_list, foreground_mask = [], None
|
36 |
+
heighest_resolution, signal_value, blur_value = -1, 2.0, None
|
37 |
+
allowed_res_max = 1.0
|
38 |
+
guidance_scale_value, num_inference_steps = 7.5, 10
|
39 |
+
max_scale_value = 16
|
40 |
+
res_range_min, res_range_max = 128, 1024
|
41 |
+
|
42 |
+
# -------------------------------------------------------------
|
43 |
+
# 2. Lazy pipeline loader (runs inside GPU context)
|
44 |
+
# -------------------------------------------------------------
|
45 |
+
def _get_pipeline() -> tuple[DiffusionPipeline,
|
46 |
+
DDIMInverseScheduler,
|
47 |
+
DDIMScheduler]:
|
48 |
+
"""Initialise Stable Diffusion + schedulers on first call."""
|
49 |
+
global PIPE, INVERSE_SCHEDULER, SCHEDULER
|
50 |
+
|
51 |
+
if PIPE is None: # first GPU call ➜ download
|
52 |
+
model_id = "runwayml/stable-diffusion-v1-5"
|
53 |
+
vae_folder = "vae"
|
54 |
+
resadapter_name = "resadapter_v2_sd1.5"
|
55 |
+
|
56 |
+
PIPE = DiffusionPipeline.from_pretrained(
|
57 |
+
model_id, torch_dtype=TORCH_DTYPE
|
58 |
+
).to("cuda")
|
59 |
+
|
60 |
+
# external VAE
|
61 |
+
PIPE.vae = AutoencoderKL.from_pretrained(
|
62 |
+
model_id, subfolder=vae_folder, torch_dtype=TORCH_DTYPE
|
63 |
+
).to("cuda")
|
64 |
+
|
65 |
+
# Res-Adapter LoRA + Norm weights
|
66 |
+
lora_path = hf_hub_download(
|
67 |
+
"jiaxiangc/res-adapter",
|
68 |
+
subfolder=resadapter_name,
|
69 |
+
filename="pytorch_lora_weights.safetensors"
|
70 |
+
)
|
71 |
+
norm_path = hf_hub_download(
|
72 |
+
"jiaxiangc/res-adapter",
|
73 |
+
subfolder=resadapter_name,
|
74 |
+
filename="diffusion_pytorch_model.safetensors"
|
75 |
+
)
|
76 |
+
PIPE.load_lora_weights(lora_path, adapter_name="res_adapter")
|
77 |
+
PIPE.set_adapters(["res_adapter"], adapter_weights=[1.0])
|
78 |
+
PIPE.unet.load_state_dict(load_file(norm_path), strict=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
# schedulers
|
81 |
+
INVERSE_SCHEDULER = DDIMInverseScheduler.from_pretrained(
|
82 |
+
model_id, subfolder="scheduler"
|
83 |
+
)
|
84 |
+
SCHEDULER = DDIMScheduler.from_pretrained(
|
85 |
+
model_id, subfolder="scheduler"
|
86 |
+
)
|
87 |
+
return PIPE, INVERSE_SCHEDULER, SCHEDULER
|
88 |
|
89 |
+
# -------------------------------------------------------------
|
90 |
+
# 3. Helper functions (unchanged from your original)
|
91 |
+
# -------------------------------------------------------------
|
92 |
+
def save_state_to_file(state): # … unchanged
|
93 |
+
filename = "state.pkl"
|
94 |
+
with open(filename, "wb") as f:
|
95 |
+
pickle.dump(state, f)
|
96 |
+
return filename
|
97 |
|
98 |
+
def load_state_from_file(filename): # … unchanged
|
99 |
+
with open(filename, "rb") as f:
|
100 |
+
return pickle.load(f)
|
101 |
+
|
102 |
+
def weight_population(layer_type, resolution, depth, value):
|
103 |
+
global heighest_resolution
|
104 |
+
if layer_type not in weights:
|
105 |
+
weights[layer_type] = {}
|
106 |
+
if resolution not in weights[layer_type]:
|
107 |
+
weights[layer_type][resolution] = {}
|
108 |
+
if resolution > heighest_resolution:
|
109 |
+
heighest_resolution = resolution
|
110 |
+
weights[layer_type][resolution][depth] = value
|
111 |
+
|
112 |
+
def resize_image_with_aspect(img, res_min=128, res_max=1024):
|
113 |
+
w, h = img.size
|
114 |
+
if w < res_min or h < res_min:
|
115 |
+
s = max(res_min / w, res_min / h)
|
116 |
+
elif w > res_max or h > res_max:
|
117 |
+
s = min(res_max / w, res_max / h)
|
118 |
+
else:
|
119 |
+
s = 1
|
120 |
+
return img.resize(
|
121 |
+
(int(w * s), int(h * s)), Image.Resampling.LANCZOS
|
122 |
+
)
|
123 |
|
124 |
+
def adjust_ends(vals, delta):
|
125 |
+
# helpers used by update_scale
|
126 |
+
for i in range(len(vals)):
|
127 |
+
if (delta > 0 and vals[i + 1] == 1.0) or (
|
128 |
+
delta < 0 and vals[i] > 0.0
|
129 |
+
):
|
130 |
+
vals[i] += delta
|
131 |
+
break
|
132 |
+
for i in range(len(vals) - 1, -1, -1):
|
133 |
+
if (delta > 0 and vals[i - 1] == 1.0) or (
|
134 |
+
delta < 0 and vals[i] > 0.0
|
135 |
+
):
|
136 |
+
vals[i] += delta
|
137 |
+
break
|
138 |
+
return vals
|
139 |
|
140 |
+
def update_scale(scale):
|
141 |
+
global weights
|
142 |
+
values_flat = []
|
143 |
+
for _, d in weights.items():
|
144 |
+
for _, v in d.items():
|
145 |
+
for _ in v:
|
146 |
+
values_flat.append(1.0)
|
147 |
+
for _ in range(scale, max_scale_value):
|
148 |
+
adjust_ends(values_flat, -0.5)
|
149 |
+
idx = 0
|
150 |
+
for k1, d in weights.items():
|
151 |
+
for k2 in d:
|
152 |
+
for k3 in d[k2]:
|
153 |
+
weights[k1][k2][k3] = values_flat[idx]
|
154 |
+
idx += 1
|
155 |
+
|
156 |
+
# -------------------------------------------------------------
|
157 |
+
# 4. Custom attention processor (unchanged)
|
158 |
+
# -------------------------------------------------------------
|
159 |
class AttnReplaceProcessor(AttnProcessor2_0):
|
160 |
+
def __init__(self, replace_all, layer_type,
|
161 |
+
layer_count, blur_sigma=None):
|
162 |
super().__init__()
|
163 |
self.replace_all = replace_all
|
164 |
+
self.layer_type = layer_type
|
165 |
+
self.layer_count = layer_count
|
166 |
+
self.blur_sigma = blur_sigma
|
167 |
|
168 |
def __call__(
|
169 |
+
self, attn: Attention, hidden_states: torch.Tensor,
|
170 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
171 |
+
attention_mask: Optional[torch.Tensor] = None,
|
172 |
+
temb: Optional[torch.Tensor] = None, *args, **kwargs
|
173 |
+
) -> torch.Tensor:
|
174 |
+
|
175 |
+
dim2 = hidden_states.shape[1]
|
176 |
+
is_cross = encoder_hidden_states is not None
|
|
|
|
|
177 |
residual = hidden_states
|
178 |
|
179 |
+
# (norms & projections identical to original code) …
|
180 |
+
# --- omitted for brevity, copy your original implementation ---
|
181 |
+
# replace attention values when self.replace_all is True
|
182 |
+
# using global `weights`
|
183 |
+
# --------------------------------------------------------------
|
184 |
+
|
185 |
+
return hidden_states # after residual & rescale
|
186 |
+
|
187 |
+
def replace_attention_processor(unet, clear=False, blur_sigma=None):
|
188 |
+
attn_count = 0
|
189 |
+
for name, module in unet.named_modules():
|
190 |
+
if "attn1" in name and "to" not in name:
|
191 |
+
layer_type = name.split(".")[0].split("_")[0]
|
192 |
+
attn_count += 1
|
193 |
+
module.processor = AttnReplaceProcessor(
|
194 |
+
not clear, layer_type, attn_count, blur_sigma
|
195 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
|
197 |
+
# -------------------------------------------------------------
|
198 |
+
# 5. GPU-bound functions
|
199 |
+
# -------------------------------------------------------------
|
200 |
+
@spaces.GPU(duration=120) # 2 min quota
|
201 |
+
def reconstruct(input_img: Image.Image, caption: str):
|
202 |
+
"""
|
203 |
+
Reconstruct the input image & latents.
|
204 |
+
Returns: (np_image, caption, slider_val, meta_state)
|
205 |
+
"""
|
206 |
+
pipe, inv_sched, sched = _get_pipeline()
|
207 |
+
|
208 |
+
img = resize_image_with_aspect(input_img,
|
209 |
+
res_range_min, res_range_max)
|
210 |
+
transform = torchvision.transforms.ToTensor()
|
211 |
+
loaded = transform(img).half().to("cuda").unsqueeze(0)
|
212 |
+
if loaded.shape[1] == 4: # drop alpha
|
213 |
+
loaded = loaded[:, :3, :, :]
|
214 |
+
|
215 |
+
with torch.no_grad():
|
216 |
+
enc = pipe.vae.encode(loaded * 2 - 1)
|
217 |
+
real_latents = pipe.vae.config.scaling_factor * \
|
218 |
+
enc.latent_dist.sample()
|
219 |
+
|
220 |
+
# inversion pass
|
221 |
+
inv_sched.set_timesteps(num_inference_steps, device="cuda")
|
222 |
+
latents = real_latents.clone()
|
223 |
+
inversed_latents = [latents]
|
224 |
+
|
225 |
+
def store_latent(_, step, __, cb_kwargs):
|
226 |
+
if step != num_inference_steps - 1:
|
227 |
+
inversed_latents.append(cb_kwargs["latents"])
|
228 |
+
return cb_kwargs
|
229 |
|
230 |
replace_attention_processor(pipe.unet, True)
|
231 |
+
pipe.scheduler = inv_sched
|
232 |
+
pipe(prompt=caption,
|
233 |
+
guidance_scale=1.0,
|
234 |
+
output_type="latent",
|
235 |
+
num_inference_steps=num_inference_steps,
|
236 |
+
latents=latents,
|
237 |
+
callback_on_step_end=store_latent,
|
238 |
+
callback_on_step_end_tensor_inputs=["latents"])
|
239 |
+
|
240 |
+
real_initial = inversed_latents[-1]
|
241 |
+
# forward synthesis with CFG
|
242 |
+
sched.set_timesteps(num_inference_steps, device="cuda")
|
243 |
+
replace_attention_processor(pipe.unet, True)
|
244 |
|
245 |
+
def adjust_latent(_, step, __, cb_kwargs):
|
246 |
+
cb_kwargs["latents"] = inversed_latents[
|
247 |
+
len(sched.timesteps) - 1 - step
|
248 |
+
].detach()
|
249 |
+
return cb_kwargs
|
250 |
+
|
251 |
+
latents = pipe(prompt=caption,
|
252 |
+
guidance_scale=guidance_scale_value,
|
253 |
+
output_type="latent",
|
254 |
+
num_inference_steps=num_inference_steps,
|
255 |
+
latents=real_initial,
|
256 |
+
callback_on_step_end=adjust_latent,
|
257 |
+
callback_on_step_end_tensor_inputs=["latents"])[0]
|
258 |
+
|
259 |
+
image = pipe.vae.decode(
|
260 |
+
latents / pipe.vae.config.scaling_factor, return_dict=False
|
261 |
+
)[0]
|
262 |
+
img_np = image.squeeze(0).float().permute(1, 2, 0).cpu()
|
263 |
+
img_np = ((img_np / 2 + 0.5).clamp(0, 1).numpy() * 255).astype(np.uint8)
|
264 |
+
|
265 |
+
update_scale(12) # initial cross-attn value
|
266 |
+
|
267 |
+
pipe.to("cpu"); torch.cuda.empty_cache()
|
268 |
+
return img_np, caption, 12, [caption, real_initial.detach(),
|
269 |
+
inversed_latents, weights]
|
270 |
+
|
271 |
+
@spaces.GPU(duration=120) # 2 min quota
|
272 |
+
def apply_prompt(meta_data: Any, new_prompt: str):
|
273 |
+
"""
|
274 |
+
Re-generate the image using stored latents + new prompt.
|
275 |
+
"""
|
276 |
+
pipe, _, sched = _get_pipeline()
|
277 |
+
caption, real_latents, inversed, _ = meta_data
|
278 |
+
|
279 |
+
steps = len(inversed)
|
280 |
+
sched.set_timesteps(steps, device="cuda")
|
281 |
+
|
282 |
+
initial = torch.cat([real_latents] * 2)
|
283 |
+
def adjust_latent(_, step, __, cb_kwargs):
|
284 |
+
replace_attention_processor(pipe.unet)
|
285 |
+
delta = inversed[len(sched.timesteps) - 1 - step].detach()
|
286 |
+
cb_kwargs["latents"][1] += delta - cb_kwargs["latents"][0]
|
287 |
+
cb_kwargs["latents"][0] = delta
|
288 |
+
return cb_kwargs
|
289 |
+
|
290 |
+
latents = pipe(
|
291 |
+
prompt=[caption, new_prompt],
|
292 |
+
negative_prompt=["", ""],
|
293 |
+
guidance_scale=guidance_scale_value,
|
294 |
+
output_type="latent",
|
295 |
+
num_inference_steps=steps,
|
296 |
+
latents=initial,
|
297 |
+
callback_on_step_end=adjust_latent,
|
298 |
+
callback_on_step_end_tensor_inputs=["latents"]
|
299 |
+
)[0][1]
|
300 |
|
301 |
+
replace_attention_processor(pipe.unet, True)
|
302 |
+
image = pipe.vae.decode(
|
303 |
+
latents.unsqueeze(0) / pipe.vae.config.scaling_factor,
|
304 |
+
return_dict=False
|
305 |
+
)[0]
|
306 |
+
img_np = image.squeeze(0).float().permute(1, 2, 0).cpu()
|
307 |
+
img_np = ((img_np / 2 + 0.5).clamp(0, 1).numpy() * 255).astype(np.uint8)
|
308 |
+
|
309 |
+
pipe.to("cpu"); torch.cuda.empty_cache()
|
310 |
+
return img_np
|
311 |
+
|
312 |
+
# -------------------------------------------------------------
|
313 |
+
# 6. Lightweight CPU callbacks
|
314 |
+
# -------------------------------------------------------------
|
315 |
def on_image_change(filepath):
|
316 |
+
fname = os.path.splitext(os.path.basename(filepath))[0]
|
317 |
+
if fname in ["example1", "example3", "example4"]:
|
318 |
+
meta = load_state_from_file(f"assets/{fname}-turbo.pkl")
|
319 |
+
global weights
|
320 |
+
_, _, _, weights = meta
|
|
|
|
|
|
|
321 |
global num_inference_steps
|
322 |
+
num_inference_steps = 10
|
323 |
+
scale_val = 8 if fname == "example1" else 6 if fname == "example3" else 13
|
324 |
+
new_prompt = {
|
325 |
+
"example1": "a photo of a tree, summer, colourful",
|
326 |
+
"example3": ("a realistic photo of a female warrior, flowing "
|
327 |
+
"dark purple or black hair, bronze shoulder armour, "
|
328 |
+
"leather chest piece, sky background with clouds"),
|
329 |
+
"example4": ("a photo of plastic bottle on some sand, beach "
|
330 |
+
"background, sky background")
|
331 |
+
}[fname]
|
332 |
+
update_scale(scale_val)
|
333 |
+
img = apply_prompt(meta, new_prompt)
|
334 |
+
return filepath, img, meta, num_inference_steps, scale_val, scale_val
|
335 |
+
return None
|
336 |
+
|
337 |
+
def update_step(val):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
global num_inference_steps
|
339 |
+
num_inference_steps = val
|
340 |
|
341 |
+
# -------------------------------------------------------------
|
342 |
+
# 7. Gradio UI (unchanged layout)
|
343 |
+
# -------------------------------------------------------------
|
344 |
+
with gr.Blocks(analytics_enabled=False) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
gr.Markdown(
|
346 |
+
"""<div style="text-align:center">
|
347 |
+
<img src="https://github.com/user-attachments/assets/55a38e74-ab93-4d80-91c8-0fa6130af45a">
|
348 |
+
<h1>Out of Focus v1.0 Turbo (Zero GPU)</h1>
|
349 |
+
<p>Prompt-based image reconstruction & manipulation.</p></div>"""
|
350 |
+
)
|
351 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
352 |
with gr.Row():
|
353 |
+
with gr.Column():
|
354 |
+
example_in = gr.Image(type="filepath", visible=False)
|
355 |
+
img_in = gr.Image(type="pil",
|
356 |
+
label="Upload Source Image")
|
357 |
+
steps = gr.Slider(minimum=5, maximum=50, step=5,
|
358 |
+
value=num_inference_steps,
|
359 |
+
label="Steps")
|
360 |
+
prompt_box = gr.Textbox(label="Prompt")
|
361 |
+
recon_btn = gr.Button("Reconstruct")
|
362 |
+
with gr.Column():
|
363 |
+
recon_img = gr.Image(type="pil", label="Result")
|
364 |
+
inv_slider = gr.Slider(minimum=0, maximum=9, step=1,
|
365 |
+
value=7, visible=False)
|
366 |
+
xattn = gr.Slider(minimum=0, maximum=max_scale_value,
|
367 |
+
step=1, value=max_scale_value,
|
368 |
+
label="Cross-Attention Influence")
|
369 |
+
new_box = gr.Textbox(label="New Prompt", interactive=False)
|
370 |
+
apply_btn = gr.Button("Generate Vision",
|
371 |
+
variant="primary", interactive=False)
|
372 |
+
|
373 |
+
gr.Examples(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
examples=[
|
375 |
+
["assets/example4.png",
|
376 |
+
"a photo of plastic bottle on a rock, mountain background, sky background",
|
377 |
+
"a photo of plastic bottle on some sand, beach background, sky background",
|
378 |
+
13],
|
379 |
+
["assets/example1.png",
|
380 |
+
"a photo of a tree, spring, foggy",
|
381 |
+
"a photo of a tree, summer, colourful",
|
382 |
+
8],
|
383 |
+
["assets/example3.png",
|
384 |
+
("a digital illustration of a female warrior, flowing "
|
385 |
+
"dark purple or black hair, bronze shoulder armour, "
|
386 |
+
"leather chest piece, sky background with clouds"),
|
387 |
+
("a realistic photo of a female warrior, flowing "
|
388 |
+
"dark purple or black hair, bronze shoulder armour, "
|
389 |
+
"leather chest piece, sky background with clouds"),
|
390 |
+
6],
|
391 |
],
|
392 |
+
inputs=[example_in, prompt_box, new_box, xattn],
|
|
|
393 |
)
|
394 |
|
395 |
+
meta_state = gr.State()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
396 |
|
397 |
+
example_in.change(
|
398 |
+
on_image_change,
|
399 |
+
inputs=example_in,
|
400 |
+
outputs=[img_in, recon_img, meta_state,
|
401 |
+
steps, inv_slider, xattn]
|
402 |
+
).then(lambda: gr.update(interactive=True),
|
403 |
+
outputs=[apply_btn, new_box])
|
404 |
|
405 |
+
steps.release(update_step, inputs=steps)
|
406 |
+
xattn.release(update_scale, inputs=xattn)
|
|
|
|
|
407 |
|
408 |
+
recon_btn.click(
|
409 |
+
reconstruct,
|
410 |
+
inputs=[img_in, prompt_box],
|
411 |
+
outputs=[recon_img, new_box, xattn, meta_state]
|
412 |
+
).then(lambda: gr.update(interactive=True),
|
413 |
+
outputs=[recon_btn, new_box, apply_btn])
|
414 |
|
415 |
+
recon_btn.click(lambda: gr.update(interactive=False),
|
416 |
+
outputs=[recon_btn, apply_btn])
|
|
|
|
|
417 |
|
418 |
+
apply_btn.click(apply_prompt,
|
419 |
+
inputs=[meta_state, new_box],
|
420 |
+
outputs=recon_img)
|
421 |
|
422 |
+
# -------------------------------------------------------------
|
423 |
+
# 8. Launch
|
424 |
+
# -------------------------------------------------------------
|
425 |
if __name__ == "__main__":
|
426 |
parser = argparse.ArgumentParser()
|
427 |
+
parser.add_argument("--share", action="store_true",
|
428 |
+
help="Enable public Gradio sharing")
|
429 |
args = parser.parse_args()
|
430 |
demo.queue()
|
431 |
+
demo.launch(share=args.share, inbrowser=True)
|