Update app.py
Browse files
app.py
CHANGED
@@ -1,168 +1,124 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
# ✅ Step 1: Emoji 翻译模型(你自己训练的模型)
|
10 |
-
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
|
11 |
-
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
|
12 |
-
emoji_model = AutoModelForCausalLM.from_pretrained(
|
13 |
-
emoji_model_id,
|
14 |
-
trust_remote_code=True,
|
15 |
-
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
16 |
-
).to("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
-
emoji_model.eval()
|
18 |
-
|
19 |
-
# ✅ Step 2: 可选择的冒犯性文本识别模型
|
20 |
-
model_options = {
|
21 |
-
"Toxic-BERT": "unitary/toxic-bert",
|
22 |
-
"Roberta Offensive": "cardiffnlp/twitter-roberta-base-offensive",
|
23 |
-
"BERT Emotion": "bhadresh-savani/bert-base-go-emotion"
|
24 |
}
|
25 |
|
26 |
-
#
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
st.session_state.history.append({
|
58 |
-
"text": text,
|
59 |
-
"translated": translated_text,
|
60 |
-
"label": label,
|
61 |
-
"score": score,
|
62 |
-
"reason": reasoning
|
63 |
-
})
|
64 |
-
return translated_text, label, score, reasoning
|
65 |
-
|
66 |
-
# 主页面:输入与分析共存
|
67 |
-
st.title("🚨 Emoji Offensive Text Detector & Analysis Dashboard")
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
73 |
|
|
|
74 |
if st.button("🚦 Analyze Text"):
|
75 |
with st.spinner("🔍 Processing..."):
|
76 |
try:
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
st.
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
st.markdown("---")
|
89 |
-
st.subheader("2. 图片 OCR & 分类")
|
90 |
-
uploaded_file = st.file_uploader("Upload an image (JPG/PNG)", type=["jpg","jpeg","png"])
|
91 |
-
if uploaded_file:
|
92 |
-
image = Image.open(uploaded_file)
|
93 |
-
st.image(image, caption="Uploaded Screenshot", use_column_width=True)
|
94 |
-
with st.spinner("🧠 Extracting text via OCR..."):
|
95 |
-
ocr_text = pytesseract.image_to_string(image, lang="chi_sim+eng").strip()
|
96 |
-
if ocr_text:
|
97 |
-
st.markdown("**Extracted Text:**")
|
98 |
-
st.code(ocr_text)
|
99 |
-
translated, label, score, reason = classify_emoji_text(ocr_text)
|
100 |
-
st.markdown("**Translated sentence:**")
|
101 |
-
st.code(translated, language="text")
|
102 |
-
st.markdown(f"**Prediction:** {label}")
|
103 |
-
st.markdown(f"**Confidence Score:** {score:.2%}")
|
104 |
-
st.markdown("**Model Explanation:**")
|
105 |
-
st.info(reason)
|
106 |
-
else:
|
107 |
-
st.info("⚠️ No text detected in the image.")
|
108 |
-
|
109 |
-
# 分析仪表盘
|
110 |
-
st.markdown("---")
|
111 |
-
st.subheader("3. Violation Analysis Dashboard")
|
112 |
-
if st.session_state.history:
|
113 |
-
# 展示历史记录
|
114 |
-
df = pd.DataFrame(st.session_state.history)
|
115 |
-
st.markdown("### 🧾 Offensive Terms & Suggestions")
|
116 |
-
for item in st.session_state.history:
|
117 |
-
st.markdown(f"- 🔹 **Input:** {item['text']}")
|
118 |
-
st.markdown(f" - ✨ **Translated:** {item['translated']}")
|
119 |
-
st.markdown(f" - ❗ **Label:** {item['label']} with **{item['score']:.2%}** confidence")
|
120 |
-
st.markdown(f" - 🔧 **Suggestion:** {item['reason']}")
|
121 |
-
|
122 |
-
# 雷达图
|
123 |
-
radar_df = pd.DataFrame({
|
124 |
-
"Category": ["Insult","Abuse","Discrimination","Hate Speech","Vulgarity"],
|
125 |
-
"Score": [0.7,0.4,0.3,0.5,0.6]
|
126 |
-
})
|
127 |
-
radar_fig = px.line_polar(radar_df, r='Score', theta='Category', line_close=True, title="⚠️ Risk Radar by Category")
|
128 |
-
radar_fig.update_traces(line_color='black')
|
129 |
-
st.plotly_chart(radar_fig)
|
130 |
-
|
131 |
-
# —— 新增:单词级冒犯性相关性分析 —— #
|
132 |
-
st.markdown("### 🧬 Word-level Offensive Correlation")
|
133 |
-
|
134 |
-
# 取最近一次翻译文本,按空格拆分单词
|
135 |
-
last_translated_text = st.session_state.history[-1]["translated"]
|
136 |
-
words = last_translated_text.split()
|
137 |
-
|
138 |
-
# 对每个单词进行分类并收集分数
|
139 |
-
word_scores = []
|
140 |
-
for word in words:
|
141 |
-
try:
|
142 |
-
res = classifier(word)[0]
|
143 |
-
word_scores.append({
|
144 |
-
"Word": word,
|
145 |
-
"Label": res["label"],
|
146 |
-
"Score": res["score"]
|
147 |
})
|
148 |
-
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
151 |
-
|
152 |
-
|
153 |
-
word_df = word_df.sort_values(by="Score", ascending=False).reset_index(drop=True)
|
154 |
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
else:
|
166 |
-
st.info("
|
167 |
-
else:
|
168 |
-
st.info("⚠️ No classification data available yet.")
|
|
|
1 |
+
# 新增:预定义冒犯性类别映射(根据雷达图需求)
|
2 |
+
OFFENSE_CATEGORIES = {
|
3 |
+
"Insult": ["侮辱", "贬低", "讽刺"],
|
4 |
+
"Abuse": ["辱骂", "攻击性语言", "脏话"],
|
5 |
+
"Discrimination": ["歧视性言论", "种族歧视", "性别歧视"],
|
6 |
+
"Hate Speech": ["仇恨言论", "暴力煽动"],
|
7 |
+
"Vulgarity": ["低俗用语", "色情暗示"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
}
|
9 |
|
10 |
+
# 修改分类函数以支持多维度分析
|
11 |
+
def classify_text_with_categories(text: str):
|
12 |
+
results = classifier(text)
|
13 |
+
category_scores = {category: 0 for category in OFFENSE_CATEGORIES}
|
14 |
+
|
15 |
+
# 多维度评分
|
16 |
+
for res in results:
|
17 |
+
label = res["label"]
|
18 |
+
score = res["score"]
|
19 |
+
for cat, keywords in OFFENSE_CATEGORIES.items():
|
20 |
+
if any(kw in label.lower() for kw in keywords):
|
21 |
+
category_scores[cat] += score
|
22 |
+
|
23 |
+
# 单词级分析
|
24 |
+
word_analysis = []
|
25 |
+
for word in text.split():
|
26 |
+
try:
|
27 |
+
res = classifier(word)[0]
|
28 |
+
word_analysis.append({
|
29 |
+
"word": word,
|
30 |
+
"main_label": res["label"],
|
31 |
+
"main_score": res["score"],
|
32 |
+
"offense_category": next(
|
33 |
+
(cat for cat, keywords in OFFENSE_CATEGORIES.items()
|
34 |
+
if any(kw in res["label"].lower() for kw in keywords)),
|
35 |
+
"Other"
|
36 |
+
)
|
37 |
+
})
|
38 |
+
except:
|
39 |
+
continue
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
return {
|
42 |
+
"translations": text,
|
43 |
+
"overall": results[0],
|
44 |
+
"categories": category_scores,
|
45 |
+
"word_analysis": word_analysis
|
46 |
+
}
|
47 |
|
48 |
+
# 优化后的分类处理
|
49 |
if st.button("🚦 Analyze Text"):
|
50 |
with st.spinner("🔍 Processing..."):
|
51 |
try:
|
52 |
+
# 处理文本输入
|
53 |
+
text_input = text if text else ocr_text
|
54 |
+
analysis = classify_text_with_categories(text_input)
|
55 |
+
|
56 |
+
# 更新历史记录
|
57 |
+
st.session_state.history.append({
|
58 |
+
"original": text_input,
|
59 |
+
"translated": analysis["translations"],
|
60 |
+
"overall": analysis["overall"],
|
61 |
+
"categories": analysis["categories"],
|
62 |
+
"word_analysis": analysis["word_analysis"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
})
|
64 |
+
|
65 |
+
# 展示核心结果
|
66 |
+
st.markdown("**Main Prediction:**")
|
67 |
+
st.metric("Label", analysis["overall"]["label"],
|
68 |
+
delta=f"{analysis['overall']['score']:.2%} Confidence")
|
69 |
+
|
70 |
+
# 新增:类别分布展示
|
71 |
+
st.markdown("### 📊 Offense Category Breakdown")
|
72 |
+
category_data = [{"Category": k, "Score": v} for k, v in analysis["categories"].items()]
|
73 |
+
fig = px.bar(category_data, x="Category", y="Score",
|
74 |
+
title="Category Contribution",
|
75 |
+
labels={"Score": "Probability"})
|
76 |
+
st.plotly_chart(fig)
|
77 |
|
78 |
+
except Exception as e:
|
79 |
+
st.error(f"❌ Error: {str(e)}")
|
|
|
80 |
|
81 |
+
# 优化后的雷达图生成
|
82 |
+
if st.session_state.history:
|
83 |
+
# 聚合所有历史记录的类别数据
|
84 |
+
radar_data = {cat: [] for cat in OFFENSE_CATEGORIES}
|
85 |
+
for entry in st.session_state.history:
|
86 |
+
for cat, score in entry["categories"].items():
|
87 |
+
radar_data[cat].append(score)
|
88 |
+
|
89 |
+
# 计算平均得分
|
90 |
+
avg_scores = {cat: sum(scores)/len(scores) if scores else 0
|
91 |
+
for cat, scores in radar_data.items()}
|
92 |
+
|
93 |
+
# 构建雷达图
|
94 |
+
fig = px.line_polar(
|
95 |
+
pd.DataFrame(avg_scores, index=OFFENSE_CATEGORIES).reset_index(),
|
96 |
+
r='index', theta='OFFENSE_CATEGORIES',
|
97 |
+
line_close=True, title="📉 Offense Risk Radar Chart"
|
98 |
+
)
|
99 |
+
fig.update_traces(line_color='#FF4B4B')
|
100 |
+
st.plotly_chart(fig)
|
101 |
|
102 |
+
# 优化后的单词级分析
|
103 |
+
if st.session_state.history:
|
104 |
+
# 聚合单词级数据
|
105 |
+
all_words = []
|
106 |
+
for entry in st.session_state.history:
|
107 |
+
all_words.extend(entry["word_analysis"])
|
108 |
+
|
109 |
+
# 生成词云数据
|
110 |
+
word_counts = pd.DataFrame(all_words).groupby('word').agg({
|
111 |
+
'main_score': 'mean',
|
112 |
+
'offense_category': lambda x: x.mode()[0]
|
113 |
+
}).reset_index().sort_values('main_score', ascending=False)
|
114 |
+
|
115 |
+
# 交互式词云展示
|
116 |
+
st.markdown("### 🧩 Offensive Word Analysis")
|
117 |
+
if not word_counts.empty:
|
118 |
+
top_words = word_counts.head(10)
|
119 |
+
fig = px.bar(top_words, x="word", y="main_score",
|
120 |
+
color="offense_category",
|
121 |
+
title="Top Offensive Words by Score")
|
122 |
+
st.plotly_chart(fig)
|
123 |
else:
|
124 |
+
st.info("No offensive words detected")
|
|
|
|