File size: 8,028 Bytes
bd9feeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a8b969
444b661
bd9feeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
826a9bc
bd9feeb
 
826a9bc
 
bd9feeb
 
 
 
 
 
a8b7aaa
bd9feeb
 
 
 
 
 
 
 
a8b7aaa
bd9feeb
 
 
 
826a9bc
bd9feeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
826a9bc
 
bd9feeb
 
 
 
 
 
826a9bc
bd9feeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
857cce7
bd9feeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
826a9bc
bd9feeb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
857cce7
bd9feeb
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import torch
import streamlit as st
from PIL import Image
import pytesseract
import pandas as pd
import plotly.express as px

# ✅ 新增维度定义
OFFENSIVE_CATEGORIES = {
    "Insult": ["蠢货", "白痴", "废物"],
    "Abuse": ["去死", "打死", "宰了你"],
    "Discrimination": ["女司机", "娘娘腔", "黑鬼"],
    "HateSpeech": ["灭族", "屠杀", "灭绝"],
    "Vulgarity": ["艹", "sb", "尼玛"]
}

# ✅ 模型初始化(保持原有结构)
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
emoji_model = AutoModelForCausalLM.from_pretrained(
    emoji_model_id,
    trust_remote_code=True,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to("cuda" if torch.cuda.is_available() else "cpu")
emoji_model.eval()

model_options = {
    "Toxic-BERT": "unitary/toxic-bert",
    "Roberta Offensive": "cardiffnlp/twitter-roberta-base-offensive",
    "BERT Emotion": "bhadresh-savani/bert-base-go-emotion"
}

# ✅ 动态评分算法
def dynamic_scoring(text: str, classifier):
    scores = {k: 0.0 for k in OFFENSIVE_CATEGORIES}
    
    for category, keywords in OFFENSIVE_CATEGORIES.items():
        for kw in keywords:
            if kw in text:
                scores[category] += 0.3
    
    words = text.split()
    for word in words:
        try:
            res = classifier(word)[0]
            if res["label"] in scores:
                scores[res["label"]] += res["score"] * 0.7
        except: pass
    
    max_score = max(scores.values()) or 1
    return {k: round(v/max_score, 2) for k,v in scores.items()}

# ✅ 分类函数改造
def classify_emoji_text(text: str):
    prompt = f"输入:{text}\n输出:"
    input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
    with torch.no_grad():
        output_ids = emoji_model.generate(**input_ids, max_new_tokens=64, do_sample=False)
    decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
    translated_text = decoded.split("输出:")[-1].strip() if "输出:" in decoded else decoded.strip()

    result = classifier(translated_text)[0]
    label = result["label"]
    score = result["score"]
    reasoning = f"The sentence was flagged as '{label}' due to potentially offensive phrases."
    
    # 新增维度分析
    category_scores = dynamic_scoring(translated_text, classifier)
    
    st.session_state.history.append({
        "text": text,
        "translated": translated_text,
        "label": label,
        "score": score,
        "reason": reasoning,
        "scores": category_scores
    })
    return translated_text, label, score, reasoning, category_scores

# ✅ 可视化生成函数
def generate_radar_chart(scores_dict: dict):
    radar_df = pd.DataFrame({
        "Category": list(scores_dict.keys()),
        "Score": list(scores_dict.values())
    })
    
    fig = px.line_polar(
        radar_df, 
        r='Score', 
        theta='Category',
        line_close=True,
        color_discrete_sequence=['#FF6B6B'],
        title="🛡️ Multi-Dimensional Offensive Analysis"
    )
    fig.update_layout(
        polar=dict(
            radialaxis=dict(
                visible=True,
                range=[0, 1],
                tickvals=[0, 0.3, 0.7, 1],
                ticktext=["Safe", "Caution", "Risk", "Danger"]
            )),
        showlegend=False
    )
    return fig

# ✅ 页面配置(保持原有结构)
st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")

with st.sidebar:
    st.header("🧠 Configuration")
    selected_model = st.selectbox("Choose classification model", list(model_options.keys()))
    selected_model_id = model_options[selected_model]
    classifier = pipeline("text-classification", model=selected_model_id, device=0 if torch.cuda.is_available() else -1)

if "history" not in st.session_state:
    st.session_state.history = []

# 主页面逻辑
st.title("🚨 Emoji Offensive Text Detector & Analysis Dashboard")

# 文本输入
st.subheader("1. 输入与分类")
default_text = "你是🐷"
text = st.text_area("Enter sentence with emojis:", value=default_text, height=150)

if st.button("🚦 Analyze Text"):
    with st.spinner("🔍 Processing..."):
        try:
            translated, label, score, reason, category_scores = classify_emoji_text(text)
            # 展示基础结果
            st.markdown("**Translated sentence:**")
            st.code(translated, language="text")
            # 展示雷达图
            st.plotly_chart(generate_radar_chart(category_scores))

# 图片上传与 OCR
st.markdown("---")
st.subheader("2. 图片 OCR & 分类")
uploaded_file = st.file_uploader("Upload an image (JPG/PNG)", type=["jpg","jpeg","png"])
if uploaded_file:
    image = Image.open(uploaded_file)
    st.image(image, caption="Uploaded Screenshot", use_column_width=True)
    with st.spinner("🧠 Extracting text via OCR..."):
        ocr_text = pytesseract.image_to_string(image, lang="chi_sim+eng").strip()
        if ocr_text:
            st.markdown("**Extracted Text:**")
            st.code(ocr_text)
            translated, label, score, reason = classify_emoji_text(ocr_text)
            st.markdown("**Translated sentence:**")
            st.code(translated, language="text")
            st.markdown(f"**Prediction:** {label}")
            st.markdown(f"**Confidence Score:** {score:.2%}")
            st.markdown("**Model Explanation:**")
            st.info(reason)
        else:
            st.info("⚠️ No text detected in the image.")

# 分析仪表盘
st.markdown("---")
st.subheader("3. Violation Analysis Dashboard")
if st.session_state.history:
    # 展示历史记录
    df = pd.DataFrame(st.session_state.history)
    st.markdown("### 🧾 Offensive Terms & Suggestions")
    for item in st.session_state.history:
        st.markdown(f"- 🔹 **Input:** {item['text']}")
        st.markdown(f"   - ✨ **Translated:** {item['translated']}")
        st.markdown(f"   - ❗ **Label:** {item['label']} with **{item['score']:.2%}** confidence")
        st.markdown(f"   - 🔧 **Suggestion:** {item['reason']}")

    # 雷达图
    radar_df = pd.DataFrame({
        "Category": ["Insult","Abuse","Discrimination","Hate Speech","Vulgarity"],
        "Score": [0.7,0.4,0.3,0.5,0.6]
    })
    radar_fig = px.line_polar(radar_df, r='Score', theta='Category', line_close=True, title="⚠️ Risk Radar by Category")
    radar_fig.update_traces(line_color='black')
    st.plotly_chart(radar_fig)

    # —— 新增:单词级冒犯性相关性分析 —— #
    st.markdown("### 🧬 Word-level Offensive Correlation")

    # 取最近一次翻译文本,按空格拆分单词
    last_translated_text = st.session_state.history[-1]["translated"]
    words = last_translated_text.split()

    # 对每个单词进行分类并收集分数
    word_scores = []
    for word in words:
        try:
            res = classifier(word)[0]
            word_scores.append({
                "Word": word,
                "Label": res["label"],
                "Score": res["score"]
            })
        except Exception:
            continue

    if word_scores:
        word_df = pd.DataFrame(word_scores)
        word_df = word_df.sort_values(by="Score", ascending=False).reset_index(drop=True)

        max_display = 5
        # Streamlit 1.22+ 支持 st.toggle,若版本不支持可改用 checkbox
        show_more = st.toggle("Show more words", value=False)

        display_df = word_df if show_more else word_df.head(max_display)
        # 隐藏边框并渲染 HTML 表格
        st.markdown(
            display_df.to_html(index=False, border=0),
            unsafe_allow_html=True
        )
    else:
        st.info("❕ No word-level analysis available.")
else:
    st.info("⚠️ No classification data available yet.")