Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,695 Bytes
ef51ddd a8b6e59 7833553 ef51ddd a8b6e59 fe1810a b71a9e5 7833553 1b8a47d ef51ddd 019d245 a8b6e59 2211110 5858004 cd4de4c 2211110 ef51ddd a8b6e59 c4814b5 0d09f4a 2211110 0d09f4a c4814b5 a8b6e59 1b8a47d a8b6e59 ea40be6 a8b6e59 ef51ddd c5bcdb3 ef51ddd 1b8a47d ef51ddd 9e56b98 019d245 7833553 9e56b98 b91fc6b 7c3ad3d 264de1a 7c3ad3d 264de1a 7c3ad3d 264de1a 7c3ad3d 1b8a47d 9e56b98 019d245 2211110 fe1810a 2211110 fe1810a 2211110 021306c a3571c2 019d245 9b896b6 019d245 7f58b81 019d245 a3571c2 019d245 021306c 7833553 c5bcdb3 d0509e1 1b8a47d d0509e1 ac0d0ca 7833553 9e56b98 4199235 a8b76d6 c3abe72 7f58b81 b71a9e5 7f58b81 7f3b65a a8b76d6 7f58b81 c3abe72 f0a0056 a8b76d6 c3abe72 7f58b81 b71a9e5 7f58b81 7f3b65a a8b76d6 7f58b81 9e56b98 a8b76d6 c3abe72 a8b76d6 c3abe72 a8b76d6 4199235 2483f92 7f58b81 2483f92 7f58b81 2dc5e25 7f58b81 48b5c5f 2dc5e25 48b5c5f 7f58b81 2483f92 7f58b81 2483f92 fbecde0 2483f92 7f58b81 2483f92 7f58b81 2dc5e25 0ae11fc 7f58b81 48b5c5f 2dc5e25 48b5c5f 7f58b81 0ae11fc 7f58b81 021306c a3571c2 2483f92 7f58b81 e792db9 a3571c2 ef51ddd 38ee90c c3c795c 38ee90c 021306c 7f58b81 a3571c2 2feb059 7207e01 9e56b98 2feb059 9e56b98 697effb 5ace2c9 2d01cbb 697effb 30ccf3c 697effb 9e56b98 5ace2c9 697effb a8b76d6 697effb 7f58b81 697effb 9e56b98 a8b6e59 021306c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 |
import os
import re
import tempfile
import torch
import gradio as gr
from faster_whisper import BatchedInferencePipeline, WhisperModel
from pydub import AudioSegment, effects
from pyannote.audio import Pipeline as DiarizationPipeline
import opencc
import spaces # zeroGPU support
from funasr import AutoModel
from funasr.utils.postprocess_utils import rich_transcription_postprocess
from termcolor import cprint
import time
import torchaudio
from pyannote.audio.pipelines.utils.hook import ProgressHook
# —————— Model Lists ——————
WHISPER_MODELS = [
"deepdml/faster-whisper-large-v3-turbo-ct2",
"guillaumekln/faster-whisper-tiny",
"Systran/faster-whisper-large-v3",
"XA9/Belle-faster-whisper-large-v3-zh-punct",
"asadfgglie/faster-whisper-large-v3-zh-TW",
"guillaumekln/faster-whisper-medium",
"guillaumekln/faster-whisper-small",
"guillaumekln/faster-whisper-base",
"Luigi/whisper-small-zh_tw-ct2",
]
SENSEVOICE_MODELS = [
"FunAudioLLM/SenseVoiceSmall",
"funasr/paraformer-zh",
]
# —————— Language Options ——————
WHISPER_LANGUAGES = [
"auto", "af","am","ar","as","az","ba","be","bg","bn","bo",
"br","bs","ca","cs","cy","da","de","el","en","es","et",
"eu","fa","fi","fo","fr","gl","gu","ha","haw","he","hi",
"hr","ht","hu","hy","id","is","it","ja","jw","ka","kk",
"km","kn","ko","la","lb","ln","lo","lt","lv","mg","mi",
"mk","ml","mn","mr","ms","mt","my","ne","nl","nn","no",
"oc","pa","pl","ps","pt","ro","ru","sa","sd","si","sk",
"sl","sn","so","sq","sr","su","sv","sw","ta","te","tg",
"th","tk","tl","tr","tt","uk","ur","uz","vi","yi","yo",
"zh","yue"
]
SENSEVOICE_LANGUAGES = ["auto", "zh", "yue", "en", "ja", "ko", "nospeech"]
# —————— Caches ——————
whisper_pipes = {}
sense_models = {}
dar_pipe = None
converter = opencc.OpenCC('s2t')
# —————— Diarization Formatter ——————
def format_diarization_html(snippets):
palette = ["#e74c3c", "#3498db", "#27ae60", "#e67e22", "#9b59b6", "#16a085", "#f1c40f"]
speaker_colors = {}
html_lines = []
last_spk = None
for s in snippets:
if s.startswith("[") and "]" in s:
spk, txt = s[1:].split("]", 1)
spk, txt = spk.strip(), txt.strip()
else:
spk, txt = "", s.strip()
# hide empty lines
if not txt:
continue
# assign color if new speaker
if spk not in speaker_colors:
speaker_colors[spk] = palette[len(speaker_colors) % len(palette)]
color = speaker_colors[spk]
# simplify tag for same speaker
if spk == last_spk:
display = txt
else:
display = f"<strong>{spk}:</strong> {txt}"
last_spk = spk
html_lines.append(
f"<p style='margin:4px 0; font-family:monospace; color:{color};'>{display}</p>"
)
return "<div>" + "".join(html_lines) + "</div>"
# —————— Helpers ——————
# —————— Faster-Whisper Cache & Factory ——————
_fwhisper_models: dict[tuple[str, str], WhisperModel] = {}
def get_fwhisper_model(model_id: str, device: str) -> WhisperModel:
"""
Lazily load and cache WhisperModel(model_id) on 'cpu' or 'cuda:0'.
Uses float16 on GPU and int8 on CPU for speed.
"""
key = (model_id, device)
if key not in _fwhisper_models:
compute_type = "float16" if device.startswith("cuda") else "int8"
model = WhisperModel(
model_id,
device=device,
compute_type=compute_type,
)
_fwhisper_models[key] = BatchedInferencePipeline(model=model)
return _fwhisper_models[key]
def get_sense_model(model_id: str, device_str: str):
key = (model_id, device_str)
if key not in sense_models:
sense_models[key] = AutoModel(
model=model_id,
vad_model="fsmn-vad",
vad_kwargs={"max_single_segment_time": 300000},
device=device_str,
ban_emo_unk=False,
hub="hf",
)
return sense_models[key]
def get_diarization_pipe():
global dar_pipe
if dar_pipe is None:
token = os.getenv("HF_TOKEN") or os.getenv("HUGGINGFACE_TOKEN")
try:
dar_pipe = DiarizationPipeline.from_pretrained(
"pyannote/speaker-diarization-3.1",
use_auth_token=token or True
)
except Exception as e:
print(f"Failed to load pyannote/speaker-diarization-3.1: {e}\nFalling back to pyannote/speaker-diarization@2.1.")
dar_pipe = DiarizationPipeline.from_pretrained(
"pyannote/speaker-diarization@2.1",
use_auth_token=token or True
)
return dar_pipe
# —————— Whisper Transcription ——————
def _transcribe_fwhisper_cpu_stream(model_id, language, audio_path, whisper_multilingual_en):
"""
Generator-based streaming transcription with accumulation using Faster-Whisper on CPU.
Yields (accumulated_text, diar_html) tuples for Gradio streaming.
"""
pipe = get_fwhisper_model(model_id, "cpu")
cprint('Whisper (faster-whisper) using CPU [stream]', 'red')
# Diarization branch: accumulate snippets and yield full HTML each turn
diarizer = get_diarization_pipe()
waveform, sample_rate = torchaudio.load(audio_path)
diarizer.to(torch.device('cpu'))
with ProgressHook() as hook:
diary = diarizer({"waveform": waveform, "sample_rate": sample_rate}, hook=hook)
snippets = []
for turn, _, speaker in diary.itertracks(yield_label=True):
# extract segment
start_ms = int(turn.start * 1000)
end_ms = int(turn.end * 1000)
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
segment = effects.normalize(segment)
segment.export(tmp.name, format="wav")
segments, _ = pipe.transcribe(
tmp.name,
beam_size=3,
best_of=3,
language=None if language == "auto" else language,
vad_filter=True,
batch_size=16,
multilingual=whisper_multilingual_en,
)
os.unlink(tmp.name)
text = converter.convert("".join(s.text for s in segments).strip())
snippets.append(f"[{speaker}] {text}")
# yield accumulated diarization HTML
yield "", format_diarization_html(snippets)
return
@spaces.GPU
def _transcribe_fwhisper_gpu_stream(model_id, language, audio_path, whisper_multilingual_en):
"""
Generator-based streaming transcription with accumulation using Faster-Whisper on CUDA.
Yields (accumulated_text, diar_html) tuples for Gradio streaming.
"""
pipe = get_fwhisper_model(model_id, "cuda")
cprint('Whisper (faster-whisper) using CUDA [stream]', 'green')
# Diarization branch: accumulate snippets and yield full HTML each turn
diarizer = get_diarization_pipe()
device = torch.device('cuda')
diarizer.to(device)
waveform, sample_rate = torchaudio.load(audio_path)
waveform = waveform.to(device)
with ProgressHook() as hook:
diary = diarizer({"waveform": waveform, "sample_rate": sample_rate}, hook=hook)
snippets = []
for turn, _, speaker in diary.itertracks(yield_label=True):
start_ms = int(turn.start * 1000)
end_ms = int(turn.end * 1000)
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
segment = effects.normalize(segment)
segment.export(tmp.name, format="wav")
segments, _ = pipe.transcribe(
tmp.name,
beam_size=3,
best_of=3,
language=None if language == "auto" else language,
vad_filter=True,
batch_size=16,
multilingual=whisper_multilingual_en,
)
os.unlink(tmp.name)
text = converter.convert("".join(s.text for s in segments).strip())
snippets.append(f"[{speaker}] {text}")
yield "", format_diarization_html(snippets)
return
def transcribe_fwhisper_stream(model_id, language, audio_path, device_sel, whisper_multilingual_en):
"""Dispatch to CPU or GPU streaming generators, preserving two-value yields."""
if device_sel == "GPU" and torch.cuda.is_available():
yield from _transcribe_fwhisper_gpu_stream(model_id, language, audio_path, whisper_multilingual_en)
else:
yield from _transcribe_fwhisper_cpu_stream(model_id, language, audio_path, whisper_multilingual_en)
# —————— SenseVoice Transcription ——————
def _transcribe_sense_cpu_stream(model_id: str, language: str, audio_path: str,
enable_punct: bool):
model = get_sense_model(model_id, "cpu")
cprint('SenseVoiceSmall using CPU [stream]', 'red')
diarizer = get_diarization_pipe()
diarizer.to(torch.device('cpu'))
waveform, sample_rate = torchaudio.load(audio_path)
with ProgressHook() as hook:
diary = diarizer({"waveform": waveform, "sample_rate": sample_rate}, hook=hook)
snippets = []
cache={}
for turn, _, speaker in diary.itertracks(yield_label=True):
start_ms, end_ms = int(turn.start*1000), int(turn.end*1000)
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
segment.export(tmp.name, format="wav")
try:
segs = model.generate(input=tmp.name, cache=cache, language=language,
use_itn=enable_punct, batch_size_s=300)
except Exception as e:
cprint(f'Error: {e}','red')
os.unlink(tmp.name)
txt = rich_transcription_postprocess(segs[0]['text'])
if not enable_punct:
txt = re.sub(r"[^\w\s]", "", txt)
txt = converter.convert(txt)
snippets.append(f"[{speaker}] {txt}")
yield "", format_diarization_html(snippets)
return
@spaces.GPU(duration=120)
def _transcribe_sense_gpu_stream(model_id: str, language: str, audio_path: str,
enable_punct: bool):
model = get_sense_model(model_id, "cuda:0")
cprint('SenseVoiceSmall using CUDA [stream]', 'green')
diarizer = get_diarization_pipe()
diarizer.to(torch.device('cuda'))
waveform, sample_rate = torchaudio.load(audio_path)
waveform = waveform.to(torch.device('cuda'))
with ProgressHook() as hook:
diary = diarizer({"waveform": waveform, "sample_rate": sample_rate}, hook=hook)
snippets = []
cache = {}
segs = None
for turn, _, speaker in diary.itertracks(yield_label=True):
start_ms, end_ms = int(turn.start*1000), int(turn.end*1000)
segment = AudioSegment.from_file(audio_path)[start_ms:end_ms]
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
segment.export(tmp.name, format="wav")
try:
segs = model.generate(input=tmp.name, cache=cache, language=language,
use_itn=enable_punct, batch_size_s=300)
except Exception as e:
cprint(f'Error: {e}','red')
os.unlink(tmp.name)
if segs:
txt = rich_transcription_postprocess(segs[0]['text'])
if not enable_punct:
txt = re.sub(r"[^\w\s]", "", txt)
txt = converter.convert(txt)
snippets.append(f"[{speaker}] {txt}")
yield "", format_diarization_html(snippets)
return
def transcribe_sense_steam(model_id: str,
language: str,
audio_path: str,
enable_punct: bool,
device_sel: str):
if device_sel == "GPU" and torch.cuda.is_available():
yield from _transcribe_sense_gpu_stream(model_id, language, audio_path, enable_punct)
else:
yield from _transcribe_sense_cpu_stream(model_id, language, audio_path, enable_punct)
# —————— Gradio UI ——————
DEMO_CSS = """
.diar {
padding: 0.5rem;
color: #f1f1f1;
font-family: monospace;
font-size: 0.9rem;
}
"""
Demo = gr.Blocks(css=DEMO_CSS)
with Demo:
gr.Markdown("## Faster-Whisper vs. SenseVoice")
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Audio Input")
examples = gr.Examples(
examples=[["interview.mp3"], ["news.mp3"], ["meeting.mp3"]],
inputs=[audio_input],
label="Example Audio Files"
)
# ────────────────────────────────────────────────────────────────
# 1) CONTROL PANELS (still side-by-side)
with gr.Row():
with gr.Column():
gr.Markdown("### Faster-Whisper ASR")
whisper_dd = gr.Dropdown(choices=WHISPER_MODELS, value=WHISPER_MODELS[0], label="Whisper Model")
whisper_lang = gr.Dropdown(choices=WHISPER_LANGUAGES, value="auto", label="Whisper Language")
device_radio = gr.Radio(choices=["GPU","CPU"], value="GPU", label="Device")
whisper_multilingual_en = gr.Checkbox(label="Multilingual", value=False)
btn_w = gr.Button("Transcribe with Faster-Whisper")
with gr.Column():
gr.Markdown("### FunASR SenseVoice ASR")
sense_dd = gr.Dropdown(choices=SENSEVOICE_MODELS, value=SENSEVOICE_MODELS[0], label="SenseVoice Model")
sense_lang = gr.Dropdown(choices=SENSEVOICE_LANGUAGES, value="auto", label="SenseVoice Language")
device_radio_s = gr.Radio(choices=["GPU","CPU"], value="GPU", label="Device")
punct_chk = gr.Checkbox(label="Enable Punctuation", value=True)
btn_s = gr.Button("Transcribe with SenseVoice")
# ────────────────────────────────────────────────────────────────
# 2) SHARED TRANSCRIPT ROW (aligned side-by-side)
with gr.Row():
with gr.Column():
gr.Markdown("### Faster-Whisper Output")
out_w = gr.Textbox(label="Raw Transcript", visible=False)
out_w_d = gr.HTML(label="Diarized Transcript", elem_classes=["diar"])
with gr.Column():
gr.Markdown("### SenseVoice Output")
out_s = gr.Textbox(label="Raw Transcript", visible=False)
out_s_d = gr.HTML(label="Diarized Transcript", elem_classes=["diar"])
# ────────────────────────────────────────────────────────────────
# 3) WIRING UP TOGGLES & BUTTONS
# wire the callbacks into those shared boxes
btn_w.click(
fn=transcribe_fwhisper_stream,
inputs=[whisper_dd, whisper_lang, audio_input, device_radio, whisper_multilingual_en],
outputs=[out_w, out_w_d]
)
btn_s.click(
fn=transcribe_sense_steam,
inputs=[sense_dd, sense_lang, audio_input, punct_chk, device_radio_s],
outputs=[out_s, out_s_d]
)
if __name__ == "__main__":
Demo.launch()
|