File size: 5,935 Bytes
5464ca6
 
5a8b969
98b3199
 
 
 
444b661
5464ca6
 
 
 
 
 
5a8b969
5464ca6
 
444b661
5a8b969
 
 
 
 
 
444b661
5a8b969
 
 
98b3199
 
 
6e7a57d
 
 
98b3199
6e7a57d
 
 
 
 
5a8b969
98b3199
 
 
5a8b969
98b3199
5a8b969
 
5464ca6
 
6e7a57d
 
 
 
 
 
 
 
 
 
 
444b661
5464ca6
 
 
cd7f587
 
 
 
98b3199
cd7f587
 
 
 
 
 
 
98b3199
 
 
 
 
 
 
 
 
 
6e7a57d
 
 
98b3199
 
 
 
 
 
 
 
 
cd7f587
98b3199
 
 
444b661
98b3199
6e7a57d
 
 
98b3199
 
 
 
 
6e7a57d
 
 
98b3199
 
 
5a8b969
98b3199
 
 
 
 
 
 
 
6e7a57d
 
 
 
5a8b969
6e7a57d
98b3199
 
 
 
0cb6b17
 
 
 
 
 
8e630b7
0cb6b17
 
8e630b7
 
c9f404a
 
8e630b7
 
 
c9f404a
 
 
 
 
8e630b7
 
 
c9f404a
 
 
 
8e630b7
 
 
 
 
98b3199
5a8b969
a77ff54
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import torch
import streamlit as st
from PIL import Image
import pytesseract
import pandas as pd
import plotly.express as px

# ✅ Step 1: Emoji 翻译模型(你自己训练的模型)
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
emoji_model = AutoModelForCausalLM.from_pretrained(
    emoji_model_id,
    trust_remote_code=True,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to("cuda" if torch.cuda.is_available() else "cpu")
emoji_model.eval()

# ✅ Step 2: 可选择的冒犯性文本识别模型
model_options = {
    "Toxic-BERT": "unitary/toxic-bert",
    "Roberta Offensive": "cardiffnlp/twitter-roberta-base-offensive",
    "BERT Emotion": "bhadresh-savani/bert-base-go-emotion"
}

# ✅ 页面配置
st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")

# ✅ 侧边栏: 选择模型
with st.sidebar:
    st.header("🧠 Settings")
    selected_model = st.selectbox(
        "Choose classification model", list(model_options.keys())
    )
    selected_model_id = model_options[selected_model]
    classifier = pipeline(
        "text-classification",
        model=selected_model_id,
        device=0 if torch.cuda.is_available() else -1
    )

# 初始化历史记录
if "history" not in st.session_state:
    st.session_state.history = []

# 核心函数: 翻译并分类
def classify_emoji_text(text: str):
    prompt = f"输入:{text}\n输出:"
    input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
    with torch.no_grad():
        output_ids = emoji_model.generate(
            **input_ids, max_new_tokens=64, do_sample=False
        )
    decoded = emoji_tokenizer.decode(
        output_ids[0], skip_special_tokens=True
    )
    translated_text = (
        decoded.split("输出:")[-1].strip()
        if "输出:" in decoded
        else decoded.strip()
    )

    result = classifier(translated_text)[0]
    label = result["label"]
    score = result["score"]
    reasoning = (
        f"The sentence was flagged as '{label}' due to potentially offensive phrases. "
        "Consider replacing emotionally charged, ambiguous, or abusive terms."
    )

    st.session_state.history.append({
        "text": text,
        "translated": translated_text,
        "label": label,
        "score": score,
        "reason": reasoning
    })
    return translated_text, label, score, reasoning

# 页面主体
st.title("🚨 Emoji Offensive Text Detector & Analysis")

# 输入区域
st.markdown("### ✍️ Input your sentence or upload screenshot:")
col1, col2 = st.columns(2)
with col1:
    default_text = "你是🐷"
    text = st.text_area(
        "Enter sentence with emojis:", value=default_text, height=150
    )
    if st.button("🚦 Analyze Text"):
        with st.spinner("🔍 Processing..."):
            try:
                translated, label, score, reason = classify_emoji_text(text)
                st.markdown("#### 🔄 Translated sentence:")
                st.code(translated, language="text")

                st.markdown(f"#### 🎯 Prediction: {label}")
                st.markdown(f"#### 📊 Confidence Score: {score:.2%}")
                st.markdown("#### 🧠 Model Explanation:")
                st.info(reason)
            except Exception as e:
                st.error(f"❌ An error occurred during processing:\n\n{e}")

with col2:
    uploaded_file = st.file_uploader(
        "Upload an image (JPG/PNG)", type=["jpg", "jpeg", "png"]
    )
    if uploaded_file is not None:
        image = Image.open(uploaded_file)
        st.image(image, caption="Uploaded Screenshot", use_column_width=True)
        if st.button("🛠️ OCR & Analyze Image"):
            with st.spinner("🧠 Extracting text via OCR..."):
                ocr_text = pytesseract.image_to_string(
                    image, lang="chi_sim+eng"
                ).strip()
                st.markdown("#### 📋 Extracted Text:")
                st.code(ocr_text)
                classify_emoji_text(ocr_text)

# 分析仪表盘
st.markdown("---")
st.title("📊 Violation Analysis Dashboard")
if st.session_state.history:
    st.markdown("### 🧾 Offensive Terms & Suggestions")
    for item in st.session_state.history:
        st.markdown(f"- 🔹 **Input:** {item['text']}")
        st.markdown(f"   - ✨ **Translated:** {item['translated']}")
        st.markdown(
            f"   - ❗ **Label:** {item['label']} with **{item['score']:.2%}** confidence"
        )
        st.markdown(f"   - 🔧 **Suggestion:** {item['reason']}  ")

    # 雷达图
    radar_df = pd.DataFrame({
        "Category": ["Insult", "Abuse", "Discrimination", "Hate Speech", "Vulgarity"],
        "Score": [0.7, 0.4, 0.3, 0.5, 0.6]
    })
    radar_fig = px.line_polar(
        radar_df,
        r='Score',
        theta='Category',
        line_close=True,
        title="⚠️ Risk Radar by Category",
        color_discrete_sequence=['black'],
        template='simple_white'
    )
    radar_fig.update_layout(
        polar=dict(
            gridshape='circular',
            bgcolor='white',
            radialaxis=dict(
                showticklabels=False,
                ticks='',
                showgrid=True,
                gridcolor='lightgrey',
                gridwidth=1,
                linecolor='black',
                linewidth=2
            ),
            angularaxis=dict(
                showticklabels=False,
                ticks='',
                showline=True,
                linecolor='black',
                linewidth=2
            )
        ),
        paper_bgcolor='white',
        plot_bgcolor='white'
    )
    st.plotly_chart(radar_fig)
else:
    st.info("⚠️ No classification data available yet.")