Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
2 |
import torch
|
|
|
3 |
|
4 |
# ✅ Step 1: Emoji 翻译模型(你自己训练的模型)
|
5 |
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
|
@@ -7,33 +8,66 @@ emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_cod
|
|
7 |
emoji_model = AutoModelForCausalLM.from_pretrained(
|
8 |
emoji_model_id,
|
9 |
trust_remote_code=True,
|
10 |
-
torch_dtype=torch.float16
|
11 |
).to("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
emoji_model.eval()
|
13 |
|
14 |
-
# ✅ Step 2:
|
15 |
-
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
|
|
|
|
|
|
29 |
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
|
30 |
with torch.no_grad():
|
31 |
-
output_ids = emoji_model.generate(**input_ids, max_new_tokens=
|
32 |
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
33 |
-
translated_text = decoded.
|
34 |
|
35 |
result = classifier(translated_text)[0]
|
36 |
label = result["label"]
|
37 |
score = result["score"]
|
38 |
|
39 |
-
return translated_text, label, score
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
2 |
import torch
|
3 |
+
import streamlit as st
|
4 |
|
5 |
# ✅ Step 1: Emoji 翻译模型(你自己训练的模型)
|
6 |
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
|
|
|
8 |
emoji_model = AutoModelForCausalLM.from_pretrained(
|
9 |
emoji_model_id,
|
10 |
trust_remote_code=True,
|
11 |
+
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
12 |
).to("cuda" if torch.cuda.is_available() else "cpu")
|
13 |
emoji_model.eval()
|
14 |
|
15 |
+
# ✅ Step 2: 可选择的冒犯性文本识别模型
|
16 |
+
model_options = {
|
17 |
+
"Toxic-BERT": "unitary/toxic-bert",
|
18 |
+
"Roberta Offensive": "cardiffnlp/twitter-roberta-base-offensive",
|
19 |
+
"BERT Emotion": "bhadresh-savani/bert-base-go-emotion"
|
20 |
+
}
|
21 |
|
22 |
+
# ✅ 页面配置
|
23 |
+
st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")
|
24 |
+
|
25 |
+
# ✅ 页面标题
|
26 |
+
st.title("🧠 Emoji-based Offensive Language Classifier")
|
27 |
+
|
28 |
+
st.markdown("""
|
29 |
+
This application translates emojis in a sentence and classifies whether the final sentence is offensive or not using two AI models.
|
30 |
+
- The **first model** translates emoji or symbolic phrases into standard Chinese text.
|
31 |
+
- The **second model** performs offensive language detection.
|
32 |
+
""")
|
33 |
+
|
34 |
+
# Streamlit 侧边栏模型选择
|
35 |
+
selected_model = st.sidebar.selectbox("Choose classification model", list(model_options.keys()))
|
36 |
+
selected_model_id = model_options[selected_model]
|
37 |
+
classifier = pipeline("text-classification", model=selected_model_id, device=0 if torch.cuda.is_available() else -1)
|
38 |
+
|
39 |
+
# ✅ 输入区域
|
40 |
+
st.markdown("### ✍️ Input your sentence:")
|
41 |
+
default_text = "你是🐷"
|
42 |
+
text = st.text_area("Enter sentence with emojis:", value=default_text, height=150)
|
43 |
|
44 |
+
# ✅ 主逻辑封装函数
|
45 |
+
def classify_emoji_text(text: str):
|
46 |
+
prompt = f"输入:{text}\n输出:"
|
47 |
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
|
48 |
with torch.no_grad():
|
49 |
+
output_ids = emoji_model.generate(**input_ids, max_new_tokens=64, do_sample=False)
|
50 |
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
51 |
+
translated_text = decoded.split("输出:")[-1].strip() if "输出:" in decoded else decoded.strip()
|
52 |
|
53 |
result = classifier(translated_text)[0]
|
54 |
label = result["label"]
|
55 |
score = result["score"]
|
56 |
|
57 |
+
return translated_text, label, score
|
58 |
+
|
59 |
+
# ✅ 触发按钮
|
60 |
+
if st.button("🚦 Analyze"):
|
61 |
+
with st.spinner("🔍 Processing..."):
|
62 |
+
try:
|
63 |
+
translated, label, score = classify_emoji_text(text)
|
64 |
+
st.markdown("### 🔄 Translated sentence:")
|
65 |
+
st.code(translated, language="text")
|
66 |
+
|
67 |
+
st.markdown(f"### 🎯 Prediction: `{label}`")
|
68 |
+
st.markdown(f"### 📊 Confidence Score: `{score:.2%}`")
|
69 |
+
|
70 |
+
except Exception as e:
|
71 |
+
st.error(f"❌ An error occurred during processing:\n\n{e}")
|
72 |
+
else:
|
73 |
+
st.info("👈 Please input text and click the button to classify.")
|