File size: 6,563 Bytes
5464ca6 5a8b969 98b3199 444b661 932e610 5464ca6 5a8b969 5464ca6 444b661 932e610 5a8b969 444b661 932e610 5a8b969 11355eb 932e610 11355eb 932e610 11355eb 98b3199 5a8b969 11355eb 5a8b969 851f89d 5464ca6 dc1bdc8 851f89d 444b661 851f89d 5464ca6 896a453 a8b7aaa 851f89d 11355eb a8b7aaa 11355eb a8b7aaa 11355eb a8b7aaa 11355eb a8b7aaa 11355eb 180b7cd 11355eb 896a453 b8ae57f 896a453 b8ae57f 896a453 b8ae57f 896a453 b8ae57f 896a453 b8ae57f 896a453 b8ae57f 896a453 b8ae57f 896a453 b8ae57f 896a453 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import torch
import streamlit as st
from PIL import Image
import pytesseract
import pandas as pd
import plotly.express as px
# ✅ Step 1: Emoji 翻译模型(你自己训练的模型)
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
emoji_model = AutoModelForCausalLM.from_pretrained(
emoji_model_id,
trust_remote_code=True,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to("cuda" if torch.cuda.is_available() else "cpu")
emoji_model.eval()
# ✅ Step 2: 可选择的冒犯性文本识别模型
model_options = {
"Toxic-BERT": "unitary/toxic-bert",
"Roberta Offensive": "cardiffnlp/twitter-roberta-base-offensive",
"BERT Emotion": "bhadresh-savani/bert-base-go-emotion"
}
# ✅ 页面配置
st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")
# ✅ 侧边栏:模型选择
with st.sidebar:
st.header("🧠 Configuration")
selected_model = st.selectbox("Choose classification model", list(model_options.keys()))
selected_model_id = model_options[selected_model]
classifier = pipeline("text-classification", model=selected_model_id, device=0 if torch.cuda.is_available() else -1)
# 初始化历史记录
if "history" not in st.session_state:
st.session_state.history = []
# 分类函数
def classify_emoji_text(text: str):
prompt = f"输入:{text}\n输出:"
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
with torch.no_grad():
output_ids = emoji_model.generate(**input_ids, max_new_tokens=64, do_sample=False)
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
translated_text = decoded.split("输出:")[-1].strip() if "输出:" in decoded else decoded.strip()
result = classifier(translated_text)[0]
label = result["label"]
score = result["score"]
reasoning = (
f"The sentence was flagged as '{label}' due to potentially offensive phrases. "
"Consider replacing emotionally charged, ambiguous, or abusive terms."
)
st.session_state.history.append({
"text": text,
"translated": translated_text,
"label": label,
"score": score,
"reason": reasoning
})
return translated_text, label, score, reasoning
# 主页面:输入与分析共存
st.title("🚨 Emoji Offensive Text Detector & Analysis Dashboard")
# 文本输入
st.subheader("1. 输入与分类")
default_text = "你是🐷"
text = st.text_area("Enter sentence with emojis:", value=default_text, height=150)
if st.button("🚦 Analyze Text"):
with st.spinner("🔍 Processing..."):
try:
translated, label, score, reason = classify_emoji_text(text)
st.markdown("**Translated sentence:**")
st.code(translated, language="text")
st.markdown(f"**Prediction:** {label}")
st.markdown(f"**Confidence Score:** {score:.2%}")
st.markdown("**Model Explanation:**")
st.info(reason)
except Exception as e:
st.error(f"❌ An error occurred:\n{e}")
# 图片上传与 OCR
st.markdown("---")
st.subheader("2. 图片 OCR & 分类")
uploaded_file = st.file_uploader("Upload an image (JPG/PNG)", type=["jpg","jpeg","png"])
if uploaded_file:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Screenshot", use_column_width=True)
with st.spinner("🧠 Extracting text via OCR..."):
ocr_text = pytesseract.image_to_string(image, lang="chi_sim+eng").strip()
if ocr_text:
st.markdown("**Extracted Text:**")
st.code(ocr_text)
translated, label, score, reason = classify_emoji_text(ocr_text)
st.markdown("**Translated sentence:**")
st.code(translated, language="text")
st.markdown(f"**Prediction:** {label}")
st.markdown(f"**Confidence Score:** {score:.2%}")
st.markdown("**Model Explanation:**")
st.info(reason)
else:
st.info("⚠️ No text detected in the image.")
# 分析仪表盘
st.markdown("---")
st.subheader("3. Violation Analysis Dashboard")
if st.session_state.history:
# 展示历史记录
df = pd.DataFrame(st.session_state.history)
st.markdown("### 🧾 Offensive Terms & Suggestions")
for item in st.session_state.history:
st.markdown(f"- 🔹 **Input:** {item['text']}")
st.markdown(f" - ✨ **Translated:** {item['translated']}")
st.markdown(f" - ❗ **Label:** {item['label']} with **{item['score']:.2%}** confidence")
st.markdown(f" - 🔧 **Suggestion:** {item['reason']}")
# 雷达图
radar_df = pd.DataFrame({
"Category": ["Insult","Abuse","Discrimination","Hate Speech","Vulgarity"],
"Score": [0.7,0.4,0.3,0.5,0.6]
})
radar_fig = px.line_polar(radar_df, r='Score', theta='Category', line_close=True, title="⚠️ Risk Radar by Category")
radar_fig.update_traces(line_color='black')
st.plotly_chart(radar_fig)
# —— 新增:单词级冒犯性相关性分析 —— #
st.markdown("### 🧬 Word-level Offensive Correlation")
# 取最近一次翻译文本,按空格拆分单词
last_translated_text = st.session_state.history[-1]["translated"]
words = last_translated_text.split()
# 对每个单词进行分类并收集分数
word_scores = []
for word in words:
try:
res = classifier(word)[0]
word_scores.append({
"Word": word,
"Label": res["label"],
"Score": res["score"]
})
except Exception:
continue
if word_scores:
word_df = pd.DataFrame(word_scores)
word_df = word_df.sort_values(by="Score", ascending=False).reset_index(drop=True)
max_display = 5
# Streamlit 1.22+ 支持 st.toggle,若版本不支持可改用 checkbox
show_more = st.toggle("Show more words", value=False)
display_df = word_df if show_more else word_df.head(max_display)
# 隐藏边框并渲染 HTML 表格
st.markdown(
display_df.to_html(index=False, border=0),
unsafe_allow_html=True
)
else:
st.info("❕ No word-level analysis available.")
else:
st.info("⚠️ No classification data available yet.") |