aeresd commited on
Commit
bd9feeb
·
verified ·
1 Parent(s): 826a9bc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +205 -110
app.py CHANGED
@@ -1,124 +1,219 @@
1
- # 新增:预定义冒犯性类别映射(根据雷达图需求)
2
- OFFENSE_CATEGORIES = {
3
- "Insult": ["侮辱", "贬低", "讽刺"],
4
- "Abuse": ["辱骂", "攻击性语言", "脏话"],
5
- "Discrimination": ["歧视性言论", "种族歧视", "性别歧视"],
6
- "Hate Speech": ["仇恨言论", "暴力煽动"],
7
- "Vulgarity": ["低俗用语", "色情暗示"]
 
 
 
 
 
 
 
 
8
  }
9
 
10
- # 修改分类函数以支持多维度分析
11
- def classify_text_with_categories(text: str):
12
- results = classifier(text)
13
- category_scores = {category: 0 for category in OFFENSE_CATEGORIES}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
 
15
- # 多维度评分
16
- for res in results:
17
- label = res["label"]
18
- score = res["score"]
19
- for cat, keywords in OFFENSE_CATEGORIES.items():
20
- if any(kw in label.lower() for kw in keywords):
21
- category_scores[cat] += score
22
-
23
- # 单词级分析
24
- word_analysis = []
25
- for word in text.split():
26
  try:
27
  res = classifier(word)[0]
28
- word_analysis.append({
29
- "word": word,
30
- "main_label": res["label"],
31
- "main_score": res["score"],
32
- "offense_category": next(
33
- (cat for cat, keywords in OFFENSE_CATEGORIES.items()
34
- if any(kw in res["label"].lower() for kw in keywords)),
35
- "Other"
36
- )
37
- })
38
- except:
39
- continue
40
 
41
- return {
42
- "translations": text,
43
- "overall": results[0],
44
- "categories": category_scores,
45
- "word_analysis": word_analysis
46
- }
 
 
47
 
48
- # 优化后的分类处理
49
- if st.button("🚦 Analyze Text"):
50
- with st.spinner("🔍 Processing..."):
51
- try:
52
- # 处理文本输入
53
- text_input = text if text else ocr_text
54
- analysis = classify_text_with_categories(text_input)
55
-
56
- # 更新历史记录
57
- st.session_state.history.append({
58
- "original": text_input,
59
- "translated": analysis["translations"],
60
- "overall": analysis["overall"],
61
- "categories": analysis["categories"],
62
- "word_analysis": analysis["word_analysis"]
63
- })
64
-
65
- # 展示核心结果
66
- st.markdown("**Main Prediction:**")
67
- st.metric("Label", analysis["overall"]["label"],
68
- delta=f"{analysis['overall']['score']:.2%} Confidence")
69
-
70
- # 新增:类别分布展示
71
- st.markdown("### 📊 Offense Category Breakdown")
72
- category_data = [{"Category": k, "Score": v} for k, v in analysis["categories"].items()]
73
- fig = px.bar(category_data, x="Category", y="Score",
74
- title="Category Contribution",
75
- labels={"Score": "Probability"})
76
- st.plotly_chart(fig)
77
-
78
- except Exception as e:
79
- st.error(f"❌ Error: {str(e)}")
80
-
81
- # 优化后的雷达图生成
82
- if st.session_state.history:
83
- # 聚合所有历史记录的类别数据
84
- radar_data = {cat: [] for cat in OFFENSE_CATEGORIES}
85
- for entry in st.session_state.history:
86
- for cat, score in entry["categories"].items():
87
- radar_data[cat].append(score)
88
 
89
- # 计算平均得分
90
- avg_scores = {cat: sum(scores)/len(scores) if scores else 0
91
- for cat, scores in radar_data.items()}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
92
 
93
- # 构建雷达图
94
  fig = px.line_polar(
95
- pd.DataFrame(avg_scores, index=OFFENSE_CATEGORIES).reset_index(),
96
- r='index', theta='OFFENSE_CATEGORIES',
97
- line_close=True, title="📉 Offense Risk Radar Chart"
 
 
 
98
  )
99
- fig.update_traces(line_color='#FF4B4B')
100
- st.plotly_chart(fig)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
101
 
102
- # 优化后的单词级分析
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
  if st.session_state.history:
104
- # 聚合单词级数据
105
- all_words = []
106
- for entry in st.session_state.history:
107
- all_words.extend(entry["word_analysis"])
108
-
109
- # 生成词云数据
110
- word_counts = pd.DataFrame(all_words).groupby('word').agg({
111
- 'main_score': 'mean',
112
- 'offense_category': lambda x: x.mode()[0]
113
- }).reset_index().sort_values('main_score', ascending=False)
114
-
115
- # 交互式词云展示
116
- st.markdown("### 🧩 Offensive Word Analysis")
117
- if not word_counts.empty:
118
- top_words = word_counts.head(10)
119
- fig = px.bar(top_words, x="word", y="main_score",
120
- color="offense_category",
121
- title="Top Offensive Words by Score")
122
- st.plotly_chart(fig)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123
  else:
124
- st.info("No offensive words detected")
 
 
 
1
+ from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
2
+ import torch
3
+ import streamlit as st
4
+ from PIL import Image
5
+ import pytesseract
6
+ import pandas as pd
7
+ import plotly.express as px
8
+
9
+ # ✅ 新增维度定义
10
+ OFFENSIVE_CATEGORIES = {
11
+ "Insult": ["蠢货", "白痴", "废物"],
12
+ "Abuse": ["去死", "打死", "宰了你"],
13
+ "Discrimination": ["女司机", "娘娘腔", "黑鬼"],
14
+ "HateSpeech": ["灭族", "屠杀", "灭绝"],
15
+ "Vulgarity": ["艹", "sb", "尼玛"]
16
  }
17
 
18
+ # ✅ 模型初始化(保持原有结构)
19
+ emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
20
+ emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
21
+ emoji_model = AutoModelForCausalLM.from_pretrained(
22
+ emoji_model_id,
23
+ trust_remote_code=True,
24
+ torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
25
+ ).to("cuda" if torch.cuda.is_available() else "cpu")
26
+ emoji_model.eval()
27
+
28
+ model_options = {
29
+ "Toxic-BERT": "unitary/toxic-bert",
30
+ "Roberta Offensive": "cardiffnlp/twitter-roberta-base-offensive",
31
+ "BERT Emotion": "bhadresh-savani/bert-base-go-emotion"
32
+ }
33
+
34
+ # ✅ 动态评分算法
35
+ def dynamic_scoring(text: str, classifier):
36
+ scores = {k: 0.0 for k in OFFENSIVE_CATEGORIES}
37
+
38
+ for category, keywords in OFFENSIVE_CATEGORIES.items():
39
+ for kw in keywords:
40
+ if kw in text:
41
+ scores[category] += 0.3
42
 
43
+ words = text.split()
44
+ for word in words:
 
 
 
 
 
 
 
 
 
45
  try:
46
  res = classifier(word)[0]
47
+ if res["label"] in scores:
48
+ scores[res["label"]] += res["score"] * 0.7
49
+ except: pass
50
+
51
+ max_score = max(scores.values()) or 1
52
+ return {k: round(v/max_score, 2) for k,v in scores.items()}
 
 
 
 
 
 
53
 
54
+ # ✅ 分类函数改造
55
+ def classify_emoji_text(text: str):
56
+ prompt = f"输入:{text}\n输出:"
57
+ input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
58
+ with torch.no_grad():
59
+ output_ids = emoji_model.generate(**input_ids, max_new_tokens=64, do_sample=False)
60
+ decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
61
+ translated_text = decoded.split("输出:")[-1].strip() if "输出:" in decoded else decoded.strip()
62
 
63
+ result = classifier(translated_text)[0]
64
+ label = result["label"]
65
+ score = result["score"]
66
+ reasoning = f"The sentence was flagged as '{label}' due to potentially offensive phrases."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67
 
68
+ # 新增维度分析
69
+ category_scores = dynamic_scoring(translated_text, classifier)
70
+
71
+ st.session_state.history.append({
72
+ "text": text,
73
+ "translated": translated_text,
74
+ "label": label,
75
+ "score": score,
76
+ "reason": reasoning,
77
+ "scores": category_scores
78
+ })
79
+ return translated_text, label, score, reasoning, category_scores
80
+
81
+ # ✅ 可视化生成函数
82
+ def generate_radar_chart(scores_dict: dict):
83
+ radar_df = pd.DataFrame({
84
+ "Category": list(scores_dict.keys()),
85
+ "Score": list(scores_dict.values())
86
+ })
87
 
 
88
  fig = px.line_polar(
89
+ radar_df,
90
+ r='Score',
91
+ theta='Category',
92
+ line_close=True,
93
+ color_discrete_sequence=['#FF6B6B'],
94
+ title="🛡️ Multi-Dimensional Offensive Analysis"
95
  )
96
+ fig.update_layout(
97
+ polar=dict(
98
+ radialaxis=dict(
99
+ visible=True,
100
+ range=[0, 1],
101
+ tickvals=[0, 0.3, 0.7, 1],
102
+ ticktext=["Safe", "Caution", "Risk", "Danger"]
103
+ )),
104
+ showlegend=False
105
+ )
106
+ return fig
107
+
108
+ # ✅ 页面配置(保持原有结构)
109
+ st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")
110
+
111
+ with st.sidebar:
112
+ st.header("🧠 Configuration")
113
+ selected_model = st.selectbox("Choose classification model", list(model_options.keys()))
114
+ selected_model_id = model_options[selected_model]
115
+ classifier = pipeline("text-classification", model=selected_model_id, device=0 if torch.cuda.is_available() else -1)
116
+
117
+ if "history" not in st.session_state:
118
+ st.session_state.history = []
119
+
120
+ # 主页面逻辑
121
+ st.title("🚨 Emoji Offensive Text Detector & Analysis Dashboard")
122
 
123
+ # 文本输入
124
+ st.subheader("1. 输入与分类")
125
+ default_text = "你是🐷"
126
+ text = st.text_area("Enter sentence with emojis:", value=default_text, height=150)
127
+
128
+ if st.button("🚦 Analyze Text"):
129
+ with st.spinner("🔍 Processing..."):
130
+ try:
131
+ translated, label, score, reason, category_scores = classify_emoji_text(text)
132
+ # 展示基础结果
133
+ st.markdown("**Translated sentence:**")
134
+ st.code(translated, language="text")
135
+ # 展示雷达图
136
+ st.plotly_chart(generate_radar_chart(category_scores))
137
+
138
+ # 图片上传与 OCR
139
+ st.markdown("---")
140
+ st.subheader("2. 图片 OCR & 分类")
141
+ uploaded_file = st.file_uploader("Upload an image (JPG/PNG)", type=["jpg","jpeg","png"])
142
+ if uploaded_file:
143
+ image = Image.open(uploaded_file)
144
+ st.image(image, caption="Uploaded Screenshot", use_column_width=True)
145
+ with st.spinner("🧠 Extracting text via OCR..."):
146
+ ocr_text = pytesseract.image_to_string(image, lang="chi_sim+eng").strip()
147
+ if ocr_text:
148
+ st.markdown("**Extracted Text:**")
149
+ st.code(ocr_text)
150
+ translated, label, score, reason = classify_emoji_text(ocr_text)
151
+ st.markdown("**Translated sentence:**")
152
+ st.code(translated, language="text")
153
+ st.markdown(f"**Prediction:** {label}")
154
+ st.markdown(f"**Confidence Score:** {score:.2%}")
155
+ st.markdown("**Model Explanation:**")
156
+ st.info(reason)
157
+ else:
158
+ st.info("⚠️ No text detected in the image.")
159
+
160
+ # 分析仪表盘
161
+ st.markdown("---")
162
+ st.subheader("3. Violation Analysis Dashboard")
163
  if st.session_state.history:
164
+ # 展示历史记录
165
+ df = pd.DataFrame(st.session_state.history)
166
+ st.markdown("### 🧾 Offensive Terms & Suggestions")
167
+ for item in st.session_state.history:
168
+ st.markdown(f"- 🔹 **Input:** {item['text']}")
169
+ st.markdown(f" - ✨ **Translated:** {item['translated']}")
170
+ st.markdown(f" - **Label:** {item['label']} with **{item['score']:.2%}** confidence")
171
+ st.markdown(f" - 🔧 **Suggestion:** {item['reason']}")
172
+
173
+ # 雷达图
174
+ radar_df = pd.DataFrame({
175
+ "Category": ["Insult","Abuse","Discrimination","Hate Speech","Vulgarity"],
176
+ "Score": [0.7,0.4,0.3,0.5,0.6]
177
+ })
178
+ radar_fig = px.line_polar(radar_df, r='Score', theta='Category', line_close=True, title="⚠️ Risk Radar by Category")
179
+ radar_fig.update_traces(line_color='black')
180
+ st.plotly_chart(radar_fig)
181
+
182
+ # —— 新增:单词级冒犯性相关性分析 —— #
183
+ st.markdown("### 🧬 Word-level Offensive Correlation")
184
+
185
+ # 取最近一次翻译文本,按空格拆分单词
186
+ last_translated_text = st.session_state.history[-1]["translated"]
187
+ words = last_translated_text.split()
188
+
189
+ # 对每个单词进行分类并收集分数
190
+ word_scores = []
191
+ for word in words:
192
+ try:
193
+ res = classifier(word)[0]
194
+ word_scores.append({
195
+ "Word": word,
196
+ "Label": res["label"],
197
+ "Score": res["score"]
198
+ })
199
+ except Exception:
200
+ continue
201
+
202
+ if word_scores:
203
+ word_df = pd.DataFrame(word_scores)
204
+ word_df = word_df.sort_values(by="Score", ascending=False).reset_index(drop=True)
205
+
206
+ max_display = 5
207
+ # Streamlit 1.22+ 支持 st.toggle,若版本不支持可改用 checkbox
208
+ show_more = st.toggle("Show more words", value=False)
209
+
210
+ display_df = word_df if show_more else word_df.head(max_display)
211
+ # 隐藏边框并渲染 HTML 表格
212
+ st.markdown(
213
+ display_df.to_html(index=False, border=0),
214
+ unsafe_allow_html=True
215
+ )
216
  else:
217
+ st.info("No word-level analysis available.")
218
+ else:
219
+ st.info("⚠️ No classification data available yet.")