File size: 6,563 Bytes
5464ca6
 
5a8b969
98b3199
 
 
 
444b661
932e610
5464ca6
 
 
 
 
5a8b969
5464ca6
 
444b661
932e610
5a8b969
 
 
 
 
444b661
932e610
5a8b969
 
11355eb
932e610
11355eb
 
 
 
932e610
11355eb
98b3199
 
5a8b969
11355eb
5a8b969
851f89d
5464ca6
 
dc1bdc8
 
851f89d
444b661
851f89d
5464ca6
 
896a453
 
 
 
 
 
 
 
 
 
 
 
a8b7aaa
851f89d
11355eb
 
a8b7aaa
11355eb
 
 
 
a8b7aaa
11355eb
 
 
 
 
a8b7aaa
11355eb
 
 
a8b7aaa
11355eb
 
 
 
 
180b7cd
11355eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896a453
 
b8ae57f
 
896a453
b8ae57f
 
 
896a453
b8ae57f
 
 
896a453
b8ae57f
 
896a453
 
b8ae57f
896a453
b8ae57f
 
 
 
 
 
 
896a453
 
b8ae57f
 
896a453
b8ae57f
 
 
 
 
896a453
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import torch
import streamlit as st
from PIL import Image
import pytesseract
import pandas as pd
import plotly.express as px

# ✅ Step 1: Emoji 翻译模型(你自己训练的模型)
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
emoji_model = AutoModelForCausalLM.from_pretrained(
    emoji_model_id,
    trust_remote_code=True,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to("cuda" if torch.cuda.is_available() else "cpu")
emoji_model.eval()

# ✅ Step 2: 可选择的冒犯性文本识别模型
model_options = {
    "Toxic-BERT": "unitary/toxic-bert",
    "Roberta Offensive": "cardiffnlp/twitter-roberta-base-offensive",
    "BERT Emotion": "bhadresh-savani/bert-base-go-emotion"
}

# ✅ 页面配置
st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")

# ✅ 侧边栏:模型选择
with st.sidebar:
    st.header("🧠 Configuration")
    selected_model = st.selectbox("Choose classification model", list(model_options.keys()))
    selected_model_id = model_options[selected_model]
    classifier = pipeline("text-classification", model=selected_model_id, device=0 if torch.cuda.is_available() else -1)

# 初始化历史记录
if "history" not in st.session_state:
    st.session_state.history = []

# 分类函数
def classify_emoji_text(text: str):
    prompt = f"输入:{text}\n输出:"
    input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
    with torch.no_grad():
        output_ids = emoji_model.generate(**input_ids, max_new_tokens=64, do_sample=False)
    decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
    translated_text = decoded.split("输出:")[-1].strip() if "输出:" in decoded else decoded.strip()

    result = classifier(translated_text)[0]
    label = result["label"]
    score = result["score"]
    reasoning = (
        f"The sentence was flagged as '{label}' due to potentially offensive phrases. "
        "Consider replacing emotionally charged, ambiguous, or abusive terms."
    )

    st.session_state.history.append({
        "text": text,
        "translated": translated_text,
        "label": label,
        "score": score,
        "reason": reasoning
    })
    return translated_text, label, score, reasoning

# 主页面:输入与分析共存
st.title("🚨 Emoji Offensive Text Detector & Analysis Dashboard")

# 文本输入
st.subheader("1. 输入与分类")
default_text = "你是🐷"
text = st.text_area("Enter sentence with emojis:", value=default_text, height=150)

if st.button("🚦 Analyze Text"):
    with st.spinner("🔍 Processing..."):
        try:
            translated, label, score, reason = classify_emoji_text(text)
            st.markdown("**Translated sentence:**")
            st.code(translated, language="text")
            st.markdown(f"**Prediction:** {label}")
            st.markdown(f"**Confidence Score:** {score:.2%}")
            st.markdown("**Model Explanation:**")
            st.info(reason)
        except Exception as e:
            st.error(f"❌ An error occurred:\n{e}")

# 图片上传与 OCR
st.markdown("---")
st.subheader("2. 图片 OCR & 分类")
uploaded_file = st.file_uploader("Upload an image (JPG/PNG)", type=["jpg","jpeg","png"])
if uploaded_file:
    image = Image.open(uploaded_file)
    st.image(image, caption="Uploaded Screenshot", use_column_width=True)
    with st.spinner("🧠 Extracting text via OCR..."):
        ocr_text = pytesseract.image_to_string(image, lang="chi_sim+eng").strip()
        if ocr_text:
            st.markdown("**Extracted Text:**")
            st.code(ocr_text)
            translated, label, score, reason = classify_emoji_text(ocr_text)
            st.markdown("**Translated sentence:**")
            st.code(translated, language="text")
            st.markdown(f"**Prediction:** {label}")
            st.markdown(f"**Confidence Score:** {score:.2%}")
            st.markdown("**Model Explanation:**")
            st.info(reason)
        else:
            st.info("⚠️ No text detected in the image.")

# 分析仪表盘
st.markdown("---")
st.subheader("3. Violation Analysis Dashboard")
if st.session_state.history:
    # 展示历史记录
    df = pd.DataFrame(st.session_state.history)
    st.markdown("### 🧾 Offensive Terms & Suggestions")
    for item in st.session_state.history:
        st.markdown(f"- 🔹 **Input:** {item['text']}")
        st.markdown(f"   - ✨ **Translated:** {item['translated']}")
        st.markdown(f"   - ❗ **Label:** {item['label']} with **{item['score']:.2%}** confidence")
        st.markdown(f"   - 🔧 **Suggestion:** {item['reason']}")

    # 雷达图
    radar_df = pd.DataFrame({
        "Category": ["Insult","Abuse","Discrimination","Hate Speech","Vulgarity"],
        "Score": [0.7,0.4,0.3,0.5,0.6]
    })
    radar_fig = px.line_polar(radar_df, r='Score', theta='Category', line_close=True, title="⚠️ Risk Radar by Category")
    radar_fig.update_traces(line_color='black')
    st.plotly_chart(radar_fig)

    # —— 新增:单词级冒犯性相关性分析 —— #
    st.markdown("### 🧬 Word-level Offensive Correlation")

    # 取最近一次翻译文本,按空格拆分单词
    last_translated_text = st.session_state.history[-1]["translated"]
    words = last_translated_text.split()

    # 对每个单词进行分类并收集分数
    word_scores = []
    for word in words:
        try:
            res = classifier(word)[0]
            word_scores.append({
                "Word": word,
                "Label": res["label"],
                "Score": res["score"]
            })
        except Exception:
            continue

    if word_scores:
        word_df = pd.DataFrame(word_scores)
        word_df = word_df.sort_values(by="Score", ascending=False).reset_index(drop=True)

        max_display = 5
        # Streamlit 1.22+ 支持 st.toggle,若版本不支持可改用 checkbox
        show_more = st.toggle("Show more words", value=False)

        display_df = word_df if show_more else word_df.head(max_display)
        # 隐藏边框并渲染 HTML 表格
        st.markdown(
            display_df.to_html(index=False, border=0),
            unsafe_allow_html=True
        )
    else:
        st.info("❕ No word-level analysis available.")
else:
    st.info("⚠️ No classification data available yet.")