File size: 5,213 Bytes
bd9feeb
 
 
 
 
 
 
 
9284803
691ee4d
bd9feeb
 
 
 
 
 
 
 
9284803
bd9feeb
 
 
 
 
 
88f8bd0
 
 
9284803
88f8bd0
 
 
 
9284803
a8b7aaa
88f8bd0
 
 
 
9284803
e375d90
bd9feeb
 
 
 
 
 
 
a8b7aaa
9284803
 
 
e375d90
88f8bd0
e375d90
9284803
bd9feeb
9284803
bd9feeb
857cce7
9284803
bd9feeb
 
 
 
 
 
 
9284803
bd9feeb
 
9284803
 
88f8bd0
9284803
88f8bd0
9284803
88f8bd0
9284803
bd9feeb
e375d90
bd9feeb
 
 
 
 
 
 
 
 
9284803
 
 
 
 
 
 
bd9feeb
9284803
bd9feeb
9284803
bd9feeb
9284803
826a9bc
9284803
 
 
 
 
 
 
 
 
bd9feeb
 
9284803
 
bd9feeb
9284803
 
 
bd9feeb
9284803
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import torch
import streamlit as st
from PIL import Image
import pytesseract
import pandas as pd
import plotly.express as px

# ✅ Step 1: Emoji 翻译模型(你自己训练的模型)
emoji_model_id = "jenniferhk008/roberta-hfl-emoji-aug3epoch"
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
emoji_model = AutoModelForCausalLM.from_pretrained(
    emoji_model_id,
    trust_remote_code=True,
    torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
).to("cuda" if torch.cuda.is_available() else "cpu")
emoji_model.eval()

# ✅ Step 2: 可选择的冒犯性文本识别模型
model_options = {
    "Toxic-BERT": "unitary/toxic-bert",
    "Roberta Offensive": "cardiffnlp/twitter-roberta-base-offensive",
    "BERT Emotion": "bhadresh-savani/bert-base-go-emotion"
}

# ✅ 页面配置
st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")

# ✅ 侧边栏:模型选择
with st.sidebar:
    st.header("🧠 Configuration")
    selected_model = st.selectbox("Choose classification model", list(model_options.keys()))
    selected_model_id = model_options[selected_model]
    classifier = pipeline("text-classification", model=selected_model_id, device=0 if torch.cuda.is_available() else -1)

# 初始化历史记录
if "history" not in st.session_state:
    st.session_state.history = []

# 分类函数

def classify_emoji_text(text: str):
    prompt = f"输入:{text}\n输出:"
    input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
    with torch.no_grad():
        output_ids = emoji_model.generate(**input_ids, max_new_tokens=64, do_sample=False)
    decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
    translated_text = decoded.split("输出:")[-1].strip() if "输出:" in decoded else decoded.strip()

    result = classifier(translated_text)[0]
    label = result["label"]
    score = result["score"]
    reasoning = f"The sentence was flagged as '{label}' due to potentially offensive phrases. Consider replacing emotionally charged, ambiguous, or abusive terms."

    st.session_state.history.append({"text": text, "translated": translated_text, "label": label, "score": score, "reason": reasoning})
    return translated_text, label, score, reasoning

# 主页面:输入与分析共存
st.title("🚨 Emoji Offensive Text Detector & Analysis Dashboard")

# 文本输入
st.subheader("1. 输入与分类")
default_text = "你是🐷"
text = st.text_area("Enter sentence with emojis:", value=default_text, height=150)

if st.button("🚦 Analyze Text"):
    with st.spinner("🔍 Processing..."):
        try:
            translated, label, score, reason = classify_emoji_text(text)
            st.markdown("**Translated sentence:**")
            st.code(translated, language="text")
            st.markdown(f"**Prediction:** {label}")
            st.markdown(f"**Confidence Score:** {score:.2%}")
            st.markdown("**Model Explanation:**")
            st.info(reason)
        except Exception as e:
            st.error(f"❌ An error occurred:\n{e}")

# 图片上传与 OCR
st.markdown("---")
st.subheader("2. Image OCR")
uploaded_file = st.file_uploader("Upload an image (JPG/PNG)", type=["jpg","jpeg","png"])
if uploaded_file:
    image = Image.open(uploaded_file)
    st.image(image, caption="Uploaded Screenshot", use_column_width=True)
    with st.spinner("🧠 Extracting text via OCR..."):
        ocr_text = pytesseract.image_to_string(image, lang="chi_sim+eng").strip()
        if ocr_text:
            st.markdown("**Extracted Text:**")
            st.code(ocr_text)
            translated, label, score, reason = classify_emoji_text(ocr_text)
            st.markdown("**Translated sentence:**")
            st.code(translated, language="text")
            st.markdown(f"**Prediction:** {label}")
            st.markdown(f"**Confidence Score:** {score:.2%}")
            st.markdown("**Model Explanation:**")
            st.info(reason)
        else:
            st.info("⚠️ No text detected in the image.")

# 分析仪表盘
st.markdown("---")
st.subheader("3. Violation Analysis Dashboard")
if st.session_state.history:
    # 展示历史记录
    df = pd.DataFrame(st.session_state.history)
    st.markdown("### 🧾 Offensive Terms & Suggestions")
    for item in st.session_state.history:
        st.markdown(f"- 🔹 **Input:** {item['text']}")
        st.markdown(f"   - ✨ **Translated:** {item['translated']}")
        st.markdown(f"   - ❗ **Label:** {item['label']} with **{item['score']:.2%}** confidence")
        st.markdown(f"   - 🔧 **Suggestion:** {item['reason']}")

    # 雷达图
    radar_df = pd.DataFrame({
        "Category": ["Insult","Abuse","Discrimination","Hate Speech","Vulgarity"],
        "Score": [0.7,0.4,0.3,0.5,0.6]
    })
    radar_fig = px.line_polar(radar_df, r='Score', theta='Category', line_close=True, title="⚠️ Risk Radar by Category")
    radar_fig.update_traces(line_color='black')
    st.plotly_chart(radar_fig)
else:
    st.info("⚠️ No classification data available yet.")