File size: 8,028 Bytes
bd9feeb 5a8b969 444b661 bd9feeb 826a9bc bd9feeb 826a9bc bd9feeb a8b7aaa bd9feeb a8b7aaa bd9feeb 826a9bc bd9feeb 826a9bc bd9feeb 826a9bc bd9feeb 857cce7 bd9feeb 826a9bc bd9feeb 857cce7 bd9feeb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import torch
import streamlit as st
from PIL import Image
import pytesseract
import pandas as pd
import plotly.express as px
# ✅ 新增维度定义
OFFENSIVE_CATEGORIES = {
"Insult": ["蠢货", "白痴", "废物"],
"Abuse": ["去死", "打死", "宰了你"],
"Discrimination": ["女司机", "娘娘腔", "黑鬼"],
"HateSpeech": ["灭族", "屠杀", "灭绝"],
"Vulgarity": ["艹", "sb", "尼玛"]
}
# ✅ 模型初始化(保持原有结构)
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
emoji_model = AutoModelForCausalLM.from_pretrained(
emoji_model_id,
trust_remote_code=True,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to("cuda" if torch.cuda.is_available() else "cpu")
emoji_model.eval()
model_options = {
"Toxic-BERT": "unitary/toxic-bert",
"Roberta Offensive": "cardiffnlp/twitter-roberta-base-offensive",
"BERT Emotion": "bhadresh-savani/bert-base-go-emotion"
}
# ✅ 动态评分算法
def dynamic_scoring(text: str, classifier):
scores = {k: 0.0 for k in OFFENSIVE_CATEGORIES}
for category, keywords in OFFENSIVE_CATEGORIES.items():
for kw in keywords:
if kw in text:
scores[category] += 0.3
words = text.split()
for word in words:
try:
res = classifier(word)[0]
if res["label"] in scores:
scores[res["label"]] += res["score"] * 0.7
except: pass
max_score = max(scores.values()) or 1
return {k: round(v/max_score, 2) for k,v in scores.items()}
# ✅ 分类函数改造
def classify_emoji_text(text: str):
prompt = f"输入:{text}\n输出:"
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
with torch.no_grad():
output_ids = emoji_model.generate(**input_ids, max_new_tokens=64, do_sample=False)
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
translated_text = decoded.split("输出:")[-1].strip() if "输出:" in decoded else decoded.strip()
result = classifier(translated_text)[0]
label = result["label"]
score = result["score"]
reasoning = f"The sentence was flagged as '{label}' due to potentially offensive phrases."
# 新增维度分析
category_scores = dynamic_scoring(translated_text, classifier)
st.session_state.history.append({
"text": text,
"translated": translated_text,
"label": label,
"score": score,
"reason": reasoning,
"scores": category_scores
})
return translated_text, label, score, reasoning, category_scores
# ✅ 可视化生成函数
def generate_radar_chart(scores_dict: dict):
radar_df = pd.DataFrame({
"Category": list(scores_dict.keys()),
"Score": list(scores_dict.values())
})
fig = px.line_polar(
radar_df,
r='Score',
theta='Category',
line_close=True,
color_discrete_sequence=['#FF6B6B'],
title="🛡️ Multi-Dimensional Offensive Analysis"
)
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, 1],
tickvals=[0, 0.3, 0.7, 1],
ticktext=["Safe", "Caution", "Risk", "Danger"]
)),
showlegend=False
)
return fig
# ✅ 页面配置(保持原有结构)
st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")
with st.sidebar:
st.header("🧠 Configuration")
selected_model = st.selectbox("Choose classification model", list(model_options.keys()))
selected_model_id = model_options[selected_model]
classifier = pipeline("text-classification", model=selected_model_id, device=0 if torch.cuda.is_available() else -1)
if "history" not in st.session_state:
st.session_state.history = []
# 主页面逻辑
st.title("🚨 Emoji Offensive Text Detector & Analysis Dashboard")
# 文本输入
st.subheader("1. 输入与分类")
default_text = "你是🐷"
text = st.text_area("Enter sentence with emojis:", value=default_text, height=150)
if st.button("🚦 Analyze Text"):
with st.spinner("🔍 Processing..."):
try:
translated, label, score, reason, category_scores = classify_emoji_text(text)
# 展示基础结果
st.markdown("**Translated sentence:**")
st.code(translated, language="text")
# 展示雷达图
st.plotly_chart(generate_radar_chart(category_scores))
# 图片上传与 OCR
st.markdown("---")
st.subheader("2. 图片 OCR & 分类")
uploaded_file = st.file_uploader("Upload an image (JPG/PNG)", type=["jpg","jpeg","png"])
if uploaded_file:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Screenshot", use_column_width=True)
with st.spinner("🧠 Extracting text via OCR..."):
ocr_text = pytesseract.image_to_string(image, lang="chi_sim+eng").strip()
if ocr_text:
st.markdown("**Extracted Text:**")
st.code(ocr_text)
translated, label, score, reason = classify_emoji_text(ocr_text)
st.markdown("**Translated sentence:**")
st.code(translated, language="text")
st.markdown(f"**Prediction:** {label}")
st.markdown(f"**Confidence Score:** {score:.2%}")
st.markdown("**Model Explanation:**")
st.info(reason)
else:
st.info("⚠️ No text detected in the image.")
# 分析仪表盘
st.markdown("---")
st.subheader("3. Violation Analysis Dashboard")
if st.session_state.history:
# 展示历史记录
df = pd.DataFrame(st.session_state.history)
st.markdown("### 🧾 Offensive Terms & Suggestions")
for item in st.session_state.history:
st.markdown(f"- 🔹 **Input:** {item['text']}")
st.markdown(f" - ✨ **Translated:** {item['translated']}")
st.markdown(f" - ❗ **Label:** {item['label']} with **{item['score']:.2%}** confidence")
st.markdown(f" - 🔧 **Suggestion:** {item['reason']}")
# 雷达图
radar_df = pd.DataFrame({
"Category": ["Insult","Abuse","Discrimination","Hate Speech","Vulgarity"],
"Score": [0.7,0.4,0.3,0.5,0.6]
})
radar_fig = px.line_polar(radar_df, r='Score', theta='Category', line_close=True, title="⚠️ Risk Radar by Category")
radar_fig.update_traces(line_color='black')
st.plotly_chart(radar_fig)
# —— 新增:单词级冒犯性相关性分析 —— #
st.markdown("### 🧬 Word-level Offensive Correlation")
# 取最近一次翻译文本,按空格拆分单词
last_translated_text = st.session_state.history[-1]["translated"]
words = last_translated_text.split()
# 对每个单词进行分类并收集分数
word_scores = []
for word in words:
try:
res = classifier(word)[0]
word_scores.append({
"Word": word,
"Label": res["label"],
"Score": res["score"]
})
except Exception:
continue
if word_scores:
word_df = pd.DataFrame(word_scores)
word_df = word_df.sort_values(by="Score", ascending=False).reset_index(drop=True)
max_display = 5
# Streamlit 1.22+ 支持 st.toggle,若版本不支持可改用 checkbox
show_more = st.toggle("Show more words", value=False)
display_df = word_df if show_more else word_df.head(max_display)
# 隐藏边框并渲染 HTML 表格
st.markdown(
display_df.to_html(index=False, border=0),
unsafe_allow_html=True
)
else:
st.info("❕ No word-level analysis available.")
else:
st.info("⚠️ No classification data available yet.") |