Spaces:
Runtime error
Runtime error
File size: 7,750 Bytes
8055a93 321fadd 8055a93 5052352 e4eb7c7 f6a19a0 df508cf 8055a93 e4eb7c7 d9264f3 8055a93 49cc5e0 8055a93 d9264f3 2d13d0a 321fadd 7ab7abe ed960ea c755b00 7ab7abe c933b27 0d7f12f 2747fb3 39785e9 1eb61ab ed960ea 6a541cb d9264f3 5f99ca5 5e112a6 d9264f3 8055a93 eefaf9d ed960ea af05c4c c933b27 8055a93 eefaf9d 0d7f12f ed960ea a16969c 39ed458 a16969c ed960ea 272bf11 2fbc455 272bf11 ed960ea 2fbc455 5052352 8055a93 7ab7abe 5f99ca5 d9264f3 5f99ca5 d9264f3 cea5a83 3af0fb2 789d020 cea5a83 789d020 bf0ed7c 7ab7abe a16969c 2fbc455 39ed458 a16969c 2fbc455 cea5a83 f179843 8055a93 f179843 1668d01 93fc339 fe9c860 456f78e 671f7b0 0647997 456f78e 8055a93 cea5a83 f179843 cea5a83 f179843 cea5a83 0647997 cea5a83 f179843 cea5a83 5b3b5e2 cea5a83 a190ff7 731c251 5b3b5e2 731c251 cea5a83 5b3b5e2 cea5a83 0647997 cea5a83 2fbc455 ebc7be4 cea5a83 ebc7be4 cea5a83 ebc7be4 456f78e ebc7be4 cea5a83 8055a93 71a5775 cea5a83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 |
import initialize
from langchain_openai import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from langchain.chains import VectorDBQA
from langchain_community.llms import OpenAI
from langchain_core.prompts import PromptTemplate
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
from langchain.chains import LLMChain
from langchain_google_genai import GoogleGenerativeAI
from langchain_google_genai import ChatGoogleGenerativeAI
import gradio as gr
import requests
import os
from langchain_ollama import OllamaLLM
import sys
sys.path.append('../..')
# For Google Colab
'''
from google.colab import userdata
OPENAI_API_KEY = userdata.get('OPENAI_API_KEY')
hf_token = userdata.get('hf_token')
GEMINI_API_KEY = userdata.get('GEMINI_API_KEY')
# For Desktop
from dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # Read local .env file
OPENAI_API_KEY = os.environ['OPENAI_API_KEY']
hf_token = os.environ['hf_token']
GEMINI_API_KEY = os.environ['GEMINI_API_KEY']
'''
# For Hugging Face
OPENAI_API_KEY = os.environ.get('OPENAI_API_KEY')
hf_token = os.environ.get('hf_token')
GEMINI_API_KEY = os.environ.get('GEMINI_API_KEY')
fs_token = os.environ.get('fs_token')
llm_name = "gpt-3.5-turbo-0125"
vectordb = initialize.initialize()
chat_history_doc = []
chat_history_IS = []
# For getting source documents
def get_file(source_documents):
files = set()
for doc in source_documents:
file = os.path.basename(doc.metadata['source'])
files.add(file)
# Print unique filenames
return list(set(files))
def chat_query_doc(question, chat_history_doc):
query_old = f"""Provide an elaborate, precise and pointwise reply to the question: {question}.
Also, Please consider the provided chat history: {chat_history_doc}.
Ensure that your current response is detailed, accurate, and addresses each aspect of the question thoroughly.
If the context of the question doesn't align with your last reply, please provide your response in a fresh manner.
If don't get the answer, feel free to reply from your own knowledge."""
# query = f"""You'll be asked with a User Query. If the Query is related to Electrical Domain, Provide a precise and point-wise reply to the query: {question} \
# based on provided context only. Ensure that your reply addresses each aspect of the query thoroughly. """
query = f""" Provide a precise and point-wise reply to the query: {question} \
based on provided context only. Ensure that your reply addresses each aspect of the query thoroughly, and highlight the important points using text formatting
in your reply."""
#llm = ChatOpenAI(model = llm_name, temperature = 0.1, api_key = OPENAI_API_KEY)
#llm = GoogleGenerativeAI(model = "gemini-pro", google_api_key = GEMINI_API_KEY) ###
#llm = ChatGoogleGenerativeAI(model = "gemini-1.0-pro", google_api_key = GEMINI_API_KEY, temperature = 0)
llm = OllamaLLM(model="unsloth/Llama-3.2-3B")
# Conversation Retrival Chain with Memory
#memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
retriever = vectordb.as_retriever()
qa = ConversationalRetrievalChain.from_llm(llm, retriever = retriever, return_source_documents = True)
# Replace input() with question variable for Gradio
result = qa({"question": query, "chat_history" : chat_history_doc})
# Update the history with the latest question and response
# history.append({"user": question, "bot": result["answer"]})
# chat_history_doc.append((query, result["answer"]))
source_docs = result["source_documents"]
file_names = get_file(source_docs)
#file_name = os.path.basename(source_docs[0].metadata['source'])
file_name = ', '.join([f"{x}" for x in file_names[:3]])
# print("History : ", history)
# print("\n Chat_his : ", chat_history)
return result["answer"] + "\n\nSources : " + file_name
def chat_query_IS(question, chat_history_IS):
#llm = ChatOpenAI(model = llm_name, temperature = 0.1, api_key = OPENAI_API_KEY)
#llm = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=GEMINI_API_KEY) ###
llm = OllamaLLM(model="unsloth/Llama-3.2-3B")
system_old = f""" Provide an elaborate, detailed and pointwise reply about the Topic, as per relevant IS/IEEE/BIS Standard.
Also, at the end of your reply, quote the Relevant Standard Referred. Topic : {question}
"""
system = f""" Provide a reply poetically precise as william shakespeare for the Topic : {question}
"""
result = llm.invoke(system_old)
# Update the history with the latest question and response
# history.append({"user": question, "bot": result.content})
# chat_history_IS.append((system_old, result.content))
return result.content
iface_doc = gr.ChatInterface(
fn=chat_query_doc,
title="""Standard TS of POWERGRID""",
concurrency_limit = None,
examples = ["What should be the GIB height outside the GIS hall ?" ,
"STATCOM Station Ratings" ,
"Specifications of XLPE POWER Cables."],
# "Specification for Ethernet Switches in SAS."] ,
theme=gr.themes.Base(),
fill_height = True,
delete_cache = (300,360),
css = "CSS/chat_style.css",
)
iface_IS = gr.ChatInterface(
fn = chat_query_IS,
title = """Indian / International Standards""",
concurrency_limit = None,
examples = ["Type Tests for HV Switchgears." ,
"Measurement of acoustic noise level of Transformers & Reactors" ,
"Technical Requirement for 765kV class Transformer",
"Specification of Distance Relays"] ,
theme=gr.themes.Base(),
fill_height = True,
delete_cache = (300,360),
css = "CSS/chat_style.css",
)
Title= "# Conversational BOT for Model-TS & Indian / International Standards"
Description = """
### Welcome to the Language Model (SS-Engg-Dept.)! ๐
This model is trained on **Model Technical Specifications** of the SS-Engg. Dept. and leverages the power of **ChatGPT** to answer your queries based on:
* Relevant TS, GTR & Specific Requirements ๐
* International/Indian Standards ๐๐ฎ๐ณ
**Tips for Effective Use:**
* Use elaborate questions for more accurate responses. ๐ค
* Clear the chat if you don't receive a reply. ๐
* Include **Specific Keywords** in your query for precise results. ๐ฏ
"""
with gr.Blocks(css="CSS/style.css", fill_height=True) as demo:
# history = gr.State([]) # Initialize the state component
with gr.Column():
with gr.Row():
with gr.Column(scale=1):
gr.Image("Images/Chatbot.png", width = 110, show_download_button = False, show_label = False, show_share_button = False, elem_id = "Logo")
with gr.Column(scale=3):
gr.Markdown(Title)
with gr.Column(scale=1):
gr.Image("Images/PG Logo.png", width = 200, show_download_button = False, show_label = False, show_share_button = False, elem_id = "PG_Logo")
with gr.Row():
gr.Markdown(Description)
with gr.Row(equal_height=True):
with gr.Column(elem_classes = ["chat_container"]):
iface_doc.render()
with gr.Column(elem_classes = ["chat_container"]):
iface_IS.render()
if __name__ == "__main__":
demo.launch(debug=True, share=True) |