File size: 5,213 Bytes
bd9feeb 9284803 691ee4d bd9feeb 9284803 bd9feeb 88f8bd0 9284803 88f8bd0 9284803 a8b7aaa 88f8bd0 9284803 e375d90 bd9feeb a8b7aaa 9284803 e375d90 88f8bd0 e375d90 9284803 bd9feeb 9284803 bd9feeb 857cce7 9284803 bd9feeb 9284803 bd9feeb 9284803 88f8bd0 9284803 88f8bd0 9284803 88f8bd0 9284803 bd9feeb e375d90 bd9feeb 9284803 bd9feeb 9284803 bd9feeb 9284803 bd9feeb 9284803 826a9bc 9284803 bd9feeb 9284803 bd9feeb 9284803 bd9feeb 9284803 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import torch
import streamlit as st
from PIL import Image
import pytesseract
import pandas as pd
import plotly.express as px
# ✅ Step 1: Emoji 翻译模型(你自己训练的模型)
emoji_model_id = "jenniferhk008/roberta-hfl-emoji-aug3epoch"
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
emoji_model = AutoModelForCausalLM.from_pretrained(
emoji_model_id,
trust_remote_code=True,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to("cuda" if torch.cuda.is_available() else "cpu")
emoji_model.eval()
# ✅ Step 2: 可选择的冒犯性文本识别模型
model_options = {
"Toxic-BERT": "unitary/toxic-bert",
"Roberta Offensive": "cardiffnlp/twitter-roberta-base-offensive",
"BERT Emotion": "bhadresh-savani/bert-base-go-emotion"
}
# ✅ 页面配置
st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")
# ✅ 侧边栏:模型选择
with st.sidebar:
st.header("🧠 Configuration")
selected_model = st.selectbox("Choose classification model", list(model_options.keys()))
selected_model_id = model_options[selected_model]
classifier = pipeline("text-classification", model=selected_model_id, device=0 if torch.cuda.is_available() else -1)
# 初始化历史记录
if "history" not in st.session_state:
st.session_state.history = []
# 分类函数
def classify_emoji_text(text: str):
prompt = f"输入:{text}\n输出:"
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
with torch.no_grad():
output_ids = emoji_model.generate(**input_ids, max_new_tokens=64, do_sample=False)
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
translated_text = decoded.split("输出:")[-1].strip() if "输出:" in decoded else decoded.strip()
result = classifier(translated_text)[0]
label = result["label"]
score = result["score"]
reasoning = f"The sentence was flagged as '{label}' due to potentially offensive phrases. Consider replacing emotionally charged, ambiguous, or abusive terms."
st.session_state.history.append({"text": text, "translated": translated_text, "label": label, "score": score, "reason": reasoning})
return translated_text, label, score, reasoning
# 主页面:输入与分析共存
st.title("🚨 Emoji Offensive Text Detector & Analysis Dashboard")
# 文本输入
st.subheader("1. 输入与分类")
default_text = "你是🐷"
text = st.text_area("Enter sentence with emojis:", value=default_text, height=150)
if st.button("🚦 Analyze Text"):
with st.spinner("🔍 Processing..."):
try:
translated, label, score, reason = classify_emoji_text(text)
st.markdown("**Translated sentence:**")
st.code(translated, language="text")
st.markdown(f"**Prediction:** {label}")
st.markdown(f"**Confidence Score:** {score:.2%}")
st.markdown("**Model Explanation:**")
st.info(reason)
except Exception as e:
st.error(f"❌ An error occurred:\n{e}")
# 图片上传与 OCR
st.markdown("---")
st.subheader("2. Image OCR")
uploaded_file = st.file_uploader("Upload an image (JPG/PNG)", type=["jpg","jpeg","png"])
if uploaded_file:
image = Image.open(uploaded_file)
st.image(image, caption="Uploaded Screenshot", use_column_width=True)
with st.spinner("🧠 Extracting text via OCR..."):
ocr_text = pytesseract.image_to_string(image, lang="chi_sim+eng").strip()
if ocr_text:
st.markdown("**Extracted Text:**")
st.code(ocr_text)
translated, label, score, reason = classify_emoji_text(ocr_text)
st.markdown("**Translated sentence:**")
st.code(translated, language="text")
st.markdown(f"**Prediction:** {label}")
st.markdown(f"**Confidence Score:** {score:.2%}")
st.markdown("**Model Explanation:**")
st.info(reason)
else:
st.info("⚠️ No text detected in the image.")
# 分析仪表盘
st.markdown("---")
st.subheader("3. Violation Analysis Dashboard")
if st.session_state.history:
# 展示历史记录
df = pd.DataFrame(st.session_state.history)
st.markdown("### 🧾 Offensive Terms & Suggestions")
for item in st.session_state.history:
st.markdown(f"- 🔹 **Input:** {item['text']}")
st.markdown(f" - ✨ **Translated:** {item['translated']}")
st.markdown(f" - ❗ **Label:** {item['label']} with **{item['score']:.2%}** confidence")
st.markdown(f" - 🔧 **Suggestion:** {item['reason']}")
# 雷达图
radar_df = pd.DataFrame({
"Category": ["Insult","Abuse","Discrimination","Hate Speech","Vulgarity"],
"Score": [0.7,0.4,0.3,0.5,0.6]
})
radar_fig = px.line_polar(radar_df, r='Score', theta='Category', line_close=True, title="⚠️ Risk Radar by Category")
radar_fig.update_traces(line_color='black')
st.plotly_chart(radar_fig)
else:
st.info("⚠️ No classification data available yet.") |