Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,10 @@
|
|
1 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
2 |
import torch
|
3 |
import streamlit as st
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# ✅ Step 1: Emoji 翻译模型(你自己训练的模型)
|
6 |
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
|
@@ -22,26 +26,20 @@ model_options = {
|
|
22 |
# ✅ 页面配置
|
23 |
st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")
|
24 |
|
25 |
-
# ✅
|
26 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
- The **second model** performs offensive language detection.
|
32 |
-
""")
|
33 |
|
34 |
-
#
|
35 |
-
selected_model = st.sidebar.selectbox("Choose classification model", list(model_options.keys()))
|
36 |
-
selected_model_id = model_options[selected_model]
|
37 |
-
classifier = pipeline("text-classification", model=selected_model_id, device=0 if torch.cuda.is_available() else -1)
|
38 |
|
39 |
-
# ✅ 输入区域
|
40 |
-
st.markdown("### ✍️ Input your sentence:")
|
41 |
-
default_text = "你是🐷"
|
42 |
-
text = st.text_area("Enter sentence with emojis:", value=default_text, height=150)
|
43 |
-
|
44 |
-
# ✅ 主逻辑封装函数
|
45 |
def classify_emoji_text(text: str):
|
46 |
prompt = f"输入:{text}\n输出:"
|
47 |
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
|
@@ -53,21 +51,70 @@ def classify_emoji_text(text: str):
|
|
53 |
result = classifier(translated_text)[0]
|
54 |
label = result["label"]
|
55 |
score = result["score"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
-
#
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
|
|
|
|
|
|
|
|
69 |
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
72 |
else:
|
73 |
-
st.info("
|
|
|
1 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
2 |
import torch
|
3 |
import streamlit as st
|
4 |
+
from PIL import Image
|
5 |
+
import pytesseract
|
6 |
+
import pandas as pd
|
7 |
+
import plotly.express as px
|
8 |
|
9 |
# ✅ Step 1: Emoji 翻译模型(你自己训练的模型)
|
10 |
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
|
|
|
26 |
# ✅ 页面配置
|
27 |
st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")
|
28 |
|
29 |
+
# ✅ 侧边栏: 选择模型
|
30 |
+
with st.sidebar:
|
31 |
+
st.header("🧠 Settings")
|
32 |
+
moderation_type = st.selectbox("Select Task Type", ["Normal Text", "Bullet Screen Text"])
|
33 |
+
selected_model = st.selectbox("Choose classification model", list(model_options.keys()))
|
34 |
+
selected_model_id = model_options[selected_model]
|
35 |
+
classifier = pipeline("text-classification", model=selected_model_id, device=0 if torch.cuda.is_available() else -1)
|
36 |
|
37 |
+
# 初始化历史记录
|
38 |
+
if "history" not in st.session_state:
|
39 |
+
st.session_state.history = []
|
|
|
|
|
40 |
|
41 |
+
# 核心函数: 翻译并分类
|
|
|
|
|
|
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
def classify_emoji_text(text: str):
|
44 |
prompt = f"输入:{text}\n输出:"
|
45 |
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
|
|
|
51 |
result = classifier(translated_text)[0]
|
52 |
label = result["label"]
|
53 |
score = result["score"]
|
54 |
+
reasoning = f"The sentence was flagged as '{label}' due to potentially offensive phrases. Consider replacing emotionally charged, ambiguous, or abusive terms."
|
55 |
+
|
56 |
+
st.session_state.history.append({"text": text, "translated": translated_text, "label": label, "score": score, "reason": reasoning})
|
57 |
+
return translated_text, label, score, reasoning
|
58 |
+
|
59 |
+
# 页面主体
|
60 |
+
st.title("🚨 Emoji Offensive Text Detector & Analysis")
|
61 |
+
|
62 |
+
# 输入区域
|
63 |
+
st.markdown("### ✍️ Input your sentence or upload screenshot:")
|
64 |
+
col1, col2 = st.columns(2)
|
65 |
+
with col1:
|
66 |
+
default_text = "你是🐷"
|
67 |
+
text = st.text_area("Enter sentence with emojis:", value=default_text, height=150)
|
68 |
+
if st.button("🚦 Analyze Text"):
|
69 |
+
with st.spinner("🔍 Processing..."):
|
70 |
+
try:
|
71 |
+
translated, label, score, reason = classify_emoji_text(text)
|
72 |
+
st.markdown("#### 🔄 Translated sentence:")
|
73 |
+
st.code(translated, language="text")
|
74 |
+
|
75 |
+
st.markdown(f"#### 🎯 Prediction: {label}")
|
76 |
+
st.markdown(f"#### 📊 Confidence Score: {score:.2%}")
|
77 |
+
st.markdown(f"#### 🧠 Model Explanation:")
|
78 |
+
st.info(reason)
|
79 |
+
except Exception as e:
|
80 |
+
st.error(f"❌ An error occurred during processing:\n\n{e}")
|
81 |
|
82 |
+
with col2:
|
83 |
+
uploaded_file = st.file_uploader("Upload an image (JPG/PNG)", type=["jpg", "jpeg", "png"])
|
84 |
+
if uploaded_file is not None:
|
85 |
+
image = Image.open(uploaded_file)
|
86 |
+
st.image(image, caption="Uploaded Screenshot", use_column_width=True)
|
87 |
+
if st.button("🛠️ OCR & Analyze Image"):
|
88 |
+
with st.spinner("🧠 Extracting text via OCR..."):
|
89 |
+
ocr_text = pytesseract.image_to_string(image, lang="chi_sim+eng").strip()
|
90 |
+
st.markdown("#### 📋 Extracted Text:")
|
91 |
+
st.code(ocr_text)
|
92 |
+
classify_emoji_text(ocr_text)
|
93 |
|
94 |
+
# 分析仪表盘
|
95 |
+
st.markdown("---")
|
96 |
+
st.title("📊 Violation Analysis Dashboard")
|
97 |
+
if st.session_state.history:
|
98 |
+
df = pd.DataFrame(st.session_state.history)
|
99 |
+
# 饼图
|
100 |
+
label_counts = df["label"].value_counts().reset_index()
|
101 |
+
label_counts.columns = ["Category", "Count"]
|
102 |
+
fig = px.pie(label_counts, names="Category", values="Count", title="Offensive Category Distribution")
|
103 |
+
st.plotly_chart(fig)
|
104 |
|
105 |
+
st.markdown("### 🧾 Offensive Terms & Suggestions")
|
106 |
+
for item in st.session_state.history:
|
107 |
+
st.markdown(f"- 🔹 **Input:** {item['text']}")
|
108 |
+
st.markdown(f" - ✨ **Translated:** {item['translated']}")
|
109 |
+
st.markdown(f" - ❗ **Label:** {item['label']} with **{item['score']:.2%}** confidence")
|
110 |
+
st.markdown(f" - 🔧 **Suggestion:** {item['reason']}")
|
111 |
|
112 |
+
# 雷达图演示示例(可替换为动态数据)
|
113 |
+
radar_df = pd.DataFrame({
|
114 |
+
"Category": ["Insult", "Abuse", "Discrimination", "Hate Speech", "Vulgarity"],
|
115 |
+
"Score": [0.7, 0.4, 0.3, 0.5, 0.6]
|
116 |
+
})
|
117 |
+
radar_fig = px.line_polar(radar_df, r='Score', theta='Category', line_close=True, title="⚠️ Risk Radar by Category")
|
118 |
+
st.plotly_chart(radar_fig)
|
119 |
else:
|
120 |
+
st.info("⚠️ No classification data available yet.")
|