Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ import pytesseract
|
|
6 |
import pandas as pd
|
7 |
import plotly.express as px
|
8 |
|
9 |
-
# ✅ Step 1: Emoji
|
10 |
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
|
11 |
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
|
12 |
emoji_model = AutoModelForCausalLM.from_pretrained(
|
@@ -16,71 +16,29 @@ emoji_model = AutoModelForCausalLM.from_pretrained(
|
|
16 |
).to("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
emoji_model.eval()
|
18 |
|
19 |
-
# ✅ Step 2:
|
20 |
model_options = {
|
21 |
"Toxic-BERT": "unitary/toxic-bert",
|
22 |
"Roberta Offensive": "cardiffnlp/twitter-roberta-base-offensive",
|
23 |
"BERT Emotion": "bhadresh-savani/bert-base-go-emotion"
|
24 |
}
|
25 |
|
26 |
-
# 雷达图分类映射系统
|
27 |
-
category_system = {
|
28 |
-
"Insult": ["侮辱", "贬低", "人身攻击"],
|
29 |
-
"Abuse": ["威胁", "暴力", "骚扰"],
|
30 |
-
"Discrimination": ["种族", "性别", "宗教"],
|
31 |
-
"Hate Speech": ["仇恨", "极端言论"],
|
32 |
-
"Vulgarity": ["脏话", "低俗", "性暗示"]
|
33 |
-
}
|
34 |
-
|
35 |
-
# 模型到分类系统的映射
|
36 |
-
model_category_map = {
|
37 |
-
"Toxic-BERT": {
|
38 |
-
"toxic": ["Vulgarity"],
|
39 |
-
"severe_toxic": ["Abuse"],
|
40 |
-
"obscene": ["Vulgarity"],
|
41 |
-
"threat": ["Abuse", "Hate Speech"],
|
42 |
-
"insult": ["Insult"],
|
43 |
-
"identity_hate": ["Discrimination", "Hate Speech"]
|
44 |
-
},
|
45 |
-
"Roberta Offensive": {
|
46 |
-
"offensive": ["Insult", "Abuse"]
|
47 |
-
},
|
48 |
-
"BERT Emotion": {
|
49 |
-
"anger": ["Abuse"],
|
50 |
-
"disgust": ["Vulgarity"]
|
51 |
-
}
|
52 |
-
}
|
53 |
-
|
54 |
# ✅ 页面配置
|
55 |
st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")
|
56 |
|
57 |
-
# ✅
|
58 |
with st.sidebar:
|
59 |
st.header("🧠 Configuration")
|
60 |
selected_model = st.selectbox("Choose classification model", list(model_options.keys()))
|
61 |
selected_model_id = model_options[selected_model]
|
62 |
-
|
63 |
-
# 动态调整分类器参数
|
64 |
-
classifier_config = {
|
65 |
-
"device": 0 if torch.cuda.is_available() else -1,
|
66 |
-
"top_k": None if selected_model == "Toxic-BERT" else 1
|
67 |
-
}
|
68 |
-
if selected_model == "Toxic-BERT":
|
69 |
-
classifier_config["function_to_apply"] = "sigmoid"
|
70 |
-
|
71 |
-
classifier = pipeline(
|
72 |
-
"text-classification",
|
73 |
-
model=selected_model_id,
|
74 |
-
**classifier_config
|
75 |
-
)
|
76 |
|
77 |
# 初始化历史记录
|
78 |
if "history" not in st.session_state:
|
79 |
st.session_state.history = []
|
80 |
|
81 |
-
#
|
82 |
def classify_emoji_text(text: str):
|
83 |
-
# Emoji翻译
|
84 |
prompt = f"输入:{text}\n输出:"
|
85 |
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
|
86 |
with torch.no_grad():
|
@@ -88,49 +46,27 @@ def classify_emoji_text(text: str):
|
|
88 |
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
89 |
translated_text = decoded.split("输出:")[-1].strip() if "输出:" in decoded else decoded.strip()
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
for elem in elements:
|
100 |
-
try:
|
101 |
-
results = classifier(elem)
|
102 |
-
for res in results:
|
103 |
-
for model_label in model_category_map.get(selected_model, {}):
|
104 |
-
if res["label"] == model_label:
|
105 |
-
score = res["score"]
|
106 |
-
for category in model_category_map[selected_model][model_label]:
|
107 |
-
if score > radar_scores[category]:
|
108 |
-
radar_scores[category] = score
|
109 |
-
element_analysis.append({
|
110 |
-
"Element": elem,
|
111 |
-
"Original": text.split()[elements.index(elem)] if len(text.split()) > elements.index(elem) else "",
|
112 |
-
"Category": category,
|
113 |
-
"Score": score
|
114 |
-
})
|
115 |
-
except Exception as e:
|
116 |
-
continue
|
117 |
|
118 |
-
# 记录历史
|
119 |
st.session_state.history.append({
|
120 |
"text": text,
|
121 |
"translated": translated_text,
|
122 |
-
"label":
|
123 |
-
"score":
|
124 |
-
"
|
125 |
-
"radar": radar_scores
|
126 |
})
|
127 |
-
|
128 |
-
return translated_text, main_result["label"], main_result["score"], radar_scores
|
129 |
|
130 |
-
#
|
131 |
st.title("🚨 Emoji Offensive Text Detector & Analysis Dashboard")
|
132 |
|
133 |
-
#
|
134 |
st.subheader("1. 输入与分类")
|
135 |
default_text = "你是🐷"
|
136 |
text = st.text_area("Enter sentence with emojis:", value=default_text, height=150)
|
@@ -138,99 +74,95 @@ text = st.text_area("Enter sentence with emojis:", value=default_text, height=15
|
|
138 |
if st.button("🚦 Analyze Text"):
|
139 |
with st.spinner("🔍 Processing..."):
|
140 |
try:
|
141 |
-
translated, label, score,
|
142 |
-
|
143 |
st.markdown("**Translated sentence:**")
|
144 |
st.code(translated, language="text")
|
145 |
-
|
146 |
-
|
147 |
-
with col1:
|
148 |
-
st.metric("Prediction", f"{label} 🔴" if score > 0.5 else f"{label} 🟢")
|
149 |
-
with col2:
|
150 |
-
st.metric("Confidence", f"{score:.2%}")
|
151 |
-
|
152 |
st.markdown("**Model Explanation:**")
|
153 |
-
st.info(
|
154 |
-
for cat, score in radar.items():
|
155 |
-
if score > 0.5:
|
156 |
-
st.markdown(f"- ❗ **{cat}** 风险 ({score:.2%})")
|
157 |
except Exception as e:
|
158 |
-
st.error(f"❌
|
159 |
|
160 |
-
#
|
161 |
st.markdown("---")
|
162 |
st.subheader("2. 图片 OCR & 分类")
|
163 |
uploaded_file = st.file_uploader("Upload an image (JPG/PNG)", type=["jpg","jpeg","png"])
|
164 |
if uploaded_file:
|
165 |
image = Image.open(uploaded_file)
|
166 |
st.image(image, caption="Uploaded Screenshot", use_column_width=True)
|
167 |
-
|
168 |
with st.spinner("🧠 Extracting text via OCR..."):
|
169 |
ocr_text = pytesseract.image_to_string(image, lang="chi_sim+eng").strip()
|
170 |
-
|
171 |
if ocr_text:
|
172 |
st.markdown("**Extracted Text:**")
|
173 |
st.code(ocr_text)
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
|
|
180 |
else:
|
181 |
-
st.info("⚠️
|
182 |
|
183 |
-
#
|
184 |
st.markdown("---")
|
185 |
-
st.subheader("3.
|
186 |
if st.session_state.history:
|
187 |
-
|
188 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
# 雷达图
|
190 |
-
st.markdown("### ⚠️ 风险雷达图")
|
191 |
radar_df = pd.DataFrame({
|
192 |
-
"Category":
|
193 |
-
"Score":
|
194 |
})
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
#
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
else:
|
224 |
-
st.info("
|
225 |
-
|
226 |
-
# 历史记录
|
227 |
-
st.markdown("### 📜 分析历史")
|
228 |
-
history_df = pd.DataFrame(st.session_state.history)
|
229 |
-
st.dataframe(
|
230 |
-
history_df[["text", "label", "score"]]
|
231 |
-
.style.applymap(lambda x: "color: red" if x == "OFFENSIVE" else ""),
|
232 |
-
use_container_width=True,
|
233 |
-
hide_index=True
|
234 |
-
)
|
235 |
else:
|
236 |
-
st.info("
|
|
|
6 |
import pandas as pd
|
7 |
import plotly.express as px
|
8 |
|
9 |
+
# ✅ Step 1: Emoji 翻译模型(你自己训练的模型)
|
10 |
emoji_model_id = "JenniferHJF/qwen1.5-emoji-finetuned"
|
11 |
emoji_tokenizer = AutoTokenizer.from_pretrained(emoji_model_id, trust_remote_code=True)
|
12 |
emoji_model = AutoModelForCausalLM.from_pretrained(
|
|
|
16 |
).to("cuda" if torch.cuda.is_available() else "cpu")
|
17 |
emoji_model.eval()
|
18 |
|
19 |
+
# ✅ Step 2: 可选择的冒犯性文本识别模型
|
20 |
model_options = {
|
21 |
"Toxic-BERT": "unitary/toxic-bert",
|
22 |
"Roberta Offensive": "cardiffnlp/twitter-roberta-base-offensive",
|
23 |
"BERT Emotion": "bhadresh-savani/bert-base-go-emotion"
|
24 |
}
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
# ✅ 页面配置
|
27 |
st.set_page_config(page_title="Emoji Offensive Text Detector", page_icon="🚨", layout="wide")
|
28 |
|
29 |
+
# ✅ 侧边栏:模型选择
|
30 |
with st.sidebar:
|
31 |
st.header("🧠 Configuration")
|
32 |
selected_model = st.selectbox("Choose classification model", list(model_options.keys()))
|
33 |
selected_model_id = model_options[selected_model]
|
34 |
+
classifier = pipeline("text-classification", model=selected_model_id, device=0 if torch.cuda.is_available() else -1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# 初始化历史记录
|
37 |
if "history" not in st.session_state:
|
38 |
st.session_state.history = []
|
39 |
|
40 |
+
# 分类函数
|
41 |
def classify_emoji_text(text: str):
|
|
|
42 |
prompt = f"输入:{text}\n输出:"
|
43 |
input_ids = emoji_tokenizer(prompt, return_tensors="pt").to(emoji_model.device)
|
44 |
with torch.no_grad():
|
|
|
46 |
decoded = emoji_tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
47 |
translated_text = decoded.split("输出:")[-1].strip() if "输出:" in decoded else decoded.strip()
|
48 |
|
49 |
+
result = classifier(translated_text)[0]
|
50 |
+
label = result["label"]
|
51 |
+
score = result["score"]
|
52 |
+
reasoning = (
|
53 |
+
f"The sentence was flagged as '{label}' due to potentially offensive phrases. "
|
54 |
+
"Consider replacing emotionally charged, ambiguous, or abusive terms."
|
55 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
|
|
|
57 |
st.session_state.history.append({
|
58 |
"text": text,
|
59 |
"translated": translated_text,
|
60 |
+
"label": label,
|
61 |
+
"score": score,
|
62 |
+
"reason": reasoning
|
|
|
63 |
})
|
64 |
+
return translated_text, label, score, reasoning
|
|
|
65 |
|
66 |
+
# 主页面:输入与分析共存
|
67 |
st.title("🚨 Emoji Offensive Text Detector & Analysis Dashboard")
|
68 |
|
69 |
+
# 文本输入
|
70 |
st.subheader("1. 输入与分类")
|
71 |
default_text = "你是🐷"
|
72 |
text = st.text_area("Enter sentence with emojis:", value=default_text, height=150)
|
|
|
74 |
if st.button("🚦 Analyze Text"):
|
75 |
with st.spinner("🔍 Processing..."):
|
76 |
try:
|
77 |
+
translated, label, score, reason = classify_emoji_text(text)
|
|
|
78 |
st.markdown("**Translated sentence:**")
|
79 |
st.code(translated, language="text")
|
80 |
+
st.markdown(f"**Prediction:** {label}")
|
81 |
+
st.markdown(f"**Confidence Score:** {score:.2%}")
|
|
|
|
|
|
|
|
|
|
|
82 |
st.markdown("**Model Explanation:**")
|
83 |
+
st.info(reason)
|
|
|
|
|
|
|
84 |
except Exception as e:
|
85 |
+
st.error(f"❌ An error occurred:\n{e}")
|
86 |
|
87 |
+
# 图片上传与 OCR
|
88 |
st.markdown("---")
|
89 |
st.subheader("2. 图片 OCR & 分类")
|
90 |
uploaded_file = st.file_uploader("Upload an image (JPG/PNG)", type=["jpg","jpeg","png"])
|
91 |
if uploaded_file:
|
92 |
image = Image.open(uploaded_file)
|
93 |
st.image(image, caption="Uploaded Screenshot", use_column_width=True)
|
|
|
94 |
with st.spinner("🧠 Extracting text via OCR..."):
|
95 |
ocr_text = pytesseract.image_to_string(image, lang="chi_sim+eng").strip()
|
|
|
96 |
if ocr_text:
|
97 |
st.markdown("**Extracted Text:**")
|
98 |
st.code(ocr_text)
|
99 |
+
translated, label, score, reason = classify_emoji_text(ocr_text)
|
100 |
+
st.markdown("**Translated sentence:**")
|
101 |
+
st.code(translated, language="text")
|
102 |
+
st.markdown(f"**Prediction:** {label}")
|
103 |
+
st.markdown(f"**Confidence Score:** {score:.2%}")
|
104 |
+
st.markdown("**Model Explanation:**")
|
105 |
+
st.info(reason)
|
106 |
else:
|
107 |
+
st.info("⚠️ No text detected in the image.")
|
108 |
|
109 |
+
# 分析仪表盘
|
110 |
st.markdown("---")
|
111 |
+
st.subheader("3. Violation Analysis Dashboard")
|
112 |
if st.session_state.history:
|
113 |
+
# 展示历史记录
|
114 |
+
df = pd.DataFrame(st.session_state.history)
|
115 |
+
st.markdown("### 🧾 Offensive Terms & Suggestions")
|
116 |
+
for item in st.session_state.history:
|
117 |
+
st.markdown(f"- 🔹 **Input:** {item['text']}")
|
118 |
+
st.markdown(f" - ✨ **Translated:** {item['translated']}")
|
119 |
+
st.markdown(f" - ❗ **Label:** {item['label']} with **{item['score']:.2%}** confidence")
|
120 |
+
st.markdown(f" - 🔧 **Suggestion:** {item['reason']}")
|
121 |
+
|
122 |
# 雷达图
|
|
|
123 |
radar_df = pd.DataFrame({
|
124 |
+
"Category": ["Insult","Abuse","Discrimination","Hate Speech","Vulgarity"],
|
125 |
+
"Score": [0.7,0.4,0.3,0.5,0.6]
|
126 |
})
|
127 |
+
radar_fig = px.line_polar(radar_df, r='Score', theta='Category', line_close=True, title="⚠️ Risk Radar by Category")
|
128 |
+
radar_fig.update_traces(line_color='black')
|
129 |
+
st.plotly_chart(radar_fig)
|
130 |
+
|
131 |
+
# —— 新增:单词级冒犯性相关性分析 —— #
|
132 |
+
st.markdown("### 🧬 Word-level Offensive Correlation")
|
133 |
+
|
134 |
+
# 取最近一次翻译文本,按空格拆分单词
|
135 |
+
last_translated_text = st.session_state.history[-1]["translated"]
|
136 |
+
words = last_translated_text.split()
|
137 |
+
|
138 |
+
# 对每个单词进行分类并收集分数
|
139 |
+
word_scores = []
|
140 |
+
for word in words:
|
141 |
+
try:
|
142 |
+
res = classifier(word)[0]
|
143 |
+
word_scores.append({
|
144 |
+
"Word": word,
|
145 |
+
"Label": res["label"],
|
146 |
+
"Score": res["score"]
|
147 |
+
})
|
148 |
+
except Exception:
|
149 |
+
continue
|
150 |
+
|
151 |
+
if word_scores:
|
152 |
+
word_df = pd.DataFrame(word_scores)
|
153 |
+
word_df = word_df.sort_values(by="Score", ascending=False).reset_index(drop=True)
|
154 |
+
|
155 |
+
max_display = 5
|
156 |
+
# Streamlit 1.22+ 支持 st.toggle,若版本不支持可改用 checkbox
|
157 |
+
show_more = st.toggle("Show more words", value=False)
|
158 |
+
|
159 |
+
display_df = word_df if show_more else word_df.head(max_display)
|
160 |
+
# 隐藏边框并渲染 HTML 表格
|
161 |
+
st.markdown(
|
162 |
+
display_df.to_html(index=False, border=0),
|
163 |
+
unsafe_allow_html=True
|
164 |
+
)
|
165 |
else:
|
166 |
+
st.info("❕ No word-level analysis available.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
167 |
else:
|
168 |
+
st.info("⚠️ No classification data available yet.")
|