aeresd commited on
Commit
932e610
·
verified ·
1 Parent(s): 851f89d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +71 -60
app.py CHANGED
@@ -6,7 +6,7 @@ import pytesseract
6
  import pandas as pd
7
  import plotly.express as px
8
 
9
- # Step 1: Emoji 翻译模型(你自己训练的模型)
10
  emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
11
  emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
12
  emoji_model = AutoModelForCausalLM.from_pretrained(
@@ -16,21 +16,29 @@ emoji_model = AutoModelForCausalLM.from_pretrained(
16
  ).to("cuda" if torch.cuda.is_available() else "cpu")
17
  emoji_model.eval()
18
 
19
- # Step 2: 可选择的冒犯性文本识别模型
20
  model_options = {
21
  "Toxic-BERT": "unitary/toxic-bert",
22
  "Roberta Offensive": "cardiffnlp/twitter-roberta-base-offensive",
23
  "BERT Emotion": "bhadresh-savani/bert-base-go-emotion"
24
  }
25
 
26
- # 页面配置
27
  st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")
28
 
29
- # 初始化历史记录
 
 
 
 
 
 
 
 
30
  if "history" not in st.session_state:
31
  st.session_state.history = []
32
 
33
- # Emoji 文本翻译与分类函数
34
  def classify_emoji_text(text: str):
35
  prompt = f"输入:{text}\n输出:"
36
  input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
@@ -42,82 +50,85 @@ def classify_emoji_text(text: str):
42
  result = classifier(translated_text)[0]
43
  label = result["label"]
44
  score = result["score"]
45
- reasoning = f"The sentence was flagged as '{label}' due to potentially offensive phrases. Consider replacing emotionally charged, ambiguous, or abusive terms."
 
 
 
46
 
47
- st.session_state.history.append({"text": text, "translated": translated_text, "label": label, "score": score, "reason": reasoning})
 
 
 
 
 
 
48
  return translated_text, label, score, reasoning
49
 
50
- # 页面布局
51
- st.sidebar.header("🧠 Settings")
52
- selected_model = st.sidebar.selectbox("Choose classification model", list(model_options.keys()))
53
- selected_model_id = model_options[selected_model]
54
- classifier = pipeline("text-classification", model=selected_model_id, device=0 if torch.cuda.is_available() else -1)
55
-
56
- # 主页面:集成 Text Moderation 和 Text Analysis
57
- st.title("🚨 Emoji Offensive Text Detector & Violation Analysis")
58
-
59
- # 输入与分类
60
- st.markdown("## ✍️ 输入或上传文本进行分类")
61
- col1, col2 = st.columns([2,1])
62
- with col1:
63
- text = st.text_area("Enter sentence with emojis:", value="你是🐷", height=150)
64
- if st.button("🚦 Analyze Text"):
65
- with st.spinner("🔍 Processing..."):
66
- try:
67
- translated, label, score, reason = classify_emoji_text(text)
68
- st.markdown("### 🔄 Translated sentence:")
69
- st.code(translated, language="text")
70
 
71
- st.markdown(f"### 🎯 Prediction: {label}")
72
- st.markdown(f"### 📊 Confidence Score: {score:.2%}")
73
- st.markdown("### 🧠 Model Explanation:")
74
- st.info(reason)
75
- except Exception as e:
76
- st.error(f"❌ Error during processing: {e}")
77
 
78
- with col2:
79
- st.markdown("### 🖼️ Or upload a screenshot:")
80
- uploaded_file = st.file_uploader("Image (JPG/PNG)", type=["jpg","png","jpeg"])
81
  if uploaded_file:
82
  image = Image.open(uploaded_file)
83
  st.image(image, caption="Uploaded Image", use_column_width=True)
84
- with st.spinner("🧠 Running OCR..."):
85
  ocr_text = pytesseract.image_to_string(image, lang="chi_sim+eng").strip()
86
- st.markdown("#### 📋 OCR Extracted Text:")
87
- st.code(ocr_text)
88
- translated, label, score, reason = classify_emoji_text(ocr_text)
89
- st.markdown("#### 🔄 Translated:")
90
- st.code(translated)
91
- st.markdown(f"#### 🎯 Prediction: {label}")
92
- st.markdown(f"#### 📊 Confidence: {score:.2%}")
93
- st.markdown("#### 🧠 Explanation:")
94
- st.info(reason)
 
 
 
 
 
 
95
 
 
96
  st.markdown("---")
 
 
 
 
 
97
 
98
- # 违规分析仪表盘
99
- st.markdown("## 📊 Violation Analysis Dashboard")
100
- if st.session_state.history:
101
  df = pd.DataFrame(st.session_state.history)
102
- st.markdown("### 🧾 历史记录详情")
 
 
103
  for item in st.session_state.history:
104
- st.markdown(f"- 🔹 **input:** {item['text']} | **Label:** {item['label']} | **Confidence:** {item['score']:.2%}")
105
- st.markdown(f" - **Translated:** {item['translated']}")
106
- st.markdown(f" - **Suggestion:** {item['reason']}")
 
107
 
 
108
  radar_df = pd.DataFrame({
109
- "Category": ["Insult","Abuse","Discrimination","Hate Speech","Vulgarity"],
110
- "Score": [0.7,0.4,0.3,0.5,0.6]
111
  })
112
- # 优化雷达图,设置线条为黑色
113
  radar_fig = px.line_polar(
114
  radar_df,
115
  r='Score',
116
  theta='Category',
117
  line_close=True,
118
- title="⚠️ Risk Radar by Category",
119
- color_discrete_sequence=['black']
120
  )
 
121
  st.plotly_chart(radar_fig)
122
- else:
123
- st.info("⚠️ No data available. Please analyze some text first.")
 
 
 
6
  import pandas as pd
7
  import plotly.express as px
8
 
9
+ # Step 1: Emoji 翻译模型(你自己训练的模型)
10
  emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
11
  emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
12
  emoji_model = AutoModelForCausalLM.from_pretrained(
 
16
  ).to("cuda" if torch.cuda.is_available() else "cpu")
17
  emoji_model.eval()
18
 
19
+ # Step 2: 可选择的冒犯性文本识别模型
20
  model_options = {
21
  "Toxic-BERT": "unitary/toxic-bert",
22
  "Roberta Offensive": "cardiffnlp/twitter-roberta-base-offensive",
23
  "BERT Emotion": "bhadresh-savani/bert-base-go-emotion"
24
  }
25
 
26
+ # 页面配置
27
  st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")
28
 
29
+ # ✅ 侧边栏:模型选择
30
+ with st.sidebar:
31
+ st.header("🧠 Settings")
32
+ selected_model = st.selectbox("Choose classification model", list(model_options.keys()))
33
+ selected_model_id = model_options[selected_model]
34
+ classifier = pipeline("text-classification", model=selected_model_id,
35
+ device=0 if torch.cuda.is_available() else -1)
36
+
37
+ # 初始化会话历史
38
  if "history" not in st.session_state:
39
  st.session_state.history = []
40
 
41
+
42
  def classify_emoji_text(text: str):
43
  prompt = f"输入:{text}\n输出:"
44
  input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
 
50
  result = classifier(translated_text)[0]
51
  label = result["label"]
52
  score = result["score"]
53
+ reasoning = (
54
+ f"The sentence was flagged as '{label}' due to potentially offensive phrases. "
55
+ "Consider replacing emotionally charged, ambiguous, or abusive terms."
56
+ )
57
 
58
+ st.session_state.history.append({
59
+ "text": text,
60
+ "translated": translated_text,
61
+ "label": label,
62
+ "score": score,
63
+ "reason": reasoning
64
+ })
65
  return translated_text, label, score, reasoning
66
 
67
+ # 主页面布局
68
+ st.title("🚨 Emoji Offensive Text Detector & Analysis")
69
+ st.markdown("---")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
+ # 输入与分析
72
+ st.header("✍️ Input & Moderation")
73
+ def text_moderation_section():
74
+ st.markdown("Enter text with emojis or upload an image with text.")
75
+ text = st.text_area("Sentence (or OCR text will appear here):", height=120)
 
76
 
77
+ uploaded_file = st.file_uploader("Or upload an image for OCR:", type=["jpg", "jpeg", "png"])
 
 
78
  if uploaded_file:
79
  image = Image.open(uploaded_file)
80
  st.image(image, caption="Uploaded Image", use_column_width=True)
81
+ with st.spinner("Extracting text via OCR..."):
82
  ocr_text = pytesseract.image_to_string(image, lang="chi_sim+eng").strip()
83
+ st.text_area("Extracted Text:", value=ocr_text, height=120)
84
+ text = ocr_text
85
+
86
+ if st.button("🚦 Analyze Text") and text:
87
+ with st.spinner("Processing..."):
88
+ try:
89
+ translated, label, score, reason = classify_emoji_text(text)
90
+ st.subheader("🔄 Translated Text")
91
+ st.code(translated)
92
+ st.subheader(f"🎯 Prediction: {label}")
93
+ st.write(f"Confidence: {score:.2%}")
94
+ st.subheader("🧠 Explanation")
95
+ st.info(reason)
96
+ except Exception as e:
97
+ st.error(f"Error during processing: {e}")
98
 
99
+ # 分析仪表板
100
  st.markdown("---")
101
+ st.header("📊 Violation Analysis")
102
+ def analysis_dashboard():
103
+ if not st.session_state.history:
104
+ st.info("No data to display. Please analyze some text first.")
105
+ return
106
 
 
 
 
107
  df = pd.DataFrame(st.session_state.history)
108
+
109
+ # 建议列表
110
+ st.subheader("📝 Offensive Terms & Suggestions")
111
  for item in st.session_state.history:
112
+ st.markdown(f"- **Input:** {item['text']}")
113
+ st.markdown(f" - Translated: {item['translated']}")
114
+ st.markdown(f" - Label: {item['label']} ({item['score']:.2%})")
115
+ st.markdown(f" - Suggestion: {item['reason']}")
116
 
117
+ # 雷达图
118
  radar_df = pd.DataFrame({
119
+ "Category": ["Insult", "Abuse", "Discrimination", "Hate Speech", "Vulgarity"],
120
+ "Score": [0.7, 0.4, 0.3, 0.5, 0.6]
121
  })
 
122
  radar_fig = px.line_polar(
123
  radar_df,
124
  r='Score',
125
  theta='Category',
126
  line_close=True,
127
+ title="⚠️ Risk Radar by Category"
 
128
  )
129
+ radar_fig.update_traces(line_color='black')
130
  st.plotly_chart(radar_fig)
131
+
132
+ # 渲染各部分
133
+ text_moderation_section()
134
+ analysis_dashboard()