Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,431 +1,578 @@
|
|
1 |
-
|
2 |
-
# Out-of-Focus v1.0 — Zero GPU-ready edition
|
3 |
-
# -------------------------------------------------------------
|
4 |
-
# 0. Imports (⚠️ keep `import spaces` FIRST)
|
5 |
-
# -------------------------------------------------------------
|
6 |
-
import warnings, os, gc, math, argparse, pickle
|
7 |
-
warnings.filterwarnings("ignore")
|
8 |
|
9 |
-
|
10 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
import torch.nn.functional as F
|
|
|
|
|
12 |
import numpy as np
|
13 |
-
|
14 |
-
|
|
|
15 |
from PIL import Image
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
Attention, AttnProcessor2_0
|
20 |
-
)
|
21 |
from safetensors.torch import load_file
|
22 |
from huggingface_hub import hf_hub_download
|
23 |
-
|
24 |
-
|
25 |
-
# -------------------------------------------------------------
|
26 |
-
# 1. Globals (initialised lazily inside the GPU context)
|
27 |
-
# -------------------------------------------------------------
|
28 |
-
PIPE: Optional[DiffusionPipeline] = None
|
29 |
-
INVERSE_SCHEDULER: Optional[DDIMInverseScheduler] = None
|
30 |
-
SCHEDULER: Optional[DDIMScheduler] = None
|
31 |
-
TORCH_DTYPE = torch.float16 # H100/A100 FP16 slice
|
32 |
-
|
33 |
-
# your existing state dictionaries / sliders
|
34 |
-
weights: Dict[str, Dict[int, Dict[int, float]]] = {}
|
35 |
-
res_list, foreground_mask = [], None
|
36 |
-
heighest_resolution, signal_value, blur_value = -1, 2.0, None
|
37 |
-
allowed_res_max = 1.0
|
38 |
-
guidance_scale_value, num_inference_steps = 7.5, 10
|
39 |
-
max_scale_value = 16
|
40 |
-
res_range_min, res_range_max = 128, 1024
|
41 |
-
|
42 |
-
# -------------------------------------------------------------
|
43 |
-
# 2. Lazy pipeline loader (runs inside GPU context)
|
44 |
-
# -------------------------------------------------------------
|
45 |
-
def _get_pipeline() -> tuple[DiffusionPipeline,
|
46 |
-
DDIMInverseScheduler,
|
47 |
-
DDIMScheduler]:
|
48 |
-
"""Initialise Stable Diffusion + schedulers on first call."""
|
49 |
-
global PIPE, INVERSE_SCHEDULER, SCHEDULER
|
50 |
-
|
51 |
-
if PIPE is None: # first GPU call ➜ download
|
52 |
-
model_id = "runwayml/stable-diffusion-v1-5"
|
53 |
-
vae_folder = "vae"
|
54 |
-
resadapter_name = "resadapter_v2_sd1.5"
|
55 |
-
|
56 |
-
PIPE = DiffusionPipeline.from_pretrained(
|
57 |
-
model_id, torch_dtype=TORCH_DTYPE
|
58 |
-
).to("cuda")
|
59 |
-
|
60 |
-
# external VAE
|
61 |
-
PIPE.vae = AutoencoderKL.from_pretrained(
|
62 |
-
model_id, subfolder=vae_folder, torch_dtype=TORCH_DTYPE
|
63 |
-
).to("cuda")
|
64 |
-
|
65 |
-
# Res-Adapter LoRA + Norm weights
|
66 |
-
lora_path = hf_hub_download(
|
67 |
-
"jiaxiangc/res-adapter",
|
68 |
-
subfolder=resadapter_name,
|
69 |
-
filename="pytorch_lora_weights.safetensors"
|
70 |
-
)
|
71 |
-
norm_path = hf_hub_download(
|
72 |
-
"jiaxiangc/res-adapter",
|
73 |
-
subfolder=resadapter_name,
|
74 |
-
filename="diffusion_pytorch_model.safetensors"
|
75 |
-
)
|
76 |
-
PIPE.load_lora_weights(lora_path, adapter_name="res_adapter")
|
77 |
-
PIPE.set_adapters(["res_adapter"], adapter_weights=[1.0])
|
78 |
-
PIPE.unet.load_state_dict(load_file(norm_path), strict=False)
|
79 |
|
80 |
-
|
81 |
-
INVERSE_SCHEDULER = DDIMInverseScheduler.from_pretrained(
|
82 |
-
model_id, subfolder="scheduler"
|
83 |
-
)
|
84 |
-
SCHEDULER = DDIMScheduler.from_pretrained(
|
85 |
-
model_id, subfolder="scheduler"
|
86 |
-
)
|
87 |
-
return PIPE, INVERSE_SCHEDULER, SCHEDULER
|
88 |
-
|
89 |
-
# -------------------------------------------------------------
|
90 |
-
# 3. Helper functions (unchanged from your original)
|
91 |
-
# -------------------------------------------------------------
|
92 |
-
def save_state_to_file(state): # … unchanged
|
93 |
filename = "state.pkl"
|
94 |
with open(filename, "wb") as f:
|
95 |
pickle.dump(state, f)
|
96 |
return filename
|
97 |
|
98 |
-
|
|
|
99 |
with open(filename, "rb") as f:
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
def weight_population(layer_type, resolution, depth, value):
|
103 |
-
|
104 |
if layer_type not in weights:
|
105 |
weights[layer_type] = {}
|
|
|
|
|
106 |
if resolution not in weights[layer_type]:
|
107 |
weights[layer_type][resolution] = {}
|
|
|
|
|
108 |
if resolution > heighest_resolution:
|
109 |
heighest_resolution = resolution
|
|
|
|
|
110 |
weights[layer_type][resolution][depth] = value
|
111 |
|
112 |
-
def resize_image_with_aspect(
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
else:
|
119 |
-
|
120 |
-
return img.resize(
|
121 |
-
(int(w * s), int(h * s)), Image.Resampling.LANCZOS
|
122 |
-
)
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
)
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
-
def update_scale(scale):
|
141 |
-
global weights
|
142 |
-
values_flat = []
|
143 |
-
for _, d in weights.items():
|
144 |
-
for _, v in d.items():
|
145 |
-
for _ in v:
|
146 |
-
values_flat.append(1.0)
|
147 |
-
for _ in range(scale, max_scale_value):
|
148 |
-
adjust_ends(values_flat, -0.5)
|
149 |
-
idx = 0
|
150 |
-
for k1, d in weights.items():
|
151 |
-
for k2 in d:
|
152 |
-
for k3 in d[k2]:
|
153 |
-
weights[k1][k2][k3] = values_flat[idx]
|
154 |
-
idx += 1
|
155 |
-
|
156 |
-
# -------------------------------------------------------------
|
157 |
-
# 4. Custom attention processor (unchanged)
|
158 |
-
# -------------------------------------------------------------
|
159 |
class AttnReplaceProcessor(AttnProcessor2_0):
|
160 |
-
|
161 |
-
|
162 |
super().__init__()
|
163 |
self.replace_all = replace_all
|
164 |
self.layer_type = layer_type
|
165 |
self.layer_count = layer_count
|
|
|
166 |
self.blur_sigma = blur_sigma
|
167 |
|
168 |
def __call__(
|
169 |
-
self,
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
residual = hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
def replace_attention_processor(unet, clear=False, blur_sigma=None):
|
188 |
-
|
|
|
|
|
189 |
for name, module in unet.named_modules():
|
190 |
if "attn1" in name and "to" not in name:
|
191 |
layer_type = name.split(".")[0].split("_")[0]
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
Returns: (np_image, caption, slider_val, meta_state)
|
205 |
-
"""
|
206 |
-
pipe, inv_sched, sched = _get_pipeline()
|
207 |
-
|
208 |
-
img = resize_image_with_aspect(input_img,
|
209 |
-
res_range_min, res_range_max)
|
210 |
-
transform = torchvision.transforms.ToTensor()
|
211 |
-
loaded = transform(img).half().to("cuda").unsqueeze(0)
|
212 |
-
if loaded.shape[1] == 4: # drop alpha
|
213 |
-
loaded = loaded[:, :3, :, :]
|
214 |
|
215 |
-
|
216 |
-
|
217 |
-
real_latents = pipe.vae.config.scaling_factor * \
|
218 |
-
enc.latent_dist.sample()
|
219 |
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
-
def store_latent(_, step, __, cb_kwargs):
|
226 |
-
if step != num_inference_steps - 1:
|
227 |
-
inversed_latents.append(cb_kwargs["latents"])
|
228 |
-
return cb_kwargs
|
229 |
-
|
230 |
-
replace_attention_processor(pipe.unet, True)
|
231 |
-
pipe.scheduler = inv_sched
|
232 |
-
pipe(prompt=caption,
|
233 |
-
guidance_scale=1.0,
|
234 |
-
output_type="latent",
|
235 |
-
num_inference_steps=num_inference_steps,
|
236 |
-
latents=latents,
|
237 |
-
callback_on_step_end=store_latent,
|
238 |
-
callback_on_step_end_tensor_inputs=["latents"])
|
239 |
-
|
240 |
-
real_initial = inversed_latents[-1]
|
241 |
-
# forward synthesis with CFG
|
242 |
-
sched.set_timesteps(num_inference_steps, device="cuda")
|
243 |
-
replace_attention_processor(pipe.unet, True)
|
244 |
-
|
245 |
-
def adjust_latent(_, step, __, cb_kwargs):
|
246 |
-
cb_kwargs["latents"] = inversed_latents[
|
247 |
-
len(sched.timesteps) - 1 - step
|
248 |
-
].detach()
|
249 |
-
return cb_kwargs
|
250 |
-
|
251 |
-
latents = pipe(prompt=caption,
|
252 |
-
guidance_scale=guidance_scale_value,
|
253 |
-
output_type="latent",
|
254 |
-
num_inference_steps=num_inference_steps,
|
255 |
-
latents=real_initial,
|
256 |
-
callback_on_step_end=adjust_latent,
|
257 |
-
callback_on_step_end_tensor_inputs=["latents"])[0]
|
258 |
-
|
259 |
-
image = pipe.vae.decode(
|
260 |
-
latents / pipe.vae.config.scaling_factor, return_dict=False
|
261 |
-
)[0]
|
262 |
-
img_np = image.squeeze(0).float().permute(1, 2, 0).detach().cpu()
|
263 |
-
img_np = ((img_np / 2 + 0.5).clamp(0, 1).numpy() * 255).astype(np.uint8)
|
264 |
-
|
265 |
-
update_scale(12) # initial cross-attn value
|
266 |
-
|
267 |
-
pipe.to("cpu"); torch.cuda.empty_cache()
|
268 |
-
return img_np, caption, 12, [caption, real_initial.detach(),
|
269 |
-
inversed_latents, weights]
|
270 |
-
|
271 |
-
@spaces.GPU(duration=120) # 2 min quota
|
272 |
-
def apply_prompt(meta_data: Any, new_prompt: str):
|
273 |
-
"""
|
274 |
-
Re-generate the image using stored latents + new prompt.
|
275 |
-
"""
|
276 |
-
pipe, _, sched = _get_pipeline()
|
277 |
-
caption, real_latents, inversed, _ = meta_data
|
278 |
-
|
279 |
-
steps = len(inversed)
|
280 |
-
sched.set_timesteps(steps, device="cuda")
|
281 |
-
|
282 |
-
initial = torch.cat([real_latents] * 2)
|
283 |
-
def adjust_latent(_, step, __, cb_kwargs):
|
284 |
replace_attention_processor(pipe.unet)
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
img_np = ((img_np / 2 + 0.5).clamp(0, 1).numpy() * 255).astype(np.uint8)
|
308 |
-
|
309 |
-
pipe.to("cpu"); torch.cuda.empty_cache()
|
310 |
-
return img_np
|
311 |
-
|
312 |
-
# -------------------------------------------------------------
|
313 |
-
# 6. Lightweight CPU callbacks
|
314 |
-
# -------------------------------------------------------------
|
315 |
def on_image_change(filepath):
|
316 |
-
|
317 |
-
|
318 |
-
|
|
|
|
|
|
|
|
|
319 |
global weights
|
320 |
-
_, _, _, weights =
|
|
|
321 |
global num_inference_steps
|
322 |
num_inference_steps = 10
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
global num_inference_steps
|
339 |
-
num_inference_steps =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
-
# -------------------------------------------------------------
|
342 |
-
# 7. Gradio UI (unchanged layout)
|
343 |
-
# -------------------------------------------------------------
|
344 |
with gr.Blocks(analytics_enabled=False) as demo:
|
345 |
gr.Markdown(
|
346 |
-
"""
|
347 |
-
|
348 |
-
|
349 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
350 |
)
|
351 |
-
|
352 |
with gr.Row():
|
353 |
with gr.Column():
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
recon_btn = gr.Button("Reconstruct")
|
362 |
with gr.Column():
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
gr.
|
374 |
-
|
375 |
-
[
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
recon_btn.click(lambda: gr.update(interactive=False),
|
416 |
-
outputs=[recon_btn, apply_btn])
|
417 |
-
|
418 |
-
apply_btn.click(apply_prompt,
|
419 |
-
inputs=[meta_state, new_box],
|
420 |
-
outputs=recon_img)
|
421 |
-
|
422 |
-
# -------------------------------------------------------------
|
423 |
-
# 8. Launch
|
424 |
-
# -------------------------------------------------------------
|
425 |
-
if __name__ == "__main__":
|
426 |
-
parser = argparse.ArgumentParser()
|
427 |
-
parser.add_argument("--share", action="store_true",
|
428 |
-
help="Enable public Gradio sharing")
|
429 |
-
args = parser.parse_args()
|
430 |
demo.queue()
|
431 |
-
demo.launch(share=args.share, inbrowser=True)
|
|
|
1 |
+
import warnings
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
+
warnings.filterwarnings("ignore")
|
4 |
+
from diffusers import DiffusionPipeline, DDIMInverseScheduler, DDIMScheduler, AutoencoderKL
|
5 |
+
import torch
|
6 |
+
from typing import Optional
|
7 |
+
from tqdm import tqdm
|
8 |
+
from diffusers.models.attention_processor import Attention, AttnProcessor2_0
|
9 |
+
import torchvision
|
10 |
+
import torch.nn as nn
|
11 |
import torch.nn.functional as F
|
12 |
+
import gc
|
13 |
+
import gradio as gr
|
14 |
import numpy as np
|
15 |
+
import os
|
16 |
+
import pickle
|
17 |
+
import argparse
|
18 |
from PIL import Image
|
19 |
+
import requests
|
20 |
+
import math
|
21 |
+
import torch
|
|
|
|
|
22 |
from safetensors.torch import load_file
|
23 |
from huggingface_hub import hf_hub_download
|
24 |
+
from diffusers import DiffusionPipeline
|
25 |
+
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
+
def save_state_to_file(state):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
filename = "state.pkl"
|
29 |
with open(filename, "wb") as f:
|
30 |
pickle.dump(state, f)
|
31 |
return filename
|
32 |
|
33 |
+
|
34 |
+
def load_state_from_file(filename):
|
35 |
with open(filename, "rb") as f:
|
36 |
+
state = pickle.load(f)
|
37 |
+
return state
|
38 |
+
|
39 |
+
guidance_scale_value = 7.5
|
40 |
+
num_inference_steps = 10
|
41 |
+
weights = {}
|
42 |
+
res_list = []
|
43 |
+
foreground_mask = None
|
44 |
+
heighest_resolution = -1
|
45 |
+
signal_value = 2.0
|
46 |
+
blur_value = None
|
47 |
+
allowed_res_max = 1.0
|
48 |
|
49 |
+
|
50 |
+
def load_pipeline():
|
51 |
+
|
52 |
+
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
53 |
+
vae_model_id = "madebyollin/sdxl-vae-fp16-fix"
|
54 |
+
vae_folder = ""
|
55 |
+
guidance_scale_value = 7.5
|
56 |
+
resadapter_model_name = "resadapter_v2_sdxl"
|
57 |
+
res_range_min = 256
|
58 |
+
res_range_max = 1536
|
59 |
+
|
60 |
+
torch_dtype = torch.float16
|
61 |
+
|
62 |
+
# torch_dtype = torch.float16
|
63 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch_dtype).to("cuda")
|
64 |
+
pipe.vae = AutoencoderKL.from_pretrained(vae_model_id, subfolder=vae_folder, torch_dtype=torch_dtype).to("cuda")
|
65 |
+
pipe.load_lora_weights(
|
66 |
+
hf_hub_download(repo_id="jiaxiangc/res-adapter", subfolder=resadapter_model_name, filename="pytorch_lora_weights.safetensors"),
|
67 |
+
adapter_name="res_adapter",
|
68 |
+
) # load lora weights
|
69 |
+
pipe.set_adapters(["res_adapter"], adapter_weights=[1.0])
|
70 |
+
pipe.unet.load_state_dict(
|
71 |
+
load_file(hf_hub_download(repo_id="jiaxiangc/res-adapter", subfolder=resadapter_model_name, filename="diffusion_pytorch_model.safetensors")),
|
72 |
+
strict=False,
|
73 |
+
) # load norm weights
|
74 |
+
|
75 |
+
inverse_scheduler = DDIMInverseScheduler.from_pretrained(model_id, subfolder="scheduler")
|
76 |
+
scheduler = DDIMScheduler.from_pretrained(model_id, subfolder="scheduler")
|
77 |
+
|
78 |
+
return pipe, inverse_scheduler, scheduler
|
79 |
def weight_population(layer_type, resolution, depth, value):
|
80 |
+
# Check if layer_type exists, if not, create it
|
81 |
if layer_type not in weights:
|
82 |
weights[layer_type] = {}
|
83 |
+
|
84 |
+
# Check if resolution exists under layer_type, if not, create it
|
85 |
if resolution not in weights[layer_type]:
|
86 |
weights[layer_type][resolution] = {}
|
87 |
+
|
88 |
+
global heighest_resolution
|
89 |
if resolution > heighest_resolution:
|
90 |
heighest_resolution = resolution
|
91 |
+
|
92 |
+
# Add/Modify the value at the specified depth (which can be a string)
|
93 |
weights[layer_type][resolution][depth] = value
|
94 |
|
95 |
+
def resize_image_with_aspect(image, res_range_min=128, res_range_max=1024):
|
96 |
+
# Get the original width and height of the image
|
97 |
+
width, height = image.size
|
98 |
+
|
99 |
+
# Determine the scaling factor to maintain the aspect ratio
|
100 |
+
scaling_factor = 1
|
101 |
+
if width < res_range_min or height < res_range_min:
|
102 |
+
scaling_factor = max(res_range_min / width, res_range_min / height)
|
103 |
+
elif width > res_range_max or height > res_range_max:
|
104 |
+
scaling_factor = min(res_range_max / width, res_range_max / height)
|
105 |
+
|
106 |
+
# Calculate the new dimensions
|
107 |
+
new_width = int(width * scaling_factor)
|
108 |
+
new_height = int(height * scaling_factor)
|
109 |
+
|
110 |
+
print(f'{new_width}-{new_height}')
|
111 |
+
|
112 |
+
# Resize the image with the new dimensions while maintaining the aspect ratio
|
113 |
+
resized_image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
114 |
+
|
115 |
+
return resized_image
|
116 |
+
|
117 |
+
@spaces.GPU()
|
118 |
+
def reconstruct(input_img, caption):
|
119 |
+
|
120 |
+
pipe, inverse_scheduler, scheduler = load_pipeline()
|
121 |
+
|
122 |
+
global weights
|
123 |
+
weights = {}
|
124 |
+
|
125 |
+
prompt = caption
|
126 |
+
|
127 |
+
img = input_img
|
128 |
+
|
129 |
+
img = resize_image_with_aspect(img, res_range_min, res_range_max)
|
130 |
+
|
131 |
+
transform = torchvision.transforms.Compose([
|
132 |
+
torchvision.transforms.ToTensor()
|
133 |
+
])
|
134 |
+
|
135 |
+
if torch_dtype == torch.float16:
|
136 |
+
loaded_image = transform(img).half().to("cuda").unsqueeze(0)
|
137 |
else:
|
138 |
+
loaded_image = transform(img).to("cuda").unsqueeze(0)
|
|
|
|
|
|
|
139 |
|
140 |
+
if loaded_image.shape[1] == 4:
|
141 |
+
loaded_image = loaded_image[:,:3,:,:]
|
142 |
+
|
143 |
+
with torch.no_grad():
|
144 |
+
encoded_image = pipe.vae.encode(loaded_image*2 - 1)
|
145 |
+
real_image_latents = pipe.vae.config.scaling_factor * encoded_image.latent_dist.sample()
|
146 |
+
|
147 |
+
|
148 |
+
# notice we disabled the CFG here by setting guidance scale as 1
|
149 |
+
guidance_scale = 1.0
|
150 |
+
inverse_scheduler.set_timesteps(num_inference_steps, device="cuda")
|
151 |
+
timesteps = inverse_scheduler.timesteps
|
152 |
+
|
153 |
+
latents = real_image_latents
|
154 |
+
|
155 |
+
inversed_latents = [latents]
|
156 |
+
|
157 |
+
def store_latent(pipe, step, timestep, callback_kwargs):
|
158 |
+
latents = callback_kwargs["latents"]
|
159 |
+
|
160 |
+
with torch.no_grad():
|
161 |
+
if step != num_inference_steps - 1:
|
162 |
+
inversed_latents.append(latents)
|
163 |
+
|
164 |
+
return callback_kwargs
|
165 |
+
|
166 |
+
with torch.no_grad():
|
167 |
+
|
168 |
+
replace_attention_processor(pipe.unet, True)
|
169 |
+
|
170 |
+
pipe.scheduler = inverse_scheduler
|
171 |
+
latents = pipe(prompt=prompt,
|
172 |
+
guidance_scale = guidance_scale,
|
173 |
+
output_type="latent",
|
174 |
+
return_dict=False,
|
175 |
+
num_inference_steps=num_inference_steps,
|
176 |
+
latents=latents,
|
177 |
+
callback_on_step_end=store_latent,
|
178 |
+
callback_on_step_end_tensor_inputs=["latents"],)[0]
|
179 |
+
|
180 |
+
# initial state
|
181 |
+
real_image_initial_latents = latents
|
182 |
+
|
183 |
+
guidance_scale = guidance_scale_value
|
184 |
+
scheduler.set_timesteps(num_inference_steps, device="cuda")
|
185 |
+
timesteps = scheduler.timesteps
|
186 |
+
|
187 |
+
def adjust_latent(pipe, step, timestep, callback_kwargs):
|
188 |
+
|
189 |
+
with torch.no_grad():
|
190 |
+
callback_kwargs["latents"] = inversed_latents[len(timesteps) - 1 - step].detach()
|
191 |
+
|
192 |
+
return callback_kwargs
|
193 |
+
|
194 |
+
with torch.no_grad():
|
195 |
+
|
196 |
+
replace_attention_processor(pipe.unet, True)
|
197 |
+
|
198 |
+
intermediate_values = real_image_initial_latents.clone()
|
199 |
+
|
200 |
+
pipe.scheduler = scheduler
|
201 |
+
intermediate_values = pipe(prompt=prompt,
|
202 |
+
guidance_scale = guidance_scale,
|
203 |
+
output_type="latent",
|
204 |
+
return_dict=False,
|
205 |
+
num_inference_steps=num_inference_steps,
|
206 |
+
latents=intermediate_values,
|
207 |
+
callback_on_step_end=adjust_latent,
|
208 |
+
callback_on_step_end_tensor_inputs=["latents"],)[0]
|
209 |
+
|
210 |
+
image = pipe.vae.decode(intermediate_values / pipe.vae.config.scaling_factor, return_dict=False)[0]
|
211 |
+
image_np = image.squeeze(0).float().permute(1, 2, 0).detach().cpu()
|
212 |
+
image_np = (image_np / 2 + 0.5).clamp(0, 1).numpy()
|
213 |
+
image_np = (image_np * 255).astype(np.uint8)
|
214 |
+
|
215 |
+
update_scale(12)
|
216 |
+
|
217 |
+
return image_np, caption, 12, [caption, real_image_initial_latents.detach(), inversed_latents, weights]
|
218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
class AttnReplaceProcessor(AttnProcessor2_0):
|
220 |
+
|
221 |
+
def __init__(self, replace_all, layer_type, layer_count, blur_sigma=None):
|
222 |
super().__init__()
|
223 |
self.replace_all = replace_all
|
224 |
self.layer_type = layer_type
|
225 |
self.layer_count = layer_count
|
226 |
+
self.weight_populated = False
|
227 |
self.blur_sigma = blur_sigma
|
228 |
|
229 |
def __call__(
|
230 |
+
self,
|
231 |
+
attn: Attention,
|
232 |
+
hidden_states: torch.FloatTensor,
|
233 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
234 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
235 |
+
temb: Optional[torch.FloatTensor] = None,
|
236 |
+
*args,
|
237 |
+
**kwargs,
|
238 |
+
) -> torch.FloatTensor:
|
239 |
+
|
240 |
+
|
241 |
+
dimension_squared = hidden_states.shape[1]
|
242 |
+
|
243 |
+
is_cross = not encoder_hidden_states is None
|
244 |
+
|
245 |
residual = hidden_states
|
246 |
+
if attn.spatial_norm is not None:
|
247 |
+
hidden_states = attn.spatial_norm(hidden_states, temb)
|
248 |
+
|
249 |
+
input_ndim = hidden_states.ndim
|
250 |
+
|
251 |
+
if input_ndim == 4:
|
252 |
+
batch_size, channel, height, width = hidden_states.shape
|
253 |
+
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
|
254 |
+
|
255 |
+
batch_size, sequence_length, _ = (
|
256 |
+
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
|
257 |
+
)
|
258 |
+
|
259 |
+
if attention_mask is not None:
|
260 |
+
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
|
261 |
+
# scaled_dot_product_attention expects attention_mask shape to be
|
262 |
+
# (batch, heads, source_length, target_length)
|
263 |
+
attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])
|
264 |
+
|
265 |
+
if attn.group_norm is not None:
|
266 |
+
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
|
267 |
+
|
268 |
+
query = attn.to_q(hidden_states)
|
269 |
+
|
270 |
+
if encoder_hidden_states is None:
|
271 |
+
encoder_hidden_states = hidden_states
|
272 |
+
elif attn.norm_cross:
|
273 |
+
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
|
274 |
|
275 |
+
key = attn.to_k(encoder_hidden_states)
|
276 |
+
value = attn.to_v(encoder_hidden_states)
|
277 |
+
|
278 |
+
inner_dim = key.shape[-1]
|
279 |
+
head_dim = inner_dim // attn.heads
|
280 |
+
|
281 |
+
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
282 |
+
|
283 |
+
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
284 |
+
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
285 |
+
|
286 |
+
height = width = math.isqrt(query.shape[2])
|
287 |
+
|
288 |
+
|
289 |
+
if self.replace_all:
|
290 |
+
weight_value = weights[self.layer_type][dimension_squared][self.layer_count]
|
291 |
+
|
292 |
+
ucond_attn_scores, attn_scores = query.chunk(2)
|
293 |
+
attn_scores[1].copy_(weight_value * attn_scores[0] + (1.0 - weight_value) * attn_scores[1])
|
294 |
+
ucond_attn_scores[1].copy_(weight_value * ucond_attn_scores[0] + (1.0 - weight_value) * ucond_attn_scores[1])
|
295 |
+
|
296 |
+
|
297 |
+
ucond_attn_scores, attn_scores = key.chunk(2)
|
298 |
+
attn_scores[1].copy_(weight_value * attn_scores[0] + (1.0 - weight_value) * attn_scores[1])
|
299 |
+
ucond_attn_scores[1].copy_(weight_value * ucond_attn_scores[0] + (1.0 - weight_value) * ucond_attn_scores[1])
|
300 |
+
else:
|
301 |
+
weight_population(self.layer_type, dimension_squared, self.layer_count, 1.0)
|
302 |
+
|
303 |
+
|
304 |
+
hidden_states = F.scaled_dot_product_attention(
|
305 |
+
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False,
|
306 |
+
)
|
307 |
|
308 |
+
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
|
309 |
+
hidden_states = hidden_states.to(query.dtype)
|
310 |
+
|
311 |
+
# linear proj
|
312 |
+
hidden_states = attn.to_out[0](hidden_states)
|
313 |
+
# dropout
|
314 |
+
hidden_states = attn.to_out[1](hidden_states)
|
315 |
+
|
316 |
+
if input_ndim == 4:
|
317 |
+
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
|
318 |
+
|
319 |
+
if attn.residual_connection:
|
320 |
+
hidden_states = hidden_states + residual
|
321 |
+
|
322 |
+
hidden_states = hidden_states / attn.rescale_output_factor
|
323 |
+
|
324 |
+
return hidden_states
|
325 |
|
326 |
def replace_attention_processor(unet, clear=False, blur_sigma=None):
|
327 |
+
attention_count = 0
|
328 |
+
|
329 |
+
|
330 |
for name, module in unet.named_modules():
|
331 |
if "attn1" in name and "to" not in name:
|
332 |
layer_type = name.split(".")[0].split("_")[0]
|
333 |
+
attention_count += 1
|
334 |
+
|
335 |
+
if not clear:
|
336 |
+
if layer_type == "down":
|
337 |
+
module.processor = AttnReplaceProcessor(True, layer_type, attention_count, blur_sigma=blur_sigma)
|
338 |
+
elif layer_type == "mid":
|
339 |
+
module.processor = AttnReplaceProcessor(True, layer_type, attention_count, blur_sigma=blur_sigma)
|
340 |
+
elif layer_type == "up":
|
341 |
+
module.processor = AttnReplaceProcessor(True, layer_type, attention_count, blur_sigma=blur_sigma)
|
342 |
+
|
343 |
+
else:
|
344 |
+
module.processor = AttnReplaceProcessor(False, layer_type, attention_count, blur_sigma=blur_sigma)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
345 |
|
346 |
+
@spaces.GPU()
|
347 |
+
def apply_prompt(meta_data, new_prompt):
|
|
|
|
|
348 |
|
349 |
+
pipe, inverse_scheduler, scheduler = load_pipeline()
|
350 |
+
|
351 |
+
caption, real_image_initial_latents, inversed_latents, _ = meta_data
|
352 |
+
negative_prompt = ""
|
353 |
+
|
354 |
+
inference_steps = len(inversed_latents)
|
355 |
+
|
356 |
+
guidance_scale = guidance_scale_value
|
357 |
+
scheduler.set_timesteps(inference_steps, device="cuda")
|
358 |
+
timesteps = scheduler.timesteps
|
359 |
+
|
360 |
+
initial_latents = torch.cat([real_image_initial_latents] * 2)
|
361 |
+
|
362 |
+
def adjust_latent(pipe, step, timestep, callback_kwargs):
|
363 |
+
replace_attention_processor(pipe.unet)
|
364 |
+
|
365 |
+
with torch.no_grad():
|
366 |
+
callback_kwargs["latents"][1] = callback_kwargs["latents"][1] + (inversed_latents[len(timesteps) - 1 - step].detach() - callback_kwargs["latents"][0])
|
367 |
+
callback_kwargs["latents"][0] = inversed_latents[len(timesteps) - 1 - step].detach()
|
368 |
+
|
369 |
+
return callback_kwargs
|
370 |
+
|
371 |
+
|
372 |
+
with torch.no_grad():
|
373 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
374 |
replace_attention_processor(pipe.unet)
|
375 |
+
|
376 |
+
pipe.scheduler = scheduler
|
377 |
+
latents = pipe(prompt=[caption, new_prompt],
|
378 |
+
negative_prompt=[negative_prompt, negative_prompt],
|
379 |
+
guidance_scale = guidance_scale,
|
380 |
+
output_type="latent",
|
381 |
+
return_dict=False,
|
382 |
+
num_inference_steps=num_inference_steps,
|
383 |
+
latents=initial_latents,
|
384 |
+
callback_on_step_end=adjust_latent,
|
385 |
+
callback_on_step_end_tensor_inputs=["latents"],)[0]
|
386 |
+
|
387 |
+
replace_attention_processor(pipe.unet, True)
|
388 |
+
|
389 |
+
image = pipe.vae.decode(latents[1].unsqueeze(0) / pipe.vae.config.scaling_factor, return_dict=False)[0]
|
390 |
+
image_np = image.squeeze(0).float().permute(1, 2, 0).detach().cpu()
|
391 |
+
image_np = (image_np / 2 + 0.5).clamp(0, 1).numpy()
|
392 |
+
image_np = (image_np * 255).astype(np.uint8)
|
393 |
+
|
394 |
+
return image_np
|
395 |
+
|
396 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
397 |
def on_image_change(filepath):
|
398 |
+
# Extract the filename without extension
|
399 |
+
filename = os.path.splitext(os.path.basename(filepath))[0]
|
400 |
+
|
401 |
+
if filename in ["example1", "example3", "example4"]:
|
402 |
+
|
403 |
+
meta_data_raw = load_state_from_file(f"assets/{filename}-turbo.pkl")
|
404 |
+
|
405 |
global weights
|
406 |
+
_, _, _, weights = meta_data_raw
|
407 |
+
|
408 |
global num_inference_steps
|
409 |
num_inference_steps = 10
|
410 |
+
scale_value = 7
|
411 |
+
|
412 |
+
if filename == "example1":
|
413 |
+
scale_value = 8
|
414 |
+
new_prompt = "a photo of a tree, summer, colourful"
|
415 |
+
|
416 |
+
elif filename == "example3":
|
417 |
+
scale_value = 6
|
418 |
+
new_prompt = "a realistic photo of a female warrior, flowing dark purple or black hair, bronze shoulder armour, leather chest piece, sky background with clouds"
|
419 |
+
|
420 |
+
elif filename == "example4":
|
421 |
+
scale_value = 13
|
422 |
+
new_prompt = "a photo of plastic bottle on some sand, beach background, sky background"
|
423 |
+
|
424 |
+
update_scale(scale_value)
|
425 |
+
img = apply_prompt(meta_data_raw, new_prompt)
|
426 |
+
|
427 |
+
return filepath, img, meta_data_raw, num_inference_steps, scale_value, scale_value
|
428 |
+
|
429 |
+
|
430 |
+
def update_value(value, layer_type, resolution, depth):
|
431 |
+
global weights
|
432 |
+
weights[layer_type][resolution][depth] = value
|
433 |
+
|
434 |
+
|
435 |
+
def update_step(value):
|
436 |
global num_inference_steps
|
437 |
+
num_inference_steps = value
|
438 |
+
|
439 |
+
def adjust_ends(values, adjustment):
|
440 |
+
# Forward loop to adjust the first valid element from the left
|
441 |
+
for i in range(len(values)):
|
442 |
+
if (adjustment > 0 and values[i + 1] == 1.0) or (adjustment < 0 and values[i] > 0.0):
|
443 |
+
values[i] = values[i] + adjustment
|
444 |
+
break
|
445 |
+
|
446 |
+
# Backward loop to adjust the first valid element from the right
|
447 |
+
for i in range(len(values)-1, -1, -1):
|
448 |
+
if (adjustment > 0 and values[i - 1] == 1.0) or (adjustment < 0 and values[i] > 0.0):
|
449 |
+
values[i] = values[i] + adjustment
|
450 |
+
break
|
451 |
+
|
452 |
+
return values
|
453 |
+
|
454 |
+
max_scale_value = 16
|
455 |
+
|
456 |
+
def update_scale(scale):
|
457 |
+
global weights
|
458 |
+
|
459 |
+
value_count = 0
|
460 |
+
|
461 |
+
for outer_key, inner_dict in weights.items():
|
462 |
+
for inner_key, values in inner_dict.items():
|
463 |
+
for _, value in enumerate(values):
|
464 |
+
value_count += 1
|
465 |
+
|
466 |
+
list_values = [1.0] * value_count
|
467 |
+
|
468 |
+
for _ in range(scale, max_scale_value):
|
469 |
+
adjust_ends(list_values, -0.5)
|
470 |
+
|
471 |
+
value_index = 0
|
472 |
+
|
473 |
+
for outer_key, inner_dict in weights.items():
|
474 |
+
for inner_key, values in inner_dict.items():
|
475 |
+
for idx, value in enumerate(values):
|
476 |
+
|
477 |
+
weights[outer_key][inner_key][value] = list_values[value_index]
|
478 |
+
value_index += 1
|
479 |
+
|
480 |
+
|
481 |
+
if __name__ == "__main__":
|
482 |
+
|
483 |
+
parser = argparse.ArgumentParser()
|
484 |
+
parser.add_argument("--share", action="store_true", help="Enable sharing of the Gradio interface")
|
485 |
+
args = parser.parse_args()
|
486 |
+
|
487 |
+
num_inference_steps = 10
|
488 |
+
|
489 |
+
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
490 |
+
vae_model_id = "madebyollin/sdxl-vae-fp16-fix"
|
491 |
+
vae_folder = ""
|
492 |
+
guidance_scale_value = 7.5
|
493 |
+
resadapter_model_name = "resadapter_v2_sdxl"
|
494 |
+
res_range_min = 256
|
495 |
+
res_range_max = 1536
|
496 |
+
|
497 |
+
torch_dtype = torch.float16
|
498 |
|
|
|
|
|
|
|
499 |
with gr.Blocks(analytics_enabled=False) as demo:
|
500 |
gr.Markdown(
|
501 |
+
"""
|
502 |
+
<div style="text-align: center;">
|
503 |
+
<div style="display: flex; justify-content: center;">
|
504 |
+
<img src="https://github.com/user-attachments/assets/55a38e74-ab93-4d80-91c8-0fa6130af45a" alt="Logo">
|
505 |
+
</div>
|
506 |
+
<h1>Out of Focus v1.0 Turbo</h1>
|
507 |
+
<p style="font-size:16px;">Out of AI presents a flexible tool to manipulate your images. This is our first version of Image modification tool through prompt manipulation by reconstruction through diffusion inversion process</p>
|
508 |
+
</div>
|
509 |
+
<br>
|
510 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
511 |
+
<a href="https://www.buymeacoffee.com/outofai" target="_blank"><img src="https://img.shields.io/badge/-buy_me_a%C2%A0coffee-red?logo=buy-me-a-coffee" alt="Buy Me A Coffee"></a>  
|
512 |
+
<a href="https://twitter.com/OutofAi" target="_blank"><img src="https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Out"></a>
|
513 |
+
</div>
|
514 |
+
"""
|
515 |
)
|
|
|
516 |
with gr.Row():
|
517 |
with gr.Column():
|
518 |
+
|
519 |
+
with gr.Row():
|
520 |
+
example_input = gr.Image(type="filepath", visible=False)
|
521 |
+
image_input = gr.Image(type="pil", label="Upload Source Image")
|
522 |
+
steps_slider = gr.Slider(minimum=5, maximum=50, step=5, value=num_inference_steps, label="Steps", info="Number of inference steps required to reconstruct and modify the image")
|
523 |
+
prompt_input = gr.Textbox(label="Prompt", info="Give an initial prompt in details, describing the image")
|
524 |
+
reconstruct_button = gr.Button("Reconstruct")
|
|
|
525 |
with gr.Column():
|
526 |
+
|
527 |
+
with gr.Row():
|
528 |
+
reconstructed_image = gr.Image(type="pil", label="Reconstructed")
|
529 |
+
invisible_slider = gr.Slider(minimum=0, maximum=9, step=1, value=7, visible=False)
|
530 |
+
interpolate_slider = gr.Slider(minimum=0, maximum=max_scale_value, step=1, value=max_scale_value, label="Cross-Attention Influence", info="Scales the related influence the source image has on the target image")
|
531 |
+
new_prompt_input = gr.Textbox(label="New Prompt", interactive=False, info="Manipulate the image by changing the prompt or adding words at the end; swap words instead of adding or removing them for better results")
|
532 |
+
|
533 |
+
with gr.Row():
|
534 |
+
apply_button = gr.Button("Generate Vision", variant="primary", interactive=False)
|
535 |
+
|
536 |
+
with gr.Row():
|
537 |
+
show_case = gr.Examples(
|
538 |
+
examples=[
|
539 |
+
["assets/example4.png", "a photo of plastic bottle on a rock, mountain background, sky background", "a photo of plastic bottle on some sand, beach background, sky background", 13],
|
540 |
+
["assets/example1.png", "a photo of a tree, spring, foggy", "a photo of a tree, summer, colourful", 8],
|
541 |
+
[
|
542 |
+
"assets/example3.png",
|
543 |
+
"a digital illustration of a female warrior, flowing dark purple or black hair, bronze shoulder armour, leather chest piece, sky background with clouds",
|
544 |
+
"a realistic photo of a female warrior, flowing dark purple or black hair, bronze shoulder armour, leather chest piece, sky background with clouds",
|
545 |
+
6 ,
|
546 |
+
],
|
547 |
+
],
|
548 |
+
inputs=[example_input, prompt_input, new_prompt_input, interpolate_slider],
|
549 |
+
label=None,
|
550 |
+
)
|
551 |
+
|
552 |
+
meta_data = gr.State()
|
553 |
+
|
554 |
+
example_input.change(fn=on_image_change, inputs=example_input, outputs=[image_input, reconstructed_image, meta_data, steps_slider, invisible_slider, interpolate_slider]).then(lambda: gr.update(interactive=True), outputs=apply_button).then(
|
555 |
+
lambda: gr.update(interactive=True), outputs=new_prompt_input
|
556 |
+
)
|
557 |
+
steps_slider.release(update_step, inputs=steps_slider)
|
558 |
+
interpolate_slider.release(update_scale, inputs=interpolate_slider)
|
559 |
+
|
560 |
+
value_trigger = True
|
561 |
+
|
562 |
+
def triggered():
|
563 |
+
global value_trigger
|
564 |
+
value_trigger = not value_trigger
|
565 |
+
return value_trigger
|
566 |
+
|
567 |
+
reconstruct_button.click(reconstruct, inputs=[image_input, prompt_input], outputs=[reconstructed_image, new_prompt_input, interpolate_slider, meta_data]).then(lambda: gr.update(interactive=True), outputs=reconstruct_button).then(lambda: gr.update(interactive=True), outputs=new_prompt_input).then(
|
568 |
+
lambda: gr.update(interactive=True), outputs=apply_button
|
569 |
+
)
|
570 |
+
|
571 |
+
reconstruct_button.click(lambda: gr.update(interactive=False), outputs=reconstruct_button)
|
572 |
+
|
573 |
+
reconstruct_button.click(lambda: gr.update(interactive=False), outputs=apply_button)
|
574 |
+
|
575 |
+
apply_button.click(apply_prompt, inputs=[meta_data, new_prompt_input], outputs=reconstructed_image)
|
576 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
577 |
demo.queue()
|
578 |
+
demo.launch(share=args.share, inbrowser=True)
|