abhivsh commited on
Commit
eefaf9d
·
verified ·
1 Parent(s): e2d0855

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +47 -47
app.py CHANGED
@@ -52,7 +52,7 @@ hf_token = os.environ.get('hf_token')
52
  GEMINI_API_KEY = os.environ.get('GEMINI_API_KEY')
53
  fs_token = os.environ.get('fs_token')
54
 
55
- llm_name = "gpt-3.5-turbo"
56
 
57
  vectordb = initialize.initialize()
58
 
@@ -61,45 +61,45 @@ vectordb = initialize.initialize()
61
 
62
 
63
 
64
- quantization_config = {
65
- "load_in_4bit": True,
66
- "bnb_4bit_compute_dtype": torch.float16,
67
- "bnb_4bit_quant_type": "nf4",
68
- "bnb_4bit_use_double_quant": True,
69
- }
70
-
71
- pipeline = pipeline(
72
- "text-generation",
73
- model=model_4bit,
74
- tokenizer=tokenizer,
75
- use_cache=True,
76
- device='cpu', # '0' is for GPU, 'cpu' for CPU
77
- max_length=500,
78
- do_sample=True,
79
- top_k=5,
80
- num_return_sequences=1,
81
- eos_token_id=tokenizer.eos_token_id,
82
- pad_token_id=tokenizer.eos_token_id,
83
- )
84
 
85
 
86
- llm = HuggingFacePipeline(pipeline=pipeline)
87
- model_id = "mistralai/Mistral-7B-Instruct-v0.1"
88
- model_4bit = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config)
89
- tokenizer = AutoTokenizer.from_pretrained(model_id)
90
 
91
- # template = """[INST] You are a helpful, respectful and honest assistant. Answer exactly in few words from the context
92
- # Answer the question below from the context below:
93
- # {context}
94
- # {question} [/INST]
95
- # """
96
 
97
 
98
- def chat_query(message, history):
99
 
100
- retrieverQA = RetrievalQA.from_chain_type(llm=llm, chain_type="retrieval", retriever=vectordb.as_retriever(), verbose=True)
101
- result = retrieverQA.run()
102
- return result
103
 
104
 
105
 
@@ -107,23 +107,23 @@ def chat_query(message, history):
107
  #-------------------------------------------
108
 
109
 
110
- # def chat_query(question, history):
111
 
112
- # llm = ChatOpenAI(model=llm_name, temperature=0.1, api_key = OPENAI_API_KEY)
113
 
114
- # # Conversation Retrival Chain with Memory
115
- # memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
116
- # retriever=vectordb.as_retriever()
117
- # qa = ConversationalRetrievalChain.from_llm(llm, retriever=retriever, memory=memory)
118
 
119
- # # Replace input() with question variable for Gradio
120
- # result = qa({"question": question})
121
- # return result['answer']
122
 
123
- # # Chatbot only answers based on Documents
124
- # # qa = VectorDBQA.from_chain_type(llm=OpenAI(openai_api_key = OPENAI_API_KEY, ), chain_type="stuff", vectorstore=vectordb)
125
- # # result = qa.run(question)
126
- # # return result
127
 
128
 
129
 
 
52
  GEMINI_API_KEY = os.environ.get('GEMINI_API_KEY')
53
  fs_token = os.environ.get('fs_token')
54
 
55
+ llm_name = "gpt-3.5-turbo-0301"
56
 
57
  vectordb = initialize.initialize()
58
 
 
61
 
62
 
63
 
64
+ # quantization_config = {
65
+ # "load_in_4bit": True,
66
+ # "bnb_4bit_compute_dtype": torch.float16,
67
+ # "bnb_4bit_quant_type": "nf4",
68
+ # "bnb_4bit_use_double_quant": True,
69
+ # }
70
+
71
+ # pipeline = pipeline(
72
+ # "text-generation",
73
+ # model=model_4bit,
74
+ # tokenizer=tokenizer,
75
+ # use_cache=True,
76
+ # device=0, # '0' is for GPU, 'cpu' for CPU
77
+ # max_length=500,
78
+ # do_sample=True,
79
+ # top_k=5,
80
+ # num_return_sequences=1,
81
+ # eos_token_id=tokenizer.eos_token_id,
82
+ # pad_token_id=tokenizer.eos_token_id,
83
+ # )
84
 
85
 
86
+ # llm = HuggingFacePipeline(pipeline=pipeline)
87
+ # model_id = "mistralai/Mistral-7B-Instruct-v0.1"
88
+ # model_4bit = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config)
89
+ # tokenizer = AutoTokenizer.from_pretrained(model_id)
90
 
91
+ # # template = """[INST] You are a helpful, respectful and honest assistant. Answer exactly in few words from the context
92
+ # # Answer the question below from the context below:
93
+ # # {context}
94
+ # # {question} [/INST]
95
+ # # """
96
 
97
 
98
+ # def chat_query(message, history):
99
 
100
+ # retrieverQA = RetrievalQA.from_chain_type(llm=llm, chain_type="retrieval", retriever=vectordb.as_retriever(), verbose=True)
101
+ # result = retrieverQA.run()
102
+ # return result
103
 
104
 
105
 
 
107
  #-------------------------------------------
108
 
109
 
110
+ def chat_query(question, history):
111
 
112
+ llm = ChatOpenAI(model=llm_name, temperature=0.1, api_key = OPENAI_API_KEY)
113
 
114
+ # Conversation Retrival Chain with Memory
115
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
116
+ retriever=vectordb.as_retriever()
117
+ qa = ConversationalRetrievalChain.from_llm(llm, retriever=retriever, memory=memory)
118
 
119
+ # Replace input() with question variable for Gradio
120
+ result = qa({"question": question})
121
+ return result['answer']
122
 
123
+ # Chatbot only answers based on Documents
124
+ # qa = VectorDBQA.from_chain_type(llm=OpenAI(openai_api_key = OPENAI_API_KEY, ), chain_type="stuff", vectorstore=vectordb)
125
+ # result = qa.run(question)
126
+ # return result
127
 
128
 
129