Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -14,12 +14,20 @@ from langchain_openai import ChatOpenAI
|
|
14 |
from langchain.memory import ConversationBufferMemory
|
15 |
from langchain.chains import ConversationalRetrievalChain
|
16 |
from langchain.chains import VectorDBQA
|
17 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
|
20 |
import gradio as gr
|
21 |
-
import os
|
22 |
import requests
|
|
|
|
|
23 |
|
24 |
import sys
|
25 |
sys.path.append('../..')
|
@@ -53,10 +61,6 @@ vectordb = initialize.initialize()
|
|
53 |
|
54 |
|
55 |
|
56 |
-
from langchain import HuggingFacePipeline, PromptTemplate, LLMChain, RetrievalQA
|
57 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
58 |
-
import torch
|
59 |
-
|
60 |
quantization_config = {
|
61 |
"load_in_4bit": True,
|
62 |
"bnb_4bit_compute_dtype": torch.float16,
|
@@ -64,20 +68,12 @@ quantization_config = {
|
|
64 |
"bnb_4bit_use_double_quant": True,
|
65 |
}
|
66 |
|
67 |
-
llm = HuggingFacePipeline(pipeline=pipeline)
|
68 |
-
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
69 |
-
model_4bit = AutoModelForCausalLM.from_pretrained(
|
70 |
-
model_id, device="cuda", quantization_config=quantization_config
|
71 |
-
)
|
72 |
-
|
73 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
74 |
-
|
75 |
pipeline = pipeline(
|
76 |
"text-generation",
|
77 |
model=model_4bit,
|
78 |
tokenizer=tokenizer,
|
79 |
use_cache=True,
|
80 |
-
device=
|
81 |
max_length=500,
|
82 |
do_sample=True,
|
83 |
top_k=5,
|
@@ -86,19 +82,23 @@ pipeline = pipeline(
|
|
86 |
pad_token_id=tokenizer.eos_token_id,
|
87 |
)
|
88 |
|
89 |
-
template = """[INST] You are a helpful, respectful and honest assistant. Answer exactly in few words from the context
|
90 |
-
Answer the question below from the context below:
|
91 |
-
{context}
|
92 |
-
{question} [/INST]
|
93 |
-
"""
|
94 |
|
|
|
|
|
|
|
|
|
95 |
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
|
98 |
-
def chat_query(
|
99 |
|
100 |
retrieverQA = RetrievalQA.from_chain_type(llm=llm, chain_type="retrieval", retriever=vectordb.as_retriever(), verbose=True)
|
101 |
-
result = retrieverQA.run(
|
102 |
return result
|
103 |
|
104 |
|
|
|
14 |
from langchain.memory import ConversationBufferMemory
|
15 |
from langchain.chains import ConversationalRetrievalChain
|
16 |
from langchain.chains import VectorDBQA
|
17 |
+
from langchain_community.llms import OpenAI
|
18 |
+
from langchain_core.prompts import PromptTemplate
|
19 |
+
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
20 |
+
from langchain.chains import LLMChain
|
21 |
+
from langchain_community.llms.huggingface_pipeline import HuggingFacePipeline
|
22 |
+
|
23 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
24 |
+
import torch
|
25 |
|
26 |
|
27 |
import gradio as gr
|
|
|
28 |
import requests
|
29 |
+
import os
|
30 |
+
|
31 |
|
32 |
import sys
|
33 |
sys.path.append('../..')
|
|
|
61 |
|
62 |
|
63 |
|
|
|
|
|
|
|
|
|
64 |
quantization_config = {
|
65 |
"load_in_4bit": True,
|
66 |
"bnb_4bit_compute_dtype": torch.float16,
|
|
|
68 |
"bnb_4bit_use_double_quant": True,
|
69 |
}
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
pipeline = pipeline(
|
72 |
"text-generation",
|
73 |
model=model_4bit,
|
74 |
tokenizer=tokenizer,
|
75 |
use_cache=True,
|
76 |
+
device='cpu', # '0' is for GPU, 'cpu' for CPU
|
77 |
max_length=500,
|
78 |
do_sample=True,
|
79 |
top_k=5,
|
|
|
82 |
pad_token_id=tokenizer.eos_token_id,
|
83 |
)
|
84 |
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
+
llm = HuggingFacePipeline(pipeline=pipeline)
|
87 |
+
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
|
88 |
+
model_4bit = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=quantization_config)
|
89 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
90 |
|
91 |
+
# template = """[INST] You are a helpful, respectful and honest assistant. Answer exactly in few words from the context
|
92 |
+
# Answer the question below from the context below:
|
93 |
+
# {context}
|
94 |
+
# {question} [/INST]
|
95 |
+
# """
|
96 |
|
97 |
|
98 |
+
def chat_query(message, history):
|
99 |
|
100 |
retrieverQA = RetrievalQA.from_chain_type(llm=llm, chain_type="retrieval", retriever=vectordb.as_retriever(), verbose=True)
|
101 |
+
result = retrieverQA.run()
|
102 |
return result
|
103 |
|
104 |
|