Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -15,6 +15,8 @@ import gradio as gr
|
|
15 |
import requests
|
16 |
import os
|
17 |
|
|
|
|
|
18 |
|
19 |
import sys
|
20 |
sys.path.append('../..')
|
@@ -41,6 +43,39 @@ fs_token = os.environ.get('fs_token')
|
|
41 |
|
42 |
llm_name = "gpt-3.5-turbo-0125"
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
vectordb = initialize.initialize()
|
45 |
|
46 |
chat_history_doc = []
|
@@ -74,9 +109,10 @@ def chat_query_doc(question, chat_history_doc):
|
|
74 |
|
75 |
|
76 |
|
77 |
-
llm = ChatOpenAI(model = llm_name, temperature = 0.1, api_key = OPENAI_API_KEY)
|
78 |
#llm = GoogleGenerativeAI(model = "gemini-pro", google_api_key = GEMINI_API_KEY) ###
|
79 |
#llm = ChatGoogleGenerativeAI(model = "gemini-1.0-pro", google_api_key = GEMINI_API_KEY, temperature = 0)
|
|
|
80 |
|
81 |
# Conversation Retrival Chain with Memory
|
82 |
#memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
@@ -103,8 +139,9 @@ def chat_query_doc(question, chat_history_doc):
|
|
103 |
|
104 |
def chat_query_IS(question, chat_history_IS):
|
105 |
|
106 |
-
llm = ChatOpenAI(model = llm_name, temperature = 0.1, api_key = OPENAI_API_KEY)
|
107 |
#llm = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=GEMINI_API_KEY) ###
|
|
|
108 |
|
109 |
system_old = f""" Provide an elaborate, detailed and pointwise reply about the Topic, as per relevant IS/IEEE/BIS Standard.
|
110 |
Also, at the end of your reply, quote the Relevant Standard Referred. Topic : {question}
|
|
|
15 |
import requests
|
16 |
import os
|
17 |
|
18 |
+
from langchain_ollama import OllamaLLM
|
19 |
+
|
20 |
|
21 |
import sys
|
22 |
sys.path.append('../..')
|
|
|
43 |
|
44 |
llm_name = "gpt-3.5-turbo-0125"
|
45 |
|
46 |
+
|
47 |
+
# For Groq API
|
48 |
+
|
49 |
+
from langchain_groq import ChatGroq
|
50 |
+
|
51 |
+
llm = ChatGroq(
|
52 |
+
model="mixtral-8x7b-32768",
|
53 |
+
temperature=0,
|
54 |
+
max_tokens=None,
|
55 |
+
timeout=None,
|
56 |
+
max_retries=2,
|
57 |
+
# other params...
|
58 |
+
)
|
59 |
+
|
60 |
+
chat_completion = client.chat.completions.create(
|
61 |
+
messages=[
|
62 |
+
{
|
63 |
+
"role": "system",
|
64 |
+
"content": "You are a knowledgeable assistant, Provide a precise and point-wise reply based on provided context only. \
|
65 |
+
Ensure that your reply addresses each aspect of the query thoroughly, and highlight the important points using text formatting in your reply..",
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"role": "user",
|
69 |
+
"content": query,
|
70 |
+
}
|
71 |
+
],
|
72 |
+
model="llama3-8b-8192",
|
73 |
+
)
|
74 |
+
|
75 |
+
print(chat_completion.choices[0].message.content)
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
vectordb = initialize.initialize()
|
80 |
|
81 |
chat_history_doc = []
|
|
|
109 |
|
110 |
|
111 |
|
112 |
+
#llm = ChatOpenAI(model = llm_name, temperature = 0.1, api_key = OPENAI_API_KEY)
|
113 |
#llm = GoogleGenerativeAI(model = "gemini-pro", google_api_key = GEMINI_API_KEY) ###
|
114 |
#llm = ChatGoogleGenerativeAI(model = "gemini-1.0-pro", google_api_key = GEMINI_API_KEY, temperature = 0)
|
115 |
+
llm = OllamaLLM(model="unsloth/Llama-3.2-3B")
|
116 |
|
117 |
# Conversation Retrival Chain with Memory
|
118 |
#memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
|
|
|
139 |
|
140 |
def chat_query_IS(question, chat_history_IS):
|
141 |
|
142 |
+
#llm = ChatOpenAI(model = llm_name, temperature = 0.1, api_key = OPENAI_API_KEY)
|
143 |
#llm = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=GEMINI_API_KEY) ###
|
144 |
+
llm = OllamaLLM(model="unsloth/Llama-3.2-3B")
|
145 |
|
146 |
system_old = f""" Provide an elaborate, detailed and pointwise reply about the Topic, as per relevant IS/IEEE/BIS Standard.
|
147 |
Also, at the end of your reply, quote the Relevant Standard Referred. Topic : {question}
|