Update app.py
Browse files
app.py
CHANGED
@@ -29,10 +29,15 @@ st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨",
|
|
29 |
# ✅ 侧边栏: 选择模型
|
30 |
with st.sidebar:
|
31 |
st.header("🧠 Settings")
|
32 |
-
selected_model = st.selectbox(
|
|
|
|
|
33 |
selected_model_id = model_options[selected_model]
|
34 |
-
classifier = pipeline(
|
35 |
-
|
|
|
|
|
|
|
36 |
|
37 |
# 初始化历史记录
|
38 |
if "history" not in st.session_state:
|
@@ -43,9 +48,17 @@ def classify_emoji_text(text: str):
|
|
43 |
prompt = f"输入:{text}\n输出:"
|
44 |
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
|
45 |
with torch.no_grad():
|
46 |
-
output_ids = emoji_model.generate(
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
result = classifier(translated_text)[0]
|
51 |
label = result["label"]
|
@@ -72,7 +85,9 @@ st.markdown("### ✍️ Input your sentence or upload screenshot:")
|
|
72 |
col1, col2 = st.columns(2)
|
73 |
with col1:
|
74 |
default_text = "你是🐷"
|
75 |
-
text = st.text_area(
|
|
|
|
|
76 |
if st.button("🚦 Analyze Text"):
|
77 |
with st.spinner("🔍 Processing..."):
|
78 |
try:
|
@@ -88,13 +103,17 @@ with col1:
|
|
88 |
st.error(f"❌ An error occurred during processing:\n\n{e}")
|
89 |
|
90 |
with col2:
|
91 |
-
uploaded_file = st.file_uploader(
|
|
|
|
|
92 |
if uploaded_file is not None:
|
93 |
image = Image.open(uploaded_file)
|
94 |
st.image(image, caption="Uploaded Screenshot", use_column_width=True)
|
95 |
if st.button("🛠️ OCR & Analyze Image"):
|
96 |
with st.spinner("🧠 Extracting text via OCR..."):
|
97 |
-
ocr_text = pytesseract.image_to_string(
|
|
|
|
|
98 |
st.markdown("#### 📋 Extracted Text:")
|
99 |
st.code(ocr_text)
|
100 |
classify_emoji_text(ocr_text)
|
@@ -102,16 +121,17 @@ with col2:
|
|
102 |
# 分析仪表盘
|
103 |
st.markdown("---")
|
104 |
st.title("📊 Violation Analysis Dashboard")
|
105 |
-
|
106 |
if st.session_state.history:
|
107 |
st.markdown("### 🧾 Offensive Terms & Suggestions")
|
108 |
for item in st.session_state.history:
|
109 |
st.markdown(f"- 🔹 **Input:** {item['text']}")
|
110 |
st.markdown(f" - ✨ **Translated:** {item['translated']}")
|
111 |
-
st.markdown(
|
112 |
-
|
|
|
|
|
113 |
|
114 |
-
#
|
115 |
radar_df = pd.DataFrame({
|
116 |
"Category": ["Insult", "Abuse", "Discrimination", "Hate Speech", "Vulgarity"],
|
117 |
"Score": [0.7, 0.4, 0.3, 0.5, 0.6]
|
|
|
29 |
# ✅ 侧边栏: 选择模型
|
30 |
with st.sidebar:
|
31 |
st.header("🧠 Settings")
|
32 |
+
selected_model = st.selectbox(
|
33 |
+
"Choose classification model", list(model_options.keys())
|
34 |
+
)
|
35 |
selected_model_id = model_options[selected_model]
|
36 |
+
classifier = pipeline(
|
37 |
+
"text-classification",
|
38 |
+
model=selected_model_id,
|
39 |
+
device=0 if torch.cuda.is_available() else -1
|
40 |
+
)
|
41 |
|
42 |
# 初始化历史记录
|
43 |
if "history" not in st.session_state:
|
|
|
48 |
prompt = f"输入:{text}\n输出:"
|
49 |
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
|
50 |
with torch.no_grad():
|
51 |
+
output_ids = emoji_model.generate(
|
52 |
+
**input_ids, max_new_tokens=64, do_sample=False
|
53 |
+
)
|
54 |
+
decoded = emoji_tokenizer.decode(
|
55 |
+
output_ids[0], skip_special_tokens=True
|
56 |
+
)
|
57 |
+
translated_text = (
|
58 |
+
decoded.split("输出:")[-1].strip()
|
59 |
+
if "输出:" in decoded
|
60 |
+
else decoded.strip()
|
61 |
+
)
|
62 |
|
63 |
result = classifier(translated_text)[0]
|
64 |
label = result["label"]
|
|
|
85 |
col1, col2 = st.columns(2)
|
86 |
with col1:
|
87 |
default_text = "你是🐷"
|
88 |
+
text = st.text_area(
|
89 |
+
"Enter sentence with emojis:", value=default_text, height=150
|
90 |
+
)
|
91 |
if st.button("🚦 Analyze Text"):
|
92 |
with st.spinner("🔍 Processing..."):
|
93 |
try:
|
|
|
103 |
st.error(f"❌ An error occurred during processing:\n\n{e}")
|
104 |
|
105 |
with col2:
|
106 |
+
uploaded_file = st.file_uploader(
|
107 |
+
"Upload an image (JPG/PNG)", type=["jpg", "jpeg", "png"]
|
108 |
+
)
|
109 |
if uploaded_file is not None:
|
110 |
image = Image.open(uploaded_file)
|
111 |
st.image(image, caption="Uploaded Screenshot", use_column_width=True)
|
112 |
if st.button("🛠️ OCR & Analyze Image"):
|
113 |
with st.spinner("🧠 Extracting text via OCR..."):
|
114 |
+
ocr_text = pytesseract.image_to_string(
|
115 |
+
image, lang="chi_sim+eng"
|
116 |
+
).strip()
|
117 |
st.markdown("#### 📋 Extracted Text:")
|
118 |
st.code(ocr_text)
|
119 |
classify_emoji_text(ocr_text)
|
|
|
121 |
# 分析仪表盘
|
122 |
st.markdown("---")
|
123 |
st.title("📊 Violation Analysis Dashboard")
|
|
|
124 |
if st.session_state.history:
|
125 |
st.markdown("### 🧾 Offensive Terms & Suggestions")
|
126 |
for item in st.session_state.history:
|
127 |
st.markdown(f"- 🔹 **Input:** {item['text']}")
|
128 |
st.markdown(f" - ✨ **Translated:** {item['translated']}")
|
129 |
+
st.markdown(
|
130 |
+
f" - ❗ **Label:** {item['label']} with **{item['score']:.2%}** confidence"
|
131 |
+
)
|
132 |
+
st.markdown(f" - 🔧 **Suggestion:** {item['reason']} ")
|
133 |
|
134 |
+
# 雷达图
|
135 |
radar_df = pd.DataFrame({
|
136 |
"Category": ["Insult", "Abuse", "Discrimination", "Hate Speech", "Vulgarity"],
|
137 |
"Score": [0.7, 0.4, 0.3, 0.5, 0.6]
|